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Preface

Organic optoelectronic materials, including organic semiconductors, organic con-
ductors, organic superconductors, conducting polymers, and conjugated polymers,
have attracted great attentions since the discoveries of organic semiconductors in
the 1950s and conducting polymers in the 1970s. Their novel physicochemical
properties and promising applications in organic field-effect transistors (OFET),
organic/polymer light-emitting diodes (OLED/PLED), and organic/polymer solar
cells [OSC/PSC or OPV (organic photovoltaics)] stimulated and promoted broad
research interests and development of new materials and new devices based on
them.

As a book in the series Lecture Notes in Chemistry, this book is designed for
graduate students and researchers who look for up-to-date knowledge on organic
optoelectronic materials and their applications in OFETs, OLEDs/PLEDs, OPVs,
and transparent conducting electrodes. This book can also be used as a reference
book or text book for related researchers and graduate students. The molecular
structures, synthetic methods, and physicochemical and optoelectronic properties of
organic optoelectronic materials are introduced and described in detail. The struc-
tures and working mechanisms of organic optoelectronic devices are elucidated.
The key scientific problems and future research directions of organic optoelectronic
materials are also addressed. In more detail, Chaps. 1 and 2 cover the development
history and physicochemical properties of organic semiconductors, organic con-
ductors, organic superconductors, and conducting polymers. Chapter 3 introduces
OFETs and the molecular structures and charge-carrier mobilities (hole and electron
mobilities) of various p-type and n-type organic semiconductors. Chapters 4 and 5
describe photovoltaic materials and devices for OPVs based on organic small
molecules and conjugated polymers, respectively. Chapters 6 and 7 elucidate
electroluminescent materials and devices for OLEDs based on organic small mol-
ecules and PLEDs based on conjugated polymers, respectively. Chapter 8 outlines
the knowledge of transparent conducting polymers for application in flexible
transparent electrodes.
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The research field of organic optoelectronic materials and devices has been
developing quickly in recent years. The contents of this book may be limited by the
knowledge and the understanding of the authors, and there may be some errors or
mistakes. Any comments and suggestions or questions about the contents of this
book are welcomed by me or by the contributing authors.

Beijing Yongfang Li
January 2015

vi Preface



Contents

1 Organic Semiconductors, Conductors, and Superconductors . . . . . 1
Yue Yue and Bin Zhang
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Crystal Engineering of Charge-Transfer Complexes . . . . . . . . 2

1.2.1 Charge Transfer Salts of AB Type . . . . . . . . . . . . . 4
1.2.2 Charge Transfer Salts of A2B Type . . . . . . . . . . . . . 4
1.2.3 Charge Ordering in Organic ET Compounds . . . . . . 6

1.3 Magnetism in Charge Transfer Salt . . . . . . . . . . . . . . . . . . . 11
1.4 Dual-Functional, Multifunctional Molecular Crystals . . . . . . . 11
1.5 Relationship Between Organic Superconductors

and Inorganic Superconductors: Resonating
Valence-Bonding Solids and Jahn–Teller Distortion. . . . . . . . 14

1.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Conducting Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Yongfang Li
2.1 Molecular Structure of Conducting Polymers . . . . . . . . . . . . 24

2.1.1 Electronic Structure of Intrinsic
Conjugated Polymers. . . . . . . . . . . . . . . . . . . . . . . 25

2.1.2 Doping Structures of Conducting Polymers . . . . . . . 27
2.1.3 Charge Carriers in Conducting Polymers . . . . . . . . . 28

2.2 Doping Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2.1 Chemical Doping . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2.2 Electrochemical Doping . . . . . . . . . . . . . . . . . . . . . 30

2.3 Conductivity Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4 Absorption Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.5 Solubility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.5.1 Effect of Substituents on Solubility
of Conjugated Polymers. . . . . . . . . . . . . . . . . . . . . 34

vii

http://dx.doi.org/10.1007/978-3-319-16862-3_1
http://dx.doi.org/10.1007/978-3-319-16862-3_1
http://dx.doi.org/10.1007/978-3-319-16862-3_1#Sec1
http://dx.doi.org/10.1007/978-3-319-16862-3_1#Sec1
http://dx.doi.org/10.1007/978-3-319-16862-3_1#Sec2
http://dx.doi.org/10.1007/978-3-319-16862-3_1#Sec2
http://dx.doi.org/10.1007/978-3-319-16862-3_1#Sec3
http://dx.doi.org/10.1007/978-3-319-16862-3_1#Sec3
http://dx.doi.org/10.1007/978-3-319-16862-3_1#Sec4
http://dx.doi.org/10.1007/978-3-319-16862-3_1#Sec4
http://dx.doi.org/10.1007/978-3-319-16862-3_1#Sec4
http://dx.doi.org/10.1007/978-3-319-16862-3_1#Sec5
http://dx.doi.org/10.1007/978-3-319-16862-3_1#Sec5
http://dx.doi.org/10.1007/978-3-319-16862-3_1#Sec6
http://dx.doi.org/10.1007/978-3-319-16862-3_1#Sec6
http://dx.doi.org/10.1007/978-3-319-16862-3_1#Sec7
http://dx.doi.org/10.1007/978-3-319-16862-3_1#Sec7
http://dx.doi.org/10.1007/978-3-319-16862-3_1#Sec8
http://dx.doi.org/10.1007/978-3-319-16862-3_1#Sec8
http://dx.doi.org/10.1007/978-3-319-16862-3_1#Sec8
http://dx.doi.org/10.1007/978-3-319-16862-3_1#Sec8
http://dx.doi.org/10.1007/978-3-319-16862-3_1#Sec9
http://dx.doi.org/10.1007/978-3-319-16862-3_1#Sec9
http://dx.doi.org/10.1007/978-3-319-16862-3_1#Bib1
http://dx.doi.org/10.1007/978-3-319-16862-3_2
http://dx.doi.org/10.1007/978-3-319-16862-3_2
http://dx.doi.org/10.1007/978-3-319-16862-3_2#Sec1
http://dx.doi.org/10.1007/978-3-319-16862-3_2#Sec1
http://dx.doi.org/10.1007/978-3-319-16862-3_2#Sec2
http://dx.doi.org/10.1007/978-3-319-16862-3_2#Sec2
http://dx.doi.org/10.1007/978-3-319-16862-3_2#Sec2
http://dx.doi.org/10.1007/978-3-319-16862-3_2#Sec3
http://dx.doi.org/10.1007/978-3-319-16862-3_2#Sec3
http://dx.doi.org/10.1007/978-3-319-16862-3_2#Sec4
http://dx.doi.org/10.1007/978-3-319-16862-3_2#Sec4
http://dx.doi.org/10.1007/978-3-319-16862-3_2#Sec5
http://dx.doi.org/10.1007/978-3-319-16862-3_2#Sec5
http://dx.doi.org/10.1007/978-3-319-16862-3_2#Sec6
http://dx.doi.org/10.1007/978-3-319-16862-3_2#Sec6
http://dx.doi.org/10.1007/978-3-319-16862-3_2#Sec7
http://dx.doi.org/10.1007/978-3-319-16862-3_2#Sec7
http://dx.doi.org/10.1007/978-3-319-16862-3_2#Sec8
http://dx.doi.org/10.1007/978-3-319-16862-3_2#Sec8
http://dx.doi.org/10.1007/978-3-319-16862-3_2#Sec9
http://dx.doi.org/10.1007/978-3-319-16862-3_2#Sec9
http://dx.doi.org/10.1007/978-3-319-16862-3_2#Sec10
http://dx.doi.org/10.1007/978-3-319-16862-3_2#Sec10
http://dx.doi.org/10.1007/978-3-319-16862-3_2#Sec11
http://dx.doi.org/10.1007/978-3-319-16862-3_2#Sec11
http://dx.doi.org/10.1007/978-3-319-16862-3_2#Sec11


2.5.2 Effect of Substitution on the Conductivity
of Conducting Polymers. . . . . . . . . . . . . . . . . . . . . 35

2.6 Electrochemical Properties . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.6.1 Electrochemical Properties of Conducting

Polypyrrole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.6.2 Electrochemical Properties of Conducting

Polyaniline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.6.3 Electrochemical Properties of Polythiophene

and Other Conjugated Polymers . . . . . . . . . . . . . . . 39
2.6.4 Electrochemical Measurement of HOMO

and LUMO Energy Levels of Conjugated
Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.7 Optoelectronic Properties of Conjugated Polymers. . . . . . . . . 41
2.8 Synthesis of Conducting Polymers . . . . . . . . . . . . . . . . . . . 42

2.8.1 Electrochemical Oxidation Polymerization
of Conducting Polymers. . . . . . . . . . . . . . . . . . . . . 42

2.8.2 Chemical Polymerization of Conducting Polymers. . . 46
2.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3 Organic Semiconductors for Field-Effect Transistors . . . . . . . . . . 51
Weifeng Zhang and Gui Yu
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.1.2 History and Work Principle of OFETs . . . . . . . . . . . 53
3.1.3 Device Configuration and Processing

Technique of OFETs . . . . . . . . . . . . . . . . . . . . . . . 57
3.1.4 Factors Influencing the Performance of OFETs . . . . . 60

3.2 p-Type Semiconductors . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.2.1 Selected p-Type Small-Molecule Semiconductors . . . 67
3.2.2 Selected p-Type Polymer Semiconductors . . . . . . . . 93

3.3 n-Type Semiconductors . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
3.3.1 Selected n-Type Small-Molecule Semiconductors . . . 104
3.3.2 Selected n-Type Polymer Semiconductors . . . . . . . . 126

3.4 Ambipolar Semiconductors. . . . . . . . . . . . . . . . . . . . . . . . . 130
3.4.1 Selected Ambipolar Small-Molecule

Semiconductors. . . . . . . . . . . . . . . . . . . . . . . . . . . 131
3.4.2 Selected Ambipolar Polymer Semiconductors . . . . . . 136

3.5 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

viii Contents

http://dx.doi.org/10.1007/978-3-319-16862-3_2#Sec12
http://dx.doi.org/10.1007/978-3-319-16862-3_2#Sec12
http://dx.doi.org/10.1007/978-3-319-16862-3_2#Sec12
http://dx.doi.org/10.1007/978-3-319-16862-3_2#Sec13
http://dx.doi.org/10.1007/978-3-319-16862-3_2#Sec13
http://dx.doi.org/10.1007/978-3-319-16862-3_2#Sec14
http://dx.doi.org/10.1007/978-3-319-16862-3_2#Sec14
http://dx.doi.org/10.1007/978-3-319-16862-3_2#Sec14
http://dx.doi.org/10.1007/978-3-319-16862-3_2#Sec15
http://dx.doi.org/10.1007/978-3-319-16862-3_2#Sec15
http://dx.doi.org/10.1007/978-3-319-16862-3_2#Sec15
http://dx.doi.org/10.1007/978-3-319-16862-3_2#Sec16
http://dx.doi.org/10.1007/978-3-319-16862-3_2#Sec16
http://dx.doi.org/10.1007/978-3-319-16862-3_2#Sec16
http://dx.doi.org/10.1007/978-3-319-16862-3_2#Sec17
http://dx.doi.org/10.1007/978-3-319-16862-3_2#Sec17
http://dx.doi.org/10.1007/978-3-319-16862-3_2#Sec17
http://dx.doi.org/10.1007/978-3-319-16862-3_2#Sec17
http://dx.doi.org/10.1007/978-3-319-16862-3_2#Sec18
http://dx.doi.org/10.1007/978-3-319-16862-3_2#Sec18
http://dx.doi.org/10.1007/978-3-319-16862-3_2#Sec19
http://dx.doi.org/10.1007/978-3-319-16862-3_2#Sec19
http://dx.doi.org/10.1007/978-3-319-16862-3_2#Sec20
http://dx.doi.org/10.1007/978-3-319-16862-3_2#Sec20
http://dx.doi.org/10.1007/978-3-319-16862-3_2#Sec20
http://dx.doi.org/10.1007/978-3-319-16862-3_2#Sec24
http://dx.doi.org/10.1007/978-3-319-16862-3_2#Sec24
http://dx.doi.org/10.1007/978-3-319-16862-3_2#Sec27
http://dx.doi.org/10.1007/978-3-319-16862-3_2#Sec27
http://dx.doi.org/10.1007/978-3-319-16862-3_2#Bib1
http://dx.doi.org/10.1007/978-3-319-16862-3_3
http://dx.doi.org/10.1007/978-3-319-16862-3_3
http://dx.doi.org/10.1007/978-3-319-16862-3_3#Sec1
http://dx.doi.org/10.1007/978-3-319-16862-3_3#Sec1
http://dx.doi.org/10.1007/978-3-319-16862-3_3#Sec2
http://dx.doi.org/10.1007/978-3-319-16862-3_3#Sec2
http://dx.doi.org/10.1007/978-3-319-16862-3_3#Sec3
http://dx.doi.org/10.1007/978-3-319-16862-3_3#Sec3
http://dx.doi.org/10.1007/978-3-319-16862-3_3#Sec7
http://dx.doi.org/10.1007/978-3-319-16862-3_3#Sec7
http://dx.doi.org/10.1007/978-3-319-16862-3_3#Sec7
http://dx.doi.org/10.1007/978-3-319-16862-3_3#Sec12
http://dx.doi.org/10.1007/978-3-319-16862-3_3#Sec12
http://dx.doi.org/10.1007/978-3-319-16862-3_3#Sec22
http://dx.doi.org/10.1007/978-3-319-16862-3_3#Sec22
http://dx.doi.org/10.1007/978-3-319-16862-3_3#Sec23
http://dx.doi.org/10.1007/978-3-319-16862-3_3#Sec23
http://dx.doi.org/10.1007/978-3-319-16862-3_3#Sec38
http://dx.doi.org/10.1007/978-3-319-16862-3_3#Sec38
http://dx.doi.org/10.1007/978-3-319-16862-3_3#Sec42
http://dx.doi.org/10.1007/978-3-319-16862-3_3#Sec42
http://dx.doi.org/10.1007/978-3-319-16862-3_3#Sec43
http://dx.doi.org/10.1007/978-3-319-16862-3_3#Sec43
http://dx.doi.org/10.1007/978-3-319-16862-3_3#Sec52
http://dx.doi.org/10.1007/978-3-319-16862-3_3#Sec52
http://dx.doi.org/10.1007/978-3-319-16862-3_3#Sec55
http://dx.doi.org/10.1007/978-3-319-16862-3_3#Sec55
http://dx.doi.org/10.1007/978-3-319-16862-3_3#Sec56
http://dx.doi.org/10.1007/978-3-319-16862-3_3#Sec56
http://dx.doi.org/10.1007/978-3-319-16862-3_3#Sec56
http://dx.doi.org/10.1007/978-3-319-16862-3_3#Sec57
http://dx.doi.org/10.1007/978-3-319-16862-3_3#Sec57
http://dx.doi.org/10.1007/978-3-319-16862-3_3#Sec60
http://dx.doi.org/10.1007/978-3-319-16862-3_3#Sec60
http://dx.doi.org/10.1007/978-3-319-16862-3_3#Bib1


4 Organic Semiconductor Photovoltaic Materials . . . . . . . . . . . . . . 165
Zhi-Guo Zhang
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
4.2 Organic Solar Cells by Vacuum Deposition . . . . . . . . . . . . . 166
4.3 Organic Solar Cells by Solution Processing . . . . . . . . . . . . . 169

4.3.1 Dyes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
4.3.2 Triphenylamine Derivatives . . . . . . . . . . . . . . . . . . 173
4.3.3 Oligothiophenes . . . . . . . . . . . . . . . . . . . . . . . . . . 176
4.3.4 Linear D-A Oligothiophenes. . . . . . . . . . . . . . . . . . 178
4.3.5 Organic Molecule Acceptors. . . . . . . . . . . . . . . . . . 183

4.4 Conclusion and Future Perspectives. . . . . . . . . . . . . . . . . . . 188
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

5 Conjugated Polymer Photovoltaic Materials . . . . . . . . . . . . . . . . . 195
Long Ye and Jianhui Hou
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

5.1.1 Brief Summary of Photovoltaic Polymers . . . . . . . . . 196
5.1.2 Design Considerations of Conjugated

Polymer Photovoltaic Materials. . . . . . . . . . . . . . . . 196
5.2 Conjugated Polymer Donor Materials . . . . . . . . . . . . . . . . . 200

5.2.1 Three Important Types of Homopolymer . . . . . . . . . 200
5.2.2 Donor–Acceptor Copolymers . . . . . . . . . . . . . . . . . 208

5.3 Conjugated Polymer Acceptor Materials. . . . . . . . . . . . . . . . 226
5.4 Summary and Outlook. . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

6 Organic Semiconductor Electroluminescent Materials. . . . . . . . . . 241
Gufeng He
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
6.2 Working Mechanism of OLEDs . . . . . . . . . . . . . . . . . . . . . 242

6.2.1 Working Mechanism . . . . . . . . . . . . . . . . . . . . . . . 242
6.2.2 Anode and Hole Injection Material . . . . . . . . . . . . . 243
6.2.3 Cathode and Electron Injection Material. . . . . . . . . . 245
6.2.4 Hole and Electron Transport Materials . . . . . . . . . . . 246
6.2.5 p- and n-Type Doping Materials . . . . . . . . . . . . . . . 247

6.3 Fluorescent Electroluminescent Materials . . . . . . . . . . . . . . . 250
6.3.1 Red Fluorescent Materials . . . . . . . . . . . . . . . . . . . 251
6.3.2 Green Fluorescent Materials . . . . . . . . . . . . . . . . . . 252
6.3.3 Blue Fluorescent Materials . . . . . . . . . . . . . . . . . . . 257
6.3.4 Advanced Delayed Fluorescent Materials . . . . . . . . . 261

6.4 Phosphorescent Electroluminescent Materials . . . . . . . . . . . . 263
6.4.1 Red Phosphorescent Materials . . . . . . . . . . . . . . . . 264
6.4.2 Green Phosphorescent Materials . . . . . . . . . . . . . . . 275
6.4.3 Blue Phosphorescent Materials . . . . . . . . . . . . . . . . 283

