
Chapter 4
The Discretization Process

Abstract This chapter introduces the different steps of the discretization process,
which include: (i) modeling of the geometric domain and the physical phenomena
of interest; (ii) discretization of the modeled geometric domain into a grid or mesh
that forms the computational domain (this process, also known as meshing or
domain discretization, results in a set of non-overlapping elements, denoted also by
cells, that cover the computational domain); (iii) numerical or equation discreti-
zation that transforms the set of conservation partial differential equations
governing the physical processes into an equivalent system of algebraic equations
defined over each of the elements of the computational domain; and (iv) the
solution of the resulting set of equations using an iterative solver to yield an
intermediate or final solution field. Throughout the chapter, computer implemen-
tation issues are introduced.

4.1 The Discretization Process

The numerical solution of a partial differential equation consists of finding the
values of the dependent variable ϕ at specified points from which its distribution
over the domain of interest can be constructed. These points are called grid ele-
ments, or grid nodes and result from the discretization of original geometry into a
set of non overlapping discrete elements, a process known as meshing. The
resulting nodes or variables are generally positioned at cell centroids or at vertices
depending on the adopted discretization procedure. In all methods the focus is on
replacing the continuous exact solution of the partial differential equation with
discrete values. The distribution of ϕ is hence discretized, and it is appropriate to
refer to this process of converting the governing equation into a set of algebraic
equations for the discrete values of ϕ as the discretization process and the specific
methods employed to bring about this conversion as the discretization methods. The
discrete values of ϕ are typically computed by solving a set of algebraic equations
relating the values at neighboring grid elements to each other; these discretized or
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algebraic equations are derived from the conservation equation governing ϕ. Once
the values of ϕ are computed, the data is processed to extract any needed infor-
mation. The various stages of the discretization process are illustrated in Fig. 4.1.

Figure 4.2 shows the process applied to the study of heat transfer from a
microprocessor connected to a heat sink with a copper base that acts as a heat
spreader. The example of Fig. 4.2 will be used to present various concepts related to
the discretization process. Since the intention is to introduce a numerical technique
for solving the physical processes of interest and since the method has to be
implemented in a computer program, the discretization process will be explained
along that spirit. For example, reference will be made to how to store values in a
code as related to interior elements, boundary elements, variables, etc. Throughout
the book a Matlab® based program denoted by “uFVM” will be used as a devel-
opment vehicle to present various details relating to the implementation of these
methods. Furthermore OpenFOAM®, a very popular finite volume-based open
source code will also be presented both from a user and a developer perspective,
again with the aim of moving from the numerics to the implementation details.
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4.1.1 Step I: Geometric and Physical Modeling

Modeling of physical phenomena is in a way at the heart of the scientific enterprise.
A physical phenomenon cannot generally be considered as understood unless it can
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be mathematically formulated, and this formulation tested and validated. For our
purpose two levels of modeling are performed, one in relation to the geometry of
the physical domain and a second in relation to the physical phenomena of interest.
At both levels details that are neither relevant nor of interest are ignored or sim-
plified. For example a three dimensional domain could be turned into a two
dimensional depiction, or symmetry can be taken into account to decrease the size
of the study domain. In some cases, physical components may be removed and
replaced with appropriate mathematical representations.

In the example of Fig. 4.2 a microprocessor is connected to a heat sink with a
copper base that acts as a heat spreader. A first model of this system simplifies both
its physics and its geometry. The heat sink and processor are replaced by boundary
conditions that specify the estimated temperature of the heat sink and the expected
operating temperature of the processor, respectively. The physical domain is
modeled as a two dimensional computational domain since the temperature varia-
tion through the thickness of the heat sink will be minimal. For a steady state
solution of the heat flow and temperature distribution in the copper base, only heat
conduction is considered. The result of the modeling process is a system of linear
(or non-linear if k depends on T) partial differential equations, which in this case
involves a simplified form of the energy equation given by

�r � krTð Þ ¼ _q ð4:1Þ

where k is the conductivity of the heat spreader base, and _q is the heat source/sink
per unit volume.

