
Chapter 8
Spatial Discretization: The Diffusion Term

Abstract This chapter describes in detail the discretization of the diffusion term
represented by the spatial Laplacian operator. It is investigated separately from the
convection term, because convection and diffusion represent two distinct physical
phenomena. Thus from a numerical point of view, they have to be handled dif-
ferently, requiring distinct interpolation profiles with disparate considerations. The
chapter begins with the discretization of the diffusion equation in the presence of a
source term over a two-dimensional rectangular domain using a Cartesian grid
system. The adopted interpolation profile for the variation of the dependent variable
between grid points and the basic rules that should be satisfied by the coefficients of
the discretized equation are discussed. The chapter proceeds with a discussion on
the implementation of the Dirichlet, Von Neumann, mixed, and symmetry
boundary conditions. The discretization over a non-Cartesian orthogonal grid is
then introduced, followed by a detailed description of the discretization on
non-orthogonal structured and unstructured grid systems. The treatment of the
non-orthogonal cross-diffusion contribution, which necessitates computation of
the gradient, is clarified. Then anisotropic diffusion is introduced and handled
following the same methodology developed for isotropic diffusion. The
under-relaxation procedure needed for highly non-linear problems is outlined. The
chapter ends with computational pointers explaining the treatment of diffusion in
both uFVM and OpenFOAM®.

8.1 Two-Dimensional Diffusion in a Rectangular Domain

A simple rectangular domain with a regular Cartesian grid, as shown in Fig. 8.1, is
first considered. The aim is to discretize, on this domain, the steady-state diffusion
equation given by

�r � C/r/� � ¼ Q/ ð8:1Þ
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where ϕ denotes a scalar variable (e.g., temperature, mass fraction of a chemical
species, turbulence kinetic energy, etc.), Qϕ the generation of ϕ per unit volume
within the domain, and C/ the diffusion coefficient. The equation can be written
more generally in term of a diffusion flux Jϕ,D as

r � J/;D ¼ Q/ ð8:2Þ

where Jϕ,D is defined as

J/;D ¼ �C/r/ ð8:3Þ

Following the first stage discretization presented in Chap. 5, Eq. (8.1) can be
formulated as X

f�nb Cð Þ
�C/r/� �

f � Sf ¼ Q/
CVC ð8:4Þ

The expanded form of the above equation can be written as

�C/r/� �
e� Se þ �C/r/� �

w� Sw þ �C/r/� �
n� Sn þ �C/r/� �

s� Ss ¼ Q/
CVC

ð8:5Þ

For the uniform Cartesian grid of Fig. 8.1, the surface vectors normal to the
element faces are given by

Se ¼ þ Dyð Þe i ¼ Se ikk ¼ Sei Sw ¼ � Dyð Þw i ¼ � Sw ikk ¼ �Swi
Sn ¼ þ Dxð Þn j ¼ Sn jkk ¼ Snj Ss ¼ � Dxð Þs j ¼ � Ss jkk ¼ �Ssj

ð8:6Þ

Thus for the east face the diffusion flux is found to be

J/;De ¼ � C/r/� �
e � Se

¼ �C/
e Se

@/
@x

iþ @/
@y

j
� �

e
� i

¼ �C/
e Dyð Þe

@/
@x

� �
e

ð8:7Þ

Following the discrete conservation equation for one integration point discussed
earlier, the discrete form of the diffusion flux can be written as

J/;De ¼ FluxTe ¼ FluxCe/C þ FluxFe/F þ FluxVe ð8:8Þ

To determine the FluxCe, FluxFe, and FluxVe coefficients, a profile describing
the variation of ϕ between the centroids of the two elements sharing the face, where
the gradient has to be computed, is required. Assuming that ϕ varies linearly
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between cell centroids (Fig. 8.2), the gradient at face e along the i direction may be
written as

@/
@x

� �
e
¼ /E � /C

dxð Þe
ð8:9Þ

Substituting into Eq. (8.8), the discretized form of the diffusion flux along face
e is obtained as

FluxTe ¼ �C/
e Dyð Þe

/E � /Cð Þ
dxe

¼ C/
e

Dyð Þe
dxe

/C � /Eð Þ
¼ FluxCe/C þ FluxFe/E þ FluxVe

ð8:10Þ
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Taking

gDiffe ¼ Dyð Þe
dxe

¼ Sek k
dCEk k ¼

Se
dCE

ð8:11Þ

where dCE is the distance vector between the centroids of elements C and E, the
coefficients become

FluxCe ¼ C/
e gDiffe

FluxFe ¼ �C/
e gDiffe

FluxVe ¼ 0

ð8:12Þ

A similar procedure applied to face w yields

FluxTw ¼ � C/r/� �
w � Sw

¼ �C/
wSw

@/
@x

iþ @/
@y

j
� �

w
� �ið Þ

¼ C/
wSw

@/
@x

� �
w

¼ C/
wSw

/C � /Wð Þ
dxð Þw

¼ FluxCw/C þ FluxFw/W þ FluxVw

ð8:13Þ

where now

FluxCw ¼ C/
wgDiffw

FluxFw ¼ �C/
wgDiffw

FluxVw ¼ 0

ð8:14Þ

and

gDiffw ¼ Dyð Þw
dxw

¼ Swk k
dCWk k ¼

Sw
dcw

Similar expressions may be written along faces n and s and are given by

FluxTn ¼ FluxCn/C þ FluxFn/N þ FluxVn

FluxTs ¼ FluxCs/C þ FluxFs/S þ FluxVs
ð8:15Þ
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where

FluxCn ¼ C/
n gDiffn FluxFn ¼ �C/

n gDiffn FluxVn ¼ 0

FluxCs ¼ C/
s gDiffs FluxFs ¼ �C/

s gDiffs FluxVs ¼ 0
ð8:16Þ

and

gDiffn ¼ Snk k
dCNk k ¼

Dxð Þn
dyn

¼ Sn
dCN

gDiffs ¼ Ssk k
dCSk k ¼

Dxð Þs
dys

¼ Ss
dCS

ð8:17Þ

Substituting into Eq. (8.5), the algebraic form of the diffusion equation is
obtained as

aC/C þ aE/E þ aW/W þ aN/N þ aS/S ¼ bC ð8:18Þ

where

aE ¼ FluxFe ¼ �C/
e gDiffe

aW ¼ FluxFw ¼ �C/
wgDiffw

aN ¼ FluxFn ¼ �C/
n gDiffn

aS ¼ FluxFs ¼ �C/
s gDiffs

aC ¼ FluxCe þ FluxCw þ FluxCn þ FluxCs

¼ � aE þ aW þ aN þ aSð Þ
bC ¼ Q/

CVC � FluxVe þ FluxVw þ FluxVn þ FluxVsð Þ

ð8:19Þ

or, more compactly, as

aC/C þ
X

F�NBðCÞ
aF/F ¼ bC ð8:20Þ

with

aF ¼ FluxFf ¼ �C/
f gDifff

aC ¼
X

f�nbðCÞ
FluxCf

bC ¼ Q/
CVC �

X
f�nbðCÞ

FluxVf

ð8:21Þ

where the subscript F denotes the neighbors of element C (E, W, N, S), and the
subscript f denotes the neighboring faces of element C (e, w, n, s).
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8.2 Comments on the Discretized Equation

A proper discretization method should result in a discretized algebraic equation that
reflects the characteristics of the original conservation equation. The properties of
the discretization techniques were introduced in the previous chapter and two
additional rules that the coefficients of the discretized equation have to satisfy are
presented next.

8.2.1 The Zero Sum Rule

Looking back at the discretization process, the first major approximation made was
the linear profile assumption for the variation of ϕ between the centroids of the
elements straddling the element face. The reader might ask why to use a first order
rather than a higher order profile. To answer this question, a one dimensional
configuration with no source term is considered. Under these conditions the dis-
cretized equation reduces to

aC/C þ aE/E þ aW/W ¼ 0 ð8:22Þ

where

aE ¼ �C/
e gDiffe aW ¼ �C/

wgDiffw aC ¼ � aE þ aWð Þ ð8:23Þ

In the absence of any source or sink within this one dimensional domain, the
transfer of ϕ occurs by diffusion only and is governed by Fourier’s law (elliptic
equation), i.e., in the direction of decreasing ϕ. As such, the value of ϕe or ϕw should
lie between the values ϕC and ϕE or ϕC and ϕW, respectively, which is guaranteed by
the linear profile. A second order profile (e.g., a parabolic profile) may result in a
value at the face that is higher or lower than the values at the centroids of the cells
straddling the face, which is unphysical. The same is true for other higher order
profiles. If the discretization scheme is to guarantee physical results, then a linear
profile should be used. Moreover, the adopted profile becomes less important as the
size of the element decreases, since all approximations are expected to yield the
same analytical solution in the limit when the size of the element approaches zero.
Furthermore, in the absence of any source term, the multi-dimensional heat con-
duction equation reduces to,

�r � C/r/� � ¼ 0 ð8:24Þ

This implies that ϕ and ϕ + constant are solutions to the conservation equation.
A consistent discretization method should reflect this property through its discret-
ized equation and the discretized equation should fulfill
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aC/C þ
X

F�NBðCÞ
aF/F ¼ 0

aC /C þ constantð Þ þ
X

F�NBðCÞ
aF /F þ constantð Þ ¼ 0

9>>=
>>;) aC þ

X
F�NBðCÞ

aF ¼ 0

ð8:25Þ

which is actually satisfied by the discretized equation. The above equation, which is
valid in the presence or absence of a source/sink term as revealed by Eq. (8.19),
may be written as

aC ¼ �
X

F�NBðCÞ
aF ð8:26Þ

or as X
F�NBðCÞ

aF
aC
¼ �1 ð8:27Þ

Thus ϕC can be viewed as the weighted sum of its neighbors, and in the absence
of any source term it should always be bounded by these neighboring ϕF values.
When a source term is present, i.e., when S/C 6¼ 0; /C does not need to be bounded
in this manner, and can over/undershoot the neighboring values, but this is perfectly
physical. The extent of over/under shoot is determined by the magnitude of S/C with
respect to the size of the coefficients at the neighboring nodes (aF).

8.2.2 The Opposite Signs Rule

The above derivations demonstrated that the coefficients aC and aF are of opposite
signs. This is of physical significance implying that as the value of ϕF is
increased/decreased, the value of ϕC is expected to increase/decrease. This is
basically related to boundedness suggesting that a sufficient condition for this
property to be satisfied is for the neighboring and main coefficients to be of opposite
signs. If not, then the boundedness property may not be enforced.

8.3 Boundary Conditions

It is well known that the analytical solution to any ordinary or partial differential
equation is obtained up to some constants that are fixed by the applicable boundary
conditions to the situation being studied. Therefore, using different boundary
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conditions will result in different solutions even though the general equation
remains the same. Numerical solutions follow the same constrain, necessitating
correct and accurate implementation of boundary conditions as any slight change in
these conditions introduced by the numerical approximation leads to a wrong
solution of the problem under consideration.

Boundary conditions will be discussed as deemed relevant to the terms being
discretized. For conduction/diffusion problems Dirichlet, Neumann, mixed, and
symmetry boundary condition types are encountered, which are detailed next.

Boundary conditions are applied on boundary elements, which have one or more
faces on the boundary. Discrete values of ϕ are stored both at centroids of boundary
cells and at centroids of boundary faces.

Let C denotes the centroid of the boundary element shown in Fig. 8.3 with one
boundary face of centroid b and of surface vector Sb pointing outward. As before,
the discretization process over cell C yieldsX

f�nbðCÞ
J/;D � S� �

f¼ Q/
CVC ð8:28Þ

The fluxes on the interior faces are discretized as before, while the boundary flux
is discretized with the aim of constructing a linearization with respect to ϕC, thus

J/;Db � Sb ¼ FluxTb

¼ �C/
b r/ð Þb � Sb

¼ FluxCb/C þ FluxVb

ð8:29Þ

The specification of boundary conditions involves either specifying the unknown
boundary value ϕb, or alternatively, the boundary flux J/;Db . Using Eq. (8.18), the
discretized equation at a boundary element for the different boundary condition
types of diffusion problems are derived next.