6.5 Summary and Outlook. . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

Contents ix

http://dx.doi.org/10.1007/978-3-319-16862-3_4
http://dx.doi.org/10.1007/978-3-319-16862-3_4
http://dx.doi.org/10.1007/978-3-319-16862-3_4#Sec1
http://dx.doi.org/10.1007/978-3-319-16862-3_4#Sec1
http://dx.doi.org/10.1007/978-3-319-16862-3_4#Sec2
http://dx.doi.org/10.1007/978-3-319-16862-3_4#Sec2
http://dx.doi.org/10.1007/978-3-319-16862-3_4#Sec3
http://dx.doi.org/10.1007/978-3-319-16862-3_4#Sec3
http://dx.doi.org/10.1007/978-3-319-16862-3_4#Sec4
http://dx.doi.org/10.1007/978-3-319-16862-3_4#Sec4
http://dx.doi.org/10.1007/978-3-319-16862-3_4#Sec5
http://dx.doi.org/10.1007/978-3-319-16862-3_4#Sec5
http://dx.doi.org/10.1007/978-3-319-16862-3_4#Sec6
http://dx.doi.org/10.1007/978-3-319-16862-3_4#Sec6
http://dx.doi.org/10.1007/978-3-319-16862-3_4#Sec7
http://dx.doi.org/10.1007/978-3-319-16862-3_4#Sec7
http://dx.doi.org/10.1007/978-3-319-16862-3_4#Sec8
http://dx.doi.org/10.1007/978-3-319-16862-3_4#Sec8
http://dx.doi.org/10.1007/978-3-319-16862-3_4#Sec9
http://dx.doi.org/10.1007/978-3-319-16862-3_4#Sec9
http://dx.doi.org/10.1007/978-3-319-16862-3_4#Bib1
http://dx.doi.org/10.1007/978-3-319-16862-3_5
http://dx.doi.org/10.1007/978-3-319-16862-3_5
http://dx.doi.org/10.1007/978-3-319-16862-3_5#Sec1
http://dx.doi.org/10.1007/978-3-319-16862-3_5#Sec1
http://dx.doi.org/10.1007/978-3-319-16862-3_5#Sec2
http://dx.doi.org/10.1007/978-3-319-16862-3_5#Sec2
http://dx.doi.org/10.1007/978-3-319-16862-3_5#Sec3
http://dx.doi.org/10.1007/978-3-319-16862-3_5#Sec3
http://dx.doi.org/10.1007/978-3-319-16862-3_5#Sec3
http://dx.doi.org/10.1007/978-3-319-16862-3_5#Sec4
http://dx.doi.org/10.1007/978-3-319-16862-3_5#Sec4
http://dx.doi.org/10.1007/978-3-319-16862-3_5#Sec5
http://dx.doi.org/10.1007/978-3-319-16862-3_5#Sec5
http://dx.doi.org/10.1007/978-3-319-16862-3_5#Sec9
http://dx.doi.org/10.1007/978-3-319-16862-3_5#Sec9
http://dx.doi.org/10.1007/978-3-319-16862-3_5#Sec17
http://dx.doi.org/10.1007/978-3-319-16862-3_5#Sec17
http://dx.doi.org/10.1007/978-3-319-16862-3_5#Sec18
http://dx.doi.org/10.1007/978-3-319-16862-3_5#Sec18
http://dx.doi.org/10.1007/978-3-319-16862-3_5#Bib1
http://dx.doi.org/10.1007/978-3-319-16862-3_6
http://dx.doi.org/10.1007/978-3-319-16862-3_6
http://dx.doi.org/10.1007/978-3-319-16862-3_6#Sec1
http://dx.doi.org/10.1007/978-3-319-16862-3_6#Sec1
http://dx.doi.org/10.1007/978-3-319-16862-3_6#Sec2
http://dx.doi.org/10.1007/978-3-319-16862-3_6#Sec2
http://dx.doi.org/10.1007/978-3-319-16862-3_6#Sec3
http://dx.doi.org/10.1007/978-3-319-16862-3_6#Sec3
http://dx.doi.org/10.1007/978-3-319-16862-3_6#Sec4
http://dx.doi.org/10.1007/978-3-319-16862-3_6#Sec4
http://dx.doi.org/10.1007/978-3-319-16862-3_6#Sec5
http://dx.doi.org/10.1007/978-3-319-16862-3_6#Sec5
http://dx.doi.org/10.1007/978-3-319-16862-3_6#Sec6
http://dx.doi.org/10.1007/978-3-319-16862-3_6#Sec6
http://dx.doi.org/10.1007/978-3-319-16862-3_6#Sec7
http://dx.doi.org/10.1007/978-3-319-16862-3_6#Sec7
http://dx.doi.org/10.1007/978-3-319-16862-3_6#Sec8
http://dx.doi.org/10.1007/978-3-319-16862-3_6#Sec8
http://dx.doi.org/10.1007/978-3-319-16862-3_6#Sec9
http://dx.doi.org/10.1007/978-3-319-16862-3_6#Sec9
http://dx.doi.org/10.1007/978-3-319-16862-3_6#Sec10
http://dx.doi.org/10.1007/978-3-319-16862-3_6#Sec10
http://dx.doi.org/10.1007/978-3-319-16862-3_6#Sec11
http://dx.doi.org/10.1007/978-3-319-16862-3_6#Sec11
http://dx.doi.org/10.1007/978-3-319-16862-3_6#Sec12
http://dx.doi.org/10.1007/978-3-319-16862-3_6#Sec12
http://dx.doi.org/10.1007/978-3-319-16862-3_6#Sec13
http://dx.doi.org/10.1007/978-3-319-16862-3_6#Sec13
http://dx.doi.org/10.1007/978-3-319-16862-3_6#Sec14
http://dx.doi.org/10.1007/978-3-319-16862-3_6#Sec14
http://dx.doi.org/10.1007/978-3-319-16862-3_6#Sec15
http://dx.doi.org/10.1007/978-3-319-16862-3_6#Sec15
http://dx.doi.org/10.1007/978-3-319-16862-3_6#Sec16
http://dx.doi.org/10.1007/978-3-319-16862-3_6#Sec16
http://dx.doi.org/10.1007/978-3-319-16862-3_6#Sec17
http://dx.doi.org/10.1007/978-3-319-16862-3_6#Sec17
http://dx.doi.org/10.1007/978-3-319-16862-3_6#Bib1


7 Conjugated Polymer Electroluminescent Materials . . . . . . . . . . . . 303
Xing Guan, Shenjian Liu and Fei Huang
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

7.1.1 Electroluminescence and PLEDs . . . . . . . . . . . . . . . 304
7.2 Conjugated Electroluminescent Polymers

and Performance Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . 305
7.2.1 Early Efforts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
7.2.2 Performance Tuning . . . . . . . . . . . . . . . . . . . . . . . 306

7.3 Luminescent Polymers Based on Dopant/Host System . . . . . . 321
7.3.1 Electrofluorescent Polymers . . . . . . . . . . . . . . . . . . 322
7.3.2 Electrophosphorescent Polymers . . . . . . . . . . . . . . . 327
7.3.3 Single White Emitting Polymers . . . . . . . . . . . . . . . 333

7.4 Hyperbranched Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . 336
7.5 Supramolecular Luminescent Polymers . . . . . . . . . . . . . . . . 345
7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348

8 Transparent Conducting Polymers . . . . . . . . . . . . . . . . . . . . . . . 359
Yijie Xia and Jianyong Ouyang
8.1 Electronic Structure and Optical Properties

of Conducting Polymers. . . . . . . . . . . . . . . . . . . . . . . . . . . 360
8.2 Transparent Conducting Polymers . . . . . . . . . . . . . . . . . . . . 362
8.3 Preparation of PEDOTs by Electrochemical

Polymerization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364
8.4 Preparation of PEDOTs by Chemical Synthesis. . . . . . . . . . . 364
8.5 Vapor-Phase Polymerization of EDOT. . . . . . . . . . . . . . . . . 366
8.6 Development of Highly Conductive PEDOT:PSS . . . . . . . . . 367

8.6.1 Structure of PEDOT:PSS . . . . . . . . . . . . . . . . . . . . 367
8.6.2 Conductivity Enhancement by Adding

Compounds to PEDOT:PSS Aqueous Solution . . . . . 368
8.6.3 Conductivity Enhancement of PEDOT:PSS

Through a Post-coating Treatment . . . . . . . . . . . . . . 370
8.6.4 Mechanisms for the Conductivity Enhancements

of PEDOT:PSS. . . . . . . . . . . . . . . . . . . . . . . . . . . 379
8.7 Application of PEDOT:PSS for Optoelectronic Devices . . . . . 383
8.8 Outlook for Transparent Conducting Polymers . . . . . . . . . . . 386
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387

x Contents

http://dx.doi.org/10.1007/978-3-319-16862-3_7
http://dx.doi.org/10.1007/978-3-319-16862-3_7
http://dx.doi.org/10.1007/978-3-319-16862-3_7#Sec1
http://dx.doi.org/10.1007/978-3-319-16862-3_7#Sec1
http://dx.doi.org/10.1007/978-3-319-16862-3_7#Sec2
http://dx.doi.org/10.1007/978-3-319-16862-3_7#Sec2
http://dx.doi.org/10.1007/978-3-319-16862-3_7#Sec3
http://dx.doi.org/10.1007/978-3-319-16862-3_7#Sec3
http://dx.doi.org/10.1007/978-3-319-16862-3_7#Sec3
http://dx.doi.org/10.1007/978-3-319-16862-3_7#Sec4
http://dx.doi.org/10.1007/978-3-319-16862-3_7#Sec4
http://dx.doi.org/10.1007/978-3-319-16862-3_7#Sec5
http://dx.doi.org/10.1007/978-3-319-16862-3_7#Sec5
http://dx.doi.org/10.1007/978-3-319-16862-3_7#Sec12
http://dx.doi.org/10.1007/978-3-319-16862-3_7#Sec12
http://dx.doi.org/10.1007/978-3-319-16862-3_7#Sec13
http://dx.doi.org/10.1007/978-3-319-16862-3_7#Sec13
http://dx.doi.org/10.1007/978-3-319-16862-3_7#Sec16
http://dx.doi.org/10.1007/978-3-319-16862-3_7#Sec16
http://dx.doi.org/10.1007/978-3-319-16862-3_7#Sec17
http://dx.doi.org/10.1007/978-3-319-16862-3_7#Sec17
http://dx.doi.org/10.1007/978-3-319-16862-3_7#Sec18
http://dx.doi.org/10.1007/978-3-319-16862-3_7#Sec18
http://dx.doi.org/10.1007/978-3-319-16862-3_7#Sec19
http://dx.doi.org/10.1007/978-3-319-16862-3_7#Sec19
http://dx.doi.org/10.1007/978-3-319-16862-3_7#Sec20
http://dx.doi.org/10.1007/978-3-319-16862-3_7#Sec20
http://dx.doi.org/10.1007/978-3-319-16862-3_7#Bib1
http://dx.doi.org/10.1007/978-3-319-16862-3_8
http://dx.doi.org/10.1007/978-3-319-16862-3_8
http://dx.doi.org/10.1007/978-3-319-16862-3_8#Sec1
http://dx.doi.org/10.1007/978-3-319-16862-3_8#Sec1
http://dx.doi.org/10.1007/978-3-319-16862-3_8#Sec1
http://dx.doi.org/10.1007/978-3-319-16862-3_8#Sec2
http://dx.doi.org/10.1007/978-3-319-16862-3_8#Sec2
http://dx.doi.org/10.1007/978-3-319-16862-3_8#Sec3
http://dx.doi.org/10.1007/978-3-319-16862-3_8#Sec3
http://dx.doi.org/10.1007/978-3-319-16862-3_8#Sec3
http://dx.doi.org/10.1007/978-3-319-16862-3_8#Sec4
http://dx.doi.org/10.1007/978-3-319-16862-3_8#Sec4
http://dx.doi.org/10.1007/978-3-319-16862-3_8#Sec5
http://dx.doi.org/10.1007/978-3-319-16862-3_8#Sec5
http://dx.doi.org/10.1007/978-3-319-16862-3_8#Sec6
http://dx.doi.org/10.1007/978-3-319-16862-3_8#Sec6
http://dx.doi.org/10.1007/978-3-319-16862-3_8#Sec7
http://dx.doi.org/10.1007/978-3-319-16862-3_8#Sec7
http://dx.doi.org/10.1007/978-3-319-16862-3_8#Sec8
http://dx.doi.org/10.1007/978-3-319-16862-3_8#Sec8
http://dx.doi.org/10.1007/978-3-319-16862-3_8#Sec8
http://dx.doi.org/10.1007/978-3-319-16862-3_8#Sec9
http://dx.doi.org/10.1007/978-3-319-16862-3_8#Sec9
http://dx.doi.org/10.1007/978-3-319-16862-3_8#Sec9
http://dx.doi.org/10.1007/978-3-319-16862-3_8#Sec10
http://dx.doi.org/10.1007/978-3-319-16862-3_8#Sec10
http://dx.doi.org/10.1007/978-3-319-16862-3_8#Sec10
http://dx.doi.org/10.1007/978-3-319-16862-3_8#Sec11
http://dx.doi.org/10.1007/978-3-319-16862-3_8#Sec11
http://dx.doi.org/10.1007/978-3-319-16862-3_8#Sec12
http://dx.doi.org/10.1007/978-3-319-16862-3_8#Sec12
http://dx.doi.org/10.1007/978-3-319-16862-3_8#Bib1


Chapter 1
Organic Semiconductors, Conductors,
and Superconductors

Yue Yue and Bin Zhang

1.1 Introduction

In general, organic solids are insulators. However, there have been extensive and
intensive efforts in materials science and technology to make them conductive. The
family of organic solids, starting from insulators, has widened to include organic
semiconductors, organic conductors, and organic superconductors. The distinctions
between them are based on the band structure of the materials as well as the electron
occupancy of these bands. In 1954, the first organic semiconductor was discovered
and the conductivity reached 10−3 S/cm [1]. This illustrates a new direction for the
synthesis of organic conductors, when organic material was first doped with an
electron donor or acceptor as a charge-transfer complex. In the 1960s, a conducting
organic solid was first achieved with the charge-transfer complex of TCNQ [2]. The
organic/metal product TTF-TCNQ was obtained in 1973 [3] and the first organic
superconductor TMTSF2·PF6 was discovered in 1980 [4–6]. After that, the critical
temperature of organic superconductors quickly increased from 0.6 to 18 K. In
1991, the electron-transfer superconductor A3C60 was discovered with supercon-
ducting transition at 33 and 35 K [7, 8], respectively and eventually single-com-
ponent molecular metals were synthesized in 2001 [9].

Organic conductors are critical for electronic applications as they are as efficient
as metals but lighter and more flexible. Scientists working on organic electronics
want to improve the conductivity, stability, and tailorability of highly conjugated
organic semiconductors and conductors. The way to challenging high performance
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optical and electronic organic devices is to understand the processes that determine
charge transport of organic molecular and polymeric materials. Small molecules can
also be grown as single crystals as model systems to demonstrate the intrinsic
electronic properties. This chapter focuses on the charge transport of organic
materials, and some prototype organic solids are also discussed.

1.2 Crystal Engineering of Charge-Transfer Complexes

One way to produce the organic conductors is to use charge-transfer reactions from
donor to acceptor and the produced crystal is called a charge transfer complex (salt)
[10]. The formation of the charge transfer complex is through hybridization between
the HOMO (highest occupied molecular orbital) of the donor and the LUMO (lowest
unoccupiedmolecular orbital) of the acceptor. Scientists’ efforts from the 1960s led to
the organic acceptor 7,7,8,8-tetracyanoquinodimethane (TCNQ) [11] and the donor
tetrathiafulvalene (TTF) [12, 13] (Fig. 1.1a, b).The first stable organic conductor
TTF-TCNQwas synthesized in 1973 [3]. In 1978, the derivative of TTF, combining a
conjugated TTF unit and ethylene group, BEDT-TTF, (Fig. 1.1d) was synthesized,
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Fig. 1.1 Molecular structure of some organic donors and acceptors
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showing a two-dimensional layer in the crystal and contributing most of the organic
superconductor properties as κ-(BEDT-TTF)2Cu[N(CN)2]Cl, Tc = 13.2 K [14]. With
regard to this, most organic conductors were synthesized by the charge transfer
reaction until the new superconductor Ni(dmit)2 (Fig. 1.1e) was synthesized in 2001
[9]. In this single molecular conductor, the gap between HOMO and LUMO is so
small that it can form partially filled bands. The characterization of conducting
organic material is carried out for a high-quality single crystal because the crystal
defect traps the carrier inside the material. Electrocrystallization is a powerful method
for obtaining high quality organic conductors and superconductors.

The charge carrier transport properties of organic solids have been investigated
extensively and can be used to investigate and optimize the structure-property
relations of the materials used in existing optoelectronic devices and to predict the
ideal materials for the next generation of electronic and optoelectronic devices. The
electronic properties are controlled by weak interactions between the π-units
(donor: TTF, BEDT-TTF; acceptor: Ni(dmit)2). The interaction between π-units
and transition metal counterions as π–d interaction plays an important role in the
physical properties. For example, when a π-unit was put in one column or two-
dimensional layer, within the orbital overlap between neighbor π-unit as an S…S
contact at distance less than 3.6 Å (sum of Van der Waals value of S), the channel
for the conduction electron resulted. The crystal showed semiconductive metallic to
superconductive behavior.

