
Chapter 15
Fluid Flow Computation: Incompressible
Flows

Abstract In previous chapters the procedure for discretizing and solving the
general transport equation for the variable / in the presence of a known velocity
field was formulated. In general, the velocity field is not known and has to be
computed by solving the set of Navier-Stokes equations. For incompressible flows
this task is complicated by the strong coupling that exist between pressure and
velocity and by the fact that pressure does not appear as a primary variable in either
the momentum or continuity equations. The focus of this chapter is on presenting a
method that addresses these two issues, and computes the flow field for incom-
pressible fluid flows. This is accomplished initially on a one dimensional staggered
grid, then on a collocated one dimensional grid and finally on a collocated three
dimensional unstructured grid. In addition to fully deriving the SIMPLE,
SIMPLEC, PRIME and PISO algorithms, the Rhie-Chow interpolation and its
extension to transient, relaxation and body force terms are clearly formulated.
Finally, the implementation details for a number of frequently encountered
boundary conditions are presented.

15.1 The Main Difficulty

The general conservation equation dealt with in previous chapters can be reformed
into an equation similar to the continuity and momentum equations. Yet the
numerical techniques presented up till now are not enough to allow for the reso-
lution of the Navier-Stokes equations. Solving general fluid flows requires an
algorithm [1] that can deal with the pressure velocity coupling. To understand this
issue, the continuity and momentum equations are reproduced below.

© Springer International Publishing Switzerland 2016
F. Moukalled et al., The Finite Volume Method in Computational Fluid Dynamics,
Fluid Mechanics and Its Applications 113, DOI 10.1007/978-3-319-16874-6_15

561

@q
@t
þr � qvð Þ ¼ 0 ð15:1Þ

@

@t
qv½ � þ r � qvvgf ¼ �rpþr � l rvþ rvð ÞT

h io
þ fb

n
ð15:2Þ

That Eqs. (15.1) and (15.2) are nonlinear is not by itself an unsurmountable
difficulty, since such a problem is usually handled by adopting an iterative
approach. Moreover, Eq. (15.2) is a vector equation, which when written in terms of
its components results in a system of scalar equations that can be solved sequen-
tially. Furthermore, the stress tensor can be reformulated into a diffusion-like term
and treated implicitly, with its second part (i.e., the transpose of the velocity gra-
dient) evaluated explicitly based on previous iteration values and added to the
source. The main issue that cannot be addressed directly with the numerics of the
general scalar equation, is the unavailability of an explicit equation for computing
the pressure field that appears in the momentum equation.

A review of Eqs. (15.1) and (15.2) reveals that while the velocity field can be
computed using the momentum equation, the pressure field appearing in the
momentum equation cannot be computed directly from the continuity equation.
This strong yet implicit coupling can be made more evident by rewriting the set of
equations in a matrix form as

Au ¼ F BT

B 0

� �
v
P

� �
¼ fb

0

� �
: ð15:3Þ

In this form, Eq. (15.3) shows a zero diagonal block in the system, which is a
characteristic of saddle point problems, indicating that it cannot sustain the solution
of the pressure and velocity fields by any iterative mean. Consequently, an equation
for pressure is required and should be derived.

One approach is to simply reformulate the system of momentum and continuity
equations by decomposing matrix A into a lower (L) and an upper (U) triangular
matrices as

A ¼ F BT

B 0

� �
¼ F 0

B �BF�1BT

� �
I F�1BT

0 I

� �
¼ LU ð15:4Þ

where the term −BF−1BT is the Schur complement matrix.
This is in essence the approach that needs to be followed in order to iteratively

solve the Navier-Stokes equations. This technique is embodied in the classical
segregated SIMPLE (Semi Implicit Method for Pressure Linked Equations) algo-
rithm of Patankar and Spalding [1–3].

The solution procedure is based on reformulating the Navier-Stokes equations in
terms of a momentum and a pressure equation, which are then discretized and
solved sequentially. The pressure equation is constructed by combining the semi-
discretized momentum and continuity equations (approximation of the Schur
complement matrix).

562 15 Fluid Flow Computation: Incompressible Flows

The algorithm is driven by a Picard type iterative procedure during which the
momentum equation is solved using the pressure field of the previous iteration. The
resulting velocity field conserves momentum but not necessarily mass. This
velocity field is then used to construct the pressure equation whose solution is used
to correct both the pressure and velocity fields so as to enforce mass conservation.
A new iteration is then started and the sequence is repeated until the velocity and
pressure fields satisfy both mass and momentum conservation.

This algorithm can be described in matrix form as

I D�1BT

0 I

� �
v
p

� �
¼ v�

p�

� �
ð15:5Þ

followed by an update to the velocity field using

F 0
B �BD�1BT

� �
v�

p�

� �
¼ fb

0

� �
ð15:6Þ

where in Eqs. (15.5) and (15.6) F−1 is approximated by its inverse diagonal, D−1,
and the superscript (*) refers to intermediate values at the current iteration.
The steps required are summarized as follows:

• Solve: Fv* = fb
• Solve: −BD−1BTp* = −Bv*

• Update: v = v* − D−1BTp*

• Update: p = p*

This kind of splitting is similar to that used in the SIMPLE family of algorithms,
which is the subject of this chapter.

15.2 A Preliminary Derivation

The difficulties faced in developing a solution algorithm for incompressible flow
problems will be highlighted by performing the discretization in a one dimensional
space over the uniform grid displayed in Fig. 15.1. For simplicity, the flow is
assumed to be steady. The simplified continuity and momentum equations (written
in conservative form) are given by

@ quð Þ
@x
¼ 0 ð15:7Þ

@ quuð Þ
@x

¼ @

@x
l
@u
@x

� �
� @p

@x
ð15:8Þ

15.2 A Preliminary Derivation 563

15.2.1 Discretization of the Momentum Equation

The discretization of the momentum equation starts by integrating Eq. (15.8) over
element C shown in Fig. 15.1 to yieldZ

VC

@ quuð Þ
@x

dV¼
Z
VC

@

@x
l
@u
@x

� �
dV �

Z
VC

@p
@x

dV ð15:9Þ

The volume integrals of the convection and diffusion terms in Eq. (15.9) are then
transformed into surface integrals by invoking the divergence theorem to giveZ

@VC

quuð Þdy ¼
Z
@VC

l
@u
@x

dy�
Z
VC

@p
@x

dV ð15:10Þ

Representing the surface integrals by summation of fluxes over the faces of the
element, and using a single Gaussian point for the face integrals, the
semi-discretized forms of the left and right hand sides of Eq. (15.8) become

quDyð Þe|fflfflfflffl{zfflfflfflffl}
_me

ue þ� quDyð Þw|fflfflfflfflfflffl{zfflfflfflfflfflffl}
_mw

uw ¼ l
@u
@x

Dy

� �
e
� l

@u
@x

Dy

� �
w
�
Z
VC

@p
@x

dV ð15:11Þ

which can be rewritten as

_meue þ _mwuw|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Convection

� l
@u
@x

Dy

� �
e
� l

@u
@x

Dy

� �
w

� �
|ffl{zffl}

Diffusion

¼ �
Z
VC

@p
@x

dV ð15:12Þ

EEECWWW

u
WW

u
W

u
C

u
E

u
EE

w e

x
ex

w

x
C

y
C

Fig. 15.1 One dimensional domain

564 15 Fluid Flow Computation: Incompressible Flows

The convection and diffusion terms can be discretized using any of the tech-
niques described in previous chapters to yield an algebraic equation of the form

auCuC þ
X

F�NB Cð Þ
auFuF
� � ¼ buC�

Z
VC

@p
@x

dV ð15:13Þ

The discretization of the pressure term is deferred till after the discretization of
the continuity equation.

15.2.2 Discretization of the Continuity Equation

The discretized form of the continuity equation is obtained by integrating Eq. (15.7)
over element C displayed in Fig. 15.1 to giveZ

VC

@ quð Þ
@x

dV ¼ 0 ð15:14Þ

Again making use of the divergence theorem to transform the volume integral
into a surface integral and then into summation of fluxes over the faces of the
element, the discrete form of the continuity equation is obtained asX

f�nbðCÞ
ðquDyÞf ¼ ðquDyÞe � ðquDyÞw ¼ 0 ð15:15Þ

or X
f�nbðCÞ

_mf ¼ _me þ _mw ¼ 0 ð15:16Þ

15.2.3 The Checkerboard Problem

The discretization of the pressure term may be accomplished by adopting either of
the following two approaches. In the first approach, the volume integral is com-
puted via a single Gaussian integration point resulting inZ

VC

@p
@x

dV ¼ @p
@x

� �
C
VC ð15:17Þ

15.2 A Preliminary Derivation 565

Using a central difference scheme, the discretized form of Eq. (15.17) is obtained
as Z

VC

@p
@x

dV ¼ pE � pW
2Dx

VC ð15:18Þ

In the second approach, the volume integral of the pressure gradient term is
transformed into a surface integral such thatZ

VC

@p
@x

dV ¼
Z
@VC

p dy ð15:19Þ

Rewriting the surface integral as a summation of fluxes over the faces of the
element, Eq. (15.19) becomesZ

VC

@p
@x

dV ¼
Z
@VC

p dy ¼ peDye � pwDyw ¼ pe � pwð ÞDy ¼ pe � pwð ÞVC

Dx
ð15:20Þ

Selecting a linear interpolation profile for the variation of pressure, the pressure
gradient term can be rewritten as a function of pressure values at the main grid
points asZ

VC

@p
@x

dV ¼ 1
2

pE þ pCð Þ � 1
2

pC þ pWð Þ
� �

VC

Dx
¼ pE � pW

2Dx
VC ð15:21Þ

Thus either approach leads to the same expression involving the pressure dif-
ference between the alternating points E and W.

In a similar way, using a linear interpolation profile and noticing that the density
is constant and ðDyÞe ¼ ðDyÞw ¼ ðDyÞC, the continuity equation can be expressed
as

uE � uW ¼ 0 ð15:22Þ

which also relates the velocity at two alternating grid points.
In Eq. (15.21) the pressure gradient term in element C depends on the values of

pressure at the two alternating, not consecutive, grid points straddling the element.
The same is true for the continuity equation, which enforces conservation only for
alternating velocity elements. This implies that non-physical zigzag (or checkerboard)
pressure and velocityfields, like the ones shown in Fig. 15.2,will be sensed as uniform
fields by the numerical scheme.

566 15 Fluid Flow Computation: Incompressible Flows

For the pressure and velocity values shown in Fig. 15.2, the pressure gradient at
points W, C, and E are found to beZ

VW

@p
@x

dV¼ ðpC � pWW Þ VW

2DxW
¼ ð10� 10Þ VW

2DxW
¼ 0

Z
VC

@p
@x

dV ¼ ðpE � pW Þ VC

2DxC
¼ ð�100þ 100Þ VC

2DxC
¼ 0

Z
VE

@p
@x

dV ¼ ðpEE � pCÞ VE

2DxE
¼ ð10� 10Þ VE

2DxE
¼ 0

and the continuity equation seems to be enforced for each element sinceZ
VW

@u
@x

dV¼ ðuC � uWW Þ VW

2DxW
¼ ð1� 1Þ VW

2DxW
¼ 0

Z
VC

@u
@x

dV ¼ ðuE � uW Þ VC

2DxC
¼ ð10� 10Þ VC

2DxC
¼ 0

Z
VE

@u
@x

dV ¼ ðuEE � uCÞ VE

2DxE
¼ ð1� 1Þ VE

2DxE
¼ 0

In multi dimensional situations a similar non-physical behavior can arise even if it is
harder to visualize. This sets the ground for the next step that presents one approach
to resolve this problem.

15.2.4 The Staggered Grid

The culprit in the previous formulation is the uncoupling between the pressure and
velocity fields. Coupling can be enforced if the different variables are stored at

ew

10 -100 10 -100 10p:

1 10 1 10 1u:

continuity

gradient

WW W C E EE

Fig. 15.2 A checkerboard
pressure and velocity fields

15.2 A Preliminary Derivation 567

staggered locations such that no interpolation is needed to calculate the pressure
gradient in the momentum equation and the velocity field in the continuity equation.
Such a staggered grid is shown in Fig. 15.3a, b. In the staggered grid the velocity
field is stored at cell faces (Fig. 15.3a), while pressure and all other variables are
stored at cell centroids (Fig. 15.3b).

With this formulation, the discretized continuity equation for element C becomesX
f�nbðCÞ

_mf ¼ _me þ _mw ¼ 0 or ue � uw ¼ 0 ð15:23Þ

with no need for interpolation as the velocity values are available at the e and
w locations. Moreover, the momentum equation is integrated over elements similar
to element e resulting in the following discretized momentum equation:

aueue þ
X

f�NBðeÞ
auf uf ¼ bue � VeðrpÞe ¼ bue � Ve

pE � pC
dxe

ð15:24Þ

The pressure gradient is related to values at the consecutive grid points strad-
dling the element face with no interpolation needed. Therefore checkerboard
pressure and velocity field solutions are inadmissible as they will be easily detected
and eliminated by the numerical method.

(a)

(b)

WW W C E EE

u
e

u
w

w e

x
e

x
w

x
C

y
C

u
e y

CWW W C EE

u
w

w e

x
e

x
w

x
C

E

Fig. 15.3 An element for a the momentum equation and b the continuity equation in a one
dimensional staggered grid arrangement

568 15 Fluid Flow Computation: Incompressible Flows

15.2.5 The Pressure Correction Equation

The derivations presented next are based on the work of Patankar and Spalding [2, 3],
who developed the initial implementation of the SIMPLE (Semi Implicit Method for
Pressure Linked Equations) algorithm.

Starting with the continuity and momentum equations given respectively by
(Fig. 15.3) X

f�nbðCÞ
_mf ¼ 0 ð15:25Þ

aueue þ
X

f�NBðeÞ
auf uf ¼ bue � Ve

@p
@x

� �
e

ð15:26Þ

the solution proceeds by providing an initial guess for the velocity and pressure
fields. Denoting the initial guess or the solution at the starts of any iteration with a
superscript (n), then the tentative velocity and pressure fields are given by u(n) and
p(n). At any iteration, solving the momentum equation first for the velocity field, the
solution obtained is denoted by a superscript * as it is not the final solution at the
current iteration. Thus, the momentum equation satisfies

aueu
�
e þ

X
f�NBðeÞ

auf u
�
f ¼ bue � Ve

@pðnÞ

@x

� �
e

ð15:27Þ

where the pressure field is still based on values from the previous iteration. The
computed velocity field u* satisfies the momentum equation but not necessarily the
continuity equation, since the pressure field is not exact. Therefore a correction is
sought to ensure that the velocity (or the mass flow rate) and pressure fields satisfy
the continuity equation.

Denoting the correction fields with a superscript prime, i.e., u0; p0ð Þ, then the
sought after velocity and pressure are given by

u ¼ u� þ u0

p ¼ p� þ p0 ð15:28Þ

Note that the mass flow rate at cell faces will also be corrected according to

_mf ¼ _m�f þ qu0Sxf
¼ _m�f þ m0f

ð15:29Þ

15.2 A Preliminary Derivation 569

such that the exact mass flow rate satisfies the continuity equation, i.e.,

_me þ _mw ¼ _m�e þ _m0e þ _m�w þ _m0w ¼ 0 ð15:30Þ

which can be rewritten as

_m0e þ _m0w ¼ � _m�e � _m�w ð15:31Þ

This is an interesting form of the continuity equation showing that once the
computed mass flow rate reaches the exact solution and satisfies the continuity
equation, then the RHS becomes zero leading to a zero correction field. Thus it is
the mass conservation error of the current fields that drives the correction field. The
mass flow rates and mass flow rate corrections at an element faces are given by

_me ¼ qv�e � Se ¼ qu�eS
x
e ¼ qu�eDye

_mw ¼ qv�w � Sw ¼ qu�wS
x
w ¼ �qu�wDyw

ð15:32Þ

and

_m0e ¼ qv0e � Se ¼ qu0eS
x
e ¼ qu0eDye

_m0w ¼ qv0w � Sw ¼ qu0wS
x
w ¼ �qu0wDyw

ð15:33Þ

where in Eqs. (15.32) and (15.33) the fact that Sxe ¼ Dye and Sxw ¼ �Dyw has been
used.

The pressure field does not appear in Eq. (15.31) and to bring it into the
equation, the discrete form of the momentum equation is used. The process starts by
rewriting Eq. (15.26) in a more compact form as

ue þ HeðuÞ ¼ Bu
e � Du

e
@p
@x

� �
e

ð15:34Þ

where

HeðuÞ ¼
X

f�NBðeÞ

auf
aue
uf Bu

e ¼
bue
aue

and Du
e ¼

Ve

aue
ð15:35Þ

For the case of the computed velocity field, the above equation is written as

u�e þ Heðu�Þ ¼ Bu
e � Du

e
@pðnÞ

@x

� �
e

ð15:36Þ

Subtracting the computed momentum equation, Eq. (15.36), from the exact one,
Eq. (15.34), an equation for the correction field is obtained as

570 15 Fluid Flow Computation: Incompressible Flows

u0e þ Heðu0Þ ¼ �Du
e

@p0

@x

� �
e

ð15:37Þ

A similar approach is used for the w face yielding

u0w þ Hwðu0Þ ¼ �Du
w

@p0

@x

� �
w

ð15:38Þ

Substituting Eq. (15.33) into the continuity equation, Eq. (15.31), its expanded
form becomes

qeu
0
eDye þ �qwu0wDyw

� � ¼ �ð _m�e þ _m�wÞ: ð15:39Þ

Then replacing the discrete forms of u0e and u0w computed from Eqs. (15.37) and
(15.38), respectively, in Eq. (15.39), an equation involving pressure correction is
obtained and is given by

qe �He u0ð Þ � Du
e

@p0

@x

� �
e

� �
Dye

� qw �Hw u0ð Þ � Du
w

@p0

@x

� �
w

� �
Dyw ¼ � _m�e þ _m�w

� � ð15:40Þ

In this equation the pressure field appears in a diffusion like form, which after
discretization becomes

qe �He u0ð Þ � Du
e

p0E � p0C
Dx

� �
e

� �
Dye

þ qw �Hw u0ð Þ � Du
w

p0C � p0W
Dx

� �
w

� �
�Dywð Þ ¼ � _m�e þ _m�w

� � ð15:41Þ

or

� qeD
u
e

Dyw
Dxw

� �
p0E � p0C
� �� qwD

u
w �

Dyw
Dxw

� �
p0C � p0W
� �

¼ � _m�e þ _m�w
� �þ qeHe u0ð ÞDye þ qwHw u0ð Þ �Dywð Þð Þ

ð15:42Þ

Rearranging, the pressure correction equation is formulated as

ap0
C p
0
C þ ap0

E p
0
E þ ap0

Wp
0
W ¼ bp0

C ð15:43Þ

15.2 A Preliminary Derivation 571

where

ap
0

E ¼ �
qeD

u
eDye

dxe

ap
0

W ¼ �
qwD

u
wDyw

dxw

ap
0

C ¼ � ap
0

E þ ap0
W

	

bp
0

C ¼ � _m�e þ _m�w
� �þ qeDyeHe u0ð Þ � qwDywHw u0ð Þ½ �

ð15:44Þ

The underlined terms in Eqs. (15.37), (15.38), and (15.44) involve corrections
which become zero at the state of convergence. Therefore they have no effect on the
final solution. Different approximations to these terms result in different algorithms
as will be explained later. In the original SIMPLE algorithm these terms are simply
neglected. Moreover for one dimensional constant area situations Δy may be set to 1
and dropped from the equations.

15.2.6 The SIMPLE Algorithm on Staggered Grid

Using the momentum and pressure correction equations, a solution to the flow
problem can be obtained. In the SIMPLE algorithm this solution is found iteratively
by generating pressure and velocity fields that consecutively satisfy the momentum
and continuity equations, while approaching the final solution (which satisfies both
equations) at every iteration [4–6]. This sequential, rather than simultaneous,
solution of the equations is denoted in the literature by the segregated approach.
The sequence of events in the segregated SIMPLE algorithm can be summarized as
follows:

1. Start with a guessed pressure and velocity fields p(n) and u(n), respectively.
2. Solve the momentum equation given by Eq. (15.27) to obtain a new velocity

field u�f .
3. Update the mass flow rates using the momentum satisfying velocity field to

obtain the _m�f field.
4. Using the new mass flow rates solve the pressure correction equation to obtain a

pressure correction field p0.
5. Update the pressure and velocity fields to obtain continuity-satisfying fields

using the following equations:

572 15 Fluid Flow Computation: Incompressible Flows

u��f ¼ u�f þ u0f u0f ¼ �Du
f

@p0

@x

� �
f

p�C ¼ pðnÞC þ p0C

_m��f ¼ _m�f þ _m0f _m0f ¼ �qf Du
f Dyf

@p0

@x

� �
f

ð15:45Þ

6. set uðnÞ ¼ u�� and pðnÞ ¼ p�

7. Go back to step 2 and repeat until convergence.

The SIMPLE algorithm is best illustrated via the example presented next.