8.3.1 Dirichlet Boundary Condition

A Dirichlet boundary condition is a type of boundary condition that specifies the
value of ϕ at the boundary, i.e.,

/b ¼ /specified ð8:30Þ
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Fig. 8.3 Value specified
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For this case

FluxTb ¼ �C/
b r/ð Þb � Sb

¼ �C/
b

Sbk k
dCbk k /b � /Cð Þ

¼ FluxCb/C þ FluxVb

ð8:31Þ

yielding

FluxCb ¼ C/
b gDiffb ¼ ab

FluxVb ¼ �C/
b gDiffb/b ¼ �ab/b

ð8:32Þ

with

gDiffb ¼ Sb
dCb

ð8:33Þ

Thus for element C shown in Fig. 8.3 the aE coefficient is zero reducing the
discretized equation to

aC/C þ aW/W þ aN/N þ aS/S ¼ bC ð8:34Þ

where

aE ¼ 0

aW ¼ FluxFw ¼ �C/
wgDiffw

aN ¼ FluxFn ¼ �C/
n gDiffn

aS ¼ FluxFs ¼ �C/
s gDiffs

aC ¼ FluxCb þ
X

f�nbðCÞ
FluxCf ¼ FluxCb þ FluxCw þ FluxCn þ FluxCsð Þ

ð8:35Þ
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and

bC ¼ Q/
CVC � FluxVb þ

X
f�nbðCÞ

FluxVf

0
@

1
A ð8:36Þ

The following important observations can be made about the discretized
boundary equation:

1. The coefficient ab is larger than other neighbor coefficients because b is closer to
C and consequently has a more important effect on ϕC.

2. The coefficient aC is still the sum of all neighboring coefficients including ab.
This means that for the boundary element

P
F�NB Cð Þ

aFj j= aCj j\1 giving the

second necessary condition to satisfy the Scarborough criterion, thus guaran-
teeing, at any one iteration, the convergence of the linear system of equations
via an iterative solution method.

3. The abϕb product (=FluxVb) is now on the right hand side of the equation, i.e.,
part of bC, because it contains no unknowns.

8.3.2 Von Neumann Boundary Condition

If the flux (or normal gradient to the face) of ϕ is specified at the boundary
(Fig. 8.4), then the boundary condition is denoted by a Neumann boundary con-
dition. In this case the specified flux is given by

� C/r/� �
b � i ¼ qb ð8:37Þ

which is, in effect, the flux J/;Db , since

J/;Db � Sb ¼ � C/r/� �
b � Sbk ki ¼ qb Sbk k

¼ FluxCb/C þ FluxVb

ð8:38Þ

where now

FluxCb ¼ 0

FluxVb ¼ qbSb
¼ qb Dyð ÞC

ð8:39Þ

Here the flux components are assumed to be positive when they act in the same
direction as the coordinate system used.
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Thus qb may directly be included in Eq. (8.18) to yield the following discrete
equation for the boundary cell C:

aC/C þ aW/W þ aN/N þ aS/S ¼ bC ð8:40Þ

where

aE ¼ 0

aW ¼ FluxFw ¼ �C/
wgDiffw

aN ¼ FluxFn ¼ �C/
n gDiffn

aS ¼ FluxFs ¼ �C/
s gDiffs

aC ¼
X

f�nbðCÞ
FluxCf ¼ � aW þ aN þ aSð Þ

bC ¼ Q/
CVC � FluxVb þ

X
f�nbðCÞ

FluxVf

0
@

1
A

ð8:41Þ

The following important points can be made about the above discretized
equation:

1. A Von Neumann boundary condition does not result in a dominant aC
coefficient.

2. If both qb and S
/
C are zero, then /C will be bounded by its neighbors. Otherwise,

/C can exceed (or fall below) the neighbor values of /, which is admissible. If
/ is temperature, for example, then qb represents the heat flux applied at the
boundary. Therefore if heat is added at the boundary, then the temperature in the
region close to the boundary is expected to be higher than that in the interior.
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Fig. 8.4 Flux specified
boundary condition
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3. Once /C is computed, the boundary value /b may be computed using

/b ¼
C/
b gDiffb/C � qb
C/
b gDiffb

ð8:42Þ
4. Finally the Von Neumann condition can be considered as a natural boundary

condition for the Finite Volume method since, for the case where the specified
flux is zero, nothing needs to be done in terms of discretization for the face,
while a specified value of zero (Dirichlet condition) will still require the dis-
cretization to be carried out.

8.3.3 Mixed Boundary Condition

The mixed boundary condition, schematically depicted in Fig. 8.5, refers to the
situation where information at the boundary is given via a convection transfer
coefficient (h1) and a surrounding value for /ð/1Þ as

J/;Db � Sb ¼ � C/r/� �
b � iSb ¼ �h1 /1 � /bð Þ Dyð ÞC ð8:43Þ

which can be rewritten as

�C/
b Sb

/b � /C

dxb

� �
¼ �h1 /1 � /bð ÞSb ð8:44Þ
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Fig. 8.5 Mixed type
boundary condition
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from which an equation for /b is obtained as

/b ¼
h1/1 þ C/

b =dxb
� �

/C

h1 þ C/
b =dxb

� � ð8:45Þ

Substituting /b back in Eq. (8.43), the flux equation is transformed to

J/;Db � Sb ¼ �
h1 C/

b =dxb
� �

h1 þ C/
b =dxb

� � Sb
2
4

3
5

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Req

/1 � /Cð Þ

¼ FluxCb/C þ FluxVb

ð8:46Þ

where now

FluxCb ¼ Req

FluxVb ¼ �Req/1
ð8:47Þ

Using the flux term given by Eq. (8.47) in the discretized equation of the
boundary element C, the modified equation is found to be

aC/C þ aW/W þ aN/N þ aS/S ¼ bC ð8:48Þ

where

aE ¼ 0

aW ¼ FluxFw ¼ �C/
wgDiffw

aN ¼ FluxFn ¼ �C/
n gDiffn

aS ¼ FluxFs ¼ �C/
s gDiffs

aC ¼ FluxCb þ
X

f�nbðCÞ
FluxCf ¼ FluxCb þ FluxCw þ FluxCn þ FluxCsð Þ

bC ¼ Q/
CVC � FluxVb þ

X
f¼nbðCÞ

FluxVf

0
@

1
A

ð8:49Þ

8.3.4 Symmetry Boundary Condition

Along a symmetry boundary the normal flux to the boundary of a scalar variable /
is zero. Therefore a symmetry boundary condition is equivalent to a Neumann
boundary condition with the value of the flux set to zero (i.e., FluxCb = FluxVb = 0).
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Thus the modified equation along a symmetry boundary condition can be deduced
from Eqs. (8.40) and (8.41) by setting qb to zero and is given by

aC/C þ aW/W þ aN/N þ aS/S ¼ bC ð8:50Þ

where

aE ¼ 0

aW ¼ FluxFw ¼ �C/
wgDiffw

aN ¼ FluxFn ¼ �C/
n gDiffn

aS ¼ FluxFs ¼ �C/
s gDiffs

aC ¼
X

f�nbðCÞ
FluxCf ¼ � aW þ aN þ aSð Þ

bC ¼ Q/
CVC �

X
f�nbðCÞ

FluxVf

ð8:51Þ

8.4 The Interface Diffusivity

In the above discretized equation, the diffusion coefficients C/
e ;C

/
w;C

/
n , and C

/
s have

been used to represent the value of C/ at the e, w, n and s faces of the element,
respectively. When the diffusion coefficient C/ varies with position, its value will be
known at the cell centroids E,W,… and so on. Then a prescription for evaluating the
interface value is needed in terms of values at these grid points. The following
discussion is, of course, not relevant to situations of uniform diffusion coefficient.

The discussion may become clearer if the energy equation is considered, in
which case the diffusion coefficient represents the conductivity of the material used
and / denotes the temperature. Non-uniform conductivity occurs in
non-homogeneous materials and/or when the thermal conductivity is temperature
dependent. In the treatment of the general differential equation for /, the diffusion
coefficient C/ will be handled in the same way. Significant variations of C/ are
frequently encountered for example, in turbulent flow, where C/ may stand for the
turbulent viscosity or the turbulent conductivity. Thus, a proper formulation for
non-uniform C/ is highly desirable.

A simple approach for calculating the interface conductivity is the linear profile
assumption for the variation of C/, between point C and any of its neighbors. Thus,
along the east face the value of C/, is obtained as

C/
e ¼ 1� geð ÞC/

C þ geC
/
E ð8:52Þ
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where the interpolation factor ge is a ratio in terms of distances between centroids
given by

ge ¼ dCe
dCe þ deE

ð8:53Þ

Hence for a Cartesian grid if the interface is midway between the grid points, ge
would be 0.5, and C/

e would be the arithmetic mean of C/
C and C/

E . Similar coef-
ficients can be defined for other faces as

gw ¼ dCw
dCw þ dwW

gn ¼ dCn
dCn þ dnN

gs ¼ dCs
dCs þ dsS

ð8:54Þ

Therefore it is sufficient to calculate the coefficients of each surface of an ele-
ment only once. Moreover, the use of distances instead of volumes will lead to the
same interpolation factors as the grid here is Cartesian.

This basic approach leads to rather incorrect implications in some cases and cannot
accurately handles, for example, abrupt changes of conductivity that may occur in
composite materials. Fortunately, a much better alternative of comparable simplicity
is available. In developing this alternative, it is recognized that the local value of
conductivity at an interface is not of primary concern. Rather, the main objective is to
obtain a good representation of the diffusion flux Jϕ,D at the interface [1].

For the one dimensional problem shown in Fig. 8.6, it is assumed that the
element C is composed of a material having a thermal conductivity C/

C, while

element E is made of a material of thermal conductivity C/
E . For the non-homo-

geneous slab between points C and E, a steady one-dimensional analysis (without
sources) results in (the flux on either side of the interface e is supposed to be the
same)

J/;De � Se ¼ /C � /e
dxð ÞCe
C/
C

¼ /e � /E
dxð ÞeE
C/
E

¼ /C � /E
dxð ÞCe
C/
C

þ dxð ÞeE
C/
E

¼ /C � /E
dxð ÞCE
C/
e

ð8:55Þ

CW

x( )w

x( )C

w e

x( )e

E

Fig. 8.6 Interpolation of properties at element faces
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Hence the effective conductivity for the slab is found to be

dxð ÞCE
C/
e

¼ dxð ÞCe
C/
C

þ dxð ÞeE
C/
E

) 1

C/
e

¼ 1� ge
C/
E

þ ge
C/
C

 !
ð8:56Þ

When the interface is halfway between C and E (ge = 0.5), Eq. (8.56) reduces to

C/
e ¼

2C/
CC

/
E

C/
C þ C/

E

ð8:57Þ

which is the harmonic mean of C/
C and C/

E , rather than the arithmetic mean.
It is important to note that the harmonic mean interpolation for discontinuous

diffusion coefficients is exact only for one-dimensional diffusion. Nevertheless, its
application for multi-dimensional situation has an important advantage. With this
type of interpolation, nothing special need to be done when treating conjugate
interfaces. Solid and fluid cells are simply treated as part of the same domain with
different diffusion coefficients stored at the cell centroids. By calculating the face
diffusivity as the harmonic-mean of the values at the centroids sharing the face, the
diffusion flux at the conjugate interface is correctly computed.

