Chapter 8
Spatial Discretization: The Diffusion Term

Abstract This chapter describes in detail the discretization of the diffusion term
represented by the spatial Laplacian operator. It is investigated separately from the
convection term, because convection and diffusion represent two distinct physical
phenomena. Thus from a numerical point of view, they have to be handled dif-
ferently, requiring distinct interpolation profiles with disparate considerations. The
chapter begins with the discretization of the diffusion equation in the presence of a
source term over a two-dimensional rectangular domain using a Cartesian grid
system. The adopted interpolation profile for the variation of the dependent variable
between grid points and the basic rules that should be satisfied by the coefficients of
the discretized equation are discussed. The chapter proceeds with a discussion on
the implementation of the Dirichlet, Von Neumann, mixed, and symmetry
boundary conditions. The discretization over a non-Cartesian orthogonal grid is
then introduced, followed by a detailed description of the discretization on
non-orthogonal structured and unstructured grid systems. The treatment of the
non-orthogonal cross-diffusion contribution, which necessitates computation of
the gradient, is clarified. Then anisotropic diffusion is introduced and handled
following the same methodology developed for isotropic diffusion. The
under-relaxation procedure needed for highly non-linear problems is outlined. The
chapter ends with computational pointers explaining the treatment of diffusion in
both uFVM and OpenFOAM®.

8.1 Two-Dimensional Diffusion in a Rectangular Domain

A simple rectangular domain with a regular Cartesian grid, as shown in Fig. 8.1, is
first considered. The aim is to discretize, on this domain, the steady-state diffusion
equation given by

—V - ([*v¢) = 0’ (8.1)

© Springer International Publishing Switzerland 2016 211
F. Moukalled et al., The Finite Volume Method in Computational Fluid Dynamics,
Fluid Mechanics and Its Applications 113, DOI 10.1007/978-3-319-16874-6_8

212 8 Spatial Discretization: The Diffusion Term

where ¢ denotes a scalar variable (e.g., temperature, mass fraction of a chemical
species, turbulence kinetic energy, etc.), O the generation of ¢ per unit volume
within the domain, and T'? the diffusion coefficient. The equation can be written
more generally in term of a diffusion flux J*P as

VIR =0t (8.2)
where J*? is defined as
JOP = V¢ (8.3)

Following the first stage discretization presented in Chap. 5, Eq. (8.1) can be
formulated as

Y (-TV¢), -8 = 0ve (8.4)

frnb(C)
The expanded form of the above equation can be written as

(-T9V),:S. + (-T9V9) S, + (-TPV4), S, + (-19),-5, = Ve
(8.5)

For the uniform Cartesian grid of Fig. 8.1, the surface vectors normal to the
element faces are given by

S. = +(AY)e i=|Sfi=Si S,= _(A)’)w i=—[Su[[i=-S,i

Sy = +(A), § = [Sulli=Suj S5 = —(Ax), j=—[S:llj = —Sii (8.6)
Thus for the east face the diffusion flux is found to be
J¢P = —(1*V¢), - S,
= (%i ! %j)e K (8.7)
- -, (32)

Following the discrete conservation equation for one integration point discussed
earlier, the discrete form of the diffusion flux can be written as

J9P = FluxT, = FluxC,¢p¢ + FluxF, ¢ + FluxV, (8.8)
To determine the FluxC,, FluxF,, and FluxV, coefficients, a profile describing

the variation of ¢ between the centroids of the two elements sharing the face, where
the gradient has to be computed, is required. Assuming that ¢ varies linearly

8.1 Two-Dimensional Diffusion in a Rectangular Domain 213

Fig. 8.1 A uniform Cartesian
grid

(6)

n w |
%Wiw%ié; (&),
(5y); ! \# ! l

SS
sz | s ‘gSE
e

between cell centroids (Fig. 8.2), the gradient at face e along the i direction may be
written as

Substituting into Eq. (8.8), the discretized form of the diffusion flux along face
e is obtained as

FliaT, = _rg(Ay)ew
A
=t g gy) (8.10)

= FluxC,¢¢ + FluxF,¢g + FluxV,

Fig. 8.2 Interpolation profile ¢
at face e and slope of gradient (5) = slope D/
V ¢E
S,
N S W SN g Y
C e E

214 8 Spatial Discretization: The Diffusion Term

Taking

(A, _ IS _ 5.
OXe ldcell dce

gDiff, = (8.11)

where dcr is the distance vector between the centroids of elements C and E, the
coefficients become

FluxC, = F‘ngiﬁ‘e
FluxF, = —TYgDiff, (8.12)
FluxV, =0

A similar procedure applied to face w yields

FluxT,, = —(F¢V¢))

=-T’s, <g—¢ +%)w (—i)

=T7?s, (gf)w (8.13)

(Pc — dw)
(0w,
= FluxC,, ¢ + FluxF,, ¢y + FluxV,,

=T’s,

where now

FluxC,, = F‘bngﬁfw
FluxF,, = —T*gDiff,, (8.14)
Fluxv,, =0

and

(Ay),, _ lISwll _ S

5xw B ||dCW|| N dcw

gDiff,, =

Similar expressions may be written along faces n and s and are given by

FluxT, = FluxC, ¢ + FluxF,¢y + FluxV,

8.15
FluxT; = FluxCs¢¢ + FluxF g + FluxV; ()

8.1 Two-Dimensional Diffusion in a Rectangular Domain 215

where
FluxC, = l"Z’gDiﬁfn FluxF, = —l",’ngiﬁn FluxV, =0 (.16)
FluxCs = l"f’gDiﬁ”S FluxF, = —l"f’gDiﬁs FluxVy =0 .
and
S, Ax Sy
i, = ISil_ (&9, _
||dCNH 5yn dCN (8 17)
Sy Ax S '
i, - IS _ (40, S

Idesll Oys dcs

Substituting into Eq. (8.5), the algebraic form of the diffusion equation is
obtained as

acPc +agdg + awdy + andy + asps = be (8.18)

where

arg = FluxF, = frngzﬁ‘g
aw = FluxF,, = —F“ﬁgDiﬁ‘W
ay = FluxF, = —FZ’gDiﬁ”,,
as = FluxF, = —T?gDiff, (8.19)
ac = FluxC, + FluxC,, + FluxC, + FluxC,
= —(ag +aw + ay + as)
be = Q2Ve — (FluxV, + FluxV,, + FluxV,, + FluxV,)

or, more compactly, as

ace+ Y, arr =bc (8.20)

F~NB(C)
with

ap = FluxFy = —F}bgDiﬁ_‘f

ac = Z FluxCy
)

fnb(C (8.21)

be = 0fVe— > FluxVy
fnb(C)

where the subscript F denotes the neighbors of element C (E, W, N, S), and the
subscript f denotes the neighboring faces of element C (e, w, n, s).

216 8 Spatial Discretization: The Diffusion Term

8.2 Comments on the Discretized Equation

A proper discretization method should result in a discretized algebraic equation that
reflects the characteristics of the original conservation equation. The properties of
the discretization techniques were introduced in the previous chapter and two
additional rules that the coefficients of the discretized equation have to satisfy are
presented next.

8.2.1 The Zero Sum Rule

Looking back at the discretization process, the first major approximation made was
the linear profile assumption for the variation of ¢ between the centroids of the
elements straddling the element face. The reader might ask why to use a first order
rather than a higher order profile. To answer this question, a one dimensional
configuration with no source term is considered. Under these conditions the dis-
cretized equation reduces to

acd)c + aEc].'>E + aw(i)w =0 (822)

where
ag = —T0gDiff, aw = —T0gDiff,, ac = —(ag + aw) (8.23)

In the absence of any source or sink within this one dimensional domain, the
transfer of ¢ occurs by diffusion only and is governed by Fourier’s law (elliptic
equation), i.e., in the direction of decreasing ¢. As such, the value of ¢, or ¢,, should
lie between the values ¢ and ¢ or ¢ and ¢y, respectively, which is guaranteed by
the linear profile. A second order profile (e.g., a parabolic profile) may result in a
value at the face that is higher or lower than the values at the centroids of the cells
straddling the face, which is unphysical. The same is true for other higher order
profiles. If the discretization scheme is to guarantee physical results, then a linear
profile should be used. Moreover, the adopted profile becomes less important as the
size of the element decreases, since all approximations are expected to yield the
same analytical solution in the limit when the size of the element approaches zero.
Furthermore, in the absence of any source term, the multi-dimensional heat con-
duction equation reduces to,

~V - (['V¢) =0 (8.24)
This implies that ¢ and ¢ + constant are solutions to the conservation equation.

A consistent discretization method should reflect this property through its discret-
ized equation and the discretized equation should fulfill

8.2 Comments on the Discretized Equation 217

acpe + Z ardpp =0

F~NB(C)
= ac + Z ar =0
ac(¢¢ + constant) + Z ar(¢p + constant) = 0 FNB(C)
F~NB(C)

(8.25)

which is actually satisfied by the discretized equation. The above equation, which is
valid in the presence or absence of a source/sink term as revealed by Eq. (8.19),
may be written as

ac = — (826)

ar
F~NB(C)

or as

Y o (8.27)

FNB(c) 4C

Thus ¢¢ can be viewed as the weighted sum of its neighbors, and in the absence
of any source term it should always be bounded by these neighboring ¢ values.

When a source term is present, i.e., when ng # 0, ¢ does not need to be bounded
in this manner, and can over/undershoot the neighboring values, but this is perfectly

physical. The extent of over/under shoot is determined by the magnitude of S? with
respect to the size of the coefficients at the neighboring nodes (ar).

8.2.2 The Opposite Signs Rule

The above derivations demonstrated that the coefficients ac and ay are of opposite
signs. This is of physical significance implying that as the value of ¢p is
increased/decreased, the value of ¢, is expected to increase/decrease. This is
basically related to boundedness suggesting that a sufficient condition for this
property to be satisfied is for the neighboring and main coefficients to be of opposite
signs. If not, then the boundedness property may not be enforced.

8.3 Boundary Conditions

It is well known that the analytical solution to any ordinary or partial differential
equation is obtained up to some constants that are fixed by the applicable boundary
conditions to the situation being studied. Therefore, using different boundary

218 8 Spatial Discretization: The Diffusion Term

conditions will result in different solutions even though the general equation
remains the same. Numerical solutions follow the same constrain, necessitating
correct and accurate implementation of boundary conditions as any slight change in
these conditions introduced by the numerical approximation leads to a wrong
solution of the problem under consideration.

Boundary conditions will be discussed as deemed relevant to the terms being
discretized. For conduction/diffusion problems Dirichlet, Neumann, mixed, and
symmetry boundary condition types are encountered, which are detailed next.

Boundary conditions are applied on boundary elements, which have one or more
faces on the boundary. Discrete values of ¢ are stored both at centroids of boundary
cells and at centroids of boundary faces.

Let C denotes the centroid of the boundary element shown in Fig. 8.3 with one
boundary face of centroid b and of surface vector S, pointing outward. As before,
the discretization process over cell C yields

Y (@*P-8)=0bve (8.28)

J~nb(C)

The fluxes on the interior faces are discretized as before, while the boundary flux
is discretized with the aim of constructing a linearization with respect to ¢¢, thus
JOP .S, = FluxT,
=T} (V¢), - S (8.29)
= FluxCp + FluxV,

The specification of boundary conditions involves either specifying the unknown

boundary value ¢,, or alternatively, the boundary flux Jf'D. Using Eq. (8.18), the
discretized equation at a boundary element for the different boundary condition
types of diffusion problems are derived next.

