
Chapter 9
Gradient Computation

Abstract As was shown in the previous chapter, the discretization of the gradients
of / at cell centroids and faces is fundamental to constructing the discretized sets of
diffusion equations and, as will be revealed in later chapters, of equations involving
the convection term. In addition, the evaluation of gradients is needed for the
evaluation of various operators. For example, pressure derivatives are directly
needed in the discretized momentum equations, while velocity gradients are
required to compute the production term in turbulence models, and the strain rate in
non-Newtonian viscosity models. This chapter describes several techniques for
evaluating gradients on a general mesh topology. The chapter starts with a
description of the techniques for computing the gradient on cartesian structured
grids and proceeds with gradient evaluation on unstructured grids. The presented
methods follow either the Green-Gauss or the least square approach. Methods to
interpolate the gradient to element faces are also presented.

9.1 Computing Gradients in Cartesian Grids

For the one-dimensional problem shown in Fig. 9.1 discretized using a uniform
grid, a linear profile assumption for the variation of / between cell centroids results
in the following expression for the derivative at cell face e:

d/
dx

� �
e
¼/E � /C

xE � xC

¼/E � /C

dxe

ð9:1Þ

In the same way, the derivative at the cell centroid C (Fig. 9.1) can be written
using the values at the two adjacent cells as
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d/
dx

� �
C
¼/e � /w

xe � xw
¼

/Eþ/C
2

� �
� /Cþ/W

2

� �
DxC

¼/E � /W

2DxC

ð9:2Þ

This expression is usually referred to as the “central difference” approximation
of the first derivative.

For Cartesian grids in multiple dimensions, the derivatives can be computed by
applying the same principle along the respective coordinate directions. Consider,
for example, the two dimensional grid shown in Fig. 9.2, using the central differ-
ence approximation introduced earlier, the partial derivatives in the x and y direc-
tions are obtained as
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Fig. 9.1 Computing the
gradient on a uniform one
dimensional grid
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gradient on a two dimensional
Cartesian grid

274 9 Gradient Computation



@/
@x

� �
C
¼ /E � /W

xE � xW

@/
@y

� �
C
¼ /N � /S

xN � xS
ð9:3Þ

A similar equation holds in the z direction for three dimensional grids.
When dealing with unstructured grids the computation of the gradient using the

above method becomes unpractical and leads to the use of more general methods,
some of these are now presented.

9.2 Green-Gauss Gradient

This is one of the most widely used methods for computing the gradient. It was
introduced in the previous chapter and will not be repeated here. Rather the final
form of the equation will be given and some additional methods to compute the face
values will be introduced.

As derived in the previous chapter, the gradient at the centroid of an element
C with volume VC ( Fig. 8.8) is computed as

r/C ¼ 1
VC

X
f�nb Cð Þ

/fSf ð9:4Þ

where f refers to a face and Sf to its surface vector. The face values /f still need to
be defined before the formula can be used. Two approaches are presented for
computing /f . One is face-based with a generally compact stencil involving face
neighbors, and the second is vertex-based with a larger stencil involving vertex
neighbors. The number of cells in this extended stencil is about twice the compact
one.

The use of a compact stencil is attractive with implicit methods because it leads
to more compact Jacobian matrices. However, the enlarged stencil brings more
information into the reconstruction, and is therefore expected to be more accurate.

Method 1: Compact Stencil [1]

For the two and three dimensional grid system shown in Fig. 9.3a, b, respec-
tively, a simple approximation for calculating /f is to use the average values of the
two cells sharing the face. In this case the value of /f is calculated as

/f ¼ gC/C þ 1� gCð Þ/F ð9:5Þ

where gC is a geometric weighting factor equal to
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gC ¼ krF � rf k
krF � rC k ¼ dFf

dFC
ð9:6Þ

where r designates the position vector and d the distance between two points. When
the face is situated halfway between the two cell centers, /f is found to be

/f ¼
/C þ /F

2
ð9:7Þ

This approach is simple to implement in two and three dimensional situations
and all operations involved are face-based, not requiring any additional grid con-
nectivity. Accuracy-wise, the above relation leads to a second order approximation
of /f only when the segment [CF] and face Sf intersection point coincides with the
centroid of the face Sf , i.e., with the Gaussian integration point f. Thus a second
order accurate representation of the gradient is generally not achieved except for the
above special case.

Such a condition is not usually satisfied with a general structured non-orthogonal
or unstructured grid systems as shown for the two and three dimensional grid
systems displayed in Fig. 9.3c, d, respectively. Rather, the skewness of the mesh
(non-conjunctionality) results in the segment [CF] and the surface Sf intersecting at
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Fig. 9.3 Conjunctional face in a a two dimensional and b a three dimensional configuration;
non-conjunctional face in c a two dimensional and d a three dimensional configuration
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a point f 0, different from the face centroid f. In this case a correction is needed for
the interpolated /f 0 value to get /f . The correction equation is given by

/f ¼/f 0 þ correction

¼/f 0 þ ðr/Þf 0 � ðrf � rf 0 Þ
ð9:8Þ

which may also be written in expanded form as

/f ¼ gC /C þ r/ð ÞC � rf � rC
� �� 	þ 1� gCð Þ /F þ r/ð ÞF � rf � rF

� �� 	
¼ /f 0 þ gC r/ð ÞC � rf � rC

� �þ 1� gCð Þ r/ð ÞF � rf � rF
� �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

correction

ð9:9Þ

Since gC depends on f 0, Eq. (9.9) indicates that improved estimates of the gradient
can be obtained iteratively. At each iteration, the average value at the face is
computed using the gradients calculated in the pervious iteration. These face values
are then used to compute new estimates of the gradients. Doing excessive number
of iterations may cause oscillations and usually not more than two iterations are
performed.

In this case, the calculation of gC requires locating the intersection point f 0

between [CF] and the face Sf. For that purpose three options will be described.

Option 1: In this option f 0 is taken to be the exact intersection between [CF] and
the face Sf of surface vector Sf. With n denoting the surface unit vector (i.e.,
n ¼ Sf = Sf

�� ��) and e the unit vector along CF (i.e., e ¼ CF= CFk k), the location of
f 0 (Fig. 9.3c, d) can be found by exploiting the orthogonality condition that exists
between n and the segment ff 0 (i.e., n is normal to the face Sf containing the
segment ff 0) to write

rf � rf 0
� � � n ¼ 0 ð9:10Þ

Further, since f 0 is a point on CF the vector Cf 0 can be expressed in terms of e as

Cf 0 ¼ rf 0 � rC
� � ¼ ke ð9:11Þ

where k is a scalar quantity. Combining Eqs. (9.10) and (9.11) yields

rf 0 ¼ rf � n
e � n e ð9:12Þ

with f 0 located, gC is computed as

gC ¼ rF � rf 0
�� ��
rF � rCk k ¼ dFf 0

dFC
ð9:13Þ
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Then, the calculation procedure involves the following steps:
During the first iteration, calculate the gradient field over the entire domain as

follows:

1. Calculate /f 0 using /f 0 ¼ gC/C þ 1� gCð Þ/F

2. Calculate r/C using r/C ¼ 1
VC

X
f� nbðCÞ

/f 0Sf

From the second iteration onward, correct the gradient field according to the
following procedure:

3. Update /f using /f ¼ /f 0 þ gC r/ð ÞC � rf � rC
� �þ 1� gCð Þ r/ð ÞF � rf � rF

� �
4. Update r/C using r/C ¼ 1

VC

X
f� nbðCÞ

/fSf

5. Go back to step 3 and repeat.

Option 2: For f 0 chosen to be at the centre of segment [CF] [Fig. 9.4a in two
dimensions and Fig. 9.4b in three dimensions] the equations become simpler and
the calculation of the gradient field over the domain proceeds as follows:

During the first iteration, calculate the gradient field over the entire domain as
follows:

1. Calculate /f 0 using /f 0 ¼
/C þ /F

2

2. Calculate r/C using r/C ¼ 1
VC

X
f� nbðCÞ

/f 0Sf

From the second iteration onward, correct the gradient field according to the
following procedure:

3. Update/f using /f ¼ /f 0 þ 0:5 � r/ð ÞC þ r/ð ÞF
� 
 � rf � 0:5 � rC þ rFð Þ� 


4. Update r/C using r/C ¼ 1
VC

X
f� nbðCÞ

/fSf

5. Go back to step 3 and repeat
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Fig. 9.4 Correction to Non-Conjunctionality using the midpoint approach: a two dimensional
configuration; b three dimensional configuration
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Option 3: The position of f 0 can be chosen such that the distance ff 0 is the shortest
possible [Fig. 9.5a in two dimensions and Fig. 9.5b in three dimensions], i.e., ff 0½ �
perpendicular to [CF]. This leads to a more accurate computation of the gradient
during the first iteration. In this case f 0 is computed by minimizing the distance
between f and f 0. In general rf 0 is described by

rf 0 ¼ rC þ q rC � rFð Þ ð9:14Þ

where 0 < q < 1.
Denoting the distance f 0f by d, then its square is obtained as

d2 ¼ rf � rf 0
� � � rf � rf 0

� �
¼ rf � rC � q rC � rFð Þ� 
 � rf � rC � q rC � rFð Þ� 
 ð9:15Þ
¼ rf � rC
� � � rf � rC

� �� 2q rf � rC
� � � rC � rFð Þ þ q2 rC � rFð Þ � rC � rFð Þ

Minimizing the function d2 with respect to q, yields

@ d2ð Þ
@q

¼ 0 ) �2 rf � rC
� � � rC � rFð Þ þ 2q rC � rFð Þ � rC � rFð Þ ¼ 0 ð9:16Þ

Solving, q is obtained as

q ¼ � rCf � rCF
rCF � rCF ð9:17Þ

Knowing the q values, the gradient calculation over the domain proceeds as
follows:

During the first iteration, calculate the gradient field over the entire domain as
follows:

1. Calculate rf 0 using rf 0 ¼ rC � rCf � rCF
rCF � rCF rC � rFð Þ

2. Calculate gC using gC ¼ rF � rf 0
�� ��= rF � rCk k
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Fig. 9.5 Correction to Non-Conjunctionality using the minimum distance approach: a two
dimensional configuration; b three dimensional configuration
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3. Calculate /f 0 using /f 0 ¼ gC/C þ 1� gCð Þ/F

4. Calculate r/C using r/C ¼ 1
VC

X
f� nbðCÞ

/f 0Sf

From the second iteration onward, correct the gradient field according to the
following procedure:

5. Calculate r/f 0 using r/f 0 ¼ gCr/C þ 1� gCð Þr/F

6. Update /f using /f ¼ /f 0 þ r/f 0 � rf � rf 0
� �

7. Update r/C using r/C ¼ 1
VC

X
f � nbðCÞ

/fSf

8. Go back to step 5 and repeat

Example 1
For the mesh shown in Fig. 9.6, the coordinates of the grid point C and its
neighbors F1 through F6 are given by

C 13; 11ð Þ F1 4:5; 9:5ð Þ F2 8; 3ð Þ F3 17; 3:5ð Þ
F4 22; 10ð Þ F5 16; 20ð Þ F6 7; 18ð Þ

while the nodes n1 through n6 are located at

n1 9; 14ð Þ n2 8; 8ð Þ n3 12; 5ð Þ
n4 17; 9ð Þ n5 17:5; 14ð Þ n6 12; 17ð Þ
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Fig. 9.6 Grid layout for
Examples 1 and 2
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If the values of the dependent variable / at the centroids are known to be

/C ¼ 167

/F1
¼ 56:75 /F2

¼ 35 /F3
¼ 80

/F4
¼ 252 /F5

¼ 356 /F6
¼ 151

and the values of the gradient of /, r/ð Þ, at all neighboring elements to C
are given by

r/F1
¼ 10:5iþ 5:5j r/F2

¼ 4iþ 9j r/F3
¼ 4:5iþ 18j

r/F4
¼ 11iþ 23j r/F5

¼ 21iþ 17j r/F6
¼ 19iþ 8j

If the volume of cell C is VC = 76, find the gradient r/C using

a. The Green-Gauss method with no correction
b. The Green-Gauss method alongside correction to skewness with f 0 chosen

to be at the centre of segment [CF].

Solution The Green-Gauss method with no correction

a. The interpolation factors are needed to perform the calculations. This, in
turn, necessitates computing the coordinates of the face centroids. The
coordinates of the centroid f1 are found as

xf1 ¼ 0:5 � xn1 þ xn2ð Þ ¼ 0:5 � 9þ 8ð Þ ¼ 8:5
yf1 ¼ 0:5 � yn1 þ yn2ð Þ ¼ 0:5 � 14þ 8ð Þ ¼ 11

�
) f1 8:5; 11ð Þ

In a similar way, the coordinates of other face centroids are found to be

f2 10; 6:5ð Þ f3 14:5; 7ð Þ
f4 17:25; 11:5ð Þ f5 14:75; 15:5ð Þ f6 10:5; 15:5ð Þ

The surface vectors are calculated as

Sf1 ¼ �6iþ j Sf2 ¼ �3i� 4j Sf3 ¼ 4i� 5j

Sf4 ¼ 5i� 0:5j Sf5 ¼ 3iþ 5:5j Sf6 ¼ �3iþ 3j
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The interpolation factor (gC)1 is computed using

gCð Þ1¼
F1f1

F1f1 þ Cf1

F1f1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4:5� 8:5ð Þ2þ 9:5� 11ð Þ2

q
¼ 4:272

Cf1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
13� 8:5ð Þ2þ 11� 11ð Þ2¼ 4:5

q

9>>>>>=
>>>>>;

