
Chapter 10
Solving the System of Algebraic Equations

Abstract The result of the discretization process is a system of linear equations of
the form A/ ¼ b where the unknowns /, located at the centroids of the mesh
elements, are the sought after values. In this system, the coefficients of the unknown
variables constituting matrix A are the result of the linearization procedure and the
mesh geometry, while vector b contains all sources, constants, boundary conditions,
and non-linearizable components. Techniques for solving linear systems of equations
are generally grouped into direct and iterative methods, with many sub-groups in
each category. Since flow problems are highly non-linear, the coefficients resulting
from their linearization process are generally solution dependent. For this reason and
since an accurate solution is not needed at each iteration, direct methods have been
rarely used in CFD applications. Iterative methods on the other hand have been more
popular because they are more suited for this type of applications requiring lower
computational cost per iteration and lower memory. The chapter starts by presenting
few direct methods applicable to structured and/or unstructured grids (Gauss elimi-
nation, LU factorization, Tridiagonal and Pentadiagonal matrix algorithms) to set the
ground for discussing the more widely used iterative methods in CFD applications.
Then the performance and limitations of some of the basic iterative methods with and
without preconditioning are reviewed. This include the Jacobi, Gauss-Siedel,
Incomplete LU factorization, and the conjugate gradient methods. This is followed
by an introduction to the multigrid method that is generally used in combination with
iterative solvers to help addressing some of their important limitations.

10.1 Introduction

The starting point for any linear solver is the set of equations generated by the
discretization process, which are written mathematically as

A/ ¼ b ð10:1Þ
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where A is the matrix of coefficients of elements aij;/ the vector of unknown
variables /i, and b the vector of sources bi. Using matrix numbering, the expanded
form of Eq. (10.1) is given by

a11 a12 . . . a1N�1 a1N
a21 a22 . . . a2N�1 a2N
..
. ..

.
. . . ..

. ..
.

aN1 aN2 . . . aNN�1 aNN

2
6664

3
7775

/1
/2

..

.

..

.

/N

2
666664

3
777775 ¼

b1
b2
..
.

..

.

bN

2
666664

3
777775 ð10:2Þ

Generally each row in the above matrix represents an equation defined over one
element of the computational domain, and the non-zero coefficients are those
related to the neighbors of that element. The coefficient aij measures the strength of
the link between the value of /i at the centroid of the control volume and its
neighbors. As a cell is connected to only few neighbors, with their number
depending on the connectivity of the elements in the discretized domain, many of
the coefficients are zeros and the resulting A matrix is always sparse (i.e., the
non-zero coefficients are a very small fraction of the matrix). If in addition the
method uses a structured grid system, the matrix A will be banded with all non-zero
elements aligned along few diagonals. Therefore methods for efficiently solving
such systems should exploit this characteristic.

As mentioned above techniques for solving algebraic systems of equations are
broadly divided into two categories denoted by direct and iterative methods,
respectively. In a direct method, matrix A is inverted and the solution / is com-
puted in one step as / ¼ A�1b. When the matrix A is large, computing its inverse is
computationally very expensive requiring large memory. It is basically impractical
to apply direct linear solvers in CFD applications as they generally involve non-
linear systems of equations with their coefficients depending on the solution
necessitating the use of an iterative process.

On the other hand, with iterative algebraic solvers the solution algorithm is
repeatedly applied as many times as required until a pre-assigned level of con-
vergence is reached without the need for a fully converged solution be attained at
every iteration.

The presentation starts with few direct linear solvers applicable to structured and
unstructured grid methods. This is followed by a description of solution algorithms
that take advantage of the banded structure of the coefficient matrix in structured
grid systems. The main focus of the chapter is, however, on a specific class of
iterative linear algebraic solvers that has been identified to be generally very effi-
cient and economical with the FVM, and has been exclusively implemented as the
linear solver in almost all finite volume-based codes.
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10.2 Direct or Gauss Elimination Method

Even though direct methods are not efficient at solving sparse systems of linear
algebraic equations due to their high computational cost, their discussion will pave
the way for introducing efficient iterative methods in the next section. The simplest
direct method for finding solutions to the system of equations described by
Eq. (10.1) is the Gauss elimination technique, which will be described first. The
transformation of the system into an equivalent upper triangular system, when using
the Gauss elimination method, has motivated the development of the Lower-Upper
(LU) triangulation method, which will also be presented. In this approach, matrix
A is decomposed into the product of two matrices L and U with L being a lower
triangular matrix and U an upper triangular one. This procedure is also known as
LU factorization. In addition, direct methods benefiting from the banded structure
of A, applicable to structured grid methods, will be discussed.

10.2.1 Gauss Elimination

The best way to describe the Gauss elimination technique is to start with a simple
example. For that purpose a linear system of equations in the two unknowns /1 and
/2 is considered. The equations are given by

a11/1 þ a12/2 ¼ b1 ð10:3Þ

a21/1 þ a22/2 ¼ b2 ð10:4Þ

The system can be solved by eliminating one of the variables from one of the
equations [say /1 from Eq. (10.4)]. This can be done by multiplying Eq. (10.3) by
a21=a11 and subtracting the resulting equation from Eq. (10.4). This yields

a22 � a21
a11

a12

� �
/2 ¼ b2 � a21

a11
b1 ð10:5Þ

The obtained equation involves only one unknown. As such it can be used to solve
for /2, which is obtained as

/2 ¼
b2 � a21

a11
b1

a22 � a12a21
a11

ð10:6Þ

Knowing /2, its value can be substituted back into Eq. (10.3) to find /1.
Performing this step, /1 is found to be
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/1 ¼
b1
a11
� a12
a11

b2 � a21
a11

b1

a22 � a12
a11

a21
ð10:7Þ

The above procedure is composed of two steps. In the first step the equations are
manipulated in order to eliminate one of the unknowns. The end result of this step is
an equation with one unknown. In the second step, this equation is solved directly
and the result back-substituted into one of the equations to solve for the remaining
unknown. The same procedure can be generalized to a system of N equations
described by Eq. (10.1) or (10.2), as detailed next.

10.2.2 Forward Elimination

In the derivations to follow, the first row of A refers to the discretized equation for
/1, the second row represents the equation for /2, and in general the ith row refers
to the equation for /i. The procedure starts by eliminating /1 from all equations
below row 1 in A. To eliminate /1 from the ith row (i = 2, 3,…, N), the coefficients
of the first row are multiplied by ai1=a11 and the resulting equation is subtracted
from the ith row. The system of equations by the end of this step becomes

a11 a12 . . . a1N�1 a1N

0 a022 . . . a02N�1 a02N
..
. ..

.
. . . ..

. ..
.

0 a0N2 . . . a0NN�1 a0NN

2
666664

3
777775

/1

/2

..

.

..

.

/N

2
6666664

3
7777775 ¼

b1

b02
..
.

..

.

b0N

2
66666664

3
77777775

ð10:8Þ

Then /2 is eliminated from all equations below row 2 in the modified A. To
eliminate /2 from the ith row (i = 3, 4,…, N), the coefficients of the second row are
multiplied by a0i2=a

0
22 and the resulting equation is subtracted from the ith row. Then

/3 is eliminated from all rows below the third row in the modified coefficient matrix
and the process is continued until /N�1 is eliminated from the Nth row leading to
the following equivalent system of equations with its matrix A transformed into an
upper triangular matrix:

a11 a12 a13 . . . a1N�1 a1N

0 a022 a023 . . . a02N�1 a02N
0 0 a0033 . . . a003N�1 a003N
..
. ..

. ..
.

. . . ..
. ..

.

0 0 0 . . . 0 aN�1NN

2
6666664

3
7777775

/1

/2

/3

..

.

/N

2
6666664

3
7777775 ¼

b1

b02
b003
..
.

bN�1N

2
6666664

3
7777775 ð10:9Þ

The resulting algorithm is as described below.
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10.2.3 Forward Elimination Algorithm

For k = 1 to N 1

{
For i = k +1 to N

{

Ratio = aik
akk

{
For j = k +1 to N

aij = aij Ratio*akj

}
bi = bi Ratio*bk

}
}

10.2.4 Backward Substitution

The modified system of equations given by Eq. (10.9) indicates that the only
unknown in the Nth equation is /N . Therefore this equation can be used to obtain
/N as

/N ¼
bN�1N

aN�1NN
ð10:10Þ

The (N − 1)th equation is function of /N�1 and /N . Having found /N then this
equation can be used to find /N�1 as

/N�1 ¼
bN�2N�1 � aN�2N�1N/N

aN�2N�1N�1
ð10:11Þ

The process continues moving backward and by the time the ith equation is
reached, the values /iþ1;/iþ2;/iþ3; . . .;/N�1;/N would have become available
and as such /i can be computed using
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/i ¼
bi�1i �PN

j¼iþ1 a
i�1
ij /j

ai�1ii
ð10:12Þ

the process is continued until /1 is calculated. Algorithmically, this is represented
as shown below.

10.2.5 Back Substitution Algorithm

N = bN

aNN

For i = N 1 to 1

{
Term = 0

{
For j = i +1 to N

Term = Term + aij * j

}

i = i Term

aii
}

Techniques to improve the performance of the method to avoid division by zero
through pivoting (interchanging rows in order to select the largest pivoting element)
and to reduce roundoff errors in large systems are available but are not discussed
here. Interested readers may consult specialized textbooks on the subject [1–4]. The
presented algorithm shows that the method is expensive and the number of oper-
ations required to solve a linear system of N equations is proportional to N3/3 of
which only N2/2 arithmetic operations are required for back substitution. This high
computational cost has enticed researchers to look for more efficient specialized
solvers for systems with sparse matrices.

10.2.6 LU Decomposition

Another direct method for solving linear algebraic systems of equations is the LU or
more generally the PLU (where P refers to the pivoting process mentioned above),
in this book reference is made only to LU factorization method, which are variants
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of the Gauss elimination method. The advantage of these methods over the Gauss
elimination method is that once the (P)LU factorization is performed the linear
system can be solved as many times as needed for different values of the right hand
side vector b without performing any additional elimination, which would still be
required with the Gauss method.

Based on the elimination performed in the previous section, Eq. (10.1) was
transformed into an upper triangular matrix as given by Eq. (10.9), which can be
written as

u11 u12 u13 . . . u1N�1 u1N
0 u22 u23 . . . u2N�1 u2N
0 0 u33 . . . u3N�1 u3N
..
. ..

. ..
.

. . . ..
. ..

.

0 0 0 . . . 0 uNN

2
666664

3
777775

/1
/2
/3

..

.

/N

2
666664

3
777775 ¼

c1
c2
c3
..
.

cN

2
666664

3
777775 ð10:13Þ

Using compact matrix notation Eq. (10.13) can be simplified to

U/� c ¼ 0 ð10:14Þ

Let L be a unit lower triangular matrix (diagonal elements are set to 1 in order to
make the factorization unique) given by

L ¼

1 0 0 . . . 0 0
‘21 1 0 . . . 0 0
‘31 ‘32 1 . . . 0 0
..
. ..

. ..
.

. . . ..
. ..

.

‘N1 ‘N2 ‘N3 . . . ‘NN�1 1

2
666664

3
777775 ð10:15Þ

such that if Eq. (10.14) is multiplied by L, Eq. (10.1) is recovered. If this holds,
then the following can be written:

L U/� cð Þ ¼ LU/� Lc ¼ A/� b ð10:16Þ

Based on matrix properties it follows that

LU ¼ A ð10:17Þ

and

Lc ¼ b ð10:18Þ

Equation (10.17) indicates that A is written as the product of a proper lower and an
upper triangular matrix, known as LU factorization.
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10.2.7 The Decomposition Step

The efficient procedure to find the L and U coefficients described next is denoted by
the Crout decomposition [1–4]. In the original Crout algorithm a unit upper tri-
angular matrix is used whereas here a unit lower triangular matrix is assumed. The
procedure is based on multiplying L and U to obtain A such that

1 0 0 . . . 0 0

‘21 1 0 . . . 0 0

‘31 ‘32 1 . . . 0 0

..

. ..
. ..

.
. . . ..

. ..
.

‘N1 ‘N2 ‘N3 . . . ‘NN�1 1

2
66666664

3
77777775

u11 u12 u13 . . . u1N�1 u1N
0 u22 u23 . . . u2N�1 u2N
0 0 u33 . . . u3N�1 u3N

..

. ..
. ..

.
. . . ..

. ..
.

0 0 0 . . . 0 uNN

2
66666664

3
77777775

¼

a11 a12 a13 . . . a1N�1 a1N
a21 a22 a23 . . . a2N�1 a2N
a31 a32 a33 . . . a3N�1 a3N

..

. ..
. ..

.
. . . ..

