
Chapter 16
Fluid Flow Computation: Compressible
Flows

Abstract The previous chapter presented the methodology for solving incom-
pressible flow problem using pressure based algorithms. In this chapter these
algorithms are extended to allow for the simulation of compressible flows in the
various Mach number regimes, i.e., over the entire spectrum from subsonic to
hypersonic speeds. While incompressible flow solutions do not generally require
solving the energy equation, compressibility effects couple hydrodynamics and
thermodynamics necessitating the simultaneous solution of the continuity,
momentum, and energy equations. The dependence of density on pressure and
temperature, a relation expressed via an equation of state, further complicates the
velocity-pressure coupling present in incompressible flows. The derivation of the
pressure correction equation now involves a density correction that introduces to
the equation a convection-like term, in addition to the diffusion-like term introduced
by the velocity correction. Another difficulty is introduced by the complex
boundary conditions that arise in compressible flow problems. Details on resolving
all these issues are presented throughout this chapter.

16.1 Historical

Computational Fluid Dynamics methods have been traditionally classified into two
families denoted by density-based and pressure-based. Specifically density-based
methods have historically dominated the simulation of transonic and supersonic
flows usually encountered in the aeronautics industry, and were well-established
when the SIMPLE algorithm was first instigated. SIMPLE, a pressure-based
method, was initially developed to address this shortcoming and was quite efficient
in resolving incompressible and low Mach number flows.

Early on, efforts were directed towards extending the operation of each of these
approaches to flow regimes customarily dominated by the other. Harlow and
Amsden [1, 2] were amongst the earliest to simulate fluid flow at all speeds. In their
work, the use of pressure as a main variable in preference to density was presented an
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advantage since its variations remained finite irrespective of the Mach number value.
Nonetheless it was the work of Patankar [3] that provided a clear resolution to this
problem, and allowed for SIMPLE-based methods to genuinely develop into
methods capable of resolving fluid flow at all speeds [4–13]. The critical develop-
ment was the reformulation of the pressure equation to include density and velocity
correction such that the type of the equation changed from purely elliptic for
incompressible flows to hyperbolic in transonic and supersonic compressible flows
[14, 15]. This allowed the SIMPLE-family of methods to seamlessly solve flow
problems across the entire Mach number spectrum, with pressure playing the dual
role of affecting density in the limit of high Mach compressible flow and velocity in
the limit of incompressible flow [16], in order to enforce mass conservation.

16.2 Introduction

An important advantage of the pressure-based approach is its ability to resolve fluid
flows in the various Mach number regimes without any artificial treatment to
promote convergence and stabilize computations. This ability of the pressure based
method is due to the dual role the pressure plays in compressible flows [17], which
can best be described by considering the following two extreme cases:

1. At very low Mach numbers, the pressure gradient needed to establish the flow
field through momentum conservation is so small that it does not significantly
influence the density, and the flow can be considered to be incompressible.
Hence, density and pressure in addition to density and velocity are very weakly
related indicating that variations in density are not sensitive to variations in
velocity. In this case the continuity equation can no longer be considered as an
equation for density, rather, it acts as a constraint on the velocity field.

2. At hypersonic speeds, changes in velocity become relatively small as compared
to the magnitude of the velocity indicating that variations in pressure do sig-
nificantly affect density. Consequently, the pressure now acts on density alone
through the equation of state to satisfy mass conservation [16, 18] and the
continuity equation can be viewed as the equation for density.

The above limiting cases highlight the dual role played by pressure in com-
pressible flow situations. It clearly shows that pressure acts on both the density field
through the equation of state and the velocity field via the gradient in the
momentum equation to enforce mass conservation. This dual role explains the
success of the pressure-based approach to predict fluid flow at all speeds. This fact
however did not deter workers in the density based track from using the artificial
compressibility technique [19] to develop methods capable of solving fluid flow at
all speeds. To overcome degradation in performance due to the stiff matrices
encountered in these methods, preconditioning of the resulting stiff matrices was
introduced and several methods [20, 21] using this technique have recently
appeared in the literature.
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Similarly several pressure-based methods [22] for predicting fluid flow at all
speeds following either a staggered grid approach [23] or a collocated variable
formulation have been developed. While in some methods primitive variables were
used, others employed the momentum components as dependent variables. Some
workers adopted the stream-wise directed density-retardation concept, which is
controlled by Mach-number-dependent monitor functions [24, 25], to account for
the hyperbolic character of the conservation laws in the transonic and supersonic
regimes. Other techniques used the first order upwind scheme for evaluating the
density at the control volume faces at high Mach number values and the central
difference scheme at low values [26].

This chapter extends the collocated pressure-based technique developed in the
previous chapter allowing the simulation of fluid flows at all Mach number values.
The adopted method is easy to implement, highly accurate, and does not require any
explicit addition of damping terms to improve robustness or to properly resolve
shock waves.

16.3 The Conservation Equations

The conservation equations for solving compressible flow problems include the
continuity, momentum, and energy equations. For a Newtonian fluid behaving as an
ideal gas, these equations can be expressed as
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where the form of the energy equation adopted here is the one expressed in terms of
temperature. The above set of equations should be appended by an equation of state
relating density to pressure and temperature, i.e., q ¼ q p; Tð Þ, which for an ideal
gas is given by

q ¼ p
RT

ð16:4Þ

where R is the gas constant.
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In the derivations to follow, superscript n refers to values used at the beginning
of an iteration, superscript � indicates values updated once during an iteration, and
superscript �� refers to values updated twice during the same iteration.

16.4 Discretization of the Momentum Equation

The discretized momentum equation, Eq. (16.2), over the control volume C shown
in Fig. 16.1 is similar to its incompressible form given in Chap. 15. The only two
differences are related to the interpolation of density to the interface and the
additional term � 2=3ð Þr lr � vð Þ involving the bulk viscosity. Starting with the
first difference, the density in compressible flows is no longer constant and since it
is stored at the control volume centroids it has to be interpolated to find its value at
the control volume faces where it is needed for computing the mass flow rate. The
use of a linear interpolation profile (central difference) causes oscillation at high
speeds. Thus a bounded upwind biased scheme should be used. Any of the bounded
convective schemes presented in Chaps. 11 and 12 can be adopted for that purpose.

The second difference is the additional term involving r lr � vð Þ. This term has
not been discretized so far and its discretized form is obtained by making use of
Eq. (2.85) based on which the volume integral of the gradient of a scalar quantity is
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Fig. 16.1 A schematic of a control volume C with its neighbors
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transformed into a surface integral and then into a summation of fluxes over the
faces of the control volume according toZ

VC

r lr � vð Þ½ �dV ¼
Z
@VC

lr � vð ÞdS ¼
X

f�nb Cð Þ
lr � vð ÞfSf ð16:5Þ

The divergence of the velocity vector at the faces is computed as
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where the gradient of / ¼ u; v or w is interpolated linearly to the face
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The final discretized form of the momentum equation is given by Eq. (15.70)
with its coefficients given by Eq. (15.71) with the term � 2=3ð Þ P

f�nb Cð Þ
lr � vð ÞfSf

added to the source term in that equation.
As for incompressible flow problems, the algebraic equations are under relaxed

and written in the form of Eq. (15.78), which is suitable for the derivation of the
pressure correction equation.

16.5 The Pressure Correction Equation

The pressure correction equation for compressible flows is obtained by a simple
extension of that for incompressible flows. The difference is related to variations in
density which are accounted for by defining a density correction field q0 and
relating it to the pressure-correction field through a pressure-density relation. This,
however, yields substantial differences in the treatment of boundary conditions, as
will be explained later in the chapter.