Example 1
Flow in a Pipe Network

A portion of a water pipe system is shown in Fig. 15.4. The momentum
equation for the flow in the pipes can be written as

_m ¼ quA ¼ �DDP

where DA = 0.5, DB = DF = 0.4, DC = DE = 0.3, DD = 0.19, DG = 0.1875,
and DH = 0.35. Using the SIMPLE algorithm, calculate the unknown mass
flow rates and pressures in the system.

Solution
In this system, the mass flow rate field is used as a variable instead of the
velocity field. This is not problematic since the momentum equation has been
simplified by dropping the convection and diffusion terms as their values are
negligible compared to the pressure head.

p
3

p
6

p
8p

1
= 400

p
2

= 350 p
5

= 300

p
4

= 50 p
7

= 80

m
A

m
B

m
C

m
D

m
E

m
F

m
G

m
H

m
I

= 50

p
9

= 200

Fig. 15.4 A portion of a water pipe system

15.2 A Preliminary Derivation 573

The solution using the SIMPLE algorithm starts by first computing an
initial velocity field using the assumed pressure field, and then predicting a
pressure field that enforces continuity on the just computed velocity field.

This procedure is summarized as

1. Start with a guessed pressure field.
2. Compute the mass flow rates using the given momentum equation.
3. Construct a pressure correction equation that enforces continuity (mass

conservation) and use it to correct the pressure and velocity fields.

No iterations will be needed since there are no non-linear effects induced
by a convection term.
step 1
Start by assigning guessed values to the pressure at the locations where
solutions are to be found. Thus assume the following:

pðnÞ3 ¼ 300 pðnÞ6 ¼ 200 pðnÞ8 ¼ 120 (other values could have been used)
step 2
Based on the assumed pressure values calculate the various mass flow rates
using the momentum equations according to

_m�A ¼ DA ðp1 � pðnÞ3 Þ ¼ 0:5 � 400� 300ð Þ ¼ 50

_m�B ¼ DB ðpðnÞ3 � p2Þ ¼ 0:4 � 300� 350ð Þ ¼ �20
_m�C ¼ DC ðp4 � pðnÞ3 Þ ¼ 0:3 � 50� 300ð Þ ¼ �75
_m�D ¼ DD ðpðnÞ3 � pðnÞ6 Þ ¼ 0:19 � 300� 200ð Þ ¼ 19

_m�E ¼ DE ðpðnÞ6 � p5Þ ¼ 0:3 � 200� 300ð Þ ¼ �30
_m�F ¼ DF ðp7 � pðnÞ6 Þ ¼ 0:4 � 80� 200ð Þ ¼ �48
_m�G ¼ DG ðpðnÞ6 � pðnÞ8 Þ ¼ 0:1875 � 200� 120ð Þ ¼ 15

_m�H ¼ DH ðp9 � pðnÞ8 Þ ¼ 0:35 � 200� 120ð Þ ¼ 28

step 3
Check whether the mass flow rates satisfy continuity by computing

P
�k

_m�k at

all interior points, i.e.,

Node 3 :
X
�k

_m�k
� � ¼ _m�B þ _m�D � _m�A � _m�C ¼ �20þ 19� 50þ 75 ¼ 24

Node 6 :
X
�k

_m�k
� � ¼ _m�G þ _m�E � _m�D � _m�F ¼ 15� 30� 19þ 48 ¼ 14

Node 8 :
X
�k

_m�k
� � ¼ _m�I � _m�G � _m�H ¼ 50� 15� 28 ¼ 7

574 15 Fluid Flow Computation: Incompressible Flows

Since mass conservation is not satisfied, correction fields are needed and
pressure correction equations are derived as follows:X

�k
_m�k þ _m0k
� � ¼ 0)

X
�k

_m0k
� � ¼ �X

�k
_m�k
� �

In term of pressure corrections, mass flow rate corrections can be
expressed as

_m0A ¼ DA �p03
� �

_m0B ¼ DB p03
� �

_m0C ¼ DC �p03
� �

_m0D ¼ DD p03 � p06
� �

_m0E ¼ DE p06
� �

_m0F ¼ DF �p06
� �

_m0G ¼ DG p06 � p08
� �

_m0H ¼ DH �p08
� �

Note that p01, p
0
2, p

0
4, p

0
5 and p07 are set to zero since the corresponding

pressure values are known and hence represent the exact values.
The flow field at nodes 3, 6, and 8 are respectively given by

_m0B þ _m0D � _m0A � _m0C ¼ � _m�B þ _m�D � _m�A � _m�C
� �

_m0G þ _m0E � _m0D � _m0F ¼ � _m�G þ _m�E � _m�D � _m�F
� �

� _m0G � _m0H ¼ � _m�I � _m�G � _m�H
� �

and using pressure corrections as

DB p03
� �þ DD p03 � p06

� �� DA �p03
� �� DC �p03

� � ¼ � _m�B þ _m�D � _m�A � _m�C
� �

DG p06 � p08
� �þ DE p06

� �� DD p03 � p06
� �� DF �p06

� � ¼ � _m�G þ _m�E � _m�D � _m�F
� �

� DG p06 � p08
� �� DH �p08

� � ¼ � _m�I � _m�G � _m�H
� �

After simplification the above equations become

1:39 p03
� �� 0:19 p06

� � ¼ � _m�B þ _m�D � _m�A � _m�C
� �

1:0775 p06
� �� 0:1875 p08

� �� 0:19 p03
� � ¼ � _m�G þ _m�E � _m�D � _m�F

� �
� 0:1875 p06

� �þ 0:5375 p08
� � ¼ � _m�I � _m�G � _m�H

� �

15.2 A Preliminary Derivation 575

Substituting the tentative mass flow rates, the various correction fields satisfy

1:39 p03
� �� 0:19 p06

� � ¼ �24
1:0775 p06

� �� 0:1875 p08
� �� 0:19 p03

� � ¼ �14
� 0:1875 p06

� �þ 0:5375 p08
� � ¼ �7

Solving the system of pressure correction equations yields

p03 ¼ �20
p06 ¼ �20
p08 ¼ �20

8<
:

With the pressure correction computed, the velocity and pressure fields can
now be updated to produce a mass conserving velocity field. The mass flow
rates are computed as

_m��A ¼ _m�A þ _m0A ¼ _m�A � 0:5p03 ¼ 50� 0:5 �20ð Þ ¼ 60

_m��B ¼ _m�B þ _m0B ¼ _m�B þ 0:4p03 ¼ �20þ 0:4 �20ð Þ ¼ �28
_m��C ¼ _m�C þ _m0C ¼ _m�C � 0:3p03 ¼ �75� 0:3 �20ð Þ ¼ �69
_m��D ¼ _m�D þ _m0D ¼ _m�D þ 0:19 p03 � p06

� � ¼ 19þ 0:19 �20þ 20ð Þ ¼ 19

_m��E ¼ _m�E þ _m0E ¼ _m�E þ 0:3p06 ¼ �30þ 0:3 �20ð Þ ¼ �36
_m��F ¼ _m�F þ _m0F ¼ _m�F � 0:4p06 ¼ �48� 0:4 �20ð Þ ¼ �40
_m��G ¼ _m�G þ _m0G ¼ _m�G þ 0:1875 p06 � p08

� � ¼ 15þ 0:1875 �20þ 20ð Þ ¼ 15

_m��H ¼ _m�H þ _m0H ¼ _m�H � 0:35p08 ¼ 28� 0:35 �20ð Þ ¼ 35

while the pressure is updated using

p�3 ¼ pðnÞ3 þ p03 ¼ 300� 20 ¼ 280

p�6 ¼ pðnÞ6 þ p06 ¼ 200� 20 ¼ 180

p�8 ¼ pðnÞ8 þ p08 ¼ 120� 20 ¼ 100

Treat the corrected values as a new guess and repeat. Better estimate for the
mass flow rates are computed using the momentum equations as

576 15 Fluid Flow Computation: Incompressible Flows

_m�A ¼ DA p1 � pðnÞ3

	

¼ 0:5 � 400� 280ð Þ ¼ 60

_m�B ¼ DB pðnÞ3 � p2
	

¼ 0:4 � 280� 350ð Þ ¼ �28

_m�C ¼ DC p4 � pðnÞ3

	

¼ 0:3 � 50� 280ð Þ ¼ �69

_m�D ¼ DD pðnÞ3 � pðnÞ6

	

¼ 0:19 � 280� 180ð Þ ¼ 19

_m�E ¼ DE pðnÞ6 � p5
	

¼ 0:3 � 180� 300ð Þ ¼ �36

_m�F ¼ DF p7 � pðnÞ6

	

¼ 0:4 � 80� 180ð Þ ¼ �40

_m�G ¼ DG pðnÞ6 � pðnÞ8

	

¼ 0:1875 � 180� 100ð Þ ¼ 15

_m�H ¼ DH p9 � pðnÞ8

	

¼ 0:35 � 200� 100ð Þ ¼ 35

The imbalance in the mass flow rate at nodes 3, 6, and 8 are computed asX
�k

_m�k
� � ¼ _m�B þ _m�D � _m�A � _m�C ¼ �28þ 19� 60þ 69 ¼ 0X

�k
_m�k
� � ¼ _m�G þ _m�E � _m�D � _m�F ¼ 15� 36� 19þ 40 ¼ 0X

�k
_m�k
� � ¼ _m�I � _m�G � _m�H ¼ 50� 15� 35 ¼ 0

The pressure correction equations become

1:39 p03
� �� 0:19 p06

� � ¼ 0

1:0775 p06
� �� 0:1875 p08

� �� 0:19 p03
� � ¼ 0

� 0:1875 p06
� �þ 0:5375 p08

� � ¼ 0

The solution to the pressure correction field is found to be

p03 ¼ 0
p06 ¼ 0
p08 ¼ 0

8<
:

Thus the solution is obtained in one iteration.

15.2 A Preliminary Derivation 577

15.2.7 Pressure Correction Equation in Two Dimensional
Staggered Cartesian Grids

In a two dimensional Cartesian grid, three grid systems are used. One for the u-
velocity component, a second one for the v-velocity component, and a third grid
system for the pressure and other variables as illustrated in Fig. 15.5.

The derivations presented above for the pressure correction equation in one
dimensional domains can be easily extended into multi dimensional situations. For
element C shown in Fig. 15.6, the pressure correction equation is obtained as

ap
0

Cp
0
C þ ap

0
E p
0
E þ ap

0
Wp
0
W þ ap

0
Np
0
N þ ap

0
S p
0
S ¼ bp

0
C ð15:46Þ

where

ap
0
E ¼ �

qeD
u
eDyC
dxe

ap
0

W ¼ �
qwD

u
wDyC

dxw

ap
0
N ¼ �

qnD
v
nDxC
dyn

ap
0
S ¼ �

qsD
v
sDxC
dys

ap
0
C ¼ � ap

0
E þ ap

0
W þ ap

0
N þ ap

0
S

	

bp
0
C ¼ � _m�e þ _m�w þ _m�n þ _m�s

� �
ð15:47Þ

u velocity CV

main CV

v velocity CV

u

v

p

Fig. 15.5 u, v, and
p elements in a two
dimensional Cartesian
staggered grid

578 15 Fluid Flow Computation: Incompressible Flows

Example 2
In the two dimensional problem shown in Fig. 15.7, the following quantities
are given uw = 50, vs = 20, pN = 0 and pE = 10.

The flow is steady and the density is uniform and equal to 1. The
momentum equations for ue and vn are given by

ue ¼ �de pE � pCð Þ
vn ¼ �dn pN � pCð Þ

where the constants de = 1 and dn = 0.25. The element shown has
Δx = Δy = 1. Use the SIMPLE algorithm to compute the values of ue, vn, and
pC.

y()
n

y()
s

x()
w

x()
e

x()
C

y()
C

EW C

N

SSW

NW NE

SE

ew

n

s

u
eu

w

v
n

v
s

Fig. 15.6 A two dimensional
Cartesian element for the
derivation of the pressure
correction equation

pE =10
uw = 50

vs = 20

pN = 0

Fig. 15.7 The two dimensional domain used in Example 2

15.2 A Preliminary Derivation 579

Solution
Start by assigning a guessed value to the pressure at the C location where
solution is to be found. Thus assume the following:

pðnÞC ¼ 100 (other values could have been guessed)
Based on the assumed pressure value calculate the various velocities using

the momentum equation according to

u�e ¼ �de pE � pðnÞC

	

¼ �1 � 10� 100ð Þ ¼ 90

v�n ¼ �dn pN � pðnÞC

	

¼ �0:25 � 0� 100ð Þ ¼ 25

Since the density is uniform and equal to 1 and Δx = Δy = 1, then

_m�e ¼ u�e ¼ 90

_m�n ¼ v�n ¼ 25

Check whether the mass flow rates satisfy continuity over element C by
computing

P
� f

_m�f at the element faces.

X
� f

_m�f
	

¼ _m�e � _m�w þ _m�n � _m�s ¼ 90� 50þ 25� 20 ¼ 45

In the above mass conservation equation the negative sign for _m�w and _m�s
is explicitly used. Since mass conservation is not satisfied, correction fields
are needed and a pressure correction equation is derived as follows:

X
� f

_m�f þ _m0f
	

¼ 0)
X
� f

_m0f
	

¼�
X
� f

_m�f
	

In term of pressure corrections, mass flow rate corrections can be
expressed as

_m0e ¼ u0e ¼ p0C _m0n ¼ v0n ¼ 0:25 p0C

The correction equation becomes

_m0e þ _m0n ¼ �
X
� f

_m�f) 1:25p0C ¼ �45) p0C ¼ �36

Applying the correction to the mass flow rate and pressure fields, conti-
nuity satisfying fields are obtained as

580 15 Fluid Flow Computation: Incompressible Flows

_m��e ¼ _m�e þ _m0e ¼ _m�e þ p0C ¼ 90� 36 ¼ 54

_m��n ¼ _m�n þ _m0n ¼ _m�n þ 0:25p0C ¼ 25� 0:25 36ð Þ ¼ 16

p��C ¼ p�C þ p0C ¼ 100� 36 ¼ 64

Treat the corrected values as a new guess and repeat.

_m�e ¼ �de pE � p�C
� � ¼ �1 � 10� 64ð Þ ¼ 54

_m�n ¼ �dn pN � p�C
� � ¼ �0:25 � 0� 64ð Þ ¼ 16

The imbalance in the mass flow rate is computed as

X
�f

_m�f
	

¼ _m�e � _m�w þ _m�n � _m�s ¼ 54� 50þ 16� 20 ¼ 0

The pressure correction equations become

1:25 p0c
� � ¼ 0

The solution to the pressure correction field is found to be

p0C ¼ 0

Thus the solution is obtained in one iteration as

ue ¼ 54

vn ¼ 16

pC ¼ 64

15.2.8 Pressure Correction Equation in Three Dimensional
Staggered Cartesian Grid

Without going into details and for completeness of presentation, the pressure cor-
rection equation over the three dimensional staggered Cartesian grid shown in
Fig. 15.8, where the u, v, and w velocity components are stored at the (e, w), (n, s),
and (t, b) element faces, respectively, is given by

ap
0

Cp
0
C þ ap

0
E p
0
E þ ap

0
Wp
0
W þ ap

0
Np
0
N þ ap

0
S p
0
S þ ap

0
T p
0
T þ ap

0
B p
0
B ¼ bp0

C ð15:48Þ

15.2 A Preliminary Derivation 581

where

ap
0

E ¼ �
qeD

u
eDyeDze
dxe

ap
0
W ¼ �

qwD
u
wDywDzw
dxw

ap
0

N ¼ �
qnD

v
nDxnDzn
dyn

ap
0
S ¼ �

qsD
v
sDxsDzs
dys

ap
0

T ¼ �
qtD

w
t DxtDyt
dzt

ap
0

B ¼ �
qbD

w
bDxbDyb
dzb

ap
0

C ¼ � ap
0

E þ ap
0
W þ ap

0
N þ ap

0
S þ ap

0
T þ ap

0
B

	

bp
0

C ¼ � _m�e þ _m�w þ _m�n þ _m�s þ _m�t þ _m�b
� �

ð15:49Þ

15.3 Disadvantages of the Staggered Grid

The use of staggered grids was critical to the development of the SIMPLE algo-
rithm. Nevertheless adopting a staggered grid arrangement has its disadvantages. As
mentioned above, in two and three dimensions, three and four staggered grid
systems, respectively, are required with the velocity components integrated over
different elements, as shown in Fig. 15.5 for a two dimensional situation.

Besides the memory requirement to store a grid system for every velocity
component and a grid system for pressure and other variables, the staggering
procedure itself becomes an issue for non-Cartesian grids and more so for
unstructured grids.

W

S
B

z

x

y

x
w

y
s

z
b

E

N
T

x
e

y
n z

t

C

t

b

e
w

n

s

Fig. 15.8 A three dimensional Cartesian element for the derivation of the pressure correction
equation

582 15 Fluid Flow Computation: Incompressible Flows

In curvilinear grids, the use of Cartesian velocity components can lead to
problems when one or more of the surfaces become aligned with the staggered
velocity component as shown in Fig. 15.9.

Therefore a better alternative in this case is to use either covariant or contra-variant
curvilinear velocity components, as shown in Fig. 15.10a, b, respectively.

An example of staggering using contra-variant velocity components is shown in
Fig. (15.11).

Fig. 15.9 Staggered Cartesian velocity components in a curvilinear grid system

(a) (b)

f e

e

C

F

f

e

e
C

F

Fig. 15.10 Curvilinear coordinates a Covariant component and b contra-variant components

Fig. 15.11 Curvilinear velocities: staggering using contra-variant velocity components

15.3 Disadvantages of the Staggered Grid 583

Unfortunately complications arise when discretizing the momentum equations in
curvilinear coordinates [1, 3, 4, 7], due to the increased complexity in the treatment
of the diffusion term, and because the equations gain non-conservative terms.

Another option shown in Fig. 15.12 is to stagger all Cartesian velocity compo-
nents in all directions so as to have all velocity components at all faces. This would
double (in two dimensions) or triple (in three dimensions) the number of momentum
equations to be solved. The problem is further complicated in the case of an
unstructured grid. In this case there is no obvious staggering direction, and the only
way for a staggering concept to apply is by changing the size of the cell elements
used for the pressure and velocity components, or by resorting to staggering all
velocity components along all the faces, again dramatically increasing the number of
variables to be solved. Finally, the geometric information stored is more than dou-
bled, as a new unstructured grid need to be used for the velocity components.

It turns out that the use of a cell-centered collocated grid system (Fig. 15.13),
where all variables are stored at the same location (the cell centroid), is a more
attractive solution. It is worth noting that while the velocity components are stored
at the centroids of the elements as is the case for pressure or any other variable, the
mass flux, a scalar value, in a collocated grid is stored at the element faces. The
mass flux can actually be viewed as a contra-variant component, except that in this
case it is computed using a custom interpolation of the discrete momentum equa-
tion, known as the Rhie-Chow interpolation, which is the subject of the next
section.

Fig. 15.12 Cartesian components defined at each face

Fig. 15.13 Collocated grid arrangement

584 15 Fluid Flow Computation: Incompressible Flows

15.4 The Rhie-Chow Interpolation

The deficiency in the original collocated formulation presented earlier was in the
linear interpolation used to calculate the velocities at the element faces. This
interpolation resulted in decoupling the pressure and velocity values at the cell level
giving rise to the checkerboard problem. In 1983, Rhie and Chow [8] reported on
an interpolation procedure that allowed the formulation of the SIMPLE algorithm
on a collocated grid [9–16]. In their method a dissipation term, representing the
difference between two estimates of the cell face pressure gradient, is added to the
linearly interpolated cell face velocity. As shown in Fig. 15.14 the two pressure
gradient estimates are based on different grid stencils.