. ..
.

aN1 aN2 aN3 . . . aNN�1 aNN

2
66666664

3
77777775

ð10:19Þ

The calculation of the coefficients starts by multiplying the first row of L by all
columns of U, and equating with the corresponding coefficients of A to yield

u1j ¼ a1j j ¼ 1; 2; 3; . . .;N ð10:20Þ

Then the second through Nth rows of L are multiplied by the first column of
U leading to

‘i1u11 ¼ ai1 ) ‘i1 ¼ ai1
u11

i ¼ 2; 3; . . .;N ð10:21Þ

The process is repeated by multiplying the second row of L by the second through
Nth columns of U to give

u2j ¼ a2j � ‘21u1j j ¼ 2; 3; . . .;N ð10:22Þ

after that the third through Nth rows of L are multiplied by the second column of
U to give

‘i2u22 þ ‘i1u12 ¼ ai2 ) ‘i2 ¼ ai2 � ‘i1u12
u22

i ¼ 3; 4; . . .;N ð10:23Þ
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In general, the ith row of L is multiplied by the ith through Nth columns of U,
resulting in

uij ¼ aij �
Xi�1
k¼1

‘ikukj j ¼ i; iþ 1; . . .;N ð10:24Þ

and the (i + 1)th through Nth rows of L are multiplied by the ith column of U,
giving

‘ki ¼
aki �

Pi�1
j¼1 ‘kjuji

uii
k ¼ iþ 1; iþ 2; . . .;N ð10:25Þ

For the Nth row of L, its coefficients are multiplied by the coefficients of the Nth
column of U from which uNN is obtained as

uNN ¼ aNN �
XN�1
k¼1

‘NkukN ð10:26Þ

A summary of the LU factorization is shown algorithmically below.

10.2.8 LU Decomposition Algorithm

u1 j = a1 j j = 1 to N

i1 = ai1
u11

i = 2 to N

For i = 2 to N 1

{

uij = aij ikukj
k=1

i 1

j = i,i +1,...,N

ki =
aki kju ji

j=1

i 1

uii

k = i +1,i + 2,...,N

}

uNN = aNN NiuiN
i=1

N 1
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10.2.9 The Substitution Step

Having decomposed the original matrix A into L and U, the system of equations
can be solved in a two step procedure via Eqs. (10.18) and (10.14). Note that the
two-step procedure is equivalent to solving two linear systems of equations but now
simplified by the fact that L and U are of lower and upper triangular form,
respectively.

In the first step the vector c is obtained from Eq. (10.18) by forward substi-
tution. The process can be described as

c1 ¼ b1

ci ¼ bi �
Xi�1
j¼1

‘ijcj i ¼ 2; 3; . . .;N
ð10:27Þ

In the second step, the / values are found from Eq. (10.14) by back substitution.
The process is described by

/N ¼
cN
uNN

/i ¼
ci �

PN
j¼iþ1 uij/j

uii
i ¼ N � 1;N � 2; . . .; 3; 2; 1

ð10:28Þ

The elements of L and U can be directly stored in the original matrix A if it is no
longer needed. This is because the elements of A are only needed when the cor-
responding elements of either L or U are calculated. The number of operations
required to perform the LU factorization of a square matrix of size N × N is 2N3/3,
which is double the number of operations required to solve the same system of
equations by Gauss elimination. Again the advantage of using LU factorization is
when the same matrix A applies to many systems with different b vectors.
Nevertheless, the main reason for introducing the LU factorization is because it
forms the basis for developing some of the more efficient iterative solvers of linear
algebraic systems of equations, which will be introduced in the next section.

10.2.10 LU Decomposition and Gauss Elimination

It may not be apparent, but Gauss elimination can be used to perform LU
decomposition. It was shown that the forward elimination step results in an upper
triangular matrix U. In the process however, L is actually produced. The elements
of L are the factors (denoted by ratio in the Gauss elimination algorithm) by which
the rows are multiplied during the various elimination steps. The below algorithm,
which assumes a unit lower triangular matrix L, performs the LU decomposition of
A by Gauss elimination.
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10.2.11 LU Decomposition Algorithm by Gauss Elimination

u1 j = a1 j j = 1 to N

For k = 1 to N 1

{
For i = k +1 to N

{

ik = aik
akk

{
For j = k +1 to N

uij = aij ik *akj

}
}

}

Example 1
Solve the following system of linear algebraic equations using the LU
decomposition technique:

3 �1 0 0
�2 6 �1 0
0 �2 6 �1
0 0 �2 7

2
664

3
775

/1
/2
/3
/4

2
664

3
775 ¼

3
4
5
�3

2
664

3
775

Solution
The system is of the form A/ ¼ b. The L and U should satisfy

LU ¼

1 0 0 0

‘21 1 0 0

‘31 ‘32 1 0

‘41 ‘42 ‘43 1

2
6664

3
7775

u11 u12 u13 u14
0 u22 u23 u24
0 0 u33 u34
0 0 0 u44

2
6664

3
7775 ¼

3 �1 0 0

�2 6 �1 0

0 �2 6 �1
0 0 �2 7

2
6664

3
7775
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Following the procedure described above the elements are calculated as
follows:

u1j ¼ a1j j ¼ 1; 2; 3; 4)
u11 ¼ 3
u12 ¼ �1
u13 ¼ 0
u14 ¼ 0

8>><
>>:

‘i1 ¼ ai1
u11

i ¼ 2; 3; 4)

‘21 ¼ a21
u11
¼ � 2

3

‘31 ¼ a31
u11
¼ 0

‘41 ¼ a41
u11
¼ 0

8>>>>>><
>>>>>>:

u2j ¼ a2j � ‘21u1j j ¼ 2; 3; 4)
u22 ¼ a22 � ‘21u12 ¼ 16

3
u23 ¼ a23 � ‘21u13 ¼ �1
u24 ¼ a24 � ‘21u14 ¼ 0

8><
>:

‘i2 ¼ ai2 � ‘i1u12
u22

i ¼ 3; 4) ‘32 ¼ a32�‘31u12
u22

¼ � 3
8

‘42 ¼ a42�‘41u12
u22

¼ 0

8<
:

uij ¼ aij �
Xi�1
k¼1

‘ikukj i ¼ 3; j ¼ 3; 4) u33 ¼ a33 � ‘31u13 � ‘32u23 ¼ 45
8

u34 ¼ a34 � ‘31u14 � ‘32u24 ¼ �1

8<
:

‘ki ¼
aki �

Pi�1
j¼1 ‘kjuji

uii
i ¼ 3; k ¼ 4) ‘43 ¼ a43 � ‘41u13 � ‘42u23

u33
¼ � 16

45

uNN ¼ aNN �
XN�1
k¼1

‘NkukN ) u44 ¼ a44 � ‘41u14 � ‘42u24 � ‘43u34 ¼ 299
45

Therefore the L and U matrices are given by

L ¼

1 0 0 0

� 2
3

1 0 0

0 � 3
8

1 0

0 0 � 16
45

1

2
66666664

3
77777775

U ¼

3 �1 0 0

0
16
3
�1 0

0 0
45
8

�1
0 0 0

299
45

2
66666664

3
77777775
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The c vector should satisfy

Lc ¼ b)

1 0 0 0

� 2
3

1 0 0

0 � 3
8

1 0

0 0 � 16
45

1

2
66666664

3
77777775

c1
c2
c3
c4

2
664

3
775 ¼

3
4
5
�3

2
664

3
775

with its solution obtained as

c1 ¼ 3

� 2
3
c1 þ c2 ¼ 4) c2 ¼ 6

� 3
8
c2 þ c3 ¼ 5) c3 ¼ 29

4

� 16
45

c3 þ c4 ¼ �3) c4 ¼ � 19
45

The solution to the original equation is obtained by solving

U/ ¼ c)

3 �1 0 0

0
16
3
�1 0

0 0
45
8
�1

0 0 0
299
45

2
66666664

3
77777775

/1
/2
/3
/4

2
664

3
775 ¼

3
6
29
4

� 19
45

2
666664

3
777775

with the solution found as

299
45

/4 ¼ �
19
45
) /4 ¼ �

19
299

45
8
/3 � /4 ¼

29
4
) /3 ¼

382
299

16
3
/2 � /3 ¼ 6) /2 ¼

408
299

3/1 � /2 ¼ 3) /1 ¼
435
299

9>>>>>>>>>>>=
>>>>>>>>>>>;
) / ¼

435
299
408
299
382
299

� 19
299

2
666666666664

3
777777777775

10.2.12 Direct Methods for Banded Sparse Matrices

The Gauss elimination and LU decomposition methods are applicable to any system
of equations. In specific it can be used for solving the system of equations resulting
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from the discretization of the conservation equations of interest in this book on
structured or unstructured grid networks. When a structured grid method is used the
discretization process results in a system of equations with the non-zero elements of
its matrix of coefficients aligning along few diagonals. Depending on the discret-
ization stencil used and the dimension of the problem being solved, tridiagonal or
pentadiagonal matrices may arise, for which efficient algorithms have been devel-
oped as described next.

10.2.13 TriDiagonal Matrix Algorithm (TDMA)

The TriDiagonal Matrix Algorithm (TDMA), also known as Thomas algorithm
[5, 6], solves the system of algebraic equations with a tridiagonal coefficient matrix
written as

ai/i þ bi/iþ1 þ ci/i�1 ¼ di i ¼ 1; 2; 3; . . .;N c1 ¼ bN ¼ 0 ð10:29Þ

For the grid arrangement adopted in this book, i refers to the grid point location
shown in Fig. 10.1.

For i = 1 the equation can be used to solve for /1 in term of /2 as

i ¼ 1) a1/1 ¼ �b1/2 þ d1 ) /1 ¼ �
b1
a1

/2 þ
d1
a1

ð10:30Þ

Similarly for i = 2 Eq. (10.29) with the help of Eq. (10.30) allows expressing /2
solely in term of /3 as

i ¼ 2) a2/2 ¼ �b2/3 � c2/1 þ d2 ) /2 ¼ �
a1b2

a1a2 � c2b1
/3 þ

d2a1 � c2d1
a1a2 � c2b1

ð10:31Þ

The same can be repeated for /3 through /N suggesting that in general /i can be
expressed as function of /iþ1 according to

/i ¼ Pi/iþ1 þ Qi i ¼ 1; 2; 3; . . .;N ð10:32Þ

Equation (10.32) for i − 1 when combined with Eq. (10.29) results in

1i = 2 3 4 N 2 N 1 N

Fig. 10.1 One dimensional grid arrangement
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/i�1 ¼ Pi�1/i þ Qi�1
ai/i þ bi/iþ1 þ ci/i�1 ¼ di

�
) /i ¼ �

bi
ai þ ciPi�1

/iþ1 þ
di � ciQi�1
ai þ ciPi�1

ð10:33Þ

Comparing Eq. (10.32) with Eq. (10.33) the following recurrence relations for Pi

and Qi are found:

Pi ¼ � bi
ai þ ciPi�1

Qi ¼ di � ciQi�1
ai þ ciPi�1

i ¼ 1; 2; . . .;N ð10:34Þ

For i = 1 the values for P1 and Q1 are computed from Eq. (10.30) as

P1 ¼ � b1
a1

Q1 ¼ d1
a1

ð10:35Þ

For i = N, since bN = 0 the following is deduced:

bN ¼ 0) PN ¼ 0) /N ¼ QN ð10:36Þ

The TDMA solution algorithm can be summarized as follows:

1. Compute the values for  and  using Eq. (10.35)

2. For  use forward recursion to compute the values of 

and  from Eq. (10.34)

3. Set  as given by Eq. (10.36)

4. For  use backward recursion to compute the values 

of  from Eq. (10.32)

P1 Q1

i = 2,3,...,N Pi
Qi

N = QN

i = N 1,N 2,...3,2,1

i

10.2.14 PentaDiagonal Matrix Algorithm (PDMA)

The PentaDiagonal Matrix Algorithm (PDMA) [7–10], solves the system of algebraic
equations with a pentadiagonal coefficient matrix arising from discretization schemes
that relate the value of /i at grid point i to the values at its two upstream (i − 1 and
i − 2) and two downstream (i + 1 and i + 2) neighboring node values. For the notation
illustrated schematically in Fig. 10.1, the general algebraic equation is written as

ai/i þ bi/iþ2 þ ci/iþ1 þ di/i�1 þ ei/i�2 ¼ fi i ¼ 1; 2; 3; . . .;N ð10:37Þ

Subject to

d1 ¼ e1 ¼ e2 ¼ 0

bN�1 ¼ bN ¼ cN ¼ 0
ð10:38Þ
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For i = 1, Eq. (10.37) gives

/1 ¼ �
b1
a1

/3 �
c1
a1

/2 þ
f1
a1

ð10:39Þ

while for i = 2 the value of /2 is found to be

/2 ¼ �
a1b2

a1a2 � d2c1
/4 �

a1c2 � b1d2
a1a2 � d2c1

/3 þ
a1f2 � d2f1
a1a2 � d2c1

ð10:40Þ

The process can be continued for other values of i and in general /i can be
expressed as

/i ¼ Pi/iþ2 þ Qi/iþ1 þ Ri i ¼ 1; 2; 3; . . .;N ð10:41Þ

Computing /i�1 and /i�2 using Eq. (10.41) and substituting their values in
Eq. (10.37), an equation for /i is derived as

/i ¼ �
bi

ai þ eiPi�2 þ di þ eiQi�2ð ÞQi�1
/iþ2

� ci þ di þ eiQi�2ð ÞPi�1
ai þ eiPi�2 þ di þ eiQi�2ð ÞQi�1

/iþ1

þ fi � eiRi�2 � di þ eiQi�2ð ÞRi�1
ai þ eiPi�2 þ di þ eiQi�2ð ÞQi�1

ð10:42Þ

Comparing Eqs. (10.41) and (10.42) Pi, Qi, and Ri are found as

Pi ¼ � bi
ai þ eiPi�2 þ di þ eiQi�2ð ÞQi�1

Qi ¼ � ci þ di þ eiQi�2ð ÞPi�1
ai þ eiPi�2 þ di þ eiQi�2ð ÞQi�1

Ri ¼ fi � eiRi�2 � di þ eiQi�2ð ÞRi�1
ai þ eiPi�2 þ di þ eiQi�2ð ÞQi�1

ð10:43Þ

with their values for i = 1 and 2 given by

P1 ¼ � b1
a1

Q1 ¼ � c1
a1

R1 ¼ f1
a1

P2 ¼ � b2
a2 þ d2Q1

Q2 ¼ � c2 þ d2P1

a2 þ d2Q1
R2 ¼ f2 � d2R1

a2 þ d2Q1

ð10:44Þ

Since bN�1 ¼ bN ¼ cN ¼ 0 then PN�1 ¼ PN ¼ QN ¼ 0. Thus, the equations for
/N�1 and /N are found from
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/N ¼ RN

/N�1 ¼ QN�1/N þ RN�1
ð10:45Þ

The PDMA solution algorithm can be summarized as follows:

1. Compute the values for , ,  , , , and  using Eq. 

(10.44).