8.3.1 Dirichlet Boundary Condition

A Dirichlet boundary condition is a type of boundary condition that specifies the
value of ¢ at the boundary, i.e.,

d)b - qsspecified (830)

8.3 Boundary Conditions 219

Fig. 8.3 Value specified

(6%)
boundary condition ‘ b

|
T
N |
O O
NW S"'I\
SW
O <= () g
w C b b
@, = ¢xpeciﬁezl
bs,
O O
SW S
For this case
FluxT, = T (V¢), - Sp
gl g, g (831)
lldcs|l
= FluxCppo + FluxV,
yielding
FluxCy, = FZ’gDiﬁ”b =ay (8.32)
FluxVy, = —T)gDiffy, = —apb,
with
S
¢Diff, = d_cbb (8.33)

Thus for element C shown in Fig. 8.3 the ap coefficient is zero reducing the
discretized equation to

acc +awdy + andy + aspg = be (8.34)

aw = FluxF,, = —FfngiﬁCw
ay = FluxF, = —T%gDiff, (8.35)
as = FluxF, = —rf’gDijfs

ac = FluxCj, + Z FluxCy = FluxCp + (FluxC,, + FluxC, + FluxCsy)
Frb(C)

220 8 Spatial Discretization: The Diffusion Term

and

be = Q¢Ve — | FlxVy + Y FluxV; (8.36)
fnb(c)

The following important observations can be made about the discretized
boundary equation:

1. The coefficient a;, is larger than other neighbor coefficients because b is closer to
C and consequently has a more important effect on ¢c.
2. The coefficient ac is still the sum of all neighboring coefficients including a,,.

This means that for the boundary element > |ar|/|ac|<1 giving the
F~NB(C)

second necessary condition to satisfy the Scarborough criterion, thus guaran-
teeing, at any one iteration, the convergence of the linear system of equations
via an iterative solution method.

3. The ay¢;, product (=FluxV,) is now on the right hand side of the equation, i.e.,
part of b¢, because it contains no unknowns.

8.3.2 Von Neumann Boundary Condition

If the flux (or normal gradient to the face) of ¢ is specified at the boundary
(Fig. 8.4), then the boundary condition is denoted by a Neumann boundary con-
dition. In this case the specified flux is given by

—(TVe), -i=qs (8.37)

which is, in effect, the flux J,(f"D, since

P8, = —(TV¢), - ISslli = a5 1S

(8.38)
= FluxCpp + FluxV,
where now
FluxC, =0
FluxVb = qub (839)
= qr(Ay)c

Here the flux components are assumed to be positive when they act in the same
direction as the coordinate system used.

8.3 Boundary Conditions 221

Fig. 8.4 Flux specified (6x)
boundary condition ’

NW S,
S, \/\ N;V¢h Ny, =G gecifiead
O <A (@) — g
w C b b
bs,
O O
N4 N

Thus ¢g; may directly be included in Eq. (8.18) to yield the following discrete
equation for the boundary cell C:

ac(f)c + aw(f)W +aydy + as(f’s = bc (8-40)

where

ag =0

ay = FluxF,, = —Ff;gDiﬁfW
ay = FluxF, = —l",‘ngiﬁfn
as = FluxF; = —l"g’gDiﬁ”s

ac = Z FluxCy = —(aw + ay + as)
f~nb(C)

(8.41)

be = QfVe — | FluxV, + > FluxVy
f~nb(C)

The following important points can be made about the above discretized
equation:

1. A Von Neumann boundary condition does not result in a dominant ac
coefficient.

2. If both g}, and Sg are zero, then ¢ will be bounded by its neighbors. Otherwise,
¢ can exceed (or fall below) the neighbor values of ¢, which is admissible. If
¢ is temperature, for example, then g, represents the heat flux applied at the
boundary. Therefore if heat is added at the boundary, then the temperature in the
region close to the boundary is expected to be higher than that in the interior.

222 8 Spatial Discretization: The Diffusion Term

3. Once ¢ is computed, the boundary value ¢, may be computed using

4 — T} eDiffybc — q
’) Diff;

4. Finally the Von Neumann condition can be considered as a natural boundary
condition for the Finite Volume method since, for the case where the specified
flux is zero, nothing needs to be done in terms of discretization for the face,
while a specified value of zero (Dirichlet condition) will still require the dis-
cretization to be carried out.

(8.42)

8.3.3 Mixed Boundary Condition

The mixed boundary condition, schematically depicted in Fig. 8.5, refers to the
situation where information at the boundary is given via a convection transfer
coefficient (i) and a surrounding value for ¢(¢.,) as

Jf’D Sy = —(Fd’V(f))b 1Sy = —hoo(Poe — 1) (AY) (8.43)

which can be rewritten as

g5 (P2506) = halg - 40S) (3.44)
Xb
Fig. 8.5 Mixed type (5x)
boundary condition ‘
[
T
N |
O O
NW S"'I\
S, b
0O @
w C
NP ﬂh,, 9.
bs | ©
O O
SwW N

8.3 Boundary Conditions 223

from which an equation for ¢, is obtained as

. hoo b, + (r;f /5x,,) e »
T e+ (r;f/(sxb) (843

Substituting ¢, back in Eq. (8.43), the flux equation is transformed to

#D hoo (Ff/éxb)
IP 8y = — || (fa —)
froo (rb/ 5x”) (8.46)
Reg
= FluxCpp + FluxV),
where now
FluxCp = R, (8.47)

FluxVy = —Reg o

Using the flux term given by Eq. (8.47) in the discretized equation of the
boundary element C, the modified equation is found to be

acc +awdy +avdy + asps = be (8.48)
where
ag — 0
aw = FluxF,, = —T%gDiff,,
ay = FluxF, = —ngDiﬁ‘,,
as = FluxF, = —Fg’gDiﬁ’s

ac = FluxCy + Z FluxCy = (FluxCp, + FluxC,, + FluxC,, + FluxCy)
f~nb(C)

(8.49)

bc = Q?VC — | Fluxvy, + Z FluxV;
f=nb(C)

8.3.4 Symmetry Boundary Condition

Along a symmetry boundary the normal flux to the boundary of a scalar variable ¢
is zero. Therefore a symmetry boundary condition is equivalent to a Neumann
boundary condition with the value of the flux set to zero (i.e., FluxC;, = FluxV;, = 0).

224 8 Spatial Discretization: The Diffusion Term

Thus the modified equation along a symmetry boundary condition can be deduced
from Egs. (8.40) and (8.41) by setting g, to zero and is given by

acpc + awdw + andy + asps = be (8.50)
where

arp = 0
aw = FluxF,, = —l"fngiﬁ‘W
ay = FluxF, = —T'YgDiff,

as = FluxF, = —l"f’gDiﬁ"S (8.51)
ac = Z FluxCy = —(aw + ay + as)
f~nb(C)
be=0Ve— > FluxVy
f~nb(C)

8.4 The Interface Diffusivity

In the above discretized equation, the diffusion coefficients I'?, T'?, T'?, and T'? have
been used to represent the value of I ¢ at the e, w, n and s faces of the element,
respectively. When the diffusion coefficient I'? varies with position, its value will be
known at the cell centroids E, W, ... and so on. Then a prescription for evaluating the
interface value is needed in terms of values at these grid points. The following
discussion is, of course, not relevant to situations of uniform diffusion coefficient.

The discussion may become clearer if the energy equation is considered, in
which case the diffusion coefficient represents the conductivity of the material used
and ¢ denotes the temperature. Non-uniform conductivity occurs in
non-homogeneous materials and/or when the thermal conductivity is temperature
dependent. In the treatment of the general differential equation for ¢, the diffusion
coefficient I'* will be handled in the same way. Significant variations of I' ¢ are
frequently encountered for example, in turbulent flow, where I'? may stand for the
turbulent viscosity or the turbulent conductivity. Thus, a proper formulation for
non-uniform I'? is highly desirable.

A simple approach for calculating the interface conductivity is the linear profile
assumption for the variation of I'?, between point C and any of its neighbors. Thus,
along the east face the value of I ¢, is obtained as

Y= (1-g)Tl+gTIy (8.52)

8.4 The Interface Diffusivity 225

where the interpolation factor g, is a ratio in terms of distances between centroids
given by

dCe

=— 8.53
dCe + deE ()

8e
Hence for a Cartesian grid if the interface is midway between the grid points, g,

would be 0.5, and T'? would be the arithmetic mean of 1"2 and 1“2. Similar coef-
ficients can be defined for other faces as

 de
v = de + dWW
an
= 8.54
8n an + an ()
_ dCs
8= dCs + dsS

Therefore it is sufficient to calculate the coefficients of each surface of an ele-
ment only once. Moreover, the use of distances instead of volumes will lead to the
same interpolation factors as the grid here is Cartesian.

This basic approach leads to rather incorrect implications in some cases and cannot
accurately handles, for example, abrupt changes of conductivity that may occur in
composite materials. Fortunately, a much better alternative of comparable simplicity
is available. In developing this alternative, it is recognized that the local value of
conductivity at an interface is not of primary concern. Rather, the main objective is to
obtain a good representation of the diffusion flux J* at the interface [1].

For the one dimensional problem shown in Fig. 8.6, it is assumed that the
element C is composed of a material having a thermal conductivity F?, while
element E is made of a material of thermal conductivity r;@. For the non-homo-
geneous slab between points C and E, a steady one-dimensional analysis (without

sources) results in (the flux on either side of the interface e is supposed to be the
same)

o0 « _Pc—be b= bc—¢r _ ¢c— ¢k
S P v il s PR S A 8 (8.55)
re r? e r? e
C E c E e

(5x)w | (5x)e
w : l ie

w ! c ! E

[(Ax)c—“

Fig. 8.6 Interpolation of properties at element faces

226 8 Spatial Discretization: The Diffusion Term

Hence the effective conductivity for the slab is found to be

(09 _ (00, , (W)ep _ 1 _ (1—& ge>

(8.56)

re re ry re

e

+_
ry T¢

When the interface is halfway between C and E (g, = 0.5), Eq. (8.56) reduces to

2r8ry

ry=-—<ckt
e+

(8.57)

which is the harmonic mean of Tﬁ and F,(ﬁz, rather than the arithmetic mean.

It is important to note that the harmonic mean interpolation for discontinuous
diffusion coefficients is exact only for one-dimensional diffusion. Nevertheless, its
application for multi-dimensional situation has an important advantage. With this
type of interpolation, nothing special need to be done when treating conjugate
interfaces. Solid and fluid cells are simply treated as part of the same domain with
different diffusion coefficients stored at the cell centroids. By calculating the face
diffusivity as the harmonic-mean of the values at the centroids sharing the face, the
diffusion flux at the conjugate interface is correctly computed.

Example 1

The heat conduction in the two-dimensional rectangular domain composed of
two materials shown in Fig. 8.7 is governed by the following differential
equation:

V- (kVT) =0

where T represents temperature. For the thermal conductivities (k) and
boundary conditions displayed in the figure:

(a) Derive the algebraic equations for all the elements shown in the figure.

(b) Using the Gauss-Seidel iterative method discussed in Chap. 4, solve the
system of equations obtained and compute the cell values of T.

(c) Compute the values of T at the bottom, right, and top boundaries.

(d) Compute the net heat transfer through the top, bottom, and left
boundaries and check that energy conservation is satisfied.

8.4 The Interface Diffusivity 227

T =300K
h_=20w/m’K

H
Il
S
>
o
O\I
OOO
0)
O
o=
(Oa]
O

i/
o
(o)
N
(@)
(O]
(o)
o
N
E>'<-

Insulated

ﬂ_

10 I /A 12
0.1 0.2 / 0.3
Insulated<— | —— Uniform fluxgq, =100w/ m* (Length in m)

L.