4.1.2 Step II: Domain Discretization

The geometric discretization of the physical domain results in a mesh on which the
conservation equations are eventually solved. This requires the subdivision of the
domain into discrete non-overlapping cells or elements that completely fill the
computational domain to yield a grid or mesh system. This is accomplished by a
variety of techniques resulting in a wide range of mesh types. These meshes are
classified according to several characteristics: structure, orthogonality, blocks, cell
shape, variable arrangement, etc. In all cases the mesh is composed of discrete
elements defined by a set of vertices and bounded by faces. For the mesh to be a
useful platform for equation discretization, information related to the topology of
the mesh elements, in addition to some derived geometric information, are needed.
These include element to element relations, face to elements relations, geometric
information of the surfaces, element centroid and volume, face centroid, area and
normal direction, etc. This information is usually inferred from the basic mesh data.
For certain mesh topologies, details about the mesh can be easily deduced from the
element indices as in structured grids, while for others it has to be constructed and
stored in lists for later retrieval, as is the case with unstructured grids.
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Consider the simple domain shown in Fig. 4.3a. The domain consists of a
volume (area for the two dimensional case) and boundaries that account for the
heating or cooling of the microprocessor, a heat sink, and the heat spreader base.
The domain is shown discretized with a simple mesh in Fig. 4.3b. The mesh
boundary is divided into three patches of boundary faces that are assigned numbers,
i.e., Patch#1, Patch#2, and Patch#3. These patches are used to define the physical
boundary conditions for the problem at hand. The mesh consists of 25
non-overlapping elements whose geometry is defined by 40 points (vertices of the
cells). The elements are also bounded by 66 faces (lines in a two dimensional case),
34 of which are interior faces. The algebraic equations that result from the dis-
cretization of the governing equations, as will be explained in step III, are described
for each element in the computational domain with the solution expressed as an
element field with values defined at the centroid of each element. In this example
the elements have a square shape, though other shapes could have been used (e.g.,
triangular elements, as shown in Fig. 4.3c).

The mesh can be described from different perspectives. At the most elementary
level it is a list of vertices or points representing locations in one dimensional, two
dimensional, or three dimensional spaces. The mesh also represents the discretized
domain subdivided into non-overlapping elements, which can be of arbitrary
convex polyhedral shapes. Elements are completely bounded by faces that are
generally shared by neighboring elements, except at the boundaries. Elements can
be defined either in terms of the points that delimit them or in terms of the faces that
bound them. The mesh faces, which are stored in a list, are of two types: (i) interior
faces that are shared by (or connect) two elements, and (ii) boundary faces that
coincide with the domain boundary; these boundary faces have only one contiguous
element. While interior faces are derived from information related to the element
topology, it is essential to provide boundary faces as they define the domain
physical boundary. In two dimensions faces are described in terms of their defining
points. In three dimensions the defining points describe edges that bound the face.
The direction of the normal to an interior face is usually defined based on the
topology of the neighboring elements. On the other hand, the direction of the
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Fig. 4.3 a Computational domain; b computational mesh (quadrilateral); c computational mesh
(triangular)
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normal to a boundary face always points outward of the domain. Figure 4.4 shows
some of the components (vertices, faces, and elements shown in Fig. 4.4a–c
respectively) of a mesh. Furthermore the boundary faces are organized into lists of
faces based on the boundary patch to which they belong.

4.1.3 Mesh Topology

During discretization, the partial differential equations are integrated over each
element in the mesh resulting in a set of algebraic equations with each one linking
the value of the variable at an element to the values at its neighbors. The algebraic
equations are then assembled into global matrices and vectors and the coefficients
of every equation stored at the row and column locations corresponding to the
various element indices. The integration of the equations over each element is
referred to as local assembly while the construction of the overall system of
equations from these contributions is referred to as global assembly. Thus while the
discretization of the equations is derived in terms of neighbor elements, the
assembly of the equations in the global matrix accounts for the actual indices of the
elements. This procedure will be detailed in later chapters, however the enabling
ingredients of this procedure are briefly introduced next at their most elementary
level, which is in the form of topological information about elements, faces, and
vertices that are represented in terms of connectivity lists.

Element connectivity relates the local assembly matrix to the global matrix so
that the equations formed for one element are consistent with the equations formed
for the other elements in the computational domain. Generally element to element,
element to face, and element to vertex connectivities are setup. These relate the
element to the neighboring elements, bounding faces, and defining vertices,
respectively. Considering Fig. 4.4, the connectivity for element 9 is shown in
Fig. 4.5.
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Generally for arbitrary elements it is more efficient to assemble flux terms by
looping over faces. In this case it is essential that information about the face element
neighbors be readily available; this is defined in the Face connectivity. For faces,
information about elements sharing the face is stored for use during computations.
The orientation of the face is such that the normal vector to the face points from one
element denoted by element 1 or owner to the second element denoted by element 2
or neighbor. Boundary faces bound only one element, defined as element 1, thus the
normal vector of boundary faces is always oriented outside of the domain. The
connectivity for Face 12 is shown in Fig. 4.6.