2. For  use forward recursion to compute the values of , 

, and  from Eq. (10.43).

3. Compute  and  from Eq. (10.45).

4. For  use backward recursion to compute the values of 

 from Eq. (10.41).

P1 Q1 R1 P2 Q2 R2

i = 3,4,...,N Pi
Qi Ri

N N 1

i = N 2,...3,2,1

i

10.3 Iterative Methods

Direct methods are generally not appropriate for solving large systems of equations
particularly when the coefficient matrix is sparse, i.e., when most of the matrix
elements are zero. This is more so when the linearized system of equations is
nonlinear with solution dependent coefficients, or when dealing with time depen-
dent problems. This is exactly the type of equations encountered when solving fluid
flow problems.

In contrast, iterative methods are more appealing for these problems since the
solution of the linearized system becomes part of the iterative solution process. Add
to that the low computer storage and low computational cost requirements of this
approach relative to the direct method.

There are many families of iterative methods and for a thorough review of this
approach the reader is directed to dedicated books on the topic [11–14]. In this
chapter a brief examination of basic iterative methods is provided along with an
appraisal of multigrid algorithms that are generally used to address their deficiency.
The Gauss elimination and LU decomposition direct methods were introduced for
the sole purpose of clarifying some fundamental numerical processes needed for
understanding iterative methods.

To unify the presentation of these methods, the coefficient matrix will be written
in the following form:

A ¼ Dþ Lþ U ð10:46Þ

where D, L, and U refers to a diagonal, strictly lower, and strictly upper matrix,
respectively.

Iterative methods for solving a linear system of the type A/ ¼ b, compute a
series of solutions / nð Þ that, if certain conditions are satisfied, converge to the exact
solution /. Thus, for the solution, a starting point is chosen (i.e., / 0ð Þ is selected as
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the initial condition or initial guess) and an iterative procedure that computes / nð Þ

from the previously computed / n�1ð Þ
field is developed.

A “fixed-point” iteration can always be associated to the above system by
decomposing matrix A as

A ¼M� N ð10:47Þ

Using this decomposition, Eq. (10.1) is rewritten as

M� Nð Þ/ ¼ b ð10:48Þ

Applying a fixed point iteration solution procedure, Eq. (10.48) becomes

M/ nð Þ ¼ N/ n�1ð Þ þ b ð10:49Þ

which can be rewritten in the following form:

/ nð Þ ¼ B/ n�1ð Þ þ Cb n ¼ 1; 2; . . . ð10:50Þ

where B ¼ M�1N and C ¼M�1. Different choices of these matrices define dif-
ferent iterative methods.

Before embarking on the description of the various iterative methods, a minimal
set of characteristics that an iterative method should possess to guarantee conver-
gence is first presented.

A. The iterative equation can be written at convergence as

/ ¼ B/þ Cb ð10:51Þ

which, after rearranging, becomes

C�1 I� Bð Þ/ ¼ b ð10:52Þ

Comparing Eq. (10.52) with Eq. (10.1), the coefficient matrix is obtained as

A ¼ C�1 I� Bð Þ ð10:53Þ

or, alternatively, as

Bþ CA ¼ I ð10:54Þ

This relation between the various matrices ensures that once the exact solution is
reached all consecutive iterations will not modify it.

B. Starting from some guess / 0ð Þ 6¼ /, the method should guarantee that / nð Þ will
converge to / as n increases. Since / nð Þ can be expressed in terms of / 0ð Þ as
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/ nð Þ ¼ Bn/ 0ð Þ þ
Xn�1
i¼0

BiCb ð10:55Þ

then, for the above to be true, B should satisfy

lim
n!1Bn ¼ lim

n!1B � B � B � � � � B|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
n times

¼ 0 ð10:56Þ

Equation (10.56) implies that the spectral radius of B should be less than 1, i.e.,

q Bð Þ\1 ð10:57Þ

This condition guaranties that the iterative method is self corrective, i.e., it is
robust to any error adversely inserted into the solution vector /.
More insight into the above condition can be obtained by defining the error e(n)

in the solution as the difference between the exact value and the value at any
iteration (n), then

e nð Þ ¼ / nð Þ � / and e n�1ð Þ ¼ / n�1ð Þ � / ð10:58Þ

Subtracting Eq. (10.51) from Eq. (10.50) and using the definitions in
Eq. (10.58), a relation between the error at iteration n and n − 1 is obtained as

e nð Þ ¼ Be n�1ð Þ ð10:59Þ

Thus, for the method to converge, the following should be satisfied:

lim
n!1 e nð Þ ¼ 0 ð10:60Þ

To translate Eq. (10.60) into something meaningful, the eigenvectors of B are
assumed to be complete and to form a full set, meaning that they form a basis for
RN. This being the case then e can be expressed as a linear combination of the
N eigenvectors v of B. That is

e ¼
XN
i¼1

aivi ð10:61Þ

with each of the eigenvectors satisfying

Bvi ¼ kivi ð10:62Þ

where ki is the eigenvalue corresponding to the eigenvector vi. Starting with the
first iteration, Eq. (10.59) gives
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e 1ð Þ ¼ Be 0ð Þ ¼ B
XN
i¼1

aivi ¼
XN
i¼1

ai Bvið Þ ¼
XN
i¼1

aikivi ð10:63Þ

For the second iteration, the error is obtained as

e 2ð Þ ¼ Be 1ð Þ ¼ B
XN
i¼1

aikivi ¼
XN
i¼1

aiki Bvið Þ ¼
XN
i¼1

aik
2
i vi ð10:64Þ

This procedure can be continued and it is easily shown by induction that

e nð Þ ¼
XN
i¼1

aik
n
i vi ð10:65Þ

Therefore for the iterative procedure to converge as n approaches infinity, all
eigenvalues should be less than 1. If any of them is greater than 1 then the error
will tend to infinity. This explains the importance of the spectral radius ρ of the
matrix B defined as

q Bð Þ ¼ max
N

i¼1
kið Þ ð10:66Þ

that was mentioned above. The convergence of iterative methods is accelerated
by reducing the spectral radius of the iterative matrix. This is at the heart of
iterative techniques.

C. Some type of a stopping criterion is needed with iterative methods. Many used
criteria are based on a variation of the norm of the residual error defined as

r nð Þ ¼ A/ nð Þ � b ð10:67Þ

One criterion is to find the maximum residual in the domain and to require its
value to become less than some threshold ε to declare a solution converged, i.e.,

Max
N

i¼1

����bi �XN
j¼1

aij/
nð Þ
j

������ e ð10:68Þ

or that the root mean square residual be smaller than ε, i.e.,

PN
i¼1 bi �

PN
j¼1 aij/

nð Þ
j

� �2
N

� e ð10:69Þ

Another possible criterion is for the maximum normalized difference between
two consecutive iterations to drop below e. This condition can be written as
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Max
N

i¼1
/ nð Þ
i � / n�1ð Þ

i

/ nð Þ
i

�����
������ 100� e ð10:70Þ

10.3.1 Jacobi Method

Perhaps the simplest of the iterative methods for solving a linear system of equa-
tions is the Jacobi method, which is graphically presented in Fig. 10.2.

Considering the system of equations described by Eq. (10.1), if the diagonal
elements are nonzero, then the first equation can be used to solve for /1, the second
equation to solve for /2, and so on. The solution process starts by assigning
guessed values to the unknown vector /. These guessed values are used to calculate
new estimates starting with /1, then /2, and computations proceed until a new
estimate for /N is computed. This represents one iteration. Results obtained are
treated as a new guess for the next iteration and the solution process is repeated.
Iterations continue until the changes in the predictions between two consecutive
iterations drop below a vanishing value or until a preset convergence criterion is
satisfied. Once this happens the final solution is reached. In this method, given some
current estimate / n�1ð Þ, an update is obtained using the following relation:

/ nð Þ
j ¼

1
aii

bi �
XN
j¼1
j6¼i

aij/
n�1ð Þ
j

0
BBBB@

1
CCCCA i ¼ 1; 2; 3; . . .;N ð10:71Þ

-φ n( ) = φ (n−1)

Fig. 10.2 A graphical representation of the Jacobi method
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Equation (10.71) indicates that values obtained during an iteration are not used in
the subsequent calculations during the same iteration but rather retained for the next
iteration. Using matrices, the expanded form of Eq. (10.71) is given by

a11 0 . . . 0 0

0 a22 . . . 0 0

..

. ..
.

. . . ..
. ..

.

0 . . . 0 aN�1;N�1 0

0 0 . . . 0 aNN

2
66666664

3
77777775

/1

/2

..

.

/N�1
/N

2
66666664

3
77777775

þ

0 a12 . . . a1N�1 a1N
a21 0 . . . a2N�1 a2N

..

. ..
.

. . . ..
. ..

.

aN�1;1 aN�1;2 . . . 0 aN�1;N
aN1 aN2 aN3 . . . 0

2
66666664

3
77777775

/1

/2

..

.

/N�1
/N

2
66666664

3
77777775
¼

b1
b2

..

.

..

.

bN

2
66666664

3
77777775

ð10:72Þ

Solving for / nð Þ, Eq. (10.72) yields

/ nð Þ
1

/ nð Þ
2

..

.

/ nð Þ
N�1
/ nð Þ
N

2
666666664

3
777777775
¼

a11 0 . . . 0 0

0 a22 . . . 0 0

..

. ..
.

. . . ..
. ..

.

0 . . . 0 aN�1;N�1 0

0 0 . . . 0 aNN

2
66666664

3
77777775

�1

b1
b2

..

.

..

.

bN

2
66666664

3
77777775
�

0 a12 . . . a1N�1 a1N
a21 0 . . . a2N�1 a2N

..

. ..
.

. . . ..
. ..

.

aN�1;1 aN�1;2 . . . 0 aN�1;N
aN1 aN2 aN3 . . . 0

2
66666664

3
77777775

/ n�1ð Þ
1

/ n�1ð Þ
2

..

.

/ n�1ð Þ
N�1

/ n�1ð Þ
N

2
666666664

3
777777775

0
BBBBBBBB@

1
CCCCCCCCA

ð10:73Þ

Using Eqs. (10.46) and (10.73) can be more concisely written as

/ nð Þ ¼ �D�1 Lþ Uð Þ/ n�1ð Þ þ D�1b ð10:74Þ

The Jacobi method converges as long as q �D�1 Lþ Uð Þ	 

\1. This condition is

satisfied for a large class of matrices including diagonally dominant ones where
their coefficients satisfy
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XN
j¼1
j6¼i

aij
�� ��� aiij j i ¼ 1; 2; 3; . . .;N ð10:75Þ

10.3.2 Gauss-Seidel Method

A more popular take on the Jacobi is the Gauss-Seidel method, which has better
convergence characteristics. It is somewhat less expensive memory-wise since it
does not require storing the new estimates in a separate array. Rather, it uses the
latest available estimate of / in its calculations. The iterative formula in the Gauss
Seidel method, schematically displayed in Fig. 10.3, is given as

/ nð Þ
i ¼

1
aii

bi �
Xi�1
j¼1

aij/
nð Þ
j �

XN
j¼iþ1

aij/
n�1ð Þ
j

 !
i ¼ 1; 2; 3; . . .;N ð10:76Þ

In matrix form Eq. (10.76) is written as

/ nð Þ ¼ � Dþ Lð Þ�1U/ n�1ð Þ þ Dþ Lð Þ�1b ð10:77Þ

In effect the Gauss-Seidel method uses the most recent values in its iteration,

specifically all / nð Þ
j values for j < i since by the time /i is to be calculated, the

values of /1;/2;/3; . . .;/i�1 at the current iteration are already calculated. This
approach also saves memory since the newer value is always overwriting the
previous one. The Gauss-Seidel iterations converge as long as

q � Dþ Lð Þ�1U
� �

\1 ð10:78Þ

Although in some cases the Jacobi method converges faster, Gauss-Seidel is the
preferred method.