For an ideal gas the relation between pressure and density is written as

qRT ¼ p ð16:8Þ

Using this relation, an equation relating density correction to pressure correction
can be derived by expanding Eq. (16.8) via a Taylor series to yield

qj p nð Þþp0ð Þ¼ qj p nð Þð Þþ
@q
@p

p0 ¼ q� þ q0 ) q0 ¼ @q
@p

p0 ¼ 1
RT

p0 ¼ Cqp
0 ð16:9Þ
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The corrected pressure, density, velocity, and mass flow rate fields are defined as

p ¼ p nð Þ þ p0

q ¼ q� þ q0

v ¼ v� þ v0

_m ¼ _m� þ _m0

ð16:10Þ

and the semi-discretized continuity equation can be written in terms of the cor-
rection fields as
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The second order correction term q0f v
0
f � Sf is usually neglected because it is

considerably smaller than other terms. This approximation does not influence the
convergence rate except during the first few iterations of the solution process. In
addition, the final solution is not affected, since at the state of convergence, the
correction fields vanish.

Using the Rhie-Chow interpolation for v�f and v0f ; _m
�
f and _m0

f are respectively
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where the second order term is neglected. Note the substitution of q0f with Cq; f p0f .
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The underlined term in Eq. (16.14) presents the same difficulties as for the
incompressible algorithm and is usually dropped from the equation. Neglecting this
term, the correction to the mass flow rate becomes

_m0
f ¼ �q�fD

v
frp0f � Sf þ

_m�
f

q�f
� Sf

 !
Cp; f p

0
f ð16:15Þ

where the first term on the right hand side of Eq. (16.15) is similar to that arising in
incompressible flow while the second term is the new density correction contri-
bution. This second term is important as it transforms the pressure correction
equation from an elliptic equation to a hyperbolic one capable of resolving shock
waves that may arise at supersonic and hypersonic speeds. This allows the com-
pressible SIMPLE algorithm to be used for predicting fluid flow at all speeds
without the need for any special preconditioning.

More insight can be gained through a simple normalization procedure whereby

Eq. (16.15) is divided by _m�
f � Sf

� 	
Cp; f

.
q�f yielding a weighting factor of 1 for the

p0f term, and a weighting factor proportional to 1
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number of the flow) for the rp0f term, i.e.,
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For flows at low Mach number values, the rp0 correction term dominates
returning the equation to an elliptic form as in the incompressible case. On the other
hand, for flows at very high Mach number values the p0f correction term can no
longer be neglected giving a hyperbolic character to the correction equation. This
combined behavior allows the prediction of fluid flow at all speeds.

Substitution of Eq. (16.14) in the continuity equation, Eq. (16.11), yields the
compressible form of the pressure correction equation and is written as
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Again the treatment of the underlined term yields the different variants of the
SIMPLE family of algorithms. Dropping the underlined term, the pressure cor-
rection equation for the SIMPLE algorithm is obtained as
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Equation (16.18) can be obtained directly by substituting Eq. (16.15) in Eq. (16.11).
It is worth stressing that the convection-like term came about naturally during

the derivation of the pressure correction equation and its presence is critical for the
ability of the algorithm to resolve flows at all speeds. Moreover, for flows at high
Mach number values, density correction is convected (i.e., exhibiting a hyperbolic
behavior) and the mathematical operator describing this phenomenon is the first
order divergence operator. Thus, contrary to incompressible flows where only the
diffusion-like term is present implying that the pressure correction equation exhibits
an elliptic behavior, pressure correction solutions of the form p0 þ C can no longer
satisfy the equation. This indicates that while for incompressible flows any pressure
value can be set as a boundary condition without affecting the solution, for com-
pressible flows it is important to define the exact value of pressure at the boundaries
because the chosen value will affect the final solution.

It should also be noted that because at convergence the correction field is zero,
the order of the scheme used to discretize the convection-like term is of no con-
sequence on the accuracy of the final results. However, this is not the case for _m�

f

where the use of high order schemes in its evaluation does improve the shock
capturing properties of the algorithm. Thus, to enhance robustness, it is helpful to
use an upwind scheme for the discretization of the convection like term. Further,
neglecting the non-orthogonal contribution of the diffusion-like term as explained in
Chap. 15, the pressure correction equation and its coefficients become
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Following the calculation of the pressure-correction field p′ by solving
Eq. (16.19) the velocity, pressure, density, and mass flow rate fields are corrected
using the following equations:
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Cq; f p
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where kq is the under relaxation factor for density.

16.6 Discretization of The Energy Equation

The discretization of the unsteady, convection, and diffusion terms of the energy
equation, Eq. (16.3), follows the general procedures described in previous chapters
and will not be repeated.

16.6.1 Discretization of the Extra Terms

The focus here will be on the discretization over the control volume C shown in
Fig. (16.1), of the new terms appearing on the right hand side of Eq. (16.3). These
are specific to the energy equation and have not been handled during the discret-
ization of the general scalar equation. Many of the terms are treated as source terms
and evaluated at the centroid of the element during their integration to ensure a
second order accurate discretization.

16.6.1.1 The Specific Heat Term

The discretization of the term involving the specific heat proceeds as follows:
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16.6.1.2 The Substantial Derivative Term

The discretization of the substantial derivative of the pressure term is performed as

Z
Vc

Dp
Dt

dV ¼ Dp
Dt

� ��

C
VC ¼ p�C � p

�
C

Dt
þ u��C

@p
@x

� ��

C
þ v��C

@p
@y

� ��

C
þ w��

C
@p
@z

� ��

C

 �
VC

ð16:25Þ

16.6.1.3 The Dissipation Term

The discretized form of the dissipation term involving the bulk viscosity is obtained as
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16.6.1.4 The Viscous Dissipation Term

The discretization of the viscous dissipation term is performed in a way similar to
the term involving the bulk viscosity and is given byZ
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16.6.1.5 The Source/Sink Term

The term involving the heat source/sink per unit volume is discretized asZ
VC

_qV dV ¼ _qVð ÞCVC ð16:28Þ

The discrete forms of the above terms are substituted into the energy equation to
yield the algebraic form of the energy equation as described next.

16.6.2 The Algebraic Form of the Energy Equation

Assuming a first order Euler scheme for the discretization of the unsteady term and
a high resolution scheme for the discretization of the convection term applied in the
context of a deferred correction approach, the final algebraic form of the energy
equation can be written as
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Similar to other variables, under relaxation of the energy equation is usually
required.
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16.7 The Compressible SIMPLE Algorithm

The various elements of the collocated compressible SIMPLE algorithm are dis-
played in Fig. 16.2 and can be summarized as follows:

1. To compute the solution at time t þ Dt, start with the solution at time t for
pressure, velocity, density, temperature, and mass flow rate fields p nð Þ; v nð Þ; q nð Þ;
T nð Þ, and _m nð Þ, respectively, as the initial guess.
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equal tothe converged solution

yes

advanceintime
set t = t + t
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repeat

repeat

set initial guessm n( ),v n( ), n( ),and p n( )

at time t + t toconverged valuesat timet
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equation forT

correct mf
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Compute *usingtheequationof stateand

mf
* usingtheRhie Chowinterpolation

Fig. 16.2 A flow chart of the SIMPLE algorithm for compressible fluid flow
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2. Solve the momentum equation given by Eq. (16.2) to obtain a new velocity
field v�.