Polytypism and polymorphism are popular in charge-transfer complexes because
of the assembly of molecular crystals in crystal engineering. For example, the
charge-transfer complexes of BEDT-TTF and I3

– with compositions of 2:1, 3:2, and
3:5 and the charge-transfer salts of BEDT-TTF and FeCl4

n– with composition of 2:1,
3:2, 1:1, and 1:2 are examples of polytypism. Depending on the donor arrangement
of the BEDT-TTF molecule, more than ten arrangement modes known as α, β, γ, κ,
λ, δ, …, etc., were observed [15], displaying different transport properties.
Regarding polymorphism, in charge-transfer complexes, α-(BEDT-TTF)2I3 shows
metal–insulator transition at 150 K, β-(BEDT-TTF)2I3 and γ-(BEDT-TTF)2I3 show
superconductivity at 7 and 6 K, respectively. Mott insulator β′-(BEDT-
TTF)3(FeCl4)2 and metal δ-(BEDT-TTF)3(FeCl4)2 have also been investigated.

The conductivity of crystal and charge-transfer complexes is controlled by the
arrangement of π-units and crystal structures, respectively. For example, β-(BEDT-
TTF)2I3 shows metal to superconductor transition at 6 K, β-(BEDT-TTF)3[CrMn
(C2O4)3] shows as metallic to 2 K. α-(BEDT-TTF)2I3 shows metal to insulator
transition at 150 K, and metal to insulator transition was observed at 150 K in α-
(BEDT-TTF)3[CrMn(C2O4)3]. Conductivity could be influenced by counterions
when the arrangement of π-units remained the same. For example, a metallic to
insulator transition at 200 K is observed in θ21-(BEDT-TTF)3Ag6.4I8 with
σrt = 50 S/cm, and θ21-(BEDT-TTF)3[Cu2(C2O4)3](CH3OH)2 is a semiconductor
with σrt = 4 S/cm. Conductivity can be influenced by the guest solvent molecules.
For example, in (BEDT-TTF)4(H3O)Fe(C2O4)3 in solvent, Tc = 7.0 K is observed
when the solvent is C6H5CN and 4.0 K when solvent is C6H5Br. As the donor
arrangement remained the same as δ-phase with the counteranion of GaCl4

–,
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room-temperature conductivity increased from 0.1 to 1 S/cm when solvent
molecules C6H5Cl intercalated into an anion sheet. Some of the crucial factors
relating to conducting molecular solids are as follows.

1.2.1 Charge Transfer Salts of AB Type

One of the highlights at this stage is the TTF-TCNQ, which is one-dimensional
(1D) charge-transfer conducting salt with a Peierls transition at low temperature and
synthesized between the π-electron molecules: the electron donor TTF and the
acceptor TCNQ [3, 13]. The ratio of the TTF and TCNQ is 1:1. As a donor, TTF
has four sulfur heteroatoms which can easily donate electrons when combining with
the acceptor molecule. TCNQ, as an acceptor, can be easily reduced to form an
anion radical TCNQ−. The conductivity of this salts reaches σ = 1.47 × 104 (S/cm)
at around 60 K, where a metal to insulator phase transition was also observed [3]
and the metallic behavior was confirmed by polarized reflection spectroscopy [16].
The divergent peak (σMAX > 106 S/cm) of conductivity at 58 K in a TTF-TCNQ
crystal was reported [17] and the conductivity was found to originate from the
fluctuations of Frohlich superconductivity, which is based on the coupled electron–
phonon collective mode in a 1D system [18]. This metal to insulator phase tran-
sition is attributed to the fluctuation of charge density waves by impurities or lattice
instability [19]. After this discovery, Scientists synthesized many types of deriva-
tives of TTF and TCNQ such as TSeF-TCNQ [20], HMTSF-TCNQ [21], and
TMTSF-DMTCNQ [22], which show metallic conductivity at very low tempera-
tures. AB type charge transfer salts have generally demonstrated insulating ground
states because of the instability of metallic states intrinsic for 1D systems.

1.2.2 Charge Transfer Salts of A2B Type

More conductive states have been found in charge transfer salts of the A2B type
compared to the AB type. In 1980, the first superconductor (TMTSF)2PF6 at 0.9 K
under 12 kbar was discovered [6, 23]. This transition originated from the spin
density wave (SDW) and occurs at 12 K [24–26], an antiferromagnetic ordering
being observed by using NMR [27] and static magnetic susceptibility measurements
[14]. In the vast (TM)2X family (see Fig. 1.1c), scientists mainly found two iso-
structural groups: selenium TMTSF salts which are metals with a formally 3/4-filled
conduction band and sulfur TMTTF salts which are close to the Mott–Hubbard
insulating state because of the high anisotropy, dimerization, and on-site Coulomb
repulsion [28]. X in (TM)2X can be several possible anions such as (TMTSF)2PF6,
(TMTSF)2AsF6, (TMTSF)2SbF6, and (TMTSF)2TaF6 which show the metal–insu-
lator transition at 11–17 K below that of the SDW state [24–26]. (TMTTF)2PF6 and
(TMTTF)2SbF6 undergo superconducting transitions at 1.8 K under 54 kbar and
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2.6 K under 61 kbar, respectively [29, 30]. Moreover, the superconducting phase
transition of (TMTSF)2ClO4 was observed at ambient pressure down to 1 K [31].
Figure 1.2 shows the phase diagram of (TM)2X [23]. This diagram suggests various
different phases such as normal metals, superconductors, spin-density-wave states,
spin-Peierls state, and antiferromagnetic state as a function of decreasing pressure.
Although the band structure of (TMTSF)2PF6 is calculated to have a quasi 1D Fermi
surface, intermolecular Se…Se contact was observed between the TMTSF stacks
[32]. Scientists found the way to synthesize 2D organic conductors from
(TMTSF)2PF6 by increasing the bandwidth and dimensionality [33].

The one-dimensional A2B systems may be unstable in the insulating state and the
ideal 2D A2B systems superconductor was first made from β-(BEDT-TTF)2ReO4 at
2 K under 4 kbar [34]. β-(BEDT-TTF)2I3 at 1.4 K at ambient pressure [27, 35, 36] and
κ-ET2Cu(NCS)2 at 10.4K [35], and recently β’-ET2ICl2 showed the highestTc among
organic superconductors at 14 K under 82 kbar [37, 38]. BEDT-TTF as a donor, was
first synthesized in 1978 [14]. The π-electron orbitals of the donor aromatic rings
overlap to form a conducting band. This BEDT-TTF molecule forms various phases
with various anions. Figure 1.3 shows the four different donor planes of the BEDT-
TTF compound. The β-type organic BEDT-TTF salts were known very early because
of their superconducting state at ambient pressure—e.g., (BEDT-TTF)2IBr2 at 2.7 K
and (BEDT-TTF)2AuI2 at 3.8 K [32, 39]. β′ and β″ types are similar to the β type
whereas the molecular stackings are different. Figure 1.4 shows the phase diagram of
the θ phase family θ—(BEDT-TTF)2MM′(SCN)4 (M = Rb, Tl, Cs, M′ = Co, Zn)
concerning the charge ordering phenomenon [40, 41]. The electronic state, including
insulators, superconductors, and metals, is parameterized by the dihedral angel
between columns [40]. In the phase diagram, the metallic phase is reduced with
increasing dihedral angle. All compounds become insulators at low temperature.

Fig. 1.2 Generalized phase
diagram for: TM2X [23]
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The α-type BEDT-TTF salts are similar to the θ phase and show a weak
dimerization. There are two different kinds of typical groups in α-type BEDT-TTF
salts. One is the family of α-(BEDT-TTF)2MHg(SCN)4 (M = K, Rb, Tl, NH4) in
which K, Rb, and Tl compounds produce the SDW below 10 K [38] and NH4 salt
shows a superconductivity at 1.15 K [42]. Another group is α-(BEDT-TTF)2X
(X = I3, IBr2, ICl2, etc.). Material α-(BEDT-TTF)2I3 undergoes an MI transition at
136 K [41, 43, 44]. Charge-ordering phenomena were found in NMR experiments
[45]. After the success of the 1D TMTSF and 2D BEDT-TTF salts, scientists made
efforts to synthesize many new 3D molecular superconductors such as K3–C60 with
Tc = 18 K [46] and Cs2RbC60 with the highest Tc = 33 K [47].

1.2.3 Charge Ordering in Organic ET Compounds

The family of 2D organic conductors (ET)2X is known to exhibit a variety of
interesting electronic properties. The theoretical studies of Kino and Fukuyama
developed a systematic way to understand the diversity in their ground state prop-
erties [48]. Another interesting conclusion of Kino and Fukuyama is that α-type
compounds show an insulating state with charge transfer in their notation (charge
ordering) [49]. Arising from a strong correlation, the charge ordered (CO) state is

Fig. 1.3 Schematic view of some molecular configurations of the BEDT-TTF compound
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one of the typical ground states of molecular conductors. As to the electron corre-
lation phenomenon, it draws growing attention to understanding the organic con-
ductor’s low temperature properties [49–52]. Charge ordering can be understood as
self-organization of localized charge carriers. For example, in the charge-ordered
state of a one-dimensional system with a quarter-filled conduction band, the local-
ized charge carriers occupy or do not occupy the lattice site individually. If the
conduction band is not filled completely, charge disproportionation can be observed.
Charge order in organic conductors was first suggested in the 1D dimensional system
(DI-DCNQI)2Ag [53]. It was shown that below 220 K, 13C-NMR spectra are split.
Nonequivalent differently charged molecules appear along the chain axis and the
ratio is 3:1 below 130 K. U is the on-site Coulomb repulsion and V is the nearest
neighbor interaction. The inter-site Coulomb repulsion V is the driving force for
charge ordering to occur as well as the onsite Coulomb repulsion U [49, 50]. If V
exceeds a certain value, the charges arrange themselves with a long enough distance

Fig. 1.4 Universal phase diagram of θ-type BEDT-TIF compounds [40, 41]
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to minimize the influence of the V. The extended Hubbard model is a good
description of the relevant energies [49, 54–56].

Here we discuss the charge ordering state using quarter-filled systems. Figure 1.5
shows the two cases [56]: (1) dimer Mott–Hubbard insulator such as 1D MEM-
TCNQ2 and 2D κ-(BEDT-TTF)2X, λ-BETS2X and (2) Wigner crystal type charge
ordering such as DI-DCNQI2Ag and TMTTF2X, 2D θ-(BEDT-TTF)2X, and α-
(BEDT-TTF)2X [57]. In the first case, because of the strong dimerization, the single
electron occupies the bonding state of each dimer. The Mott insulating state is
realized because of this strong effective Coulomb interaction within a dimer. In the
second case, however, inter-site Coulomb interaction, V plays an important role,
and the charge-ordered state called the Wigner crystal is realized on the lattice. In
the absence of a dimerization structure of the 2D system such as α, θ, and β″ type
compounds, several types of a CO state which is called stripe type CO state are
found as a ground state [58]. Electrons stay apart from each other if the kinetic
energy is rather small compared to the Coulomb interaction. Moreover, the
anisotropy in the transfer integrals is also important for the arrangement of the
localized charges. Figure 1.6 shows the different pattern of CO.

The charge-ordered state has been studied by means of NMR [59], XRD [60], and
vibrational spectroscopy [61–65]. The NMR spectrum shows a splitting or broad-
ening depending on the distribution of carrier density. The first CO was found in
(DIDCNQI)2Ag by 13C-NMR measurement [53]. The spin/charge configuration of
(TMTTF)2X (X = SCN, Br, PF6, AsF6) was also confirmed by NMR experimentally
[66–70] and theoretically [71]. (TMTTF)2PF6 and (TMTTF)2AsF6 undergo a spin-
Peierls transition [72, 73], whereas (TMTTF)2 SCN [66] and (TMTTF)2Br [67] have
1010 type ordering and CO was directly confirmed as the splitting of signals into
charge-rich site and charge-poor sites at low temperature by 13C-NMR [69]. In 2D
systems, θ-(BEDT-TTF)2RbZn(SCN)4, θ-(BEDT-TTF)2CsZn(SCN)4, and α-
(BEDT-TTF)2I3 were investigated and were found to be in CO states at low tem-
perature and in CD state at high temperature by NMR [45, 59, 74–80]. In the case of
α-(BEDT-TTF)2I3, the ratio of the effective charges are also estimated from the
amplitude of the curves [45, 78], and the horizontal stripe CO pattern predicted
theoretically [49] was confirmed from experimental results not only by 13C-NMR but
also by X-ray [81, 82] and IR/Raman spectroscopy [63, 64, 83]. Among the various

Fig. 1.5 a Dimer Mott–Hubbard insulator. b Wigner crystal type charge ordering [56]
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techniques for charge ordering research, vibrational spectroscopy such as IR/Raman
can be one of the powerful methods [84, 85]. In vibrational spectroscopy, most
charge-sensitive modes for BEDT-TTF molecule are the stretching modes ν3,
(Raman active), the in-phase ν2 (Raman active), and out-of-phase ν27 (infrared active)
(Fig. 1.7) [86]. The ν2 and ν3 modes include the stretching vibrations of the central

Fig. 1.6 a Horizontal stripe.
b Vertical stripe. c Diagonal
stripe

1 Organic Semiconductors, Conductors, and Superconductors 9



C=C bond and the symmetric ring C=C bond. The ν27 mode corresponds to the
stretching vibration of the anti-symmetric ring C=C bond. In these three sensitive
modes, ν3 is more strongly perturbed by electron-molecular-vibration interaction than
by molecular charge. Therefore, it is inappropriate to use υ3 for estimating the frac-
tional charge on molecules. ν2 and ν27 are mainly perturbed by molecular charge,
have a linear relationship between the frequency and the charge on the molecules, and
can be used to calculate the fractional charge in charge ordering state at low tem-
perature [83]. The linear relationship between the frequency and site charges is shown
in Fig. 1.7: ν2(ρ) = 1447 + 120(1− ρ) and ν27(ρ) = 1398 + 140(1− ρ) [83]. Vibrational
spectroscopy was first applied to the study of charge-ordering in θ-(BDT-
TTP)2(SCN)4 [85]. θ-(BEDT-TTF)2RbZn(SCN)4 undergoes the CO–CD phase
transition at 200 K. The assignments for ν2 modes which split into two and ν3 modes
which split into four were performed based on the 13C-substituted sample by IR/
Raman spectroscopy [64]. Based on this assignment, the horizontal stripe was con-
firmed. The horizontal stripe of the CO pattern was also reported by analyzing the
electronic transition in the infrared region [87]. The same IR/Raman method was
applied to the study of charge ordering in α-(BEDT-TTF)2I3 below and above 136 K

Fig. 1.7 Frequencies of the υ2 and υ27 modes plotted as a function of the charge ρ on the BEDT-
TTF molecule [83]
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from ambient pressure to 3.6 GPa [63]. The splitting of ν2 indicates the charge
disproportionation caused by charge localization and it formed the horizontal CO
stripe perpendicular to the stacks.

1.3 Magnetism in Charge Transfer Salt

Naturally, magnetism relates closely with conductivity. Classic magnetism is found
in charge-transfer complexes such as the long-range ferromagnetic ordering at
4.5 K in insulator (NH4)2[Ni(mnt)2]·H2O [88]. Recently, quantum magnetism as
spin liquid was observed in molecular insulators κ-(BEDT-TTF)2[Cu(CN)3] and
EtMe3Sb[Pt(dmit)2]2 with spin on π-units [89–92]. The conductivity of a charge-
transfer complex of TCNQ was studied before the discovery of the TTF series of
organic superconductors, and the room-temperature conductivity of (5,8-
dihydroxyquinolineH)(TCNQ)2 reached 102 S/cm in 1971 [93]. When TCNE was
used as ligand, the conducting magnet was produced. In 1991, the room-temper-
ature ferrimagnet V(TCNE)2(CH2Cl2)0.5 was discovered [94]. It was a semicon-
ductor with σrt = 10−4 S/cm [95]. It is one of the best examples of combined
magnetism and conductivity in a molecule-based conducting magnet. When TCNE,
TCNQ, and its derivatives were used as coordination ligands, a large number of
molecule-based conducting magnets, including dynamic conducting magnets, were
obtained. No metal product was found [96–98].

There are two sources of magnetism in coordination compounds: one is the
interaction between cation and anion through weak interactions such as antiferro-
magnetic ordering at 3.0 K in (C2H5)4NFeCl4, the other comes from magnetic
interaction between metal ions in a counter-anion such as oxalate-bridged Cr3+ and
Mn2+ ions in (C4H9)4N[CrMn(C2O4)3]. This shows ferromagnetic ordering at 6 K
[99, 100]. Magnetism in charge-transfer salt was also influenced by the arrangement
of donor and counter-anion in the crystal, such as β′-(BEDT-TTF)3(FeCl4)2 and δ-
(BEDT-TTF)3(FeCl4)2. β′-(BEDT-TTF)3(FeCl4)2 shows antiferromagnetic transi-
tion at 2.7 K and δ-(BEDT-TTF)3(FeCl4)2 at 4.8 K [101].

1.4 Dual-Functional, Multifunctional Molecular Crystals

Endowing the molecular conductor with magnetism or certain optical properties
produces dual-functional molecular crystals such as the magnetic conductor [102],
the magnetochiral conductor [103], and the single-molecular magnet with lumi-
nescence [104]. Combining the magnetic or photonic building block with con-
ducting π-unit is one of most popular way to approach the goal.

Supramolecular chemistry is the key to designing new dual-functional, multi-
functional molecular conductors. The functional units are synthons, and the
arrangement and weak interaction between π-units decide the conductivity.
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The magnetic conductor is the hottest research area in dual-functional molecular
crystals because of the close relationship between magnetism and conductivity in
organic superconductors and between molecular conductors and molecular mag-
netism. In the phase diagram of the inorganic superconductor, the diamagnetic
superconductor is close to the antiferromagnetic insulator. An antiferromagnetic
insulator could become a diamagnetic superconductor after hole or charge doping.

The antiferromagnetic Mott insulator attracts attention because of their potential
for conversion into a superconductor after carrier-doping.

Top-down is another way to obtain dual-function, multifunction material. The
intercalation of alkali metal into layered compounds, such as intercalated graphene,
can produce a superconductor with transition temperatures ranging from 0.14 [105]
to 11.5 K [106]. When alkali metal was intercalated into an isomer of graphene–
C60, the superconducting transition temperature reached higher than 50 K.
Intercalated compound of aromatic compounds have recently been studied, and new
materials with superconducting transition temperatures of about 30 K (18 K [107];
5 K [108]) have been obtained. More exciting results can be obtained when the
crystal structures are confirmed. (One of the shortcomings of the top-down
approach is that it is always difficult to obtain high-quality single crystals.)