-=φ n( ) φ (n−1)

Fig. 10.3 A graphical representation of the Gauss-Seidel method
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Example 2
Apply 5 iterations of the Gauss-Seidel and Jacobi methods to the system of
equations in Example 1 and compute the errors at each iteration using the
exact solution.

/ ¼ 435
299

408
299

382
299

� 19
299

� �
:

As an initial guess start with the field /� ¼ 0 0 0 0½ �

Solution
Denoting with a superscript ð�Þ values from the previous iteration, the
equations to be solved in the Jacobi method are as follows:

/1 ¼
1
3

/�2 þ 3
	 


/2 ¼
1
6

2/�1 þ /�3 þ 4
	 


/3 ¼
1
6

2/�2 þ /�4 þ 5
	 


/4 ¼
1
7

2/�3 � 3
	 


with the error given as e ¼ /exact � /computed

�� ��. The solution for the first
iteration is obtained as

/1 ¼
1
3

0þ 3ð Þ ¼ 1) e1 ¼ 1:4548� 1j j ¼ 0:4548

/2 ¼
1
6

0þ 0þ 4ð Þ ¼ 0:6667) e2 ¼ 1:3645� 0:6667j j ¼ 0:6978

/3 ¼
1
6

0þ 0þ 5ð Þ ¼ 0:8333) e3 ¼ 1:2776� 0:8333j j ¼ 0:4443

/4 ¼
1
7

0� 3ð Þ ¼ �0:4286) e4 ¼ �0:06354þ 0:4286j j ¼ 0:3650

Computations proceed in the same manner with solution obtained treated as
the new guess. The results for the first five iterations are given in Table 10.1.

Table 10.1 Summary of results obtained using the Jacobi iterative method

Iter # /1 e1 /2 e2 /3 e3 /4 e4

0 0 1.4548 0 1.3645 0 1.2776 0 0.06354

1 1 0.4548 0.6667 0.6978 0.8333 0.4443 −0.4286 0.3650

2 1.2222 0.2326 1.1389 0.2257 0.9841 0.2935 −0.1905 0.1269

3 1.3796 7.52E−02 1.2381 0.1265 1.1812 9.64E−02 −0.1474 8.38E−02

4 1.4127 4.22E−02 1.3234 4.11E−02 1.2215 5.61E−02 −9.11E−02 2.75E−02

5 1.4411 1.37E−02 1.3411 2.34E−02 1.2593 1.83E−02 −7.96E−02 1.6E−02
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Denoting with a superscript ð�Þ values from the previous iteration, the
equations to be solved in the Gauss-Seidel method are as follows:

/1 ¼
1
3

/�2 þ 3
	 


/2 ¼
1
6

2/1 þ /�3 þ 4
	 


/3 ¼
1
6

2/2 þ /�4 þ 5
	 


/4 ¼
1
7

2/3 � 3ð Þ

with the error given as e ¼ /exact � /computed

�� ��. The solution for the first
iteration is obtained as

/1 ¼
1
3

0þ 3ð Þ ¼ 1) e1 ¼ 1:4548� 1j j ¼ 0:4548

/2 ¼
1
6

2 � 1þ 0þ 4ð Þ ¼ 1) e2 ¼ 1:3645� 1j j ¼ 0:3645

/3 ¼
1
6

2 � 1þ 0þ 5ð Þ ¼ 1:1667) e3 ¼ 1:2776� 1:1667j j ¼ 0:1109

/4 ¼
1
7

2 � 1:1667� 3ð Þ ¼ �0:09523) e4 ¼ �0:06354þ 0:09523j j ¼ 0:03169

Computations proceed in the same manner with solution obtained treated as
the new guess. The results for the first five iterations are given in Table 10.2.

10.3.3 Preconditioning and Iterative Methods

The rate of convergence of iterative methods depends on the spectral properties of
the iteration matrix B, which is contingent on the matrix of coefficients. Based on
that an iterative method looks for a transformation of the system of equations into

Table 10.2 Summary of results obtained using the Gauss-Siedel iterative method

Iter # /1 e1 /2 e2 /3 e3 /4 e4

0 0 1.4548 0 1.3645 0 1.2776 0 0.06354

1 1 0.4548 1 0.3645 1.1667 0.1109 −0.09523 0.03169

2 1.3333 0.1215 1.3056 5.90E−02 1.2526 2.49E−02 −7.07E−02 7.13E−03

3 1.4352 1.97E−02 1.3538 1.07E−02 1.2728 4.76E−03 −6.49E−02 1.36E−03

4 1.4513 3.57E−03 1.3626 1.98E−03 1.2767 8.88E−04 −6.38E−02 2.54E−04

5 1.4542 6.61E−04 1.3642 3.68E−04 1.2774 1.65E−04 −6.36E−02 4.72E−05
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an equivalent one that has the same solution, but of better spectral properties. Under
these conditions the eigenvalues of the equivalent system are more clustered
allowing the iterative solution to be obtained faster than with the original system.
A preconditioner is defined as a matrix that effects such a transformation.

A preconditioning matrix P is defined such that the system
P�1A/ ¼ P�1b ð10:79Þ

has the same solution as the original system A/ ¼ b, but the spectral properties of
its coefficient matrix P�1A are more conducive. In defining the preconditioner P,
the difficulty is to find a matrix that approximates A�1 and is easy to invert (i.e., to
find P�1) at a reasonable cost.

Writing again Eq. (10.47), but now with P replacing M (i.e., M = P and
A = P − N) the associated fixed point iteration system is given by

/ nð Þ ¼ B/ n�1ð Þ þ Cb

¼ P�1N/ n�1ð Þ þ P�1b

¼ P�1 P� Að Þ/ n�1ð Þ þ P�1b

¼ I� P�1A
	 


/ n�1ð Þ þ P�1b

ð10:80Þ

which in residual form can be written as

/ nð Þ ¼ I� P�1A
	 


/ n�1ð Þ þ P�1b

¼ / n�1ð Þ þ P�1 b� A/ n�1ð Þ
� �

¼ / n�1ð Þ þ P�1r n�1ð Þ

ð10:81Þ

From both equations it is now clear that the iterative procedure is just a fixed-point
iteration on a preconditioned system associated with the decomposition
A = P − N where the spectral properties are now

q I� P�1A
	 


\1 ð10:82Þ

By comparison, the preconditioning matrix for the Jacobi Jð Þ and Gauss-Seidel
GSð Þ methods are simply

PJ ¼ D

PGS ¼ Dþ L
ð10:83Þ

where D and L are respectively the diagonal and lower triangular part of matrix A.
Thus, preconditioning is a manipulation of the original system to improve its

spectral properties with the preconditioning matrix P used in the associated iterative
procedure. As will be described in the following sections, it is possible to develop
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more advanced preconditioning matrices in which the coefficients are defined in a
more complex way.

10.3.4 Matrix Decomposition Techniques

The low rate of convergence of the Gauss-Seidel and Jacobi methods was the prime
motivator for the development of faster iterative techniques. One approach to
accelerate the convergence rate of solvers and to develop iterative methods is
through the use of more advanced preconditioners. A simple, yet efficient, approach
for that purpose is to perform an incomplete factorization of the original matrix of
coefficients A. The stress on incomplete is essential since a complete factorization
of A into a lower L and an upper triangular matrix U is tantamount to a direct
solution and is very expensive in term of memory requirements (fill in and loss of
sparsity) and computational cost.

10.3.5 Incomplete LU (ILU) Decomposition

As can be seen in Example 1, the L and U matrices result in non-zero elements at
locations that were 0 in the original matrix A (this is known as fill-in). So if an
incomplete LU (ILU) factorization of A is performed such that the resulting lower
L and upper U matrices have the same nonzero structure as the lower and upper
parts of A, then

A ¼ LUþ R ð10:84Þ

where R is the residual of the factorization procedure. The matrices L and U being
sparse (same structure as A) are easier to deal with then if they were obtained from
a complete factorization. However, their product being an approximation to A,
necessitates the use of an iterative solution procedure to solve the system of
equations. The first step in the solution process is to rewrite Eq. (10.1) as

A/ ¼ b) 0 ¼ b� A/) A� Rð Þ/ ¼ A� Rð Þ/þ b� A/ð Þ ð10:85Þ

Denoting values obtained from the previous iteration with a superscript n� 1ð Þ,
and values obtained at the current iteration with superscript nð Þ, the iterative process
is obtained by rewriting Eq. (10.85) in the following form:

A� Rð Þ/ nð Þ ¼ A� Rð Þ/ n�1ð Þ þ b� A/ n�1ð Þ
� �

ð10:86Þ
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Therefore values of / nð Þ at the current iteration can be obtained from knowledge of
/ n�1ð Þ values obtained at the previous iteration. Equation (10.86) is usually solved
in residual form whereby the solution / nð Þ at iteration nð Þ is expressed in terms of
the solution / n�1ð Þ at iteration n� 1ð Þ plus a correction /0 nð Þ, i.e.,

/ nð Þ ¼ / n�1ð Þ þ /0 nð Þ ð10:87Þ

Thus Eq. (10.86) becomes

A� Rð Þ/0 nð Þ ¼ b� A/ n�1ð Þ
� �

ð10:88Þ

Once /0 nð Þ is found, Eq. (10.87) is used to update ϕ at every iteration.
The ILU factorization can be performed using Gaussian elimination while

dropping some non diagonal elements at preset locations. The locations where
elements are to be dropped give rise to different ILU approximations.

10.3.6 Incomplete LU Factorization with no Fill-in ILU(0)

Many variants of the ILU factorization technique exist and the simplest is the one
denoted by ILU(0) [15–17]. In ILU(0) the pattern of zero elements in the combined
L and U matrices is taken to be precisely the pattern of zero elements in the original
matrix A. Using Gaussian elimination, computations are performed as in the case of
a full LU factorization, but any new nonzero element (‘ij and uij) arising in the
process is dropped if it appears at a location where a zero element exists in the
original matrix A. Hence, the combined L and U matrices have together the same
number of non zeros as the original matrix A. With this approach, the fill-in
problem that usually arises when factorizing sparse matrices (i.e., the creation of
nonzero elements at locations where the original matrix has zeros) is eliminated. In
the process however, the accuracy is reduced thereby increasing the number of
required iterations for convergence to be reached. To remedy this shortcoming,
more accurate ILU factorization methods, which are often more efficient and more
reliable, have been developed. These methods, differing by the level of fill-in
allowed, are denoted by ILU(p) where p represents the order of fill-ins. The higher
the level of fill-ins, the more expensive the ILU decomposition step becomes.
Moreover, when used within a multigrid approach (to be explained in a later
section), the ILU(0) method is more than adequate as a smoother. For this reason
higher level methods are not presented and for more information interested readers
are referred, among others, to the book by Saad [12].

An ILU(0) factorization algorithm which assumes L to be a unit lower triangular
matrix and for which the same matrix A is used to store the elements of the unit
lower and upper triangular matrices L and U is as given next.
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10.3.7 ILU(0) Factorization Algorithm

For k = 1 to N 1

{
For i = k +1 to N and if aik 0 Do :

{

aik = aik
akk

values( )

{
For j = k +1 to N and if aij 0Do :

aij = aij aik *akj u values( )
}

}
}

It should be mentioned that the ILU decomposition of symmetric positive def-
inite matrices is denoted by Incomplete Cholesky decomposition. In this case the
factorization is made just of the lower (or upper) triangular part and the approxi-
mation to the original matrix is written as

LL
T � A ð10:89Þ

where �L is the factorized sparse lower triangular matrix (approximation of L), with
the preconditioning matrix P given by

P ¼ LL
T � A ð10:90Þ

10.3.8 ILU Factorization Preconditioners

A very popular class of preconditioners is based on incomplete factorizations. In the
discussions of direct methods it was shown that decomposing a sparse matrix A into
the product of a lower and an upper triangular matrices may lead to substantial fill-in.
Because a preconditioner is only required to be an approximation to A�1, it is
sufficient to look for an approximate decomposition of A such that A � LU.
Choosing P ¼ LU leads also to an efficient evaluation of the inverse of the pre-
conditioned matrix P�1 since the inversion can easily be performed by the forward
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and backward substitution, as described above, in which the exact L and U are now
replaced by the approximations L and U, respectively.

For the ILU(0) method, the incomplete factorization mimics the nonzero ele-
ments sparsity of the original matrix such that the pre-conditioner has exactly the
size of the original matrix. In order to reduce the storage needed, Pommerell
introduced a simplified version of the ILU called diagonal ILU (DILU) [18]. In the
DILU the fill-in of the off-diagonal elements is eliminated (i.e., the upper and lower
parts of the matrix are kept unchanged) and only the diagonal elements are
modified.

In this case it is possible to write the preconditioner in the form

P ¼ D� þ Lð ÞD��1 D� þ Uð Þ ð10:91Þ

where L and U are the lower and upper triangular decomposition of A, and D� is
now a proper diagonal matrix, different from the diagonal of A. The D� matrix is
thus defined, as shown below, in a way that the diagonal of the product of the
matrices in Eq. (10.91) equals the diagonal of A.