Fig. 8.7 Conduction heat transfer in a two dimensional rectangular domain

Solution
The first step is to determine the geometric quantities that are needed in the
solution. The coordinates of the various nodes are found to be

Xo1 = X0 =X19 =0 Yo=Y =yi2=0
Xio=x1 =x4 =x7 =x18 =005 yy =y =y =y3 =y13=0.05
X1 =Xy =x5 =x3 =x17 =02y =ys =y5 =ys = yisa = 0.15
X12 =X3 =X¢ = X9 = Xx16 = 0.45 yj9 =y7 =y8 =y9 = y15 = 0.25
X13 = X14 = x15 = 0.6 Yis = Y17 = Y16 = 0.3

The distance between nodes are computed as

0Xz1—1 = Ox0—4 = 0x19_7 = 0.05 dyj0—1 = dy11—2 = dy1o—3 = 0.05
5)61,2 = 5)64,5 = 5)67,3 =0.15 5y1,4 = 5y2,5 = 5)’376 =0.1
5)62,3 = 5)65,6 = 5)6879 =0.25 5)74,7 = 5))5,3 e 5}’679 =0.1
0x3-13 = 0X6—14 = 0X9—15 = 0.15 Oy7-18 = dys—17 = dy9_16 = 0.05

228 8 Spatial Discretization: The Diffusion Term

The size of the elements are given by
A)C1:A)C4=A)C7:0.1 Ayleyzsz3:O.l
A)CQZAX5:AX8:0.2 Ay4:Ay5=Ay6:O.1
A)C3=AX6:AX9:0.3 Ay7=Ayg=Ay9:0.1

The computed volumes of the various cells are obtained as

Vi=Va=V;=001 V,=V5=V3=0.02 V3=Vs=Vy=0.03

The interpolation factors needed to find values at element faces are cal-
culated as

(8e)1 = (8e)4= (8¢); = 7 ‘j: 7 0_010'310.02 =0.333
(62 = (8)5= (8)s = 72 = 550 003 =
(&)1 = (&n)o= (&) = 37 ‘i Vi o.o1oflo.m =05
(8n)s = (gn)s= (gn)s Vo 0.01 0.5

“Vio+Vis 0014001
The thermal conductivity values over the domain are given by

ki = ks =k = kio = ka1 = koo = k1o = kg = 107>
ky=ky =ks = ke = ks = ko = ki1 = ko = ki3 = kis = kis = k16 = ki7 = 107

while values at the element faces are found to be

kiky 3 1073 x 102
[1— (ge)i]ki + (ge) ke (1 —0.333) x 1073 +0.333 x 10~2
ki =kss =k_g =3 x 107 ks =ks7 =107 ko5 = k_¢ = ks_g = kg_o = 10”

kip = ~3x1073

Using the above values, the discretized algebraic equations for all elements
are derived next.

Element #1

The needed diffusion terms are calculated as

. Ayl 0.1 . Ayl 0.1
Diff, — — " _ 0667 gDiff, = — 9
&Diffe = 5 = =015 Dl = 5 = 005

Ax; 0.1
Diff, = —L _ 2" _
&Diff oy1—4 0.1

8.4 The Interface Diffusivity 229

The interface conductivities are
ke=kio=3x10" k,=k_4=10"3 k, =ky = 1073
The general form of the equation is written as
acT) + agT) + ayTy = be
where

ag = FluxF, = —k,gDiff, = —3 x 1073 x 0.667 = —0.002
ay = FluxF, = —k,gDiff, = —1073 x 1 = —0.001

The west and south coefficients do not appear in the equation as their
influence is integrated through the boundary conditions as

FluxC,, = k,gDiff,, = 107> x 2 = 0.002
FluxV, =0
FluxV,, = —ky,gDiff,,Try = —1073 x 2 x 320 = —0.64

The main coefficient and source term can now be calculated and are given by

ac = FLuxC, + FLuxC, + FLuxC,, = 0.002 + 0.001 + 0.002 = 0.005
bc = —FluxVs — FluxV,, = 0+ 0.64 = 0.64

Substituting, the discretized algebraic equation is obtained as
0.0057; — 0.0027, — 0.00174 = 0.64

Element #2
The needed diffusion terms are calculated as

Ayz 0.1 Ayg 0.1

Diff, — =——=04 gDiff, = =——=0.667
& lﬁce 5)62,3 0.25 & lﬁc 5)(1,2 15
Ax; 0.2
D' n = = = 2
&Diff oyr—s 0.1

The interface conductivities are

ke=ky 3=10> k, =k 5s=10> k, =k ,=3x107?

230 8 Spatial Discretization: The Diffusion Term

The general form of the equation is written as
acT, +agTs + awTy + ayTs = bc

where

ag = FluxF, = —k,gDiff, = —10% x 0.4 = —40
ay = FluxF,, = —k,gDiff,, = =3 x 107> x 0.667 = —0.002
ay = FluxF, = —k,gDiff, = —10* x 2 = —200

The south coefficient does not appear in the equation as its influence is
integrated through the boundary conditions as

FluxVs = qpj - S1 = gpj - (—Ax2j) = —100 x 0.2 = —20

The main coefficient and source term can now be calculated and are given
by

ac = FLuxC, + FLuxC, + FLuxC,, = 40 + 0.002 + 200 = 240.002
bc = —FluxV, = 20
Substituting, the discretized algebraic equation is obtained as

240.0027, — 4073 — 0.0027; — 20075 = 20

Element #3
The needed diffusion terms are calculated as

. Ay3 0.1 . A)C3 0.3
Diff,, = — " _04 gDiff, = 27
8D = = 025 8Difn = 5> .

The interface conductivities are
ky, =ky 3 =10 k, =ks_¢ = 10?
The general form of the equation is written as
acT; + awT, + ayTe = be
where

aw = FluxF,, = —k,gDiff,, = —10% x 0.4 = —40
ay = FluxF, = —k,gDiff, = —10* x 3 = —300

8.4 The Interface Diffusivity 231

The east and south coefficients do not appear in the equation as their
influence is integrated through the boundary conditions as

FluxV, =0
FluxVs = qpj - S1 = qpj - (—Ax3j) = —100 x 0.3 = =30

The main coefficient and source term can now be calculated and are given
by

ac = FLuxC,, + FLuxC, = 40 + 300 = 340
bc = —FluxVg — FluxV, = 30 + 0 = 30

Substituting, the discretized algebraic equation is obtained as
34075 — 40T, — 30076 = 30

Element #4
The needed diffusion terms are calculated as

=}

Ayy

. .1 . Ay4 0.1
Diff, = =——=0.667 gDiff,, = =—=2
D = 5 T 015 gD = 5 T 005
AX4 0.1 A)C4 0.1
D' n = = — = 1 D' = ———__= — 1
& lﬁ(‘ 5))4,7 0.1 & lﬁ(s 5}71,4 0.1

The interface conductivities are

ko = k45 =3 % 103 ky, = koo = 103 k, = k47 = 103 ks = ki_4 = 103

The general form of the equation is written as
acTy + agTs + ayT; + asTy, = be
where

ag = FluxF, = —k,gDiff, = —3 x 107 x 0.667 = —0.002
ay = FluxF, = —k,gDiff, = —107 x 1 = —0.001
ag = FluxFy = —k,gDiff, = —1073 x 1 = —0.001

232 8 Spatial Discretization: The Diffusion Term

The west coefficient does not appear in the equation as its influence is
integrated through the boundary condition as

FluxC,, = k,gDiff,, = 1073 x 2 = 0.002
FluxV,, = —k,gDiff,, Tro = —1072 x 2 x 320 = —0.64

The main coefficient and source term can now be calculated and are given
by

ac = FLuxC, + FLuxC,, + FLuxC,, + FLuxC;
= 0.002 + 0.002 + 0.001 + 0.001 = 0.006
bc = —FluxV,, = 0.64

Substituting, the discretized algebraic equation is obtained as

0.00674 — 0.00275 — 0.00177 — 0.0017; = 0.64

Element #5
The needed diffusion terms are calculated as
D, 82—2_20'4 D w = :—:0.667
8D = 5 = 025 gD = S = 015
. 5 0.2 . A)Cs 0.2
D n:—:—:2 D S:—:_:2
& U? 5y5,3 0.1 & lﬁf 5)’275 0.1

The interface conductivities are

k, = ks_¢ = 102 ky, =ks 5 =3 X 103 k, = ks_g = 102 ky = ko5 = 102

The general form of the equation is written as
acTs + agTs + awTy + ayTy + asTr, = be
where

ag = FluxF, = —k.gDiff, = —10% x 0.4 = —40
ay = FluxF,, = —k,gDiff,, = —3 x 107 x 0.667 = —0.002
ay = FluxF, = —k,gDiff, = —10> x 2 = —200
as = FluxF, = —kygDiff; = —10* x 2 = —200

8.4 The Interface Diffusivity 233

All coefficients appear in the equation as this is an internal element. The
main coefficient and source term are calculated as

ac = FLuxC, 4+ FLuxC,, + FLuxC, + FLuxC;
=40 + 0.002 + 200 + 200 = 440.002
bc=0
Substituting, the discretized algebraic equation is obtained as

440.00275s — 40T — 0.0027 — 20073 — 2007, =0

Element #6
The needed diffusion terms are calculated as

. Ayg 0.1 . Axg 0.3 . Axg 0.3
Diffy = —20 — 2 _ 04 gDiff, = —2 — 22 _3 eDiff, — — 2
8Dy = 5 =025 8D = 5 =01 8D = 5 = 01

The interface conductivities are
ky =ks ¢ =10 k, =ks o= 10> Kk, =ks ¢ = 107
The general form of the equation is written as
acTe + awTs + ayTy + asT; = be
where

aw = FluxF,, = —k,gDiff,, = —10% x 0.4 = —40
ay = FluxF, = —k,gDiff,, = —10% x 3 = —300
as = FluxF; = —k;gDiff; = —10% x 3 = =300
The east coefficient does not appear in the equation as its represents a zero

flux boundary condition. Moreover the main coefficient and source term are
given by

ac = FLuxC,, + FLuxC, + FLuxC,
=40 + 300 + 300 = 640
bc = FLuxV, =0

Substituting, the discretized algebraic equation is obtained as

640T, — 40T — 300Ty — 30075 = 0

234 8 Spatial Discretization: The Diffusion Term

Element #7
The needed diffusion terms are calculated as

Ay; 0.1 A 0.1
eDiff, = —21 = "~ —0.667 gDiffy = > =

A)C7
= =7 Dﬁ‘ = —=1
5-’57—8 0.15 5)619,7 0.05 ALl

(5)14,7 B 0.1

The interface conductivities are
ke =k g =3x1073 k,=ko=1073 k,=kig=10" ky=ksy 7=1073
The general form of the equation is written as

acT; + agTg + asTy = bc

where

ag = FluxF, = —k.gDiff, = —3 x 1073 x 0.667 = —0.002
as = FluxFy; = —k,gDiff, = —107% x 1 = —0.001

The west and north coefficients do not appear in the equation as their
influence is integrated through the boundary conditions as

hoo (kig/0y7-18) Aps — 20(1073/0.05)

Re — = @ 7
T hoo + (kis/Oy1-18) | 20+ 10-3/0.05

0.1 =0.001998

FluxC,, = k,gDiff, = 1073 x 2 = 0.002 FluxV,, = —k,gDiff,,Ti9 = —0.64
FluxC, = R., = 0.001998 FluxV, = —R,yTs, = —0.5994

The main coefficient and source term can now be calculated and are given by

ac = FLuxC, + FLuxC,, + FLuxC,, + FLuxC
= 0.002 + 0.002 + 0.001998 + 0.001 = 0.006998
bc = —FLuxV,, — FLuxV, = 0.64 4+ 0.5994 = 1.2394

Substituting, the discretized algebraic equation is obtained as
0.006998T7 — 0.00275 — 0.0017, = 1.2394

Element #8
The needed diffusion terms are calculated as

Diff, — — 1 _04 gDiff, — — 0667 gDiff,— s
e e T DI = 5 =015 8D = 5 =01

2

8.4 The Interface Diffusivity 235

The interface conductivities are

ke =ks_ o =10* k, =k; s =3x 1073 k, =ki7 =10 k;=ks_g= 10?