3. Use the equation of state to calculate a new density field q�.
4. Update the mass flow rate at the control volume faces using the Rhie-Chow

interpolation technique (Eq. 16.13) to obtain a momentum satisfying mass flow
rate field _m�.

5. Using the new mass flow rates calculate the coefficients of the pressure cor-
rection equation and solve it (Eq. 16.19) to obtain a pressure correction field p0.

6. Update the pressure, density, and velocity fields at the control volume cen-
troids and the mass flow rate at the control volume faces to obtain
continuity-satisfying fields using Eqs. (16.20)–(16.23).

7. Solve the energy equation to obtain a new temperature field T�.
8. Set v��; _m��; q��; T�, and p� as the initial guess for velocity, mass flow rate,

density, temperature, and pressure.
9. Go back to step 2 and repeat until convergence.

10. Set the solution at time t þ Dt to be equal to the converged solution.
11. Advance to the next time step by setting the current time t to t þ Dt.
12. Go to step 1 and repeat until the last time step is reached.

16.8 Boundary Conditions

Generally, there is no difference in the implementation of boundary conditions for
the momentum equation between incompressible and compressible flow. Therefore
the required modifications in the momentum equation are those discussed in
Chap. 15 and will not be repeated here. However substantial differences do arise
with the pressure correction equation and will form the main subject of this section.
The boundary conditions for the energy equation follow the ones described for a
general scalar variable / and also will not be repeated here (inlet, outlet, Dirichlet,
Van-Neumann, and symmetry conditions).

For a boundary cell, such as the one shown in Fig. 16.3, the continuity equation
is written as

q�C þ q0C � q
�
C

� �
Dt

VC þ
X

f�nb Cð Þ
_m�
f þ _m0

f

� 	
þ ð _m�

b þ _m0
bÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}

boundary face

¼ 0 ð16:31Þ

where the contribution of the boundary face is separately displayed with _m�
b rep-

resenting the boundary mass flux and _m0
b its correction. Moreover, expressing the

Rhie-Chow interpolation at the boundary faces by adopting the same approach that
was used for incompressible flow, the velocity, mass flow rate, and mass flow rate
correction at a boundary face are expressed as
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v�b|{z}
boundary face

¼ v�C � DC rp nð Þ
b �rp nð Þ

C

� 	
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

boundary Rhie�Chow

ð16:32Þ

_m�
b ¼ q nð Þ

b v�C � Sb � q�bD
v
C rp nð Þ

b �rp nð Þ
C

� 	
� Sb ð16:33Þ

_m0
b ¼ �q�bDC p0b � p0C

� �þ _m�
b

q�b

� �
Cq; bp

0
b ð16:34Þ

The only difference between these expressions and those presented in Chap. 15
is in the correction equation of the mass flow rate, which has an additional term
related to density correction. Moreover, there is no difference in the implementation
of boundary conditions at a wall and a symmetry plane between incompressible and
compressible flows. Therefore the modifications to the boundary elements pre-
sented in the previous chapter for wall and symmetry boundary conditions in the
pressure correction equation are applicable here with no need to be repeated.

The boundary conditions left to be discussed here are those applicable at the inlet
and outlet. For compressible flow, the conditions to be imposed are dictated by the
Mach number values. For an inviscid flow, the mathematical type of the equations
changes from elliptic to hyperbolic as the flow changes from subsonic to super-
sonic. Details regarding their implementation are given next.

b

Sb
n

eb
C

boundary
element

boundary
face

Fig. 16.3 A boundary
control volume
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16.8.1 Inlet Boundary Conditions

At the inlet to a domain the flow may be subsonic or supersonic necessitating
different treatment since the flow equations may be either of the elliptic or the
hyperbolic type.

16.8.1.1 Subsonic Flow at Inlet

At subsonic speeds several conditions at inlet to a domain can be imposed. This
include specified velocity, specified static pressure and velocity direction, or
specified stagnation pressure and velocity direction. The last type should be used
when transition to supersonic speed occurs within the domain.

Specified Velocity pb ¼ ?; _mb ¼ ?; vb specifiedð Þ

Unlike incompressible flow, since for compressible flow the density depends on
pressure, the mass flux remains unknown even with a specified velocity at inlet
i:e, _m0

b ¼ q0bv
�
b � Sb 6¼ 0

� �
. At an inlet boundary the coefficient multiplying the

pressure correction p0b is given by

ap
0

b ¼ Cq;b
_m�
b

q�b
ð16:35Þ

For implementation in the pressure correction equation, p0b is expressed in terms
of internal nodes and the coefficients at these nodes modified accordingly. For the
constant profile case (i.e., pb ¼ pC), the aC coefficient is obtained as

ap0
C ¼ VCCq

Dt
þ
X

f�nb Cð Þ

Cq;f

q�f
_m�
f ; 0

��� ���
 !

þ
X

f�nb Cð Þ
q�f Df

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
interior faces contribution

þ Cq;b
_m�
b

q�b|fflfflffl{zfflfflffl}
boundary face contribution

ð16:36Þ

The value of the pressure pb is again obtained by extrapolation from the interior
as explained in the incompressible flow chapter.

Specified Static Pressure and Velocity Direction pb ¼ pspecified ; ev specified;
�

_mb ¼ ?; vb ¼ ?Þ
In the case of a specified static pressure at inlet, pb is known and thus p0b is set to

zero and consequently q0b is also zero. Therefore the implementation is similar to the
incompressible case with the inlet treated as a Dirichlet boundary condition.
Knowing the velocity direction, its magnitude is computed as in the incompressible
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case using Eq. (16.33) leading to an equation similar to Eq. (15.137). The coeffi-
cient of the pressure-correction equation becomes

ap0
C ¼ VCCq

Dt
þ

X
f�nb Cð Þ

Cq; f

q�f
_m�
f ; 0

��� ���
 !

þ
X

f�nb Cð Þ
q�f Df

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
interior faces contribution

þ q�bDC|fflffl{zfflffl}
boundary face contribution

ð16:37Þ

Specified Total Pressure and Velocity Direction ðpo;b ¼ po; specified ; ev specified;
_mb ¼ ?; vb ¼ ?Þ
For this case, the magnitude of the velocity and the pressure at the boundary are

unknown while related through the total pressure equation given by

po; b ¼ pb 1þ c� 1
2

M2
b

� �c= c�1ð Þ
ð16:38Þ

where b refers to the boundary, po; b is the total pressure, pb the static pressure, c the
ratio of specific heats, and Mb the Mach number which is equivalent to

Mb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
vb � vb
cRTb

r
ð16:39Þ

Equation (16.37) can be rearranged to give the static pressure in terms of the
total pressure as

pb ¼ po; b 1þ c� 1
2

_m�
b

� �2
q�b
� �2 ev � nSbð Þ2cRTb

 !�c= c�1ð Þ
ð16:40Þ

where ev is the unit vector in the direction of the velocity vector. Differentiating
Eq. (16.40) with respect to _m�

b gives

dpb
d _m�

b
¼ � c _m�

bpo; b

q�b
� �2 ev � nSbð Þ2cRTb

1þ c� 1
2

_m�
b

� �2
q�b
� �2 ev � nSbð Þ2cRTb

 !� 2c�1ð Þ
c�1ð Þ

ð16:41Þ

Substituting Eq. (16.41) into Eq. (15.163) an equation for pressure correction
function of the mass flux correction is obtained as
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_p0b ¼ � c _m�
bpo;b

q�b
� �2 ev � nSbð Þ2cRTb

1þ c� 1
2

_m�
b

� �2
q�b
� �2 ev � nSbð Þ2cRTb

 !� 2c�1ð Þ
c�1ð Þ

_m0
b

¼ cb _m
0
b ð16:42Þ

Replacing p0b in Eq. (16.34) by its equivalent expression given by Eq. (16.42),
the mass flux correction becomes

_m0
b ¼

q�bDb

1þ q�bDbcb � _m�
b

q�b

� 	
Cq;bcb

p0c ð16:43Þ

The modified boundary cell coefficient is obtained by substituting _m0
b from

Eq. (16.43) in the expanded continuity equation and is given by

ap0
C ¼ VCCq

Dt
þ
X

f�nb Cð Þ

Cq; f

q�f
_m�
f ; 0

��� ���
 !