This procedure will be shown to be equivalent to constructing a pseudo-
momentum equation at the element face with its coefficients linearly interpolated
from the coefficients of the momentum equations at the centroids of the elements
straddling the face and its pressure gradient computed using a small grid stencil. In
that respect, the Rhie-Chow interpolation simply mimics the small stencil pressure-
velocity coupling of the staggered grid arrangement.

Starting with the discretized x-momentum equations for cells C and F, which are

uC þ HC u½ � ¼ Bu
C � Du

C
@p
@x

� �
C

uF þ HF u½ � ¼ Bu
F � Du

F
@p
@x

� �
F

ð15:50Þ

A uf velocity equation similar to that of Eq. (15.50), with the pressure gradient
linked to the local neighboring pressure values, as illustrated in Fig. 15.14, will
have the following form:

uf þ Hf u½ � ¼ Bu
f � Du

f
@p
@x

� �
f
: ð15:51Þ

Linear
interpolation

Rhie-Chow
interpolation

∂p
∂x

∂p
∂x

C Ff

Interpolated face valueFig. 15.14 The two pressure
gradient estimates in the
Rhie-Chow interpolation
technique

15.4 The Rhie-Chow Interpolation 585

Since in a collocated grid, the coefficients of this equation cannot be directly
computed, they are approximated by interpolation from the coefficients of the
neighboring nodes. Using a linear interpolation profile, these coefficients are
computed as

Hf u½ � ¼ 1
2

HC u½ � þ HF u½ �ð Þ ¼ Hf u½ �

Bu
f ¼

1
2

Bu
C þ Bu

F

� � ¼ Bu
f

Du
f ¼

1
2

Du
C þ Du

F

� � ¼ Du
f

ð15:52Þ

Employing the values given in Eq. (15.52), the pseudo-momentum equation at
the element face becomes

uf þ Hf u½ � ¼ Bu
f � Du

f
@p
@x

� �
f

ð15:53Þ

This is in all practical sense the momentum equation on a “staggered” grid,
which is reconstructed using the collocated grid momentum coefficients.

In all above equations and for later use, values with an over bar are obtained by
linear interpolation between the values at points C and F according to

hf ¼ gChC þ gFhF ð15:54Þ

where gC and gF are geometric interpolation factors related to the position of the
element face f with respect to the nodes C and F, as explained in previous chapters.

Using Eq. (15.50), Hf is rewritten as

Hf u½ � ¼ 1
2
�uC þ Bu

C � Du
C

@p
@x

� �
C
�uF þ Bu

F � Du
F

@p
@x

� �
F

� �

¼ �uf � Du
f

@p
@x

� �
f
þ Bu

f

ð15:55Þ

where the coefficient approximation can be shown to be second order accurate, i.e.,

Du
f

@p
@x

� �
f
� Du

f
@p
@x

� �
f
¼ 1

2
Du

C
@p
@x

� �
C
þ Du

F
@p
@x

� �
F

� �

� 1
2

Du
C þ Du

F

� �� 1
2

@p
@x

� �
C
þ @p

@x

� �
F

� �

¼ 1
4
Du

C
@p
@x

� �
C
� @p

@x

� �
F

� �
þ 1
4
Du

F
@p
@x

� �
F
� @p

@x

� �
C

� �
� OðDx2Þ

ð15:56Þ

586 15 Fluid Flow Computation: Incompressible Flows

Substituting Eq. (15.55) into Eq. (15.53), the velocity at the element face using
the Rhie-Chow interpolation method is obtained as

uf ¼ �Hf ½u� þ Bu
f � Du

f
@p
@x

� �
f
¼ uf|{z}

average
velocity

�Du
f

@p
@x

� �
f
� @p

@x

� �
f

 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

correction term

ð15:57Þ

For a multi dimensional situation, similar interpolation formulae can be derived
for the y and z velocity components and are given by

vf ¼ vf � Dv
f

@p
@y

� �
f
� @p

@y

� �
f

 !
ð15:58Þ

wf ¼ wf � Dw
f

@p
@z

� �
f
� @p

@z

� �
f

 !
ð15:59Þ

Equations (15.57)–(15.59) can be written in a vector form, more suitable for
deriving the multi-dimensional pressure correction equation, as

vf ¼ vf � Dv
f rpf �rpf
� � ð15:60Þ

where

Dv
f ¼

Du
f 0 0
0 Dv

f 0
0 0 Dw

f

2
64

3
75 ð15:61Þ

and where ∇pf is computed as per Sect. 9.4 using

rpf ¼ rpf þ pF � pC
dCF

� rpf � eCF
� �� �

eCF|ffl{zffl}
Correction to interpolated face gradient

ð15:62Þ

and yielding a stencil in the CF direction formed only from the adjacent cell values
pF and pC as

rpf � eCF ¼ rpf � eCF þ pF � pC
dCF

� rpf � eCF
� �� �

eCF � eCF

¼ pF � pC
dCF

ð15:63Þ

With the face velocities closely linked to the pressure of adjacent cells, check-
erboard fields are inadmissible rendering solutions on collocated grids viable.

15.4 The Rhie-Chow Interpolation 587

http://dx.doi.org/10.1007/978-3-319-16874-6_9

15.5 General Derivation

Before proceeding with the development of the multidimensional collocated
pressure correction equation, the discretized multidimensional momentum equation
is first presented.

15.5.1 The Discretized Momentum Equation

The momentum equation given by Eq. (15.2) is slightly modified and written as

@

@t
½qv� þ r � fqvvg ¼ �rpþr � flrvg þ r � flðrvÞTg þ fb ð15:64Þ

The discretized form of Eq. (15.64) in the time interval [t − Δt/2, t + Δt/2] is
sought over element C shown in Fig. 15.15.

In Eq. (15.64), the three underlined expressions represent, from left to right, the
unsteady, convection, and diffusion term, respectively. The discretization of these
terms proceeds as presented in previous chapters. The remaining terms are evalu-
ated explicitly and treated as sources. The volume integral of the second part of the
shear stress term is transformed into a surface integral using the divergence theorem
and then into a summation of surface fluxes as

Source/
Sink

Transient

Diffusion
Convection

C

F
1

F
2

F
3

F
4

F
5

F
6

f
1

f
2

f
3

f
4

f
5

f
6

Fig. 15.15 Element C in a
general unstructured grid
system

588 15 Fluid Flow Computation: Incompressible Flows

Z
VC

r � l rvð ÞT
n o

dV ¼
Z
@VC

lðrvÞT
n o

� dS ¼
X

f�nbðCÞ
lðrvÞTf � Sf ð15:65Þ

where the expanded form of rvð ÞTf � Sf in a three dimensional coordinate system is
given by

rvð ÞTf � Sf ¼

@u
@x

Sxf þ
@u
@y

Syf þ
@u
@z

Szf

@v
@x

Sxf þ
@v
@y

Syf þ
@v
@z

Szf

@w
@x

Sxf þ
@w
@y

Syf þ
@w
@z

Szf

2
66666664

3
77777775

ð15:66Þ

The volume integral of the pressure gradient is also treated as a source term and
evaluated explicitly as Z

VC

rp dV ¼ ðrpÞCVC ð15:67Þ

or transformed into a surface integral according to Eq. (2.85) and computed asZ
VC

rp dV ¼
Z
@VC

p dS ¼
X

f�nbðCÞ
pfSf ð15:68Þ

The body force term is integrated directly over the control volume to yieldZ
VC

fbdV ¼ ðfbÞCVC ð15:69Þ

Using a first order Euler scheme for the discretization of the unsteady term, a HR
scheme for the convection term implemented via the deferred correction approach,
and decomposing the diffusion flux into an implicit part aligned with the grid and an
explicit cross diffusion part, the discretized momentum equation is written in vector
form as

avCvC þ
X

F�NBðCÞ
avFvF ¼ bvC ð15:70Þ

15.5 General Derivation 589

http://dx.doi.org/10.1007/978-3-319-16874-6_2

where the coefficients are given by

avC ¼ FluxCC þ
X

f�nbðCÞ
ðFluxCf Þ

avF ¼ FluxFf

bvC ¼ �FluxVC �
X

f�nbðCÞ
FluxVf þ

X
f�nbðCÞ

lf ðrvÞTf � Sf � ðrpÞCVC

ð15:71Þ

with the face fluxes calculated using

FluxCf ¼ _mf ; 0
�� ��|fflfflfflffl{zfflfflfflffl}
convection
contribution

þ lf
Ef

dCF|fflffl{zfflffl}
diffusion

contribution

FluxFf ¼ � � _mf ; 0
�� ��|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
convection
contribution

� lf
Ef

dCF|fflffl{zfflffl}
diffusion

contribution

FluxVf ¼ �lf ðrvÞf � Tf þ _mf ðvHRf � vUf Þ

ð15:72Þ

and the element fluxes computed from

FluxCC ¼ qCVC

Dt

FluxVC ¼ � q	CVC

Dt
v	C|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

transient
contribution

� ðfbÞCVC|fflfflfflffl{zfflfflfflffl}
source term
contribution

ð15:73Þ

Even though the algebraic form of the momentum equation, Eq. (15.70), is
linear, its coefficients depend on the velocity and pressure fields. This nonlinearity
is handled by an iterative process during which the coefficients are calculated at the
start of every iteration based on values of the dependent variables obtained in the
previous iteration. This change in the values of the coefficients results in large
changes in v and affects the rate of convergence to the degree of even causing
divergence. To slow down the changes, under-relaxation can be applied when the
transient time steps used are large. Denoting the under relaxation factor by λv and
adopting Patankar’s implicit relaxation approach, the under relaxed momentum
equation can be written as

avC
kv

vC þ
X

F�NBðCÞ
avFvF ¼ bvC þ

1� kv

kv
avCv

ðnÞ
C ð15:74Þ

590 15 Fluid Flow Computation: Incompressible Flows

By redefining avC and bvC such that

avC
avC
kv

bvC bvC þ
1� kv

kv
avCv

ðnÞ
C

ð15:75Þ

the under-relaxed momentum equation can be rewritten as

avCvC þ
X

F�NBðCÞ
avFvF ¼ bvC ð15:76Þ

For the derivation of the collocated pressure correction equation, the pressure
gradient is taken out of the bvC source term and displayed explicitly to yield

bvC ¼ �VCðrpÞC þ b̂
v
C ð15:77Þ

Substituting back in Eq. (15.76), the momentum equation becomes

vC þ
X

F�NBðCÞ

avF
avC

vF ¼ �VC

avC
ðrpÞC þ

b̂
v
C

avC
: ð15:78Þ

Defining the following vector operators:

HC½v� ¼
X

f�NBðCÞ

avF
avC

vF

Bv
C ¼

b̂
v
C

avC

Dv
C ¼

VC

avC

ð15:79Þ

Equation (15.78) is reformulated as

vC þHC½v� ¼ �Dv
CðrpÞC þ Bv

C; ð15:80Þ

a form that will be useful in later derivations.

15.5 General Derivation 591

15.5.2 The Collocated Pressure Correction Equation

As in the case of a staggered grid, starting with guessed values or values obtained
from the previous iteration vðnÞ; _mðnÞ; pðnÞ

� �
, the momentum equation, Eq. (15.80),

is first solved to obtain a momentum conserving velocity field v*. Thus the obtained
solution satisfies

v�C þHC v�½ � ¼ �Dv
C rpðnÞ
	

C
þBv

C ð15:81Þ

while the final solution should satisfy Eq. (15.80). The difference between these two
equations is that the velocity field in Eq. (15.80) satisfies both the momentum and
continuity equations while the one in Eq. (15.79) does not necessarily satisfy the
continuity equation because of the linearization in which pressure and velocity are
based on the previous iteration values. Therefore corrections to the velocity, mass
flow rate, and pressure fields are needed to enforce mass conservation. Denoting
these corrections by v0; p0; _m0ð Þ the relations between the exact and computed fields
can be written as

v ¼ v� þ v0

p ¼ pðnÞ þ p0

m ¼ m� þ m0
ð15:82Þ

Substituting the mass flow rate given by Eq. (15.82) into Eq. (15.25), the con-
tinuity equation becomesX

f�nbðCÞ
_m0f ¼ �

X
f�nbðCÞ

_m�f where _m�f ¼ qf v
�
f � Sf ð15:83Þ

with the face velocity computed using the Rhie-Chow interpolation as

v�f ¼ v�f � Dv
f rpðnÞf �rpðnÞf

	

: ð15:84Þ

When the computed mass flow rate field is conservative, the RHS of Eq. (15.83)
is zero yielding a zero correction field. On the other hand, an incorrect velocity field
leads to an imbalance in mass and a nonzero value of the RHS of Eq. (15.83)
implying the need for a correction field for conservation to be enforced.

Mass flow rate corrections can be written in terms of velocity corrections, which
can be derived by subtracting Eq. (15.81) from Eq. (15.80) to yield

v0C þHC½v0� ¼ �Dv
Cðrp0ÞC ð15:85Þ

592 15 Fluid Flow Computation: Incompressible Flows

A similar equation holds for element F and is given by

v0F þHF ½v0� ¼ �Dv
Fðrp0ÞF ð15:86Þ

The mass flow rate correction at a cell face can be expressed as

_m0f ¼ qf v
0
f � Sf ð15:87Þ

where the face velocity correction is obtained by subtracting Eq. (15.84) from
Eq. (15.60) to give

v0f ¼ v0f � Dv
f ðrp0f �rp0f Þ ð15:88Þ

Substitution of Eqs. (15.87) and (15.88) in Eq. (15.83), leads to the following
form of the pressure correction equation:

X
f�nbðCÞ

qf v0f � Sf
� �þ X

f�nbðCÞ
qfD

v
frp0f � Sf

	

�
X

f�nbðCÞ
qfD

v
f ðrp0Þf � Sf

	

¼ �

X
f�nbðCÞ

_m�f
ð15:89Þ

In this equation the underlined part represents the effects of the neighboring
velocity corrections on the velocity correction of the element under consideration.
This influence becomes clearer by interpolating Eqs. (15.85) and (15.86) to the face
yielding the following equivalent expression for the underline terms:

v0f þHf v0½ � ¼ �Dv
f rp0
� �

f) v0f þ Dv
f rp0
� �

f¼ �Hf v0½ �: ð15:90Þ

Substituting Eq. (15.90) in Eq. (15.89), the pressure correction equation is
rewritten as

X
f�nbðCÞ

�qfDv
f rp0ð Þf � Sf

	

¼ �

X
f�nbðCÞ

_m�f þ
X

f�nbðCÞ
qfHf v0½ � � Sf
� � ð15:91Þ

or more explicitly in the form

X
f�nbðCÞ

�qfDv
f rp0ð Þf � Sf

	

¼ �

X
f�nbðCÞ

_m�f þ
X

f�nbðCÞ
qf

X
F�NBðCÞ

avF
avC

v0F

0
@

1
A � Sf

0
@

1
A:

ð15:92Þ

In Eq. (15.91) or (15.92) the treatment of the underlined term is critical to
rendering the equation solvable. In the original SIMPLE algorithm it is neglected,

15.5 General Derivation 593

thus linking the velocity correction at a point directly to pressure corrections.
Because this is a correction equation the modification or dropping of the term will
not affect the final solution, since at convergence the corrections become zero.
However it will affect the convergence rate in that the larger is the neglected term
the higher will be the error present in the approximation at each iteration.

The remaining terms in Eq. (15.91) or (15.92) can be easily treated. The coef-
ficients of the pressure correction equation are obtained as per the discretization of
the diffusion term in Chap. 8, specifically the treatment of anisotropic diffusion.

Thus the term on the LHS is modified into a gradient dot product of the form

Dv
f rp0ð Þf

	

� Sf ¼ rp0ð ÞfDv

f
T

	

� Sf

¼ rp0ð Þf � Dv
f
T � Sf

	

¼ rp0ð Þf �S0f

ð15:93Þ

The expanded expression of S0f is given by

S0f ¼ Dv
f
T � Sf ¼

Du
f 0 0
0 Dv

f 0
0 0 Dw

f

2
64

3
75 Sxf

Syf
Szf

2
4

3
5 ¼ Du

f S
x
f

Dv
f S

y
f

Dw
f S

z
f

2
64

3
75 ð15:94Þ

Working with S0f , the discretization of the pressure correction gradient term
proceeds as usual resulting in

rp0ð Þf � S0f ¼ rp0ð Þf � Ef þ rp0ð Þf � Tf

¼ Ef

dCF
p0F � p0C
� �þ rp0ð Þf � Tf

ð15:95Þ

where the following decomposition of S0f was used:

S0f ¼ Ef þ Tf : ð15:96Þ

The type of decomposition could be any of those reviewed in Chap. 8, as will be
detailed later. The underlined term, arising due to grid non-orthogonality, can either
be neglected or retained. If neglected, it will not affect the final solution as it is a
correction term. If retained, then it will be treated explicitly with an internal loop
(non-orthogonal loop in OpenFOAM®). As the solution starts with a zero pressure
correction field at every iteration, the term has to be updated iteratively while
solving the equation.

Dropping the non-orthogonal contribution, the linearized term of the pressure
correction equation becomes

594 15 Fluid Flow Computation: Incompressible Flows

http://dx.doi.org/10.1007/978-3-319-16874-6_8
http://dx.doi.org/10.1007/978-3-319-16874-6_8

rp0ð Þf � S0f ¼
Ef

dCF
p0F � p0C
� �

¼Df p0F � p0C
� � ð15:97Þ

Substituting back in Eq. (15.91) the algebraic form of the pressure correction
equation is obtained as

ap
0

Cp
0
C þ

X
F�NBðCÞ

ap
0

F p
0
F ¼ bp0

C ð15:98Þ

with the coefficients given by

ap
0

F ¼FluxFf ¼ �qfDf

ap
0

C ¼�
X

f�nbðCÞ
FluxFf ¼ �

X
F�NBðCÞ

ap
0

F

bp
0

C ¼�
X

f�nbðCÞ
FluxVf þ

X
f�nbðCÞ

qfHf v0½ � � Sf
� �

¼�
X

f�nbðCÞ
_m�f þ

X
f�nbðCÞ

qfHf v0½ � � Sf
� �

ð15:99Þ

Note that different approximations to the underlined terms in Eq. (15.99) result
in different algorithms. In the original SIMPLE algorithm these terms are simply
neglected.

Finally the mass flow rate _m�f in Eq. (15.99), is the one computed after solving
the momentum equation using as usual the Rhie-Chow interpolation technique with
the latest velocity field, i.e.,

_m�f ¼ qv�f � Sf ¼ qv�f � Sf � Dv
f rpðnÞf �rpðnÞf

	

� Sf : ð15:100Þ

Following the calculation of the pressure correction field, the pressure and
velocity at the element centroids and the mass flow rate at the element faces are all
corrected. As mentioned above, the underlined term in Eq. (15.99) is neglected in
the SIMPLE algorithm resulting in large pressure correction values that may slow
the rate of convergence or cause divergence. To increase robustness and improve
the convergence behavior, pressure correction values obtained from Eq. (15.98) are
explicitly under relaxed. No under relaxation is used when updating the velocity
and mass flow rate fields since the pressure correction will ensure mass conser-
vation for these fields. Denoting the under relaxation factor by λp, the following
correction equations are used:

15.5 General Derivation 595

v��C ¼ v�C þ v0C v0C ¼ �Dv
C rp0ð ÞC

_m��f ¼ _m�f þ _m0f _m0f ¼ �qfDv
frp0f � Sf

p�C ¼ pðnÞC þ kpp0C

ð15:101Þ

15.5.3 Calculation of the Df Term

The type of decomposition suggested in Eq. (15.96) could be any of those reviewed
in Chap. 8 with different approaches leading to different expressions for Df as
derived below.