The general form of the equation is written as
acTg + agTo + awT; + asTs = be
where

ag = FluxF, = —k,gDiff, = —10% x 0.4 = —40
aw = FluxF,, = —k,gDiff,, = —3 x 1073 x 0.667 = —0.002
as = FluxF; = —kgDiff, = —10% x 2 = —200

The north coefficient does not appear in the equation as its influence is
integrated through the boundary condition as

hoo (ki7/8ys—17) 20(10%/0.05)
Reg = Axg = 0.2 = 3.9604
9 o + (ki7/0ys_17) © 20 + 102/0.05 ?

FluxC, = Roy = 3.9604 FluxV, = —R,, T, = —1188.12

The main coefficient and source term can now be calculated and are given
by

ac = FLuxC, + FLuxC,, + FLuxC,, + FLuxC;
=40 + 0.002 + 3.9604 + 200 = 243.9624
bc = —FluxV,, = 1188.12

Substituting, the discretized algebraic equation is obtained as
243.9624Ts — 40Ty — 0.00277 — 20075 = 1188.12

Element #9
The needed diffusion terms are calculated as

. Ayg 0.1 . AX9 0.3
Diff, = — " —04 gDiff, = = =3
8D = 5 = 025 8D =5 = 01

8 Spatial Discretization: The Diffusion Term

236
The interface conductivities are
ky =kg_o =10 k, =kig = 10> k= ks_o = 102
The general form of the equation is written as
acTy + awTg + asTe = be
where

aw = FluxF,, = —k,gDiff,, = —10% x 0.4 = —40
as = FluxF, = —k,gDiff, = —10% x 3 = —300

The east and north coefficients do not appear in the equation as their
influence is integrated through the boundary conditions as

hoo (ki6/0y9—16) 20(10%/0.05)
g = Axy = 0.3 = 5.9406
T hoo + (kis/dyo-16) 20+ 102/0.05

FluxC,, = R,y = 5.9406
FluxV, = —R,yTs, = —1782.18
FluxC, = FluxV, =0

The main coefficient and source term can now be calculated and are given
by

ac = FLuxC,, + FLuxC, + FLuxC, = 40 + 5.9406 + 300 = 345.9406
bc = —FLuxV, = 1782.18

Substituting, the discretized algebraic equation is obtained as

345.9406Ty — 40T5 — 3007 = 1782.18

Summary of equations
The discretized algebraic equations are given by

0.0057; — 0.0027; — 0.0017, = 0.64

240.0027, — 4073 — 0.0027, — 20075 = 20

8.4 The Interface Diffusivity 237

34075 — 40T, — 30076 = 30
0.00674 — 0.00275 — 0.00177 — 0.0017; = 0.64
440.0027s — 40T — 0.0027; — 20073 — 2007, =0
6407 — 4075 — 30079 — 30075 = 0
0.006998T7 — 0.00275 — 0.00174 = 1.2394
243.9624T3 — 40Ty — 0.00277 — 20075 = 1188.12

345.9406Ty — 40Ts — 3007 = 1782.18

Solution of Equations
To solve the above system of equations via the Gauss-Seidel method, the
equations are rearranged into

Ty = (0.002T; + 0.0017; + 0.64)/0.005

Ty = (40T + 0.002T; + 20075 + 20)/240.002

Ts = (40T, + 300T¢ + 30)/340

T, = (0.002T5 + 0.001T; + 0.001T; + 0.64)/0.006
Ts = (40T, + 0.002T; + 200y + 20075)/440.002

Te = (40T + 300Ty + 3007T3) /640

Ty = (0.002Ts + 0.001T, + 1.2394)/0.006998

Tg = (40T + 0.002T; + 20075 + 1188.12)/243.9624
To = (40T; + 300T¢ + 1782.18)/345.9406

The solution is found iteratively with the latest available values used
during the solution process. Starting with a uniform initial guess of 300 K,
Table 8.1 shows the results during the first two iterations along with the final
converged solution.

238 8 Spatial Discretization: The Diffusion Term

Table 8.1 Summary of results obtained using the Gauss-Seidel iterative method

Iter T, T, Ty T Ts i T, T i
0 300 300 300 300 300 300 300 300 300

1 308.000 | 300.083 |300.098 |308.000 |300.037 |300.048 | 306.859 |300.031 |300.045
2 309.633 | 300.131 |300.146 |309.428 |300.078 |300.094 |307.072 | 300.071 |300.090
Solution | 312.490 |305.254 |305.254 |311.944 |305.154 |305.154 |308.867 | 305.054 |305.054

Values of T along the bottom boundary
These can be calculated from the specified boundary condition, in this case
a specified flux, as

T
bqu:>Tb=Tc+@(

oT)
= b yc — Y
Jy yc — kp

Using the above equation, the temperatures are calculated as

T = Ty = 312.490
qb 100
ki1 100

100
Z_lbz (y3 — y12) = 305.254 + —(0.05 — 0) = 305.304

T, =T;+ 100

Values of T along the right boundary
The above equation with the heat flux set to zero can be used to calculate
the temperature along the zero flux boundary, leading to

oT
—kb—:0=>Tb:TC
dy

The boundary temperatures are therefore given by
Ti3 =T5; =305254 T4 =Te=305.154 T5 =Ty = 305.054

Values of T along the top boundary
Using Eq. (8.45) the temperature values along the top boundary are
computed as

T + (kig/y7-18)T7 20 x 300 + (1072 /0.05)308.867

Tis = - = 300.009
B hy + (kig/0yr_1s) 20 + (10-3/0.05)
2
ry 2 T (ki /Oys 1)Ts _ 20 x 300 + (10°/0.05)305.054 _ 200
hy + (k17/8ys-17) 20 + (10%/0.05)
hyToo + (k16/3y9-16)To 20 x 300 + (102/0.05)305.054
T = Coookia i) 0956 DI 20 XS 005070 00) — 305.004

hy + (kis/Oyo-16) 20 + (102/0.05)

8.4 The Interface Diffusivity 239

Total heat transfer along the left boundary
The total heat transfer along the west boundary is given by

OLefi = q21Ay21 + g20Ay20 + g19Ay19

4 T, — Ty Ty — T7; — Ty
=k

T
S Ay + koo 22 Ay + ki ———2 Ayio
0X21-1 0X20—4 0X19-7
102 % 0.1
= ﬁ [312.49 + 311.944 + 308.867 — 3 x 320]

= —0.053398 W

Total heat transfer along the top boundary
Along the top boundary, the total heat transfer is computed as

Oiop = q13Ax13 + q17Ax17 + q16A%16
= hoo[Ax18(T18 — Too) + Ax17(T17 — Too) + Ax16(T16 — Too)]
— 20[0.1(300.009 — 300) + 0.2(305.004 — 300) + 0.3(305.004 — 300)]
= 50.058 W

Total heat transfer along the bottom boundary
Knowing the heat flux, the total amount of heat transfer is found as

OBortom = —qpAy = —100 x 0.5 = =50 W

Check for energy conservation
For conservation, the sum of heat entering and leaving the domain should
be equal to zero. The sum is computed as

Ortop + OLefi + OBottom = 50.058 — 0.053398 — 50 = 0.004602 ~ 0

The slight deviation from zero is due to the use of a limited number of
digits during computations.

8.5 Non-Cartesian Orthogonal Grids

Let us now consider the case of an orthogonal grid that is not oriented along the
x and y axes. As shown in Fig. 8.8, such a grid can be obtained by rotating the
Cartesian grid of Fig. 8.1 by some angle.

The discretized equation for this grid should be exactly the same as the one
obtained for the Cartesian grid. Moreover for similar boundary conditions, the same
solution should be obtained.

240 8 Spatial Discretization: The Diffusion Term

Se=ISelln [ISell =(a)
Sw=-Sc [I8ull =(ay),

Fig. 8.8 Example of non-Cartesian orthogonal grids

Consider again the steady state conduction Eq. (8.1)
V- JP = ? (8.58)

As before its discretized form is given by

Y —(r've), -8 = Q¢Ve (8.59)

f~nb(C)

Considering the discretization along face e, the following is obtained:

1205, = 12w ms. = -t (3 s, (8:60)
on/,
where now
(Vo-m),= (‘ff) (8:61)

is the gradient of ¢ at face e along the n direction. Assuming again a linear profile
for ¢ along the n coordinate axis, the gradient can be written as

99\ _ ¢r— ¢c
(%> - (8.62)

The discretization of other terms proceeds as for a Cartesian grid, leading to the
same final discretization equation.

8.6 Non-orthogonal Unstructured Grid 241
8.6 Non-orthogonal Unstructured Grid
8.6.1 Non-orthogonality

In the above configurations, the fluxes were normal to the face. In general, struc-
tured curvilinear grids and unstructured grids are non-orthogonal [2—5].Therefore
the surface vector S; and the vector CF joining the centroids of the elements
straddling the interface are not collinear (see Fig. 8.9). In this case the gradient
normal to the surface cannot be written as a function of ¢ and ¢, as it has a
component in the direction perpendicular to CF.

Thus while on orthogonal grids the gradient in the direction normal to the
interface yields

_(08\ _ de—de _br—9
o= () ~ e = (563

because CF and n (the unit vector normal to the surface) are aligned, on
non-orthogonal grids [6, 7], the gradient direction that yields an expression
involving ¢ and ¢, will have to be along the line joining the two points C and F.

If e represents the unit vector along the direction defined by the line connecting
nodes C and F then

rr —I'c der
e= € _°CF 8.64
ler— vl der (8.64)

Therefore, the gradient in the e direction can be written as

a<f>) _br—dc dr—de
f

(Vo-0= (Gr) == de P (8.65)

Thus to achieve the linearization of the flux in non-orthogonal grids, the surface
vector S, should be written as the sum of two vectors E;and T}, i.e.,

Sf = Ef + Tf (8.66)

Fig. 8.9 An element in a
non-orthogonal mesh system

242 8 Spatial Discretization: The Diffusion Term

with E; being in the CF direction to enable writing part of the diffusion flux as a
function of the nodal values ¢ and @¢ such that
Efe

(Vo) S = (Vo) B+ (V)T

orthogonal—like contribution — non—orthogonal like contribution
9¢
=E (5 +(Ve), - Ty
f
d)F — ¢C

= EfTFJF (Vo) - T¢

(8.67)

The first term on the right hand side of Eq. (8.67) represents a contribution
similar to the contribution on orthogonal grids, i.e., involving ¢ and ¢, while the
second term on the right hand side is called cross-diffusion or non-orthogonal
diffusion [8] and is due to the non-orthogonality of the grid. Different options for
the decomposition of S; are available and are discussed next.

8.6.2 Minimum Correction Approach

As shown in Fig. 8.10, the decomposition of S;is done in such a way as to keep the
non-orthogonal correction in Eq. (8.67) as small as possible, by making E;and T,
orthogonal. As the non-orthogonality increases, the contribution to the diffusion
flux from ¢r and ¢ decreases. In this case the vector E;is computed as

E; = (e-Sr)e = (SpcosO)e (8.68)

Fig. 8.10 Decomposing S,
via the minimum correction
approach

8.6 Non-orthogonal Unstructured Grid 243

8.6.3 Orthogonal Correction Approach

This approach, schematically depicted in Fig. 8.11, keeps the contribution of the
term involving ¢r and ¢¢ the same as on an orthogonal mesh irrespective of the
degree of grid non-orthogonality. To achieve this, Ef is defined as

Ef = Sfe (869)

Fig. 8.11 Decomposing Sy
via the orthogonal correction
approach

8.6.4 Over-Relaxed Approach

In this approach, the importance of the term involving ¢ and ¢c is forced to
increase as grid non-orthogonality increases. As shown in Fig. 8.12, this is achieved
by selecting T, to be normal to S, Mathematically E,is computed as

S i Sr - S
E p— = = .
! <cos (9) ¢ <Sf cos0)¢ " e Sr ¢ (8.70)

To summarize, the diffusion flux at an element face of a non-orthogonal grid
cannot be written solely in terms of the values at the nodes straddling the face.