þ
X

f�nb Cð Þ
q�f Df

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
interior faces contribution

þ q�bDC

1þ q�bDCcb � _m�
b

q�b

� 	
Cq;bcb|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

boundary face contribution

ð16:44Þ

It should be mentioned that the boundary condition for the energy equation at a
subsonic inlet is usually either a specified static temperature Tb or a specified
stagnation temperature To;b. If the static temperature is specified, then this is similar
to a Dirichlet condition. If the stagnation temperature is specified then at each
iteration the value of the static temperature is extracted from the stagnation tem-
perature equation using

To;b ¼ Tb þ vb � vb
2cp

ð16:45Þ

and the obtained value treated as known. Thus a Dirichlet-type boundary condition
is also applied.

16.8.1.2 Supersonic Flow at Inlet

Specified static pressure, velocity, and temperature

pb ¼ pspecified ; vb ¼ vspecified ; T ¼ Tspecified
� �

At a supersonic inlet, values for all variables must be specified (pressure, velocity,
and temperature). This is equivalent to a Dirichlet-type condition implying that

_m0
b ¼ p0b ¼ 0. Therefore the ap0

C coefficient of the boundary cell is found to be
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ap
0

C ¼ VCCq

Dt
þ
X

f�nb Cð Þ

Cq; f

q�f
_m�
f ; 0

��� ���
 !

þ
X

f�nb Cð Þ
q�fDf

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
interior faces contribution

ð16:46Þ

16.8.2 Outlet Boundary Conditions

16.8.2.1 Subsonic Flow at Outlet

Specified Pressure pb ¼ pspecified ; _mb ?; vb ¼ ?
� �

At a subsonic outlet, the pressure is usually prescribed. Therefore the pressure
correction p0b is set to zero while the mass flow rate correction _m0

b is computed as

_m0
b ¼ �q�bDC p0b � p0C

� �þ _m�
b

q�b

� �
Cq;bp

0
b ¼ q�bDCp

0
C ð16:47Þ

Since the velocity v�b is not known, it is customary to assume its direction to be
that of the upwind velocity v�C. The expression of the ac coefficient in the
pressure-correction equation may be written as

ap0
C ¼ VCCq

Dt
þ

X
f�nb Cð Þ

Cq; f

q�f
_m�
f ; 0

��� ���
 !

þ
X

f�nb Cð Þ
q�f Df

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
interior faces contribution

þ q�bDc|ffl{zffl}
boundary face contribution

ð16:48Þ

For the energy equation a zero flux Neumann-type boundary condition is
applied.

Specified Mass Flow Rate _mb ¼ _mspecified ; pb? vb?
� �

For a specified mass flow rate at outlet, _m0
b is zero and is simply dropped from the

pressure correction equation with no modifications required for the coefficients of
the boundary elements. By setting _m0

b to zero in Eq. (16.34), an expression for the
pressure correction at the boundary as a function of the pressure correction at the
boundary cell centroid is obtained as
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p0b ¼
q�bDC

q�bDC � _m�
b

q�b

� 	
Cq;b

p0C ð16:49Þ

allowing the boundary pressure and density to be computed. For the energy
equation a zero flux Neumann-type boundary condition is applied.

16.8.2.2 Supersonic Flow at Outlet

At a supersonic outlet none of the variables should be specified and the values of
pressure, velocity, density, and temperature are extrapolated from the interior of the
domain. Thus both _mb and pb are extrapolated from interior cells. This is equivalent
to applying a Neumann boundary condition on pressure-correction, leading to the
following modified aC coefficient

ap
0
C ¼ VCCq

Dt
þ

X
f � nb Cð Þ

Cq;f

q�f
_m�
f ; 0

��� ���
 !

þ
X

f � nb Cð Þ
q�fDf

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
interior faces contribution

þ _m�
b

q�b

� �
Cq;b|fflfflfflfflfflffl{zfflfflfflfflfflffl}

boundary face contribution

ð16:50Þ

16.9 Computational Pointers

16.9.1 uFVM

For compressible flows a major modification to the algorithm arises in the assembly
of the pressure equation through the inclusion of the convection like term. This is
added to the cfdAssembleMdotTerm shown in Listing 16.1.

   % assemble terms X (for compressible flow)
   %     (mdot_f/density_f)*( rho/ p) P'  
   % where mdot_f is the newly computed mdot_f 

% 
   local_mdot_f = local_FLUXCf_1*(pressure[iElement1]+ Pref) + 
local_FLUXCf_2*(pressure[iElement2]+ Pref) + local_FLUXVf;

%
   local_FLUXCf1 = local_FLUXCf1 +  max(local_mdot_f/
density_f(iFace),0.0)*drhodp_f(iFace);  
   local_FLUXCf2 = local_FLUXCf2 - max(-local_mdot_f/
density_f(iFace),0.0)*drhodp_f(iFace);  
   local_FLUXVf  = local_FLUXVf -(max(local_mdot_f/density_f(iFace),
0.0)*drhodp_f(iFace)*(pressure(iElement1)+ Pref)- max(-local_mdot_f/
density_f(iFace),0.0)*drhodp_f(iFace)*(pressure(iElement2)+ Pref));
   local_FLUXVf   += -local_mdot_f;

Listing 16.1 Script used to assemble the additional terms for the compressible pressure correction
equation
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The other important change is in the treatment of boundary conditions that now
necessitates accounting for a variable density field. For example the supersonic
inlet condition is implemented for the pressure correction equation as shown in
Listing 16.2.

16.9.2 OpenFOAM®

In this section simpleFoam is extended to handle compressible fluid flow at all
speeds. This entails the following modifications to simpleFoam: (i) the addition of
the energy equation to be solved simultaneously with the continuity and momentum
equations, (ii) the use of an equation of state relating density to temperature and
pressure, (iii) and the introduction of the necessary modifications to the pressure
correction equation and to a number of boundary conditions. The resulting code is
denoted simpleFoamCompressible with many of the extensions added in the form
of supplemental include files as shown in Listing 16.3.

   % assemble terms X (for compressible flow)
   %     (mdot_f/density_f)*(?rho/?p) P'  
   % where mdot_f is the newly computed mdot_f 

% 
   local_mdot_f = local_FLUXCf_1*(pressure[iElement1]+ Pref) + 
local_FLUXCf_2*(pressure[iElement2]+ Pref) + local_FLUXVf;

%
   local_FLUXCf1 = local_FLUXCf1 +  max(local_mdot_f/
density_f(iFace),0.0)*drhodp_f(iFace);  
   local_FLUXCf2 = local_FLUXCf2 - max(-local_mdot_f/
density_f(iFace),0.0)*drhodp_f(iFace);  
   local_FLUXVf  = local_FLUXVf -(max(local_mdot_f/density_f(iFace),
0.0)*drhodp_f(iFace)*(pressure(iElement1)+ Pref)- max(-local_mdot_f/
density_f(iFace),0.0)*drhodp_f(iFace)*(pressure(iElement2)+ Pref));
   local_FLUXVf   += -local_mdot_f;

Listing 16.2 Implementation of a supersonic inlet condition
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The upwind.H and gaussConvectionScheme.H are used to force an upwind
discretization on the convective term of the pressure correction equation. The
bound.H class is used to bound variables within certain limits.