10.3.9 Algorithm for the Calculation of D� in the DILU
Method

For i = 1 to N Do :

{
dii = aii

}
For i = 1 to N Do :

{
For j = i +1 to N and if aij 0,aji 0Do :

{

djj = djj

aji

dii

*aij

}
}
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In this case the inverse of the preconditioner, which is defined as

P ¼ D� þ Lð ÞD��1 D� þ Uð Þ ¼ LU; L ¼ D� þ Lð ÞD��1; U ¼ D� þ Uð Þ
or

P ¼ D� þ Lð Þ Iþ D��1U
	 
 ¼ LU; L ¼ D� þ Lð Þ; U ¼ Iþ D��1U

	 

ð10:92Þ

needed in the solution of P/0 nþ1ð Þ ¼ r nð Þ to find the correction field
/0 nþ1ð Þ ¼ P�1r nð Þ, can easily be calculated using the following forward and back-
ward substitution algorithm.

10.3.10 Forward and Backward Solution Algorithm
with the DILU Method

For i = 1 to N Do :

{
For j = 1 to i 1 Do :

{
ti = dii

1(ri ij * t j )

}
}
For i = N to 1 Do :

{
For j = i +1 to N Do :

{
'
i = ti dii

1(uij * t j )

}
}

The clear advantage of the DILU, apart from its recursive formulation, is that it
requires only one extra diagonal of storage.

10.3.11 Gradient Methods for Solving Algebraic Systems

Another group of iterative procedures for solving linear algebraic systems of
equations is the Gradient Methods, which include the Steepest Descent and the
Conjugate Gradient methods. They were initially developed for cases where the
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coefficient matrix A is symmetric positive definite (SPD) to reformulate the prob-
lem as a minimization problem for the quadratic vector function Q /ð Þ given by

Q /ð Þ ¼ 1
2
/TA/� bT/þ c ð10:93Þ

where c is a vector of scalars, and other variables are as defined in Eq. (10.1). The
minimum of Q /ð Þ is obtained when its gradient with respect to / is zero. The
gradient Q0 /ð Þ of a vector field Q /ð Þ, at a given /, points in the direction of
greatest increase of Q /ð Þ. Through mathematical manipulations the gradient is
found as

Q0 /ð Þ ¼ 1
2
AT/þ 1

2
A/� b ð10:94Þ

If A is symmetric A ¼ AT	 

, then Eq. (10.94) implies

Q0 /ð Þ ¼ A/� b ð10:95Þ

The minimum is obtained when Q0 /ð Þ ¼ 0, leading to

Q0 /ð Þ ¼ 0) A/ ¼ b ð10:96Þ

Therefore minimizing Q /ð Þ is equivalent to solving Eq. (10.1) and the solution of
the minimization problem yields the solution of the system of linear equations.

Now for the function Q /ð Þ to have a global minimum it is necessary for the
coefficient matrix A to be positive definite, i.e., it should satisfy the inequality
/TA/[ 0 for all / 6¼ 0. This requirement can be established by considering the
relationship between the exact solution / and its current estimate / nð Þ. If e ¼ / nð Þ �
/ denotes the difference between the exact solution and the current estimate, then
Eq. (10.93) gives

Q /þ eð Þ ¼ 1
2

/þ eð ÞTA /þ eð Þ � bT /þ eð Þ þ c

¼ 1
2
/TA/þ 1

2
eTA/þ 1

2
/TAeþ 1

2
eTAe� bT/� bTeþ c

¼ 1
2
/TA/� bT/þ c|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Q /ð Þ

þ 1
2

eTA/|fflffl{zfflffl}
eTb¼bTe

þ/TAe|fflffl{zfflffl}
bTe

0
B@

1
CA� bTeþ 1

2
eTAe

¼ Q /ð Þ þ 1
2
eTAe

ð10:97Þ
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indicating that if A is positive definite, the second term will be always positive
except when e = 0, in which case the required solution would have been obtained.
Moreover, when A is positive definite, all its eigenvalues are positive and the
function Q /ð Þ has a unique minimum.

Thus with a symmetric and positive definite matrix a converging series of / nð Þ

can be derived such that

/ nþ1ð Þ ¼ / nð Þ þ a nð Þ d/ nð Þ
� �

ð10:98Þ

where a nð Þ is some relaxation factor, and d/ nð Þ is related to the correction needed to
minimize the said function at each iteration. This can be accomplished in a variety
of ways leading to different methods.

10.3.12 The Method of Steepest Descent

The method of steepest descent for solving linear systems of equations of the form
given by Eq. (10.1) is based on minimizing the quadratic form given by Eq. (10.93).
If / is a one dimensional vector with its components given by the scalar /, then
Q /ð Þ will represent a parabola. Finding the minimum of a parabolic function
iteratively starting at some point /0, involves moving down along the parabola until
hitting the minimum.

The same idea is used in N dimensions. In this case Q /ð Þ may be depicted as a
paraboloid and the solution is iteratively found starting from an initial position / 0ð Þ

and moving down the paraboloid until the minimum is reached. For quick con-
vergence the sequence of steps / 0ð Þ;/ 1ð Þ;/ 2ð Þ; . . . should be selected such that the
fastest rate of descent occurs, i.e., in the direction of �Q0 /ð Þ. According to
Eq. (10.95) this direction is also given by

�Q0 /ð Þ ¼ b� A/ ð10:99Þ

The exact solution being /, the error and residual at any step n, denoted respec-
tively by e nð Þ and r nð Þ, are computed as

e nð Þ ¼ / nð Þ � /

r nð Þ ¼ b� A/ nð Þ ¼ �Q0 / nð Þ
� �)) r nð Þ ¼ �Ae nð Þ ð10:100Þ

Moving linearly in the direction of the steepest descent, the value of / at step n + 1
can be expressed in terms of the value of / at step n according to
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/ nþ1ð Þ ¼ / nð Þ þ a nð Þr nð Þ ð10:101Þ

The value of a nð Þ that minimizes Q /ð Þ should satisfy

d
da nð ÞQ /ðnþ1Þ

� �
¼ 0 ð10:102Þ

This can be expanded into

d
da nð ÞQ / nþ1ð Þ

� �
¼ 0) d

d/ nþ1ð ÞQ / nþ1ð Þ
� �" #T

d/ nþ1ð Þ

da nð Þ ¼ 0) r nþ1ð Þ
� �T

r nð Þ ¼ 0

ð10:103Þ

indicating that the new step should be in a direction normal to the old step. The
value of a nð Þ is calculated by using Eq. (10.103) as follows:

r nþ1ð Þ
� �T

r nð Þ ¼ 0) b� A/ nþ1ð Þ
� �T

r nð Þ ¼ 0

) b� A / nð Þ þ a nð Þr nð Þ
� �h iT

r nð Þ ¼ 0

) b� A/ nð Þ
� �T

r nð Þ ¼ a nð Þ Ar nð Þ
� �T

r nð Þ

) r nð Þ
� �T

r nð Þ ¼ a nð Þ r nð Þ
� �T

Ar nð Þ

) a nð Þ ¼ r nð Þ	 
T
r nð Þ

r nð Þð ÞTAr nð Þ

ð10:104Þ

The steepest descent algorithm can be summarized as follows:

 (choose residual as starting direction)

iterate starting at  until convergence

 (Compute the residual vector)

(Compute the factor in the orthogonal direction)

r 0( ) = b A 0( )

n( )
r n( ) = b A n( )

(n) =
r n( )( )T r n( )

r n( )( )TAr n( )

 (Obtain new )
n+1( ) = n( ) + n( )r n( )

As presented above, the algorithm necessitates performing two matrix-vector
multiplications per iteration. One of them can be eliminated by multiplying both
sides of Eq. (10.101) by −A and adding b to obtain
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/ nþ1ð Þ ¼ / nð Þ þ a nð Þr nð Þ ) b� A/ nþ1ð Þ

¼ b� A / nð Þ þ a nð Þr nð Þ
� �

) r nþ1ð Þ ¼ r nð Þ � a nð ÞAr nð Þ ð10:105Þ

The equation for r nð Þ in step 1 is needed only to calculate r 0ð Þ, while Eq. (10.105)
can be used afterwards. With this formulation there will be no need to compute
A/ nð Þ, as it was replaced by Ar nð Þ. However a shortcoming of this approach, is the
lack of feedback from the value of / nð Þ into the residual, which may cause the
solution to converge to a value different from the exact one due to accumulation of
roundoff errors. This deficiency can be resolved by periodically computing the
residual using the original equation.

10.3.13 The Conjugate Gradient Method

While the steepest descent method guarantees convergence, its rate of convergence
is low. This slow convergence is caused by oscillations around local minima
forcing the method to search in the same direction repeatedly. To avoid this
undesirable behavior every new search should be in a direction different from the
directions of previous searches [19]. This can be accomplished by selecting a set of
search directions d 0ð Þ; d 1ð Þ; d 2ð Þ; . . .; d N�1ð Þ that are A-orthogonal. Two vectors d nð Þ

and d mð Þ are said to be A-orthogonal if they satisfy the following condition:

d nð Þ
� �T

Ad mð Þ ¼ 0 ð10:106Þ

If in each search direction the right step size is taken, the solution will be found
after N steps. Step n + 1 is chosen such that

/ nþ1ð Þ ¼ / nð Þ þ a nð Þd nð Þ ð10:107Þ

Subtracting ϕ from both sides of the above equation, an equation for the error is
obtained as

e nþ1ð Þ ¼ e nð Þ þ a nð Þd nð Þ ð10:108Þ

Combining Eq. (10.100) with Eq. (10.108), an equation for the residual is found as

r nþ1ð Þ ¼ �Ae nþ1ð Þ

¼ �A e nð Þ þ a nð Þd nð Þ
� �

¼ r nð Þ � a nð ÞAd nð Þ

ð10:109Þ
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Equation (10.109) shows that each new residual r nþ1ð Þ is just a linear combination
of the previous residual and Ad nð Þ.

It is further required that e nþ1ð Þ be A-orthogonal to d nð Þ. This new condition is
equivalent to finding the minimum point along the search direction d nð Þ. Using this
A-orthogonality condition between e nþ1ð Þ and d nð Þ along with Eq. (10.108) an
expression for a nð Þ can be derived as

d nð Þ
� �T

Ae nþ1ð Þ ¼ 0) d nð Þ
� �T

A e nð Þ þ a nð Þd nð Þ
� �

¼ 0) a nð Þ ¼ d nð Þ	 
T
r nð Þ

d nð Þ	 
T
Ad nð Þ

ð10:110Þ

The above requirement also implies that

d nð Þ
� �T

Ae nþ1ð Þ ¼ 0) d nð Þ
� �T

r nþ1ð Þ ¼ 0 ð10:111Þ

If the search directions are known then a nð Þ can be calculated.
To derive the search direction, it is assumed to be governed by an equation of the

form

d nþ1ð Þ ¼ r nþ1ð Þ þ b nð Þd nð Þ ð10:112Þ

The A-orthogonality requirement of the d vectors implies that

d nþ1ð Þ
� �T

Ad nð Þ ¼ 0 ð10:113Þ

Substituting the value of d nþ1ð Þ from Eq. (10.112) in Eq. (10.113) yields

b nð Þ ¼ � r nþ1ð Þ	 
T
Ad nð Þ

d nð Þ	 
T
Ad nð Þ ð10:114Þ

From Eq. (10.109) an expression for Ad nð Þ is obtained as

Ad nð Þ ¼ � 1
a nð Þ r nþ1ð Þ � r nð Þ

� �
ð10:115Þ
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Combining Eqs. (10.110), (10.114), and (10.115) leads to

b nð Þ ¼ r nþ1ð Þ	 
T
r nþ1ð Þ � r nð Þ	 


d nð Þ	 
T
r nð Þ

¼

r nþ1ð Þ	 
T
r nþ1ð Þ � r nþ1ð Þ

� �T
r nð Þ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

¼0
d nð Þ	 
T

r nð Þ

¼ r nþ1ð Þ	 
T
r nþ1ð Þ

d nð Þ	 
T
r nð Þ

ð10:116Þ

The denominator of the above equation can be further expressed as

d nð Þ
� �T

r nð Þ ¼ r nð Þ þ b n�1ð Þd n�1ð Þ
� �T

r nð Þ

¼ r nð Þ
� �T

r nð Þ þ b n�1ð Þ d n�1ð Þ
� �T

r nð Þ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
¼0

¼ r nð Þ
� �T

r nð Þ

ð10:117Þ

Using Eqs. (10.116) and (10.117), the final expression for b nð Þ is obtained as

b nð Þ ¼ r nþ1ð Þ	 
T
r nþ1ð Þ

r nð Þð ÞTr nð Þ ð10:118Þ

The Conjugate Gradient algorithm becomes

 (choose residual as starting direction)

iterate starting at  until convergence

(Choose factor in  direction) 

(Obtain new )

(calculate new residual) 

 (Calculate coefficient to conjugate residual)

 (obtain new conjugated search direction)

d 0( ) = r 0( ) = b A 0( )

n( )
n( ) = d n( )Tr n( )

d n( )TAd n( ) d

n+1( ) = n( ) + n( )d n( )

r n+1( ) = r n( ) n( )Ad n( )

n( ) = r n+1( )Tr n+1( )

r n( )Tr n( )

d n+1( ) = r n+1( ) + n( )d n( )

The convergence rate of the CG method may be increased by preconditioning.
This can be done by multiplying the original system of equations by the inverse of
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the preconditioned matrix P�1, where P is a symmetric positive-definite matrix, to
yield Eq. (10.79). The problem is that P�1A is not necessarily symmetric even if P
and A are symmetric. To circumvent this problem the Cholesky decomposition is
used to write P in the form

P ¼ LLT ð10:119Þ

To guarantee symmetry, the system of equations is written as

L�1AL�TLT/ ¼ L�1b ð10:120Þ

where L�1AL�T is symmetric and positive-definite. The CG method can be used to
solve for LT/, from which ϕ is found. However, by variable substitutions, L can be
eliminated from the equations without disturbing symmetry or affecting the validity
of the method. Performing this step and adopting the terminology used with the CG
method, the various steps in the preconditioned CG method are obtained.