When an electric field, magnetic field, ultrabright laser, or high-pressure is
applied to a single crystal, the energy state may be modified. Thereby (electric)
field-induced organic superconductor doping with hole or electron is obtained when
gate voltage is changed in a field-effect-transistor. The electric-field-induced
superconductor was observed in the inorganic layer compound MoS2 [109, 110],
the (magnetic) field-induced reaction being obtained when the intra-magnetic field
inside the crystal from spin-orbital coupling as a π–d interaction was compensated
by application of a magnetic field. Irradiation of the crystal under a laser could
change the electronic structure of the crystal as an injection of energy, and laser-
induced metallic reaction was observed in (EDO-TTF)2PF6 [111]. This indicates the
possibility of modulating the conductivity state with photo-irradiation.

High-pressure was one of the most powerful and the earliest method used to
increase interactions between molecular π-units; it could suppress the metal–insu-
lator transition by Peierls transition, charge-ordering, charge-localization, or Fermi
nesting in organic compounds when the temperature decreased. Now the pressure
of 200 GPa can be achieved with a diamond cell. However, the crystal is sensitive
to pressure, so the experiments should be carried out carefully and slowly, step by
step [112]. Bottom-up is a powerful method to obtain material with controllable
designed properties. Magnetic conductors were synthesized by combining con-
ducting organic π-units with magnetic inorganic coordination anions as organic–
inorganic hybrids. Zero-dimensional anions, such as FeCl4

–, MnCl4
2–, CoCl4

2–, and
CuCl4

2–, could produce π–d interaction between donor and anion through S…Cl
contact in charge-transfer salts. Charge-transfer salts with strong π–d interaction
showed negative magnetoresistance around 4.2 K [113, 114], magnetic-field-
induced superconductivity was observed in λ-BETS2FeCl4 with Jπd = 17.7 K [115],
and by diluting Fe with Ga as Fe/Ga alloy in λ-BETS2Fe0.40Ga0.6Cl4 with insulator
metal superconductor modulation by an applied magnetic field [116]. The band
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engineering method succeeded on charge-transfer salts of β′-(BEDT-TTF)3(FeCl4)2.
A strong π–d interaction was observed in β′-(BEDT-TTF)3(FeCl4)2 with
Jπd = 25.82 K, so it is a Mott insulator.

A one-dimensional anion, such as [Fe(C2O4)Cl2
–]n, was used as counter-anion

for a magnetic conductor. In ammonium salts of [Fe(C2O4)Cl2
–]n, a broad maxi-

mum for low-dimensional antiferromagnetism was observed at around 20–50 K,
some of them showing long-range magnetic ordering as spin canting. In TTF[Fe
(C2O4)Cl2], the strong π–d interaction between TTF dimer and [Fe(C2O4)Cl2

–]n
produced a three-dimensional antiferromagnetic ordering at 19.8 K [117]. The weak
ferromagnetic conductor with metallic properties to 0.6 K was obtained with BETS
stacks in a two-dimensional κ′-phase, hysteresis with a loop of 150 Oe being
observed at 150 Oe. The bifurcation of ZFCM/FCM at 4.5 K suggested a long-
range magnetic ordering [118]. In the charge-transfer salt (BEDT-TTF)[Fe(C2O4)
Cl2](CH2Cl2), BEDT-TTF dimer and CH2Cl2 coexisted in a donor layer, this being
a semiconductor as is TTF[Fe(C2O4)Cl2] [119].

The single molecular magnet (SMM) and single chain magnet (SCM) are of
great interest as quantum magnets to chemists. They could be used as counterions to
synthesize charge-transfer salts with TTF or dmit units [120] or to connect TTF
units to coordination ligands to form coordination compounds [121]. An excellent
way to obtain a magnetic conductor is to merge TTF and dmit units into one unit as
a single-component compound. Antiferromagnetic transition was observed at 110 K
produced by Fermi nesting [122].

Molecular magnets provide abundant magnetic units for dual-functional
molecular crystals with magnetism and conductivity. In 1992, (Bu4N)[CrMn
(C2O4)3] was reported to have ferromagnetic transition at 5.5 K [100]. It was not
until 2001 that the first organic-inorganic hybrid dual-functional molecular crystal
as charge-transfer salt of (BEDT-TTF)3[CrMn(C2O4)3] was reported with magne-
tism from layered anions and conductivity from donors as the β-phase in β-(BEDT-
TTF)2I3, respectively [102]. The charge-transfer salt α-BETS3[CrMn(C2O4)3]
shows ferromagnetic transition at 5.5 K and a metal-to-semiconductor transition at
150 K [123]. These two crystals have incommensurate structures, and the donor and
anion structures were determined separately.

When homometallic honeycomb anion [Cu2(C2O4)3
2–]n was used as counter-

anion, the high-quality single crystal (BEDT-TTF)3[Cu2(C2O4)3](CH3OH)2 was
obtained. By means of the Jahn–Teller distortion of Cu2+, a distorted honeycomb
anion was formed. The donor arrangement belongs to the θ21-phase, and when
BEDT-TTF was replaced with BETS the isostructural compound was obtained.
This is different from charge-transfer salts of heterometallic honeycomb anions
where high-quality crystal structures are obtained from single crystal X-ray dif-
fraction experiments [124, 125]. The spin-orbital coupling of Cu2+ produces spin
frustration in these crystals. The frustration factor f is larger than 60, at least when
the conductivity and susceptibility were measured above 1.8 K. Experiments at
lower temperatures may bring some exciting results [126].
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1.5 Relationship Between Organic Superconductors
and Inorganic Superconductors: Resonating Valence-
Bonding Solids and Jahn–Teller Distortion

Organic superconductors are important in the study of superconductors, not only
because of their conductivity but also their magnetism. Research on the organic
superconductor covers a wide area including the conductivity of insulators, semi-
conductors, conductors, and superconductor, and magnetism from classic magnets
to quantum magnets.

After the discovery of the superconductor, people were confused by the mech-
anism of superconductivity for decades. Designing new superconductor systems is
still a challenge for chemists. In 1986, Muller discovered the first high-temperature
superconductor BaxLa5–xCu5O5(3–y) with an onset temperature of 30 K from his
initial exploration of the Jahn–Teller effect in the presence of spin-orbital coupling
in perovskite material [127, 128]. The Jahn–Teller polaron in superconductors was
confirmed by the observation by scanning tunnel microscopy. After that, Jahn–
Teller distortion could be used to interpret the superconductivity in new inorganic
superconductors, such as octahedral Co2+ in NaxCoO2(H2O)y and tetrahedral Fe2+

in La–O–Fe–As (iron pnictide) [129]. Because Jahn–Teller distortion could be
observed from crystal structure with bond-length of coordination polyhedron, it
could be treated as distorted octahedral or tetrahedral coordination environments in
the crystal structure.

Another investigation of high-temperature superconductor was carried out by
Anderson in 1987 who looked at resonating valance bonding in solids relating to
the electron structure [130]. He introduced Pauling’s valance bond theory from
chemistry into condensed state material as valance bond solids (VBS) and proposed
the spin frustration state in the triangular lattice in 1973 to be a resonating valance
bond (RVB) state [131–135]. Then he developed his theory by the discovery of
high-temperature cuprate superconductors and proposed the possibility that a
copper pair was formed by coupling of spin in the spin liquid state. Carrier doping
on parent antiferromagnetic La2CuO4, Na2CoO2, and LaFeAs produced a new
superconductor intermediate by spin fluctuation. The two-dimensional antiferro-
magnetic correlation as spin frustration or antiferromagnetic ordering came from the
resonant valence-band state [136]. So at first, an extended (infinite) coordination
polymer is needed, such as the Cu–O plane in cuprate, Co–O plane in
NaxCoO2(H2O)y, and Fe-As plane in iron pnictides. This guarantees the transpor-
tation channel for the carrier in the solid. Then the Jahn–Teller distorted transition
metals with their variable valances should exist. From the structure point of view, a
two-dimensional extended metal-O layer is the key to these materials. The con-
ducting layer behaves as an acceptor, so the high-temperature superconductor acts
as a charge-transfer salt. Because the superconductivity was first discovered in the
ceramic phase in these systems, it always takes time to confirm the composition and
growth of high-quality single crystals with the critical ratio of atoms. This is the
main difference between organic and inorganic superconductors. In research on

14 Y. Yue and B. Zhang



organic superconductors, the high quality and clear crystal structure is always the
first step. For example, a series of candidates for quantum spin liquids was dis-
covered in charge-transfer complexes with π-units in a κ-phase arrangement. In
these compounds, interactions between donor pairs are isotropic and produce a
resonating valence state. The first quantum spin liquid with triangular lattice was
observed in a charge-transfer salt with κ-phase donor arrangement κ-(BEDT-
TTF)2Cu2(CN)3 and confirmed by specific heat and ESR experiment [92, 137]. It is
a Mott insulator and could be superconductive at 3.9 K under 0.06 GPa [138]. Such
a Mott insulator, β′-(BEDT-TTF)2ICl2, shows Tc = 14.2 K under 8.2 GPa [37]. The
charge-transfer salt (C2H5)(CH3)3Sb[Pd(dmit)2]2 was found to be another quantum
spin liquid with triangular lattice [91]. A third one was discovered in a single
component compound with κ-phase arrangement, κ-H3(cat(cat-EDT-TTF)2 [139].
The Kagome lattice is another ideal model to spin liquid; when people were looking
for coordination compounds with kagome lattice, the weak interactions between
organic molecule formed a kagome lattice in [EDT-TTF-CONH2]6[Re6Se8(CN)6]
[140] and antiferromagnetic spin fluctuation was observed. This was earlier than the
first coordination compound with kagome lattice Zn0.33Cu0.67(OH)6Cl2 [141, 142].

The single component organic conductor and superconductor is an important
area in organic superconductor technology. Apart from the calculation of band
structure, the theory of the resonating valance bonding state could be useful in
explaining this system. The weak interaction between molecules from supramo-
lecular chemistry forms a resonating valence bonding state. So the crystal could
show semiconductor, conductor, and superconductor properties. The Jahn–Teller
distortion originating from metal coordination compounds now extends to organic
chemistry as representative of energy degeneracy. The International Symposium on
the Jahn–Teller effect, which was initiated by Prof. Muller, is held every 2 years. He
combined the RVB with the Jahn–Teller effect in inorganic superconductors, and it
is also suitable for use with organic superconductors [129]. The research area can be
expanded after the combination of inorganic superconductor units and molecular
crystals [23, 143].

1.6 Summary

Organic materials have received considerably more attention than inorganic-based
materials for use in modern optoelectronic devices, such as organic solar cells,
light-emitting diodes, and field effect transistors, because of their low-cost, easy
deposition, and wide variety and tailorable or tunable properties. This chapter
focuses on the charge transport of organic materials, and some prototype organic
solids are also discussed. Organic superconductors can be obtained from organic
conductors, semiconductors, and insulators under suitable conditions at low tem-
peratures. These materials therefore still represent a challenging and exciting
research field for the near future.

1 Organic Semiconductors, Conductors, and Superconductors 15



References

1. Akamatu H, Inokuchi H, Matsunaga Y (1954) Electrical conductivity of the perylene-
bromine complex. Nature 173:168–169

2. Kepler RG, Bierstedt PE, Merrifield RE (1960) Electronic conduction and exchange
interaction in a new class of conductive organic solids. Phys Rev Lett 5:503

3. Ferraris J, Cowan DO, Walatka V, Perlstein JH (1973) Electron transfer in a new highly
conducting donor-acceptor complex. J Am Chem Soc 95:948–949

4. Greene R, Engler E (1980) Pressure dependence of superconductivity in an organic
superconductor. Phys Rev Lett 45:1587–1590

5. Andres K, Wudl F, McWhan D, Thomas G, Nalewajek D, Stevens A (1980) Observation of
the Meissner effect in an organic superconductor. Phys Rev Lett 45:1449–1452

6. Jerome D, Mazaud A, Ribault M, Bechgaard K (1980) Superconductivity in a synthetic
organic conductor (TMTSF) 2PF6. J de Phys Lettres 41:95–98

7. Fleming RM, Ramirez AP, Rosseinsky MJ, Murphy DW, Haddon RC, Zahurak SM, Makhija
AV (1991) Relation of structure and superconducting transition temperatures in A3C60.
Nature 352:787–788

8. Ganin AY, Takabayashi Y, Jeglic P, Arcon D, Potocnik A, Baker PJ, Ohishi Y, McDonald
MT, Tzirakis MD, McLennan A, Darling GR, Takata M, Rosseinsky MJ, Prassides K (2010)
Polymorphism control of superconductivity and magnetism in Cs3C60 close to the Mott
transition. Nature 466:221–225

9. Tanaka H, Okano Y, Kobayashi H, Suzuki W, Kobayashi A (2001) A three-dimensional
synthetic metallic crystal composed of single-component molecules. Science 291:285–287

10. Mulliken RS (1952) Molecular compounds and their spectra II. J Am Chem Soc 74:811–824
11. Acker DS, Harder RJ, Hertler WR, Mahler W, Melby LR, Benson RE, Mochel WE (1960) 7,

7, 8, 8-Tetracyanoquinodimethane and its electrically conducting anion-radical derivatives.
J Am Chem Soc 82:6408–6409

12. Coffen DL, Chambers JQ, Williams DR, Garrett P, Canfield N (1971) Tetrathioethylenes.
J Am Chem Soc 93:2258–2268

13. Wudl F, Smith GM, Hufnagel EJ (1970) Bis-1, 3-dithiolium chloride: an unusually stable
organic radical cation. J Chem So D Chem Commun 1453–1454

14. Mizuno M, Garito AF, Cava MP (1978) ‘Organic metals’: alkylthio substitution effects in
tetrathiafulvalene-tetracyanoquinodimethane charge-transfer complexes. J Chem Soc Chem
Commun 18–19

15. Zhang B, Zhu D (2012) Molecular-based conducting magnet. Sci China Chem 55:883–892
16. Bright AA, Garito AF, Heeger AJ (1973) Optical properties of (TTF) (TCNQ) in the visible

and infrared. Solid State Commun 13:943–948
17. Coleman LB, Cohen MJ, Sandman DJ, Yamagishi FG, Garito AF, Heeger AJ (1973)

Superconducting fluctuations and the peierls instability in an organic solid. Solid State
Commun 12:1125–1132

18. Bardeen J (1973) Superconducting fluctuations in one-dimensional organic solids. Solid
State Commun 13:357–359

19. Lee PA, Rice TM, Anderson PW (1974) Conductivity from charge or spin density waves.
Solid State Commun 14:703–709

20. McMillan WL (1975) Landau theory of charge-density waves in transition-metal
dichalcogenides. Phys Rev B 12:1187

21. Greene RL, Mayerle JJ, Schumaker R, Castro G, Chaikin PM, Etemad S, LaPlaca SJ (1976)
The structure, conductivity, and thermopower of HMTTF-TCNQ. Solid State Commun
20:943–946

22. Andersen JR, Bechgaard K, Jacobsen CS, Rindorf G, Soling H, Thorup N (1978) The crystal
and molecular structure of the organic conductor 2,3,6,7-tetramethyl-1,4,5,8-
tetraselenafulvalenium 2,5-dimethyl-7,7,8,8-tetracyano-p-quinodimethanide (TMTSF-
DMTCNQ). Acta Crystallogr Sect B 34:1901–1905

16 Y. Yue and B. Zhang



23. Jerome D (1991) The physics of organic superconductors. Science 252:1509–1514
24. Walsh WM, Wudl F, Thomas GA, Nalewajek D, Hauser JJ, Lee PA, Poehler T (1980)

Restoration of metallic behavior in organic conductors by small electric fields. Phys Rev Lett
45:829–832

25. Andrieux A, Jérome D, Bechgaard K (1981) Spin-density wave ground state in the one-
dimensional conductor (TMTSF) 2PF6: microscopic evidence from 77Se and 1H NMR
experiments. J Phys Lett 42:87–90

26. Mortensen K, Tomkiewicz Y, Bechgaard K (1982) Antiferromagnetism in the organic
conductor bis-tetramethyltetraselenafulvalene hexafluoroarsenate. Phys Rev B 25:3319–3325

27. Laukhin VN, Kostyuchenko E, Sushko YV, Shchegolev IF, Yagubskii É (1985) Effect of
pressure on the superconductivity of β-(BEDT-TTF) 2I3. JETP Lett 41:81–84

28. Jérome D (2004) Organic conductors: from charge density wave TTF-TCNQ to
superconducting (TMTSF) 2PF6. Chem Rev 104:5565–5592

29. Coulon C, Delhaes P, Amiell J, Manceau JP, Fabre JM, Giral L (1982) Effect of doping
(TMTSF) 2ClO4 with TMTTF-I. Ambient pressure results: a competition between the
different possible ground states. J de Phys 43:1721–1729

30. Yu W, Zhang F, Zamborszky F, Alavi B, Baur A, Merlic CA, Brown SE (2004) Electron-
lattice coupling and broken symmetries of the molecular salt (TMTTF)2 SbF6. Phys Rev B
70:121101

31. Bechgaard K, Carneiro K, Olsen M, Rasmussen FB, Jacobsen CS (1981) Zero-pressure
organic superconductor: di-(Tetramethyltetraselenafulvalenium)-perchlorate [(TMTSF)2
ClO4]. Phys Rev Lett 46:852

32. Wang HH, Beno MA, Geiser U, Firestone MA, Webb KS, Nunez L, Crabtree GW, Carlson
KD, Williams JM (1985) Ambient-pressure superconductivity at the highest temperature
(5 K) observed in an organic system: beta.-(BEDT-TTF)2AuI2. Inorg Chem 24:2465–2466