Example 1
The heat conduction in the two-dimensional rectangular domain composed of
two materials shown in Fig. 8.7 is governed by the following differential
equation:

r � krTð Þ ¼ 0

where T represents temperature. For the thermal conductivities (k) and
boundary conditions displayed in the figure:

(a) Derive the algebraic equations for all the elements shown in the figure.
(b) Using the Gauss-Seidel iterative method discussed in Chap. 4, solve the

system of equations obtained and compute the cell values of T.
(c) Compute the values of T at the bottom, right, and top boundaries.
(d) Compute the net heat transfer through the top, bottom, and left

boundaries and check that energy conservation is satisfied.
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Solution
The first step is to determine the geometric quantities that are needed in the
solution. The coordinates of the various nodes are found to be

x21 ¼ x20 ¼ x19 ¼ 0 y10 ¼ y11 ¼ y12 ¼ 0
x10 ¼ x1 ¼ x4 ¼ x7 ¼ x18 ¼ 0:05 y21 ¼ y1 ¼ y2 ¼ y3 ¼ y13 ¼ 0:05
x11 ¼ x2 ¼ x5 ¼ x8 ¼ x17 ¼ 0:2 y20 ¼ y4 ¼ y5 ¼ y6 ¼ y14 ¼ 0:15
x12 ¼ x3 ¼ x6 ¼ x9 ¼ x16 ¼ 0:45 y19 ¼ y7 ¼ y8 ¼ y9 ¼ y15 ¼ 0:25
x13 ¼ x14 ¼ x15 ¼ 0:6 y18 ¼ y17 ¼ y16 ¼ 0:3

The distance between nodes are computed as

dx21�1 ¼ dx20�4 ¼ dx19�7 ¼ 0:05 dy10�1 ¼ dy11�2 ¼ dy12�3 ¼ 0:05
dx1�2 ¼ dx4�5 ¼ dx7�8 ¼ 0:15 dy1�4 ¼ dy2�5 ¼ dy3�6 ¼ 0:1
dx2�3 ¼ dx5�6 ¼ dx8�9 ¼ 0:25 dy4�7 ¼ dy5�8 ¼ dy6�9 ¼ 0:1
dx3�13 ¼ dx6�14 ¼ dx9�15 ¼ 0:15 dy7�18 ¼ dy8�17 ¼ dy9�16 ¼ 0:05

Fig. 8.7 Conduction heat transfer in a two dimensional rectangular domain
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The size of the elements are given by

Dx1 ¼ Dx4 ¼ Dx7 ¼ 0:1 Dy1 ¼ Dy2 ¼ Dy3 ¼ 0:1
Dx2 ¼ Dx5 ¼ Dx8 ¼ 0:2 Dy4 ¼ Dy5 ¼ Dy6 ¼ 0:1
Dx3 ¼ Dx6 ¼ Dx9 ¼ 0:3 Dy7 ¼ Dy8 ¼ Dy9 ¼ 0:1

The computed volumes of the various cells are obtained as

V1 ¼ V4 ¼ V7 ¼ 0:01 V2 ¼ V5 ¼ V8 ¼ 0:02 V3 ¼ V6 ¼ V9 ¼ 0:03

The interpolation factors needed to find values at element faces are cal-
culated as

geð Þ1 ¼ geð Þ4¼ geð Þ7 ¼
V1

V1 þ V2
¼ 0:01

0:01þ 0:02
¼ 0:333

geð Þ2 ¼ geð Þ5¼ geð Þ8 ¼
V2

V2 þ V3
¼ 0:02

0:02þ 0:03
¼ 0:4

gnð Þ1 ¼ gnð Þ2¼ gnð Þ3 ¼
V1

V1 þ V4
¼ 0:01

0:01þ 0:01
¼ 0:5

gnð Þ4 ¼ gnð Þ5¼ gnð Þ6 ¼
V10

V10 þ V15
¼ 0:01

0:01þ 0:01
¼ 0:5

The thermal conductivity values over the domain are given by

k1 ¼ k4 ¼ k7 ¼ k10 ¼ k21 ¼ k20 ¼ k19 ¼ k18 ¼ 10�3

k2 ¼ k3 ¼ k5 ¼ k6 ¼ k8 ¼ k9 ¼ k11 ¼ k12 ¼ k13 ¼ k14 ¼ k15 ¼ k16 ¼ k17 ¼ 102

while values at the element faces are found to be

k1�2 ¼ k1k2
1� geð Þ1
	 


k1 þ geð Þ1k2
¼ 10�3 � 102

1� 0:333ð Þ � 10�3 þ 0:333� 10�2
� 3� 10�3

k1�2 ¼ k4�5 ¼ k7�8 ¼ 3� 10�3 k1�4 ¼ k4�7 ¼ 10�3 k2�5 ¼ k3�6 ¼ k5�8 ¼ k6�9 ¼ 102

Using the above values, the discretized algebraic equations for all elements
are derived next.

Element #1
The needed diffusion terms are calculated as

gDiffe ¼ Dy1
dx1�2

¼ 0:1
0:15

¼ 0:667 gDiffw ¼ Dy1
dx21�1

¼ 0:1
0:05

¼ 2

gDiffn ¼ Dx1
dy1�4

¼ 0:1
0:1
¼ 1
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The interface conductivities are

ke ¼ k1�2 ¼ 3� 10�3 kn ¼ k1�4 ¼ 10�3 kw ¼ k21 ¼ 10�3

The general form of the equation is written as

aCT1 þ aET2 þ aNT4 ¼ bC

where

aE ¼ FluxFe ¼ �kegDiffe ¼ �3� 10�3 � 0:667 ¼ �0:002
aN ¼ FluxFn ¼ �kngDiffn ¼ �10�3 � 1 ¼ �0:001

The west and south coefficients do not appear in the equation as their
influence is integrated through the boundary conditions as

FluxCw ¼ kwgDiffw ¼ 10�3 � 2 ¼ 0:002

FluxVs ¼ 0

FluxVw ¼ �kwgDiffwT21 ¼ �10�3 � 2� 320 ¼ �0:64

Themain coefficient and source term can now be calculated and are given by

aC ¼ FLuxCe þ FLuxCn þ FLuxCw ¼ 0:002þ 0:001þ 0:002 ¼ 0:005

bC ¼ �FluxVS � FluxVw ¼ 0þ 0:64 ¼ 0:64

Substituting, the discretized algebraic equation is obtained as

0:005T1 � 0:002T2 � 0:001T4 ¼ 0:64

Element #2
The needed diffusion terms are calculated as

gDiffe ¼ Dy2
dx2�3

¼ 0:1
0:25

¼ 0:4 gDiffw ¼ Dy2
dx1�2

¼ 0:1
0:15

¼ 0:667

gDiffn ¼ Dx2
dy2�5

¼ 0:2
0:1
¼ 2

The interface conductivities are

ke ¼ k2�3 ¼ 102 kn ¼ k2�5 ¼ 102 kw ¼ k1�2 ¼ 3� 10�3
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The general form of the equation is written as

aCT2 þ aET3 þ aWT1 þ aNT5 ¼ bC

where

aE ¼ FluxFe ¼ �kegDiffe ¼ �102 � 0:4 ¼ �40
aW ¼ FluxFw ¼ �kwgDiffw ¼ �3� 10�3 � 0:667 ¼ �0:002
aN ¼ FluxFn ¼ �kngDiffn ¼ �102 � 2 ¼ �200

The south coefficient does not appear in the equation as its influence is
integrated through the boundary conditions as

FluxVs ¼ qbj � S1 ¼ qbj � �Dx2jð Þ ¼ �100 � 0:2 ¼ �20

The main coefficient and source term can now be calculated and are given
by

aC ¼ FLuxCe þ FLuxCn þ FLuxCw ¼ 40þ 0:002þ 200 ¼ 240:002

bC ¼ �FluxVS ¼ 20

Substituting, the discretized algebraic equation is obtained as

240:002T2 � 40T3 � 0:002T1 � 200T5 ¼ 20

Element #3
The needed diffusion terms are calculated as

gDiffw ¼ Dy3
dx2�3

¼ 0:1
0:25

¼ 0:4 gDiffn ¼ Dx3
dy3�6

¼ 0:3
0:1
¼ 3

The interface conductivities are

kw ¼ k2�3 ¼ 102 kn ¼ k3�6 ¼ 102

The general form of the equation is written as

aCT3 þ aWT2 þ aNT6 ¼ bC

where

aW ¼ FluxFw ¼ �kwgDiffw ¼ �102 � 0:4 ¼ �40
aN ¼ FluxFn ¼ �kngDiffn ¼ �102 � 3 ¼ �300
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The east and south coefficients do not appear in the equation as their
influence is integrated through the boundary conditions as

FluxVe ¼ 0

FluxVs ¼ qbj � S1 ¼ qbj � �Dx3jð Þ ¼ �100 � 0:3 ¼ �30

The main coefficient and source term can now be calculated and are given
by

aC ¼ FLuxCw þ FLuxCn ¼ 40þ 300 ¼ 340

bC ¼ �FluxVS � FluxVe ¼ 30þ 0 ¼ 30

Substituting, the discretized algebraic equation is obtained as

340T3 � 40T2 � 300T6 ¼ 30

Element #4
The needed diffusion terms are calculated as

gDiffe ¼ Dy4
dx4�5

¼ 0:1
0:15

¼ 0:667 gDiffw ¼ Dy4
dx20�4

¼ 0:1
0:05

¼ 2

gDiffn ¼ Dx4
dy4�7

¼ 0:1
0:1
¼ 1 gDiffs ¼ Dx4

dy1�4
¼ 0:1

0:1
¼ 1

The interface conductivities are

ke ¼ k4�5 ¼ 3� 10�3 kw ¼ k20 ¼ 10�3 kn ¼ k4�7 ¼ 10�3 ks ¼ k1�4 ¼ 10�3

The general form of the equation is written as

aCT4 þ aET5 þ aNT7 þ aST1 ¼ bC

where

aE ¼ FluxFe ¼ �kegDiffe ¼ �3� 10�3 � 0:667 ¼ �0:002
aN ¼ FluxFn ¼ �kngDiffn ¼ �10�3 � 1 ¼ �0:001
aS ¼ FluxFs ¼ �ksgDiffs ¼ �10�3 � 1 ¼ �0:001
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The west coefficient does not appear in the equation as its influence is
integrated through the boundary condition as

FluxCw ¼ kwgDiffw ¼ 10�3 � 2 ¼ 0:002

FluxVw ¼ �kwgDiffwT20 ¼ �10�3 � 2� 320 ¼ �0:64

The main coefficient and source term can now be calculated and are given
by

aC ¼ FLuxCe þ FLuxCw þ FLuxCn þ FLuxCs

¼ 0:002þ 0:002þ 0:001þ 0:001 ¼ 0:006

bC ¼ �FluxVw ¼ 0:64

Substituting, the discretized algebraic equation is obtained as

0:006T4 � 0:002T5 � 0:001T7 � 0:001T1 ¼ 0:64

Element #5
The needed diffusion terms are calculated as

gDiffe ¼ Dy5
dx5�6

¼ 0:1
0:25

¼ 0:4 gDiffw ¼ Dy5
dx4�5

¼ 0:1
0:15

¼ 0:667

gDiffn ¼ Dx5
dy5�8

¼ 0:2
0:1
¼ 2 gDiffs ¼ Dx5

dy2�5
¼ 0:2

0:1
¼ 2

The interface conductivities are

ke ¼ k5�6 ¼ 102 kw ¼ k4�5 ¼ 3� 10�3 kn ¼ k5�8 ¼ 102 ks ¼ k2�5 ¼ 102

The general form of the equation is written as

aCT5 þ aET6 þ aWT4 þ aNT8 þ aST2 ¼ bC

where

aE ¼ FluxFe ¼ �kegDiffe ¼ �102 � 0:4 ¼ �40
aW ¼ FluxFw ¼ �kwgDiffw ¼ �3� 10�3 � 0:667 ¼ �0:002
aN ¼ FluxFn ¼ �kngDiffn ¼ �102 � 2 ¼ �200
aS ¼ FluxFs ¼ �ksgDiffs ¼ �102 � 2 ¼ �200
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All coefficients appear in the equation as this is an internal element. The
main coefficient and source term are calculated as

aC ¼ FLuxCe þ FLuxCw þ FLuxCn þ FLuxCs

¼ 40þ 0:002þ 200þ 200 ¼ 440:002

bC ¼ 0

Substituting, the discretized algebraic equation is obtained as

440:002T5 � 40T6 � 0:002T4 � 200T8 � 200T2 ¼ 0

Element #6
The needed diffusion terms are calculated as

gDiffw ¼ Dy6
dx5�6

¼ 0:1
0:25

¼ 0:4 gDiffn ¼ Dx6
dy6�9

¼ 0:3
0:1
¼ 3 gDiffs ¼ Dx6

dy3�6
¼ 0:3

0:1
¼ 3

The interface conductivities are

kw ¼ k5�6 ¼ 102 kn ¼ k6�9 ¼ 102 ks ¼ k3�6 ¼ 102

The general form of the equation is written as

aCT6 þ aWT5 þ aNT9 þ aST3 ¼ bC

where

aW ¼ FluxFw ¼ �kwgDiffw ¼ �102 � 0:4 ¼ �40
aN ¼ FluxFn ¼ �kngDiffn ¼ �102 � 3 ¼ �300
aS ¼ FluxFs ¼ �ksgDiffs ¼ �102 � 3 ¼ �300