The createFields.H now includes the definition of the density field and other
variables and constants related to compressible flow physics. The psiTermo class,
depicted in Listing 16.4, provides access to the thermophysical relations that are
part of the OpenFOAM® library [27], such as the perfect gas law described in
Eq. (16.4).

#include "fvCFD.H"
#include "psiThermo.H"
#include "RASModel.H"
#include "upwind.H"
#include "gaussConvectionScheme.H"
#include "bound.H"
#include "simpleControl.H"
#include "totalPressureCompFvPatchScalarField.H"
#include "totalPressureCorrectorCompFvPatchScalarField.H"
#include "totalVelocityFvPatchVectorField.H"
#include "orthogonalSnGrad.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* * * //

int main(int argc, char *argv[])
{

#   include "setRootCase.H"
#   include "createTime.H"
#   include "createMesh.H"

simpleControl simple(mesh);

#   include "createFields.H"

Listing 16.3 The include files used in simpleFoamCompressible
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(
    psiThermo::New(mesh)
);

Info<< "Calculating field rho\n" << endl;

volScalarField rho
(
    IOobject
    (
        "rho",
        runTime.timeName(),
        mesh,
        IOobject::READ_IF_PRESENT,
        IOobject::AUTO_WRITE
    ),        
    thermo->rho()
);

volScalarField& p = thermo->p();
volScalarField& h = thermo->he();

thermo->correct();

volScalarField gammaGas
(
    IOobject
    (
        "gammaGas",
        runTime.timeName(),
        mesh,
        IOobject::NO_READ,
        IOobject::AUTO_WRITE
    ),
    thermo->Cp() /  thermo->Cv()
); 

volScalarField RGas
(
    IOobject
    (
        "RGas",
        runTime.timeName(),
        mesh,
        IOobject::NO_READ,
        IOobject::AUTO_WRITE
    ),
    thermo->Cp() -  thermo->Cv()
); 

Info<< "Reading thermophysical properties\n" << endl;

autoPtr<psiThermo> thermo

Listing 16.4 An excerpt of the psiTermo class
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The pressure and enthalpy fields are defined in the thermo class, displayed in
Listing 16.5, and accessed as references in createFields.H.

The velocity is defined as in the incompressible version but the mass flux now
includes density in its definition (Listing 16.6).

volScalarField& p = thermo->p();
volScalarField& h = thermo->he();

const volScalarField::GeometricBoundaryField& pbf=p.boundaryField();
wordList pbt = pbf.types();
volScalarField pp
(
    IOobject
    (
        "pp",
        runTime.timeName(),
        mesh,
        IOobject::NO_READ,
        IOobject::AUTO_WRITE
    ),
    mesh,
    dimensionedScalar("zero", p.dimensions(), 0.0),
    pbt
); 

Listing 16.5 Defining the pressure and enthalpy field in thermo class

Info << "Reading field U\n" << endl;
volVectorField U
(
   IOobject
   (
       "U",
       runTime.timeName(),
       mesh,
       IOobject::MUST_READ,
       IOobject::AUTO_WRITE
   ),
   mesh
);
surfaceScalarField mDot
(
   IOobject
   (
       "mDot",
       runTime.timeName(),
       mesh,
       IOobject::READ_IF_PRESENT,
       IOobject::AUTO_WRITE
   ),
   linearInterpolate(rho*U) & mesh.Sf()
);

Listing 16.6 Defining the velocity and mass flux fields
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In compressible flows, setting physical limits on some variables such as density
and pressure can enhance robustness, especially during the first few iterations. This
prevents variables from assuming non-physical values (like negative densities or
pressures). Therefore bounds can be set as part of the case definition, as shown in
Listing 16.7, and read in createFields.H.

The momentum equation is defined with a slightly modified syntax that accounts
for density and thermophysical property relations. The syntax of the linearized
formula is given in Listing 16.8.

The first instruction defines the finite volume discretization of the momentum
equation in a vector form (the three components of the velocity are solved in a
segregated manner despite the vectorial implementation). The system is implicitly
relaxed and then solved with an iterative solver.

Once the momentum equation is solved, a new guess of the velocity field is
obtained. This velocity field does not necessarily satisfy the continuity equation.

dimensionedScalar rhoMax(simple.dict().lookup("rhoMax"));
dimensionedScalar rhoMin(simple.dict().lookup("rhoMin"));

dimensionedScalar pMax(simple.dict().lookup("pMax"));
dimensionedScalar pMin(simple.dict().lookup("pMin"));

Listing 16.7 Setting lower and upper bounds for the density and pressure fields

// Solve the Momentum equation
fvVectorMatrix UEqn
(
       fvm::ddt(rho,U)
     + fvm::div(mDot, U)
     - fvm::laplacian(thermo->mu, U)
);

UEqn.relax();

solve
(
   UEqn == -fvc::grad(p)
);

Listing 16.8 Syntax used to solve the momentum equation
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To enforce mass conservation, assembly of the pressure correction equation is now
required to correct the velocity. Following Eq. (16.19) the syntax used for that
purpose is shown in Listing 16.9.

As for the incompressible case, in order to avoid checker boarding, the mDot
mass flux field is evaluated using the Rhie-Chow interpolation but now taking into
account also the density field, evaluated based on the thermo model as shown in
Listing 16.10.

pp = scalar(0.0)*pp;
pp.correctBoundaryConditions();

surfaceScalarField phid
(
 IOobject
 (

"phid",
    runTime.timeName(),
    mesh,
    IOobject::NO_READ,
    IOobject::NO_WRITE
 ),
   mDot*drhodp/(rhofd)
);

fvMatrix<scalar> ppCompEqn
(
   fvm::ddt(thermo->psi(),pp) +
   fv::gaussConvectionScheme<scalar>
    (
        mesh,
        phid,
        tmp<surfaceInterpolationScheme<scalar> >
        (
            new upwind<scalar>(mesh,phid)
        )
    ).fvmDiv(phid, pp)
 - fvm::laplacian(pDiff, pp)
 + fvc::div(mDot) + fvc::ddt(rho)
)

Listing 16.9 Syntax used to assemble the pressure correction equation
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It is worth mentioning that density is interpolated to faces using an upwind
scheme in order to mimic the hyperbolic behavior of compressible flows.