Fig. 8.12 Decomposing Sy
via the over-relaxed approach

244 8 Spatial Discretization: The Diffusion Term

A term that accounts for non-orthogonality has to be added. This term is denoted in
the literature by “cross diffusion” and is computed as

(Vo) - Ty = (Vo) - (Sy — E)
(V@) - (n—cosOe)Sy minimum correction
(V¢)f - (n—e)Sy normal correction (8.71)

(Vo), - (n _

N —relaxed
cosOe> ¢ over—relaxe

For orthogonal meshes n and e are collinear, the angle 8 shown in Fig. 8.9 is
zero, and the cross-diffusion term is zero. When cross diffusion is not zero, and
since it cannot be written as a function of ¢ and ¢, it is added as a source term in
the element algebraic equation.

All approaches described above are correct and satisfy Eq. (8.59). The difference
between these methods is in their accuracy and stability on non-orthogonal meshes.
The over-relaxed approach has been found to be the most stable even when the grid
is highly non-orthogonal. Nevertheless, the final general form of the discretized
diffusion term is the same for all three approximations.

8.6.5 Treatment of the Cross-Diffusion Term

The cross diffusion term cannot be expressed in terms of nodal values. Due to this
fact, it is treated in a deferred correction manner by computing its value using the
current gradient field and adding it as a source term on the right hand side of the
algebraic equation. Gradients are computed at the main grid points, as described
next, and values at the interfaces are obtained by interpolation.

8.6.6 Gradient Computation

In discretizing the diffusion term over a one-dimensional or orthogonal
multi-dimensional computational domain, it was shown that the gradient of ¢ can be
explicitly written as a function of the cell nodal ¢ values. In non-orthogonal
domains however, the computation of the diffusion flux was found to be more
complex. The non-orthogonal component of the gradient could not be linearized
and written as a function of nodal values, but rather had to be moved to the right
hand side and evaluated explicitly. This means that the gradient has to be evaluated
in order to incorporate its non-orthogonal contribution in the discretization equa-
tion. One widely used approach for computing the gradient at a cell is the

8.6 Non-orthogonal Unstructured Grid 245

Green-Gauss or gradient theorem, which states that for any closed volume V,
surrounded by a surface 9V the following holds:

/v¢dv: f{ ¢ dS (8.72)
\%4 ov

where dS is the outward pointing incremental surface vector. In order to obtain a
discrete version of this equation, the mean value theorem is applied according to
which the integral on the left hand side of Eq. (8.72) and the average gradient over
the volume V are related by

V_qSV:/VquV (8.73)
\4

Combining Egs. (8.72) and (8.73), the average gradient over element C shown in
Fig. 8.9 is found to be

Voo=y b 48 (8.74)

Ve

Next the integral over a cell face is approximated by the face centroid value
times the face area. Thus V¢, or simply Vg, is computed as

Voe=i O 48 (8.75)

€ frnb(C)

The gradient at the face of an element can then be obtained as the weighted
average of the gradients at the centroids straddling the interface and is given by

Vo, =gcVoc+grVor (8.76)

where gc and g are geometric interpolation factors related to the position of the
element face f with respect to the nodes C and F.
8.6.7 Algebraic Equation for Non-orthogonal Meshes

Splitting the surface vector Sy into the two E, and T, vectors and substituting its
equivalent expression into the semi-discretized equation of the diffusion fluxes, yield

246 8 Spatial Discretization: The Diffusion Term

S s) = 3 (-0Ve), - (& +)

Frnb(C) fronb(C)
_ Z (—(F"’V(b)f . Ef> + Z (—(F"’V‘/’)f . Tf>
f~nb(C) f~nb(C)
Orthogonal Linearizeable Part Non—Orthogonal Non—Linearizeable Part
_ Z —l"d’E (r — ¢C)) Z —(F¢V</>).~T
f o
frnb(C) (der f~nb<C>()
= 3 TleDiffi(be — ¢r) + > (—(F¢V¢)f . Tf)
frnb(C) f~nb(C)
= Z FluxCs | ¢ + Z (Flufo(ﬁF) + Z (Flufo)
f~nb(C) f~nb(C) f~nb(C)
(8.77)
where again gDiff; is a geometric diffusion coefficient defined as
. E
gDiff; = d—f (8.78)
CF

Using the above form of the diffusion fluxes and expanding, the final form of the
discretized diffusion equation over unstructured/structured non-orthogonal grid is
obtained as

ache+ D ardp = bc (8.79)

F~NB(C)

where

ar = FluxFy = —l"j?gDiﬁc

ac = Z FluxCy = — Z FluxFy = Z gDiﬁ_Cf

frnb(C) frnb(C) frnb(C (8.80)
be=0LVe— 3 (FluxVy) = QfVe + Z ((r've),)
f~nb(C) f~nb(C

Note the change in sign of the non-orthogonal term on the right hand side of the
equation.

Example 2

For the polygonal element C and its neighbor F shown in Fig. 8.13, the
solution at any point satisfies ¢ = ¥+ y* + X372 If the volume of cell C is
Ve = 8.625 calculate the following:

8.6 Non-orthogonal Unstructured Grid 247

. The gradient of ¢ at (i.e., Vdc) both numerically and analytically.

. The analytical value of V.

3. Interpolate between the numerical value of Voc and the analytical value
of Vér to find an approximate value for NV ¢y,. Compare with the ana-
lytical value of V ¢y, .

4. Express Ny, + Sy, in terms of §c and ¢r using

N =

(@) The minimum correction approach
(b) The orthogonal correction approach
(c) The over-relaxed approach

(0.5.3)

i

Fig. 8.13 A polygonal element with its geometric entities

Solution
1. Knowing that ¢ = x* + y* + x?y* at any point in the domain, the value of the

gradient at any point can be calculated as

0 0
d)i 4 —¢J = (2x+ nyz)i + (2y+ 2yx2)j

248 8 Spatial Discretization: The Diffusion Term

Therefore the analytical value of V¢ is given by
Voo = 17.51 + 16.25j

The numerical value of V¢@c can be computed using

1
Ve == Yo

f~nb(C)

Therefore the values of ¢ and Sy are required. Using the given analytical
expression, the values of ¢ at the various locations are found as

¢ = 1.75% + 2% + 1.75% x 2* = 19.3125

¢p = 425 +3.5% +4.25% x 3.5 = 251.578125

¢, = 3% 4275 + 3% x 2.75 = 84.625

¢, = 1.5 +3.57 + 1.5° x 3.5” = 42.0625

¢y, = 0.257 +2% +0.25% x 2° = 43125

b, =1°+05 +1°x 0.5 =15

s, =275 +0.75% + 2.75> x 0.75” = 12.37890625

The surface vector is given by
Sf = :l:(Ayl - A)Cj)
where the correct sign is chosen such that the vector is pointing outward. This
is done by computing the surface vector as Sy= Ayi — Axj and then performing
the dot product of Sy with the distance vector d¢ (pointing from C to F). If the
product is positive then the direction of Sy is correct. If the product is negative

then the sign of S, should be reversed, as shown below.
The distance vectors are computed as

dey, = (3 — 1.75)i + (2.75 — 2)j = 1.25i 4 0.75)
dep, = (1.5 — 1.75)i+ (3.5 — 2)j = —0.25i + 1.5j
der, = (025 - 1.75)i+ (2 —-2)j = —1.5i

dey, = (1 — 1.75)i+ (0.5 — 2)j = —0.75i — 1.5

8.6 Non-orthogonal Unstructured Grid 249

der, = (275 - 1.75)i+ (0.75 — 2)j =i — 1.25j
while the tentative surface vectors are given by

S, =@4-15i—-(25-35)j=25i+]

S, =4-3)i—-(25-05)j=i-2j

Sy, =3 —1)i—(0.5—-0)j=2i—0.5j

S, =(1-0)i—-(0-2)j=i+2j

(15— 0)i — (3.5 —2)j = 1.5i — 1.5

L
I

Performing the dot products, the obtained values are
Sp, -dey = (2,514) - (1.251 4 0.75j) = 3.875 > 0
Sy, -dep, = (i—2j) - (—0.251+ 1.5j) = —3.25<0
S, - depy, = (21 — 0.5§) - (—1.5i) = —3<0
Sy, -de, = (i+2j) - (—0.751 — 1.5j) = —=3.75<0
Sy, -depy = (1.51 — 1.5§) - (i— 1.25j) =3.375 >0
Therefore the correct values of the surface vectors should be

S, =25i+j S,=—i+2j S,=-2i+05j S,=—-i—2j S;=15i—15j

Thus, the numerical value of the gradient at C is obtained as

_ 1 [84.625(2.5i +j) 4 42.0625(—i + 2j) + 4.3125(—2i + 0.5j)
~ 8.625 +1.5(—i — 2j) + 12.37890625(1.5i — 1.5§)
=20.63111i + 17.31454;j

Véc

which is close to the analytical value.
2. The analytical value of V¢ is easily calculated as

Vo, = 112.625i + 133.4375)

250 8 Spatial Discretization: The Diffusion Term

3. The interpolated value of V¢, is obtained using

Vo, =8,Vor+ (1 —gi)Voc
where

dcy,

& = dcp, + dsr

Performing the calculations, the interpolation factor is found to be given by

dCf1 = \/()Cfl —XC)2—|-(yf1 — yc)2 = \/(3 — 1.75)2+(2.75 — 2)2 = 1.4577

di = \/(xp —)+ (r —)’ = \/(4.25 —3)24+(3.5 — 2.75)* = 1.4577
14577
T 14577 + 1.4577

& =05

leading to the following value for V¢, :
V¢ = 66.628055i + 75.37602)
The analytical value of V¢y, is easily obtained as
V¢, = 51.375i + 55j

Again values are close.
4. The general form of Véy, - S, is given by

(Pc — ¢r)
—Voyp, -8 = Ej S —Vo5, - Ty
non—orthogonal like

orthogonal—like i

contribution

with

der = (425 — 1.75)i+ (3.25 — 2)j = 2.5 + 1.5 = dcr = /2.5 + 1.5
—29155

The unit vector e; in the direction of d¢f is calculated using

d
e, = —~ = 0.8575i + 0.5145j
dcr

8.6 Non-orthogonal Unstructured Grid 251
(a) The minimum correction approach
Using this approach, the expression for E; is computed as
E; = (e -S;)e; = 2279 + 1.368j = E; = 2.658
The normal component is computed as
T, =Sy, — E; =0.221i - 0.368j = V¢, - T, = —13.014
The diffusion flux at the face becomes

—Vé;, - Sy = 0.9122(¢p¢ — ¢p) + 13.014

(b) The orthogonal correction approach
In this approach, the expression for Ey is computed as

E; = She; = 2.309 + 1.385) = E; = 2.693
The normal component is found to be
T; = 0.191i — 0.385j = V¢, - Ty, = —16.294
The diffusion flux at the face becomes
~Véy, - S; = 0.924(dpc — ¢F) + 16.294

(c) The over-relaxed approach
The expression for Es; is computed as

S-S
E, = L1 Zie — 2339 + 1.403j = E;, = 2.728
€ - Sfl

The normal component is found to be
T, = 0.161i — 0.403j = V¢, - T;, = —19.649
The diffusion flux at the face becomes

=V, - Sy = FluxCy, ¢ + FluxFy, o + FluxVy,
= 0.936(¢c — ¢r) +19.649

252 8 Spatial Discretization: The Diffusion Term

8.6.8 Boundary Conditions for Non-orthogonal Grids

The treatment of boundary conditions for non-orthogonal grids is similar to that for
orthogonal grids with some minor differences related to the non-orthogonal diffu-
sion contribution. This is outlined next.