The east coefficient does not appear in the equation as its represents a zero
flux boundary condition. Moreover the main coefficient and source term are
given by

aC ¼ FLuxCw þ FLuxCn þ FLuxCs

¼ 40þ 300þ 300 ¼ 640

bC ¼ FLuxVe ¼ 0

Substituting, the discretized algebraic equation is obtained as

640T6 � 40T5 � 300T9 � 300T3 ¼ 0
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Element #7
The needed diffusion terms are calculated as

gDiffe ¼ Dy7
dx7�8

¼ 0:1
0:15

¼ 0:667 gDiffw ¼ Dy7
dx19�7

¼ 0:1
0:05

¼ 2 gDiffs ¼ Dx7
dy4�7

¼ 0:1
0:1
¼ 1

The interface conductivities are

ke ¼ k7�8 ¼ 3� 10�3 kw ¼ k19 ¼ 10�3 kn ¼ k18 ¼ 10�3 ks ¼ k4�7 ¼ 10�3

The general form of the equation is written as

aCT7 þ aET8 þ aST4 ¼ bC

where

aE ¼ FluxFe ¼ �kegDiffe ¼ �3� 10�3 � 0:667 ¼ �0:002
aS ¼ FluxFs ¼ �ksgDiffs ¼ �10�3 � 1 ¼ �0:001

The west and north coefficients do not appear in the equation as their
influence is integrated through the boundary conditions as

Req ¼ h1 k18=dy7�18ð Þ
h1 þ k18=dy7�18ð ÞDx7 ¼

20 10�3=0:05ð Þ
20þ 10�3=0:05

0:1 ¼ 0:001998

FluxCw ¼ kwgDiffw ¼ 10�3 � 2 ¼ 0:002 FluxVw ¼ �kwgDiffwT19 ¼ �0:64
FluxCn ¼ Req ¼ 0:001998 FluxVn ¼ �ReqT1 ¼ �0:5994

Themain coefficient and source term can now be calculated and are given by

aC ¼ FLuxCe þ FLuxCw þ FLuxCn þ FLuxCs

¼ 0:002þ 0:002þ 0:001998þ 0:001 ¼ 0:006998

bC ¼ �FLuxVw � FLuxVn ¼ 0:64þ 0:5994 ¼ 1:2394

Substituting, the discretized algebraic equation is obtained as

0:006998T7 � 0:002T8 � 0:001T4 ¼ 1:2394

Element #8
The needed diffusion terms are calculated as

gDiffe ¼ Dy8
dx8�9

¼ 0:1
0:25

¼ 0:4 gDiffw ¼ Dy8
dx7�8

¼ 0:1
0:15

¼ 0:667 gDiffs ¼ Dx8
dy5�8

¼ 0:2
0:1
¼ 2
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The interface conductivities are

ke ¼ k8�9 ¼ 102 kw ¼ k7�8 ¼ 3� 10�3 kn ¼ k17 ¼ 102 ks ¼ k5�8 ¼ 102

The general form of the equation is written as

aCT8 þ aET9 þ aWT7 þ aST5 ¼ bC

where

aE ¼ FluxFe ¼ �kegDiffe ¼ �102 � 0:4 ¼ �40
aW ¼ FluxFw ¼ �kwgDiffw ¼ �3� 10�3 � 0:667 ¼ �0:002
aS ¼ FluxFs ¼ �ksgDiffs ¼ �102 � 2 ¼ �200

The north coefficient does not appear in the equation as its influence is
integrated through the boundary condition as

Req ¼ h1 k17=dy8�17ð Þ
h1 þ k17=dy8�17ð ÞDx8 ¼

20 102=0:05ð Þ
20þ 102=0:05

0:2 ¼ 3:9604

FluxCn ¼ Req ¼ 3:9604 FluxVn ¼ �ReqT1 ¼ �1188:12

The main coefficient and source term can now be calculated and are given
by

aC ¼ FLuxCe þ FLuxCw þ FLuxCn þ FLuxCs

¼ 40þ 0:002þ 3:9604þ 200 ¼ 243:9624

bC ¼ �FluxVn ¼ 1188:12

Substituting, the discretized algebraic equation is obtained as

243:9624T8 � 40T9 � 0:002T7 � 200T5 ¼ 1188:12

Element #9
The needed diffusion terms are calculated as

gDiffw ¼ Dy9
dx8�9

¼ 0:1
0:25

¼ 0:4 gDiffs ¼ Dx9
dy6�9

¼ 0:3
0:1
¼ 3
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The interface conductivities are

kw ¼ k8�9 ¼ 102 kn ¼ k16 ¼ 102 ks ¼ k6�9 ¼ 102

The general form of the equation is written as

aCT9 þ aWT8 þ aST6 ¼ bC

where

aW ¼ FluxFw ¼ �kwgDiffw ¼ �102 � 0:4 ¼ �40
aS ¼ FluxFs ¼ �ksgDiffs ¼ �102 � 3 ¼ �300

The east and north coefficients do not appear in the equation as their
influence is integrated through the boundary conditions as

Req ¼ h1 k16=dy9�16ð Þ
h1 þ k16=dy9�16ð ÞDx9 ¼

20 102=0:05ð Þ
20þ 102=0:05

0:3 ¼ 5:9406

FluxCn ¼ Req ¼ 5:9406

FluxVn ¼ �ReqT1 ¼ �1782:18
FluxCe ¼ FluxVe ¼ 0

The main coefficient and source term can now be calculated and are given
by

aC ¼ FLuxCw þ FLuxCn þ FLuxCs ¼ 40þ 5:9406þ 300 ¼ 345:9406

bC ¼ �FLuxVn ¼ 1782:18

Substituting, the discretized algebraic equation is obtained as

345:9406T9 � 40T8 � 300T6 ¼ 1782:18

Summary of equations
The discretized algebraic equations are given by

0:005T1 � 0:002T2 � 0:001T4 ¼ 0:64

240:002T2 � 40T3 � 0:002T1 � 200T5 ¼ 20
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340T3 � 40T2 � 300T6 ¼ 30

0:006T4 � 0:002T5 � 0:001T7 � 0:001T1 ¼ 0:64

440:002T5 � 40T6 � 0:002T4 � 200T8 � 200T2 ¼ 0

640T6 � 40T5 � 300T9 � 300T3 ¼ 0

0:006998T7 � 0:002T8 � 0:001T4 ¼ 1:2394

243:9624T8 � 40T9 � 0:002T7 � 200T5 ¼ 1188:12

345:9406T9 � 40T8 � 300T6 ¼ 1782:18

Solution of Equations
To solve the above system of equations via the Gauss-Seidel method, the

equations are rearranged into

T1 ¼ 0:002T2 þ 0:001T4 þ 0:64ð Þ=0:005

T2 ¼ 40T3 þ 0:002T1 þ 200T5 þ 20ð Þ=240:002

T3 ¼ 40T2 þ 300T6 þ 30ð Þ=340

T4 ¼ 0:002T5 þ 0:001T7 þ 0:001T1 þ 0:64ð Þ=0:006

T5 ¼ 40T6 þ 0:002T4 þ 200T8 þ 200T2ð Þ=440:002

T6 ¼ 40T5 þ 300T9 þ 300T3ð Þ=640

T7 ¼ 0:002T8 þ 0:001T4 þ 1:2394ð Þ=0:006998

T8 ¼ 40T9 þ 0:002T7 þ 200T5 þ 1188:12ð Þ=243:9624

T9 ¼ 40T8 þ 300T6 þ 1782:18ð Þ=345:9406

The solution is found iteratively with the latest available values used
during the solution process. Starting with a uniform initial guess of 300 K,
Table 8.1 shows the results during the first two iterations along with the final
converged solution.
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Values of T along the bottom boundary
These can be calculated from the specified boundary condition, in this case

a specified flux, as

�kb @T
@y
¼ qb ) �kb TC � Tb

yC � yb
¼ qb ) Tb ¼ TC þ qb

kb
yC � ybð Þ

Using the above equation, the temperatures are calculated as

T10 ¼ T1 ¼ 312:490

T11 ¼ T2 þ qb
k11

y2 � y11ð Þ ¼ 305:254þ 100
100

0:05� 0ð Þ ¼ 305:304

T12 ¼ T3 þ qb
k12

y3 � y12ð Þ ¼ 305:254þ 100
100

0:05� 0ð Þ ¼ 305:304

Values of T along the right boundary
The above equation with the heat flux set to zero can be used to calculate

the temperature along the zero flux boundary, leading to

�kb @T
@y
¼ 0) Tb ¼ TC

The boundary temperatures are therefore given by

T13 ¼ T3 ¼ 305:254 T14 ¼ T6 ¼ 305:154 T15 ¼ T9 ¼ 305:054

Values of T along the top boundary
Using Eq. (8.45) the temperature values along the top boundary are

computed as

T18 ¼ hbT1 þ k18=dy7�18ð ÞT7
hb þ k18=dy7�18ð Þ ¼ 20� 300þ 10�3=0:05ð Þ308:867

20þ 10�3=0:05ð Þ ¼ 300:009

T17 ¼ hbT1 þ k17=dy8�17ð ÞT8
hb þ k17=dy8�17ð Þ ¼ 20� 300þ 102=0:05ð Þ305:054

20þ 102=0:05ð Þ ¼ 305:004

T16 ¼ hbT1 þ k16=dy9�16ð ÞT9
hb þ k16=dy9�16ð Þ ¼ 20� 300þ 102=0:05ð Þ305:054

20þ 102=0:05ð Þ ¼ 305:004

Table 8.1 Summary of results obtained using the Gauss-Seidel iterative method

Iter Tl T2 T3 T4 T5 T6 T7 T8 T9
0 300 300 300 300 300 300 300 300 300

1 308.000 300.083 300.098 308.000 300.037 300.048 306.859 300.031 300.045

2 309.633 300.131 300.146 309.428 300.078 300.094 307.072 300.071 300.090

⋮ … … … … … … … … …

Solution 312.490 305.254 305.254 311.944 305.154 305.154 308.867 305.054 305.054
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Total heat transfer along the left boundary
The total heat transfer along the west boundary is given by

QLeft ¼ q21Dy21 þ q20Dy20 þ q19Dy19

¼ k21
T1 � T21
dx21�1

Dy21 þ k20
T4 � T20
dx20�4

Dy20 þ k19
T7 � T19
dx19�7

Dy19

¼ 10�3 � 0:1
0:05

312:49þ 311:944þ 308:867� 3� 320½ �
¼ �0:053398W

Total heat transfer along the top boundary
Along the top boundary, the total heat transfer is computed as

Qtop ¼ q18Dx18 þ q17Dx17 þ q16Dx16
¼ h1 Dx18 T18 � T1ð Þ þ Dx17 T17 � T1ð Þ þ Dx16 T16 � T1ð Þ½ �
¼ 20 0:1 300:009� 300ð Þ þ 0:2 305:004� 300ð Þ þ 0:3 305:004� 300ð Þ½ �
¼ 50:058W

Total heat transfer along the bottom boundary
Knowing the heat flux, the total amount of heat transfer is found as

QBottom ¼ �qbDy ¼ �100� 0:5 ¼ �50W

Check for energy conservation
For conservation, the sum of heat entering and leaving the domain should

be equal to zero. The sum is computed as

QTop þ QLeft þ QBottom ¼ 50:058� 0:053398� 50 ¼ 0:004602 � 0

The slight deviation from zero is due to the use of a limited number of
digits during computations.

8.5 Non-Cartesian Orthogonal Grids

Let us now consider the case of an orthogonal grid that is not oriented along the
x and y axes. As shown in Fig. 8.8, such a grid can be obtained by rotating the
Cartesian grid of Fig. 8.1 by some angle.

The discretized equation for this grid should be exactly the same as the one
obtained for the Cartesian grid. Moreover for similar boundary conditions, the same
solution should be obtained.
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Consider again the steady state conduction Eq. (8.1)
r � J/;D ¼ Q/ ð8:58Þ

As before its discretized form is given byX
f�nbðCÞ

� C/r/� �
f � Sf ¼ Q/

CVC ð8:59Þ

Considering the discretization along face e, the following is obtained:

J/;De � Se ¼ �C/
e r/ � nð ÞeSe ¼ �C/

e
@/
@n

� �
e
Se ð8:60Þ

where now

r/ � nð Þe¼
@/
@n

� �
e

ð8:61Þ

is the gradient of ϕ at face e along the n direction. Assuming again a linear profile
for ϕ along the n coordinate axis, the gradient can be written as

@/
@n

� �
e
¼ /E � /C

dCE
ð8:62Þ

The discretization of other terms proceeds as for a Cartesian grid, leading to the
same final discretization equation.
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Fig. 8.8 Example of non-Cartesian orthogonal grids
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8.6 Non-orthogonal Unstructured Grid

8.6.1 Non-orthogonality

In the above configurations, the fluxes were normal to the face. In general, struc-
tured curvilinear grids and unstructured grids are non-orthogonal [2–5].Therefore
the surface vector Sf and the vector CF joining the centroids of the elements
straddling the interface are not collinear (see Fig. 8.9). In this case the gradient
normal to the surface cannot be written as a function of ϕF and ϕC, as it has a
component in the direction perpendicular to CF.