) gCð Þ1¼ 0:487

In a similar way, the other interpolation factors are found to be

gCð Þ2 ¼ 0:427 gCð Þ3 ¼ 0:502 gCð Þ4 ¼ 0:538 gCð Þ5 ¼ 0:492 gCð Þ6 ¼ 0:455

Using Eq. (9.5) the /f values are computed as

/f1 ¼ 110:442 /f2 ¼ 91:364 /f3 ¼ 123:674

/f4 ¼ 206:27 /f5 ¼ 263:012 /f6 ¼ 158:28

Using Eq. (9.4), r/C is calculated as

r/C ¼ 1
76

110:442� �6ð Þ þ 91:364� �3ð Þ þ 123:674� 4 þ
206:27� 5þ 263:012� 3þ 158:28� �3ð Þ

� �
i þ

110:442� 1ð Þ þ 91:364� �4ð Þ þ 123:674� �5ð Þ þ
206:27� �0:5ð Þ þ 263:012� 5:5þ 158:28� 3ð Þ

� �
j

8>>><
>>>:

9>>>=
>>>;

¼ 11:889iþ 12:433j

b. The Green-Gauss method alongside correction to skewness with f 0 chosen
to be at the centre of segment [CF].

The values at the f 0 locations are computed as half the sum of the values at
the nodes straddling the face and are given by

/f1 ¼ 111:875 /f2 ¼ 101 /f3 ¼ 123:5 /f4 ¼ 209:5 /f5 ¼ 261:5 /f6 ¼ 158:5

Using these values, the first estimate for the gradient is obtained using
Eq. (9.4) as

r/C ¼ 11:53iþ 11:826j
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Defining df = rf − 0.5 × (rC + rF), the various values are found to be

df1 ¼ �0:25iþ 0:75j df2 ¼ �0:5i� 0:5j df3 ¼ �0:5i� 0:25j

df4 ¼ �0:25iþ j df5 ¼ 0:25i df6 ¼ 0:5iþ j

Using /f ¼ /f 0 þ 0:5 � ½ðr/ÞC þ ðr/ÞF � � rf � 0:5 � rC þ rFð Þ� 

the

updated values at the faces are obtained as

/f1 ¼ 115:619 /f2 ¼ 91:911 /f3 ¼ 115:764

/f4 ¼ 224:097 /f5 ¼ 265:566 /f6 ¼ 176:046

These values are used in Eq. (9.4) yielding the updated value of the
gradient as

r/C ¼ 11:614iþ 13:761j

Method 2: Extended Stencil [2]

The value of /f at the surface centroid f can be computed as the mean of the
values at the vertices defining the surface. This necessitates the estimation of
the properties at the vertices. The properties at a vertex node are calculated using
the weighted average of the properties within the cells surrounding that node.
Figure 9.7 shows the cells that are considered for the weighted average of the
properties at the vertex nodes n1 and n2. The weight is taken as the inverse of
the distance of the vertex from the cell centre [3]. The resulting equation for the
properties at the vertices are written as,

Fig. 9.7 Cells Contributing
to node n for the Weighted
Average
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/n ¼
PNBðnÞ
k¼1

/Fk

rn � rFkk kPNBðnÞ
k¼1

1
rn � rFkk k

ð9:18Þ

where n refers to the vertex node, Fk to the neighboring cell node, NB(n) the total
number of cell nodes surrounding the vertex node n, and rn � rFkk k the distance
from the vertex node to the centroid of the neighboring cells.

Once the values /n at the vertices are found, the values /f at the surface
centroids are calculated followed by the gradients at the control volume centroids.
In two dimensional situations, /f is computed as

/f ¼
/n1 þ /n2

2
ð9:19Þ

Then the gradient at C is found using

r/C ¼ 1
VC

X
f¼nbðCÞ

/fSf ¼
1
VC

X
f � nbðCÞ

/n1 þ /n2

2

� �
f
Sf ð9:20Þ

In three dimensional situations, the calculations are a little more involved as the
number of a face vertices depends on the element type. The value of /f is found
from the values at the vertices using

/f ¼

Pnbðf Þ
k¼1

/nk

rnk � rf
�� ��

Pnbðf Þ
k¼1

1
rnk � rf

�� ��
ð9:21Þ

where n represents the number of vertices of face f. Once the values /f are cal-
culated, the gradient at C is computed using Eq. (9.4).

One of the disadvantages of this approach is that information from the wrong
side of the cell face also contributes to the weighted average values of the conserved
variables. This can be overcome by using upwind biased gradients as discussed by
Cabello [4]. The higher order calculations based on the upwind biased gradients,
however, have both higher memory overheads required to store the information
about the cells used for the upwind biased gradient calculation and increased coding
complexity.
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Example 2
Using the data of example I, calculate /f1 using the extended stencil
approach via Eq. (9.16).

Solution First the distances have to be calculated and are given by

rn1 � rF6k k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9� 7ð Þ2þ 14� 18ð Þ2

q
¼ 4:472

rn1 � rF1k k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9� 4:5ð Þ2þ 14� 9:5ð Þ2

q
¼ 6:364

rn1 � rCk k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9� 13ð Þ2þ 14� 11ð Þ2

q
¼ 5

rn2 � rF1k k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8� 4:5ð Þ2þ 8� 9:5ð Þ2

q
¼ 3:808

rn2 � rF2k k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8� 8ð Þ2þ 8� 3ð Þ2

q
¼ 5

rn2 � rCk k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8� 13ð Þ2þ 8� 11ð Þ2

q
¼ 5:831

The values at nodes n1 and n2 are computed using Eq. (9.15) as

/n1 ¼
151
4:472

þ 56:75
6:364

þ 167
5

1
4:472

þ 1
6:364

þ 1
5

¼ 131:009 /n2 ¼
56:75
3:808

þ 35
5
þ 167
5:831

1
3:808

þ 1
5
þ 1
5:831

¼ 79:708

The value of /f1 is found to be

/f1 ¼ 0:5 131:009þ 79:708ð Þ ¼ 105:3585

9.3 Least-Square Gradient

Using least-square methods to compute the gradients [5] offers more flexibility with
regard to the order of accuracy achieved [6] and the stencil used [7]. In the
least-square method, the divergence-based gradient can be recovered as a special
case. This flexibility comes at a cost, as proper weighting is needed for the stencil
terms, and computation of the weights adds to the computational cost. The method
is described next.