33. Kobayashi A, Fujiwara E, Kobayashi H (2004) Single-component molecular metals with
extended-TTF dithiolate ligands. Chem Rev 104:5243–5264

34. Parkin SSP, Engler EM, Schumaker RR, Lagier R, Lee VY, Scott JC, Greene RL (1983)
Superconductivity in a new family of organic conductors. Phys Rev Lett 50:270

35. Yagubskii EB, Shchegolev IF, Laukhin VN, Kononovich PA, Karstovnik MV, Zvarykina
AV, Buravov LI (1984) Normal-pressure, superconductivity in an organic metal (BEDT-
TTF)2I3 [bis (ethylene dithiolo) tetrathiof ulvalene triiodide]. JETP Lett 39:12–16

36. Murata K, Tokumoto M, Anzai H, Bando H, Saito G, Kajimura K, Ishiguro T (1985)
Pressure phase diagram of the organic superconductor β-(BEDT-TTF)2I3. J Phys Soc Jpn
54:2084–2087

37. Taniguchi H, Miyashita M, Uchiyama K, Satoh K, Môri N, Okamoto H, Miyagawa K,
Kanoda K, Hedo M, Uwatoko Y (2003) Superconductivity at 14.2 K in layered organics
under extreme pressure. J Phys Soc Jpn 72:468–471

38. Sasaki T, Sato H, Toyota N (1990) Magnetic breakdown effect in organic superconductor κ-
(BEDT-TTF)2Cu(NCS)2. Solid State Commun 76:507–510

39. Williams JM, Wang HH, Beno MA, Emge TJ, Sowa LM, Copps PT, Behroozi F, Hall LN,
Carlson KD, Crabtree GW (1984) Ambient-pressure superconductivity at 2.7 K and higher
temperatures in derivatives of (BEDT-TTF)2IBr2: synthesis, structure, and detection of
superconductivity. Inorg Chem 23:3839–3841

40. Mori H, Tanaka S, Mori T (1998) Systematic study of the electronic state in θ-type BEDT-
TTF organic conductors by changing the electronic correlation. Phys Rev B 57:12023

41. Bender K, Hennig I, Schweitzer D, Dietz K, Endres H, Keller HJ (1984) Synthesis, Structure
and Physical Properties of a Two-Dimensional Organic Metal, Di[bis(ethylenedithiolo)
tetrathiofulvalene] triiodide, (BEDT-TTF)2

+I3
−. Mol Cryst Liq Cryst 108:359

42. Wang HH, Carlson KD, Geiser U, Kwok WK, Vashon MD, Thompson JE, Larsen NF,
McCabe GD, Hulscher RS, Williams JM (1990) A new ambient-pressure organic
superconductor: (BEDT-TTF)2(NH4)Hg(SCN)4. Physica C 166:57–61

1 Organic Semiconductors, Conductors, and Superconductors 17



43. Rothaemel B, Forró L, Cooper JR, Schilling JS, Weger M, Bele P, Brunner H, Schweitzer D,
Keller HJ (1986) Magnetic susceptibility of α and β phases of di [bis (ethylenediothiolo)
tetrathiafulvalene] tri-iodide [(BEDT-TTF)2I3] under pressure. Phys Rev B 34:704

44. Pokhodnya KI, Sushko YV, Tanatar MA (1987) Singularities of the phase states and of the
metal-insulator phase transition in the a-(BEDT-TTF)2I3 system. Sov Phys JETP 65:795

45. Takano Y, Hiraki K, Yamamoto HM, Nakamura T, Takahashi T (2001) Charge
disproportionation in the organic conductor, α-(BEDT-TTF)2I3. J Phys Chem Solids
62:393–395

46. Hebard AF, Rosseinky MJ, Haddon RC, Murphy DW, Glarum SH, Palstra TTM, Ramirez
AP, Karton AR (1991) Potassium-doped C60. Nature 350:600–601

47. Tanigaki K, Ebbesen TW, Saito S, Mizuki J, Tsai JS, Kubo Y, Kuroshima S (1991)
Superconductivity at 33 K in CsxRbyC60. Nature 352:222–223

48. Kino H, Fukuyama H (1995) Electronic states of conducting organic κ-(BEDT-TTF)2X.
J Phys Soc Jpn 64:2726–2729

49. Seo H (2000) Charge ordering in organic ET compounds. J Phys Soc Jpn 69:805–820
50. Kino H, Fukuyama H (1996) Phase diagram of two-dimensional organic conductors: (BEDT-

TTF)2X. J Phys Soc Jpn 65:2158–2169
51. McKenzie RH, Merino J, Marston JB, Sushkov OP (2001) Charge ordering and

antiferromagnetic exchange in layered molecular crystals of the θ type. Phys Rev B
64:085109

52. Torsten Clay R, Mazumdar SK, Campbell D (2002) Charge ordering in θ-(BEDT-TTF)2X
materials. J Phys Soc Jpn 71:1816–1819

53. Hiraki K, Kanoda K (1998) Wigner crystal type of charge ordering in an organic conductor
with a quarter-filled band: (DI-DCNQI)2Ag. Phys Rev Lett 80:4737

54. Hoffmann R (1963) An extended Hückel theory. I. hydrocarbons. J Chem Phys 39:1397–
1412

55. Mori T, Kobayashi A, Sasaki Y, Kobayashi H, Saito G, Inokuchi H (1984) The
Intermolecular interaction of tetrathiafulvalene and bis (ethylenedithio)-tetrathiafulvalene in
organic metals. Calculation of orbital overlaps and models of energy-band structures. Bull
Chem Soc Jpn 57:627–633

56. Seo H, Hotta C, Fukuyama H (2004) Toward systematic understanding of diversity of
electronic properties in low-dimensional molecular solids. Chem Rev 104:5005–5036

57. Hubbard J (1978) Generalized Wigner lattices in one dimension and some applications to
tetracyanoquinodimethane (TCNQ) salts. Phys Rev B 17:494

58. Mori T (1998) Structural genealogy of BEDT-TTF-based organic conductors I. Parallel
molecules: BETA and BETA″ phases. Bull Chem Soc Jpn 71:2509–2526

59. Miyagawa K, Kawamoto A, Kanoda K (2000) Charge ordering in a quasi-two-dimensional
organic conductor. Phys Rev B 62:R7679

60. Watanabe M, Noda Y, Nogami Y, Mori H (2004) Transfer integrals and the spatial pattern of
charge ordering in θ-(BEDT-TTF)2RbZn(SCN)4 at 90 K. J Phys Soc Jpn 73:116–122

61. Mizoguchi T, Tanaka I, Yoshioka S, Kunisu M, Yamamoto T, Ching WY (2004) First-
principles calculations of ELNES and XANES of selected wide-gap materials: dependence
on crystal structure and orientation. Phys Rev B 70:045103

62. Ōnuki Y, Settai R, Sugiyama K, Takeuchi T, Kobayashi TC, Haga Y, Yamamoto E (2004)
Recent advances in the magnetism and superconductivity of heavy fermion systems. J Phys
Soc Jpn 73:769–787

63. Wojciechowski R, Yamamoto K, Yakushi K, Inokuchi M, Kawamoto A (2003) High-
pressure Raman study of the charge ordering in α-(BEDT-TTF)2I3. Phys Rev B 67:224105

64. Yamamoto K, Yakushi K, Miyagawa K, Kanoda K, Kawamoto A (2002) Charge ordering in
θ-(BEDT-TTF)2RbZn(SCN)4 studied by vibrational spectroscopy. Phys Rev B 65:085110

65. Suzuki K, Yamamoto K, Yakushi K (2004) Charge-ordering transition in orthorhombic and
monoclinic single-crystals of θ-(BEDT-TTF)2TlZn(SCN)4 studied by vibrational
spectroscopy. Phys Rev B 69:085114

18 Y. Yue and B. Zhang



66. Nakamura T, Kinami R, Takahashi T, Saito G (1997) 1H-NMR study of the magnetic
structure in (TMTTF)2 SCN. Synth Met 86:2053–2054

67. Nakamura T, Nobutoki T, Kobayashi Y, Takahashi T, Saito G (1995) 1H-NMR investigation
of the SDW wave-number in (TMTTF) 2Br. Synth Met 70:1293–1294

68. Fujiyama S, Nakamura T (2004) Charge disproportionation in (TMTTF)2SCN observed by
C13 NMR. Phys Rev B 70:045102

69. Chow DS, Zamborszky F, Alavi B, Tantillo DJ, Baur A, Merlic CA, Brown SE (2000)
Charge ordering in the TMTTF family of molecular conductors. Phys Rev Lett 85:1698

70. Zamborszky F, Yu W, Raas W, Brown SE, Alavi B, Merlic CA, Baur A (2002) Competition
and coexistence of bond and charge orders in (TMTTF)2AsF6. Phys Rev B 66:081103

71. Seo H, Fukuyama H (1997) Antiferromagnetic phases of one-dimensional quarter-filled
organic conductors. J Phys Soc Jpn 66:1249–1252

72. Delhaes P, Coulon C, Amiell J, Flandrois S, Toreilles E, Fabre JM, Giral L (1979) Physical
properties of one dimensional conductors. Mol Cryst Liq Cryst 50:43–58

73. Laversanne R, Coulon C, Gallois B, Pouget JP, Moret R (1984) Structural and electrical
properties of (TMTTF)2MF6 salts (M = P, As, Sb). Rôle of the anions. J de Phys Lettres
45:393–399

74. Chiba R, Hiraki K, Takahashi T, Yamamoto HM, Nakamura T (2004) Extremely slow
charge fluctuations in the metallic state of the two-dimensional molecular conductor θ-
(BEDT-TTF)2RbZn(SCN)4. Phys Rev Lett 93:216405

75. Chiba R, Yamamoto HM, Hiraki K, Nakamura T, Takahashi T (2001) Charge ordering in θ-
(BEDT-TTF)2RbZn(SCN)4. Synth Met 120:919–920

76. Chiba R, Yamamoto H, Hiraki K, Takahashi T, Nakamura T (2001) Charge
disproportionation in (BEDT-TTF)2RbZn(SCN)4. J Phys Chem Solids 62:389–391

77. Watanabe M, Nogami Y, Oshima K, Mori H, Tanaka S (1999) Novel pressure-induced 2k F
CDW state in organic low-dimensional compound θ-(BEDT-TTF)2CsCo(SCN)4. J Phys Soc
Jpn 68:2654–2663

78. Takano Y, Hiraki K, Yamamoto HM, Nakamura T, Takahashi T (2001) Charge ordering in
α-(BEDT-TTF)2I3. Synth Met 120:1081–1082

79. Kawamoto A, Miyagawa K, Kanoda K (1997) Deuterated κ-(BEDT-TTF)2Cu[N(CN)2]Br: A
system on the borderof the superconductor–magnetic-insulator transition. Phys Rev B
55:14140

80. Moroto S, Hiraki KI, Takano Y, Kubo Y, Takahashi T, Yamamoto HM, Nakamura T (2004)
Charge disproportionation in the metallic state of α-(BEDT-TTF)2I3. Science 114:399–340

81. Guionneau P, Kepert CJ, Bravic G, Chasseau D, Truter MR, Kurmoo M, Day P (1997)
Determining the charge distribution in BEDT-TTF salts. Synth Met 86:1973–1974

82. Kobayashi H, Kato R, Mori T, Kobayashi A, Sasaki Y, Saito G, Enoki T, Inokuchi H (1984)
Crystal Structures and Electrical Properties of BEDT-TTF Coeipounds. Mol Cryst Liq Cryst
107:33–43

83. Yamamoto T, Uruichi M, Yamamoto K, Yakushi K, Kawamoto A, Taniguchi H (2005)
Examination of the charge-sensitive vibrational modes in bis (ethylenedithio)
tetrathiafulvalene. J Phys Chem B 109:15226–15235

84. Kozlov ME, Pokhodnia KI, Yurchenko AA (1989) Electron molecular vibration coupling in
vibrational spectra of BEDT-TTF based radical cation salts. Spectrochim Acta Part A
45:437–444

85. Ouyang J, Yakushi K, Misaki Y, Tanaka K (2001) Raman spectroscopic evidence for the
charge disproportionation in a quasi-two-dimensional organic conductor θ-(BDT-TTP)2Cu
(NCS)2. Phys Rev B 63:054301

86. Eldridge JE, Homes CC, Williams JM, Kini AM, Wang HH (1995) The assignment of the
normal modes of the BEDT-TTF electron-donor molecule using the infrared and Raman
spectra of several isotopic analogs. Spectrochim Acta Part A Mol Biomol Spectrosc 51:947–
960

1 Organic Semiconductors, Conductors, and Superconductors 19



87. Tajima H, Kyoden S, Mori H, Tanaka S (2000) Estimation of charge-ordering patterns in θ-
ET2 MM′(SCN)4 (MM′ = RbCo, RbZn, CsZn) by reflection spectroscopy. Phys Rev B
62:9378

88. Coomber AT, Beljonne D, Friend RH, Brédas J-L, Charlton A, Robertson N, Underbill AE,
Kurmoo M, Day P (1996) Intermolecular interactions in the molecular ferromagnetic NH4Ni
(mnt)2·H2O. Nature 380:144–146

89. Shimizu Y, Miyagawa K, Kanoda K, Maesato M, Saito G (2003) Spin liquid state in an
organic Mott insulator with a triangular lattice. Phys Rev Lett 91:107001

90. Yamashita S, Nakazawa Y (2010) Heat capacities of antiferromagnetic dimer-Mott insulators
in organic charge-transfer complexes. J Therm Anal Calorim 99:153–157

91. Yamashita M, Nakata N, Senshu Y, Nagata M, Yamamoto HM, Kato R, Shibauchi T,
Matsuda Y (2010) Highly mobile gapless excitations in a two-dimensional candidate
quantum spin liquid. Science 328:1246–1248

92. Pratt FL, Baker PJ, Blundell SJ, Lancaster T, Ohira-Kawamura S, Baines C, Shimizu Y,
Kanoda K, Watanabe I, Saito G (2011) Magnetic and non-magnetic phases of a quantum spin
liquid. Nature 471:612–616

93. Bonniface DW, Braithwaite MJ, Eley DD, Evans RG, Pethig R, Willis MR (1971) Factors
affecting conduction in polymeric complex TCNQ salts. Discuss Faraday Soc 51:131–138

94. Manriquez JM, Yee GT, McLean RS, Epstein AJ, Miller JS (1991) A room-temperature
molecular/organic-based magnet. Science 252:1415–1417

95. Carlegrim E, Kanciurzewska A, Nordblad P, Fahlman M (2008) Air-stable organic-based
semiconducting room temperature thin film magnet for spintronics applications. Appl Phys
Lett 92:163308

96. Lopez N, Zhao H, Ota A, Prosvirin AV, Reinheimer EW, Dunbar KR (2010) Unprecedented
binary semiconductors based on TCNQ: Single-crystal X-ray studies and physical properties
of Cu(TCNQX2) X = Cl. Br Adv Mater 22:986–989

97. Chifotides HT, Schottel BL, Dunbar KR (2010) The π-accepting arene HAT(CN)6 as a halide
receptor through charge transfer: multisite anion interactions and self-assembly in solution
and the solid state. Ang Chem Int Ed 49:7202–7207

98. Miyasaka H, Motokawa N, Matsunaga S, Yamashita M, Sugimoto K, Mori T, Toyota N,
Dunbar KR (2010) Control of charge transfer in a series of Ru2II, II/TCNQ two-dimensional
networks by tuning the electron affinity of TCNQ units: a route to synergistic magnetic/
conducting materials. J Am Chem Soc 132:1532–1544

99. Edwards PR, Johnson CE (1968) Mössbauer hyperfine interactions in tetrahedral Fe(III) ions.
J Chem Phys 49:211–216

100. Tamaki H, Zhong ZJ, Matsumoto N, Kida S, Koikawa M, Achiwa N, Hashimoto Y, Okawa
H (1992) Design of metal-complex magnets. Syntheses and magnetic properties of mixed-
metal assemblies NBu4[MCr(ox)3]x (NBu4

+= tetra(n-butyl)ammonium ion; ox2− = oxalate
ion; M = Mn2+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+). J Am Chem Soc 114:6974–6979

101. Zhang B, Kurmoo M, Mori T, Zhang Y, Pratt FL, Zhu D (2009) Polymorphism in Hybrid
Organic-Inorganic Bilayered Magnetic Conductors (BEDT-TTF)3 (FeIIICl4)2, BEDT-
TTF = bis (ethylenedithio) tetrathiafulvalene. Cryst Growth Des 10:782–789

102. Coronado E, Galán-Mascarós JR, Gómez-García CJ, Laukhin V (2000) Coexistence of
ferromagnetism and metallic conductivity in a molecule-based layered compound. Nature
408:447–449

103. Pop F, Auban-Senzier P, Canadell E, Rikken GLJA, Avarvari N (2014) Electrical
magnetochiral anisotropy in a bulk chiral molecular conductor. Nat Commun 5:3757

104. Pointillart F, Le Guennic B, Cauchy T, Sp Golhen, Cador O, Maury O, Ln Ouahab (2013) A
Series of tetrathiafulvalene-based lanthanide complexes displaying either single molecule
magnet or luminescence-direct magnetic and photo-physical correlations in the ytterbium
analogue. Inorg Chem 52:5978–5990

105. Hannay NB, Geballe TH, Matthias BT, Andres K, Schmidt P, MacNair D (1965)
Superconductivity in graphitic compounds. Phys Rev Lett 14:225

20 Y. Yue and B. Zhang



106. Emery N, Hérold C, d’Astuto M, Garcia V, Bellin C, Marêché JF, Lagrange P, Loupias G
(2005) Superconductivity of bulk CaC6. Phys Rev Lett 95:087003

107. Mitsuhashi R, Suzuki Y, Yamanari Y, Mitamura H, Kambe T, Ikeda N, Okamoto H,
Fujiwara A, Yamaji M, Kawasaki N (2010) Superconductivity in alkali-metal-doped picene.
Nature 464:76–79