Thus while on orthogonal grids the gradient in the direction normal to the
interface yields

r/ � nð Þf¼
@/
@n

� �
f
¼ /F � /C

rF � rCk k ¼
/F � /C

dCF
ð8:63Þ

because CF and n (the unit vector normal to the surface) are aligned, on
non-orthogonal grids [6, 7], the gradient direction that yields an expression
involving ϕF and ϕC will have to be along the line joining the two points C and F.

If e represents the unit vector along the direction defined by the line connecting
nodes C and F then

e ¼ rF � rC
rF � rCk k ¼

dCF
dCF

ð8:64Þ

Therefore, the gradient in the e direction can be written as

r/ � eð Þf¼
@/
@e

� �
f
¼ /F � /C

rF � rCk k ¼
/F � /C

dCF
ð8:65Þ

Thus to achieve the linearization of the flux in non-orthogonal grids, the surface
vector Sf should be written as the sum of two vectors Ef and Tf, i.e.,

Sf ¼ Ef þ Tf ð8:66Þ

S f

n

e dCFf

t

C

F

Fig. 8.9 An element in a
non-orthogonal mesh system

8.6 Non-orthogonal Unstructured Grid 241



with Ef being in the CF direction to enable writing part of the diffusion flux as a
function of the nodal values ϕF and ϕC such that

r/ð Þf � Sf ¼ r/ð Þf � Ef

z}|{Ef e

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
orthogonal�like contribution

þ r/ð Þf � T|fflfflfflfflfflffl{zfflfflfflfflfflffl}
non�orthogonal like contribution

¼ Ef
@/
@e

� �
f
þ r/ð Þf � Tf

¼ Ef
/F � /C

dCF
þ r/ð Þf � Tf

ð8:67Þ

The first term on the right hand side of Eq. (8.67) represents a contribution
similar to the contribution on orthogonal grids, i.e., involving ϕF and ϕC, while the
second term on the right hand side is called cross-diffusion or non-orthogonal
diffusion [8] and is due to the non-orthogonality of the grid. Different options for
the decomposition of Sf are available and are discussed next.

8.6.2 Minimum Correction Approach

As shown in Fig. 8.10, the decomposition of Sf is done in such a way as to keep the
non-orthogonal correction in Eq. (8.67) as small as possible, by making Ef and Tf

orthogonal. As the non-orthogonality increases, the contribution to the diffusion
flux from ϕF and ϕC decreases. In this case the vector Ef is computed as

Ef ¼ e � Sf
� �

e ¼ Sf cos h
� �

e ð8:68Þ

S f

E f

Tf

n

e

C

F

f

Fig. 8.10 Decomposing Sf
via the minimum correction
approach
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8.6.3 Orthogonal Correction Approach

This approach, schematically depicted in Fig. 8.11, keeps the contribution of the
term involving ϕF and ϕC the same as on an orthogonal mesh irrespective of the
degree of grid non-orthogonality. To achieve this, Ef is defined as

Ef ¼ Sf e ð8:69Þ

8.6.4 Over-Relaxed Approach

In this approach, the importance of the term involving ϕF and ϕC is forced to
increase as grid non-orthogonality increases. As shown in Fig. 8.12, this is achieved
by selecting Tf to be normal to Sf. Mathematically Ef is computed as

Ef ¼ Sf
cos h

� �
e ¼ S2f

Sf cos h

 !
e ¼ Sf � Sf

e � Sf e ð8:70Þ

To summarize, the diffusion flux at an element face of a non-orthogonal grid
cannot be written solely in terms of the values at the nodes straddling the face.

S f

E f

Tf

n

e

C

F

f

Fig. 8.11 Decomposing Sf
via the orthogonal correction
approach

S f

E f

Tf

n

e

C

F

f

Fig. 8.12 Decomposing Sf
via the over-relaxed approach
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A term that accounts for non-orthogonality has to be added. This term is denoted in
the literature by “cross diffusion” and is computed as

r/ð Þf � Tf ¼ r/ð Þf � Sf � Ef
� �

¼

r/ð Þf � n� cos heð ÞSf minimum correction

r/ð Þf � n� eð ÞSf normal correction

r/ð Þf � n� 1
cos h

e
� �

Sf over�relaxed

8>>><
>>>:

ð8:71Þ

For orthogonal meshes n and e are collinear, the angle θ shown in Fig. 8.9 is
zero, and the cross-diffusion term is zero. When cross diffusion is not zero, and
since it cannot be written as a function of ϕF and ϕC, it is added as a source term in
the element algebraic equation.

All approaches described above are correct and satisfy Eq. (8.59). The difference
between these methods is in their accuracy and stability on non-orthogonal meshes.
The over-relaxed approach has been found to be the most stable even when the grid
is highly non-orthogonal. Nevertheless, the final general form of the discretized
diffusion term is the same for all three approximations.

8.6.5 Treatment of the Cross-Diffusion Term

The cross diffusion term cannot be expressed in terms of nodal values. Due to this
fact, it is treated in a deferred correction manner by computing its value using the
current gradient field and adding it as a source term on the right hand side of the
algebraic equation. Gradients are computed at the main grid points, as described
next, and values at the interfaces are obtained by interpolation.

8.6.6 Gradient Computation

In discretizing the diffusion term over a one-dimensional or orthogonal
multi-dimensional computational domain, it was shown that the gradient of ϕ can be
explicitly written as a function of the cell nodal ϕ values. In non-orthogonal
domains however, the computation of the diffusion flux was found to be more
complex. The non-orthogonal component of the gradient could not be linearized
and written as a function of nodal values, but rather had to be moved to the right
hand side and evaluated explicitly. This means that the gradient has to be evaluated
in order to incorporate its non-orthogonal contribution in the discretization equa-
tion. One widely used approach for computing the gradient at a cell is the
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Green-Gauss or gradient theorem, which states that for any closed volume V,
surrounded by a surface ∂V the following holds:Z

V

r/ dV ¼
I
@V

/ dS ð8:72Þ

where dS is the outward pointing incremental surface vector. In order to obtain a
discrete version of this equation, the mean value theorem is applied according to
which the integral on the left hand side of Eq. (8.72) and the average gradient over
the volume V are related by

r/V ¼
Z
V

r/ dV ð8:73Þ

Combining Eqs. (8.72) and (8.73), the average gradient over element C shown in
Fig. 8.9 is found to be

r/C ¼
1
VC

I
@VC

/fSf ð8:74Þ

Next the integral over a cell face is approximated by the face centroid value
times the face area. Thus r/C, or simply ∇ϕC, is computed as

r/C ¼
1
VC

X
f�nbðCÞ

/fSf ð8:75Þ

The gradient at the face of an element can then be obtained as the weighted
average of the gradients at the centroids straddling the interface and is given by

r/f ¼ gCr/C þ gFr/F ð8:76Þ

where gC and gF are geometric interpolation factors related to the position of the
element face f with respect to the nodes C and F.

8.6.7 Algebraic Equation for Non-orthogonal Meshes

Splitting the surface vector Sf into the two Ef and Tf vectors and substituting its
equivalent expression into the semi-discretized equation of the diffusion fluxes, yield
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X
f�nbðCÞ

J/;Df � Sf
� �

¼
X

f�nbðCÞ
� C/r/� �

f � Ef þ Tf
� �� �

¼
X

f�nbðCÞ
� C/r/� �

f � Ef

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Orthogonal Linearizeable Part

þ
X

f�nbðCÞ
� C/r/
� �

f � Tf

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Non�Orthogonal Non�Linearizeable Part

¼
X

f�nbðCÞ
�C/

f Ef
/F � /Cð Þ

dCF

� �
þ
X

f�nbðCÞ
� C/r/� �

f � Tf

� �
¼

X
f�nbðCÞ

C/
f gDifff /C � /Fð Þ þ

X
f�nbðCÞ

� C/r/� �
f � Tf

� �

¼
X

f�nbðCÞ
FluxCf

0
@

1
A/C þ

X
f�nbðCÞ

FluxFf/F

� �þ X
f�nbðCÞ

FluxVf
� �

ð8:77Þ

where again gDifff is a geometric diffusion coefficient defined as

gDifff ¼ Ef

dCF
ð8:78Þ

Using the above form of the diffusion fluxes and expanding, the final form of the
discretized diffusion equation over unstructured/structured non-orthogonal grid is
obtained as

aC/C þ
X

F�NBðCÞ
aF/F ¼ bC ð8:79Þ

where

aF ¼ FluxFf ¼ �C/
f gDifff

aC ¼
X

f�nbðCÞ
FluxCf ¼ �

X
f�nbðCÞ

FluxFf ¼
X

f�nbðCÞ
C/
f gDifff

bC ¼ Q/
CVC �

X
f�nbðCÞ

FluxVf
� � ¼ Q/

CVC þ
X

f�nbðCÞ
C/r/� �

f � Tf

� � ð8:80Þ

Note the change in sign of the non-orthogonal term on the right hand side of the
equation.

Example 2
For the polygonal element C and its neighbor F shown in Fig. 8.13, the
solution at any point satisfies ϕ = x2 + y2 + x2y2. If the volume of cell C is
VC = 8.625 calculate the following:
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1. The gradient of ϕ at (i.e., ∇ϕC) both numerically and analytically.
2. The analytical value of ∇ϕF.
3. Interpolate between the numerical value of ∇ϕC and the analytical value

of ∇ϕF to find an approximate value for r/f1 . Compare with the ana-
lytical value of r/f1 .

4. Express r/f1 · Sf1 in terms of ϕC and ϕF using

(a) The minimum correction approach
(b) The orthogonal correction approach
(c) The over-relaxed approach

Solution
1. Knowing that ϕ = x2 + y2 + x2y2 at any point in the domain, the value of the
gradient at any point can be calculated as

r/ ¼ @/
@x

iþ @/
@y

j ¼ 2xþ 2xy2
� �

iþ 2yþ 2yx2
� �

j

2,0( )

0,1( )

0.5,3( )

3.5,1.5( )

2.5,4( )

C 1.75,2( )

F 4.25,3.5( )

x

y

f
5
2.75,0.75( )

S
f1

S
f2

S
f3

S
f5

n
1

e
1

f1

f2

f3

f4

f5

S
f4

Fig. 8.13 A polygonal element with its geometric entities
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Therefore the analytical value of ∇ϕC is given by

r/C ¼ 17:5iþ 16:25j

The numerical value of ∇ϕC can be computed using

r/C ¼
1
VC

X
f� nbðCÞ

/fSf

Therefore the values of ϕf and Sf are required. Using the given analytical
expression, the values of ϕ at the various locations are found as

/C ¼ 1:752 þ 22 þ 1:752 � 22 ¼ 19:3125

/F ¼ 4:252 þ 3:52 þ 4:252 � 3:52 ¼ 251:578125

/f1 ¼ 32 þ 2:752 þ 32 � 2:752 ¼ 84:625

/f2 ¼ 1:52 þ 3:52 þ 1:52 � 3:52 ¼ 42:0625

/f3 ¼ 0:252 þ 22 þ 0:252 � 22 ¼ 4:3125

/f4 ¼ 12 þ 0:52 þ 12 � 0:52 ¼ 1:5

/f5 ¼ 2:752 þ 0:752 þ 2:752 � 0:752 ¼ 12:37890625

The surface vector is given by

Sf ¼ 	 Dyi� Dxjð Þ

where the correct sign is chosen such that the vector is pointing outward. This
is done by computing the surface vector as Sf = Δyi − Δxj and then performing
the dot product of Sf with the distance vector dCF (pointing from C to F). If the
product is positive then the direction of Sf is correct. If the product is negative
then the sign of Sf should be reversed, as shown below.