Considering a control volume and its immediate neighbors (Fig. 9.8), the change
in centroid values between C and F is given by ð/F � /CÞ, if the cell gradient
(r/C) is exact, then the difference can also be computed as
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/F ¼ /C þ r/ð ÞC � rF � rCð Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
rCF

ð9:22Þ

However unless the solution field is linear the cell gradient cannot be exact
because C has more neighbors than the gradient vector has components. In the least
square methods, a gradient is computed by an optimization procedure that finds the
minimum of the function GC defined as

GC ¼
XNBðCÞ
k¼1

wk /Fk
� /C þr/C � rCFkð Þ� 
2n o

¼
XNBðCÞ
k¼1

wk D/k � Dxk
@/
@x

� �
C
þ Dyk

@/
@y

� �
C
þDzk

@/
@z

� �
C

� �� �2( ) ð9:23Þ

where wk is some weighting factor. The various terms in the above equation
represent

D/k ¼ /Fk
� /C

Dxk ¼ rCFk � i
Dyk ¼ rCFk � j
Dzk ¼ rCFk � k

ð9:24Þ

The function GC is minimized by enforcing the conditions

@GC

@
@/
@x

� � ¼ @GC

@
@/
@y

� � ¼ @GC

@
@/
@z

� � ¼ 0 ð9:25Þ

Fig. 9.8 A control volume with its immediate neighbors

286 9 Gradient Computation



to yield the following set of three equations in three unknowns:

XNBðCÞ
k¼1

2wkDxk �D/k þ Dxk
@/
@x

� �
C
þDyk

@/
@y

� �
C
þDzk

@/
@z

� �
C

� �� �
¼ 0

XNBðCÞ
k¼1

2wkDyk �D/k þ Dxk
@/
@x

� �
C
þDyk

@/
@y

� �
C
þDzk

@/
@z

� �
C

� �� �
¼ 0

XNBðCÞ
k¼1

2wkDzk �D/k þ Dxk
@/
@x

� �
C
þDyk

@/
@y

� �
C
þDzk

@/
@z

� �
C

� �� �
¼ 0

ð9:26Þ

which can be written in matrix form as

PNBðCÞ
k¼1

wkDxkDxk
PNBðCÞ
k¼1

wkDxkDyk
PNBðCÞ
k¼1

wkDxkDzk

PNBðCÞ
k¼1

wkDykDxk
PNBðCÞ
k¼1

wkDykDyk
PNBðCÞ
k¼1

wkDykDzk

PNBðCÞ
k¼1

wkDzkDxk
PNBðCÞ
k¼1

wkDzkDyk
PNBðCÞ
k¼1

wkDzkDzk

2
666666664

3
777777775

@/
@x

� �
C

@/
@y

� �
C

@/
@z

� �
C

2
66666664

3
77777775

¼

PNBðCÞ
k¼1

wkDxkD/k

PNBðCÞ
k¼1

wkDykD/k

PNBðCÞ
k¼1

wkDzkD/k

2
666666664

3
777777775

ð9:27Þ

The solution to the above set of equations yields the gradient r/ð ÞC. A solution
exists provided that the matrix on the left hand side is not singular. Moreover, the
choice of the wk is important in determining the properties of the gradient. For
example if wk is chosen to be 1 for all neighbors of C, then all neighboring points
will have the same weight in the computation of the gradient irrespective of whether
they are near or far from point C. Actually points that are farther from C will have a
more important influence as the error function will be more affected by their error.

Another choice for wk, which was used earlier with the extended stencil method,
is the inverse distance between C and F given by

wk ¼ 1
rFk � rCj j ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx2Fk

þ Dy2Fk
þ Dz2Fk

q ð9:28Þ
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Other options that can be pursued include the inverse distance raised to any
power n such that

wk ¼ 1
rFk � rCj jn ð9:29Þ

where n can be set to 1, 2, 3, etc.
As mentioned above, the divergence based gradient is a special case of the

least-square formulation. This can be shown for a Cartesian grid (see Fig. 9.9)
where substituting the geometric quantities into Eq. (9.27) would yield the fol-
lowing set of three equations.

xE � xW 0 0
0 yN � yS 0
0 0 zT � zB

2
4

3
5 @/=@xð ÞC

@/=@yð ÞC
@/=@zð ÞC

2
4

3
5 ¼

/E � /W
/N � /S
/T � /B

2
4

3
5 ð9:30Þ

Solving the above equation, the derivatives in the various directions are found to be

@/
@x

� �
C
¼ /E � /W

xE � xW

@/
@y

� �
C
¼ /N � /S

yN � yS

@/
@z

� �
C
¼ /T � /B

zT � zB
ð9:31Þ

The obtained values are exactly the ones given in Eq. (9.3), demonstrating that the
divergence-based gradient is a special case of the least-square method. Finally it can
easily be demonstrated that the accuracy of the resulting gradient is at least first order.
Indeed, the Taylor series expansion of the / value around node C can be written as

/ rð Þ � / rCð Þ ¼ r/ð ÞC � r� rCð Þ þ O r2
� � ð9:32Þ

which when solved for r/ð ÞC results in O(r).
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Fig. 9.9 A three dimensional
Cartesian control volume
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9.4 Interpolating Gradients to Faces

It was shown in Chap. 8 that the discretization of the diffusion term in
non-orthogonal grids requires the use of correction terms involving gradients at
control volume faces. Thus in this situation the gradients need to be interpolated from
the control volume centroids where they were computed to the control volume faces
where they will be used. Figure 9.10a shows the stencil used in the Gauss gradient
computation for two neighboring control volumes. The gradient at the face will have
exactly the same stencil, while ideally it should be similar to that of Fig. 9.10b.

A better insight is gained by considering the configuration in Fig. 9.11a, which
shows the gradients r/C and r/F of the variable / at the two nodes C and F,
respectively. The interpolated gradient at the face, r/f , is obtained by averaging
the values at nodes C and F, as shown in Fig. 9.11b. It is important for the stencil of
the gradient at the face to be heavily based on the nodes straddling the face, which
is not guaranteed by this simple averaging practice. As schematically displayed in
Fig. 9.11c, this can be accomplished by forcing the face gradient along the CF
direction to be equal to the local gradient defined by the values of / at C and
F. Mathematically this can be written as

r/f ¼ r/f þ
/F � /C

dCF
� r/f � eCF
� �� �

eCF|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Correction interpolated face gradient

ð9:33Þ

where

r/f ¼ gCr/C þ gFr/F ; eCF ¼ dCF
dCF

; dCF ¼ rF � rC ð9:34Þ

f eCF stencil

C F
f

stencilf eCF

C F
f

(a) (b)

Fig. 9.10 a Interpolated and b corrected gradient at a control volume face
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where rF and rC are position vectors, as displayed in Fig. 9.3. This approach is
applicable to both structured and unstructured grids. For unstructured grids, while
the stencil used for the face gradient might not be decreased, the gradient across a
face will still be based on the nodes straddling that face.

9.5 Computational Pointers

9.5.1 uFVM

In uFVM, the functions cfdComputeGradientGauss0 and cfdComputeGradi-
entNodal are used to compute the element gradients. The Gauss gradient routine
(Listing 9.1) takes as input the phi element array and returns the element gradient
array. The values are interpolated to the faces using a weighted factor with no
correction for non-conjunctionality, hence the 0 digit in the function name.