108. Wang XF, Liu RH, Gui Z, Xie YL, Yan YJ, Ying JJ, Luo XG, Chen XH (2011)
Superconductivity at 5 K in alkali-metal-doped phenanthrene. Nat Commun 2:507

109. Suzuki R, Sakano M, Zhang YJ, Akashi R, Morikawa D, Harasawa A, Yaji K, Kuroda K,
Miyamoto K, Okuda T (2014) Valley-dependent spin polarization in bulk MoS2 with broken
inversion symmetry. Nat Nanotechnol 9:611–617

110. Kawasugi Y, Yamamoto HM, Tajima N, Fukunaga T, Tsukagoshi K, Kato R (2011) Electric-
field-induced Mott transition in an organic molecular crystal. Phys Rev B 84:125129

111. Chollet M, Guerin L, Uchida N, Fukaya S, Shimoda H, Ishikawa T, Matsuda K, Hasegawa T,
Ota A, Yamochi H (2005) Gigantic photoresponse in ¼-filled-band organic salt (EDO-
TTF)2PF6. Science 307:86–89

112. Cui H, Kobayashi H, Ishibashi S, Sasa M, Iwase F, Kato R, Kobayashi A (2014) A single-
component molecular superconductor. J Am Chem Soc 129:12618–12619

113. Xiao X, Hayashi T, Fujiwara H, Sugimoto T, Noguchi S, Weng Y, Yoshino H, Murata K,
Aruga Katori H (2007) An antiferromagnetic molecular metal based on a new bent-donor
molecule. J Am Chem Soc 129:12618–12619

114. Hayashi T, Xiao X, Fujiwara H, Sugimoto T, Nakazumi H, Noguchi S, Fujimoto T,
Yasuzuka S, Yoshino H, Murata K (2006) A metallic (EDT-DSDTFVSDS)2FeBr4 salt:
antiferromagnetic ordering of d spins of FeBr4-ions and anomalous magnetoresistance due to
preferential π-d interaction. J Am Chem Soc 128:11746–11747

115. Uji S, Shinagawa H, Terashima T, Yakabe T, Terai Y, Tokumoto M, Kobayashi A, Tanaka
H, Kobayashi H (2001) Magnetic-field-induced superconductivity in a two-dimensional
organic conductor. Nature 410:908–910

116. Zhang B, Tanaka H, Fujiwara H, Kobayashi H, Fujiwara E, Kobayashi A (2002) Dual-action
molecular superconductors with magnetic anions. J Am Chem Soc 124:9982–9983

117. Zhang B, Wang Z, Fujiwara H, Kobayashi H, Kurmoo M, Inoue K, Mori T, Gao S, Zhang Y,
Zhu D (2005) Tetrathiafulvalene [FeIII(C2O4)Cl2]: an organic-inorganic hybrid exhibiting
canted antiferromagnetism. Adv Mater 17:1988–1991

118. Zhang B, Wang Z, Zhang Y, Takahashi K, Okano Y, Cui H, Kobayashi H, Inoue K, Kurmoo
M, Pratt FL (2006) Hybrid organic-inorganic conductor with a magnetic chain anion: κ-
BETS2[FeIII(C2O4)Cl2][BETS = Bis(ethylenedithio)tetraselenafulvalene]. Inorg Chem
45:3275–3280

119. Zhang B, Zhang Y, Gao Z, Chang G, Su S, Wang D, Guo Y, Zhu D (2014) Synthesis, crystal
structure, and characterization of the charge-transfer salt (BEDT-TTF)[Fe(C2O4)Cl2]
(CH2Cl2),{BEDT-TTF = Bis(ethylenedithio)tetrathiafulvalene}. Eur J Inorg Chem
24:4028–4032

120. Kubo K, Shiga T, Yamamoto T, Tajima A, Moriwaki T, Ikemoto Y, Yamashita M, Sessini E,
Mercuri ML, Deplano P (2011) Electronic state of a conducting single molecule magnet
based on Mn-salen type and Ni-dithiolene complexes. Inorg Chem 50:9337–9344

121. Ouahab L, Mori T (2014) Molecular conductors. Eur J Inorg Chem 24:3783–3784
122. Zhou B, Shimamura M, Fujiwara E, Kobayashi A, Higashi T, Nishibori E, Sakata M, Cui H,

Takahashi K, Kobayashi H (2006) Magnetic transitions of single-component molecular metal
[Au(tmdt)2] and its alloy systems. J Am Chem Soc 128:3872–3873

123. Alberola A, Coronado E, Galán-Mascarós JR, Giménez-Saiz C, Gómez-García CJ (2003) A
molecular metal ferromagnet from the organic donor bis (ethylenedithio) tetraselenafulvalene
and bimetallic oxalate complexes. J Am Chem Soc 125:10774–10775

124. Zhang B, Zhang Y, Zhu D (2012) (BEDT-TTF)3Cu2(C2O4)3(CH3OH)2: an organic–
inorganic hybrid antiferromagnetic semiconductor. Chem Commun 48:197–199

1 Organic Semiconductors, Conductors, and Superconductors 21



125. Zhang B, Zhang Y, Wang Z, Gao S, Guo Y, Liu F, Zhu D (2013) BETS3[Cu2(C2O4)3]
(CH3OH)2: an organic–inorganic hybrid antiferromagnetic metal (BETS = bisethylene
(tetraselenfulvalene)). Cryst Eng Commun 15:3529–3535

126. Balents L (2010) Spin liquids in frustrated magnets. Nature 464:199–208
127. Bednorz JG, Müller KA (1986) Possible high Tc superconductivity in the Ba–La–Cu–O

system. Zeitschrift für Physik B Condens Matter 64:189–193
128. Müller KA, Bednorz JG (1987) The discovery of a class of high-temperature

superconductors. Science 237:1133–1139
129. Müller KA (2007) On the superconductivity in hole doped cuprates. J Phys Condens Matter

19:251002
130. Anderson PW (1987) The resonating valence bond state in La2CuO4 and superconductivity.

Science 235:1196–1198
131. Pauling L (1933) The calculation of matrix elements for Lewis electronic structures of

molecules. J Chem Phys 1:280–283
132. Pauling L, Wheland GW (1933) The nature of the chemical bond. V. The quantum-

mechanical calculation of the resonance energy of benzene and naphthalene and the
hydrocarbon free radicals. J Chem Phys 1:362–374

133. Pauling L (1938) The nature of the interatomic forces in metals. Phys Rev 54:899
134. Copper DL, Gerratt J, Raimondi M (1986) The electronic structure of the benzene molecule.

Nature 325:396
135. Anderson PW (1973) Resonating valence bonds: A new kind of insulator? Mater Res Bull

8:153–160
136. Moriya T, Takahashi Y, Ueda K (1990) Antiferromagnetic spin fluctuations and

superconductivity in two-dimensional metals-A possible model for high Tc oxides. J Phys
Soc Jpn 59:2905–2915

137. Yamashita S, Nakazawa Y, Oguni M, Oshima Y, Nojiri H, Shimizu Y, Miyagawa K, Kanoda
K (2008) Thermodynamic properties of a spin-1/2 spin-liquid state in a κ-type organic salt.
Nat Phys 4:459–462

138. Komatsu T, Matsukawa N, Inoue T, Saito G (1996) Realization of superconductivity at
ambient pressure by band-filling control in κ-(BEDT-TTF)2Cu2(CN)3. J Phys Soc Jpn
65:1340–1354

139. Isono T, Kamo H, Ueda A, Takahashi K, Kimata M, Tajima H, Tsuchiya S, Terashima T, Uji
S, Mori H (2014) Gapless quantum spin liquid in an organic spin-1/2 triangular-lattice κ–
H3(Cat-EDT-TTF)2. Phys Rev Lett 112:177201

140. Baudron SA, Batail P, Coulon C, Clérac R, Canadell E, Laukhin V, Melzi R, Wzietek P,
Jérome D, Auban-Senzier P (2005) (EDT-TTF-CONH2)6[Re6Se8(CN)6], a metallic kagome-
type organic-inorganic hybrid compound: electronic instability, molecular motion, and
charge localization. J Am Chem Soc 127:11785–11797

141. Shores MP, Nytko EA, Bartlett BM, Nocera DG (2005) A structurally perfect S = 1/2
kagome antiferromagnet. J Am Chem Soc 127:13462–13463

142. Han T-H, Helton JS, Chu S, Nocera DG, Rodriguez-Rivera JA, Broholm C, Lee YS (2012)
Fractionalized excitations in the spin-liquid state of a kagome-lattice antiferromagnet. Nature
492:406–410

143. Williams JM, Schultz AJ, Geiser URS, Carlson KD, Kini AM, Wang HH, Kwok W-K,
Whangbo M-H, Schirber JE (1991) Organic superconductors—new benchmarks. Science
252:1501–1508

22 Y. Yue and B. Zhang



Chapter 2
Conducting Polymers

Yongfang Li

In general, conducting polymers include electronically conducting polymers and
ionically conducting polymers. Ionically conducting polymers are usually called
polymer electrolytes. Electronically conducting polymers can also include conju-
gated conducting polymers and the insulating polymers blending with conducting
materials. In this chapter, the conducting polymers are limited to conjugated con-
ducting polymers, unless otherwise stated.

Traditionally, polymers are thought of as insulators. However, in 1977 a dis-
covery by Alan G. MacDiarmid, Hideki Shirakawa, and Alan J. Heeger et al.
changed the traditional concept. They found that conductivity of polyacetylene—
after doping with electron-withdrawing AsF5—increased ninefold, reaching the
order of 103 S/cm [1, 2]. Soon after this discovery, a series of stable conducting
polymers, including polypyrrole (PPy), polyaniline (PAn), and polythiophene
(PTh), were reported from the end of the 1970s to the beginning of the 1980s,
which greatly promoted the research on conducting polymers. Actually, the con-
ductivity of almost all conjugated polymers can reach the order of 10−3–103 S/cm
after doping. Now we can expand the class of conducting polymers to include all
the doped conjugated polymers.

In 1990, Friends et al. found the electroluminescent properties of poly(p-phe-
nylene vinylene) (PPV) [3] and opened up a new field of polymer light-emitting
diodes (PLEDs) with semiconducting intrinsic conjugated polymers as the active
light-emitting layer. In 1995, Heeger et al. reported bulk-heterojunction polymer
solar cells (PSCs) with a conjugated polymer MEH-PPV as donor and a fullerene
derivative PCBM as acceptor [4], which further extended the research on conjugated
polymers to the field of organic photovoltaics. Since then, conjugated polymer
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optoelectronic materials and devices including PLEDs and PSCs have attracted great
attention all over the world and have developed into hot research fields. Because of
the importance of conjugated polymers, Heeger, MacDiarmid, and Shirakawa were
awarded the Nobel Prize in Chemistry in 2000, in recognition of their great con-
tributions to the discovery and developments of conducting polymers.

The main advantages of conducting polymers are that they possess not only the
electronic and optical properties of metals and inorganic semiconductors, but also
the flexible mechanics and processability of polymers. In addition, there is special
electrochemical redox activity with conducting polymers. Obviously, conducting
polymers, including doped conducting polymers and intrinsic semiconducting
conjugated polymers, will play a key role in the future development of organic
optoelectronic and electrochemical devices.

2.1 Molecular Structure of Conducting Polymers

The unique characteristic of conducting polymers is the conjugated molecular
structure of the polymer main chain where the π-electrons delocalize over the whole
polymer chain. Conjugated polymers become conducting polymers after doping.
Figure 2.1 shows the main chain structures of representative conjugated polymers,
including polyacetylene (PA), polypyrrole (PPy), polyaniline (PAn or PANi),
polythiophene (PT or PTh), poly(p-phenylene vinylene) (PPV), poly(p-phenylene)
(PPP), and polyfluorene (PF).

In the conjugated polymers, polyacetylene shows the simplest main chain
structure composed of an alternate single bond and double bond carbon chain.
According to the locations of the hydrogen atoms on the double bond carbons, there
are two kinds of structures: trans-polyacetylene with the two hydrogen atoms on
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Fig. 2.1 Main chain
structures of several
representative conjugated
polymers
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opposite sides of the double bond carbons and cis-polyacetylene with the two
hydrogen atoms located on the same side of the double bond. trans-Polyacetylene is
a degenerate conjugated polymer which possesses an equivalent structure after
exchanging its double bond and single bond. cis-Polyacetylene and other conju-
gated polymers are nondegenerate conjugated polymers which have non-equivalent
structures after exchanging their double and single bonds.

Among the various conjugated polymers, the main chain structure of polyaniline
(PAn) is a little complicated. Figure 2.2 shows the conjugated main chain structure
of PAn. Commonly, there exist three structure forms: leucoemeraldine (PAn-I)
where x = 1, emeraldine base (EB, PAn-II) where x = 0.5, and pernigraniline (PAn-
III) where x = 0. The molecular structure of PAn in Fig. 2.1 is leucoemeraldine.
Actually, the structure of emeraldine base (EB) is the most important structure for
conducting polyaniline, because proton-acid doping of the EB structure (Fig. 2.4)
turns it into conducting PAn.

2.1.1 Electronic Structure of Intrinsic Conjugated Polymers

Conjugated polymers possess delocalized π-electron structures, including the band
structure of π-valence band and π*-conduction band. In the basic state of the
intrinsic conjugated polymers, all the valence bands are filled by electrons and the
conduction bands are all empty. The difference between the top of the valence band
(the highest occupied molecular orbital, HOMO) and the bottom of the conduction
band (the lowest unoccupied molecular orbital, LUMO) is called the bandgap (Eg)
of the conjugated polymers. The Eg values of most conjugated polymers are in the
range 1.5–3.0 eV. Therefore, the intrinsic conjugated polymers are organic
semiconductors.

The Eg values of conjugated polymers can be measured by absorption spec-
troscopy of the conjugated polymer films. From the absorption edge wavelength
(λedge) of the absorption spectra, Eg can be calculated according to the following
equation:

Eg ¼ 1240
kedge

ðeVÞ

where the unit of λedge is nm.
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Fig. 2.2 Main chain structure of polyaniline
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HOMO and LUMO energy levels of conjugated polymers can be estimated from
onset oxidation and onset reduction potentials measured by electrochemical cyclic
voltammetry [5]. The detailed measurement method is described in Sect. 2.6.4. The
difference between the HOMO and LUMO energy levels of the conjugated poly-
mers also corresponds to Eg values.

When the conjugated polymers were used as electroluminescent materials in
PLEDs, the bandgap Eg of the conjugated polymer determines the emitted color of
the PLEDs, and the HOMO and LUMO energy levels of the polymer influence the
holes and electrons injection efficiency in the devices. Chapter 5 gives a more
detailed discussion of the electroluminescent characteristics of conjugated poly-
mers. For the use of conjugated polymers as donor materials in the active layer of
PSCs, the Eg value of the conjugated polymer determines the absorption wave-
length range of the devices, and the HOMO and LUMO energy levels influence the
exciton dissociation efficiency at the donor/acceptor interface and the open circuit
voltage of the PSCs. Therefore, it is very important to understand the effect of the
molecular structure on the energy bandgap and electronic energy levels of the
conjugated polymers.

The factors influencing the electronic structure and Eg values of the conjugated
polymers are as follows:

1. For the degenerate trans-polyacetylene, Eg values decrease on decreasing the
difference between the alternating single bond length and double bond length.

2. For the conjugated polymers formed by connecting the aromatic rings with
single bonds, such as polypyrrole, polythiophene, and poly(p-phenylene), the
deviation of the conjugated main chain from planar structure between the two
neighboring aromatic rings will result in the increase of the Eg values. The larger
the angle between the two neighboring aromatic rings in the main chain of the
conjugated polymer, the smaller the overlap between the two molecular orbitals
of the conjugated ring units and the higher the Eg values of the conjugated
polymer.

3. The nature of the substituents on the main chain also influences the electronic
structure of the conjugated polymers. The electron-donating substituents up-
shift the LUMO and HOMO energy levels and reduce the Eg of the conjugated
polymers (the up-shift of the HOMO is more than that of the LUMO). The
electron-withdrawing substituents down-shift the LUMO and HOMO energy
levels and also reduce the Eg of the conjugated polymers (the down-shift of the
LUMO is more than that of the HOMO).

4. Copolymerization of conjugated electron-donating (D) unit and electron-
accepting (A) unit results in lower bandgap conjugated D-A copolymers, and the
HOMO and LUMO energy levels can be tuned by selecting suitable donor and
acceptor units in the copolymers. The absorption spectra of the D-A copolymers
are broadened and red-shifted because of the intramolecular charge transfer
between the donor and acceptor units.

5. The existence of quinone structure in the polymer main chain can decrease the
Eg values of the conjugated polymers.
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6. The aggregation of the polymer main chains in the solid state also influences the
Eg and electronic energy levels of the conjugated polymers. The strong inter-
molecular interaction in the planar main chain decreases the Eg of the conju-
gated polymers.

2.1.2 Doping Structures of Conducting Polymers

The distinguished characteristic of conducting polymers is the p-doped and n-doped
states of the conjugated polymer main chains. In the p-doped state, the main chain
of the conducting polymer is oxidized with counteranion doping for keeping the
electron neutrality of the whole molecule. There are holes in the main chains (lost
electrons) which make the conducting polymer p-type conducting. In the n-doped
state, the main chain of the conducting polymer is reduced with countercation
doping for keeping the electron neutrality of the whole molecule. There are elec-
trons in the main chains which make the conducting polymer n-type conductive.

Figure 2.3 shows the p-doped structure of conducting PPy. The positive charge
is delocalized on the PPy main chain. A− represents counteranions such as NO3

−,
ClO4

−, Cl−, TsO−.
The number of counteranions per monomer unit of the conducting polymer (or

the concentration of the charge carrier in the conjugated main chain of the con-
ducting polymer) is called doping degree of the conducting polymer. The maximum
doping degree is related to the main chain structure of the conducting polymers. For
example, the doping degree for polyacetylene is usually 0.1–0.2, it is 0.25–0.35 for
polypyrrole, 0.4–0.5 for polyaniline, and ca. 0.3–0.4 for polythiophene. For the p-
doped polypyrrole, the doping degree of 0.25–0.35 implies that the conjugated
chain including 3–4 pyrrole units can be doped with 1 counteranion (or there is a
hole within the polypyrrole main chain containing 3–4 pyrrole units), as shown in
Fig. 2.3.