The pressure correction equation is fully set and is solved using the syntax
displayed in Listing 16.11.

rho = thermo->rho();

Foam::fv::orthogonalSnGrad<scalar> faceGradient(mesh);

surfaceVectorField gradp_avg_f = linearInterpolate(fvc::grad(p));
surfaceVectorField gradp_f = gradp_avg_f - (gradp_avg_f & ed)*ed + 
(faceGradient.snGrad(p))*ed;

surfaceVectorField U_avg_prevIter_f = linearInterpolate(U.prevIter());
surfaceVectorField U_avg_f = linearInterpolate(U);

surfaceScalarField rhofd = upwind<scalar>(mesh,mDot).interpolate(rho);
surfaceScalarField rhof("srho",fvc::interpolate(rho));
surfaceScalarField DUf("srUA",fvc::interpolate(DU,"interpolate((1|
A(U)))"));

volScalarField dt 
(
 IOobject
 (
     "dt",
     runTime.timeName(),
     mesh,
     IOobject::NO_READ,
     IOobject::NO_WRITE
  ),

mesh ,
dimensionedScalar("dt" ,runTime.deltaT().dimensions(), 

runTime.deltaT().value()),
  zeroGradientFvPatchScalarField::typeName
); 
surfaceScalarField dt_f = linearInterpolate(dt);
surfaceScalarField drhodp = linearInterpolate(thermo->psi());

scalar UURF = mesh.equationRelaxationFactor("U");

// Rhie-Chow interplation
mDot = rhof*(
              (U_avg_f & mesh.Sf()) - ( (DUf*( gradp_f - gradp_avg_f)) 
& mesh.Sf() ) 
            );
           + (scalar(1) - UURF)*(mDot.prevIter() - 
( (rhof*U_avg_prevIter_f) & mesh.Sf() ) )
           +    rhof*(DUf/dt_f)*(mDot.prevIter() - 
( (rhof*U_avg_prevIter_f) & mesh.Sf() ) );

Listing 16.10 Calculation of mass fluxes at cell faces using the Rhie-Chow interpolation
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After solving the pressure correction equation, variables that depend on pressure
correction are updated. For the mass flux field this is performed using the syntax in
Listing 16.12, this is similar to the incompressible flux correction.

Where again the flux() function in Listing 16.12 updates the fluxes using directly
the matrix coefficients and cell values. A simplified version of the flux() function is
shown in Listing 16.13.

In Listing 16.13 the correction flux mDotPrime is basically evaluated by per-
forming a loop over the faces using the upper and lower coefficients of the matrix
and multiplying these coefficients with the corresponding cell values.

Finally the velocity, density and pressure at cell centroids are updated using
Eqs. (16.20), (16.21), and (16.22), as shown in Listing 16.14, where the variable
alphaP is the explicit relaxation factor for pressure and density updates kp, neces-
sary for a stable SIMPLE solver.

ppEqn.solve();

Listing 16.11 Syntax for solving the pressure correction equation

mDot += ppEqn.flux();

Listing 16.12 Syntax to update the mass flux field

for (label face=0; face<lowerAddr.size(); face++)
{
    mDotPrime[face] =
        upperCoeffs[face]*pp[upperAddr[face]]
      - lowerCoeffs[face]*pp[lowerAddr[face]];
}

return mDotPrime;

Listing 16.13 A simplified version of the flux( ) function where the flux correction mDotPrime is
computed
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In order to account for compressibility effects, the energy equation is introduced
and the related temperature is calculated. In OpenFOAM®, the energy equation
expressed in terms of specific static enthalpy h ¼ CpT

� �
, given by Eq. (3.61), is

solved as depicted in Listing 16.15.

scalar alphaP = mesh.equationRelaxationFactor("pp");

mDot += ppCompEqn.flux();

p += alphaP*pp;
p.correctBoundaryConditions();

rho += alphaP*pp*thermo->psi();

boundMinMax(p, pMin, pMax);
boundMinMax(rho, rhoMin, rhoMax);

U -= fvc::grad(pp)*DU;
U.correctBoundaryConditions();

Listing 16.14 Update of the velocity and pressure fields at cell centroids

fvScalarMatrix hEqn
(
    fvm::ddt(rho,h)
  + fvm::div(mDot, h) 
  - fvm::laplacian(turbulence->alphaEff(), h)
  + fvm::SuSp(-fvc::div(mDot),h)
 ==

   fvc::div(mDot/fvc::interpolate(rho)*fvc::interpolate(p))
 - p*fvc::div(mDot/fvc::interpolate(rho))
);

hEqn.relax();  
hEqn.solve();

h.correctBoundaryConditions(); 

thermo->correct();

gammaGas =  thermo->Cp()/ thermo->Cv();
gammaGas.correctBoundaryConditions();

RGas =  thermo->Cp() -  thermo->Cv();
RGas.correctBoundaryConditions();

Listing 16.15 Solving the energy equation
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Once the energy equation is solved, the new enthalpy is used to update the
temperature and gas properties (e.g., specific heats).

In addition to the main solver, new total pressure and total temperature
boundary conditions are implemented for subsonic inlet patches, these are often
used boundary conditions for the simulation of compressible flows. The boundary
conditions are defined in the directory “derivedFvPatchFields” and are next pre-
sented. For a better understanding, it may be beneficial to read Chap. 18 prior to
going over the implementation process presented below.

• totalPressureComp: This implements the total pressure condition at subsonic
inlet. For that purpose the updateCoeffs() function is modified as shown in
Listing 16.16, which indicates that after gathering the necessary data from the
solver, the boundary static pressure is computed using Eq. (16.40) and the
obtained values are stored in the defined newp variable.

• totalPressureCorrectorComp: This is also needed with a total inlet pressure
boundary condition. Its role is to deal with the mass flow rate correction at inlet
affecting the diagonal coefficient of the boundary element, as expressed by

 const fvPatchScalarField& TB =
        patch().lookupPatchField<volScalarField, scalar>("T");

    const fvPatchField<scalar>& RB =
        patch().lookupPatchField<volScalarField, scalar>("RGas");

    const fvPatchField<scalar>& gammaB =
        patch().lookupPatchField<volScalarField, scalar>("gammaGas");

const fvsPatchField<scalar>&  sphi = 
        patch().lookupPatchField<surfaceScalarField, scalar>("mDot");

 const fvPatchField<scalar>&  srho = 
    patch().lookupPatchField<volScalarField, scalar>("rho");

const fvPatchField<vector>& UF = 
patch().lookupPatchField<volVectorField, vector>("U");    

    scalarField newp = max(min(p0_/pow((scalar(1.0) + (gammaB - 
scalar(1.0) )*(sqr(sphi)
                                /(sqr(srho) * sqr(patch().magSf())))/
(scalar(2.0) * gammaB * RB * TB  ))
               , gammaB/(gammaB - scalar(1.0))), p0_),SMALL);

    operator==
    (
        newp
    );

Listing 16.16 Modified updateCoeffs() function for implementing the total pressure boundary
condition at inlet
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Eqs. (16.43) and (16.44). In the implementation, the contributions to the coef-
ficients are reset to zero, as can be inferred from Listing 16.17, except for the
gradientInternalCoeffs() that is required to return the correct values. This ensures
that for both the divergence and laplacian operator one boundary condition is
applied.

tmp<Field<scalar> > 
totalPressureCorrectorCompFvPatchScalarField::valueInternalCoeffs
(
    const tmp<scalarField>&
) const
{
    return tmp<Field<scalar> >
    (
        new Field<scalar>(this->size(), pTraits<scalar>::zero)
    );
}

tmp<Field<scalar> > 
totalPressureCorrectorCompFvPatchScalarField::gradientBoundaryCoeffs() 
const
{
    return tmp<Field<scalar> >
    (
        new Field<scalar>(this->size(), pTraits<scalar>::zero)
    );
}

tmp<Field<scalar> > 
totalPressureCorrectorCompFvPatchScalarField::valueBoundaryCoeffs
(
    const tmp<scalarField>&
) const
{

   return tmp<Field<scalar> >
   (
       new Field<scalar>(this->size(), pTraits<scalar>::zero)
   );

}

tmp<Field<scalar> > 
totalPressureCorrectorCompFvPatchScalarField::gradientInternalCoeffs() 
const
{

const fvsPatchField<scalar>&  srUA = 
   patch().lookupPatchField<surfaceScalarField, scalar>("srUA");

const fvPatchField<scalar>&  srho = 
   patch().lookupPatchField<volScalarField, scalar>("rho");

   return( deltaM()/(-srUA*patch().magSf()*srho) ); //to remove the 
laplacian operator (see gaussLaplacianScheme)
}

Listing 16.17 Script used to reset the diagonal coefficients and to return only the diffusion
contribution or a total pressure boundary condition at inlet
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The modified diagonal coefficient of the pressure correction equation for a
boundary element is computed in Listing 16.18. Here the function deltaM()
implements Eq. (16.44) as is, while the diffusion term “(-srUA*patch().magSf()
*srho)” is removed from the coefficient of the pressure correction equation, as
defined by the laplacian operator (see Chap. 8, computational pointers).