15.5.3.1 Minimum Correction Approach

For this approach Ef is obtained by substituting S0f for Sf in Eq. (8.68) leading to

Ef ¼ eCF � S0f
� �

eCF ð15:102Þ

where eCF is a unit vector in the CF direction. Combining Eqs. (15.94), (15.102),
and (8.64), Ef becomes

Ef ¼
dxCFD

u
f S

x
f þ dyCFD

v
f S

y
f þ dzCFD

w
f S

z
f

d2CF
dCF ð15:103Þ

Using Eq. (15.103), the following expression for Df is derived:

Df ¼ Ef

dCF
¼ dxCFD

u
f S

x
f þ dyCFD

v
f S

y
f þ dzCFD

w
f S

z
f

dxCF
� �2þ dyCF

� �2þ dzCF
� �2 ð15:104Þ

15.5.3.2 Orthogonal Correction Approach

The definition of Ef in this case is obtained from Eq. (8.69) and written as

Ef ¼ S0f eCF ð15:105Þ

Combining Eqs. (15.105), (15.94), and (8.64), Df is found to be

Df ¼ Ef

dCF
¼

ffi
Du

f S
x
f

	
2
þ Dv

f S
y
f

	
2
þ Dw

f S
z
f

	
2
dxCF
� �2þ dyCF

� �2þ dzCF
� �2

vuuut ð15:106Þ

596 15 Fluid Flow Computation: Incompressible Flows

http://dx.doi.org/10.1007/978-3-319-16874-6_8
http://dx.doi.org/10.1007/978-3-319-16874-6_8
http://dx.doi.org/10.1007/978-3-319-16874-6_8
http://dx.doi.org/10.1007/978-3-319-16874-6_8
http://dx.doi.org/10.1007/978-3-319-16874-6_8

15.5.3.3 Over-Relaxed Approach

In this method, Ef is computed from Eqs. (8.64) and (8.70) as

Ef ¼ S0f � S0f
dCF � S0f dCF ð15:107Þ

Combining Eq. (15.107) with Eq. (15.94), Df is found to be

Df ¼
Du

f S
x
f

	
2
þ Dv

f S
y
f

	
2
þ Dw

f S
z
f

	
2
dxCFD

u
f S

x
f þ dyCFD

v
f S

y
f þ dzCFD

w
f S

z
f

ð15:108Þ

Any of the above approaches can be adopted to calculate the value of Df :

15.5.4 The Collocated SIMPLE Algorithm

The sequence of events in the collocated SIMPLE algorithm is displayed in
Fig. 15.16 and can be summarized as follows:

1. To compute the solution at iteration n + 1, start with the solution at time t for
pressure, velocity, and mass flow rate fields, i.e., p(n), u(n), and _mðnÞ, respectively,
as the initial guess.

2. Solve the momentum equation given by Eq. (15.70) to obtain a new velocity
field v*.

3. Update the mass flow rate at the element faces using the Rhie-Chow interpo-
lation (Eq. 15.100) to compute a momentum satisfying mass flow rate field _m�.

4. Using the new mass flow rates assemble the pressure correction equation
(Eq. 15.98) and solve it to obtain a pressure correction field p0.

5. With the pressure correction field update the pressure and velocity fields at the
element centroids and the mass flow rate at the element faces to obtain
continuity-satisfying fields using Eq. (15.101). These resulting fields are
denoted by u**, _m��, and p*, respectively.

6. Treat the obtained solution as a new initial guess, return to step 2 and repeat
until convergence.

7. Set the solution at time n + 1 (i.e., t + Δt) to be equal to the converged solution
and set the current time n + 1 (i.e., t + Δt) to be n (i.e., t).

8. Advance to the next time step.
9. Return to step 1 and repeat until the last time step is reached.

15.5 General Derivation 597

http://dx.doi.org/10.1007/978-3-319-16874-6_8
http://dx.doi.org/10.1007/978-3-319-16874-6_8

Example 3
In the two dimensional problem shown below, the following quantities are
given pW = 100, pN = 20 and pE = 50 and an inlet condition at face s with
vs = 20 and zero pressure gradient.

The flow is steady state and the density is uniform of value 1. The
momentum equations for ue and vn are

timeexceeded ?
no

stop

assembleand solvemomentum

equation for v*

computem
f
* using the

Rhie Chow interpolation

assembleand solve pressure

correctionequation for p

converged ?

set solutionat time t + t tobe

equal tothe converged solution

yes

advanceintime
set t = t + t

set initial guessm n() ,v n() , n() ,and p n()

at timet + t toconverged valuesat timet

correct m
f
* ,v*, n() ,and p n() to

obtainm
f
,v, *,and p*

set m
f

n() = m
f
,v n() = v, n() = *,and p n() = p*

yes

no

repeat

repeat

Fig. 15.16 A flow chart of
the SIMPLE algorithm

598 15 Fluid Flow Computation: Incompressible Flows

uC ¼ �dx pe � pwð Þ

and

vC ¼ �dy pn � psð Þ

where the constants dx = 1 and dy = 0.25. The element shown has
Δx = Δy = 1. Use the collocated SIMPLE algorithm to derive the pressure
correction equation and solve it to find the pressure for element C. Take

pðnÞC ¼ 70 as an initial guess for pressure at C (Fig. 15.17).

Solution
At the inlet the zero gradient condition can be used to compute

ps ¼ pC ¼ pðnÞC ¼ 70

now compute uðnÞC ; vðnÞC using

u�C ¼ �dx pðnÞe � pðnÞw

	

¼ �1 60� 85ð Þ
¼ 25

and

v�C ¼ �dy pðnÞn � pðnÞs

	

¼ �0:25 45� 70ð Þ
¼ 6:25

since pðnÞe ¼ 0:5 pðnÞE þ pðnÞC

	

; pðnÞn ¼ 0:5 pðnÞE þ pðnÞN

	

and pðnÞw ¼ 0:5 pðnÞE þ pðnÞW

	

Now the pressure correction equation is constructed by substituting the

mass flux and its correction into the mass conservation equation. Using the
Rhie-Chow interpolation the face fluxes are computed as

pW =100

vs = 20

p
E

= 50

p
N

= 20

W C E

N

Fig. 15.17 The two dimensional domain used in Example 3

15.5 General Derivation 599

_m�e ¼ u�eDy ¼ u�e � dx pðnÞE � pðnÞC

	

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
pressure difference

across face

� 0:5 pðnÞe � pðnÞw

	

þ pðnÞee � pðnÞe

	
	

|ffl{zffl}

average pressure difference
across face

2
666664

3
777775

¼ 0:5 dx pðnÞe � pðnÞw

	

þ dx pðnÞee � pðnÞww

	
h i
|ffl{zffl}

u�e

�dx pðnÞE � pðnÞC

	

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
pressure difference

across face

� 0:5 pðnÞe � pðnÞw

	

þ pðnÞee � pðnÞe

	
	

|ffl{zffl}

average pressure difference
across face

2
666664

3
777775

¼ �dx pðnÞE � pðnÞC

	

¼ �1 50� 70ð Þ
¼ 20

similarly for the n and w face

_m�n ¼ v�nDx ¼ v�n � dy pðnÞN � pðnÞC

	

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
pressure difference

across face

� 0:5 pðnÞn � pðnÞs

	

þ pðnÞnn � pðnÞn

	
	

|ffl{zffl}

average pressure difference
across face

2
666664

3
777775

¼ �dy pðnÞN � pðnÞC

	

¼ �0:25 20� 70ð Þ
¼ 12:5

_m�w ¼ �u�wDy ¼ �u�w þ dx pðnÞC � pðnÞW

	

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
pressure difference

across face

� 0:5 pðnÞe � pðnÞw

	

þ pðnÞw � pðnÞww

	
	

|ffl{zffl}

average pressure difference
across face

2
666664

3
777775

¼ dx pðnÞC � pðnÞW

	

¼ 1 70� 100ð Þ
¼ �30

with _ms ¼ �20Dx ¼ �20 the pressure correction equation is constructed
from

_m�e þ _m0e
� �þ _m�n þ _m0n

� �þ _m�w þ _m0w
� �þ _ms ¼ 0

and

600 15 Fluid Flow Computation: Incompressible Flows

_m0e þ _m0n þ _m0w ¼ � _m�e þ _m�n þ _m�w þ _ms
� �

¼ � 20þ 12:5� 30� 20ð Þ
¼ 17:5

now

_m0e ¼ �dx p0E � p0C
� �

_m0n ¼ �dy p0N � p0C
� �

_m0w ¼ dx p0C � p0W
� �

thus we have

� p0E � p0C
� �� 0:25 p0N � p0C

� �þ p0C � p0W
� � ¼ 17:5

or

2:25p0C � p0E � 0:25p0N � p0W ¼ 17:5

if the E, N and W values were exact then we would have

2:25p0C ¼ 17:5

or

p0C ¼ 7:78

then we would proceed with correcting the pressure and velocity components
at C to yield

p�C ¼ pðnÞC þ p0C ¼ 77:78

u0C ¼ 0) u��C ¼ 25

v0C ¼ �dy p0n � p0s
� �

¼ �0:25 0:5p0C � p0C
� �

¼ �0:25 0:5 � 7:78 � 7:78ð Þ
¼ 0:9725

so

v��C ¼ 6:25þ 0:9725

¼ 7:2225

15.5 General Derivation 601

15.6 Boundary Conditions

A boundary element has at least one face located at a boundary patch, which is
denoted as a boundary face (Fig. 15.18). The treatment of boundary conditions at a
boundary face is critical to the accuracy and robustness of any CFD code. Thus for
any pressure-based code to succeed, it is imperative for the boundary conditions of
both momentum and pressure-correction equations to be properly implemented.
This section describes in detail the implementation of a variety of boundary
conditions.

A first note of interest is the expression of the Rhie-Chow interpolation at a
boundary face, which has to be modified since the averaging cannot be performed
in a fashion similar to an interior face. The average at a boundary face is written in
terms of the element value as

hb ¼ hC ð15:109Þ

where b refers to the boundary face centroid and C to the element centroid.
Adopting this practice, the averages in the Rhie-Chow interpolation, the velocity,
and the mass flow rate at a boundary face become

v�b ¼ v�C

rpðnÞb ¼ rpðnÞC

Dv
b ¼ Dv

C

ð15:110Þ

n

eb
C

b

Sb

boundary
element

boundary
face

Fig. 15.18 An example of a
boundary element

602 15 Fluid Flow Computation: Incompressible Flows

v�b|{z}
boundary face

¼ v�b � Dv
C rpðnÞb �rpðnÞb

	

|ffl{zffl}

standard Rhie�Chow

¼ v�C � Dv
C rpðnÞb �rpðnÞC

	

|ffl{zffl}

boundary Rhie�Chow

ð15:111Þ

_m�b ¼ qbv
�
b � Sb

¼ qb v�C � Dv
C rpðnÞb �rpðnÞC

	
h i
� Sb

¼ qbv
�
C � Sb � qbDC pðnÞb � pðnÞC

	

� qb Dv

CrpðnÞb � Tb � Dv
CrpðnÞC � Sb

	

ð15:112Þ

In what follows the implementation of boundary conditions is first presented for
the momentum equation, followed by the implementation of the boundary condi-
tions for the pressure (correction) equation. For the cases when the boundary
conditions for the momentum and pressure correction equations are co-dependent,
their full treatment is detailed in the pressure correction equation section.

15.6.1 Boundary Conditions for the Momentum Equation

The semi-discretized form of the momentum equation can be expressed as

qvð ÞC� qvð Þ	C
Dt

VC|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
element discretization

þ
X

f�nbðCÞ
_mf vf
� �

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
face discretization

¼ �
X

f�nbðCÞ
pfSf
� �

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
face discretization

þ
X

f�nbðCÞ
sf � Sf
� �

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
face discretization

þ B|{z}
element

discretization

ð15:113Þ

where the discretization type of the various terms is explicitly stated. Terms that are
evaluated at the element faces should be modified along a boundary face in
accordance with the type of boundary condition used. Therefore, for boundary
elements, the terms evaluated at the element faces are written asX

f�nbðCÞ
_mf vf
� �

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
face discretization

¼
X

f�interior nbðCÞ
_mf vf
� �þ _mbvb|ffl{zffl}

boundary face

ð15:114Þ

15.6 Boundary Conditions 603

X
f�nbðCÞ

sf � Sf
� �

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
face discretization

¼
X

f�interior nbðCÞ
sf � Sf
� �þ sb � Sb|fflffl{zfflffl}

boundary face

¼
X

f�interior nbðCÞ
sf � Sf
� �þ Fb|{z}

boundary
face

ð15:115Þ

X
f�nbðCÞ

pfSf
� �

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
face discretization

¼
X

f�interior nbðCÞ
pfSf
� �þ pbSb|ffl{zffl}

boundary face

ð15:116Þ

where subscript b refers to a value at the boundary. As previously stated, the pressure
term may be discretized following either an element or a face discretization. In either
case the expanded form is the same since VC rpð ÞC is calculated as

P
f � nbðCÞ

pfSf

implying that the value at the boundary is always required. To show the way
boundary pressure affects solution, the expanded form of the pressure gradient (i.e.,
face discretization) is adopted in the implementation of boundary conditions.

15.6.1.1 Wall Boundary Conditions

Generally a no-slip or a slip boundary condition may be applied to a moving or a
stationary wall. The implementation involves computing and linearizing the shear
stress at the wall. This is different from the Dirichlet condition, though for a
cartesian grid the two conditions may be shown to be identical.

No-Slip Wall Boundary pb ¼ ?; _mb ¼ 0; vb ¼ vwallð Þ

A no slip boundary condition implies that the velocity of the fluid at the wall vb is
equal to the velocity of the wall vwall. For a stationary wall, the boundary velocity
vb is zero. The known velocity at the wall could be wrongly viewed as a Dirichlet
boundary condition. However this is not really the case, since what is needed is to
have a zero normal boundary flux while also accounting for the shear stress. This
cannot be satisfied by simply setting vb = vwall. Figure 15.19 shows that this can be
guaranteed by ensuring a shear stress that is tangential to the wall in addition to a
boundary velocity equation that is equal to the wall velocity. The force Fb exerted
by the wall on the fluid can be written as

Fb ¼ F? þ Fk ð15:117Þ

604 15 Fluid Flow Computation: Incompressible Flows

where Fk is in the tangential direction to the wall and F? is in the normal direction,
which is supposed to be zero. Thus

Fb ¼ Fk ¼ swallSb ð15:118Þ

where swall is the shear stress exerted by the wall on the fluid given by

swall ¼ �l
@vk
@d?

: ð15:119Þ

In Eq. (15.119) vk is the velocity vector in the direction parallel to the wall and
d? is the normal distance from the centroid of the boundary element to the wall
computed as

n ¼ Sb
Sb
¼ nxi þ nyj þ nzk

d? ¼ dCb � n ¼ dCb � Sb
Sb

ð15:120Þ

and n the wall normal unit vector. The velocity vector vk can be written as the
difference between v and its normal component as

vk ¼ v� v � nð Þn ¼
u� unx þ vny þ wnz

� �
nx

v� unx þ vny þ wnz
� �

ny
w� unx þ vny þ wnz

� �
nz

8<
:

9=
; ð15:121Þ

b

n

vv

v

wall
b

v

wall

Sb
n

eb

Sb

eb
C

C

Fig. 15.19 A schematic of a no-slip wall boundary condition

15.6 Boundary Conditions 605

From Eq. (15.119), the wall shear stress can be approximated using

swall � �lb
vC � vbð Þjj

d?
¼ �lb

vC � vbð Þ � vC � vbð Þ � n½ �n
d?

¼ � lb
d?

uC � ubð Þ � uC � ubð Þnx þ vC � vbð Þny þ wC � wbð Þnz

 �

nx
vC � vbð Þ � uC � ubð Þnx þ vC � vbð Þny þ wC � wbð Þnz

 �
ny

wC � wbð Þ � uC � ubð Þnx þ vC � vbð Þny þ wC � wbð Þnz

 �

nz

8><
>:

9>=
>;

ð15:122Þ

from which the boundary force for a laminar flow can be obtained as

Fb ¼ � lbSb
d?

uC � ubð Þ � uC � ubð Þnx þ vC � vbð Þny þ wC � wbð Þnz

 �

nx
vC � vbð Þ � uC � ubð Þnx þ vC � vbð Þny þ wC � wbð Þnz

 �
ny

wC � wbð Þ � uC � ubð Þnx þ vC � vbð Þny þ wC � wbð Þnz

 �

nz

8><
>:

9>=
>;

ð15:123Þ

Using Eq. (15.123) the coefficients of the boundary elements for the momentum
equation in the x, y and z directions are modified as follows:

u-component equation

auC auC|{z}
interior faces contribution

þ lbSb
d?

1� n2x
� �

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
boundary face contribution

0 auF¼b

buC buC|{z}
interior faces contribution

þ lbSb
d?

ub 1� n2x
� �þ vC � vbð Þnynx � wC � wbð Þnznx

 �� pbS
x
b|ffl{zffl}

boundary face contribution

ð15:124Þ

v-component equation

avC avC|{z}
interior faces contribution

þ lbSb
d?

1� n2y
	

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
boundary face contribution

0 avF¼b

bvC bvC|{z}
interior faces contribution

þ lbSb
d?

uC � ubð Þnxny þ vb 1� n2y
	

þ wC � wbð Þnzny
h i

� pbS
y
b|ffl{zffl}

boundary face contribution

ð15:125Þ

606 15 Fluid Flow Computation: Incompressible Flows

w-component equation

awC awC|{z}
interior faces contribution

þ lbSb
d?

1� n2z
� �

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
boundary face contribution

0 awF¼b

bwC bwC|{z}
interior faces contribution

þ lbSb
d?

uC � ubð Þnxnz þ vC � vbð Þnynz þ wb 1� n2z
� �
 �� pbS

z
b|ffl{zffl}

boundary face contribution

ð15:126Þ

The unknown boundary pressure pb is extrapolated from the interior solution
using either a truncated Taylor series expansion around point C such that pressure is
found from

pb ¼ pC þrpðnÞC � dCb ð15:127Þ

or the mass flow rate expressed via the Rhie-Chow interpolation as

_m�b ¼ qbv
�
b � Sb � qbD

v
C rpðnÞb �rpðnÞC

	

� Sb ð15:128Þ

Since the mass flow rate and velocity at the wall boundary are zero, the above
equation reduces to

0 ¼ 0� qbD
v
C rpðnÞb �rpðnÞC

	

� Sb ð15:129Þ

which can be modified into

Dv
CrpðnÞb � Sb ¼ rpðnÞb � S0b

¼ rpðnÞC � S0b
ð15:130Þ

Expressing S0b as the sum of the two vector Eb and Tb, Eq. (15.130) becomes

rpðnÞb � Eb þ Tbð Þ ¼ rpðnÞC � S0b ð15:131Þ

Since Eb is in the direction of Cb, the above equation can be modified to

DC pb � pCð Þ ¼ rpðnÞC � S0b �rpðnÞb � Tb

	

ð15:132Þ

from which the boundary pressure is obtained as

pb ¼ pC þ
rpðnÞC � S0b �rpðnÞb � Tb

	

DC

ð15:133Þ

15.6 Boundary Conditions 607

Slip Wall Boundary pb ¼ ?; _mb ¼ 0;Fb ¼ 0ð Þ

For this boundary condition, the wall shear stress is zero (Fig. 15.20). Therefore the
boundary force is zero. The boundary pressure is computed as for the no-slip wall
boundary case using Eq. (15.127) or Eq. (15.133). The coefficients of the
momentum equation (in vector form) are modified as follows:

avC avC|{z}
interior faces contribution

0 avF¼b
bvC bvC|{z}

interior faces contribution

� pbSb|ffl{zffl}
boundary face contribution

ð15:134Þ

15.6.1.2 Inlet Boundary Conditions

Three types of inlet boundary conditions are considered. (i) specified velocity;
(ii) specified static pressure and velocity direction; and (iii) specified total pressure
and velocity direction. All treatments of the pressure boundary conditions will be
detailed in the pressure correction boundary conditions section.

b

v

Sb

n

eb

wall = 0

C

Fig. 15.20 A schematic of a
slip wall boundary condition

608 15 Fluid Flow Computation: Incompressible Flows

Specified Velocity pb ¼ ?; _mb specified; vb specifiedð Þ

For a specified velocity boundary condition at inlet (Fig. 15.21) the convection
_mbvbð Þ and diffusion Fb ¼ sb � Sbð Þ terms at the boundary face are calculated using

the known values of velocity vb and mass flow rate _mb. The pressure at the
boundary is extrapolated from the boundary element centroid as

pb ¼ pC þrpðnÞC � dCb ð15:135Þ

The terms involving the boundary velocity are treated explicitly by adding them
to the source term and setting the coefficient avF¼b to zero while adding its value to
the avC coefficient.

The coefficients of the boundary element are modified according to

avC avC
bvC bvC � avF¼bvb
0 avF¼b

ð15:136Þ

b
vb = v specified

pb = ?

Sb

n

eb

C

m
b

=
b
v
b
S

b

Fig. 15.21 A schematic of
specified velocity boundary
condition at inlet

15.6 Boundary Conditions 609

Specified Pressure and Velocity Direction pb ¼ pspecified ;
�

_mb?; ev specified; vb?Þ

In the case of a specified static pressure at inlet (Fig. 15.22), pb is known. The
velocity being unknown, has to be computed from the pressure gradient at the
boundary. To this end, a velocity direction should be specified as part of the
boundary condition.