8.6.8.1 Dirichlet Boundary Condition

For the case of a Dirichlet boundary condition, i.e., when ¢ is specified by the user
at the boundary as shown in Fig. 8.14, the boundary discretization proceeds as in
orthogonal-grids. However, there is a need now to account for the cross-diffusion,
which arises on boundary faces as on interior faces. This happens whenever the
surface vector is not collinear with the vector joining the centroids of the element
and boundary face. The diffusion flux along the boundary face is discretized as

3PSy =-T}(V$), Sy = —T}(Ve), (B, +Tp)
_ (@)Eb ~TY(V$), T (8.81)
Cb
= FluxCypp¢ + FluxV,,

where

FluxC), = F,‘ngiﬁ‘b

FluxVy, = —TgDiffy, — T3 (V), - Ty (8.82)
Ey
Diff, = —
gDiffy dos

Substituting into Eq. (8.79), the modified coefficients are obtained as

ap = FluxFy ac = Z FluxCr + FluxCy

fnb(C)
(8.83)
be = Q¢Ve — FluxVy — > FluxVy
frnb(C)

Fig. 8.14 Dirichlet boundary
for a non-orthogonal mesh

8.6 Non-orthogonal Unstructured Grid 253
8.6.8.2 Neumann Boundary Condition

The Neumann type condition for non-orthogonal grids follows that for orthogonal
grids. In this case the user-specified flux at the boundary is just added as a source

term as with orthogonal grid. The algebraic equation at the boundary is given by
Eq. (8.40) with the modified coefficients specified by Eq. (8.41).

8.6.8.3 Mixed Boundary Condition
For the mixed boundary condition case (Fig. 8.5), denoting the convection transfer

coefficient by he and the surrounding value of ¢ by ¢, the diffusion flux at the
boundary can be written as

JPP -8, = -1 <M>Eb ~T}(Ve), T

dcp (8.84)
= 7h00(¢oc - d)b)Sb
from which an equation for ¢, is obtained as
Ty ¢
hooSpPoe + dos e =T, (V), - Ts
= 8.85
d)h b, o FZSEb ()
ocob dCb
Substituting ¢;, back in Eq. (8.84), the flux equation is transformed to
I'E,
oo Sp—2
oD g _ _ " dey _ _ heoSpTH(V), - Ty
Jb TObh — ® (d)oc d)C))
Fh Eb F;, Eb
hooSp + hooSp + (8.86)
dcp cb
ap SZ).CD
= FluxCp¢p + FluxV,
where now
I'E,
hooSp = b
FluxCy, = 7FC£E
hooSp + 22
" e (8.87)
oo ST T
FluxV), = —FluxCpp, — —=> ;,(V;l;)b% b
hooSp + L=

dcp

254 8 Spatial Discretization: The Diffusion Term

and the modified coefficients for the boundary element are obtained as

E
ap = FluxFy — I";bd—f

cf

ac = FluxCj, + Z FluxCy (8.88)
f~nb(C) '

be = QfVe — FluxVy — > FluxV;

fr~nb(C)

8.7 Skewness

To evaluate many of the terms constituting the general discretized equation of a
quantity ¢, it is necessary to estimate its value at element faces. An estimated value
at the face should be the average value of the entire face. At different steps of the
discretization process, linear variation of variables between nodes is assumed. If
this is extended to variation of variables along the face, then the average value of
any variable ¢ should be found at the face centroid. The common practice is to use a
linear interpolation profile and to estimate the value at the face at the intersection
between the face and the line connecting the two nodes straddling the face. When
the grid is skewed the line does not necessarily pass through the centroid of the face
[9, 10]. An example is depicted in Fig. 8.15 where the intersection point of segment
[CF] with the face is at point, f’, which does not coincide with the face centroid, f.
To keep the overall accuracy of the discretization method second order, all face
integrations need to take place at point f. Thus a correction for the interpolated value
at f' is needed in order to get the value at f.

The skewness correction is derived by expressing the value of ¢ at fin terms of
its value and the value of its derivative at ' via a Taylor expansion such that

bp = bp + (V) - dry (8.89)

where dy is a vector from the intersection point f” to the face centre f.

Fig. 8.15 Non-conjunctional
elements

8.8 Anisotropic Diffusion 255

8.8 Anisotropic Diffusion

The diffusion equation presented so far assumed the material has no preferred
direction for transfer of ¢ with the same diffusion coefficient in all directions, i.e.,
the medium was assumed to be isotropic. For the case when the diffusion coefficient
of the medium is direction dependent, diffusion is said to be anisotropic [11-16]. As
mentioned in Chap. 3, some solids are anisotropic for which the semi-discretized
diffusion equation becomes

Z (— - V¢)f -8y = SLVe (8.90)
f~nb(C)

where k? is a second order symmetric tensor. Assuming a general three dimensional
situation, the term on the left hand side, through some mathematical manipulation
[17], can be rewritten as

2%
"(1!)1 "(1#2 “ibs g;c)
(—%?- V), - S =—| k) K3 ay - Sy (8.91)
Kl 7| 99
0z dy
Performing matrix multiplication, Eq. (8.91) becomes
0 09 009 99]
e P K?28_+K?38_z .
29 o 29
(_K¢>.v¢)f.sf:_ K2 B +K 228 +K 23 5 N (8.92)
06, 408, 4 00| L5
318 +K 328 tK 333 I,
Further manipulations yield
¢ ¢ ¢ S*
Kip Ky K3
op 0¢ O
R AL e
f Ox Oy 0z
f) : (8.93)
Ki3 K3 Ky | [S],

~(Vo), - [(&)" 8] = ~(V9), -8

Substituting Eq. (8.93) into Eq. (8.90), the new form of the diffusion equation
becomes

256 8 Spatial Discretization: The Diffusion Term

> (=Ve), - S, =0lve (8.94)

f~nb(C)

It is obvious that in this form the discretization procedure described above can be
applied by simply setting I'? to 1 and replacing S, by S}. Therefore the same code
can be used to solve isotropic and anisotropic diffusion problems.

8.9 Under-Relaxation of the Iterative Solution Process

For a general diffusion problem, '’ may be a function of the unknown dependent
variable ¢ and the grid may be highly non-orthogonal with a large cross diffusion
term, which is treated using a deferred correction approach. Therefore large vari-
ations in ¢ between iterations result in large source terms and large changes in the
coefficients, which may cause divergence of the iterative solution procedure. This
divergence is usually due to the non-linearity introduced by the coefficients and the
cross-diffusion term, which makes the source term highly affected by the current
solution field which is not yet converged. To promote convergence and stabilize the
iterative solution process, slowing down the changes in ¢ between iterations is
highly desirable and is enforced by a technique called under-relaxation. There are
many ways of introducing under-relaxation. One of the practices will be described
here, others in Chap. 14. Derivations will be performed on the general discretization
equation of the form

ac¢c + Z aFd)F = bc (8-95>
F~NB(C)

Equation (8.95) can be written as

- > ardp+bc
F~NB(C)

bc = ” (8.96)

Let ¢ represents the value of ¢c from the previous iteration. If ¢, is added to
and subtracted from the right hand side, then Eq. (8.96) becomes

- Z aF¢F+bC
F~NB(C)

b = ¢+ - ¢c (8.97)

ac

where the expression between the parentheses represents the change in ¢ produced
by the current iteration. This change can be modified by the introduction of a
relaxation factor /1¢, such that

8.9 Under-Relaxation of the Iterative Solution Process 257

— >, ardp+bc
« F~NB(C) ¥
be = i+ 20 — e (8.98)
ac
or
a 1—"a .
_$¢C + Z Cle’F =bc + (74,)C¢c (8-99>
A F~NB(C) A

At first, it should be noted that at convergence ¢¢ and ¢ become equal inde-
pendent of the value of relaxation factor used. This is indeed reflected by Eq. (8.98),
which shows that the converged value ¢ does satisfy the original equation
(Eq. 8.95). This property should be satisfied by any relaxation scheme.

Depending on the value of the relaxation factor A%, the equation may be either
under relaxed (i.e., 0 < < 1) or over-relaxed (i.e., 2> 1). In CFD applications,
under relaxation is usually used. A value of ¢ close to 1 implies little under
relaxation, while a value close to 0 produces heavy under relaxation effects with
very small changes in ¢ from iteration to iteration.

The optimum under relaxation factor is problem dependent and is not governed
by any general rule. The factors affecting A values include the type of problem
solved, the size of the system of equation (i.e., number of grid points in the domain),
the grid spacing and its expansion rate, and the adopted iterative method, among
others. Usually, values of 1’ are assigned based on experience or from preliminary
calculations. Moreover, it is not necessary to use the same under-relaxation value
throughout the computational domain and values may vary from iteration to
iteration.

Equation (8.99) can be recast into the form of Eq. (8.95), where now the central
coefficient a,. becomes

ac — S (8.100)
A
while the source term is added to produce a new term as
1— ;u(b ac %
bc <—bc+(T)(bC (8.101)

This method of relaxation plays an important role in stabilizing the solution of
non-linear problems.

258 8 Spatial Discretization: The Diffusion Term
8.10 Computational Pointers

8.10.1 uFVM

In uFVM the implementation of the diffusion term discretization for interior faces is
performed in function cfdAssembleDiffusionTermInterior, the core of which is
shown in Listing 8.1.

gamma_f = cfdInterpolateFromElementsToFaces ('Average', gamma) ;

gamma_ f [gamma_f (iFaces)];

geoDiff_f = [theMesh.faces(iFaces).geoDiff]"';

Sf = [theMesh.faces(iFaces) .Sf]"

Tf = [theMesh.faces(iFaces) .T]"';

iOwners = [theMesh.faces(iFaces) .1i0wner]"';

iNeighbours = [theMesh.faces (iFaces) .iNeighbour]';

theFluxes.FLUXC1f (iFaces,1l) = gamma_f .* gDiff f;

theFluxes.FLUXC2f (iFaces,1l) = -gamma_f .* gDiff_ f;

theFluxes.FLUXVf (iFaces,1) = gamma_f .* dot(grad_f(:,:)',TE(:,:)")";
theFluxes.FLUXTf (iFaces, 1) = theFluxes.FLUXCLf (iFaces) N
phi (iOwners) + theFluxes.FLUXC2f (iFaces) -~ phi (iNeighbours) +

theFluxes.FLUXVE (iFaces) ;
Listing 8.1 Assembly of the diffusion term at interior faces

In the above, FLUXC1£ and FLUXC2f£ are equivalent to FluxCy and FluxFyin
the text and are the coefficients of the owner and neighbor element, respectively.
Moreover, gamma_ £ and gDif£f_£ are arrays defined over all interior faces, and
using the dot notation, the expression gamma_f£.* gDiff f£ returns an array
containing the product of the respective elements of the gamma_f£ and gDiff_f£
arrays. The dot notation in Matlab® allows for efficient operations over arrays and
for the writing of a clearer code and is used in uFVM whenever practical.

The non-orthogonal term is stored in the FLUXVE coefficient and is equal to
gamma_f .* dot(grad_£f(: , :)’,TE£(:, :)’)’.The total flux passing
through face f, FLUXTE, is assembled as in Eq. (8.15).

The diffusion term is setup in cfdProcessOpenFoamMesh.m and Listing 8.2
shows the computation of the gDiff coefficient.

8.10 Computational Pointers 259

theMesh. faces (iFace) .dCF = element2.centroid - elementl.centroid;
eCF = dCF/cfdMagnitude (dCF) ;

E = theFace.area*eCF;

theMesh. faces (iFace) .gDiff = cfdMagnitude (E) /cfdMagnitude (dCF) ;
theMesh. faces (iFace).T = theFace.Sf - E;

Listing 8.2 Computing the geometric diffusion coefficient

The effects of boundary conditions on the equations of boundary elements
should be accounted for and Listing 8.3 shows the assembly of the diffusion term at
boundary faces for the case of a Dirichlet boundary condition type.

theMesh = cfdGetMesh;

numberOfElements = theMesh.numberOfElements;
numberOfInteriorFaces = theMesh.numberOfInteriorFaces;
%
theBoundary = theMesh.boundaries (iPatch) ;
numberOfBFaces = theBoundary.numberOfBFaces;
%
iFaceStart = theBoundary.startFace;
iFaceEnd = iFaceStart+numberOfBFaces-1;
iBFaces = iFaceStart:iFaceEnd;

]

iElementStart = numberOfElements+iFaceStart-numberOfInteriorFaces;
iElementEnd = iElementStart+numberOfBFaces-1;
iBElements = iElementStart:iElementEnd;

geodiff = [theMesh.faces (iBFaces).geoDiff]"';

Tf = [theMesh.faces (iBFaces).T]"';

iOwners = [theMesh.faces (iBFaces) .iOwner]';

theFluxes.FLUXCL1f (iBFaces) = gamma (iBElements) . *geodiff;
theFluxes.FLUXC2f (iBFaces) = - gamma (iBElements) .*geodiff;
theFluxes.FLUXVf (iBFaces) = -
gamma (iBElements) . *dot (grad (iBElements, :) ', Tf(:,:) ") ";

Listing 8.3 Assembly of the diffusion term at boundary faces for a Dirichlet Condition

The implementation of other boundary condition types can be reviewed in file
cfdAssembleDiffusionTerm.m.