Vertex connectivity is useful for post processing and for gradient computation.
As shown in Fig. 4.7, generally it involves the lists of elements and faces that share
the vertex.
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The mapping between local and global indices is briefly illustrated in Fig. 4.8 for
a mesh of five elements.
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Fig. 4.8 Local element matrix assembly into global matrix

Example 1
For the mesh shown below, derive the element connectivity and represent it in
a global matrix (Fig. 4.9)

Solution
In this mesh element counting starts from 1. The connectivity for the
various elements are given by

1 ! 2; 3

2 ! 1; 3; 4

3 ! 1; 2; 4

4 ! 2; 3

this can be represented in a global matrix as
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Fig. 4.9 Mesh for example 1

92 4 The Discretization Process



4.1.4 Step III: Equation Discretization

In step III, the governing partial differential equations, are transformed into a set of
algebraic equations, one for each element in the computational domain. These
algebraic equations are then assembled into a global matrix and vectors that can be
expressed in the form

A T½ � ¼ b ð4:2Þ

where the unknown variable T is defined at each interior element and at the
boundary of the computational domain. Boundary values for T are generally
obtained from the specified boundary conditions. To this end an element field has to
be defined for T, and generally for each governing equation.

As schematically depicted in Fig. 4.10, the element field consists of an array of
values defined at the centroid of each element, designated by the interior element
field, which is represented by one array of size equal to the total number of interior
and boundary elements.

The equation discretization step is performed over each element of the com-
putational domain to yield an algebraic relation that connects the value of a variable
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in an element to the values of the variable in the neighboring elements. This
algebraic equation is derived by discretizing the differential equation, which for the
example considered is the energy equation written in terms of temperature T, (i.e.,
T is the unknown variable). As shown below, in the finite volume method the
discretization of the equation is performed by first integrating the differential
equation over a control volume or cell to obtain a semi discretized form of the
equation and then approximating the variation of the dependent variable between
grid elements through imposed profiles to obtain the final discretized form. The fact
that only a few grid elements participate in a given discretization equation is a
consequence of the piecewise nature of the chosen profiles. The value of T at a grid
point thereby influences the distribution of T only in its immediate neighborhood.
As the number of grid elements increases, the solution of the discretized equations
is expected to approach the exact solution of the corresponding differential equa-
tion. This follows from the consideration that, as the grid elements get closer
together, changes in T between neighboring grid elements become small, and then
the actual details of the profile assumption become unimportant.

For a given differential equation, the possible discretization equations are by no
means unique, although all types of discretization techniques in the limit of a very large
number of grid elements are expected to give the same solution. The different types
arise from the differences in the profile assumptions and the methods of derivation.

As an example of the equation discretization step using the finite volume method,
the discretized form of the energy equation over the control volume C shown in
Fig. (4.11) is sought. The process starts by integrating Eq. (4.1) over element C that
enables recovering its integral balance form, which was described in Chap. 3, as
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Then, using the divergence theorem, the volume integral is transformed into a
surface integral yielding

�
Z
SC

krTð Þ � dS ¼ _qCVC ð4:4Þ

This equation is actually a heat balance over element C. It is basically the integral
form of the original partial differential equation and involves no approximation.
Replacing the surface integral by a summation over the control volume faces,
Eq. (4.4) becomes

�
X

f� nb Cð Þ
krTð Þf � Sf ¼ _qCVC ð4:5Þ

where f represents the integration point at the centroid of the bounding face. This
transformation is the first approximation introduced. Therefore the integral in
Eq. (4.4) is numerically approximated by the fluxes at the centroids of the faces.
This is a second order approximation as will be demonstrated in a later chapter.