S f

n

C

F

f( )C

( )F

dCF

eCF

( ) f

( )F
( )C

( ) f ( ) f
eCF( )eCF

F C

dCF

eCF

( ) f
( ) f

eCF

(a)

(b)

(c)

Fig. 9.11 a Schematics of the
gradients at the two nodes
C and F straddling face f;
b computing r/f as a simple
average of r/C and r/F
using Eq. (9.31); c the
gradient at the face with its
value heavily based on the
nodes straddling the face
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function phiGrad = cfdComputeGradientGauss0(phi,theMesh)
%===================================================
%  written by the CFD Group @ AUB, Fall 2006
%===================================================
%
if(nargin<2)
    theMesh = cfdGetMesh;
end

theSize = size(phi);
theNumberOfComponents = theSize(2);
if(theNumberOfComponents > 3)
   echo('********* ERROR **********');
   exit; 
end
%-----------------------------------------------------
% INTERIOR FACES contribution to gradient 
%-----------------------------------------------------
iFaces = 1:theMesh.numberOfInteriorFaces;
iBFaces = theMesh.numberOfInteriorFaces+1:theMesh.numberOfFaces;
iElements = 1:theMesh.numberOfElements;
iBElements  =  theMesh.numberOfElements+1:theMesh.numberOfElements
+theMesh.numberOfBFaces;

iOwners = [theMesh.faces(iFaces).iOwner]';
iNeighbours = [theMesh.faces(iFaces).iNeighbour]';

Sf = [theMesh.faces(iFaces).Sf]';
gf = [theMesh.faces(iFaces).gf]';
%-----------------------------------------------------
% Initialize phiGrad Array
%-----------------------------------------------------

phiGrad  =  zeros(theMesh.numberOfElements+theMesh.numberOfBElements,
3,theNumberOfComponents);

for iComponent=1:theNumberOfComponents
    phi_f = gf.*phi(iNeighbours,iComponent) + (1-gf).*phi(iOwners,iComponent);
    %
    for iFace=iFaces

phiGrad(iOwners(iFace),:,iComponent)     + phi_f(iFace)*Sf(iFace,:);
phiGrad(iOwners(iFace),:,iComponent) = 

phiGrad(iNeighbours(iFace),:,iComponent)  = 
phiGrad(iNeighbours(iFace),:,iComponent) - phi_f(iFace)*Sf(iFace,:);
    end
end

%-----------------------------------------------------
% BOUNDARY FACES contribution to gradient 

%-----------------------------------------------------
iBOwners = [theMesh.faces(iBFaces).iOwner]';
phi_b = phi(iBElements,iComponent);
Sb = [theMesh.faces(iBFaces).Sf]';
for iComponent=1:theNumberOfComponents
    %
    for k=1:theMesh.numberOfBFaces

phiGrad(iBOwners(k),:,iComponent) = 
phiGrad(iBOwners(k),:,iComponent)     + phi_b(k)*Sb(k,:);
    end
end

function phiGrad = cfdComputeGradientGauss0(phi,theMesh)
%===================================================
%  written by the CFD Group @ AUB, Fall 2006
%===================================================
%
if(nargin<2)
    theMesh = cfdGetMesh;
end

theSize = size(phi);
theNumberOfComponents = theSize(2);
if(theNumberOfComponents > 3)
   echo('********* ERROR **********');
   exit; 
end
%-----------------------------------------------------
% INTERIOR FACES contribution to gradient
%-----------------------------------------------------
iFaces = 1:theMesh.numberOfInteriorFaces;
iBFaces = theMesh.numberOfInteriorFaces+1:theMesh.numberOfFaces;
iElements = 1:theMesh.numberOfElements;
iBElements  =  theMesh.numberOfElements+1:theMesh.numberOfElements
+theMesh.numberOfBFaces;

iOwners = [theMesh.faces(iFaces).iOwner]';
iNeighbours = [theMesh.faces(iFaces).iNeighbour]';

Sf = [theMesh.faces(iFaces).Sf]';
gf = [theMesh.faces(iFaces).gf]';
%-----------------------------------------------------
% Initialize phiGrad Array
%-----------------------------------------------------

phiGrad  =  zeros(theMesh.numberOfElements+theMesh.numberOfBElements,
3,theNumberOfComponents);

for iComponent=1:theNumberOfComponents
    phi_f = gf.*phi(iNeighbours,iComponent) + (1-gf).*phi(iOwners,iComponent);
    %
    for iFace=iFaces

phiGrad(iOwners(iFace),:,iComponent)     + phi_f(iFace)*Sf(iFace,:);
phiGrad(iOwners(iFace),:,iComponent) = 

phiGrad(iNeighbours(iFace),:,iComponent) = 
phiGrad(iNeighbours(iFace),:,iComponent) - phi_f(iFace)*Sf(iFace,:);
    end
end

%-----------------------------------------------------
% BOUNDARY FACES contribution to gradient 

%-----------------------------------------------------
iBOwners = [theMesh.faces(iBFaces).iOwner]';
phi_b = phi(iBElements,iComponent);
Sb = [theMesh.faces(iBFaces).Sf]';
for iComponent=1:theNumberOfComponents
    %
    for k=1:theMesh.numberOfBFaces

phiGrad(iBOwners(k),:,iComponent) = 
phiGrad(iBOwners(k),:,iComponent)     + phi_b(k)*Sb(k,:);
    end
end

Listing 9.1 Function used in uFVM to compute the gradient field at the centroids of elements
following the Green-Gauss approach with phi values at the face computed using simple a weighted
average interpolation technique with no correction to non-conjunctionality
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The nodal gradient routine, listed below (Listing 9.2), is very similar to the
Gauss gradient routine except that it uses the functions cfdInterpolateFrom-
ElementsToNodes and cfdInterpolateFromNodesToFaces to interpolate phi values
to the face that are subsequently used in the Gauss algorithm.

%
%=====================================================
% INTERIOR Gradients 
%=====================================================
theNumberOfElements = theMesh.numberOfElements;
theNumberOfBElements = theMesh.numberOfBElements;
theNumberOfInteriorFaces = theMesh.numberOfInteriorFaces;
%
phiNodes = cfdInterpolateFromElementsToNodes(phi);
phi_f = cfdInterpolateFromNodesToFaces(phiNodes);
%
phiGrad = zeros(3,theNumberOfElements+theNumberOfBElements);
%-----------------------------------------------------
% INTERIOR FACES contribution to gradient 
%-----------------------------------------------------
fvmFaces = theMesh.faces;

% interpolate phi to faces
%
for iFace=1:theNumberOfInteriorFaces
   %
   theFace = fvmFaces(iFace);
   %
   iElement1 = theFace.iOwner;
   iElement2 = theFace.iNeighbour;
   %

Listing 9.2 Function used in uFVM to compute the gradient field at the centroids of elements
following the Green-Gauss approach with phi values at the face computed using nodal values, i.e.,
the extended stencil approach