Once the linearized coefficients are computed for each of the interior and
boundary faces, then assembly into the global (sparse) matrix can proceed. This
approach is used for the discretization of all flux terms in uFVM and the assembly is
performed in the cfdAssembleIntoGlobalMatrixFaceFluxes function.
Listing 8.4 shows the assembly into the sparse LHS matrix and the RHS vector of the
coefficients at interior faces.

260 8 Spatial Discretization: The Diffusion Term

%
% Assemble fluxes of interior faces
%
for iFace = 1l:numberOfInteriorFaces
theFace = theMesh.faces (iFace) ;
iOwner = theFace.iOwner;
iOwnerNeighbourCoef = theFace.iOwnerNeighbourCoef;
iNeighbour = theFace.iNeighbour;
iNeighbourOwnerCoef = theFace.iNeighbourOwnerCoef;
%

% assemble fluxes for owner cell

ac (iOwner) = ac (iOwner)
+ vf_f (iFace) *theFluxes.FLUXC1f (iFace) ;
anb{iOwner} (iOwnerNeighbourCoef) = anb{iOwner} (iOwnerNeighbourCoef)
+ vf_f (iFace) *theFluxes.FLUXC2f (iFace) ;
bc (iOwner) = bc (iOwner)

- vf_f (iFace) *theFluxes.FLUXTEf (iFace) ;

%
% assemble fluxes for neighbour cell

ac (iNeighbour) = ac (iNeighbour)
- vf_f (iFace) *theFluxes.FLUXC2f (iFace) ;
anb{iNeighbour} (iNeighbourOwnerCoef) = anb{iNeighbour}

(iNeighbourOwnerCoef)
- vf_f (iFace) *theFluxes.FLUXC1f (iFace) ;
bc (iNeighbour) = Dbc (iNeighbour)
+ vf_f (iFace) *theFluxes.FLUXTf (iFace) ;
end

Listing 8.4 Assembly into LHS spare matrix and RHS array

For each interior face the coefficients are assembled into both the owner and
neighbor element equations. For the owner the coefficients are (ac (iOwner),
anb (iOwner) (iOwnerNeighbourCoef), and bc (iOwner)), while for the
neighbor the coefficients become: ac (iNeighbour), anb (iNeighbour)
(iNeighbourOwnerCoef), and bc (iNeighbour)). The different signs used
in the assembly of the two equations is due to the fact that the face surface vector is
pointing into the neighbor cell and out of the owner cell.

8.10.2 OpenFOAM®

In OpenFOAM® [18] the diffusion term can be evaluated explicitly using “fvc::
laplacian(gamma, phi)”or implicitly via “fvm::laplacian(gamma,phi)” namespaces
and functions. The “fvc::laplacian(gamma,phi)” returns a field in which the laplacian
of a generic field ¢ (phi) is evaluated at each cell. The field is added to the right hand
side of the system of equations. The “fvm::laplacian(gamma,phi)” returns instead an
fvMatrix of coefficients evaluated as per Eq. (8.19), which is added to the left hand side
of the system of equations, in addition to a field containing the non-orthogonal terms
that is added to the right hand side of the system. The definition of the laplacian
operator is located in the directory “$FOAM_SRC/finiteVolume/finiteVolume/
laplacianSchemes/gaussLaplacianScheme” in the files “gaussLaplacianScheme.C”,
“gaussLaplacianScheme.H”, and “gaussLaplacianSchemes.C”.

8.10 Computational Pointers 261

The “fvm::laplacian” definition displayed in Listing 8.5 reads

template<>
Foam: : tmp<Foam: : fvMatrix<Foam: : Type> >
Foam: : fv: :gaussLaplacianScheme<Foam: : Type, Foam::scalar>::fvmLaplacian
(
const GeometricField<scalar, fvsPatchField, surfaceMesh>& gamma,
const GeometricField<Type, fvPatchField, volMesh>& vf

const fvMesh& mesh = this->mesh();

GeometricField<scalar, fvsPatchField, surfaceMesh> gammaMagSf
(

gamma*mesh.magSf ()
)i

tmp<fvMatrix<Type> > tfvm = fvmLaplacianUncorrected
(
gammaMagSf,
this->tsnGradScheme_ () .deltaCoeffs (vf),
vE
)i
fvMatrix<Type>& fvm = tfvm();

if (this->tsnGradScheme_ () .corrected())
{
if (mesh.fluxRequired (vf.name()))
{
fvm. faceFluxCorrectionPtr () = new
GeometricField<Type, fvsPatchField, surfaceMesh>
(
gammaMagSf*this->tsnGradScheme_ () .correction (vf)
)i

fvm.source() -=
mesh.V () *
fve::div
(
*fvm. faceFluxCorrectionPtr ()
) () .internalField() ;

else

fvm.source() -=
mesh.V()*
fvec::div
(
gammaMagSf*this->tsnGradScheme_ () .correction (vf)
) () .internalField() ;

}

return tfvm;

Listing 8.5 Calculation of the Laplacian operator

262 8 Spatial Discretization: The Diffusion Term

with the following additional functions (Listing 8.6):

template<class Type, class GType>
tmp<fvMatrix<Type> >
gaussLaplacianScheme<Type, GType>::fvmLaplacianUncorrected
(
const surfaceScalarField& gammaMagSf,
const surfaceScalarField& deltaCoeffs,
const GeometricField<Type, fvPatchField, volMesh>& vf

tmp<fvMatrix<Type> > tfvm
(
new fvMatrix<Type>
(
vE,
deltaCoeffs.dimensions () *gammaMagSf.dimensions () *vf.dimensions ()
)
)i
fvMatrix<Type>& fvm = tfvm() ;

fvm.upper ()= deltaCoeffs.internalField () *gammaMagSf.internalField() ;
fvm.negSumDiag () ;

forAll (vf.boundaryField (), patchi)
{
const fvPatchField<Type>& pvf = vf.boundaryField() [patchil];
const fvsPatchScalarField& pGamma = gammaMagSf.boundaryField()
[patchil];
const fvsPatchScalarField& pDeltaCoeffs =
deltaCoeffs.boundaryField() [patchi];

%f (pvf.coupled())
fvm.internalCoeffs () [patchi] =
pGamma*pvf.gradientInternalCoeffs (pDeltaCoeffs) ;

fvm.boundaryCoeffs () [patchi] =
-pGamma*pvf.gradientBoundaryCoeffs (pDeltaCoeffs) ;

}

else

{
fvm.internalCoeffs () [patchi] = pGamma*pvf.gradientInternalCoeffs() ;
fvm.boundaryCoeffs () [patchi] = -pGamma*pvf.gradientBoundaryCoeffs() ;

}

return tfvm;

Listing 8.6 Additional functions needed for the calculation of the Laplacian operator

It is worth noting that in OpenFOAM® the assembly takes place directly into the
global coefficients, which as described earlier in Chaps. 5, 6, and 7 are stored in
three arrays, namely fvm.upper (), fvm.lower (), and fvm.diag(). The
main part of the discretization is defined in the fvmLaplacianUncorrected
function, where Eq. (8.19) is evaluated by first defining an fvMatrix object
and then filling its upper triangle by the extra diagonal coefficients (this approach
relies on the fact that the Laplacian operator returns a symmetric matrix).

8.10 Computational Pointers 263

The “deltaCoeffs.internalField()” represents the gDiff field while
gamma indicates the diffusion field. The diagonal coefficients are evaluated in
fvm.negSumDiag () ,where the negative sum of the upper and lower coefficients
are assembled into the diagonal coefficients as per Eq. (8.18).

The “fvm.negSumbDiag()” method is defined in 1lduMatrix
Operations.C as (Listing 8.7)

void Foam::lduMatrix::negSumDiag ()

{
const scalarField& Lower = const_cast<const lduMatrix&>(*this) .lower () ;
const scalarField& Upper = const_cast<const lduMatrix&>(*this) .upper|() ;
scalarField& Diag = diag();

const labelUList& 1 1duAddr () . lowerAddr () ;
const labelUList& u = 1duAddr () .upperAddr () ;

for (register label face=0; face<l.size(); face++)
{

Diag[l[face]] -= Lower[face];

Diag[u[face]] -= Upper|[facel;

Listing 8.7 Calculation of the negative sum of the upper and lower coefficients

The boundary conditions are implemented exactly as in Eqs. (8.36) and (8.41).
In OpenFOAM®™ the boundary coefficients are stored in “internalCoeffs”
(FluxC,) and “boundaryCoeffs” (FluxV,), already defined in Sect. 7.6.

In “fvmUncorrected’only the orthogonal discretization is accounted for.
The non-orthogonal contribution is added, as shown in Listing 8.8, using

fvm. faceFluxCorrectionPtr () = new
GeometricField<Type, fvsPatchField, surfaceMesh>
(
gammaMagSf*this->tsnGradScheme_ () .correction (vf)
)i

fvm.source() -=
mesh.V () *
fve::div
(
*fvm. faceFluxCorrectionPtr ()
) () .internalField() ;

Listing 8.8 Adding the nonorthogonal diffusion contribution

Again this term represents exactly the implementation of the last term of
Eq. (8.77) in which the snGrad class wraps into the correction function the
non-orthogonal term as shown below in Listing (8.9).

264

8 Spatial Discretization: The Diffusion Term

template<class Type>

Foam: : tmp<Foam: : GeometricField<Type,

Foam: : fvsPatchField,

Foam urfaceMesh> >

Foam: : fv: : correctedSnGrad<Type>: :correction

(

const GeometricField<Type, fvPatchField, volMesh>& vf
) const
{

const fvMesh& mesh = this->mesh();

// construct GeometricField<Type, fvsPatchField, surfaceMesh>
tmp<GeometricField<Type, fvsPatchField, surfaceMesh> > tssf
(
new GeometricField<Type, fvsPatchField, surfaceMesh>
(
IOobject
(
"snGradCorr ("+vf.name()+') "',
vf.instance(),
mesh,
IOobject: :NO_READ,
IOobject: :NO_WRITE
)y
mesh,
vf.dimensions () *mesh.nonOrthDeltaCoeffs () .dimensions ()

)i
GeometricField<Type, fvsPatchField, surfaceMesh>& ssf = tssf();

for (direction cmpt = 0; cmpt < pTraits<Type>::nComponents; cmpt++)
{
ssf.replace
(
cmpt,
correctedSnGrad<typename pTraits<Type>::cmptType> (mesh)
.fullGradCorrection (vf.component (cmpt))
)i

template<class Type>
Foam: : tmp<Foam: : GeometricField<Type, Foam: : fvsPatchField, Foam: : surfaceMesh>
>Foam: : fv: : correctedSnGrad<Type>: : fullGradCorrection
(
const GeometricField<Type, fvPatchField, volMesh>& vf
) const
{

const fvMesh& mesh = this->mesh() ;

// construct GeometricField<Type, fvsPatchField, surfaceMesh>
tmp<GeometricField<Type, fvsPatchField, surfaceMesh> > tssf =
mesh.nonOrthCorrectionVectors ()
& linear<typename outerProduct<vector, Type>::type>(mesh).interpolate

(

gradScheme<Type>: :New
(

mesh,
mesh.gradScheme ("grad (" + vf.name() + ')')
) () .grad(vf, "grad(" + vf.name() + ')

)i
tssf () .rename ("snGradCorr (" + vf.name() + ')');

return tssf;

Listing 8.9 Implementation of the nonorthogonal term into the correction function

8.10 Computational Pointers 265

The non-orthogonal correction term is defined in the fullGradCorrection func-
tion where “mesh.nonOrthCorrectionVectors()” returns the T vector of Eq. (8.66).
The type of Laplacian discretization to be used is specified in the “fvSchemes”
file, which is part of the case definition and is located in the system directory

laplacianSchemes
{
laplacian(gamma,phi) Gauss linear corrected;

}
Listing 8.10 The discretization type for the Laplacian operator

(Listing 8.10), in which Gauss (the only available choice) defines the standard
Gauss discretization resulting in Eq. (8.18), linear refers to the type of interpolation
used for calculating the diffusivity gamma at the face, and corrected describes the
kind of non-orthogonal correction.