Expanding the summation, Eq. (4.5) can be written as

� krTð Þf1 � Sf1 � krTð Þf2 � Sf2 � krTð Þf3 � Sf3 � krTð Þf4 � Sf4 ¼ _qCVC ð4:6Þ

Considering face f1 shown in Fig. (4.12), the surface vector and temperature
gradient in Eq. (4.6) are given by

Sf1 ¼ Dyf1 i

dxf1 ¼ xF1 � xC

rTf1 ¼
@T
@x

� �
f1

iþ @T
@y

� �
f1

j

ð4:7Þ

where
xC is the x-coordinate of the centroid of element C.
xF1 is the x-coordinate of the centroid of element F1.
Dyf1 is the area of face f1.
Sf1 is the surface vector of face f1 directed out of element C.
rTf1 is the gradient of T at the centroid of face f1.

and by substitution, the first term in Eq. (4.6) is converted to

rTf1 � Sf1 ¼
@T
@x

iþ @T
@y

j
� �

f1

�Dyf1 i

¼ @T
@x

� �
f1

Dyf1

ð4:8Þ
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To proceed further, a profile approximating the variation of T between C and F1 is
needed. Assuming linear variation of T, the x-component of the gradient at the face
f1 can be written as

@T
@x

� �
f1

¼ TF1 � TC
dxf1

ð4:9Þ

thus Eq. (4.8) can be approximated as

rTf1 � Sf1 ¼
TF1 � TC

dxf1
Dyf1 ð4:10Þ

or more generally as

� krTð Þf1 � Sf1 ¼ aF1 TF1 � TCð Þ ð4:11Þ

where

aF1 ¼ �k
Dyf1
dxf1

ð4:12Þ

Repeating for each of the remaining faces, the following coefficients are obtained:
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aF2 ¼ �k
Dxf2
dyf2

aF3 ¼ �k
Dyf3
dxf3

aF4 ¼ �k
Dxf4
dyf4

ð4:13Þ

which when substituted into Eq. (4.6) yields

�
X

f � nb Cð Þ
krTð Þf � Sf ¼

X
F�NB Cð Þ

aF TF � TCð Þ

¼ � aF1 þ aF2 þ aF3 þ aF4ð ÞTC þ aF1TF1 þ aF2TF2 þ aF3TF3 þ aF4TF4

¼ _qCVC

ð4:14Þ

or more compactly

aCTC þ
X

F�NB Cð Þ
aFTF ¼ bC ð4:15Þ

where

aC ¼ �
X

F�NB Cð Þ
aF ¼ � aF1 þ aF2 þ aF3 þ aF4ð Þ

bC ¼ _qCVC

ð4:16Þ

Equations similar to Eq. (4.15) may be derived for all cells in the domain, yielding a
set of algebraic equations, which can be solved using a variety of direct or iterative
methods. Focusing on element C in Fig. (4.13), Eq. (4.15) implies a relation
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between TC and the temperatures at its four neighbors namely TF1 , TF2 , TF3 , and TF4 ,
which in global assembly would be T9, and T10, T4, T8 and T15.

Similar equations are also derived for boundary elements and their collection
yields the set of equations illustrated in Fig. (4.14), which can be represented in
matrix form as given in Eq. (4.2), where A is the matrix of coefficients, [T] the
solution vector, and b is a vector composed of terms that cannot be included in A.
The methodology to solve Eq. (4.2) is presented in the next section.

Finally it should be stated that the properties of the finite volume method as
related to accuracy, robustness, and other characteristics will be reviewed in later
chapters. This includes examining in more details the finite volume discretization of
the diffusion term, which was presented above for a rectangular Cartesian grid.

4.1.5 Step IV: Solution of the Discretized Equations

The discretization of the differential equation results in a set of discrete algebraic
equations, which must be solved to obtain the discrete values of T. The coefficients
of these equations may be independent of T (i.e., linear) or dependent on T (i.e.
non-linear). The techniques to solve this algebraic system of equations are inde-
pendent of the discretization method, and represent the various trajectories that can
be followed to obtain a solution. For the linear algebraic sets encountered in this
book, the uniqueness of the solution is guaranteed. Therefore if the adopted solution
method gives a solution, it will be the desired solution. All solution methods (i.e.,
all paths to solution) which arrive at a solution will give the same solution for the
same set of discrete equations.
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The solution methods for solving systems of algebraic equations may be broadly
classified as direct or iterative and are briefly reviewed below.