The doping processes of conducting polyaniline are related to its structures of
conjugated polyaniline. For leucoemeraldine (PAn-I), the doping process is similar
to polypyrrole, i.e., it can be p-doped by oxidation. The EB, PAn-II can be doped
by protonation, as shown in Fig. 2.4. In the protonation process of the PAn-II, the
positive charge on the proton delocalizes on the whole conjugated main chain of
polyaniline, becoming the positive charge carrier (hole) of the conducting
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Fig. 2.3 p-Doped structure of conducting PPy
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polyaniline. At the same time, the anion of the proton acid becomes the counter-
anion of the conducting polyaniline.

It should be mentioned that the nature of the doping in conducting polymers is
different from that of the doping in inorganic semiconductors. In inorganic semi-
conductors with crystalline structures, doping is realized by replacing some bulk
atoms (such as Si) with outer shell electrons one more or one less than Si to achieve
n-doping or p-doping. The doping concentration is very low. Although the doping
of conjugated polymers with amorphous structure needs charge injection by oxi-
dation or reduction of its conjugated main chain, counterions doping is required for
keeping the charge neutrality. The doping degree is much higher in conducting
polymers where the charge carrier concentration reaches 1021/cm3, which is several
orders higher than that of the inorganic semiconductors. In addition, the doping in
conducting polymers also results in volume expansion and morphology changes
because of the counteranion doping.

2.1.3 Charge Carriers in Conducting Polymers

Novel structures lead to novel charge carriers in conducting polymers. For trans-
polyacetylene with the degenerate basic state, the charge carriers are solitons and
polarons. However, for the basic state nondegenerate cis-polyacetylene, polypyr-
role, polythiophene, polyaniline, etc. the charge carriers are polarons and bipolarons
[6]. The soliton (S) is an unpaired π-electron resembling the charge on free radicals,
which can be delocalized on a long conjugated polymer main chain (trans-poly-
acetylene main chain). The neutral soliton can be oxidized to lose an electron and
form a positive soliton, or it can be reduced to gain an electron and become a
negative soliton. The soliton possesses a spin of 1/2, whereas there is no spin for the
positive and negative solitons. The electronic energy level of the soliton is located
at the middle of the bandgap of the trans-polyacetylene. There is no electron or
there are a couple of electrons on the soliton energy levels for the positive soliton
and negative soliton, respectively.
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Fig. 2.4 Proton-acid doping of emeraldine base polyaniline (EB) and its proton acid doping
structure
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Polarons are the major charge-carriers in conducting polymers including basic
state degenerate trans-polyacetylene and the basic state non-degenerate conjugated
polymers. The positive polaron with positive charge and the negative polaron with
negative charge are denoted as P+ and P−, respectively. P+ is formed after oxidation
of the conjugated polymer main chain and P− is formed after reduction of the
conjugated polymer main chain. The appearance of the polarons produces two new
polaron energy levels in the bandgap of the conjugated polymers. P+ and P−

possess spin of 1/2.
The bipolaron is the charge carrier that possesses double charges by coupling of

two P+ or two P− on a conjugated polymer main chain. The bipolaron has no spin,
and it can be formed when the concentration of polarons are high in the conjugated
polymer main chains. The positive bipolaron and negative bipolaron correspond to
the hole pair or the electron pair.

2.2 Doping Characteristics

As mentioned above, the doping of conducting polymers is natively different from
that in inorganic semiconductors. Doping of conducting polymers can be realized
chemically or electrochemically by oxidation or reduction of the conjugated
polymers.

2.2.1 Chemical Doping

Conducting polyacetylene was discovered by chemical doping [1, 2]. The chemical
doping includes p-type doping and n-type doping.

p-Doping is also called oxidation doping, which refers to the oxidation process
of the conjugated polymer main chain to form polarons. The oxidants I2, Br2, AsF5,
etc. can be used as p-dopants. After p-doping, the conjugated polymer is oxidized
and loses electron to form p-doped conjugated polymer chain, and the dopant gains
an electron to become the counteranion. The following reaction is an example of the
p-doping process:

CPþ 3=2ð ÞI2 ! CPþðI�3 Þ ð2:1Þ

where CP denotes conducting polymers.
n-Doping is also called reduction doping, which refers to the reduction process

of the conjugated polymer main chain to form negative charge carriers. Some strong
reductants, such as alkali metal vapor, Na+(C10H8)

−, etc., can be used as n-type
dopants. After n-doping, the conjugated polymer is reduced and gains electrons to
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form an n-doped conjugated polymer main chain, whereas the dopant losses an
electron to become the countercation. The following reaction is an example of the
n-doping process:

CPþ Naþ C10H8ð Þ�! CP� Naþð Þ þ C10H8 ð2:2Þ

Proton acid doping of polyaniline (see Fig. 2.4) is one kind of chemical doping.

2.2.2 Electrochemical Doping

Electrochemical doping is realized by electrochemical oxidation or reduction of the
conjugated polymers on an electrode.

For electrochemical p-doping, the conjugated polymer main chain is oxidized to
lose an electron (gain a hole) accompanying the doping of counteranions from
electrolyte solution:

CP� e� þ A� � CPþðA�Þ ð2:3Þ

where A− denotes the solution anion, CP+(A−) represents the conducting polymer
with the main chain oxidized and counteranion doped.

For electrochemical n-doping, the conjugated polymer main chain is reduced to
gain an electron accompanying the doping of countercations from electrolyte
solution:

CPþ e� þMþ � CP� Mþð Þ ð2:4Þ

2.3 Conductivity Characteristics

Conductivity is the most important property of conducting polymers. The con-
ductivity of common doped conducting polymers is in the range of 10−3–103 S/cm,
whereas that of the intrinsic conjugated polymers without doping is in the range of
10−9–10−6 S/cm. After doping, conductivity of conjugated polymers increases by
six to ninefold. The highest conductivity reported in the literature is 105 S/cm for
drawing-extended ordering conducting polyacetylene film [7].

Conducting polymers usually have an amorphous structure, in some cases with
ordered domains. The charge-transporting mechanism in conducting polymers is
different from that in the crystalline conducting materials where there exist con-
duction bands and valence bands and the charge carriers can move freely in the
energy bands. In conducting polymers the charge carriers are located in the local
doping energy levels (limited length of conjugated polymer chain) or in a very
narrow doping energy band in the case of ordered domains. The charge carriers can
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move easily on the conjugated polymer main chain, but the charges have to hop for
the transportation between the conjugated polymer chains. The activation energy
for the hopping of the charge carriers is much higher than that of the charge
transportation within the conjugated polymer main chains. Obviously, the charge
transportation in conducting polymers is limited by the hopping between the con-
jugated polymer chains. Therefore, the conductivity of conducting polymers shows
characteristics of hopping transportation.

The conductivity of conducting polymers shows a temperature dependence
similar to that of semiconductors, and it obeys the Mott Variable Range Hopping
(VRH) model:

r Tð Þ ¼ r0exp½� T0=Tð Þ1=ðnþ1Þ� ð2:5Þ

where σ0 is a factor weakly related to temperature, n is the dimension number,
n = 1, 2, 3 indicate that it is one-dimension, two–dimension, and three-dimension
VRH transportation. For the common three dimension system, the conductivity
equation is [8]

r Tð Þ ¼ r3d
0 exp½� T3d

0 =T
� �1=4� ð2:6Þ

where

T3d
0 ¼ c= kBN EFð ÞL3� � ð2:7Þ

In (2.7), c is a constant, kB is the Boltzmann constant, L is the localization length
(effective conjugated chain length), and N(EF) is the state density at the Fermi
energy level.

The conductivity of conducting polymers is closely related to the doping degree
and the degree of ordering of the polymer main chain in the solid film. The doping
degree relates to the charge carrier concentration on the conjugated polymer main
chain. In the low doping degree region (far lower than the saturated doping degree),
the conductivity of the conjugated polymers increases linearly with increasing the
doping degree of the conjugated polymers.

2.4 Absorption Spectra

Intrinsic conjugated polymers and doped conducting polymers can be distinguished
by absorption spectra. There is a strong absorption peak in the near-infrared (NIR)
region for doped conducting polymers, caused by the existence of the polaron and
bipolaron energy levels within the bandgap of the conjugated polymers. The NIR
absorption disappears after dedoping for the intrinsic conjugated polymers.
Figure 2.5 shows the absorption spectra of doped and dedoped polypyrrole films,
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which represents the typical characteristic absorption spectra of the doped con-
ducting polymer and the dedoped intrinsic conjugated polymer. There is an
absorption peak at ca. 400 nm for the dedoped intrinsic polypyrrole film, which
corresponds to the π-π* transition absorption of the conjugated polypyrrole main
chain. After doping, a strong and broad absorption peak appears in the NIR region
from 700 nm to ca. 2,000 nm, which corresponds to the polaron and bipolaron
energy levels.

The absorption spectra of doped and intrinsic polyaniline are more complicated
in comparison with those of polypyrrole because of the three structure change of
polyaniline. Figure 2.6 shows the absorption spectra of polyaniline in different
doping states. The absorption spectrum of doped (proton-acid doping or electro-
chemical doping) conducting polyaniline is similar to that of the doped conducting
polypyrrole: there is a strong and broad absorption peak in the NIR region (peaked
at ca. 950 nm) which corresponds to the polaron and bipolaron absorption, and an
absorption peak at ca. 320 nm corresponding to the π-π* transition absorption of the

Fig. 2.5 Absorption spectra
of polypyrrole. a Doped state.
b Intrinsic state

Fig. 2.6 Absorption spectra
of polyaniline.
a Pernigraniline (PAn-III).
b Proton-acid-doped
conducting polyaniline
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conjugated polyaniline main chain. With the reduction (dedoping) of the con-
ducting polyaniline, the NIR absorption is weakened and finally disappears when it
is reduced to its intrinsic conjugated state. Conducting polyaniline can be proton-
acid dedoped to become a pernigraniline (PAn-III) which shows an absorption
spectra with two strong absorption peaks at ca. 320 and 630 nm, respectively. The
absorption peak at ca. 320 nm corresponds to the π-π* absorption of the conjugated
polyaniline main chain, whereas the absorption peak at ca. 630 nm can be ascribed
to the electron transition between the HOMO of the benzo-structure and the LUMO
of the quinone-structure of PAn-III.

Figure 2.7 shows the absorption spectra of several representative intrinsic con-
jugated polymers including polyfluorene (PFO), MEH-PPV, poly(3-hexylthioph-
ene) (P3HT), and poly(3-hexylthienylene-vinylene) (P3HTV). All the spectra
correspond to the π-π* absorption of the conjugated polymer main chains. The
bandgap (Eg) of the conjugated polymers can be calculated from its absorption
edge. It can be seen from Fig. 2.7 that the absorption edges of PFO, MEH-PPV,
P3HT, and P3HTV are 443, 568, 669, and 749 nm, respectively. From the
absorption edge wavelength, the bandgaps of PFO, MEH-PPV, P3HT, and P3HTV
can be calculated to be 2.8, 2.18, 1.85, and 1.66 eV, respectively. The results
indicate that inserting a carbon–carbon double bond between the benzene or thio-
phene rings in the polymer main chain can reduce the bandgap and red-shift the
absorption spectra of the conjugated polymers significantly.

The characteristics of the absorption spectra of conjugated polymers play a
crucial role in the applications of PSCs. Broad and strong absorption in the visible
and NIR regions is pursued for the high performance polymer photovoltaic mate-
rials to harvest solar light efficiently.

Fig. 2.7 Absorption spectra
of the intrinsic PFO, MEH-
PPV, P3HT, and P3HTV
films
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2.5 Solubility

Conducting polymers are usually insoluble and infusible because of their rigid
conjugated main chain, which limits their application. There are several strategies to
solve the problems as discussed in the following. In 1992, Cao et al. [9] from
UNIAX company prepared soluble conducting polyaniline (by counteranion
induced solubility) and solved the difficulty of processing of conducting polymers,
which paved the way for large-scale application of conducting polymers.

2.5.1 Effect of Substituents on Solubility
of Conjugated Polymers

Conjugated polymers without substituents are all insoluble. Attaching appropriate
flexible side chains (substituents) can make the conjugated polymers soluble in
organic solvents. For example, polythiophene without substituents is insoluble in
any solvent, whereas the hexyl-substituted polythiophene derivative P3HT is sol-
uble in organic solvents such as toluene, chlorobenzene, dichlorobenzene, etc. In
addition, for application as electroluminescent polymers or photovoltaic polymers,
the side chains can also tune the bandgap and electronic energy levels (HOMO and
LUMO energy levels) of the conjugated polymers. The bandgap determines the
color of the PLEDs with the conjugated polymer as active layer, and it influences
the photovoltaic properties of the conjugated polymers in PSCs. The HOMO and
LUMO energy levels are very important for improving the optoelectronic perfor-
mance of conjugated polymers.

Bredas et al. [10] studied the effect of electron-donating or electron-accepting
ability of the substituents on the electronic energy levels of PPV derivatives by
quantum chemistry calculation with the VEH method. They calculated the energy
bandgap (Eg), ionization potential (IP) (which corresponds to the HOMO energy
level with IP = −HOMO), and electron affinity (EA) (which corresponds to the
LUMO energy level with EA = −LUMO) of the PPV derivatives. The calculation
results are listed in Table 2.1. The Eg values calculated are in good agreement with
those obtained from the absorption edges of their absorption spectra, indicating that
the theoretical calculation results are quite reliable. It can be seen from Table 2.1
that IP and EA values of the PPV derivatives substituted by electron-donating
alkoxy groups decreased in comparison with those of PPV without substituents,
with more decrease of IP than EA. IP and EA values of the PPV derivatives
substituted by electron-withdrawing cyano groups increased in comparison with
those of PPV without substituents, with more increase of EA than IP. Irrespective of
the electron-donating or electron-withdrawing substitution, the Eg values of the
PPV derivatives are reduced to some extent.
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2.5.2 Effect of Substitution on the Conductivity
of Conducting Polymers

Actually, for doped conducting polymers, substitution by flexible side chains is not
a good method for solving their solubility, because it usually results in a conduc-
tivity decrease in the conducting polymers. For example, the conducting polypyr-
role with a long alkyl substituent on the 3- or 4-position or the N-position of its
pyrrole ring is soluble in organic solvents, but conductivity of the conducting
polypyrrole is decreased significantly to ca. 0.001 S/cm. The reason for the con-
ductivity decrease is that introducing a substituent on the conducting polymer main
chain results in distortion of the conjugated main chain, thereby decreasing the
conjugation degree and the conductivity of the conducting polymers.

The best way to make conducting polymers soluble is the counteranion induced
method proposed by Yong Cao et al. [9]—using proton acid and acid containing
anions with flexible side chain [such as dodecyl-benzene sulfonic acid (DBSA)] to
make the doped polyaniline soluble. This is the most successful method, and
polyaniline film prepared from conducting polyaniline solution possesses high
conductivity. Yong Cao et al. prepared conducting polyaniline film from polyani-
line solution, and the conductivity of the conducting polyaniline film reached 102 S/
cm [9], which is higher than that of conducting polyaniline films prepared by
electrochemical polymerization or other methods.

Table 2.1 Electronic
properties of PPV and its
derivatives calculated by the
VEH method

PPV and its derivatives Eg/eV IP/eV EA/eV

n

2.32 5.05 2.73

OCH3

H3CO
n

2.07 4.72 2.65

NC n

2.17 5.27 3.10

CN
n

2.24 5.15 2.91

OCH3

H3CO NC
n

1.97 5.12 3.15

OCH3

OCH3

OCH3

H3CO

CN

NC n

1.74 5.08 3.34
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2.6 Electrochemical Properties

Electrochemical doping/dedoping property is one of the most important properties
of conducting polymers, because many applications of conducting polymers,
including electrode materials for batteries, electrochromic materials, modified
electrodes, and enzyme electrodes, etc., are based on the electrochemical properties.
Studies on the electrochemical properties of conducting polymers are mainly
focused on the electrochemical redox potentials, reversibility, and reaction mech-
anism of the doping/dedoping processes.

Electrochemical studies of conducting polymers are commonly carried out for
the conducting polymer films on the working electrode. The electrochemical redox
processes of conducting (or conjugated) polymers are quite complicated in com-
parison with common organic and inorganic molecules. Electrochemical oxidation
of conjugated polymers is accompanied by the intercalation (or doping) of count-
eranions from electrolyte solution, so that the oxidation process of the conjugated
polymers is often called oxidation doping (or p-doping). The electrochemical
reduction of conjugated polymers is accompanied by the intercalation (or doping)
of countercations from electrolyte solution, so the reduction process of the conju-
gated polymers is often called reduction doping (or n-doping). In addition to the
common electron transfer on the electrode/electrolyte interface, there are both
diffusion of counterions in the conjugated polymer films and expansion of the
conjugated polymer films because of the intercalation of the counterions.

2.6.1 Electrochemical Properties of Conducting Polypyrrole

Polypyrrole (PPy) is a typical p-type conjugated polymer with a very low oxidation
potential in the range of ca.−0.6 to 0.3 V versus SCE, which makes the p-doped
conducting PPy stable, and the neutral PPy is very easily oxidized into its p-doped
state. The electrochemical properties of conducting PPy are therefore usually
inferred from the reduction (dedoping)/re-oxidation (doping) of the p-doped PPy.
Generally, the electrochemical reaction of conducting PPy can be expressed as
follows:

PPyþðA�Þ þ e� � PPy0 þ A� ð2:8Þ

where PPy+(A−) denotes the oxidation-doped conducting PPy doped with count-
eranion A− (p-doped PPy), PPy0 denotes the neutral (intrinsic) PPy.