• totalTemp: This function implements for the energy equation the total tem-
perature boundary condition at a subsonic inlet. The idea is to impose a static
temperature as a Dirichlet boundary condition using Eq. (16.45). For that pur-
pose the updateCoeffs() function is modified as in Listing 16.19.

Field<scalar> totalPressureCorrectorCompFvPatchScalarField::deltaM() 
const
{

 const fvPatchField<scalar>&  T = 
    patch().lookupPatchField<volScalarField, scalar>("T");

 const fvPatchField<scalar>&  srho = 
    patch().lookupPatchField<volScalarField, scalar>("rho");

const fvPatchField<scalar>&  RB = 
    patch().lookupPatchField<volScalarField, scalar>("RGas");

const fvsPatchField<scalar>&  srUA = 
    patch().lookupPatchField<surfaceScalarField, scalar>("srUA");

const fvsPatchField<scalar>&  sphi = 
    patch().lookupPatchField<surfaceScalarField, scalar>("mDot");

    scalarField Dp = patch().magSf()*patch().deltaCoeffs()*srUA;

    scalarField coeff = srho*Dp/(scalar(1.0) + srho*Dp*Cu() - (sphi/
srho)*Cu()/(RB*T));

return (coeff); 
}

Listing 16.18 Script used to modify the diagonal coefficient of the boundary element for a total
pressure boundary condition at inlet
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At each iteration the temperature value is updated based on the inlet total
temperature and the boundary velocity.

• totalVelocity: This function, described in Listing 16.20, implements the updates
to the velocity field required with total conditions applied at a subsonic inlet. For
that purpose a Dirichlet boundary condition is used, with velocity values iter-
atively computed based on the calculated fluxes “mDot” at the boundary itself.
The algorithm is based on grabbing the flux field “mDot” (updated with new
values after solving the pressure correction equation by invoking the “flux()”
function) and dividing the flux by the face area and the corresponding density.

   const fvPatchField<vector>& Up =
       patch().lookupPatchField<volVectorField, vector>("U");

   const fvPatchField<scalar>& gammaB =
       patch().lookupPatchField<volScalarField, scalar>("gammaGas");

   scalarField gM1ByG = (gammaB - 1.0)/gammaB;

   const fvPatchScalarField& TB =
       patch().lookupPatchField<volScalarField, scalar>("T");

   const fvPatchField<scalar>& RB =
       patch().lookupPatchField<volScalarField, scalar>("RGas");

   scalarField psip = scalar(1.0)/(RB * TB);

   operator==
   (
       T0_/(1.0 + 0.5*psip*gM1ByG*magSqr(Up)) 
   );

Listing 16.19 Modified updateCoeffs() function for implementing the total temperature boundary
condition at a subsonic inlet

const fvsPatchField<scalar>&  sphi = 
        patch().lookupPatchField<surfaceScalarField, scalar>("mDot");

    const fvPatchField<scalar>& rhop =
        patch().lookupPatchField<volScalarField, scalar>("rho");

   vectorField n = patch().nf();
   scalarField ndmagS = (n & inletDir())*patch().magSf();

   scalarField clip = neg(sphi);

   scalarField newvel = (sphi*clip)/(rhop*ndmagS);

   operator==(inletDir()*newvel); 
   );

Listing 16.20 Updating the velocity at a subsonic inlet for a total pressure boundary condition
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Additionally, a clipping variable is introduced in order to prevent any “back-
flow” at the inlet. Here the “clip” variable may assume either a value of zero or one.
In fact the “neg” function returns 1 and 0 for negative and positive values,
respectively, preventing outward velocities to be accepted. On the other hand, the
“inletDir” variable gives the velocity direction at inlet, as defined by the user.

16.10 Closure

In this chapter the incompressible segregated pressure based approach developed in
the previous chapter was extended to handle compressible fluid flow at all speeds.
This involved modifying the pressure correction equation to include a convection-
like term that changes its type from elliptic to hyperbolic. It also required alterations
to the momentum equations, the solution of the energy equation, as well as the
addition of an equation of state. Just as critical, are the special boundary conditions
needed in the simulation of compressible flows. A number of boundary conditions
were presented as well as some implementation details.

The needed modifications to the base incompressible code represent a relatively
small change to the bulk of any code and yet allow a drastic extension of its
capabilities. The next chapter will present the additional techniques needed for
dealing with the time averaged Navier-Stokes equations required for solving tur-
bulent flow problems.

16.11 Exercises

Exercise 1 A portion of a gas-supply system is shown in Fig. 16.4. The mass flow
rate _m in a pipe section is given by

_m ¼ qCDp

where Dp is the pressure drop over the length of the pipe section, q is the gas
density, and C is the gas conductance. The following data is known:

p1 ¼ 400; p2 ¼ 350

_mF ¼ 25

CA ¼ CC ¼ 1:2;CB ¼ 1:4;CD ¼ 1:6;CE ¼ 1:8

with the density related to the pressure via p ¼ qR0 with R0 ¼ 2000.
If the direction of the flow is as shown in the figure, find p3; p4; p5; _mA; _mB;

_mC; _mD and _mE using the following procedure:
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• Start with a guess for p3; p4; and p5.
• Compute _m� values based on the guessed pressures and densities.
• Construct the pressure-correction equations and solve for p03; p

0
4 and p05.

• Update the pressures and the _m� values

Do you need to iterate? Why?

Exercise 2 Consider the flow of an ideal gas in a converging nozzle shown in
Fig. 16.5, where each of the control volumes has Dx ¼ 0:5. The area of the various
surfaces are Abi ¼ 3; Aw ¼ 2:3; Ae ¼ 1:6; Abo ¼ 0:9 with R ¼ 2078 and c ¼ 1:4.

The variable area flow is assumed to be one-dimensional and isentropic. At inlet
the total pressure is po;i ¼ 100701:8 Pa and the stagnation temperature is
To;i ¼ 303K. At exit the static pressure is pe ¼ 105 kPa. Setup the momentum and
pressure correction equations for the three control volumes and obtain the values of
the velocity, pressure, density, and temperature starting with uniform fields of
values M ¼ 0:1 M is the Mach numberð Þ; T ¼ 290K, and p ¼ 105 Pa. Perform
three iterations. Note that there is no need to solve the energy equation as the
temperature field can be extracted from the constant stagnation temperature
condition.
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Fig. 16.5 Converging nozzle
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Fig. 16.4 A portion of a gas
supply system
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Exercise 3 Consider the flow of an ideal gas in a diverging nozzle shown in
Fig. 16.6, where each of the control volumes has Dx ¼ 0:5. The area of the various
surfaces are Abi ¼ 0:9; Aw ¼ 1:6; Ae ¼ 2:3; Abo ¼ 3 with R ¼ 2078 and c ¼ 1:4.

u, p

W C E
mf

ub , pb
b

ewb
i b

o

Fig. 16.6 Diverging nozzle

The variable area flow is assumed to be one-dimensional and isentropic. At inlet
the total pressure is pi ¼ 1bar, the Mach number is Mi ¼ 1:2, and the temperature
is Ti ¼ 303K. At exit the flow remains supersonic. Setup the momentum and
pressure correction equations for the three control volumes and obtain the values of
the velocity, pressure, density, and temperature starting with uniform fields of
valuesM ¼ 1:2; T ¼ 303K, and p ¼ 1bar. Perform three iterations. Note that there
is no need to solve the energy equation as the temperature field can be extracted
from the constant stagnation temperature condition.