More details on the implementation of boundary conditions in OpenFOAM® are
presented in later chapters.

8.11 Closure

In this chapter the discretization of the diffusion equation was described. A number
of issues were also addressed, such as the use of orthogonal and non-orthogonal
grid systems, the implementation of boundary conditions, and under and over
relaxation. The next chapter will concentrate on the calculation of the gradient field.

8.12 Exercises

Exercise I

Consider the diffusion of a property ¢ in the one-dimensional domain shown in
Fig. 8.16 with no internal sources. The domain is subdivided into 5 uniform ele-
ments of size Ax = 1 and subject to a Dirichlet and a Neumann condition at
boundary ‘0’ and ‘6’, respectively. The diffusion coefficient in the domain is
constant with a value of 1, i.e., [? = 1.

a. Derive the discrete equation for each of the elements.

b. Solve the system of equations using the Gauss-Seidel iterative method and
report the resulting cell-centroid values.

c. Compute the diffusion flux (—T'd¢/dx) at each of the cell faces and show that
conservation is satisfied throughout the domain

266 8 Spatial Discretization: The Diffusion Term

d. Compare your solution with the exact solution (Note that even though the
computed solution is conservative, it is not exact).

e. For the case where a zero flux boundary condition is defined at both boundaries
‘0’ and ‘6’, reformulate the equations for elements 1 and 5 and explain why the
equations cannot be solved.

5)(/2‘ ‘<—5x—>‘
SRR
Jf:—(l"d—a)jzlo
dx(v
le——Ax—>

Fig. 8.16 Computational domain for a one dimensional diffusion problem with no internal
sources

Exercise 2
A fin is exposed to the surrounding fluid at a temperature 7, = 25 °C, as shown in
Fig. 8.17, with a heat transfer coefficient of 4 = 100 W/m? K and a thermal
conductivity with value of £k = 160 W/m K. The fin has a length L = 0.1 m, a cross
sectional area A = 107> mz, and a perimeter P = 0.1004 m.
The temperature distribution in the fin is governed by the following differential

equation

d [, dT Ph

—— (k=) 4+—(T-T) =0

dx(dx) + A ()

Discretize the above equation by subdividing the computational domain into 5

elements of equal size and find the values of the temperature field at the element
centroids and boundaries in the following two situations:

a. T(x=0) =200°C and T(x = L) = 90 °C
b. g(x =0) =20 kW/m? and g(x = L) = 10 kW /m>

where g is the rate of heat transfer given by

dT
= —k—
9 dx

8.12 Exercises 267

T

a

Fin

é/%

T - a
| A

n)
L/
® [©®
e

Fig. 8.17 Computational domain for heat transfer from a fin

h
®

L

Exercise 3
The heat conduction in the two-dimensional domain shown in Fig. 8.18 is governed
by the following differential equation:

-V -kVT =0
The domain is subdivided into uniform elements and the boundary conditions
are as shown in the figure.

a. Derive the algebraic equations for all elements.
b. Solve the system of equations obtained and compute the T values at the cen-
troids of the elements.

Fig. 8.18 Heat conduction in a two dimensional tilted Cartesian domain

268 8 Spatial Discretization: The Diffusion Term

c. Compute the values of T at the bottom and right boundaries.
d. Compute the net heat transfer through the top and left boundaries

Exercise 4

Consider steady state conduction heat transfer in the non-orthogonal domain dis-
cretized into the four equal elements shown in Fig. 8.19, where L = 1 m. Derive the
discretization equations for the cells using two different methods for the decom-
position of the diffusion flux and compare the temperature values at the element
centroids after 4 coefficient iterations.

-VT-n=0

NAVAE
/®/@/

T= 2()C

Fig. 8.19 Computational domain for Exercise 4

Exercise 5

Discretize the equation =V - kVT = Q" where Q" = 500 and k = 200, for the mesh
composed of quadrilateral triangles of side 0.1 shown in Fig. 8.20. Write the
discretized equations in the form of general algebraic equations.

Fig. 8.20 A triangular domain covered with an unstructured grid system

8.12 Exercises 269

Exercise 6
The gradient for a variable ¢ over the computational domain shown in Fig. 8.21 is
given by

V¢ = 20i + 30j
Compute the value of ¢ at nodes 1 and 2 given that the length and width of the

computational domain are 10 and 5 cm, respectively.

V¢ =20i+30j

$=50

O]

$=15 ¢=25

®

$=20

Fig. 8.21 A rectangular domain decomposed into two triangular elements

Exercise 7

Using the mesh constructed in exercise 3 of Chap. 7 (displayed in Fig. 7.12), setup
a case in OpenFOAM® and uFVM to solve the diffusion equation subject to the
following conditions (I'* = 1):

Patch#1 ¢ =1

Patch#2 ¢ =0

Patch#3 V¢ -n=0

Patch#4 heo = 1, g0 = 0.5

Exercise 8

Build an oblique parallelogram (size of horizontal side is 1 and size of oblique side
is 2 inclined at 60 degrees with respect to the horizontal) using blockMesh in
OpenFOAM™ with the boundary conditions shown in the figure below to solve the
diffusion equation with no source term in two dimensions. Generate a grid by
decomposing each side of the parallelogram into 50 equal segments. Setup the case
and using a diffusion coefficient of 1 compare the convergence history for the three
different approaches mentioned in this chapter to resolve the non-orthogonal term
for the diffusion equation (one at a time) in uFVM and in OpenFOAM®. Use an
under-relaxation factor of value 0.9 (Fig. 8.22).

270

8 Spatial Discretization: The Diffusion Term

(0.2,0.2) T=320 (0.5,0.2)

T=273
T=320

(0,0) To273 {0.3,0)

Fig. 8.22 An oblique parallelogram

Exercise 9

Use Doxygen [19] to find the list of all overloaded functions under the name
fvmLaplacian and then under then name fvcLaplacian.

Define in the dictionary file fvSchemes the option to exclude the non orthogonal
correction (Gauss linear uncorrected;).

. Define in the dictionary file fvSchemes the option to use a limited non

orthogonal correction (Gauss linear limited 0.8;).

. List of the possible Laplacian non orthogonal correction type available in

OpenFOAM® (Hint: just mistype a scheme, i.e., banana, and launch any solver
or application).

References

10.

. Patankar SV (1980) Numerical heat transfer and fluid flow. Hemisphere Publishing

Corporation, McGraw-Hill, USA

. Jiang T, Przekwas AJ (1994) Implicit, pressure-based incompressible Navier-stokes equations

solver for unstructured meshes. AIAA-94-0305

. Davidson L (1996) A pressure correction method for unstructured meshes with arbitrary

control volumes. Int J Numer Meth Fluids 22:265-281

. Barth TJ (1992) Aspects of unstructured grids and finite-volume solvers for the Euler and

Navier-stokes equations. Special course on unstructured grid methods for advection dominated
flows. AGARD Report 787

. Perez-Segarra CD, Farre C, Cadafalch J, Oliva A (2006) Analysis of different numerical

schemes for the resolution of convection-diffusion equations using finite-volume methods on
three-dimensional unstructured grids, Part I: discretization schemes. Numer Heat Transfer Part
B: Fundam 49(4):333-350

. Demirdzic 1, Lilek Z, Peric M (1990) Finite volume method for prediction of fluid flow in

arbitrary shaped domains with moving boundary. Int J Numer Meth Fluids 10:771-790

. Demirdzic I, Lilek Z, Peric M (1993) A collocated finite volume method for predicting flows

at all speeds. Int J Numer Meth Fluids 16:1029-1050

. Warsi ZUA (1993) Fluid dynamics: theoretical and computational approaches. CRC Press,

Boca Raton

. Berend FD, van Wachem GM (2014) Compressive VOF method with skewness correction to

capture sharp interfaces on arbitrary meshes. J Comput Phys 279:127-144
Jasak H (1996) Error analysis and estimation for the finite volume method with applications to
fluid flow. Ph.D. thesis, Imperial College London

References 271

11.

12.

13.

14.

15.

16.

17.

18.
19.

Balckwell BF, Hogan RE (1993) Numerical solution of axisymmetric heat conduction
problems using the finite control volume technique. J Thermophys Heat Transfer 7:462—471
Wang S (2002) Solving convection-dominated anisotropic diffusion equations by an
exponentially fitted finite volume method. Comput Math Appl 44:1249-1265

Jayantha PA, Turner IW (2003) On the use of surface interpolation techniques in generalised
finite volume strategies for simulating transport in highly anisotropic porous media. J Comput
Appl Math 152:199-216

Bertolazzi E, Manzini G (2006) A second-order maximum principle preserving finite volume
method for steady convection-diffusion problems. SIAM J Numer Anal 43:2172-2199
Domelevo K, Omnes P (2005) A finite volume method for the Laplace equation on almost
arbitrary two-dimensional grids. Math Model Numer Anal 39:1203-1249

Eymard E, Gallouet T, Herbin R (2004) A finite volume scheme for anisotropic diffusion
problems. Comptes Rendus Mathematiques (CR MATH) 339:299-302

Darwish M, Moukalled F (2009) A compact procedure for discretization of the anisotropic
diffusion operator. Numer Heat Transfer, Part B 55:339-360

OpenFOAM, 2015 Version 2.3.x. http://www.openfoam.org

OpenFOAM Doxygen, 2015 Version 2.3.x. http://www.openfoam.org/docs/cpp/

	8 Spatial Discretization: The Diffusion Term
	Abstract
	8.1 Two-Dimensional Diffusion in a Rectangular Domain
	8.2 Comments on the Discretized Equation
	8.2.1 The Zero Sum Rule
	8.2.2 The Opposite Signs Rule

	8.3 Boundary Conditions
	8.3.1 Dirichlet Boundary Condition
	8.3.2 Von Neumann Boundary Condition
	8.3.3 Mixed Boundary Condition
	8.3.4 Symmetry Boundary Condition

	8.4 The Interface Diffusivity
	8.5 Non-Cartesian Orthogonal Grids
	8.6 Non-orthogonal Unstructured Grid
	8.6.1 Non-orthogonality
	8.6.2 Minimum Correction Approach
	8.6.3 Orthogonal Correction Approach
	8.6.4 Over-Relaxed Approach
	8.6.5 Treatment of the Cross-Diffusion Term
	8.6.6 Gradient Computation
	8.6.7 Algebraic Equation for Non-orthogonal Meshes
	8.6.8 Boundary Conditions for Non-orthogonal Grids
	8.6.8.1 Dirichlet Boundary Condition
	8.6.8.2 Neumann Boundary Condition
	8.6.8.3 Mixed Boundary Condition

	8.7 Skewness
	8.8 Anisotropic Diffusion
	8.9 Under-Relaxation of the Iterative Solution Process
	8.10 Computational Pointers
	8.10.1 uFVM
	8.10.2 OpenFOAM

	8.11 Closure
	8.12 Exercises
	References