%-----------------------------------------------------
% Get Average Gradient by dividing with element volume 
%-----------------------------------------------------
volumes = [theMesh.elements(iElements).volume]';
for iComponent=1:theNumberOfComponents
    for iElement =1:theMesh.numberOfElements
       phiGrad(iElement,:,iComponent)  =  phiGrad(iElement,:,iComponent)/
volumes(iElement);
    end
end
%-----------------------------------------------------
% Set boundary Gradient equal to associated element
% Gradient
%-----------------------------------------------------
phiGrad(iBElements,:,:) = phiGrad(iBOwners,:,:);

end

%-----------------------------------------------------
% Get Average Gradient by dividing with element volume
%-----------------------------------------------------
volumes = [theMesh.elements(iElements).volume]';
for iComponent=1:theNumberOfComponents
    for iElement =1:theMesh.numberOfElements

phiGrad(iElement,:,iComponent)  =  phiGrad(iElement,:,iComponent)/
volumes(iElement);
    end
end
%-----------------------------------------------------
% Set boundary Gradient equal to associated element
% Gradient
%-----------------------------------------------------
phiGrad(iBElements,:,:) = phiGrad(iBOwners,:,:);

end

Listing 9.1 (continued)

292 9 Gradient Computation



For face interpolation of gradients, a variety of interpolation options are allowed
in the function cfdInterpolateGradientsFromElementsToInteriorFaces. The
input to the function is theInterpolationScheme, the element gradient grad, the
element array phi and mdot for cases where an upwind or downwind scheme is
used. The function is shown in Listing 9.3.

%-----------------------------------------------------
% Get Average Gradient by dividing with element volume 
%-----------------------------------------------------
for iElement =1:theNumberOfElements
   theElement = fvmElements(iElement);
   phiGrad(:,iElement) = phiGrad(:,iElement)/theElement.volume;
end

%-----------------------------------------------------
% Set boundary Gradient equal to associated element
% Gradient
%-----------------------------------------------------
for iBPatch = 1:theNumberOfBElements
    iBElement = iBPatch+theNumberOfElements;
    iBFace = iBPatch+theNumberOfInteriorFaces;
    theBFace = fvmFaces(iBFace);
    iOwner = theBFace.iOwner;
    phiGrad(:,iBElement) = phiGrad(:,iOwner);
end

   Sf = theFace.Sf;
   %
   %
   phiGrad(:,iElement1) = phiGrad(:,iElement1) + phi_f(iFace)*Sf;
   phiGrad(:,iElement2) = phiGrad(:,iElement2) - phi_f(iFace)*Sf;
   
end

%=====================================================
% BOUNDARY FACES contribution to gradient 
%=====================================================
for iBPatch=1:theNumberOfBElements
    %
    iBFace = theNumberOfInteriorFaces+iBPatch;
    iBElement = theNumberOfElements+iBPatch;
    theFace = fvmFaces(iBFace);
    %
    iElement1 = theFace.iOwner;
    %
    Sb = theFace.Sf;
    phi_b = phi(iBElement);
    %
    phiGrad(:,iElement1) = phiGrad(:,iElement1) + phi_b*Sf;
    
end

%-----------------------------------------------------
% Get Average Gradient by dividing with element volume
%-----------------------------------------------------
for iElement =1:theNumberOfElements
  theElement = fvmElements(iElement);
  phiGrad(:,iElement) = phiGrad(:,iElement)/theElement.volume;
end

%-----------------------------------------------------
% Set boundary Gradient equal to associated element
% Gradient
%-----------------------------------------------------
for iBPatch = 1:theNumberOfBElements
   iBElement = iBPatch+theNumberOfElements;
   iBFace = iBPatch+theNumberOfInteriorFaces;
   theBFace = fvmFaces(iBFace);
   iOwner = theBFace.iOwner;
   phiGrad(:,iBElement) = phiGrad(:,iOwner);
end

  Sf = theFace.Sf;
  %
  %
  phiGrad(:,iElement1) = phiGrad(:,iElement1) + phi_f(iFace)*Sf;
  phiGrad(:,iElement2) = phiGrad(:,iElement2) - phi_f(iFace)*Sf;

end

%=====================================================
% BOUNDARY FACES contribution to gradient
%=====================================================
for iBPatch=1:theNumberOfBElements
   %
   iBFace = theNumberOfInteriorFaces+iBPatch;
   iBElement = theNumberOfElements+iBPatch;
   theFace = fvmFaces(iBFace);
   %
   iElement1 = theFace.iOwner;
   %
   Sb = theFace.Sf;
   phi_b = phi(iBElement);
   %
   phiGrad(:,iElement1) = phiGrad(:,iElement1) + phi_b*Sf;
   
end

Listing 9.2 (continued)
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function grad_f= 
cfdInterpolateGradientsFromElementsToInteriorFaces(theInterpolationScheme,grad
,phi,mdot_f)
%===================================================

%  written by the CFD Group @ AUB, Fall 2006
%===================================================

theMesh= cfdGetMesh;

numberOfInteriorFaces = theMesh.numberOfInteriorFaces;

iOwners = [theMesh.faces(1:numberOfInteriorFaces).iOwner]';
iNeighbours = [theMesh.faces(1:numberOfInteriorFaces).iNeighbour]';
gf = [theMesh.faces(1:numberOfInteriorFaces).gf]';

if(strcmp(theInterpolationScheme,'Average')==1)
    grad_f(:,1) = (1-gf).*grad(iNeighbours,1) + gf.*grad(iOwners,1);
    grad_f(:,2) = (1-gf).*grad(iNeighbours,2) + gf.*grad(iOwners,2);
    grad_f(:,3) = (1-gf).*grad(iNeighbours,3) + gf.*grad(iOwners,3);

elseif(strcmp(theInterpolationScheme,'Upwind')==1)
     pos = zeros(size(mdot_f));
     pos((mdot_f>0))=1;
     %
     grad_f(:,1) = pos.*grad(iNeighbours,1) + (1-pos).*grad(iOwners,1);
     grad_f(:,2) = pos.*grad(iNeighbours,2) + (1-pos).*grad(iOwners,2);
     grad_f(:,3) = pos.*grad(iNeighbours,3) + (1-pos).*grad(iOwners,3);

function grad_f= 
cfdInterpolateGradientsFromElementsToInteriorFaces(theInterpolationScheme,grad
,phi,mdot_f)
%===================================================