As the boundary pressure pb is known, its value is directly used in calculating the
pressure gradient in the boundary element without any special treatment. Therefore
pb is used in calculating rpC.

The mass flow rate at the boundary is computed from the continuity equation
(see next section). Then, for a specified velocity direction given by the unit vector
ev, the velocity for a specified pressure boundary condition at inlet is obtained as

_m��b ¼ qbv
��
b � Sb ¼ qb v��b

�� ��ev � Sb) v��b
�� �� ¼ _m��b

qb ev � Sbð Þ) v��b ¼ v��b
�� ��ev
ð15:137Þ

The velocity at the boundary is computed at every iteration and the problem is
solved as in the case of a specified velocity with the coefficients in the momentum
equation modified according to Eq. (15.136).

b

mb = ?

Sb

n

vb = ?

evb (specified)
pb(specified)

eb

C

Fig. 15.22 A schematic of specified pressure and velocity direction boundary condition at inlet

610 15 Fluid Flow Computation: Incompressible Flows

SpecifiedTotal Pressure andVelocityDirection po;b ¼ po;specified ;
�

_mb?; ev specified; vb?Þ
In the case of a specified total pressure at inlet (Fig. 15.23) the velocity direction
should also be specified. However, the magnitude of the velocity and the pressure at
the boundary are unknown though related using the total pressure definition given by

p0 ¼ p|{z}
static pressure

þ 1
2
qv � v|fflfflffl{zfflfflffl}

dynamic pressure

ð15:138Þ

where p0 is the total pressure, p the static pressure, ρ the density, and v the velocity
vector. The mass flow rate at the boundary is computed from the continuity
equation (see next section). Knowing the mass flow rate, the velocity is computed
in the same manner as for the specified pressure case using Eq. (15.137). The
velocity is thus treated as a known velocity condition (i.e., a Dirichlet boundary
condition) with the coefficients in the momentum equation modified according to
Eq. (15.136).

15.6.1.3 Outlet Boundary Conditions

Three types of boundary conditions at an outlet are considered: (i) a specified static
pressure, (ii) a specified mass flow rate, and (iii) a fully developed flow.

b

ptotal (specified) = pb + b

vb vb

2

Sb

n

eb
C

pb = ?

vb = ?

mb = ?

Fig. 15.23 A schematic of
specified total pressure and
velocity direction boundary
condition at inlet

15.6 Boundary Conditions 611

Specified Static Pressure pb ¼ pspecified ; _mb?; vb?
� �

For the momentum equation, fully developed conditions are assumed at a specified
pressure outlet (Fig. 15.24) implying a zero velocity gradient along the direction of
the surface vector at outlet. This is also equivalent to assuming the velocity at the
outlet to be equal to that of the boundary element. Thus it is similar to a zero flux
boundary condition whose implementation is rather simple.

The modifications to the coefficients are given by

avC avC|{z}
interior faces contribution

þ _mb|{z}
boundary face contribution

0 avF¼b
bvC bvC|{z}

interior faces contribution

� pbSb|ffl{zffl}
boundary face contribution

ð15:139Þ

This sets the contribution of the outlet velocity to zero and uses the specified
pressure boundary value in the computation of the pressure gradient.

However to ensure that the flux is zeroed in the outflow surface vector direction
only, the velocity is usually extrapolated to the outlet using the boundary flux,
which is computed from the boundary element flux as

rvb ¼ rvC � rvC � ebð Þeb ð15:140Þ

pb = pspecified

vb = ?

mb = ?

b

Sb

n

eb

C

Fig. 15.24 A schematic of
specified static pressure
boundary condition at outlet

612 15 Fluid Flow Computation: Incompressible Flows

This ensures that the gradient along the boundary surface vector is zero. Then,
using a Taylor series expansion, the velocity at the boundary is computed as

vb ¼ vC þrvb � dCb ð15:141Þ

where rvb is used instead of rvC. Therefore an additional correction is now added
to the source term and the modifications to the coefficients become

avC avC|{z}
interior faces contribution

þ _mb|{z}
boundary face contribution

0 avF¼b
bvC bvC|{z}

interior faces contribution

� _mb rvb � dCbð Þ � pbSb|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
boundary face contribution

ð15:142Þ

Specified Mass Flow Rate _mb ¼ _mspecified ; pb?vb?
� �

Since the flow is incompressible, a specified mass flow rate boundary condition
(Fig. 15.25) is equivalent to specifying the normal component of velocity at the
boundary. The velocity is calculated by assuming its direction to be the same as that
at the main grid point, i.e., evð Þb¼ evð ÞC. Thus, the velocity is expressed as

vb ¼ vbj j evð ÞC ð15:143Þ

vb = ?

b

Sb

n

eb

C

m
b

= m
specified

p
b

= ?

Fig. 15.25 A schematic of
specified mass flow rate
boundary condition at outlet

15.6 Boundary Conditions 613

with vbj j obtained from

_mb ¼ qbvb � Sb ¼ qb vbj j evð ÞC � Sb) vbj j ¼ _mb

qb evð ÞC � Sb
ð15:144Þ

allowing vb to be calculated. Thus for momentum, a specified velocity boundary
condition is applied. The coefficients of the boundary elements are modified
according to Eq. (15.136).

Fully Developed Outlet Flow

For a fully developed flow, the velocity gradient normal to the outlet surface is
assumed to be zero. Hence the velocity at the outlet is assumed to be known and
computed from the zero normal gradient using Eqs. (15.140) and (15.141). As for
the pressure at the boundary, it can be extrapolated from the interior pressure field
using

pb ¼ pC þrpC � dCb ð15:145Þ

The velocity is treated as known and the coefficients of the momentum equation
are modified according to Eq. (15.142).

15.6.1.4 Symmetry Boundary Condition

A scalar is reflected across a symmetry boundary. Thus, a symmetry boundary con-
dition for a scalar variable is imposed by setting its normal gradient to zero, as with an
insulated wall boundary condition. For the velocity vector, the symmetry condition
shown in Fig. 15.26 also implies that it is reflected about the symmetry boundary with
its parallel component (i.e., parallel to the symmetry boundary) retaining magnitude
and direction, while its normal component becoming zero. This results in a zero shear
stress but a non-zero normal stress along the symmetry boundary. Thus, the same
boundary condition can be used to impose a slip wall boundary condition for viscous
flows.

The unit vector in the direction normal to the boundary n and the normal
distance to the boundary d? are given by Eq. (15.120). Therefore the velocity
components normal and parallel to a symmetry boundary satisfy

v? ¼ 0
@vjj
@n
¼ 0

ð15:146Þ

614 15 Fluid Flow Computation: Incompressible Flows

The normal component of velocity can be written as

v? ¼ v � nð Þn ¼
uCnx þ vCny þ wCnz
� �

nx
uCnx þ vCny þ wCnz
� �

ny
uCnx þ vCny þ wCnz
� �

nz

8><
>:

9>=
>; ð15:147Þ

while the parallel component is given by Eq. (15.121). The boundary force Fb can
be decomposed into a normal component F? and a parallel component Fjj. As the
shear stress along a symmetry boundary is zero, the parallel component of Fb is
zero. Denoting the normal stress by r?, the force Fb is given by

Fb ¼ r?Sb ð15:148Þ

The normal stress component can be approximated as

r? ’ �2lb
v?
d?
¼ �2 lb

d?

uCnx þ vCny þ wCnz
� �

nx
uCnx þ vCny þ wCnz
� �

ny
uCnx þ vCny þ wCnz
� �

nz

8><
>:

9>=
>; ð15:149Þ

from which the boundary force is found to be

Fb ¼ Fn ¼ �2 lbSbd?

uCnx þ vCny þ wCnz
� �

nx
uCnx þ vCny þ wCnz
� �

ny
uCnx þ vCny þ wCnz
� �

nz

8><
>:

9>=
>; ð15:150Þ

Sb

b

n

vv

v

Symmetry Plane

v

v

v

v

C

C

Fig. 15.26 A schematic of a
symmetry boundary condition

15.6 Boundary Conditions 615

The pressure gradient in the direction normal to a symmetry boundary is zero.
Mathematically this is written as

rpb � n ¼ 0 ð15:151Þ

The pressure at a symmetry boundary should be extrapolated from the interior of
the domain. Therefore to ensure a zero normal gradient, the pressure gradient at the
symmetry boundary is computed as

rpb ¼ rpC � ðrpC � nÞn ð15:152Þ

Thus, the pressure is obtained from

pb ¼ pC þrpb � dCb ð15:153Þ

Using the above equations, the coefficients of the boundary elements for the
momentum equation in the x, y and z directions are modified as follows:

u-component equation

auC auC|{z}
interior faces contribution

þ 2lbSb
d?

n2x|fflfflfflffl{zfflfflfflffl}
boundary face contribution

0 auF¼b

buC buC|{z}
interior faces contribution

� 2lbSb
d?

vCny þ wCnz

 �

nx � pbSxb|ffl{zffl}
boundary face contribution

ð15:154Þ

v-component equation

avC avC|{z}
interior faces contribution

þ 2lbSb
d?

n2y|fflfflfflffl{zfflfflfflffl}
boundary face contribution

0 avF¼b

bvC bvC|{z}
interior faces contribution

� 2lbSb
d?

uCnx þ wCnz½ �ny � pbS
y
b|ffl{zffl}

boundary face contribution

ð15:155Þ

616 15 Fluid Flow Computation: Incompressible Flows

w-component equation

awC awC|{z}
interior faces contribution

þ 2lbSb
d?

n2z|fflfflfflffl{zfflfflfflffl}
boundary face contribution

0 awF¼b

bwC bwC|{z}
interior faces contribution

� 2lbSb
d?

uCnx þ vCny

 �

nz � pbS
z
b|ffl{zffl}

boundary face contribution

ð15:156Þ

While this is not a comprehensive list of momentum boundary conditions, it
does cover the most common types.

15.6.2 Boundary Conditions for the Pressure Correction
Equation

The continuity equation for a boundary cell can be written asX
f�nbðCÞ

_mf þ _mb|{z}
boundary face

¼ 0 ð15:157Þ

or X
f�nbðCÞ

ð _m�f þ _m0f Þ þ ð _m�b þ _m0bÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
boundary face

¼ 0 ð15:158Þ

where _m�b is the boundary mass flux and _m0b is its correction. While for an internal
face the mass flux and its correction are defined by Eqs. (15.100) and (15.101), for a
boundary face the definition is slightly different. Since at a boundary face only the
boundary cell contributes to the average quantities, the use of Eq. (15.109) in
combination with Eqs. (15.100) and (15.101) gives

_m�b ¼ qbv
�
C � Sb � qbD

v
CðrpðnÞb �rpðnÞC Þ � Sb

_m0b ¼ �qbDCðp0b � p0CÞ
ð15:159Þ

In implementing boundary conditions the values of _m�b, _m0b, pb, and p0b must be
calculated. Based on the discussions related to the momentum equation, three types
of boundary conditions can be inferred. The first type is designated by “specified
mass flow rate” (e.g., walls or velocity specified at inlets). For this category _m0b ¼ 0,
which is similar to a zero scalar flux boundary condition, and no modification to the
pressure-correction equation is needed. The pressure however has to be computed at

15.6 Boundary Conditions 617

the boundary from the interior field. The second type of boundary conditions is
termed “pressure specified” where p0b ¼ 0 and for which a Dirichlet-like condition
has to be enforced for the pressure-correction equation. For this condition, _m�b is
computed from the boundary and interior pressure field. In the third type, an
implicit relation exists between the pressure and the mass flow rate, as in a specified
total pressure boundary condition. In this case, an explicit equation is extracted
from the implicit relation and substituted into the pressure-correction equation.

Details regarding the various types of boundary conditions and their imple-
mentation are now given.

15.6.2.1 Wall Boundary Condition

pb ¼ ?; _mb ¼ 0; vb ¼ vwallð Þ or pb ¼ ?; _mb ¼ 0;Fb ¼ 0ð Þ

Whether it is a slip (Fig. 15.20) or no-slip (Fig. 15.19) wall boundary condition the
mass flow rate is zero. Therefore _m0b ¼ 0, which is equivalent to a specified zero
flux and implying that no modification is needed for the pressure-correction
equation. However the pressure at the wall is required and is computed using
Eq. (15.127) or Eq. (15.133) or a low order extrapolation profile, as shown below.

pb ¼

pC þrpðnÞC � dCb Eq: ð15:127Þ

pC þ
rpðnÞC � S0b �rpðnÞb � Tb

	

DC

pC

Eq: ð15:133Þ
loworder extrapolation

8>>>>>><
>>>>>>:

ð15:160Þ

15.6.2.2 Inlet Boundary Conditions

Specified Velocity pb ¼ ?; _mb specified; vb specifiedð Þ

For a specified velocity at inlet (Fig. 15.21), the mass flux is known and its cor-
rection is set to zero, i.e., _m0b ¼ 0. Thus, similar to a wall boundary condition, the
term is simply dropped from the pressure-correction equation. The pressure at the
boundary is extrapolated from the internal pressure field using Eq. (15.127) or
Eq. (15.133) or a low order extrapolation profile as summarized in Eq. (15.160).

Specified Pressure and Velocity Direction pb ¼ pspecified;
�

_mb?; ev specified; vb?Þ

In the case of a specified static pressure at inlet (Fig. 15.22), pb is known and thus
p0b is set to zero but _m0b 6¼ 0. The inlet is treated as a Dirichlet boundary condition
for the pressure-correction equation. The coefficient of the p0 equation becomes

618 15 Fluid Flow Computation: Incompressible Flows

ap0
C ¼

X
f�nbðCÞ

qfDf

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
interior faces contribution

þ qbDC|fflffl{zfflffl}
boundary face contribution

ð15:161Þ

Specified Total Pressure and Velocity Direction po;b ¼ po;specified ;
�

_mb?;

ev specified; vb?Þ

As mentioned earlier, for a specified total pressure (Fig. 15.23), the velocity
direction should also be specified. The total pressure relation given by Eq. (15.138)
is first rewritten as a function of the mass flow rate and pressure by replacing the
velocity magnitude by the mass flux. Thus,

_mb ¼ qvb � Sb ¼ qjvbjev � Sb) qjvbj ¼ _mb

ev � Sb
) po;b ¼ pb þ 1

2qb

_m2
b

ðev � SbÞ2
ð15:162Þ

Using a Taylor expansion about pb, p0b is obtained as

pb þ p0b ¼ pb þ @pb
@ _mb
ð _m0bÞ) p0b ¼

@pb
@ _mb

_m0b ð15:163Þ

Differentiating Eq. (15.162) with respect to _mb and substituting into
Eq. (15.163), the final form of p0b is found to be

p0b ¼ �
_m�b

qbðev � SbÞ2
_m0b ¼ �

qbv
�
b � v�b
_m�b

_m0b ð15:164Þ

Substituting Eq. (15.164) in Eq. (15.159), the mass flux correction is expressed as

_m0b ¼ �qbDC p0b � p0C
� �) _m0b ¼

_m�bqbDC

_m�b �DCðqbv�b � qbv�bÞ
p0C ð15:165Þ

Replacing _m0b in the expanded continuity equation (Eq. 15.158) by its expression

from Eq. (15.165), the modified ap
0

C coefficient for the boundary cell becomes

ap
0
C ¼

X
f�nbðCÞ

qfDf

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
interior faces contribution

þ qb _m
�
bDC

_m�b �DCðqbv�b � qbv�bÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
boundary face contribution

ð15:166Þ

15.6 Boundary Conditions 619

15.6.2.3 Outlet Boundary Conditions

Specified Pressure pb ¼ pspecified ; _mb?; vb?
� �

For a specified pressure at outlet (Fig. 15.24) p0b is set to zero. On the other hand, _m
0
b

is computed as

_m0b ¼ �qbDCðp0b � p0CÞ ð15:167Þ

The velocity direction being needed, it is customary to take the direction of vb to

be that of the upwind velocity vC. The expression of the ap
0
C coefficient in the

pressure-correction equation becomes

ap
0
C ¼

X
f�nbðCÞ

qfDf

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
interior faces contribution

þ qbDC|fflffl{zfflffl}
boundary face contribution

ð15:168Þ

Specified Mass Flow Rate _mb ¼ _mspecified ; pb?vb?
� �

For a specified mass flow rate at outlet (Fig. 15.25), _m0b is zero and is simply
dropped from the pressure correction equation with no modifications required for
the coefficients of the boundary elements. By setting _m0b to zero in Eq. (15.159), the
pressure correction (or pressure) at the boundary is set equal to the pressure cor-
rection (or pressure) at the boundary cell centroid.

Fully Developed Outlet Flow

For a fully developed flow, the velocity at the outlet is assumed to be known and
computed from the zero normal gradient. This means that _mb at the outlet is known.
Therefore no correction is needed and _m0b is set to zero. However, as the boundary
pressure is unknown, it is extrapolated from the interior pressure field. Since the
velocity is iteratively updated, the above treatment does not guarantee overall
conservation except at convergence. It is customary with incompressible flows to
overcome this issue and to enforce global mass conservation at any iteration by
modifying _mb at the boundary to satisfy overall mass conservation. This is done by
calculating the total mass flow rate entering the domain

P
_min. Then based on

the calculated mass flow rates at outlet boundaries, the total mass flow rate leaving

620 15 Fluid Flow Computation: Incompressible Flows

the domain
P

_mout is computed. The mass flow rate at an outlet is adjusted
according to

_mout _mout

P
_minP
_mout

ð15:169Þ

To be able to apply the above treatment, the outlet should be placed far away
from any recirculation zone.

15.6.2.4 Symmetry Boundary Condition

The mass flow rate across a symmetry line (Fig. 15.26) is zero and as such its
correction is set to zero, i.e., _m0b ¼ 0. Thus, similar to a wall boundary condition, the
mass flow rate correction term is simply dropped from the pressure-correction
equation. The pressure at the boundary is extrapolated from the internal pressure
field using Eq. (15.127) or Eq. (15.133) or a low order extrapolation profile as
summarized in Eq. (15.160).

15.6.2.5 The Relative Nature of Pressure

For incompressible flow problems in which the normal velocities are prescribed on
all boundaries, a difficulty arises due to the relative nature of pressure. In such
cases, since only the pressure gradient appears in the momentum equation, there is
no means for determining the absolute level of pressure, and only pressure differ-
ences have physical meaning. This indeterminacy of the pressure level leads to a
singular coefficient matrix A and the direct solution of the system A/ ¼ b fails. The
singularity is easily removed by simply setting the pressure at one point in the
domain to a prescribed value. The remaining pressures are then calculated relative
to this value.

15.7 The SIMPLE Family of Algorithms

In the SIMPLE algorithm [13], velocity and pressure are treated in a segregated
(sequential) manner, with the pressure field computed by deriving a pressure cor-
rection equation that exploits the discrete momentum equation to replace the
velocity field in the continuity equation with a pressure term. In the derivation, a
velocity correction term, Hf ½v0�, was neglected as retaining it renders the equation
unmanageable.

Discarding this term does not affect the final solution since its value is zero at
convergence. Rather, it affects the path to convergence because during the initial

15.7 The SIMPLE Family of Algorithms 621

iterations its value can be significant. This large value may either cause divergence
or slow down the rate of convergence as a result of an overestimated pressure
correction field. To counterbalance that, in SIMPLE the pressure is under relaxed
by computing its value using p ¼ p� þ kpp0, where kp is the pressure under
relaxation factor. For optimum convergence, kp is usually set equal to ð1�kvÞ,
where kv is the momentum under relaxation factor, with more information on this
provided later.

Despite the use of under relaxation, the rate of convergence of the SIMPLE
algorithm remains problem dependent and researchers sought alternatives for fur-
ther improvements. Their effort culminated in the development of a SIMPLE-like
family of algorithms such as SIMPLEC [17], SIMPLER [3], PISO [18], SIMPLEX
[5], PRIME [19], SIMPLEM [20], and SIMPLEST [21]. Moukalled and Darwish
[22] unified the formulation of these algorithms for both incompressible and
compressible flows while Darwish et al. [23] and Jang et al. [24] assessed their
performance. It is not the intention here to give a full account of these algorithms,
rather, attention will be focussed on the two most popular variants, which are the
SIMPLEC (SIMPLE Consistent) algorithm of Van Doormal and Raithby and the
PISO (Pressure-Implicit Split Operator) algorithm of Issa. These two algorithms
present two different approaches for dealing with the Hf ½v0� term. In SIMPLEC the
velocity correction at the main grid point is approximated as the weighted average
of the velocity corrections at the neighboring locations altering the term Hf ½v0� into
a modified one, ~Hf ½v0�, of smaller magnitude, which is then neglected. In the PISO
algorithm, the Hf ½v0� term is accounted for as part of the split operator approach. In
all other algorithms, the Hf ½v0� term is neglected as in SIMPLE and modifications
are introduced either to the momentum equations or the Dv operator. Because the
PISO algorithm is equivalent to one step of the SIMPLE algorithm and one or more
steps of the PRIME algorithm, the latter is also detailed.