The distance vectors are computed as

dCf1 ¼ 3� 1:75ð Þiþ 2:75� 2ð Þj ¼ 1:25iþ 0:75j

dCf2 ¼ 1:5� 1:75ð Þiþ 3:5� 2ð Þj ¼ �0:25iþ 1:5j

dCf3 ¼ 0:25� 1:75ð Þiþ 2� 2ð Þj ¼ �1:5i

dCf4 ¼ 1� 1:75ð Þiþ 0:5� 2ð Þj ¼ �0:75i� 1:5j
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dCf5 ¼ 2:75� 1:75ð Þiþ 0:75� 2ð Þj ¼ i� 1:25j

while the tentative surface vectors are given by

Sf1 ¼ 4� 1:5ð Þi� 2:5� 3:5ð Þj ¼ 2:5iþ j

Sf2 ¼ 4� 3ð Þi� 2:5� 0:5ð Þj ¼ i� 2j

Sf3 ¼ 3� 1ð Þi� 0:5� 0ð Þj ¼ 2i� 0:5j

Sf4 ¼ 1� 0ð Þi� 0� 2ð Þj ¼ iþ 2j

Sf5 ¼ 1:5� 0ð Þi� 3:5� 2ð Þj ¼ 1:5i� 1:5j

Performing the dot products, the obtained values are

Sf1 � dCf1 ¼ 2:5iþ jð Þ � 1:25iþ 0:75jð Þ ¼ 3:875[ 0

Sf2 � dCf2 ¼ i� 2jð Þ � �0:25iþ 1:5jð Þ ¼ �3:25\0

Sf3 � dCf3 ¼ 2i� 0:5jð Þ � �1:5ið Þ ¼ �3\0

Sf4 � dCf4 ¼ iþ 2jð Þ � �0:75i� 1:5jð Þ ¼ �3:75\0

Sf5 � dCf5 ¼ 1:5i� 1:5jð Þ � i� 1:25jð Þ ¼ 3:375[ 0

Therefore the correct values of the surface vectors should be

Sf1 ¼ 2:5iþ j Sf2 ¼ �iþ 2j Sf3 ¼ �2iþ 0:5j Sf4 ¼ �i� 2j Sf5 ¼ 1:5i� 1:5j

Thus, the numerical value of the gradient at C is obtained as

r/C ¼
1

8:625

84:625 2:5iþ jð Þ þ 42:0625 �iþ 2jð Þ þ 4:3125 �2iþ 0:5jð Þ
þ1:5 �i� 2jð Þ þ 12:37890625 1:5i� 1:5jð Þ

� �
¼ 20:63111iþ 17:31454j

which is close to the analytical value.
2. The analytical value of ∇ϕF is easily calculated as

r/F ¼ 112:625iþ 133:4375j
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3. The interpolated value of r/f1 is obtained using

r/f1 ¼ gf1r/F þ 1� gf1
� �r/C

where

gf1 ¼
dCf1

dCf1 þ df1F

Performing the calculations, the interpolation factor is found to be given by

dCf1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xf1 � xC
� �2þ yf1 � yC

� �2q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3� 1:75ð Þ2þ 2:75� 2ð Þ2

q
¼ 1:4577

dfF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xF � xf1
� �2þ yF � yf1

� �2q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4:25� 3ð Þ2þ 3:5� 2:75ð Þ2

q
¼ 1:4577

gf1 ¼
1:4577

1:4577þ 1:4577
¼ 0:5

leading to the following value for r/f1 :

r/f1 ¼ 66:628055iþ 75:37602j

The analytical value of r/f1 is easily obtained as

r/f1 ¼ 51:375iþ 55j

Again values are close.
4. The general form of r/f1 � Sf1 is given by

�r/f1 � Sf1 ¼ Ef1
/C � /Fð Þ

dCF|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
orthogonal�like
contribution

þ �r/f1 � Tf1|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
non�orthogonal like

contribution

with

dCF ¼ 4:25� 1:75ð Þiþ 3:25� 2ð Þj ¼ 2:5iþ 1:5j) dCF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:52 þ 1:52

p
¼ 2:9155

The unit vector e1 in the direction of dCF is calculated using

e1 ¼ dCF
dCF
¼ 0:8575iþ 0:5145j
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(a) The minimum correction approach
Using this approach, the expression for Ef1 is computed as

Ef1 ¼ e1 � Sf1
� �

e1 ¼ 2:279iþ 1:368j) Ef1 ¼ 2:658

The normal component is computed as

Tf1 ¼ Sf1 � Ef1 ¼ 0:221i� 0:368j) r/f1 � Tf1 ¼ �13:014

The diffusion flux at the face becomes

�r/f1 � Sf1 ¼ 0:9122 /C � /Fð Þ þ 13:014

(b) The orthogonal correction approach
In this approach, the expression for Ef1 is computed as

Ef1 ¼ Sf1e1 ¼ 2:309iþ 1:385j) Ef1 ¼ 2:693

The normal component is found to be

Tf1 ¼ 0:191i� 0:385j) r/f1 � Tf1 ¼ �16:294

The diffusion flux at the face becomes

�r/f1 � Sf1 ¼ 0:924 /C � /Fð Þ þ 16:294

(c) The over-relaxed approach
The expression for Ef1 is computed as

Ef1 ¼
Sf1 � Sf1
e1 � Sf1

e1 ¼ 2:339iþ 1:403j) Ef1 ¼ 2:728

The normal component is found to be

Tf1 ¼ 0:161i� 0:403j) r/f1 � Tf1 ¼ �19:649

The diffusion flux at the face becomes

�r/f1 � Sf1 ¼ FluxCf1/C þ FluxFf1/F þ FluxVf1

¼ 0:936 /C � /Fð Þ þ 19:649
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8.6.8 Boundary Conditions for Non-orthogonal Grids

The treatment of boundary conditions for non-orthogonal grids is similar to that for
orthogonal grids with some minor differences related to the non-orthogonal diffu-
sion contribution. This is outlined next.

8.6.8.1 Dirichlet Boundary Condition

For the case of a Dirichlet boundary condition, i.e., when ϕ is specified by the user
at the boundary as shown in Fig. 8.14, the boundary discretization proceeds as in
orthogonal-grids. However, there is a need now to account for the cross-diffusion,
which arises on boundary faces as on interior faces. This happens whenever the
surface vector is not collinear with the vector joining the centroids of the element
and boundary face. The diffusion flux along the boundary face is discretized as

J/;Db � Sb ¼ �C/
b r/ð Þb � Sb ¼ �C/

b r/ð Þb � Eb þ Tbð Þ

¼ �C/
b

/b � /C

dCb

� �
Eb � C/

b r/ð Þb � Tb

¼ FluxCb/C þ FluxVb

ð8:81Þ

where

FluxCb ¼ C/
b gDiffb

FluxVb ¼ �C/
b gDiffb/b � C/

b r/ð Þb � Tb

gDiffb ¼ Eb

dCb

ð8:82Þ

Substituting into Eq. (8.79), the modified coefficients are obtained as

aF ¼ FluxFf aC ¼
X

f�nbðCÞ
FluxCf þ FluxCb

bC ¼ Q/
CVC � FluxVb �

X
f�nbðCÞ

FluxVf

ð8:83Þ

S f

n

e
dCb

b

C

Fig. 8.14 Dirichlet boundary
for a non-orthogonal mesh
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8.6.8.2 Neumann Boundary Condition

The Neumann type condition for non-orthogonal grids follows that for orthogonal
grids. In this case the user-specified flux at the boundary is just added as a source
term as with orthogonal grid. The algebraic equation at the boundary is given by
Eq. (8.40) with the modified coefficients specified by Eq. (8.41).

8.6.8.3 Mixed Boundary Condition

For the mixed boundary condition case (Fig. 8.5), denoting the convection transfer
coefficient by h∞ and the surrounding value of ϕ by /1, the diffusion flux at the
boundary can be written as

J/;Db � Sb ¼ �C/
b

/b � /C

dCb

� �
Eb � C/

b r/ð Þb � Tb

¼ �h1 /1 � /bð ÞSb
ð8:84Þ

from which an equation for ϕb is obtained as

/b ¼
h1Sb/1 þ

C/
b Eb

dCb
/C � C/

b r/ð Þb � Tb

h1Sb þ C/
b Eb

dCb

ð8:85Þ

Substituting ϕb back in Eq. (8.84), the flux equation is transformed to

J/;Db � Sb ¼ �
h1Sb

C/
b Eb

dCb

h1Sb þ C/
b Eb

dCb

2
6664

3
7775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ab

/1 � /Cð Þ � h1SbC
/
b r/ð Þb �Tb

h1Sb þ C/
b Eb

dCb|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
S/;CDb

¼ FluxCb/C þ FluxVb

ð8:86Þ

where now

FluxCb ¼
h1Sb

C/
b Eb

dCb

h1Sb þ C/
b Eb

dCb

FluxVb ¼ �FluxCb/1 �
h1SbC

/
b r/ð Þb � Tb

h1Sb þ C/
b Eb

dCb

ð8:87Þ
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and the modified coefficients for the boundary element are obtained as

aF ¼ FluxFf � C/
f
Ef

dCf

aC ¼ FluxCb þ
X

f�nbðCÞ
FluxCf

bC ¼ Q/
CVC � FluxVb �

X
f�nbðCÞ

FluxVf

ð8:88Þ

8.7 Skewness

To evaluate many of the terms constituting the general discretized equation of a
quantity ϕ, it is necessary to estimate its value at element faces. An estimated value
at the face should be the average value of the entire face. At different steps of the
discretization process, linear variation of variables between nodes is assumed. If
this is extended to variation of variables along the face, then the average value of
any variable ϕ should be found at the face centroid. The common practice is to use a
linear interpolation profile and to estimate the value at the face at the intersection
between the face and the line connecting the two nodes straddling the face. When
the grid is skewed the line does not necessarily pass through the centroid of the face
[9, 10]. An example is depicted in Fig. 8.15 where the intersection point of segment
[CF] with the face is at point, f ′, which does not coincide with the face centroid, f.
To keep the overall accuracy of the discretization method second order, all face
integrations need to take place at point f. Thus a correction for the interpolated value
at f′ is needed in order to get the value at f.

The skewness correction is derived by expressing the value of ϕ at f in terms of
its value and the value of its derivative at f ′ via a Taylor expansion such that

/f ¼ /f 0 þ r/ð Þf 0 � df 0f ð8:89Þ

where df ′f is a vector from the intersection point f ′ to the face centre f.

S f

eF C

f

f

Fig. 8.15 Non-conjunctional
elements
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8.8 Anisotropic Diffusion

The diffusion equation presented so far assumed the material has no preferred
direction for transfer of ϕ with the same diffusion coefficient in all directions, i.e.,
the medium was assumed to be isotropic. For the case when the diffusion coefficient
of the medium is direction dependent, diffusion is said to be anisotropic [11–16]. As
mentioned in Chap. 3, some solids are anisotropic for which the semi-discretized
diffusion equation becomesX

f�nbðCÞ
�j/ � r/� �

f � Sf ¼ S/CVC ð8:90Þ

where κϕ is a second order symmetric tensor. Assuming a general three dimensional
situation, the term on the left hand side, through some mathematical manipulation
[17], can be rewritten as

�j/ � r/� �
f � Sf ¼ �

j
/
11 j

/
12 j

/
13

j
/
21 j

/
22 j

/
23

j
/
31 j

/
32 j

/
33

2
664

3
775
f

@/
@x
@/
@y
@/
@z

2
6666664

3
7777775
f

� Sf ð8:91Þ

Performing matrix multiplication, Eq. (8.91) becomes

�j/ � r/� �
f � Sf ¼ �

j
/
11
@/
@x
þ j

/
12
@/
@y
þ j

/
13
@/
@z

j
/
21
@/
@x
þ j

/
22
@/
@y
þ j

/
23
@/
@z

j
/
31
@/
@x
þ j

/
32
@/
@y
þ j

/
33
@/
@z

2
666666664

3
777777775
f

Sx

Sy
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Further manipulations yield
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Substituting Eq. (8.93) into Eq. (8.90), the new form of the diffusion equation
becomes
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X
f � nbðCÞ

�r/ð Þf � S0f ¼ Q/
CVC ð8:94Þ

It is obvious that in this form the discretization procedure described above can be
applied by simply setting C/ to 1 and replacing Sf by S0f . Therefore the same code
can be used to solve isotropic and anisotropic diffusion problems.