The preconditioned CG method can be summarized as follows:

 and (choose starting direction)

iterate starting at  until convergence

(Choose factor in  direction) 

(Obtain new )

(calculate new residual) 

(Calculate coefficient to conjugate residual)

 (obtain new conjugated search direction)

r 0( ) = b A 0( ) d 0( ) = P 1r 0( )

n( )

n( ) =
r n( )( )TP 1r n( )

d n( )( )TAd n( )
d

n+1( ) = n( ) + n( )d n( )

r n+1( ) = r n( ) n( )Ad n( )

n+1( ) =
r n+1( )( )TP 1r n+1( )

r n( )( )TP 1r n( )

d n+1( ) = P 1r n+1( ) + n+1( )d n( )

Many pre-conditioners have been developed with a wide spectrum of sophisti-
cation varying from a simple diagonal matrix whose elements are the diagonal
elements of the original matrix A (Jacobi pre-conditioner) to more involved ones
using incomplete Cholesky factorization. Nonetheless, the CG method should
always be used with a pre-conditioner when solving large systems of equations.

10.3.14 The Bi-conjugate Gradient Method (BiCG)
and Preconditioned BICG

The matrix of coefficients resulting from the discretization of the diffusion equation
presented in Chap. 8 and some other equations like the incompressible pressure or
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pressure correction equation that will be presented in Chap. 15 are symmetrical
leading to symmetrical systems that can be solved using the CG method discussed
above. However, the matrix A obtained from the discretization of the general
conservation equation arising in CFD applications is unsymmetrical yielding an
unsymmetrical system of equations. To be able to solve this system using the CG
method, it should be transformed into a symmetrical one [20]. One way to do that is
to rewrite Eq. (10.1) as

0 A
AT 0

� �
/
_

/

" #
¼ b

0

� �
ð10:121Þ

where /
_

is a dummy variable added in order to convert the original unsymmetrical
system into a symmetrical one amenable to a solution by the CG method. When
applied to this system, the CG method results in two sequences of CG-like vectors,
the ordinary sequence based on the original system with the coefficient matrix A,
from which ϕ is calculated, and the shadow sequence for the unneeded system with

the coefficient matrix AT, from which /
_

can be calculated if desired. Because of the
two series of vectors the name bi-conjugate gradient (BiCG) is coined to the
method. The same terminology used with the CG method is used here. The series of
ordinary vectors for the residuals and search directions are denoted by r and d,
respectively, and their shadow equivalent forms by r_ and d

_

. The bi-orthogonality of
the residuals is guaranteed by forming them such that

r_
mð Þ� �T

r nð Þ ¼ r_
nð Þ� �T

r mð Þ ¼ 0 m\n ð10:122Þ

and the bi-conjugacy of the search directions is fulfilled by requiring that

d
_ nð Þ� �T

Ad mð Þ ¼ d nð Þ
� �T

ATd
_ mð Þ
¼ 0 m\n ð10:123Þ

Moreover, the sequences of residuals and search directions are constructed such that
the ordinary form of one is orthogonal to the shadow form of the other.
Mathematically this is written as

r_
nð Þ� �T

d mð Þ ¼ r nð Þ
� �T

d
_ mð Þ

m\n ð10:124Þ

Several variants of the method, which has irregular convergence with the possibility
of breaking down, have been developed and the algorithm described next is due to
Lanczos [21, 22].
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The BiCG algorithm of Lanczos can be summarized as follows:

The BiCG method necessitates a multiplication with the coefficient matrix and
with its transpose at each iteration resulting in almost double the computational
effort required by the CG method per iteration.

Preconditioning may also be used with the BiCG method. For the same termi-
nology as for the preconditioned CG method, a robust variant of the method
developed by Fletcher [23] is summarized next.

The preconditioned algorithm for the BiCG of Fletcher is as follows
(P representing the preconditioning matrix):

(choose starting directions)

iterate starting at  until convergence

 (Choose factor in  direction)

 (Obtain new )

 (calculate new  residual)

 (calculate new  residual)

 (Calculate coefficient to conjugate residual)

 (obtain new search  direction)

 (obtain new search  direction)

d 0( ) = r 0( ) = d 0( ) = r 0( ) = b A 0( )

n( )

n( ) =
r n( )( )T r n( )

d n( )( )TAd n( )
d

n+1( ) = n( ) + n( )d n( )

r n+1( ) = r n( ) n( )Ad n( ) r
r n+1( ) = r n( ) n( )ATd n( ) r

n+1( ) =
r n+1( )( )T r n+1( )

r n( )( )T r n( )

d n+1( ) = r n+1( ) + n+1( )d n( ) d

d n+1( ) = r n+1( ) + n+1( )d n( ) d

, , (choose starting directions)

iterate starting at  until convergence

 (Choose factor in  direction)

 (Obtain new )

 (calculate new  residual)

 (calculate new  residual)

 (Calculate coefficient to conjugate residual)

 (obtain new search  direction)

 (obtain new search  direction)

r 0( ) = r 0( ) = b A 0( ) d 0( ) = P 1r 0( ) d 0( ) = P Tr 0( )

n( )

n( ) =
r n( )( )TP 1r n( )

d n( )( )TAd n( )
d

n+1( ) = n( ) + n( )d n( )

r n+1( ) = r n( ) n( )Ad n( ) r
r n+1( ) = r n( ) n( )ATd n( ) r

n+1( ) =
r n+1( )( )TP 1r n+1( )

r n( )( )TP 1r n( )

d n+1( ) = P 1r n+1( ) + n+1( )d n( ) d

d n+1( ) = P Tr n+1( ) + n+1( )d n( ) d
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Other variants of the BiCG method that are more stable and robust have been
reported such as the conjugate gradient squared (CGS) method of Sonneveld [24], the
bi-conjugate gradient stabilized (Bi-CGSTAB)method of Van Der Vorst [25] and the
generalized minimal residual method GMRES [13, 26–29]. These methods are useful
for solving large systems of equations arising in CFD applications as they are
applicable to non-symmetrical matrices and to both structured and unstructured grids.

10.4 The Multigrid Approach

The rate of convergence of iterative methods drastically deteriorates as the size of
the algebraic system increases, with the drop in convergence rate even observed in
medium to large systems after the initial errors have been eliminated. This has
constituted a severe limitation for iterative solvers. Luckily it was very quickly
found that the combination of multigrid and iterative methods can practically
remedy this weakness.

Developments in multigrid methods started with the work of Fedorenko [30]
(Geometric Multigrid), Poussin [31] (Algebraic Multigrid), and Settari and Azziz
[32], and gained more interest with the theoretical work of Brandt [33]. While
high-frequency or oscillatory errors are easily eliminated with standard iterative
solvers (Jacobi, Gauss-Seidel, ILU), these solution techniques cannot easily remove
the smooth or low frequency error components [34]. Because of that these solution

1
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Fig. 10.4 Schematic of different error modes in a one dimensional grid
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methods are denoted by smoothers in the context of multigrid methods. An illus-
tration of error frequency is shown in Fig. 10.4 where the variations of error
frequency modes for a one dimensional problem are plotted.

The error modes shown in Fig. 10.4 vary from high frequency of short wave-
length k1 to low frequency of long wavelength k5 and are plotted collectively on the
top of the figure. The one dimensional domain is discretized using the one
dimensional grid shown and the various modes are separately plotted over the same
grid. As can be seen, the high frequency error appears oscillatory over an element
and is easily sensed by the iterative method. As the frequency of the error decreases
or as the wavelength ðkÞ increases, the error becomes increasingly smoother over
the grid as only a small portion of the wavelength lies within any cell. This gets
worse as the grid is further refined, leading to a higher number of equations and
explaining the degradation in the rate of convergence as the size of the system
increases.

Multigrid methods improve the efficiency of iterative solvers by ensuring that the
resulting low frequency errors that arise from the application of a smoother at any
one grid level are transformed into higher frequency errors at a coarser grid level.
By using a hierarchy of coarse grids (Fig. 10.5), multigrid methods are able to
overcome the convergence degradation.

Generally the coarse mesh can be formed using either the topology and geometry
of the finer mesh, this is akin to generating a new mesh for each coarse level on top
of the finer level mesh or by direct agglomeration of the finer mesh elements
[35–40]; this approach is also known as the Algebraic MultiGrid Method (AMG).
In the AMG no geometric information is directly needed or used, and the
agglomeration process is purely algebraic, with the equations at each coarse level
reconstructed from those of the finer level, again through the agglomeration pro-
cess. This approach can be used to build highly efficient and robust linear solvers

Fig. 10.5 A schematic of the
hierarchy of grid systems used
with the multi grid approach
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for both highly anisotropic grids and/or problems with large changes in the
coefficients of their equations.

In either approach, a multigrid cycling procedure is used to guide the traversal of
the various grid hierarchies. Each traversal from a fine grid to a coarse one involves:
(i) a restriction procedure, (ii) the setup or update of the system of equations for the
coarse grid level, and (iii) the application of a number of smoother iterations.
A traversal from a coarse grid to a finer one requires: (i) a prolongation procedure,
(ii) the correction of the field values at the finer level, and (iii) the application of a
number of smoother iterations on the equations constructed during restriction. The
various steps needed are detailed next.

10.4.1 Element Agglomeration/Coarsening

The first step in the solution process is to generate the coarse/fine grid levels by an
agglomeration/coarsening algorithm. Three different approaches can be adopted for
that purpose. In the first approach, the coarse mesh is initially generated and the fine
levels are obtained by refinement [41, 42]. This facilitates the definitions of the
coarse-fine grid relations and is attractive in an adaptive grid setup [41–43].
A major drawback however, is the dependence of the fine grid distribution on the
coarse grid. In the second method, non-nested grids are used [44] rendering the
transfer of information between grid levels very expensive. In addition, both
approaches do not allow good resolution of complex domains. In the third
approach, recommended here, the process starts with the generation of the finest
mesh that will be used in solving the problem. Then coarse grid levels are devel-
oped through agglomeration of the fine-grid elements [45, 46], as shown in
Fig. 10.6, with the agglomeration process based either on the elements geometry or
on a criterion to be satisfied by the coefficients of neighboring elements. The
discussions to follow are pertinent to the third approach.

Coarse grid levels are generated by fusing fine grid elements through an
agglomeration algorithm. For each coarse grid level, the algorithm is repeatedly
applied until all grid cells of the finer level become associated with coarse grid cells.

I

i1
i2 i3

i4
i5 i6

Agglomeration

Fig. 10.6 Agglomeration of a fine grid level to form a coarse grid level
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During this heuristic agglomeration process, fine grid points are individually vis-
ited. A cell is selected as the seed element into which a certain number of neigh-
boring elements satisfying the set criteria are fused to form a coarse element. The
maximum number of fine elements to be fused into a coarse element is decided a
priori. If the chosen seed element fails to form a coarse element, it is added to the
least populated coarse element among its neighbors.

An efficient agglomeration algorithm is the directional agglomeration (DA)
algorithm developed by Mavriplis [47]. In the DA, agglomeration is performed by
starting with a seed element and merging with it the neighboring fine grid elements
based on the strength of their geometric connectivity. The procedure needs to be
performed only once at the start of the solution.