In the PRIME [19] algorithm the momentum equation is solved explicitly. This
explicit treatment of the momentum equation is justified by its small contribution to
the convergence of the entire flow field. On the other hand, finding the correct
solution for the pressure field represents the most important factor impacting the
overall convergence.

In SIMPLEST [21], the coefficients in the momentum equation are separated
into their convection and diffusion parts with the convection terms treated explicitly
and the diffusion terms implicitly, thus affecting Dv and H. The justification for the
explicit treatment of convection is based on the similarity between the propagation
of disturbances at a finite speed without any change in magnitude in a pure con-
vection situation, and the propagation of error, from a particular point to the
neighboring grid points, in a single iteration of explicit iterative methods. While the
implicit treatment of diffusion is argued based on the similarity between the
propagation of disturbances in a pure diffusion situation instantaneously in all
directions with rapid decay in their amplitude and the reduction of errors throughout
the entire solution domain, in a single iteration, by implicit solution methods.

622 15 Fluid Flow Computation: Incompressible Flows

In SIMPLEM (SIMPLE-Modified) [20], the pressure-correction equation is
solved before the momentum equation implying that the pressure field is computed
using the old velocity field. This results in better pressure corrections than velocity
corrections and interchange the disadvantages and advantages of the SIMPLE
algorithm.

In SIMPLER (SIMPLE-Revised) [3], an additional equation is developed from
which the pressure is directly calculated while the SIMPLE-like pressure-correction
equation is used to update the velocity field. The reason for a separate pressure
equation being that, once the velocity field is updated using the predicted pressure
correction field, it no longer satisfies the momentum equations. Therefore, the
pressure should be calculated from another equation to match the velocities, so that
the momentum equations are also satisfied.

The SIMPLEX algorithm [5] was developed with the aim of ensuring that the
rate of convergence will not degrade with grid refinement. It differs from SIMPLE
in the way the Dv

field is computed. This is done by using an additional set of
equations, which is developed and solved based on the assumption that the influ-
ence of the spatial distribution of pressure difference changes little with grid
refinement. Therefore, if the pressure difference influence is restricted to a cell, it
would be appropriate to assume that, by extrapolation, the pressure difference at the
main grid point adequately represents the pressure differences at the element faces.

Though all of the above algorithms were originally derived for a segregated grid,
they are applicable within a collocated grid framework.

15.7.1 The SIMPLEC Algorithm

The SIMPLEC (SIMPLE-Consistent) [17] algorithm is a modified version of the
SIMPLE algorithm derived by simply assuming that the velocity correction at point
C is the weighted average of the corrections at the neighboring grid points.
Mathematically this is expressed by

v0C �

X
F�NBðCÞ

avFv
0
FX

F�NBðCÞ
avF
)

X
F�NBðCÞ

avFv
0
F � v0C

X
F�NBðCÞ

avF ð15:170Þ

and using the H operator, Eq. (15.170) can be written as

X
F�NBðCÞ

avFv
0
F

avC
� v0C

X
F�NBðCÞ

avF
avC
) HC½v0� � v0CHC½1� ð15:171Þ

15.7 The SIMPLE Family of Algorithms 623

Therefore instead of neglecting the HC½v0� term as in SIMPLE, it is replaced by
the approximate value given by the above equation. With this approximation the
velocity correction given by Eq. (15.85) becomes

1þHC½1�ð Þv0C ¼ �Dv
Cðrp0ÞC) v0C ¼ �~D

v
Cðrp0ÞC ð15:172Þ

Equation (15.172) can then be used to derive the pressure correction equation.
The same result can be achieved by adding and subtracting the termP

F�NBðCÞ
avFvC from the momentum equation obtained by combining Eqs. (15.76)

and (15.77), leading to the following modified equation:

avC þ
X

F�NBðCÞ
avF

0
@

1
AvC þ

X
F�NBðCÞ

avFðvF � vCÞ ¼ �VCðrpÞC þ b̂
v
C ð15:173Þ

which, in turn, can be written as

vC þ ~HC½v� vC� ¼ �~D
v
CðrpÞC þ ~B

v
C ð15:174Þ

By using Eq. (15.174), the velocity correction equation becomes

v0C¼� ~HC½v0 � v0C� � ~D
v
Cðrp0ÞC ð15:175Þ

Then the term ~HC½v0 � v0C� is dropped, which is equivalent to the approximation
given by Eq. (15.171), and the modified velocity correction is used in deriving the
pressure correction equation.

Due to a better estimate in SIMPLEC (i.e., a smaller term is dropped), the
relaxation of pressure becomes unnecessary and as compared to SIMPLE, the
resulting velocity corrections will satisfy better the momentum equations.
Consequently, a higher rate of convergence is obtained. Thus, with the exceptions
of dropping ~HC½v0 � v0C� rather than HC½v0� and replacing Dv

C by ~D
v
C, the steps

involved in the SIMPLEC algorithm are similar to those of the SIMPLE algorithm.

15.7.2 The PRIME Algorithm

In the PRIME (PRessure Implicit Momentum Explicit) [19] algorithm, the
momentum equation is solved explicitly. This explicit treatment is justified by the
small contribution to the convergence of the entire flow field by the iterative sweeps
of the momentum equation. On the other hand, finding the correct solution for the
pressure field represents the most important factor in the overall convergence.
Based on this argument, the PRIME algorithm can be summarized as follows:

624 15 Fluid Flow Computation: Incompressible Flows

The momentum equation is solved explicitly to obtain a new velocity field v*

using

v�C ¼ �HC vðnÞ
h i

� Dv
C rpðnÞ
	

C
þBv

C ð15:176Þ

This velocity field is employed to derive the pressure correction equation. Thus
defining the correction fields such that

v��C ¼ v�C þ v0C p�C ¼ pðnÞC
þ p0C ð15:177Þ

the corrected field would satisfy

v��C ¼ �HC½v��� � Dv
Cðrp�ÞC þ Bv

C ¼ �HC½v� þ v0� � Dv
C r pðnÞ þ p0

	
h i
C
þ Bv

C

ð15:178Þ

leading to the following expression relating velocity and pressure correction:

v0C ¼ � HC v� � vðnÞ
h i

þHC½v0�
	

� Dv
Crp0C ð15:179Þ

Substituting Eq. (15.179) and its correction into the continuity equation yields

�
X

f�nbðCÞ
qfDfrp0f � Sf ¼ �

X
f�nbðCÞ

_m�f þ
X

f�nbðCÞ
qf Hf v� � vðnÞ

h i
þHf ½v0�

	

� Sf

h i
ð15:180Þ

where the underlined terms in Eqs. (15.179) and (15.180) are neglected.
The terms neglected in PRIME HC v��vðnÞ
 � þHC½v0�

� �
can become smaller

than the term neglected in SIMPLE HC½v0�ð Þ if HC½v0� and HC v��vðnÞ
 �
are of

opposite signs. It is worth noting that HC½v0 ¼ HC� ½v���v�� is a correction to satisfy
continuity, while HC v��vðnÞ
 �

is a correction to satisfy momentum. Usually the
corrector added to satisfy momentum is opposite to that added to satisfy continuity
and hence, the neglected term HC v��vðnÞ
 � þHC½v0�

� �
is smaller. Moreover, since

the momentum equations are explicitly solved, no under-relaxation is required. This
has the advantage of increasing the stability of the algorithm.

15.7.3 The PISO Algorithm

In the PISO algorithm [18, 25], the HC½v0� term is accounted for as part of a
correction procedure composed of two or more steps. The first step is similar to the

15.7 The SIMPLE Family of Algorithms 625

SIMPLE algorithm where v0 is computed from Eq. (15.83) while neglecting HC½v0�.
The continuity satisfying velocity v** and pressure p* fields are used to recalculate
the coefficients of the momentum equation and then to solve it explicitly. The new
velocity field v*** is used to calculate the mass flow rate field _m��� at the element
faces using the Rhie-Chow interpolation. Then, HC½v0� is partially recovered in a
second corrector step where the velocity correction is written as

v����C ¼ v���C þ v00C
¼ �H��C ½v��� � ðDv

CÞ��ðrp�ÞC þ v00C
¼ �H��C ½v� þ v0� � ðDv

CÞ��ðrp�ÞC þ v00C
¼ �H��C ½v�� �H��C ½v0� � ðDv

CÞ��ðrp�ÞC þ v00C
¼ �H��C ½v�� � ðDv

CÞ��ðrp�ÞC|ffl{zffl}
�v��C

�H��C �Dv
Cðrp0ÞC

 �þ v00C

� v��C þ v00C �H��C Dv
Cðrp0ÞC

 �
ð15:181Þ

In Eq. (15.181) the underlined term represents the portion of the HC½v0� that is
recovered by the second corrector step. The second velocity correction satisfies

v00C ¼ �H��C ½v00� � ðDv
CÞ��ðrp00ÞC ð15:182Þ

Using Eq. (15.181) with the Rhie-Chow interpolation between points C and F, a
new pressure-correction field is obtained as

�
X

f � nbðCÞ
qfDfrp00f � Sf ¼ �

X
f � nbðCÞ

_m�f þ
X

f � nbðCÞ
qfHf ½v00� � Sf
� � ð15:183Þ

where the underlined terms in Eqs. (15.182) and (15.183) are again neglected. This
corrector step may be repeated as many times as desired, each time recovering a
new additional portion of HC½v0�.

By following the sequence of events, it can be easily seen that PISO may be
considered as a combination of one SIMPLE step and one or more PRIME steps,
hence combining the implicitness of the SIMPLE algorithm with the stability of the
PRIME algorithm. The sequence of events in the collocated PISO algorithm can be
summarized as follows:

1. To compute the solution at time t + Δt, use as an initial guess the solution at time
t for pressure, velocity, and mass flow rate fields p(n), u(n), and _mðnÞ, respectively.

SIMPLE Step

2. Solve implicitly the momentum equation given by Eq. (15.70) to obtain a new
velocity field v*.

3. Update the mass flow rate at the cell faces using the Rhie-Chow interpolation
technique (Eq. 15.100) to obtain a momentum satisfying mass flow rate field _m�f .

626 15 Fluid Flow Computation: Incompressible Flows

yes

no

timeexceeded ?
no

stop

set initial guessm
f

n() ,v n() ,and p n() at time

t + t to converged valuesat timet

computem
f
* using the

Rhie Chow interpolation

assembleand solve pressure

correctionequation for p

correct m
f
* ,v*,and p n() to obtain

m
f
,v,and p*

converged ?

set solutionat time t + t tobe

equal tothe converged solution

yes

advanceintime
set t = t + t

assembleand solveimplicitly

momentumequation for v*

assembleand solveexplicitly

momentumequation for v***

computem
f
***using the

Rhie Chowinterpolation

assembleand solve pressure

correctionequation for p

correct m
f
,v,and p* to

obtainm
f
****,v****,and p**

yes

no

set m
f

n() = m
f
****,v n() = v****, p n() = p**

number of corrector stepsexceeded ?

SIMPLE

iteration

PRIME

iteration

repeat
repeat

set

mf = mf

v** = v****

p* = p**

repeat

Fig. 15.27 A flow chart of the PISO algorithm

15.7 The SIMPLE Family of Algorithms 627

4. Using the new mass flow rates, assemble the pressure correction equation
(Eq. 15.98) and solve it to obtain a pressure correction field p′.

5. Update the pressure and velocity fields at the cell centroids and the mass flow
rate at the cell faces to obtain continuity-satisfying fields using Eq. (15.101).

PRIME Step(s)

6. Using the latest available velocity and pressure fields, calculate the coefficients
of the momentum equation and solve it explicitly.

7. Update the mass flow rate at the cell faces using the Rhie-Chow interpolation
technique.

8. Using the new mass flow rates, assemble the pressure correction equation
(Eq. 15.183) and solve it to obtain a pressure correction field.

9. Update pressure, velocity, and mass flow rate fields using expressions similar to
the ones given in Eq. (15.101).

10. Go to step 6 and repeat based on the desired number of corrector steps.
11. Set the initial guess for velocity, mass flow rate, and pressure as u**, _m��,

and p*.
12. Go back to step 2 and repeat until convergence.
13. Set the solution at time t + Δt to be equal to the converged solution and set the

current time t + Δt to be t.
14. Advance to the next time step.
15. Go back to step 1 and repeat until the last time step is reached.

A flowchart of the PISO algorithm is presented in Fig. 15.27.

15.8 Optimum Under-Relaxation Factor Values for v and p0

To promote convergence in the SIMPLE algorithm the momentum and continuity
equations are under relaxed using the under relaxation factors λv and λp, respec-
tively. An important task is to find the under relaxation values that will result in the
optimum convergence rate. Recalling that the velocity correction is obtained
without any under relaxation from

v0C ¼ �DCðrp0ÞC ð15:184Þ

Moreover, in calculating the pressure field, the pressure correction is under
relaxed in order for the velocity correction field given by Eq. (15.184) to satisfy the
exact velocity correction equation given by

v0C ¼ �HC½v0� � kpDCðrp0ÞC ð15:185Þ

628 15 Fluid Flow Computation: Incompressible Flows

Equating Eqs. (15.184) and (15.185), an expression for λp is obtained as

�DCðrp0ÞC ¼ �HC½v0� � kpDCðrp0ÞC) kp ¼ 1þHC½v0�
v0C

¼ 1þ

X
F�NBðCÞ

avFv
0
F

avCv0C

ð15:186Þ

The SIMPLEC algorithm eliminated the need to under relax pressure correction
and resulted in the optimum acceleration rate. Therefore, using the approximation
introduced in SIMPLEC, the velocity correction at C can be written as the weighted
average of the velocity corrections at the neighboring grid points such that

v0C �

X
F�NBðCÞ

avFv
0
FX

F�NBðCÞ
avF

ð15:187Þ

From Eqs. (15.70)–(15.73) the coefficient avC can be expressed as

avC ¼
1
kv

avC �
X

F�NBðCÞ
avF þ

X
f�nbðCÞ

_mf

0
@

1
A ð15:188Þ

which in the limit of a steady state solution (the case for which under relaxation is
used, since for an unsteady situation the time step plays the role of the under
relaxation factor) reduces to

avC ¼ �
1
kv

X
F�NBðCÞ

avF ð15:189Þ

Substituting Eq. (15.189) in Eq. (15.187), the velocity correction is approxi-
mated as

v0C � �

X
F�NBðCÞ

avFv
0
F

kvavC
) avCv

0
C � �

X
F�NBðCÞ

avFv
0
F

kv
ð15:190Þ

substituting Eq. (15.190) in Eq. (15.186), an expression relating λv and λp is
obtained as

kp � 1� kv ð15:191Þ

Experience has shown that the performance of the SIMPLE algorithm with its
under relaxation factors satisfying Eq. (15.191) is similar to that of the SIMPLEC
algorithm.

15.8 Optimum Under-Relaxation Factor Values for v and p0 629

15.9 Treatment of Various Terms with the Rhie-Chow
Interpolation

15.9.1 Treatment of the Under-Relaxation Term

The use of the collocated grid method with the Rhie-Chow interpolation resulted in
solutions that are dependent on the value of under relaxation factor in the momentum
equation. To eliminate this dependence, a modification to the Rhie-Chow interpo-
lation is required. The under relaxed momentum equation is written as

1
kv

avCvC ¼ �
X

F�NBðCÞ
avFvF þ bvC � VCrpC þ 1� kv

kv

� �
avCv

ðnÞ
C ð15:192Þ

where bvC is the source term of the momentum equation from which the pressure

and under relaxation source terms are extracted and vðnÞC is the previous iteration
value of velocity at cell centroid C. The corresponding under relaxed momentum
equation using a staggered grid formulation can be expressed as

1
kv

avf vf ¼ �
X

nb�NBðf Þ
avnbvnb þ bvf � Vfrpf þ 1� kv

kv

� �
avf v

ðnÞ
f ð15:193Þ

The Rhie-Chow interpolation method mimics the staggered grid formulation by
forming a pseudo-momentum equation at the cell face. It is because of this
behavioral imitation that the Rhie-Chow interpolation is successful. Therefore as a
guiding principle, the yardstick to any modification to the Rhie-Chow interpolation
should be whether the modified formulation is similar to the staggered grid for-
mulation. Therefore, the form of the under relaxed equation using the Rhie-Chow
interpolation should be given by

1
kv

avf vf ¼ �
X

nb�NBðf Þ
avnbvnb þ bvf � Vfrpf þ 1� kv

kv

� �
avf v

ðnÞ
f ð15:194Þ

The average of the first term on the right hand side is obtained as

�
X

nb�NBðf Þ
avnbvnb þ bvf ¼ �gC

X
F�NBðCÞ

avFvF
� �þ bvC

0
@

1
A� gF

X
N�NBðFÞ

avNvN
� �þ bvF

0
@

1
A

¼ gC
1
kv

avCvC þ VCrpC � 1� kv

kv

� �
avCv

ðnÞ
C

� �

þ gF
1
kv

avFvF þ VFrpF � 1� kv

kv

� �
avFv

ðnÞ
F

� �

¼ 1
kv

avf vf þ Vfrpf � 1� kv

kv

� �
av

f v
ðnÞ
f

ð15:195Þ

630 15 Fluid Flow Computation: Incompressible Flows

Substituting Eq. (15.195) into Eq. (15.194), the extended Rhie-Chow interpo-
lated cell face velocity vf is obtained as

vf ¼ vf � Dv
f rpf �rpf
� �þ ð1� kvÞ vðnÞf � vðnÞf

	

ð15:196Þ

Not accounting for the effect of under-relaxation on the face velocity results in
solutions that depend on the under relaxation factor.

15.9.2 Treatment of the Transient Term

When solving a transient problem with a backward Euler transient scheme the
discretized momentum equation can be written as

avCvC ¼ �
X

F�NBðCÞ
avFvF
� �þ bvC � VCrpC þ a	Cv

	
C ð15:197Þ

where bvC is the source term of the momentum equation from which the pressure
and transient source terms are extracted. The equivalent equation for the staggered
grid variable arrangement has a similar form given by

avf vf ¼ �
X

nb�NBðf Þ
avnbvnb
� �þ bvf � Vfrpf þ a	f v

	
f ð15:198Þ

Using the Rhie-Chow interpolation method, a pseudo cell-face equation will be
constructed as

avf vf ¼ �
X

nb�NBðf Þ
avnbvnb þ bvf � Vfrpf þ a	f v

	
f ð15:199Þ

The average of the first term on the right hand side is obtained as

�
X

nb�NBðf Þ
avnbvnb þ bvf ¼ �gC

X
F�NBðCÞ

avFvF
� �þ bvC

0
@

1
A

� gF
X

N�NBðFÞ
avNvN
� �þ bvF

0
@

1
A

¼ gC avCvC þ VCrpC � a	Cv
	
C

 �
þ gF avFvF þ VFrpF � a	Fv

	
F

 �
¼ avf vf þ Vfrpf � a	f v

	
f

ð15:200Þ

15.9 Treatment of Various Terms with the Rhie-Chow Interpolation 631

Substituting into Eq. (15.84), the extended Rhie-Chow interpolated cell face
velocity vf is obtained

vf ¼ vf � Dv
f rpf �rpf
� �þ a	f D

v
f

Vf
v	f � v	f
	

ð15:201Þ

Not accounting for the effect of the unsteady term on the face velocity results in
solutions that are time step dependent and have an oscillatory behavior for small
time step. This correction is valid only for the first order Euler discretization. In case
of more accurate time discretization schemes similar corrections can be performed
following the same principles.