4.1.5.1 Direct Methods

In a direct method the solution to the system of equations [e.g., Eq. (4.2)] is
obtained by applying a relatively complex algorithm, in comparison with an iter-
ative method, only once to obtain the solution for a given set of coefficients. An
example of a direct method is matrix inversion whereby the solution is obtained as

T½ � ¼ A�1b ð4:17Þ

Therefore a solution for [T] is guaranteed if A−1 can be found. However, the
operation count for the inversion of an N × N matrix is O(N3), which is compu-
tationally expensive. Consequently, inversion is almost never employed in practical
problems. More efficient methods for linear systems are available. For the dis-
cretization methods of interest here, A is sparse, and for structured meshes it is
banded. For certain types of equations (e.g., pure diffusion), the matrix is sym-
metric. Matrix manipulation can take into account the special structure of A in
devising efficient solution techniques. Such methods will be reviewed in Chap. 10.

In general, direct methods are rarely used in computational fluid dynamics
because of their large computational and storage requirements. Most industrial CFD
problems today involve hundreds of thousands of cells, with 5–10 unknowns per
cell even for simple problems. Thus the matrix A is usually very large, and most
direct methods become impractical for these large problems. Furthermore, the
matrix A is usually non-linear, so that the direct method must be embedded within
an iterative loop to update nonlinearities in A. Thus, the direct method is applied
over and over again, making it all the more time-consuming.

4.1.5.2 Iterative Methods

Iterative methods follow a guess-and-correct procedure to gradually refine the
estimated solution by repeatedly solving the discrete system of equations. Let us
consider an extremely simple Gauss-Seidel iterative method. The overall solution
loop for this method may be written as follows:

(a) Guess the discrete values of T at all grid elements in the domain.
(b) Visit each grid element in turn. Update T using

TC ¼
� P

F�NB Cð Þ
aFTF þ bC

aC
ð4:18Þ
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The neighboring values are required for the update of TC. These are assumed
known at prevailing values. Thus, grid elements which have already been visited
will have updated values of T and those that have not will have old values.

(c) Sweep the domain until all grid elements are covered. This completes one
iteration.

(d) Check if an appropriate convergence criterion is met. The requirement, for
example, could be that the maximum change in the grid-point values of T be
less than 1 %. If the criterion is met, stop. Else, go back to step b and repeat.

The iteration procedure described here is not guaranteed to converge to a
solution for arbitrary combinations of aC and aNB. Convergence of the process is
guaranteed for linear problems if the Scarborough criterion is satisfied. The
Scarborough criterion requires that aC and aNB should satisfy

� P
F�NB Cð Þ

aF

aC

� 1 for all grid points
\1 for at least one point

�
ð4:19Þ

Matrices which satisfy the Scarborough criterion have diagonal dominance.
The Gauss-Seidel scheme can be implemented with very little storage. All that is

required is storage for the discrete values of T at the grid elements. The coefficients
can be computed on the fly if desired, since the entire coefficient matrix for the
domain is not required when updating the value of T at any grid point. Also, the
iterative nature of the scheme makes it particularly suitable for non-linear problems.
If the coefficients depend on T, they may be updated using prevailing values of T as
iterations proceed. Nevertheless, the Gauss-Seidel scheme is rarely used in practice
for solving the systems encountered in CFD. The rate of convergence of the scheme
decreases to unacceptably low levels if the system of equations is large. In Chap. 10,
an algebraic multigrid method will be used to accelerate the rate of convergence of
iterative schemes and improve their performance.

4.1.6 Other Types of Fields

In addition to the element field introduced above, other fields are defined for
different purposes. Two such fields include the face field and the vertex field that
are briefly described below.

The face field consists of the array of values defined at the centre of the faces. As
shown in Fig. 4.15, it defines a number of arrays for the interior faces and the
various patch faces. The face field is used, for example, to define the face mass
fluxes for use when solving advective and flow problems.

The vertex field schematically depicted in Fig. 4.16 stores variables at the ver-
tices; these again are grouped into interior vertices and patch vertices. Vertex fields
are usually used for post processing, and in some cases for gradient computation.
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4.2 Closure

This chapter overviewed the discretization process, underlining on the way the
basic ingredients needed for the development of a CFD code. The coming chapters
will take each of these ingredients and dissect it, while developing the “uFVM” and
learning about the industrial open source CFD library, denoted by OpenFOAM®.
The next two chapters will further expand on the idea of finite volume mesh and
finite volume discretization.
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