10.4.2 The Restriction Step and Coarse Level Coefficients

The solution starts at the fine grid level. After performing few iterations, the error is
transferred or restricted to a coarser grid level and the solution is found at that level.
Then after performing few iterations at that level the error is restricted again to a
higher level and the sequence of events repeated until the highest or coarsest grid
level is reached. Let kð Þ denotes some level at which the solution has been found by
solving the following system of equations in correction form:

A kð Þe kð Þ ¼ r kð Þ ð10:125Þ

The next coarser level is k þ 1ð Þ to which the error will be restricted. Let GI

represents the set of cells i on the fine grid level kð Þ that are agglomerated to form
cell I of the coarse grid level k þ 1ð Þ. Then, the system to be solved on the coarse
grid at level k þ 1ð Þ is

A kþ1ð Þe kþ1ð Þ ¼ r kþ1ð Þ ð10:126Þ

with the residuals on the RHS of Eq. (10.126) computed as

r kþ1ð Þ ¼ Ikþ1k r kð Þ ð10:127Þ

where Ikþ1k is the restriction operator (i.e., the interpolation matrix) from the fine
grid to the coarse grid as defined by the agglomeration process. In AMG the
restriction operator is defined in a linear manner to yield a summation of the fine
grid residuals as

r kþ1ð Þ
I ¼

X
i2GI

r kð Þ
i ð10:128Þ
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Moreover, the coefficients of the coarse element are constructed by adding the
appropriate coefficients of the constituting fine elements. Recalling that a linear
equation after discretization has the form

aC/C þ
X

F¼NB Cð Þ
aF/F ¼ bC ð10:129Þ

which, for the current purpose, is written for the fine grid level in a more suitable
form as

a kð Þ
i / kð Þ

i þ
X

j¼NB ið Þ
a kð Þ
ij / kð Þ

j ¼ b kð Þ
i ð10:130Þ

where NB ið Þ refers to the neighbors of element i. Initially Eq. (10.130) is not
satisfied resulting in the following residual:

r kð Þ
i ¼ b kð Þ

i � a kð Þ
i / kð Þ

i þ
X

j¼NB ið Þ
a kð Þ
ij / kð Þ

j

0
@

1
A ð10:131Þ

Denoting by / kþ1ð Þ
I the solution on the coarse mesh element I that is parent to the

fine mesh element i, the correction on the fine mesh from the coarse mesh can be
written as

/0 kð Þi ¼ / kþ1ð Þ
I � / kð Þ

i ð10:132Þ

It is desired for the correction to result in zero residuals over the coarse mesh

element I. These new residuals denoted by ~r kð Þ
i are calculated as

~r kð Þ
i ¼ b kð Þ

i � a kð Þ
i / kð Þ

i þ /0 kð Þi

� �
þ
X

j¼NB ið Þ
a kð Þ
ij / kð Þ

j þ /0 kð Þj

� �0
@

1
A ð10:133Þ

or equivalently as

~r kð Þ
i ¼ b kð Þ

i � a kð Þ
i / kð Þ

i þ
X

j¼NB ið Þ
a kð Þ
ij / kð Þ

j

0
@

1
A

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
r kð Þ
i

� a kð Þ
i /0 kð Þi þ

X
j¼NB ið Þ

a kð Þ
ij /0 kð Þj

0
@

1
A

¼ r kð Þ
i � a kð Þ

i /0 kð Þi þ
X

j¼NB ið Þ
a kð Þ
ij /0 kð Þj

0
@

1
A ð10:134Þ
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Enforcing the residual sum in I to zero, i.e.,X
i2GI

~r kð Þ
i ¼ 0 ð10:135Þ

and substituting Eq. (10.134) in Eq. (10.135) yields

0 ¼
X
i2GI

r kð Þ
i �

X
i2GI

a kð Þ
i /0 kð Þi þ

X
i2GI

X
j¼NB ið Þ

a kð Þ
ij /0 kð Þj

0
@

1
A ð10:136Þ

Rewriting Eq. (10.136) using coarse mesh numbering, the coarse mesh correction
equation becomes

a kþ1ð Þ
I /0 kþ1ð Þ

I þ
X

J¼NB Ið Þ
a kþ1ð Þ
IJ /0 kþ1ð Þ

J ¼ r kþ1ð Þ
I ð10:137Þ

where a kþ1ð Þ
I ; a kþ1ð Þ

IJ ; and r kþ1ð Þ
I are derived directly from fine grid coefficients as

a kþ1ð Þ
I ¼

X
i2GI

a kð Þ
i þ

X
i2GI

X
j2GI

a kð Þ
ij

a kþ1ð Þ
IJ ¼

X
i2GI

X
j62GI

j2NB Ið Þ

a kð Þ
ij

r kþ1ð Þ
I ¼

X
i2GI

r kð Þ
i

ð10:138Þ

This is illustrated in Fig. 10.7.

Restriction

smooth

smooth

A k+1( )e k+1( ) = r k+1( )

A k( )e k( ) = r k( )

aI
k+1( ) = ai

k( )

i GI

+ aij
k( )

j GIi GI

aIJ
k+1( ) = aij

k( )

j GI
j NB I( )

i GI

rI
k+1( ) = ri

k( )

i GI

Fig. 10.7 The restriction step and assembly of coarse grid level coefficients
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10.4.3 The Prolongation Step and Fine Grid Level
Corrections

The prolongation operator is used to transfer the correction from a coarse to a fine
grid level. Many options may be used. One possibility, depicted in Fig. 10.8, is a
zero order prolongation operator that yields the same value of the error on the fine
grid, i.e., the error at a coarse grid cell will be inherited by all the children of this
cell on the fine grid level.

The correction is basically obtained from the solution of the system of equations
at the coarse grid. The interpolation or prolongation to the fine grid level is
denote as

e kð Þ ¼ Ikkþ1e
kþ1ð Þ ð10:139Þ

where Ikkþ1 is an interpolation matrix from the coarse grid to the fine grid. Finally,
the fine grid solution is corrected as

/ kð Þ  / kð Þ þ e kð Þ ð10:140Þ

The number of grid levels used depends on the size of the grid. For a larger number
of grid levels, the procedure is the same as sketched in Fig. 10.8.

10.4.4 Traversal Strategies and Algebraic Multigrid Cycles

Traversal strategies refer to the way by which coarse grids are visited during the
solution process, which are also known as multigrid cycles [48]. The usual cycles
used in the AMGmethod are the V cycle, theW cycle, and the F cycle [35, 36, 49, 50]
displayed in Fig. 10.9.

Prolongation

e(k ) = Ik+1
k e(k+1)

correct

k( ) k( ) + e k( )

Fig. 10.8 The prolongation
step and fine grid level
corrections
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The simplest AMG cycle, illustrated in Fig. 10.9a, is the V cycle [49, 50] and
consists of visiting each of the grid levels only once. The usual practice is to
perform few iterative sweeps in the restriction phase and then to inject the residual
to a coarser grid until reaching the coarsest level. For very stiff systems, the V cycle
may not be sufficient for accelerating the solution and therefore, more iterations on
the coarse level are required. The W cycle is based on applying smaller V cycles on
each visited coarse grid level. In this manner, the W cycle (Fig. 10.9b) consists of
nested coarse and fine grid level sweeps with the complexity increasing as the
number of AMG levels increases. The F cycle is a variant of the W cycle and can be
thought of as splitting the W cycle in half as shown in Fig. 10.9c. The F cycle
requires less coarse level sweeps than the W cycle but more sweeps than the V
cycle. Therefore, it lies in between the V and W cycling strategies.

10.5 Computational Pointers

10.5.1 uFVM

In uFVM, two linear algebraic solvers are implemented. The successive over-
relaxation method (SOR) and the ILU(0) method. The implementation of these

ProlongationRestriction

L=0

L=1

L=2

L=3

L=4

L=0

L=1

L=2

L=3

L=4

L=0

L=1

L=2

L=3

L=4

(a)

(c)

(b)

Fig. 10.9 a V, b W, and c F multigrid cycles
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methods follows the procedures described earlier. The SOR is located in the file
“cfdSORSolver.m” while the ILU(0) implementation can be found in
“cfdILUSolver.m”.

10.5.2 OpenFOAM®

The organizational structure of iterative linear algebraic solvers in OpenFOAM®

[51] follows the usual approach. It starts by defining the base classes from which
each type of algebraic matrix solvers is established. These algebraic solvers are
grouped under three main categories denoted by solvers, preconditioners, and
smoothers. Smoothers and preconditioners are differentiated by relating to smoo-
thers the fixed point relation and embedding them within the preconditioners
framework. Recalling Eq. (10.81), the preconditioners classes implement the
product P�1r while the smoothers classes advance the solution. Moreover, the
solvers category collects the necessary information related to the implementation of
the conjugate gradient and multigrid algorithms.

The source codes of the linear algebraic solvers reside within the lduMatrix
folder located at “…/src/OpenFOAM/matrices/lduMatrix/” in the following three
subfolders:

• solvers
• preconditioners
• smoothers

The name of each subfolder reflects its functionality. The folder solvers contains
the main codes of the iterative solvers implemented in OpenFOAM®, which are

• diagonalSolver: a diagonal solver for both symmetric and asymmetric problems.
• GAMG: a geometric agglomerated algebraic multigrid solver (also named

Generalized geometric- algebraic multi-grid in the manual).
• ICC: an incomplete Cholesky preconditioned conjugate gradient solver.
• PBiCG: a preconditioned bi-conjugate gradient solver for asymmetric matrices.
• PCG: a preconditioned conjugate gradient solver for symmetric matrices.
• smoothSolver: an iterative solver using smoother for symmetric and asym-

metric matrices based on preconditioners.

The folder preconditioners contains various implementations of the diagonal
ILU denoted by

• diagonalPreconditioner: a diagonal preconditioner.
• DICPreconditioner, DILUPreconditioner: a diagonal Incomplete Cholesky

preconditioner for symmetric and asymmetric matrices respectively.
• FDICPreconditioner: a faster version of the DICPreconditioners diagonal-

based incomplete Cholesky preconditioner for symmetric matrices in which the
reciprocal of the preconditioned diagonal and the upper coefficients divided by
the diagonal are calculated and stored.
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• GAMGPreconditioner: a geometric agglomerated algebraic multigrid precon-
ditioner. It uses a mutigrid cycle as preconditioner to execute the second part of
Eq. (10.81).

• noPreconditioner: a null preconditioner for both symmetric and asymmetric
matrices.

Finally the smoothers folder contains the following:

• DIC, DILU: a diagonal-based incomplete Cholesky smoother for symmetric
and asymmetric matrices.

• DICGaussSeidel, DILUGaussSeidel: a combined DIC, DILU/Gauss-Seidel
smoother for symmetric and asymmetric matrices in which DIC, DILU
smoothing is followed by Gauss-Seidel to ensure that any “spikes” created by
the DIC, DILU sweeps are smoothed out.

• DILU: a diagonal-based incomplete LU smoother for asymmetric matrices.
• GaussSeidel: The Gauss-Seidel method for both symmetric and asymmetric

matrices.

Furthermore OpenFOAM® defines inside the lduMatrix class three additional
base classes that wrap the three corresponding categories. Thus the lduMatrix.H file
reads (Listing 10.1)

class lduMatrix
{
   // private data

       //- LDU mesh reference
       const lduMesh& lduMesh_;

       //- Coefficients (not including interfaces)
       scalarField *lowerPtr_, *diagPtr_, *upperPtr_;

public:

   //- Abstract base-class for lduMatrix solvers
   class solver
   {
   protected:

   class smoother
   {
   protected:

   class preconditioner
   {
   protected:

Listing 10.1 The three base classes (solver, smoother, and preconditioner) defined with the
lduMatrix class
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So each smoother, solver, and preconditioner has to be derived from these three
base classes. For example, the DILU preconditioner is declared as shown in Listing
10.2,

while the Conjugate Gradient solver is declared as shown in Listing 10.3.

In either case the preconditioner or the solver is evidently derived from the base
class defined under the lduMatrix class.

Having clarified the basic concepts and organizational structure of algebraic
solvers in OpenFOAM®, an example investigating the details of implementing the
preconditioned CG method is now provided. The files are located in the directory
“$FOAM_SRC/OpenFOAM/matrices/lduMatrix/solvers/PCG”.

The class derived from the lduMatrix::solver class, as shown in Listing 10.3,
defines the main member function “solve” using the script in Listing 10.4.

class DILUPreconditioner
:
   public lduMatrix::preconditioner
{

Listing 10.2 Syntax used to declare the DILU preconditioner

class PCG
:
   public lduMatrix::solver

Listing 10.3 Syntax used to declare the PCG solver

   // Member Functions

       //- Solve the matrix with this solver
       virtual solverPerformance solve
       (
           scalarField& psi,
           const scalarField& source,
           const direction cmpt=0
       ) const;

Listing 10.4 Script used to define the member function “solve”
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The function “solve” implements the solution algorithm of the chosen linear
algebraic solver in file “PCG.C”. Recalling the preconditioned conjugate gradient
algorithm, its sequence of events are given by

1. Calculate r 0ð Þ ¼ b� A/ 0ð Þ

2. Calculate d 0ð Þ ¼ P�1r 0ð Þ

3. Calculate a nð Þ ¼ r nð Þ	 
T
P�1r nð Þ

d nð Þ	 
T
Ad nð Þ

4. Calculate / nþ1ð Þ ¼ / nð Þ þ a nð Þd nð Þ

5. Calculate r nþ1ð Þ ¼ r nð Þ � a nð ÞAd nð Þ

6. If solution has converged stop

7. Calculate b nþ1ð Þ ¼ r nþ1ð Þ	 
T
P�1r nþ1ð Þ

r nð Þð ÞTP�1r nð Þ

8. Calculate d nþ1ð Þ ¼ P�1r nþ1ð Þ þ b nþ1ð Þd nð Þ

9. Go to step 3

The algorithm is directly implemented in “PCG.C” following the same proce-
dure as described next.

In step 1, depicted in Listing 10.5, the residual is evaluated and stored in the rA
variable while the wA variable stores the matrix-solution product A/ 0ð Þ.