15.9.3 Treatment of the Body Force Term

When treating body forces in the staggered grid arrangement, the stencil of the body
force term is exactly that of the pressure gradient term. In the case of a collocated
grid arrangement, the body force, velocity, and momentum variables are calculated
at the same location. Thus, in order to have a discretization of the body force that
retains a similar stencil as the pressure, a redistribution of the body force term is
needed. The discretized momentum equation is written as

avCvC ¼ �
X

F�NBðCÞ
avFvF þ bvC � VCðrpÞC þ VCBv

C ð15:202Þ

where the double bar indicates two averaging steps. The first step is to compute Bv
C

(Fig. 15.28) at the cell face as

Bv
f ¼ gCBv

C þ ð1� gCÞBv
F ð15:203Þ

staggered grid

p

x

C Ff

B

Fig. 15.28 Treatment of body force and pressure gradient on a staggered grid

632 15 Fluid Flow Computation: Incompressible Flows

while the second (Fig. 15.29) is to get an average of these face values at the cell
centre.

The average values at cell center can best be derived [26] by considering the one
dimensional situation depicted in Fig. 15.30.

For the case of a stationary fluid, the pressure gradient should be in equilibrium
with the body forces leading to

0 ¼ �rpf þ Bv
f ð15:204Þ

Expanding the above equation, a relation between the pressures at C and F can
be written as

pC ¼ pF þ Bf dy ð15:205Þ

improved treatment

C

standard treatment

C

p

x

p

x

B

B

Fig. 15.29 Standard and
improved Rhie-Chow
treatment of body forces

f

C

F

dCF

y B f

Fig. 15.30 One dimensional stationary fluid

15.9 Treatment of Various Terms with the Rhie-Chow Interpolation 633

or more generally as

pC ¼ pF þ Bf � dCF ð15:206Þ

where Bf is the magnitude of Bf given by

Bf ¼ qf g ð15:207Þ

For incompressible flows, the variation with temperature of the density
appearing in the body force term is modeled using the Boussinesq approximation as
given by Eq. (3.101).

Again for cell C the pressure gradient should be in equilibrium with the body
forces, resulting in

0 ¼ �rpC þ Bv
C) rpC ¼ Bv

C ð15:208Þ

However the pressure gradient for cell C is computed as

rpC ¼

P
f
pfSf

VC

¼

P
f

gCpC þ 1� gCð ÞpFð ÞSf
VC

ð15:209Þ

substituting from Eq. (15.206) gives

rpC ¼

P
f

gC pF þ Bv
f � dCF

	

þ ð1� gCÞpF

	

Sf

VC

¼

P
f
pFSf

VC
þ

P
f
gC Bv

f � dCF
	

Sf

VC

¼ pF

P
f
Sf

VC|{z}
0

þ

P
f
gC Bv

f � df
	

Sf

VC

¼

P
f
gC Bv

f � df
	

Sf

VC

¼ Bv
C

ð15:210Þ

which implies that

Bv
C ¼

P
f
gC Bv

f � df
	

Sf

VC
ð15:211Þ

634 15 Fluid Flow Computation: Incompressible Flows

http://dx.doi.org/10.1007/978-3-319-16874-6_3

The second requirement is that the cell-face velocity be similar to that of the
staggered arrangement equation:

avf vf ¼ �
X

nb�NBðf Þ
avnbvnb þ bvf � Vfrpf þ VfBv

f ð15:212Þ

where bvC is the source term given in Eq. (15.71) from which the pressure and body
force terms are extracted. The averaging of the coefficients yields

�
X

nb�NBðf Þ
avnbvnb þ bvf ¼ �gC

X
F�NBðCÞ

avFvF
� �þ bvC

0
@

1
A

� gF
X

N�NBðFÞ
avNvN
� �þ bvF

0
@

1
A

¼ gC avCvC þ VCrpC � VCBv
C

h i
þ gF avFvF þ VFrpF � VFBv

F

h i
¼ avf vf þ Vfrpf � VfBv

f

ð15:213Þ

and substituting into Eq. (15.179), the extended Rhie-Chow interpolated cell face
velocity vf is obtained as

vf ¼ vf � Dv
f rpf �rpf
� �þ Dv

f Bv
f � Bv

f

� �
ð15:214Þ

where Bv
f is calculated as

Bv
f ¼ gCBv

C þ ð1� gCÞBv
F ð15:215Þ

The above additional treatment of the cell face velocity increases the overall
robustness of the solution procedure for situations where variations in body forces
are important (e.g., free-surface flows).

15.9 Treatment of Various Terms with the Rhie-Chow Interpolation 635

15.9.4 Combined Treatment of Under-Relaxation, Transient,
and Body Force Terms

In general all three terms described above should be dealt with together. This
necessitates modifying the Rhie-Chow interpolation to account for all three effects.
Fortunately this can easily be derived by using the principle of superposition
leading to the following interface velocity:

vf ¼ vf � Dv
f rpf �rpf
� �þ Dv

f Bv
f � Bv

f

� �

þ a	fD
v
f

Vf
v	f � v	f
	

þ 1� kvð Þ vðnÞf � vðnÞf

	
 ð15:216Þ

where in calculating Dv
f the under relaxed value of the avC coefficient is used.

15.10 Computational Pointers

15.10.1 uFVM

In uFVM, the pressure correction equation is implemented in one script file denoted
by cfdAssembleMdotTerm. Listing 15.1 shows the core of the algorithm whereby
the coefficients of the pressure correction equation are assembled by linearizing the
fluxes at each of the interior faces. In addition, the mdot field (i.e., the mass flow
rate at the faces) is calculated based on Eq. (15.216), which is subdivided into 9
terms (i.e., terms I trough IX) and assembled step by step to produce the cell face
velocity. The terms into which the velocity at the face is decomposed are as
follows:

term I: the interpolated velocity field vf ,
terms II and III: the face and average pressure gradients �Dv

f rpf �rpf
� �

,

terms IV and V: the average and redistributed body forces Dv
f Bv

f � Bv
f

� �
,

terms VI and VII: the transient fluxes
a	fD

v
f

Vf
v	f � v	f
	

, and

terms VIII and IX: the relaxation correction term ð1� kV ÞðvðnÞf � vðnÞf Þ.

636 15 Fluid Flow Computation: Incompressible Flows

 local_FLUXVf = local_FLUXVf - density_f.*dot(p_grad_f',T')';
 %
 % assemble term III
 % density_f ([P_grad]_f.([DPVOL]_f.Sf))
 %
 local_FLUXVf = local_FLUXVf +
density_f.*dot(p_grad_bar_f(iFaces,:)',DUSf(iFaces,:)')';
 %
 % assemble terms IV and V
 % density_f [DBVOL]_f.([B]_f -[[B]]_f).S_f
 %
 local_FLUXVf = local_FLUXVf +
density_f[iFace]*FVVectorDotProduct(FVTensorVectorDotProduct(DB_f,FVVe
ctorSubstract(FVMakeVector(bf1_bar_f[iFace],bf2_bar_f[iFace]),FVMakeVe
ctor(bf1_redistributed_f[iFace],bf2_redistributed_f[iFace]))),S_f) ;
 %
 % assemble terms VI and VII
 % [Dt]_f (U_Old_f -[v_old]_f.S_f)
 %
 U_bar_old_f = [velx_old_bar_f[iFace] vely_old_bar_f[iFace])] *
S_f'
 local_FLUXVf = local_FLUXVf + DT_f*(mdot_old_f[iFace] -
density_old_f[iFace]*U_bar_old_f);
 %
 % assemble terms VIII and IX
 % (1-URF)(U_f -[v]_f.S_f)
 %
 local_FLUXVf = local_FLUXVf + (1.0-Mdot_URF)*(mdot_previous_f -
density_f.*U_bar_f);
 %
 % assemble the flow term dot for the face
 %
 local_mdot_f = local_FLUXCf_1*(pressure[iElement1]+ Pref) +
local_FLUXCf_2*(pressure[iElement2]+ Pref) + local_FLUXVf;
 %

 %
 % Assemble in Global Fluxes
 %

%
 % assemble term I
 % density_f [v]_f.Sf

%
 U_bar_f = (dot(vel_bar_f(:,:)',Sf(:,:)'))';
 local_FLUXVf =local_FLUXVf+ density_f.*U_bar_f;

%
 % Assemble term II and linearize it
 % - density_f ([DPVOL]_f.P_grad_f).Sf

%
 DUSf = [DU1_f.*Sf(:,1),DU2_f.*Sf(:,2),DU3_f.*Sf(:,3)];
 geoDiff =(dot(Sf(:,:)',DUSf') ./ dot(CN(:,:)',Sf(:,:)'))';
 local_FLUXCf1 = local_FLUXCf1 + density_f.*geoDiff;
 local_FLUXCf2 = local_FLUXCf2 - density_f.*geoDiff;

Listing 15.1 Script used for the calculation of the mass flow rates and coefficients of the pressure
correction equation in uFVM

15.10 Computational Pointers 637

15.10.2 OpenFOAM®

The numerical techniques introduced so far are used in what follows to develop
OpenFOAM® [27] applications for solving the incompressible Navier-Stokes
equations.

15.10.2.1 Pressure Correction SIMPLE Solvers

Based on the SIMPLE algorithm, a number of solvers will be constructed. The base
solver, simpleFoam, will be presented first. This is followed by a number of ver-
sions, with each one adding more capabilities to the base code. These solvers can be
summarized as follows:

1. simpleFoam (not the OpenFOAM® built-in solver) is the base code that
incorporates the SIMPLE Algorithm in its most basic form.

2. simpleFoamImproved extends the base code to allow for improved treatment of
relaxation.

3. simpleFoamTransient adds transient capabilities to the steady-state simpleFoam.
4. simpleFoamBuoyancy adds to the code the body force treatment.

More versions will be covered in the chapters to follow, each one with extended
capabilities, added by modifying the base code described in this chapter. A list of
the versions that will be covered in the next chapters is given below.

5. simpleFoamCompressible is the compressible version of simpleFoam (Chap. 16)
6. simpleFoamTurbulent includes capabilities for treating turbulent flows

(Chap. 17).

simpleFoam

Before reviewing the simpleFoam code, some basic notational issues are addressed.
The first step is to define, as shown in Listing 15.2, the geometric fields and
parameters that will be initialized and used in the code.

 theFluxes.FLUXC1f(iFaces,1) = local_FLUXCf1;
 theFluxes.FLUXC2f(iFaces,1) = local_FLUXCf2;
 theFluxes.FLUXVf(iFaces,1) = local_FLUXVf;
 %
 theFluxes.FLUXTf(iFaces,1) = theFluxes.FLUXC1f.*pressureC(iFaces)
+ theFluxes.FLUXC2f.*pressureN(iFaces) + theFluxes.FLUXVf(iFaces);
 %
 mdot_f = theFluxes.FLUXTf(iFaces);

Listing 15.1 (continued)

638 15 Fluid Flow Computation: Incompressible Flows

http://dx.doi.org/10.1007/978-3-319-16874-6_16
http://dx.doi.org/10.1007/978-3-319-16874-6_17

In Listing 15.2, the #include macro directives outside the main function are
needed to define the types of objects that are then declared and used in the appli-
cation. The #include “fvCFD.H” contains a list of definitions for classes that are in
general necessary to build any application in OpenFOAM®. In the developed
application an additional header, not present in the fvCFD.H header, necessary for
the SIMPLE solver implementation will be added.

The use of the #include statements inside the main function is a compacting
procedure, with each declared statement representing a piece of the code moved to
the corresponding file name. For example, the statement #include “createMesh.H”
just represents the code shown in Listing 15.3, which is necessary to instantiate the
mesh class.

#include "fvCFD.H"
#include "orthogonalSnGrad.H"

// *
* * * //

int main(int argc, char *argv[])
{

include "setRootCase.H"
include "createTime.H"
include "createMesh.H"

Listing 15.2 The #include macro derivatives used to define the types of objects needed

createMesh.H
~~~~~~~~~~~
Foam::Info
    << "Create mesh for time = "
    << runTime.timeName() << Foam::nl << Foam::endl;

Foam::fvMesh mesh
(
    Foam::IOobject
    (
        Foam::fvMesh::defaultRegion,
        runTime.timeName(),
        runTime,
        Foam::IOobject::MUST_READ
    )
);

createMesh.H
~~~~~~~~~~~
Foam::Info
 << "Create mesh for time = "
 << runTime.timeName() << Foam::nl << Foam::endl;

Foam::fvMesh mesh
(
 Foam::IOobject
 (
 Foam::fvMesh::defaultRegion,
 runTime.timeName(),
 runTime,
 Foam::IOobject::MUST_READ
)

);

Listing 15.3 The code representing the #include createMesh.H file necessary to instantiate the
mesh class

15.10 Computational Pointers 639

Once the necessary initialization has been performed, the next step is the
definition of the proper fields or variables needed by the solver. These are defined
in file “createFields.H”. The first defined field, shown in Listing 15.4, is the
pressure field (p).

Since the solution is obtained by solving a pressure correction equation instead
of a pressure equation, a pressure correction field (pp) is also defined (Listing 15.5).

It is worth noting that in Listing 15.5 a different constructor is used to define the
pressure correction field. Since the pressure corrector represents the pressure itself,
the same boundary conditions defined for the real pressure can be used for the
pressure correction field without the need to define the same quantity twice.

The list of pressure boundary types displayed in Listing 15.6 are now copied
under the pbt variable in Listing 15.5 and directly used in the constructor of pp.

Info << "Reading field p\n" << endl;
volScalarField p
(
 IOobject
 (
 "p",
 runTime.timeName(),
 mesh,
 IOobject::MUST_READ,
 IOobject::AUTO_WRITE
),
 mesh
);

Listing 15.4 Script used to define the pressure field

const volScalarField::GeometricBoundaryField& pbf=p.boundaryField();
wordList pbt = pbf.types();
volScalarField pp
(
 IOobject
 (
 "pp",
 runTime.timeName(),
 mesh,
 IOobject::NO_READ,
 IOobject::AUTO_WRITE
),
 mesh,
 dimensionedScalar("zero", p.dimensions(), 0.0),
 pbt
);

Listing 15.5 Script used to define the pressure correction field

640 15 Fluid Flow Computation: Incompressible Flows

The corrector should reset to zero the correction field at every iteration and
should also apply a zero value at all boundaries for which a Dirichlet boundary
condition is used for the pressure.

The velocity and corresponding mass flux fields must also to be defined. As
depicted in Listing 15.7, the velocity field is defined through an input file while the
mass flux field can be defined as a derived quantity.

// Set pp boundary values
forAll(pp.boundaryField(), patchi)
{
 if (isType<fixedValueFvPatchScalarField>(pp.boundaryField()
[patchi]))
 {
 fixedValueFvPatchScalarField& ppbound =

refCast<fixedValueFvPatchScalarField>(pp.boundaryField()[patchi]);

 ppbound == scalarField(ppbound.size(),0.0);
 }
}

Listing 15.6 Script showing the declaration of the different pressure boundary types

Info << "Reading field U\n" << endl;
volVectorField U
(
 IOobject
 (
 "U",
 runTime.timeName(),
 mesh,
 IOobject::MUST_READ,
 IOobject::AUTO_WRITE
),
 mesh
);
surfaceScalarField mDot
(
 IOobject
 (
 "mDot",
 runTime.timeName(),
 mesh,
 IOobject::READ_IF_PRESENT,
 IOobject::AUTO_WRITE
),
 linearInterpolate(U) & mesh.Sf()
);

Listing 15.7 Script used to define the velocity and mass flux fields

15.10 Computational Pointers 641

Finally the fluid thermo-physical properties should also be defined. For incom-
pressible laminar flows this involves simply assigning a value to the kinematic
viscosity nu, as shown in Listing 15.8.

After defining all variables the implementation of the SIMPLE algorithm can
proceed. A while loop can be used for the cases when the stopping criterion is the
number of SIMPLE iterations. For each single loop, the momentum and pressure
correction equations are solved and updates of the variables are performed. Starting
with the momentum equation written as (the form solved in OpenFOAM®),

r � vvf g ¼ vr2v�rp ð15:217Þ

where the kinematic viscosity v is defined as

v ¼ l
q

ð15:218Þ

and p represents the pressure divided by the density, i.e.,

p ¼ static pressure
q

ð15:219Þ

its solution is translated into the script shown in Listing 15.9.

Info<< "Reading transportProperties\n" << endl;
IOdictionary transportProperties
(
 IOobject
 (
 "transportProperties",
 runTime.constant(),
 mesh,
 IOobject::MUST_READ_IF_MODIFIED,
 IOobject::NO_WRITE
)
);

dimensionedScalar nu
(
 transportProperties.lookup("nu")
);

Listing 15.8 Code used to define the fluid thermo-physical properties

642 15 Fluid Flow Computation: Incompressible Flows

The first instruction in Listing 15.9 defines the finite volume discretization of the
momentum equation in vector form with its storage matrix (the three components of
the velocity vector are solved in a segregated manner despite its vectorial imple-
mentation). The system is then implicitly relaxed and solved via an iterative solver.

Once the momentum equation is solved, a new guess for the velocity field is
obtained. This velocity does not satisfy the continuity equation in general and the
assembly of the continuity equation in the form of a pressure correction equation is
now required to correct the flow field. The pressure correction equation is written as

�r � ð�Dfrp0Þ ¼ �r � ðvÞ ð15:220Þ

where a component of �D at an element centroid is computed as

D ¼ V
avc

ð15:221Þ

with values at the faces obtained by interpolation. Its implementation is translated
into the following syntax (Listing 15.10):

// Solve the Momentum equation
fvVectorMatrix UEqn
(
 fvm::div(mDot, U)
 - fvm::laplacian(nu, U)
);
UEqn.relax();
solve
(
 UEqn == -fvc::grad(p)
);

Listing 15.9 Script to solve the momentum equation

pp = scalar(0.0)*pp;
pp.correctBoundaryConditions();

fvScalarMatrix ppEqn
(
 - fvm::laplacian(DUf, pp, "laplacian(pDiff,pp)")
 + fvc::div(mDot)

);

Listing 15.10 Script to implement the pressure correction equation

15.10 Computational Pointers 643

where div(mDot) is basically
P

_mf , while pp represents p′ and is reset to zero at
each iteration. Moreover, the DUf variable is the value of D at the cell face
obtained, as shown in Listing 15.11, by linear interpolation using the values at the
nodes straddling the face. Further, .A() represents the diagonal terms in the
momentum matrix divided by the volume.

Listing 15.12 computes the mass flow rate at cell faces (mDot) using the
Rhie-Chow interpolation where the calculation of ∇pf and rpf is clearly shown.

The pressure correction equation is now fully set and is solved by executing the
statement in Listing 15.13.

Once the pressure correction equation is solved, the velocity, pressure, and mass
flow rate fields are updated using the obtained pressure correction field. Starting
with the mass flow rate field (i.e., the mDot flux), it is updated by executing the
below statement (Listing 15.14).

volScalarField DU = 1.0/UEqn.A();
surfaceScalarField DUf("DUf",linearInterpolate(DU));

Listing 15.11 Script to calculate the values of DUf

const surfaceVectorField ed = mesh.delta()()/mag(mesh.delta()());
Foam::fv::orthogonalSnGrad<scalar> faceGradient(mesh);
surfaceVectorField gradp_avg_f = linearInterpolate(fvc::grad(p));
surfaceVectorField gradp_f = gradp_avg_f - (gradp_avg_f & ed)*ed +
(faceGradient.snGrad(p))*ed;

surfaceVectorField U_avg_f = linearInterpolate(U);

// Rhie-Chow interplation
mDot = (U_avg_f & mesh.Sf()) - ((DUf*(gradp_f - gradp_avg_f)) &
mesh.Sf());

Listing 15.12 Script to compute the mass flow rate at cell faces using the Rhie-Chow
interpolation

ppEqn.solve();

Listing 15.13 Statement used to solve the pressure correction equation

644 15 Fluid Flow Computation: Incompressible Flows

The flux() function in Listing 15.14 provides the matrix multiplication, the extra
diagonal matrix coefficients, and the corresponding solution. Recalling the finite
volume discretization of the diffusion term, each extra diagonal of coefficients
represents a face of the mesh. Thus the update of the fluxes can be performed in a
more consistent way using directly the matrix coefficients and cell values.
A simplified version of the flux() function is shown in Listing 15.15.

In Listing 15.15 the correction flux mDotPrime (Eq. 15.101) is basically eval-
uated by performing a loop over the faces using the upper and lower coefficients of
the matrix and multiplying these coefficients with the corresponding cell values.