%  written by the CFD Group @ AUB, Fall 2006
%===================================================

theMesh= cfdGetMesh;

numberOfInteriorFaces = theMesh.numberOfInteriorFaces;

iOwners = [theMesh.faces(1:numberOfInteriorFaces).iOwner]';
iNeighbours = [theMesh.faces(1:numberOfInteriorFaces).iNeighbour]';
gf = [theMesh.faces(1:numberOfInteriorFaces).gf]';

if(strcmp(theInterpolationScheme,'Average')==1)
   grad_f(:,1) = (1-gf).*grad(iNeighbours,1) + gf.*grad(iOwners,1);
   grad_f(:,2) = (1-gf).*grad(iNeighbours,2) + gf.*grad(iOwners,2);
   grad_f(:,3) = (1-gf).*grad(iNeighbours,3) + gf.*grad(iOwners,3);

elseif(strcmp(theInterpolationScheme,'Upwind')==1)
    pos = zeros(size(mdot_f));
    pos((mdot_f>0))=1;
    %
    grad_f(:,1) = pos.*grad(iNeighbours,1) + (1-pos).*grad(iOwners,1);
    grad_f(:,2) = pos.*grad(iNeighbours,2) + (1-pos).*grad(iOwners,2);
    grad_f(:,3) = pos.*grad(iNeighbours,3) + (1-pos).*grad(iOwners,3);

elseif(strcmp(theInterpolationScheme,'Downwind')==1)
     pos = zeros(size(mdot_f));
     pos((mdot_f>0))=1;
     %
     grad_f(:,1) = (1-pos).*grad(iNeighbours,1) + pos.*grad(iOwners,1);
     grad_f(:,2) = (1-pos).*grad(iNeighbours,2) + pos.*grad(iOwners,2);
     grad_f(:,3) = (1-pos).*grad(iNeighbours,3) + pos.*grad(iOwners,3);

elseif(strcmp(theInterpolationScheme,'Average:Corrected')==1)
    grad_f(:,1) = (1-gf).*grad(iNeighbours,1) + gf.*grad(iOwners,1);
    grad_f(:,2) = (1-gf).*grad(iNeighbours,2) + gf.*grad(iOwners,2);
    grad_f(:,3) = (1-gf).*grad(iNeighbours,3) + gf.*grad(iOwners,3);

d_CF  =  [theMesh.elements(iNeighbours).centroid]'  - 
[theMesh.elements(iOwners).centroid]';
    dmag=cfdMagnitude(d_CF);

    e_CF(:,1)=d_CF(:,1)./dmag;
    e_CF(:,2)=d_CF(:,2)./dmag;
    e_CF(:,3)=d_CF(:,3)./dmag;

    local_grad_mag_f = (phi(iNeighbours)-phi(iOwners))./dmag;
    local_grad(:,1) = local_grad_mag_f.*e_CF(:,1);
    local_grad(:,2) = local_grad_mag_f.*e_CF(:,2);
    local_grad(:,3) = local_grad_mag_f.*e_CF(:,3);

    local_avg_grad_mag = dot(grad_f',e_CF')';
    local_avg_grad(:,1)=local_avg_grad_mag.*e_CF(:,1);
    local_avg_grad(:,2)=local_avg_grad_mag.*e_CF(:,2);
    local_avg_grad(:,3)=local_avg_grad_mag.*e_CF(:,3);

    grad_f = grad_f - local_avg_grad + local_grad;
else
    theInterpolationScheme
    grad,
    phi,mdot
    exit;   
end

Listing 9.3 Function used to interpolation the element gradient field to the faces
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It should be noted that theInterpolationScheme “Average:Corrected” imple-
ments the face gradient correction technique used to get a more accurate gradient
representation along the CF direction, i.e., Eq. (9.33).

9.5.2 OpenFOAM®

In OpenFOAM® [8] several types of gradient evaluation techniques are defined: the
standard Green-Gauss method, the second order least square method, and the fourth
order least square method. Attention will be focussed here on the Green-Gauss
method. Nonetheless the discretization in all cases is performed explicitly and is
thus part of the fvc operator namespace. The Green-Gauss gradient is defined at the
cell centre, as in Eq. (9.4), and its source code in OpenFOAM is located in the
directory “src/finiteVolume/finiteVolume/gradSchemes/gaussGrad”.

Implementation-wise, the gradient evaluation is performed in the following two
steps:

• Face interpolation of the variable
• Green-Gauss formula evaluation

The interpolation to the face is in the calcGrad routine listed below (Listing 9.4).

As a first step, values are interpolated to the faces and stored in the generic field
“vsf” (the interpolation class will be described with more details in Chap. 11). Then
the gradient is computed based on the Green-Gauss formula in the gradf routine
shown in Listing 9.5.

Foam::fv::gaussGrad<Type>::calcGrad
(
   const GeometricField<Type, fvPatchField, volMesh>& vsf,
   const word& name
) const
{
   typedef typename outerProduct<vector, Type>::type GradType;
   tmp<GeometricField<GradType, fvPatchField, volMesh> > tgGrad
   (

       gradf(tinterpScheme_().interpolate(vsf), name)
   );
   GeometricField<GradType, fvPatchField, volMesh>& gGrad = tgGrad();
   correctBoundaryConditions(vsf, gGrad);
   return tgGrad;
}

Listing 9.4 Script to interpolate variable values to cell faces
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Foam::fv::gaussGrad<Type>::gradf
(
    const GeometricField<Type, fvsPatchField, surfaceMesh>& ssf,
    const word& name
)
{
// Info << "Calculating gradient for " << name  << endl;
    typedef typename outerProduct<vector, Type>::type GradType;

    const fvMesh& mesh = ssf.mesh();
    tmp<GeometricField<GradType, fvPatchField, volMesh> > tgGrad
    (
        new GeometricField<GradType, fvPatchField, volMesh>
        (
            IOobject
            (
                name,
                ssf.instance(),
                mesh,
                IOobject::NO_READ,
                IOobject::NO_WRITE
            ),
            mesh,
            dimensioned<GradType>
            (
                "0",
                ssf.dimensions()/dimLength,
                pTraits<GradType>::zero
            ),
            zeroGradientFvPatchField<GradType>::typeName
        )

Foam::fv::gaussGrad<Type>::gradf
(
   const GeometricField<Type, fvsPatchField, surfaceMesh>& ssf,
   const word& name

)
{
// Info << "Calculating gradient for " << name  << endl;
   typedef typename outerProduct<vector, Type>::type GradType;

   const fvMesh& mesh = ssf.mesh();
   tmp<GeometricField<GradType, fvPatchField, volMesh> > tgGrad
   (
       new GeometricField<GradType, fvPatchField, volMesh>
       (
           IOobject
           (
               name,
               ssf.instance(),
               mesh,
               IOobject::NO_READ,
               IOobject::NO_WRITE
           ),
           mesh,
           dimensioned<GradType>
           (
               "0",
               ssf.dimensions()/dimLength,
               pTraits<GradType>::zero
           ),
           zeroGradientFvPatchField<GradType>::typeName
       )

    );
    GeometricField<GradType, fvPatchField, volMesh>& gGrad = tgGrad();

    const labelUList& owner = mesh.owner();
    const labelUList& neighbour = mesh.neighbour();
    const vectorField& Sf = mesh.Sf();

    Field<GradType>& igGrad = gGrad;
    const Field<Type>& issf = ssf;

    forAll(owner, facei)
    {
        GradType Sfssf = Sf[facei]*issf[facei];

        igGrad[owner[facei]] += Sfssf;
        igGrad[neighbour[facei]] -= Sfssf;
    }

    forAll(mesh.boundary(), patchi)
    {
        const labelUList& pFaceCells =
            mesh.boundary()[patchi].faceCells();
        const vectorField& pSf = mesh.Sf().boundaryField()[patchi];
        const fvsPatchField<Type>& pssf = ssf.boundaryField()[patchi];
        forAll(mesh.boundary()[patchi], facei)
        {
            igGrad[pFaceCells[facei]] += pSf[facei]*pssf[facei];
        }
    }
    igGrad /= mesh.V();
    gGrad.correctBoundaryConditions();
    return tgGrad;
}

Listing 9.5 Routine used to compute the gradient using the Green-Gauss method
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The sum over cell faces is performed using the LDU addressing. As such the
“for” loop that evaluates the sum over the faces of the cell is based only on the
global face numbering and uses the upper and lower addressing vectors to add or
subtract (Listing 9.6) the flux to cell values. After all fluxes have been processed,
the net value is divided by the volume to yield the gradient, as in Eq. 9.4.