Exercise 4 (OpenFOAM®)
Define in the simpleFoamCompressible solver a new variable for the local Mach
number to be visualized during simulation.

Exercise 5 (OpenFOAM®)
Modify in the totalPressureCorrectorComp boundary condition, the way
Eq. (16.44) is imposed, using now the valueInternalCoeffs() function while reset-
ting the gradientInternalCoeffs(). (Hint: consult Chaps. 11 and 19)

Exercise 6 (OpenFOAM®)
Check the rhoSimpleFoam solver that can be found in $FOAM_SRC/../
applications/solvers/compressible/rhoSimpleFoam/pEqn.C and compare it with the
algorithm described in this chapter.

Exercise 7 (OpenFOAM®)
Develop a compressible PISO algorithm and implement it starting with the
simpleFoamCompressible code described in this chapter.

References

1. Harlow FH, Amsden AA (1968) Numerical calculation of almost incompressible flow.
J Comput Phys 3:80–93

2. Harlow FH, Amsden AA (1971) A numerical fluid dynamics calculation method for all flow
speeds. J Comput Phys 8(2):197–213

16.11 Exercises 689

http://dx.doi.org/10.1007/978-3-319-16874-6_11
http://dx.doi.org/10.1007/978-3-319-16874-6_19


3. Patankar SV (1971) Calculation of unsteady compressible flows involving shocks. Mechanical
Engineering Department, Imperial College, Report UF/TN/A/4

4. Issa RI, Lockwood FC (1977) On the prediction of two-dimensional supersonic viscous
interactions near walls. AIAA J 15:182–188

5. Hah C (1984) A Navier-Stokes analysis of three-dimensional turbulent flows inside turbine
blade rows at design and off-design conditions. ASME J Eng Gas Turbines Power 106:421–
429

6. Hah C (1986) Navier-Stokes calculation of three-dimensional compressible flow across a
cascade of airfoils with an implicit relaxation method. AIAA Paper 86-0555

7. Issa RI, Gosman D, Watkins A (1986) The computation of compressible and incompressible
recirculating flows by a non-iterative implicit scheme. J Comput Phys 62:66–82

8. Karki KC (1986) A calculation procedure for viscous flows at all speeds in complex
geometries. Ph.D. thesis, Department of Mechanical Engineering, University of Minnesota

9. Van Doormaal JP, Turan A, Raithby GD (1987) Evaluation of new techniques for the
calculations of internal recirculating flows. AIAA Paper 87-0057

10. Rhie CM, Stowers ST (1987) Navier-Stokes analysis for high speed flows using a pressure
correction algorithm. AIAA Paper 87-1980

11. Van Doormaal JP (1985) Numerical methods for the solution of incompressible and
compressible fluid flows. Ph.D. Thesis, University of Waterloo, Ontario, Canada

12. Van Doormaal JP, Raithby GF, McDonald BD (1987) The segregated approach to predicting
viscous compressible fluid flows. ASME J Turbomach 109:268–277

13. Karki KC, Patankar SV (1989) Pressure based calculation procedure for viscous flows at all
speeds in arbitrary configurations. AIAA J 27:1167–1174

14. Demirdzic I, Issa RI, Lilek Z (1990) Solution method for viscous flows at all speeds in
complex domains. In Wesseling P (ed) Notes on numerical fluid mechanics, vol 29, Vieweg,
Braunschweig

15. Demirdzic I, Lilek Z, Peric M (1993) A collocated finite volume method for predicting flows
at all speeds. Int J Numer Meth Fluids 16:1029–1050

16. Moukalled F, Darwish M (2000) A unified formulation of the segregated class of algorithms
for fluid flow at all speeds. Numer Heat Transf Part B: Fundam 37:103–139

17. Rhie CM (1986) A pressure based Navier-Stokes solver using the multigrid method. AIAA
paper 86-0207

18. Moukalled F, Darwish M (2001) A high resolution pressure-based algorithm for fluid flow at
all-speeds. J Comput Phys 169(1):101–133

19. Turkel IE (1987) Preconditioning methods for solving the incompressible and low speed
compressible equations. J Comput Phys 72:277–298

20. Turkel IE, Vatsa VN, Radespiel R (1996) Preconditioning methods for low speed flows. AIAA
Paper 96-2460, Washington

21. Merkle CL, Sullivan JY, Buelow PEO, Venkateswaran S (1998) Computation of flows with
arbitrary equations of state. AIAA J 36(4):515–521

22. Moukalled F, Darwish M (2006) Pressure based algorithms for single-fluid and multifluid
flows. In: Minkowycz WJ, Sparrow EM, Murthy JY (eds) Handbook of numerical heat
transfer, 2nd edn. Wiley, pp 325–367

23. Patankar SV (1980) Numerical heat transfer and fluid flow. Hemisphere, NewYork
24. Nerinckx K, Vierendeels J, Dick E (2005) A pressure-correction algorithm with mach-uniform

efficiency and accuracy. Int J Numer Meth Fluids 47:1205–1211
25. Nerinckx K, Vierendeels J, Dick E (2006) A mach-uniform pressure-correction algorithm with

AUSM + Flux definitions. Int J Numer Meth Heat Fluid Flow 16(6):718–739
26. Karimian SMH, Schneider GE (1995) Pressure-based control-volume finite element method

for flow at all speeds. AIAA J 33(9):1611–1618
27. OpenFOAM, 2015 Version 2.3.x. http://www.openfoam.org

690 16 Fluid Flow Computation: Compressible Flows

http://www.openfoam.org

	16 Fluid Flow Computation: Compressible Flows
	Abstract
	16.1 Historical
	16.2 Introduction
	16.3 The Conservation Equations
	16.4 Discretization of the Momentum Equation
	16.5 The Pressure Correction Equation
	16.6 Discretization of The Energy Equation
	16.6.1 Discretization of the Extra Terms
	16.6.1.1 The Specific Heat Term
	16.6.1.2 The Substantial Derivative Term
	16.6.1.3 The Dissipation Term
	16.6.1.4 The Viscous Dissipation Term
	16.6.1.5 The Source/Sink Term

	16.6.2 The Algebraic Form of the Energy Equation

	16.7 The Compressible SIMPLE Algorithm
	16.8 Boundary Conditions
	16.8.1 Inlet Boundary Conditions
	16.8.1.1 Subsonic Flow at Inlet
	16.8.1.2 Supersonic Flow at Inlet

	16.8.2 Outlet Boundary Conditions
	16.8.2.1 Subsonic Flow at Outlet
	16.8.2.2 Supersonic Flow at Outlet


	16.9 Computational Pointers
	16.9.1 uFVM
	16.9.2 OpenFOAM

	16.10 Closure
	16.11 Exercises
	References