8.9 Under-Relaxation of the Iterative Solution Process

For a general diffusion problem, C/ may be a function of the unknown dependent
variable ϕ and the grid may be highly non-orthogonal with a large cross diffusion
term, which is treated using a deferred correction approach. Therefore large vari-
ations in ϕ between iterations result in large source terms and large changes in the
coefficients, which may cause divergence of the iterative solution procedure. This
divergence is usually due to the non-linearity introduced by the coefficients and the
cross-diffusion term, which makes the source term highly affected by the current
solution field which is not yet converged. To promote convergence and stabilize the
iterative solution process, slowing down the changes in ϕ between iterations is
highly desirable and is enforced by a technique called under-relaxation. There are
many ways of introducing under-relaxation. One of the practices will be described
here, others in Chap. 14. Derivations will be performed on the general discretization
equation of the form

aC/C þ
X

F�NBðCÞ
aF/F ¼ bC ð8:95Þ

Equation (8.95) can be written as

/C ¼
� P

F�NBðCÞ
aF/F þ bC

aC
ð8:96Þ

Let /�C represents the value of ϕC from the previous iteration. If /�C is added to
and subtracted from the right hand side, then Eq. (8.96) becomes

/C ¼ /�C þ
� P

F�NBðCÞ
aF/F þ bC

aC
� /�C

0
B@

1
CA ð8:97Þ

where the expression between the parentheses represents the change in ϕC produced
by the current iteration. This change can be modified by the introduction of a
relaxation factor λϕ, such that

256 8 Spatial Discretization: The Diffusion Term



/C ¼ /�C þ k/
� P
F�NBðCÞ

aF/F þ bC

aC
� /�C

0
B@

1
CA ð8:98Þ

or

aC
k/

/C þ
X

F�NBðCÞ
aF/F ¼ bC þ

1� k/
� �

aC
k/

/�C ð8:99Þ

At first, it should be noted that at convergence ϕC and /�C become equal inde-
pendent of the value of relaxation factor used. This is indeed reflected by Eq. (8.98),
which shows that the converged value ϕC does satisfy the original equation
(Eq. 8.95). This property should be satisfied by any relaxation scheme.

Depending on the value of the relaxation factor λϕ, the equation may be either
under relaxed (i.e., 0 < λϕ < 1) or over-relaxed (i.e., λϕ > 1). In CFD applications,
under relaxation is usually used. A value of λϕ close to 1 implies little under
relaxation, while a value close to 0 produces heavy under relaxation effects with
very small changes in ϕC from iteration to iteration.

The optimum under relaxation factor is problem dependent and is not governed
by any general rule. The factors affecting λϕ values include the type of problem
solved, the size of the system of equation (i.e., number of grid points in the domain),
the grid spacing and its expansion rate, and the adopted iterative method, among
others. Usually, values of λϕ are assigned based on experience or from preliminary
calculations. Moreover, it is not necessary to use the same under-relaxation value
throughout the computational domain and values may vary from iteration to
iteration.

Equation (8.99) can be recast into the form of Eq. (8.95), where now the central
coefficient ac becomes

aC  aC
k/

ð8:100Þ

while the source term is added to produce a new term as

bC  bC þ
1� k/
� �

aC
k/

/�C ð8:101Þ

This method of relaxation plays an important role in stabilizing the solution of
non-linear problems.
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8.10 Computational Pointers

8.10.1 uFVM

In uFVM the implementation of the diffusion term discretization for interior faces is
performed in function cfdAssembleDiffusionTermInterior, the core of which is
shown in Listing 8.1.

In the above, FLUXC1f and FLUXC2f are equivalent to FluxCf and FluxFf in
the text and are the coefficients of the owner and neighbor element, respectively.
Moreover, gamma_f and gDiff_f are arrays defined over all interior faces, and
using the dot notation, the expression gamma_f.* gDiff_f returns an array
containing the product of the respective elements of the gamma_f and gDiff_f
arrays. The dot notation in Matlab® allows for efficient operations over arrays and
for the writing of a clearer code and is used in uFVM whenever practical.

The non-orthogonal term is stored in the FLUXVf coefficient and is equal to
gamma_f .* dot(grad_f(: , :)’,Tf( :, :)’)’.The total flux passing
through face f, FLUXTf, is assembled as in Eq. (8.15).

The diffusion term is setup in cfdProcessOpenFoamMesh.m and Listing 8.2
shows the computation of the gDiff coefficient.

gamma_f = cfdInterpolateFromElementsToFaces('Average',gamma);
gamma_f = [gamma_f(iFaces)];
geoDiff_f = [theMesh.faces(iFaces).geoDiff]';
Sf = [theMesh.faces(iFaces).Sf]';
Tf = [theMesh.faces(iFaces).T]';

iOwners = [theMesh.faces(iFaces).iOwner]';
iNeighbours = [theMesh.faces(iFaces).iNeighbour]';

theFluxes.FLUXC1f(iFaces,1) =  gamma_f .* gDiff_f;
theFluxes.FLUXC2f(iFaces,1) = -gamma_f .* gDiff_f;

theFluxes.FLUXVf(iFaces,1)  =  gamma_f .* dot(grad_f(:,:)',Tf(:,:)')';
theFluxes.FLUXTf(iFaces,1)   =   theFluxes.FLUXC1f(iFaces)  .*
phi(iOwners)  +  theFluxes.FLUXC2f(iFaces)  .*  phi(iNeighbours)  +
theFluxes.FLUXVf(iFaces);

Listing 8.1 Assembly of the diffusion term at interior faces
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The effects of boundary conditions on the equations of boundary elements
should be accounted for and Listing 8.3 shows the assembly of the diffusion term at
boundary faces for the case of a Dirichlet boundary condition type.

The implementation of other boundary condition types can be reviewed in file
cfdAssembleDiffusionTerm.m.

Once the linearized coefficients are computed for each of the interior and
boundary faces, then assembly into the global (sparse) matrix can proceed. This
approach is used for the discretization of all flux terms in uFVM and the assembly is
performed in the cfdAssembleIntoGlobalMatrixFaceFluxes function.
Listing 8.4 shows the assembly into the sparse LHS matrix and the RHS vector of the
coefficients at interior faces.

theMesh.faces(iFace).dCF = element2.centroid - element1.centroid;    
eCF = dCF/cfdMagnitude(dCF);
E = theFace.area*eCF;   
theMesh.faces(iFace).gDiff = cfdMagnitude(E)/cfdMagnitude(dCF);
theMesh.faces(iFace).T = theFace.Sf - E;

Listing 8.2 Computing the geometric diffusion coefficient

theMesh = cfdGetMesh;
numberOfElements = theMesh.numberOfElements;
numberOfInteriorFaces = theMesh.numberOfInteriorFaces;
%
theBoundary = theMesh.boundaries(iPatch);
numberOfBFaces = theBoundary.numberOfBFaces;

%
iFaceStart = theBoundary.startFace;
iFaceEnd = iFaceStart+numberOfBFaces-1;
iBFaces = iFaceStart:iFaceEnd;
%
iElementStart = numberOfElements+iFaceStart-numberOfInteriorFaces;
iElementEnd = iElementStart+numberOfBFaces-1;
iBElements = iElementStart:iElementEnd;

geodiff = [theMesh.faces(iBFaces).geoDiff]';
Tf = [theMesh.faces(iBFaces).T]';
iOwners = [theMesh.faces(iBFaces).iOwner]';

gamma(iBElements).*dot(grad(iBElements,:)’,Tf(:,:)’)’;

theFluxes.FLUXC1f(iBFaces) =   gamma(iBElements).*geodiff;
theFluxes.FLUXC2f(iBFaces) = - gamma(iBElements).*geodiff;
theFluxes.FLUXVf(iBFaces)   =  -

Listing 8.3 Assembly of the diffusion term at boundary faces for a Dirichlet Condition
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%
% Assemble fluxes of interior faces
%
for iFace = 1:numberOfInteriorFaces
   theFace = theMesh.faces(iFace);
   iOwner         = theFace.iOwner;
   iOwnerNeighbourCoef     = theFace.iOwnerNeighbourCoef;
   iNeighbour     = theFace.iNeighbour;
   iNeighbourOwnerCoef = theFace.iNeighbourOwnerCoef;
   % 
   %  assemble fluxes for owner cell
   ac(iOwner) = ac(iOwner)                       

+ vf_f(iFace)*theFluxes.FLUXC1f(iFace);
anb{iOwner}(iOwnerNeighbourCoef) = anb{iOwner}(iOwnerNeighbourCoef) 

+ vf_f(iFace)*theFluxes.FLUXC2f(iFace);
   bc(iOwner) = bc(iOwner)                       

- vf_f(iFace)*theFluxes.FLUXTf(iFace);
   % 
   %  assemble fluxes for neighbour cell
   ac(iNeighbour) = ac(iNeighbour) 

- vf_f(iFace)*theFluxes.FLUXC2f(iFace);
anb{iNeighbour}(iNeighbourOwnerCoef)  =  anb{iNeighbour}

(iNeighbourOwnerCoef) 
- vf_f(iFace)*theFluxes.FLUXC1f(iFace);

   bc(iNeighbour)                       = bc(iNeighbour)
+ vf_f(iFace)*theFluxes.FLUXTf(iFace);

end

Listing 8.4 Assembly into LHS spare matrix and RHS array

For each interior face the coefficients are assembled into both the owner and
neighbor element equations. For the owner the coefficients are (ac(iOwner),
anb(iOwner)(iOwnerNeighbourCoef), and bc(iOwner)), while for the
neighbor the coefficients become: ac(iNeighbour), anb(iNeighbour)
(iNeighbourOwnerCoef), and bc(iNeighbour)). The different signs used
in the assembly of the two equations is due to the fact that the face surface vector is
pointing into the neighbor cell and out of the owner cell.

8.10.2 OpenFOAM®

In OpenFOAM® [18] the diffusion term can be evaluated explicitly using “fvc::
laplacian(gamma, phi)”or implicitly via “fvm::laplacian(gamma,phi)” namespaces
and functions. The “fvc::laplacian(gamma,phi)” returns a field in which the laplacian
of a generic field ϕ (phi) is evaluated at each cell. The field is added to the right hand
side of the system of equations. The “fvm::laplacian(gamma,phi)” returns instead an
fvMatrix of coefficients evaluated as per Eq. (8.19),which is added to the left hand side
of the system of equations, in addition to a field containing the non-orthogonal terms
that is added to the right hand side of the system. The definition of the laplacian
operator is located in the directory “$FOAM_SRC/finiteVolume/finiteVolume/
laplacianSchemes/gaussLaplacianScheme” in the files “gaussLaplacianScheme.C”,
“gaussLaplacianScheme.H”, and “gaussLaplacianSchemes.C”.
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The “fvm::laplacian” definition displayed in Listing 8.5 reads

template<>                                                              
Foam::tmp<Foam::fvMatrix<Foam::Type> >                                  
Foam::fv::gaussLaplacianScheme<Foam::Type, Foam::scalar>::fvmLaplacian  
(                                                                       
   const GeometricField<scalar, fvsPatchField, surfaceMesh>& gamma,    
   const GeometricField<Type, fvPatchField, volMesh>& vf               
)                                                                       
{                                                                       
   const fvMesh& mesh = this->mesh();                                  

   GeometricField<scalar, fvsPatchField, surfaceMesh> gammaMagSf       
   (                                                                   
       gamma*mesh.magSf()                                              
   );                                                                  

   tmp<fvMatrix<Type> > tfvm = fvmLaplacianUncorrected                 
   (                                                                   
       gammaMagSf,                                                     
       this->tsnGradScheme_().deltaCoeffs(vf),                         
       vf                                                              
   );                                                                  
   fvMatrix<Type>& fvm = tfvm();                                       

   if (this->tsnGradScheme_().corrected())                             
   {                                                                   
       if (mesh.fluxRequired(vf.name()))                               
       {                                                               
           fvm.faceFluxCorrectionPtr() = new                           
           GeometricField<Type, fvsPatchField, surfaceMesh>            
           (                                                           
               gammaMagSf*this->tsnGradScheme_().correction(vf)        
           );                                                          

           fvm.source() -=                                             
               mesh.V()*                                               
               fvc::div                                                
               (                                                       
                   *fvm.faceFluxCorrectionPtr()                        
               )().internalField();                                    
       }                                                               
       else                                                            
       {                                                               
           fvm.source() -=                                             
               mesh.V()*                                               
               fvc::div                                                
               (                                                       
                   gammaMagSf*this->tsnGradScheme_().correction(vf)    
               )().internalField();                                    
       }     

   }
   return tfvm;                                                        
}                                                                       

Listing 8.5 Calculation of the Laplacian operator
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with the following additional functions (Listing 8.6):

It is worth noting that in OpenFOAM® the assembly takes place directly into the
global coefficients, which as described earlier in Chaps. 5, 6, and 7 are stored in
three arrays, namely fvm.upper(), fvm.lower(), and fvm.diag(). The
main part of the discretization is defined in the fvmLaplacianUncorrected
function, where Eq. (8.19) is evaluated by first defining an fvMatrix object
and then filling its upper triangle by the extra diagonal coefficients (this approach
relies on the fact that the Laplacian operator returns a symmetric matrix).

template<class Type, class GType>
tmp<fvMatrix<Type> >
gaussLaplacianScheme<Type, GType>::fvmLaplacianUncorrected
(
   const surfaceScalarField& gammaMagSf,
   const surfaceScalarField& deltaCoeffs,
   const GeometricField<Type, fvPatchField, volMesh>& vf
)
{
   tmp<fvMatrix<Type> > tfvm
   (
       new fvMatrix<Type>
       (
           vf,
   deltaCoeffs.dimensions()*gammaMagSf.dimensions()*vf.dimensions()
       )
   );
   fvMatrix<Type>& fvm = tfvm();

fvm.upper()= deltaCoeffs.internalField()*gammaMagSf.internalField();
   fvm.negSumDiag();

   forAll(vf.boundaryField(), patchi)
   {
       const fvPatchField<Type>& pvf = vf.boundaryField()[patchi];

const  fvsPatchScalarField&  pGamma  =  gammaMagSf.boundaryField()
[patchi];
       const fvsPatchScalarField& pDeltaCoeffs =
           deltaCoeffs.boundaryField()[patchi];

       if (pvf.coupled())
       {

fvm.internalCoeffs()[patchi] =
pGamma*pvf.gradientInternalCoeffs(pDeltaCoeffs);

fvm.boundaryCoeffs()[patchi] =
-pGamma*pvf.gradientBoundaryCoeffs(pDeltaCoeffs);

       }
       else
       {

fvm.internalCoeffs()[patchi] = pGamma*pvf.gradientInternalCoeffs();
fvm.boundaryCoeffs()[patchi] = -pGamma*pvf.gradientBoundaryCoeffs();

       }
   }
   return tfvm;
}

Listing 8.6 Additional functions needed for the calculation of the Laplacian operator
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The “deltaCoeffs.internalField()” represents the gDiff field while
gamma indicates the diffusion field. The diagonal coefficients are evaluated in
fvm.negSumDiag(),where the negative sum of the upper and lower coefficients
are assembled into the diagonal coefficients as per Eq. (8.18).