Finally the velocity and pressure at cell centroids are updated using the script
shown in Listing 15.16,

where the variable URF is the explicit relaxation factor for pressure update λp,
necessary for a stable SIMPLE solver.

for (label face=0; face<lowerAddr.size(); face++)
{
 mDotPrime[face] =
 upperCoeffs[face]*pp[upperAddr[face]]
 - lowerCoeffs[face]*pp[lowerAddr[face]];
}

return mDotPrime;

Listing 15.15 A simplified version of the flux() function where the flux correction mDotPrime is
computed

scalar URF = mesh.equationRelaxationFactor("pp");
p += URF*pp;
p.correctBoundaryConditions();
U -= fvc::grad(pp)*DU;
U.correctBoundaryConditions();

Listing 15.16 Update of the velocity and pressure fields at cell centroids

mDot += ppEqn.flux();

Listing 15.14 Statement used to update the mass flow rate field to satisfy continuity

15.10 Computational Pointers 645

simpleFoamImproved

In simpleFoamImproved the Rhie-Chow interpolation is extended to account for
the relaxation of the velocity field. This is translated into the syntax presented below
in Listing 15.17 that expands the generic Rhie-Chow interpolation to include the
additional term in Eq. (15.196).

Thus the fields mdotf.prevIter() and U.prevIter() need to be defined.

simpleFoamTransient

In simpleFoamTransient the Rhie-Chow interpolation is extended to account for
the transient term. Thus the expression for the mass flow rate becomes (Listing
15.18).

Furthermore the main loop is modified to add a transient loop, with the main
code becoming as shown in Listing 15.19.

// Rhie-Chow interplation
mdotf = (U_avg_f & mesh.Sf()) - ((DUf*(gradp_f - gradp_avg_f)) &
mesh.Sf())
 +(scalar(1) - URFU)*(mdotf.prevIter() - (U_avg_prevIter_f &
mesh.Sf()));

Listing 15.17 Improved Rhie-Chow interpolation accounting for under relaxation

// Rhie-Chow interplation
mdotf = (U_avg_f & mesh.Sf()) - ((DUf*(gradp_f - gradp_avg_f)) &
mesh.Sf())
 +(scalar(1) - URFU)*(mdotf.prevIter() - (U_avg_prevIter_f &
mesh.Sf()))
 + DTf*(mdotf_old - (U_old_f& mesh.Sf()));

Listing 15.18 Rhie-Chow interpolation accounting for the effects of under-relaxation and the
unsteady term

646 15 Fluid Flow Computation: Incompressible Flows

simpleFoamBuoyancy

The simpleFoamBuoyancy solver adds to simpleFoamTransient the following
capabilities: (i) the solution of the energy equation, (ii) the inclusion of a body
source term in the momentum equation, and (iii) an account of the effects of the
body force term redistribution in the Rhie-Chow interpolation.

The codes used to introduce these modifications are shown in Listings (15.20),
(15.21), and (15.22).

 pimpleControl pimple(mesh);
// *
* * * //

 Info<< "\nStarting time loop\n" << endl;
 while (runTime.run())
 {
 #include "readTimeControls.H"
 #include "CourantNo.H"
 #include "setDeltaT.H"
 runTime++;

 Info<< "Time = " << runTime.timeName() << nl << endl;

 scalar iter=0;
while (pimple.loop())

 {
 iter++;
 Info<< "Iteration = " << iter << nl << endl;

//
 U.storePrevIter();
 mdotf.storePrevIter();

 // Pressure-velocity SIMPLE corrector

#include "UEqn.H"
#include "ppEqn.H"

 }
 runTime.write();

 Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
 << " ClockTime = " << runTime.elapsedClockTime() << " s"
 << nl << endl;
 }

Listing 15.19 The main loop used for solving unsteady flow problems

15.10 Computational Pointers 647

The code needed to solve the energy equation is given in Listing (15.20).

The source term in the momentum equation is implemented as (Listing 15.21),

while the calculation of the mass fluxes using the Rhie-Chow interpolation are as
displayed in Listing (15.22).

 // Solve the Energy equation

 fvScalarMatrix TEqn
 (
 fvm::ddt(T)
 + fvm::div(phi, T)
 - fvm::laplacian(K, T)
);

 TEqn.relax();
 TEqn.solve();

Listing 15.20 The script used to solve the energy equation

surfaceVectorField B_f = linearInterpolate(- beta*(T-To)*g);
volVectorField B_reconstructed = fvc::average(B_f);

 solve
 (
 UEqn == -fvc::grad(p) + B_reconstructed
);

Listing 15.21 Accounting for the body force term source in the momentum equation

surfaceVectorField B_reconstructed_f =
linearInterpolate(B_reconstructed);
// Rhie-Chow interplation
phi = (U_avg_f & mesh.Sf())
 - DUf*((gradp_f*mesh.magSf())-(gradp_avg_f&mesh.Sf()))
 + (scalar(1) - URFU)*(phi.prevIter() - (U_avg_prevIter_f &
mesh.Sf()))
+ DTf*(phi_old - (U_old_f& mesh.Sf()))
+ DUf* ((B_f& mesh.Sf()) - (B_reconstructed_f& mesh.Sf())) ;

Listing 15.22 The modified Rhie-Chow interpolation accounting for body forces

648 15 Fluid Flow Computation: Incompressible Flows

15.11 Closure

This chapter presented the segregated pressure-based approach for solving
incompressible flow problems on collocated grids. It also demonstrated that the
success of the Rhie-Chow interpolation on collocated grids is due to its formation of
a pseudo-momentum equation at the cell face that has a tight pressure gradient
stencil similar to the one resulting from a staggered grid formulation. In addition,
the details of implementing the most commonly encountered boundary conditions
in the momentum and pressure-correction equations were discussed. The next
chapter will extend the pressure based method to predict compressible fluid flow at
all speeds.

15.12 Exercises

Exercise 1
A portion of a water-supply system is shown in Fig. 15.31. The flow rate _m in a
pipe section is given by

_m ¼ CDp

where Δp is the pressure drop over the length of the pipe section, and C is the
hydraulic conductance. The following data is known:

p1 ¼ 400; p2 ¼ 350

_mF ¼ 25

CA ¼ 0:4;CB ¼ 0:2;CC ¼ 0:1;CD ¼ 0:3;CE ¼ 0:2

Find p3, p4, p5, _mA; _mB; _mC; _mD and _mE using the following procedure

• Start with a guess for p3, p4, and p5.
• Compute _m� values based on the guessed pressures.
• Construct the pressure-correction equations and solve for p03, p

0
4 and p05.

• Update the pressures and the _m� values

15.11 Closure 649

Do you need to iterate? Why?

Exercise 2
A one dimensional flow through a porous material is governed by

cjujuþ dp
dx
¼ 0

where c is a constant. The continuity equation is

du
dx
¼ 0

x2�x1 ¼ 1 x3�x2 ¼ 2
SA ¼ 3 SB ¼ 2

Use the SIMPLE procedure for the grid shown in Fig. 15.32 to compute p2, uA,
and uB from the following data:

cA ¼ 0:3 cB ¼ 0:15
p1 ¼ 150 p3 ¼ 18

with the size and area at the center of each control volume given by

DxA ¼ 1;AA ¼ 3
DxB ¼ 3;AB ¼ 2

1 2 3u
A u

B

Fig. 15.32 One dimensional flow in a porous material

p
1

= 400

p
2

= 350

m
A

m
B

m
C

m
D

m
E

p
3

p4

p5

mF = 25

Fig. 15.31 A portion of a water-supply system

650 15 Fluid Flow Computation: Incompressible Flows

Exercise 3
In the Steady, one dimensional, constant density situation shown in Fig. 15.33, the
velocity u is calculated at locations B and C, while the pressure is calculated at
locations 1 and 2. The velocity correction formulae are written as

uB ¼ DBðp1 � p2Þ and uC ¼ DCðp2 � p3Þ

where the values of DB and DC are 3 and 4, respectively. The boundary conditions
are uA = 5 and p3 = 70.

(a) If at a given stage in the iteration process, the momentum equations give
u�B ¼ 4 and u�C ¼ 6, calculate the values of p1 and p2.

(b) Explain how you could obtain the values of p1 and p3 if the right hand
boundary condition is given as uC = 5 instead of p3 = 70.

Exercise 4
Consider the main control volume shown in Fig. 15.34. A staggered mesh is used
with the u and v velocity components stored as shown. The following quantities are
given: uw = 7, vs = 3, pN = 0 and pE = 50. The flow is steady and the density is
constant. The momentum equations for ue and vn are given by:

ue ¼ �DeðpE � pCÞ
vn ¼ �DnðpN � pCÞ

Also given De = 2, Dn = 1.6, and the control volume has Δx = Δy = 1.

(a) Starting with a guessed value of pðnÞC ¼ 50, use the SIMPLE algorithm to find
ue and vn.

(b) Is an iteration loop needed for this problem? Explain.

1 2 3uA
u
B

u
C

Fig. 15.33 Incompressible flow in a one dimensional domain

ueuw

vn

vs

pC pE

pN

Fig. 15.34 A main control volume in a two-dimensional staggered grid arrangement

15.12 Exercises 651

Exercise 5
Consider the simplified one-dimensional Forchheimer model for flow in porous
media given by

bu2 ¼ �k dp
dx

with the continuity equation given by

dðeuÞ
dx
¼ 0

In the above equations b is a constant and ε is the porosity coefficient that
accounts for the effective porous area.

Devise a SIMPLE-like procedure to compute pC, ue, and uw for the following data:

Dx ¼ 0:1; Dy ¼ 1

bW ¼ 5; bC ¼ 4; bE ¼ 3

ee ¼ 0:9; ew ¼ 0:6

pW ¼ 40; pE ¼ �200

Start with the following initial values for velocity and pressure (Fig. 15.35):

u�e ¼ u�w ¼ 3 and pC ¼ �100:

Exercise 6
Compute the interface velocities ue and uw using the Rhie-Chow interpolation and
compare it to the averaged values �ue and �uw knowing the following data (Fig. 15.36):

pWW ¼ 10; pW ¼ 12; pC ¼ 16; pE ¼ 24; pEE ¼ 40; and

uW ¼ 5; uC ¼ 10; uE ¼ 40:

u
e

u
w

pE
pW pCpWW pEE

y

x

Fig. 15.35 One-dimensional Forchheimer model for flow in porous media

u
WW

u
W

u
C

u
E

u
EE

w e pE
pW pCpWW pEE

Fig. 15.36 A one dimensional collocated grid

652 15 Fluid Flow Computation: Incompressible Flows

Exercise 7
In OpenFOAM® develop a SIMPLEC pressure correction algorithm by modifying
the SIMPLE algorithm described in this chapter. Hint: in order to find the sum-
mation of the extra diagonal coefficients use the H1() function of the fvMatrix.

Exercise 8
Check the pisoFoam solver located in $FOAM_SRC/../applications/solvers/
incompressible/pisoFoam/pisoFoam.C and compare it with the algorithm descri-
bed in this chapter, i.e., “The Collocated PISO Algorithm”. Find out the incon-
sistency with the standard OpenFOAM® implementation.

Exercise 9
Develop a pressure correction PISO algorithm for OpenFOAM®.

References

1. Patankar SV (1981) A calculation procedure for two dimensional elliptic situations. Numer
Heat Transfer 4(4):409–425

2. Patankar SV (1980) Numerical heat transfer and fluid flow. Hemisphere, NY
3. Patankar SV, Spalding DB (1972) A calculation procedure for heat, mass and momentum

transfer in three-dimensional parabolic flows. Int J Heat Mass Transf 15(10):1787–1806
4. Harlow FH, Welch JE (1965) Numerical calculation of time-dependent viscous incompressible

flow of fluid with free surface. Phys Fluids 8(12):2182–2189
5. Van Doormaal JP, Raithby GD (1985) An evaluation of the segregated approach for predicting

incompressible fluid flows. ASME Paper 85-HT-9, Presented at the national heat transfer
conference, Denver, Colorado

6. Raithby GD, Schneider GE (1979) Numerical solution of problems in incompressible fluid
flow: treatment of the velocity-pressure coupling. Numer Heat Transfer, Part A 2(4):417–440

7. Patankar SV (1975) Numerical prediction of three-dimensional flow. In Launder BE
(ed) studies in convection: theory, measurement, and application, vol 1. Academic, New York,
pp 1–9

8. Rhie CM, Chow WL (1983) Numerical study of the turbulent flow past an airfoil with trailing
edge separation. AIAA J 21:1525–1532

9. Rhie CM (1988) A three-dimensional passage flow analysis method aimed at centrifugal
impellers. Comput Fluids 13:443–460

10. Majumdar S (1988) Role of under relaxation in momentum interpolation for calculation of
flow with nonstaggered grids. Numer Heat Transfer 13:125–132

11. Miller TF, Schmidt FW (1988) Use of a pressure-weighted interpolation method for the
solution of incompressible Navier-Stokes equations on a nonstaggered grid system. Numer
Heat Transfer 14:213–233

12. Karki KC, Patankar SV (1988) Calculation procedure for viscous incompressible flows in
complex geometries. Numer Heat Transfer 14:295–307

13. Choi SK, Nam HY, Cho M (1993) Use of the momentum interpolation method for numerical
solution of incompressible flows in complex geometries: choosing cell face velocities. Numer
Heat Transfer, Part B 23:21–41

14. Choi SK, Nam HY, Lee YB, Cho M (1993) An efficient three-dimensional calculation
procedure for incompressible flows in complex geometries. Numer Heat Transfer, Part B
23:387–400

References 653

15. Choi SK, Nam HY, Cho M (1994) Use of staggered and nonstaggered grid arrangements for
incompressible flow calculations on nonorthogonal grids. Numer Heat Transfer, Part B 25
(2):193–204

16. Choi SK, Nam HY, Cho M (1994) Systematic comparison of finite-volume calculation
methods with staggered and nonstaggered grid arrangements. Numer Heat Transfer, Part B 25
(2):205–221

17. Van Doormaal JP, Raithby GD (1984) Enhancement of the SIMPLE method for predicting
incompressible fluid flows. Numer Heat Transfer 7:147–163

18. Issa RI (1982) Solution of the implicit discretized fluid flow equations by operator splitting.
Mechanical Engineering Report, FS/82/15, Imperial College, London

19. Maliska CR, Raithby GD (1983) Calculating 3-D fluid flows using non-orthogonal grid. In:
Proceedings of the third international conference on numerical methods in laminar and
turbulent flows, Seattle, pp 656–666

20. Acharya S, Moukalled F (1989) Improvements to incompressible flow calculation on a
non-staggered curvilinear grid. Numer Heat Transfer, Part B 15:131–152

21. Spalding DB (1980) Mathematical modelling of fluid mechanics, heat transfer and mass
transfer processes. Mechanical Engineering Department Report HTS/80/1, Imperial College of
Science, Technology and Medicine, London

22. Moukalled F, Darwish M (2000) A unified formulation of the segregated class of algorithms
for fluid flow at all speeds. Numer Heat Transfer, Part B 37:103–139

23. Darwish M, Asmar D, Moukalled F (2004) A comparative assessment within a multigrid
environment of segregated pressure-based algorithms for fluid flow at all speeds. Numer Heat
Transfer, Part B 45(1):49–74

24. Jang DS, Jetli R, Acharya S (1986) Comparison of the PISO, SIMPLER and SIMPLEC
algorithms for the treatment of the pressure-velocity coupling in steady flow problems. Numer
Heat Transfer 10:209–228

25. Yen RH, Liu CH (1993) Enhancement of the SIMPLE algorithm by an additional explicit
corrector step. Numer Heat Transfer, Part B 24:127–141

26. Mecinger J (2012) An alternative finite volume discretization of body force field on collocated
grids. In: Petrova R (ed) Finite volume method-powerful means of engineering design.
ISBN:978-953-51-0445-2

27. OpenFOAM, 2015 Version 2.3.x. http://www.openfoam.org

654 15 Fluid Flow Computation: Incompressible Flows

http://www.openfoam.org

	15 Fluid Flow Computation: Incompressible Flows
	Abstract
	15.1 The Main Difficulty
	15.2 A Preliminary Derivation
	15.2.1 Discretization of the Momentum Equation
	15.2.2 Discretization of the Continuity Equation
	15.2.3 The Checkerboard Problem
	15.2.4 The Staggered Grid
	15.2.5 The Pressure Correction Equation
	15.2.6 The SIMPLE Algorithm on Staggered Grid
	15.2.7 Pressure Correction Equation in Two Dimensional Staggered Cartesian Grids
	15.2.8 Pressure Correction Equation in Three Dimensional Staggered Cartesian Grid

	15.3 Disadvantages of the Staggered Grid
	15.4 The Rhie-Chow Interpolation
	15.5 General Derivation
	15.5.1 The Discretized Momentum Equation
	15.5.2 The Collocated Pressure Correction Equation
	15.5.3 Calculation of the {{\cal D}}_{f} Term
	15.5.3.1 Minimum Correction Approach
	15.5.3.2 Orthogonal Correction Approach
	15.5.3.3 Over-Relaxed Approach

	15.5.4 The Collocated SIMPLE Algorithm

	15.6 Boundary Conditions
	15.6.1 Boundary Conditions for the Momentum Equation
	15.6.1.1 Wall Boundary Conditions
	No-Slip Wall Boundary \left({p_{b} = ?;\dot{m}_{b} = 0;{{\bf v}}_{b} = {{\bf v}}_{wall} } \right)
	Slip Wall Boundary \left({p_{b} = ?;\dot{m}_{b} = 0;{{\bf F}}_{b} = 0} \right)

	15.6.1.2 Inlet Boundary Conditions
	Specified Velocity \left({p_{b} = ?;\dot{m}_{b} \,specified;{{\bf v}}_{b} \,specified} \right)
	Specified Pressure and Velocity Direction \scale89%{ \left({p_{b}} = p_{specified} ;\;\right. \left.{\dot{m}_{b} ?;{{\bf e}}_{{{\bf v}}} \;specified;{{\bf v}}_{b} ?} \right)

	15.6.1.3 Outlet Boundary Conditions
	Specified Static Pressure \left({p_{b} = p_{specified} ;\dot{m}_{b} ?;{{\bf v}}_{b} ?} \right)
	Specified Mass Flow Rate \left({\dot{m}_{b} = \dot{m}_{specified} ;p_{b} ?{{\bf v}}_{b} ?} \right)
	Fully Developed Outlet Flow

	15.6.1.4 Symmetry Boundary Condition

	15.6.2 Boundary Conditions for the Pressure Correction Equation
	15.6.2.1 Wall Boundary Condition
	 \left({p_{b} = ?;\dot{m}_{b} = 0;{{\bf v}}_{b} = {{\bf v}}_{wall} } \right)\quad {\hbox{or}}\quad \left({p_{b} = ?;\dot{m}_{b} = 0;{{\bf F}}_{b} = 0} \right)

	15.6.2.2 Inlet Boundary Conditions
	Specified Velocity \left({p_{b} = ?;\dot{m}_{b} \;specified;{{\bf v}}_{b} \,specified} \right)
	Specified Pressure and Velocity Direction \scale90%{\left({p_{b}} = p_{specified} ;\right. \scale90%{ \left.{\dot{m}_{b} ?;\,{{\bf e}}_{{{\bf v}}} \,specified;{{\bf v}}_{b} ?} \right)
	Specified Total Pressure and Velocity Direction \left({p_{o,b}} = p_{o,specified} ;\right. \;\left.{\dot{m}_{b} ?; {{\bf e}}_{{{\bf v}}} \;specified;{{\bf v}}_{b} ?} \right)

	15.6.2.3 Outlet Boundary Conditions
	Specified Pressure \left({p_{b} = p_{specified} ;\dot{m}_{b} ?; \;{{\bf v}}_{b} ?} \right)
	Specified Mass Flow Rate \left({\dot{m}_{b} = \dot{m}_{specified} ;p_{b} ?{{\bf v}}_{b} ?} \right)
	Fully Developed Outlet Flow

	15.6.2.4 Symmetry Boundary Condition
	15.6.2.5 The Relative Nature of Pressure

	15.7 The SIMPLE Family of Algorithms
	15.7.1 The SIMPLEC Algorithm
	15.7.2 The PRIME Algorithm
	15.7.3 The PISO Algorithm

	15.8 Optimum Under-Relaxation Factor Values for v and p^{\prime}
	15.9 Treatment of Various Terms with the Rhie-Chow Interpolation
	15.9.1 Treatment of the Under-Relaxation Term
	15.9.2 Treatment of the Transient Term
	15.9.3 Treatment of the Body Force Term
	15.9.4 Combined Treatment of Under-Relaxation, Transient, and Body Force Terms

	15.10 Computational Pointers
	15.10.1 uFVM
	15.10.2 OpenFOAM
	15.10.2.1 Pressure Correction SIMPLE Solvers

	15.11 Closure
	15.12 Exercises
	References