The type of gradient is defined in fvSchemes shown in Listing 9.7.

The face interpolation scheme is defined as displayed in Listing 9.8.

The idea of evaluating the gradient based on a generic interpolation scheme that
has to be defined by dictionary, allows computing the gradient with the
Green-Gauss formula in several ways by just changing the interpolation scheme.

If skew correction, as defined in Eq. (9.8), is required then the above interpo-
lation scheme definition should be replaced by (Listing 9.9)

      igGrad[owner[facei]] += Sfssf;
      igGrad[neighbour[facei]] -= Sfssf;

Listing 9.6 Adding or subtracting fluxes to cell values

gradSchemes
{
   default         none;
   grad(phi)   Gauss;
}

Listing 9.7 Defining the gradient calculation method

interpolationSchemes
{
   interpolate(phi) linear;
}

Listing 9.8 Defining the interpolation method used in calculating face values

interpolationSchemes
{
   interpolate(phi) skewCorrected linear;
}

Listing 9.9 Defining the interpolation scheme to calculate face values with skew correction
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A more compact syntax can be used for defining the gradient in which the
interpolation type is specified directly under gradSchemes shown in Listing 9.10.

In this case the interpolation method is defined directly in the gradient dictio-
nary. The choice of the syntax type is up to the user keeping in mind that a separate
definition of the interpolation scheme helps clarifying the various steps of the
gradient calculation.

9.6 Closure

This chapter presented the discretization details of two methods for computing the
gradient at the centroids of control volume meshes in general non-orthogonal grid
systems. One method is based on the Green-Gauss theorem and the second on the
Least-Square reconstruction approach. Chapter 10 will be devoted to methods used
for solving systems of algebraic equations.

9.7 Exercises

Exercise 1
In the configuration depicted in Fig. 9.22, the values of the variable / and its gradient
r/ at C are known. Using these known values estimate the value of / at F.

gradSchemes
{
   default         none;
   grad(phi)   Gauss linear;
}

Listing 9.10 Defining the gradient calculation method: compact syntax

( )C = 2i + 3.5 j
C = 10.3

C

F

2,1( )

4,5.5( )

Fig. 9.22 A two dimensional element of centroid C and neighbor F
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Exercise 2
For the two cells shown in Fig. 9.23 the value of some scalar ϕ at their centroids
C and F can be calculated from

/ x; yð Þ ¼ 100 x2yþ y2x
� �

The gradient at C and F are also computed to be the exact gradient of the
function at these points such that

r/ x; yð Þ ¼ 100 2xyþ y2
� �

iþ 100 x2 þ 2yx
� �

j

With C and F located at (0.32, −0.1) and (0.52, 0.31), respectively, find the value of
the gradient at face f (0.43, 0.1) numerically (not from the expression for the
gradient) using

a. A simple averaging between C and F.
b. A corrected averaging between C and F.
c. Compare the two computed values with the exact gradient at point f.

Exercise 3
Consider the mesh composed of equilateral triangular elements shown in Fig. 9.24.
The coordinates of the mesh vertices are as shown. The temperatures at the cell
centroids are given by

T x; y; zð Þ ¼ 100 x2 þ y2 þ 1
� �

a. Compute the gradient at 1 using the Green-Gauss method.
b. Compute the gradient at 1 using the least squares approach with a limited stencil

(i.e., nodes 2, 3 and 4) and with an extended stencil (i.e., nodes 2–13) used for
the reconstruction.

c. Compare the least squares gradient with the limited and extended stencil and the
gauss gradient to the exact gradient.

C

F

f

Fig. 9.23 Two elements in a
two dimensional plane with
their centroids C and F
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Exercise 4
Consider the uniform mesh shown in Fig. 9.25. The coordinates of the mesh
vertices are as shown. The temperatures at the cell nodes are given by

T x; yð Þ ¼ 100 x3 þ y3 þ xyþ 1
� �

compute the gradient at the centroid of cell 1 using the gauss gradient with and
without face corrections and compare to the exact gradient given by

rT x; yð Þ ¼ 100 3x2 þ y
� �

iþ 100 3y2 þ x
� �

j

2

1

3

4

8

10

9

7

5

6

13 11

12

1

1

0.5

11

1/3

0

Fig. 9.24 A domain discretized using triangular elements

1

2

3

4

1

2

(0,0)

Fig. 9.25 Mesh system for
Exercise 4
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Exercise 5 (uFVM, OpenFOAM®)
Using uFVM and then OpenFOAM® write a program that

a. reads an OpenFOAM® mesh and sets a scalar field with values equal to
/ x; y; zð Þ ¼ 10x2y2 þ 3y

b. computes the gradients using the second order least square method,
c. computes the gradients using the gauss gradient method with linear

interpolation,
d. computes the gradients using the gauss gradient method with vertex

interpolation,
e. and computes the root mean square error between each of the computed gra-

dients and the exact gradient.

Exercise 6 (uFVM, OpenFOAM®)
Using uFVM and then OpenFOAM® write a program that

a. reads an OpenFOAM® mesh and sets a scalar field with values equal to
/ x; y; zð Þ ¼ 10x2y2 þ 3x

Use the exact gradients at the element nodes to compute the gradients at the
interior faces using

b. simple linear interpolation,
c. corrected linear interpolation,
d. and exact gradient formulation at the face centroids.
e. Compute the root mean square error between each of the computed gradients

and the exact gradient.

Exercise 7
Starting with Eq. (9.8) derive Eq. (9.9).

Hint: rf � rf 0 ¼ rf�rC � rcf 0 ¼ rf�rf � rFf 0 .

Exercise 8 (OpenFOAM®)

a. List all possible gradient type definitions available in OpenFOAM® by modi-
fying the gradSchemes in the fvSchemes dictionary (Hint: just mistype a
scheme, e.g., banana, and launch any solver or application, i.e., gradSchemes
{default banana;}).

b. Define in the dictionary file fvSchemes the option to evaluate the explicit gra-
dient with the least square algorithm.

c. Use the Doxygen documentation [9] to analyze the member function
correctBoundaryConditions and explain its operations and aim.

d. Define in the dictionary file fvSchemes the option to use a limited gradient (face
and cell) (Gauss limited 0.8;).
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