Step 2 involves preconditioning. Thus, first the type of preconditioner used is
defined with the object preconPtr as (Listing 10.6).

The constructor used is a generic one based on the base class and the “New”
constructor. The preconditioner type is chosen from the dictionary at run time. Then
the preconditioning operation, P�1r nð Þ, is applied to the residual rA (according to
the equation in step 2 of the algorithm). The result is stored in the same variable wA

   // --- Calculate A.psi
   matrix_.Amul(wA, psi, interfaceBouCoeffs_, interfaces_, cmpt);
   // --- Calculate initial residual field
   scalarField rA(source - wA);

Listing 10.5 Script used to calculate the residuals

       // --- Select and construct the preconditioner
       autoPtr<lduMatrix::preconditioner> preconPtr =
       lduMatrix::preconditioner::New
       (
           *this,
           controlDict_
       );

Listing 10.6 Defining the type of preconditioner used
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to reduce memory usage and then used in the evaluation of r nð Þ	 
T
P�1r nð Þ by

simply performing the scalar product of the two vectors wA and rA using the
gSumProd function, as shown in Listing 10.7. Moreover the old value of wArA
from the previous iteration n� 1ð Þ is stored in the variable wArAold.

Following the preconditioned conjugate gradient algorithm, steps 3, 4, and 5 are
performed as displayed in Listing 10.8.

Now the variable wA stores the product Ad nð Þ while pA represents the d nð Þ

vector. Again the product d nð Þ	 
T
Ad nð Þ is performed with the gSumProd function

and stored in the wApA variable. Once alpha is evaluated, the update of residuals
and solution of steps 4 and 5 is performed in the for loop with the variables psiPtr
and rAPtr shown in Listing 10.8 representing / and r, respectively.

           wArAold = wArA;

// --- Precondition residual
           preconPtr->precondition(wA, rA, cmpt);

// --- Update search directions:
           wArA = gSumProd(wA, rA, matrix().mesh().comm());

Listing 10.7 Syntax used to calculate r nð Þ	 
T
P�1r nð Þ and to store its old value

           // --- Update preconditioned residual
 matrix_.Amul(wA, pA, interfaceBouCoeffs_, interfaces_, 

cmpt);

           // --- Update solution and residual:

           scalar alpha = wArA/wApA;

           for (register label cell=0; cell<nCells; cell++)
           {
               psiPtr[cell] += alpha*pAPtr[cell];
               rAPtr[cell] -= alpha*wAPtr[cell];
           }

           scalar wApA = gSumProd(wA, pA, matrix().mesh().comm());

Listing 10.8 Script used to calculate a and to update the values of the dependent variable and the
residuals
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The iteration in the algorithm is completed by executing steps 7 and 8 using the
script in Listing 10.9.

For practical use in test cases, the definitions of the linear solver are made inside
the system directory in the fvSolution under the syntax solvers {} as shown in
Listing 10.10.

The meaning of the various entries in Listing 10.10 are

• solver: defines the type of solver (in this case PCG is the preconditioned con-
jugate gradient for symmetric matrices), with the various options being as
follows:

– “PCG”: preconditioned conjugate gradient (for symmetric matrices only).
– “PBiCG”: preconditioned biconjugate gradient (for asymmetric matrices

only).
– “smoothSolver”: solver used only as a smoother to reduce residuals.
– “GAMG”: generalised geometric algebraic multigrid. It should be used for

the pressure equation on large grids.

scalar beta = wArA/wArAold;

for (register label cell=0; cell<nCells; cell++)
{
   pAPtr[cell] = wAPtr[cell] + beta*pAPtr[cell];
}

Listing 10.9 Script used for calculating new values for b and d to be used in the next iteration

solvers
{
   T
   {
       solver          PCG;
       preconditioner  DIC;
       tolerance       1e-06;
       relTol          0;
   }
}

Listing 10.10 Definition of the linear solver
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• preconditioner: defines the type of the preconditioner to be used. The two
available options are

– “DIC”: diagonal incomplete-cholesky preconditioner for symmetric
matrices.

– “DILU”: diagonal incomplete-lower-upper preconditioner for asymmetric
matrices.

• tolerance: the maximum allowable value of the absolute residual for the linear
solver to stop iterating.

• relTol: the ratio between the initial residual and the actual residual for the linear
solver to stop iterating.

Other examples are shown in Listing 10.11.

solvers
{
   T
   {
       solver          PBiCG;
       preconditioner  DILU;
       tolerance       1e-06;
       relTol          0;
   }
}
solvers
{
   T
   {
       solver           smoothSolver;
       smoother         GaussSeidel;
       tolerance        1e-8;
       relTol           0.1;
       nSweeps          1;
   }
   T
   {

       solver           GAMG;
       tolerance        1e-7;
       relTol           0.01;
       smoother         GaussSeidel;
       nPreSweeps       0;
       nPostSweeps      2;
       cacheAgglomeration on;
       agglomerator     faceAreaPair;
       nCellsInCoarsestLevel 10;
       mergeLevels      1;
   }
}

Listing 10.11 Examples of defining the linear solver
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10.6 Closure

The chapter introduced the direct and iterative approaches for solving algebraic
systems of equations. In each category a number of methods were described. The
algebraic multigrid technique was also discussed. The next chapter will proceed
with the discretization of the conservation equation and will detail the discretization
of the convection term.

10.7 Exercises

Exercise 1
In each of the following cases obtain the LU factorization of matrix A and use it to
solve the system of equation Ax = b by performing the backward and forward
substitution, i.e., Ly = b, Ux = y:

ðaÞ A ¼

13:0 5:0 6:0 7:0 5:0
2:0 12:0 6:0 3:0 4:0
4:0 2:0 15:0 4:0 5:0
3:0 3:0 5:0 9:0 5:0
4:0 6:0 0 5:0 13:0

0
BBBB@

1
CCCCA b ¼

3:0
12:0
13:0
21:0
13:0

0
BBBB@

1
CCCCA

ðbÞ A ¼

14:0 1:0 6:0 7:0 3:0
7:0 10:0 1:0 1:0 1:0
2:0 1:0 10:0 7:0 6:0
4:0 7:0 6:0 11:0 1:0
3:0 3:0 3:0 3:0 14:0

0
BBBB@

1
CCCCA b ¼

13:0
13:0
16:0
13:0
1:0

0
BBBB@

1
CCCCA

ðcÞ A ¼

12:0 6:0 1:0 5:0 4:0
4:0 11:0 1:0 0 0
3:0 6:0 14:0 1:0 6:0
6:0 2:0 7:0 10:0 7:0
4:0 1:0 1:0 6:0 12:0

0
BBBB@

1
CCCCA b ¼

13:0
19:0
7:0
22:0
30:0

0
BBBB@

1
CCCCA

Exercise 2
Using the Gauss-Seidel and Jacobi methods and starting with a zero initial guess
solve the following systems of equations while adopting as a stopping criteria
max Ax� bk kð Þ\0:1:
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ðaÞ A ¼

6 1 0 3 3
0 6 0 4 3
0 5 6 1 0
5 5 0 6 0
2 0 2 4 10

0
BBBB@

1
CCCCA b ¼

22
21
20
10
22

0
BBBB@

1
CCCCA

ðbÞ A ¼

36 4 5 4 0 2
0 40 4 0 0 3
0 0 37 0 2 4
3 2 0 36 1 5
3 3 1 0 36 0
5 0 2 0 2 40

0
BBBBBB@

1
CCCCCCA b ¼

24
14
19
29
20
8

0
BBBBBB@

1
CCCCCCA

ðcÞ A ¼
27 0 0 1
0 27 1 0
0 0 26 1
1 2 5 26

0
BB@

1
CCA b ¼

21
3
10
29

0
BB@

1
CCA

Exercise 3
For the systems of equations in Exercise 2 find the preconditioned matrix P for both
the Gauss-Seidel and Jacobi methods. Use Eq. (10.81) with a zero initial guess to
resolve the systems of equations subject to the same stopping criteria. Compare
solutions with those obtained in Exercise 2.

Exercise 4
Perform the ILU(0) factorization of the following M matrices:

ðaÞ M ¼

6 0 0 1 0 0 0
0 6 0 0 3 1 3
0 0 6 0 2 1 0
0 0 0 6 0 0 0
3 0 0 0 8 0 0
0 0 3 1 1 6 0
0 0 5 0 3 0 6

0
BBBBBBBB@

1
CCCCCCCCA

ðbÞ M ¼

6 0 0 0 0 3 4 0
3 7 0 0 0 5 0 0
0 0 6 0 5 0 0 0
0 0 0 6 0 0 0 0
0 0 3 0 6 0 0 0
0 0 0 0 0 9 0 0
4 1 0 0 1 0 6 0
0 0 0 0 0 3 0 6

0
BBBBBBBBBB@

1
CCCCCCCCCCA

10.7 Exercises 359



ðcÞ M ¼

6 0 0 2 0
0 10 0 1 4
0 1 6 0 4
3 0 5 6 5
0 4 0 5 10

0
BBBB@

1
CCCCA

Exercise 5
Based on the factorizations in Exercise 4 and knowing that the lower and upper
parts of the factorization correspond to L and U, respectively, find for each of the
cases the error matrix defined as R = M − P.

Exercise 6
Perform the DILU factorization of the following M matrices:

ðaÞ M ¼

9 4 0 0 2 5 0
3 7 0 0 1 2 1
0 5 10 0 5 5 4
0 1 1 6 3 0 0
4 0 0 1 6 1 1
0 5 2 0 0 6 3
4 0 0 0 0 2 8

0
BBBBBBBB@

1
CCCCCCCCA

ðbÞ M ¼

6 2 2 3 4 3 4 0
1 6 0 0 1 4 3 0
1 0 10 0 0 3 4 0
2 1 4 8 0 0 1 0
0 0 1 4 8 2 0 0
1 0 3 0 1 8 0 1
2 2 1 1 1 0 6 0
4 0 4 0 0 4 1 6

0
BBBBBBBBBB@

1
CCCCCCCCCCA

ðcÞ M ¼

6 2 3 0 5 0
1 6 0 3 0 1
3 3 8 3 4 0
4 4 1 7 1 0
3 4 0 0 8 0
3 0 4 0 0 6

0
BBBBBB@

1
CCCCCCA

Exercise 7
Based on the diagonal factorizations in exercise 6 and using Eq. (10.91), find for
each of the cases the error matrix defined as R = M − P.

Exercise 8
Solve the following systems of equations using the ILU(0) and DILU methods.
Perform three iterations only starting with a zero initial guess.
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ðaÞ A ¼

1 3 0 0 0 0
5 5 0 0 0 2
3 2 7 0 1 2
4 1 2 7 0 1
4 2 0 0 4 0
3 3 2 0 2 10

0
BBBBBB@

1
CCCCCCA; b ¼

26
28
18
26
11
26

0
BBBBBB@

1
CCCCCCA

ðbÞ A ¼

12 3 1 4 4 1
4 7 1 0 3 0
4 5 7 0 0 0
3 2 0 6 2 0
3 0 2 1 7 1
0 0 0 0 0 �1

0
BBBBBB@

1
CCCCCCA; b ¼

25
24
4
4
2
25

0
BBBBBB@

1
CCCCCCA

Exercise 9
Solve the systems of equations in Exercise 8 using the Gauss-Seidel and Jacobi
methods (starting with a zero initial guess) and compare the errors after three
iterations with the errors obtained in exercise 8 and with the exact solution.
Comment on the results.

Exercise 10
Solve the following symmetric systems of equations by performing two iterations
of the preconditioned conjugate gradient method (start with a zero field):

ðaÞ A ¼

6 0 �1 0 �1
0 6 1 1 �1
�1 1 6 0 0
0 1 0 4 �1
�1 �1 0 �1 6

0
BBBB@

1
CCCCA; b ¼

7
9
27
23
1

0
BBBB@

1
CCCCA

ðbÞ A ¼

4 1 0 �1 0
1 5 2 �1 3
0 2 5 0 0
�1 �1 0 6 0
0 3 0 0 5

0
BBBB@

1
CCCCA; b ¼

8
2
12
11
30

0
BBBB@

1
CCCCA

ðcÞ A ¼

3 1 �1 2 �1 0
1 7 1 1 2 �2
�1 1 7 0 0 0
2 1 0 6 0 2
�1 2 0 0 6 �1
0 �2 0 2 �1 7

0
BBBBBB@

1
CCCCCCA; b ¼

29
9
3
13
28
27

0
BBBBBB@

1
CCCCCCA

10.7 Exercises 361



Exercise 11
List all the available linear solvers inside OpenFOAM®.
After choosing the smoothSolver in OpenFOAM®, list all implemented smoothers.

Exercise 12
Find in OpenFOAM® the implementation of the BiCG linear solver (PBiCG) and
compare it with the BiCG algorithm of Lanczos.

Exercise 13
Find in OpenFOAM® the implementation of the multigrid V-cycle ($FOAM_SRC/
OpenFOAM/matrices/lduMatrix/solvers/GAMG/GAMGSolverSolve.C) and com-
pare it with the theoretical V-cycle algorithm.

Exercise 14
Verify the correct implementation in OpenFOAM® of the diagonal version of the
ILU(0) developed by Pommerell.
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