The “fvm.negSumDiag()” method is defined in lduMatrix
Operations.C as (Listing 8.7)

The boundary conditions are implemented exactly as in Eqs. (8.36) and (8.41).
In OpenFOAM® the boundary coefficients are stored in “internalCoeffs”
(FluxCb) and “boundaryCoeffs” (FluxVb), already defined in Sect. 7.6.

In “fvmUncorrected”only the orthogonal discretization is accounted for.
The non-orthogonal contribution is added, as shown in Listing 8.8, using

Again this term represents exactly the implementation of the last term of
Eq. (8.77) in which the snGrad class wraps into the correction function the
non-orthogonal term as shown below in Listing (8.9).

void Foam::lduMatrix::negSumDiag()
{
   const scalarField& Lower = const_cast<const lduMatrix&>(*this).lower();
   const scalarField& Upper = const_cast<const lduMatrix&>(*this).upper();
   scalarField& Diag = diag();

   const labelUList& l = lduAddr().lowerAddr();
   const labelUList& u = lduAddr().upperAddr();

   for (register label face=0; face<l.size(); face++)
   {
       Diag[l[face]] -= Lower[face];
       Diag[u[face]] -= Upper[face];
   }
}

Listing 8.7 Calculation of the negative sum of the upper and lower coefficients

          fvm.faceFluxCorrectionPtr() = new                           
           GeometricField<Type, fvsPatchField, surfaceMesh>            
           (                                                           
               gammaMagSf*this->tsnGradScheme_().correction(vf)        
           );                                                          

           fvm.source() -=                                             
               mesh.V()*                                               
               fvc::div                                                
               (                                                       
                   *fvm.faceFluxCorrectionPtr()                        
               )().internalField();

Listing 8.8 Adding the nonorthogonal diffusion contribution
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template<class Type>
Foam::tmp<Foam::GeometricField<Type,
Foam::fvsPatchField, 
Foam::surfaceMesh> >
Foam::fv::correctedSnGrad<Type>::correction
(
    const GeometricField<Type, fvPatchField, volMesh>& vf
) const
{
    const fvMesh& mesh = this->mesh();

    // construct GeometricField<Type, fvsPatchField, surfaceMesh>
    tmp<GeometricField<Type, fvsPatchField, surfaceMesh> > tssf
    (
        new GeometricField<Type, fvsPatchField, surfaceMesh>
        (

IOobject

           (
                "snGradCorr("+vf.name()+')',
                vf.instance(),
                mesh,
                IOobject::NO_READ,
                IOobject::NO_WRITE
            ),
            mesh,
            vf.dimensions()*mesh.nonOrthDeltaCoeffs().dimensions()
        )
    );
    GeometricField<Type, fvsPatchField, surfaceMesh>& ssf = tssf();

    for (direction cmpt = 0; cmpt < pTraits<Type>::nComponents; cmpt++)
    {
        ssf.replace
        (
            cmpt,
            correctedSnGrad<typename pTraits<Type>::cmptType>(mesh)
           .fullGradCorrection(vf.component(cmpt))
        );
    }

template<class Type>
Foam::tmp<Foam::GeometricField<Type,  Foam::fvsPatchField,  Foam::surfaceMesh>
>Foam::fv::correctedSnGrad<Type>::fullGradCorrection
(
    const GeometricField<Type, fvPatchField, volMesh>& vf
) const
{
    const fvMesh& mesh = this->mesh();

    // construct GeometricField<Type, fvsPatchField, surfaceMesh>
    tmp<GeometricField<Type, fvsPatchField, surfaceMesh> > tssf =
        mesh.nonOrthCorrectionVectors()
      & linear<typename outerProduct<vector, Type>::type>(mesh).interpolate
        (

            gradScheme<Type>::New
            (
                mesh,
                mesh.gradScheme("grad(" + vf.name() + ')')
            )().grad(vf, "grad(" + vf.name() + ')')
        );
    tssf().rename("snGradCorr(" + vf.name() + ')');

    return tssf;
}

Listing 8.9 Implementation of the nonorthogonal term into the correction function
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The non-orthogonal correction term is defined in the fullGradCorrection func-
tion where “mesh.nonOrthCorrectionVectors()” returns the T vector of Eq. (8.66).

The type of Laplacian discretization to be used is specified in the “fvSchemes”
file, which is part of the case definition and is located in the system directory

(Listing 8.10), in which Gauss (the only available choice) defines the standard
Gauss discretization resulting in Eq. (8.18), linear refers to the type of interpolation
used for calculating the diffusivity gamma at the face, and corrected describes the
kind of non-orthogonal correction.

More details on the implementation of boundary conditions in OpenFOAM® are
presented in later chapters.

8.11 Closure

In this chapter the discretization of the diffusion equation was described. A number
of issues were also addressed, such as the use of orthogonal and non-orthogonal
grid systems, the implementation of boundary conditions, and under and over
relaxation. The next chapter will concentrate on the calculation of the gradient field.

8.12 Exercises

Exercise I
Consider the diffusion of a property ϕ in the one-dimensional domain shown in
Fig. 8.16 with no internal sources. The domain is subdivided into 5 uniform ele-
ments of size Δx = 1 and subject to a Dirichlet and a Neumann condition at
boundary ‘0’ and ‘6’, respectively. The diffusion coefficient in the domain is
constant with a value of 1, i.e., C/ ¼ 1.

a. Derive the discrete equation for each of the elements.
b. Solve the system of equations using the Gauss-Seidel iterative method and

report the resulting cell-centroid values.
c. Compute the diffusion flux �Cd/=dxð Þ at each of the cell faces and show that

conservation is satisfied throughout the domain

laplacianSchemes
{
   laplacian(gamma,phi) Gauss linear corrected;
}

Listing 8.10 The discretization type for the Laplacian operator
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d. Compare your solution with the exact solution (Note that even though the
computed solution is conservative, it is not exact).

e. For the case where a zero flux boundary condition is defined at both boundaries
‘0’ and ‘6’, reformulate the equations for elements 1 and 5 and explain why the
equations cannot be solved.

Exercise 2
A fin is exposed to the surrounding fluid at a temperature Ta = 25 °C, as shown in
Fig. 8.17, with a heat transfer coefficient of h = 100 W/m2 K and a thermal
conductivity with value of k = 160 W/m K. The fin has a length L = 0.1 m, a cross
sectional area A = 10−5 m2, and a perimeter P = 0.1004 m.

The temperature distribution in the fin is governed by the following differential
equation

� d
dx

k
dT
dx

� �
þ Ph

A
T � Tað Þ ¼ 0

Discretize the above equation by subdividing the computational domain into 5
elements of equal size and find the values of the temperature field at the element
centroids and boundaries in the following two situations:

a. T x ¼ 0ð Þ ¼ 200 
C and T x ¼ Lð Þ ¼ 90 
C
b. q x ¼ 0ð Þ ¼ 20 kW=m2 and q x ¼ Lð Þ ¼ 10 kW=m2

where q is the rate of heat transfer given by

q ¼ �k dT
dx

2 3 4 51

x / 2 x

0 = 100

J6
D = d

dx 6

= 10

x

Fig. 8.16 Computational domain for a one dimensional diffusion problem with no internal
sources
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Exercise 3
The heat conduction in the two-dimensional domain shown in Fig. 8.18 is governed
by the following differential equation:

�r � krT ¼ 0

The domain is subdivided into uniform elements and the boundary conditions
are as shown in the figure.

a. Derive the algebraic equations for all elements.
b. Solve the system of equations obtained and compute the T values at the cen-

troids of the elements.

Fin

Ta

h T Ta( )

1 2 3 4 5

d

dx
k
dT

dx
x

A

P

L

Fig. 8.17 Computational domain for heat transfer from a fin
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Fig. 8.18 Heat conduction in a two dimensional tilted Cartesian domain
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c. Compute the values of T at the bottom and right boundaries.
d. Compute the net heat transfer through the top and left boundaries

Exercise 4
Consider steady state conduction heat transfer in the non-orthogonal domain dis-
cretized into the four equal elements shown in Fig. 8.19, where L = 1 m. Derive the
discretization equations for the cells using two different methods for the decom-
position of the diffusion flux and compare the temperature values at the element
centroids after 4 coefficient iterations.

Exercise 5
Discretize the equation −∇ · k∇T = QT where QT = 500 and k = 200, for the mesh
composed of quadrilateral triangles of side 0.1 shown in Fig. 8.20. Write the
discretized equations in the form of general algebraic equations.

1 2

43

3

4

T = 20 C

T
=
30

C

T n = 0

T n = 0

L

L

Fig. 8.19 Computational domain for Exercise 4
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b n = 0

a = 40

h = 10

b = 50

Fig. 8.20 A triangular domain covered with an unstructured grid system
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Exercise 6
The gradient for a variable ϕ over the computational domain shown in Fig. 8.21 is
given by

r/ ¼ 20iþ 30j

Compute the value of ϕ at nodes 1 and 2 given that the length and width of the
computational domain are 10 and 5 cm, respectively.

Exercise 7
Using the mesh constructed in exercise 3 of Chap. 7 (displayed in Fig. 7.12), setup
a case in OpenFOAM® and uFVM to solve the diffusion equation subject to the
following conditions ðC/ ¼ 1Þ:
Patch#1 ϕ = 1
Patch#2 ϕ = 0
Patch#3 ∇ϕ · n = 0
Patch#4 h∞ = 1, ϕ∞ = 0.5

Exercise 8
Build an oblique parallelogram (size of horizontal side is 1 and size of oblique side
is 2 inclined at 60 degrees with respect to the horizontal) using blockMesh in
OpenFOAM® with the boundary conditions shown in the figure below to solve the
diffusion equation with no source term in two dimensions. Generate a grid by
decomposing each side of the parallelogram into 50 equal segments. Setup the case
and using a diffusion coefficient of 1 compare the convergence history for the three
different approaches mentioned in this chapter to resolve the non-orthogonal term
for the diffusion equation (one at a time) in uFVM and in OpenFOAM®. Use an
under-relaxation factor of value 0.9 (Fig. 8.22).

2

1

= 20

= 25= 15

= 50

= 20i + 30 j

Fig. 8.21 A rectangular domain decomposed into two triangular elements
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Exercise 9

a. Use Doxygen [19] to find the list of all overloaded functions under the name
fvmLaplacian and then under then name fvcLaplacian.

b. Define in the dictionary file fvSchemes the option to exclude the non orthogonal
correction (Gauss linear uncorrected;).

c. Define in the dictionary file fvSchemes the option to use a limited non
orthogonal correction (Gauss linear limited 0.8;).

d. List of the possible Laplacian non orthogonal correction type available in
OpenFOAM® (Hint: just mistype a scheme, i.e., banana, and launch any solver
or application).
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