The electrochemical reduction/re-oxidation (dedoping/doping) processes of
conducting PPy (p-doped PPy) in aqueous solution are closely related to count-
eranions of the electrolyte and the pH values of the aqueous solution. Figure 2.8
shows cyclic voltammograms of nitrate-doped conducting PPy film in neutral and
weakly acidic NaNO3 aqueous solutions [11]. In weak acidic pH 3 solution, there are
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a couple of reversible reduction/re-oxidation peaks in the potential range of 0.3 to
−0.8 V versus SCE (Fig. 2.8b). The reaction processes can be expressed as that in
reaction (2.8). In neutral (pH 7) aqueous solution there are two reduction peaks in the
potential range of 0.3 to −0.8 V versus SCE (Fig. 2.8a), which corresponds to the
two doping structures (oxidation doping structure and proton-acid doping structure)
of conducting PPy [12]. Actually, the electrochemical reduction of conducting PPy
in acidic solutions also involves two reduction processes, the two reduction peaks in
the acidic solutions being mixed together to show a broad reduction peak in the
cyclic voltammogram. The in situ absorption spectra at different reduction potentials
of conducting PPy in a pH 3 NaNO3 aqueous solution clearly indicate the two
reduction processes in the potential ranges of 0.3 to −0.3 V and −0.3 to −0.8 V
versus SCE [11]. For the re-oxidation of the reduced PPy (neutral PPy), it is
reversible if the upper-limited potential is lower than 0.3 V versus SCE. However, if
the oxidation potential is higher than 0.5 V versus SCE, some overoxidation of the p-
doped PPy takes place. The potential value where the overoxidation starts to occur is
closely related to the pH value of the aqueous electrolyte solution—the higher the
pH value, the lower the potential [13]. That is, PPy is more easily overoxidized in an
alkaline aqueous solution than in an acidic solution.

The electrochemical reduction and re-oxidation processes of conducting PPy are
closely related to the nature of the counteranions in the polymer films and the
anions in the electrolyte solutions [14]. When the anions are small and spherically
shaped such as NO3

− and Cl− etc., the reversible reduction/re-oxidation peaks can
be observed in the cyclic voltammograms of the conducting PPy, as mentioned
above. However, if the counteranions in the polymer film are large surfactant anions
such as TsO−, the reduction peak appears at a much lower potential because of the
difficulty of dedoping the large counteranions, and the solution cations dope into the

Fig. 2.8 Electrochemical cyclic voltammograms of PPy(NO3
−) in 0.5 mol/L NaNO3 aqueous

solution at potential scan rate of 20 mV/s: a neutral (pH 7) aqueous solution; b acidic (pH 3)
aqueous solution
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conducting PPy instead of the anions dedoping [11]. The reaction mechanism of the
conducting PPy film with large counteranions such as TsO− can be expressed as
follows:

PPyþðA�Þ þ e� þMþ � PPy0ðMþA�Þ ð2:9Þ

On the other hand, if the cyclic voltammetry is performed in an aqueous solution
containing the electrolyte salt with large anions such as TsO−, the first reduction of
PPy(NO3

−) is the dedoping of NO3
− counteranions, but the re-oxidation process is

irreversible because of the difficulty of TsO− doping [14]. In a weak alkaline
aqueous solution, the original counteranions in the conducting polypyrrole are
exchanged with strong nucleophilic OH− anions [15]. Then the reduction and re-
oxidation of the PPy film are accompanied with the dedoping and redoping of OH−

[15, 16]. In a strongly alkaline aqueous solution, the doping structure of conducting
PPy is unstable and the conjugated polymer chain of PPy can be degraded and
destroyed, which results in the loss of conductivity and electrochemical properties
of PPy [13].

For the PPy film prepared from an organic electrolyte, an abnormal cyclic
voltammogram of the PPy film can be observed in an organic electrolyte solution.
There is a high overpotential for the first reduction process of the PPy, and no
reduction current until −0.6 V versus SCE, as shown in Fig. 2.9. The reoxidation
and the redox processes from the second cycle resumes to normal cyclic voltam-
mograms of PPy in weakly acidic aqueous solutions [17]. This phenomenon can be
explained as follows. The diffusion coefficient of the counteranions during the first
reduction of PPy in organic electrolyte solution is very small and the solvation
energy of the counteranions with organic solvent molecules is also very small, so it
is very difficult for the counteranions to dedope from PPy into the organic solution.
Then the solvated cations with organic solvent molecules dope into PPy when the
potential reaches a very low value (negative potential), which increases the diffu-
sion coefficient of the counteranions in PPy and makes the following redox reaction
reversible [17].

Fig. 2.9 Cyclic
voltammograms of PPy
(ClO4

−) in 0.5 mol/L NaClO4

PC solution. The numbers in
the figure indicate the
sequence of the cyclic
potential scan
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2.6.2 Electrochemical Properties of Conducting Polyaniline

Polyaniline (PAn) is another important and well studied conducting polymer. There
are many potential applications (such as electrode materials for batteries and sup-
ercapacitors, anti-corrosion materials, modified electrodes and biosensors, etc.) for
PAn based on its electrochemical properties. Therefore, understanding the elec-
trochemical properties is of great importance for the applications of PAn.

The most important characteristic of PAn, in comparison with other conducting
polymers such as PPy, etc., is its proton-acid doping. The proton-acid doping benefits
the preparation of conducting PAn solutions by counteranions induced proton-acid
doping [9], but it also makes the doped PAn unstable in basic and neutral aqueous
solutions. The doped PAn is easily dedoped by removing proton-acid in the basic and
neutral solutions. PAn becomes an insulator and loses its electrochemical activity
after the dedoping. Therefore, the doped PAn is stable only in acidic solutions and the
electrochemical properties of PAn are mainly studied in acidic electrolyte solution.

There are two reversible redox processes for PAn in an acidic aqueous solution
in the potential range of −0.5 to 0.7 V versus SCE. Figure 2.10 shows cyclic
voltammograms of polyaniline doped with NO3

− counteranions (PAn(NO3
−)) in an

acidic (pH 1.5) 1 mol/L NaNO3 aqueous solution [18]. Based on the in situ
absorption spectra at different redox potentials, the redox processes in the potential
range of 0.3 to −0.5 V versus SCE are similar to that for PPy in acidic solution [see
reaction (2.8)], the reduction peak and reoxidation peak corresponding to the
dedoping and redoping of conducting polyaniline. From 0.3 to 0.7 V versus SCE,
there is another unique redox processes for PAn; the doped PAn is further oxidized
into the completely oxidized polyaniline pernigraniline (PAn-III) (see Fig. 2.2)
which loses conductivity. In addition, weak redox peaks often appear in the
potential range of 0.3–0.5 V versus SCE, as shown in Fig. 2.10. These weak middle
redox peaks are related to an overoxidation structure of PAn. If the electropoly-
merization potential during the preparation of PAn is higher than 0.8 V, or the
upper-limit potential during cyclic voltammetry is higher than 0.8 V versus SCE,
the middle redox peaks appear in the cyclic voltammograms [19].

2.6.3 Electrochemical Properties of Polythiophene
and Other Conjugated Polymers

In comparison with polypyrrole and polyaniline, polythiophene (PTh) possesses a
narrower bandgap and a higher oxidation doping potential, which indicates that
polythiophene can be both p-doped by oxidation and n-doped by reduction. The
higher oxidation doping potential results in lower stability of the p-doped con-
ducting polythiophene in comparison with conducting polypyrrole and polyaniline
[20]. Nevertheless, it makes the neutral polythiophene stable which guarantees the
optoelectronic applications of polythiophene as semiconducting polymers.
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Organic solutions are used in the measurement of the electrochemical properties
of polythiophene, because of the high oxidation potential for p-doping and lower
reduction potential for n-doping of polythiophene. Figure 2.11 shows the cyclic
voltammogram of poly(3-hexylthiophene) (P3HT) in 0.1 mol/L Bu4NPF6 aceto-
nitrile solution. It can be seen that there are a couple of redox peaks in the higher
potential range (0–0.6 V vs. Ag/Ag+) corresponding to the p-doping/dedoping of
polythiophene, and a couple of redox peaks in the negative potential range (−1.8 to
−2.6 V vs. Ag/Ag+) corresponding to the n-doping/dedoping of polythiophene.

For other semiconducting conjugated polymers used in optoelectronic devices,
such as PLEDs or PSCs, their electrochemical properties are similar to those of
polythiophene mentioned above. Usually, there are a couple of redox peaks in a

Fig. 2.10 Cyclic
voltammograms of PAn
(NO3

−) in pH 1.5, 1 mol/
L NaNO3 aqueous solution
with a potential scan rate of
40 mV/s

Fig. 2.11 Cyclic
voltammogram of poly(3-
hexylthiophene) (P3HT) in
0.1 mol/L Bu4NPF6
acetonitrile solution
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higher positive potential range and a couple of redox peaks in the negative lower
potential range, the only difference being their different onset oxidation/reduction
potentials or their redox peak potentials in their cyclic voltammograms.

2.6.4 Electrochemical Measurement of HOMO and LUMO
Energy Levels of Conjugated Polymers

As mentioned above, in the cyclic voltammograms of polythiophene and other
optoelectronic conjugated polymers, there are a couple of redox peaks in the higher
potential range corresponding to their p-doping/dedoping and a couple of redox
peaks in the lower (negative) potential range corresponding to their n-doping/
dedoping (see Fig. 2.11). Actually, the onset p-doping (oxidation) potential cor-
responds to the HOMO energy level and the onset n-doping (reduction) potential
corresponds to the LUMO energy level of the conjugated polymers. Therefore,
cyclic voltammetry has commonly been used to measure the HOMO and LUMO
energy levels of the conjugated polymers [5, 21, 22]. The HOMO and LUMO
energy levels of the conjugated polymers can be calculated from the following
equations:

HOMO ¼ �e ðEox þ CÞ eVð Þ; LUMO ¼ �e ðEred þ CÞ eVð Þ

where Eox and Ered denote the onset oxidation and onset reduction potentials with
the unit of V respectively, and C is a constant related to the reference electrode (RE)
used in the measurement of onset redox potentials. C usually takes the value of 4.4
for the RE of SCE, 4.8 for the RE of Fc/Fc+ (Fc denotes ferrocene), and 4.71 for the
RE of Ag/Ag+ [21, 22]. If silver wire was used as the RE, C could be 4.39 [5] (it
should be calibrated with the ferrocene).

2.7 Optoelectronic Properties of Conjugated Polymers

Since the discovery of PLEDs by Friend et al. in 1990, [3] the optoelectronic
properties of conjugated polymers have drawn great attention. There are detailed
descriptions for the optoelectronic properties and their applications in PLEDs,
PSCs, and organic field effect transistors for various conjugated polymers and
conjugated organic molecules in Chaps. 3, 5, and 7 in this book.
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2.8 Synthesis of Conducting Polymers

Conducting polymers can be prepared by chemical or electrochemical oxidation
polymerization or by chemical catalytic synthesis.

2.8.1 Electrochemical Oxidation Polymerization
of Conducting Polymers

The electrochemical preparation of conducting polymers is usually carried out
through oxidative polymerization of their corresponding monomers by constant
current, constant potential, or cyclic voltammetry in a potential range. The elec-
tropolymerization is performed in an electrolyte solution which contains solvent,
electrolyte salt, and the monomer. There are many factors influencing the elec-
tropolymerization processes, such as solvents, supporting electrolyte salts, con-
centration of the monomers, and pH value of the electrolyte solutions, as well as
polymerization potential, current, temperature, etc. Among these factors, the
polymerization potential of the monomers is the most important. Table 2.2 lists the
oxidation polymerization potentials of the most important monomers pyrrole, ani-
line, and thiophene. The lower oxidation polymerization potentials of pyrrole and
aniline make the electropolymerization of polypyrrole and polyaniline easier, and it
can be performed in aqueous solutions.

2.8.1.1 Electrochemical Preparation of Conducting Polypyrrole

Polypyrrole (PPy) is one of the most stable and environmentally-friendly conducting
polymers. In 1979, Diaz et al. [23] first reported the preparation of a PPy film with
conductivity (σ) of ca. 100 S/cm by electrochemical polymerization on Pt electrode
in acetonitrile solution. Pyrrole can be electropolymerized both in organic and in
aqueous solutions benefitting from its lower polymerization potential. Of course,
aqueous solutions are the first selection for the preparation of conducting PPy.

The anions of the salts in the aqueous solutions influence conductivity of the as-
prepared PPy films by electrochemical polymerization [24]. Flexible PPy films with

Table 2.2 Oxidative polymerization potential of monomers and conductivity of the as-prepared
conducting polymers [39]

Monomer Polymerization potential
(V vs. SCE)

Conductivity of the as-prepared
polymers (S/cm)

Pyrrole 0.7 30–100

Aniline 0.8 1–20

Thiophene 1.6 10–100
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σ higher than 100 S/cm can be produced with the surfactant anions such as tosylate,
benzene sulfonate, etc. Warrant et al. found that the acidity of the anions plays an
important role in the conductivity of PPy films, the stronger the conjugated acids of
the anions the higher the conductivity of the PPy films prepared from the anion-
containing solution [25]. The concentration of the electrolyte anions also plays an
important role. The concentration of the anions should be no lower than 0.1 M; too
low an anion concentration leads to poor PPy films. The concentration of pyrrole
monomer is usually 0.1 M.

The effect of solvent on the electropolymerization depends on the donor number
(DN) of the solvent [26]. The low DN solvents, such as acidic water, propylene
carbonate (PC), and CH3NO2, are very important for getting high conductivity of
the as-prepared PPy films. The solvent effect can be explained from the cation
radical coupling mechanism of the electropolymerization. High DN value of the
solvent means high nucleophilicity or strong basicity. The solvent molecules with
high DN value attack the cation radical formed by oxidation of pyrrole, which
hampers the electropolymerization [26]. Water is a special solvent with changeable
acidity by changing pH values. The optimum pH value of the aqueous solutions for
pyrrole electropolymerization is between pH 2 and pH 5.5 [27].

The quality of the conducting PPy films can be improved by using a small
amount of additive in the electrolyte solutions for the electropolymerization. By
adding surfactant additives in the electrolyte solution, the smoothness, mechanical
property, and conductivity of the as-prepared PPy films improves significantly [28,
29]. By using nonionic surfactant nonylphenol polyethyleneoxy (10) as an additive
in the TsONa aqueous solution, the tensile strength of the PPy film produced from
the solution reached 127 MPa, which is five times higher than that of the PPy film
prepared without the surfactant additive [28].

As mentioned above, the electropolymerization can be performed with a
potential-controlled method (constant potential or cyclic voltammetry) or a current-
controlled method (constant current). In the potential-controlled method, the
potential should be controlled no higher than 0.75 V versus SCE (usually at 0.65–
0.70 V vs. SCE) for the electropolymerization of PPy. For the electropolymeriza-
tion with constant current, Maddison et al. [30]. studied the effect of current and
found that the PPy film with highest conductivity was obtained at 2.8 mA/cm2.
Good PPy films can usually be obtained at the current density of 1–2 mA/cm2.

Temperature is another factor that influences electropolymerization. High quality
PPy films can usually be obtained at lower temperatures (lower than 20 °C). At higher
temperature, defect structures of PPy are easily formed, which results in lower
conductivity.

For the mechanism of the electrochemical oxidation polymerization of PPy,
Genies et al. [31] proposed a cation-radical polymerization in 1983. According to
this mechanism, after applying the oxidation polymerization potential, pyrrole
monomers are first oxidized into cation radicals on the anode, then two cation-
radicals couple together to form a dimer with losing two protons. The dimer is
oxidized into its cation radical more easily than monomer because of its lower
oxidation potential. The cation radical of the dimer couples with other cation
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radicals to make a trimer or longer chain of polymer, and so on. The PPy films
produced by electropolymerization should be in its p-doping (oxidized) state,
because the p-doping potential of the polymer is much lower than the oxidation
potential of the monomers. The cation radical mechanism can successfully explain
the effect of solvent and solution anions on the electropolymerization. However, it
fails to explain the effect of pH values of the electrolyte solutions. Qian et al. [32]
modified the cation radical mechanism and proposed a pre-protonation cation-
radical polymerization mechanism to elucidate the pH value effect on the elec-
tropolymerization. They think pyrrole monomer is first protonated on its β-carbon,
which benefits the formation of the pyrrole cation radical. Then the polymerization
follows the cation-radical mechanism.

The cation-radical mechanism and the modified mechanism with pre-protonation
doesn’t consider the effect of solution anions on the electropolymerization. Actually,
the concentration and nature of the solution anions influence the oxidative poly-
merization rate and the quality of the as-prepared PPy films significantly. Therefore,
the solution anions should take part in the electropolymerization processes. In
addition, the coupling process of two cation-radicals in the cation-radical mechanism
is unreasonable because the two cation radicals with positive charge should expel
each other when one approaches to another for coupling. Based on this consideration,
Li proposed an anion-participated cation-radical polymerization mechanism [33].
This mechanism proposes that pyrrole monomers and solution anions competitively
adsorb on the anode under the oxidation polymerization potentials, and the cation-
radicals formed on the anode should combine with solution anions to form neutral
cation-anion pairs. Then the cation radical-anion pairs couple together to form a
dimer with losing two anions and two protons. The experimental results of compe-
tition doping of two kinds of anions into PPy during pyrrole polymerization support
the anion-participated mechanism [34].

2.8.1.2 Electrochemical Preparation of Polyaniline

Polyaniline (PAn) can be prepared electrochemically in a strongly acidic aqueous
solution at ca. 0.8 V versus SCE. However, the PAn product prepared by elec-
trochemical polymerization is powder attached to the electrode, which cannot form
flexible films as do electropolymerized PPy and polythiophene (PTh). Therefore,
the electrochemical preparation of PAn is mainly for deposition of a PAn modified
electrode for electrochemical studies and for some applications in electrocatalysis,
sensors, and electrode materials in lithium batteries.

Common electrolyte solution for the electrochemical preparation of PAn is 0.1 M
aniline in 1 M H2SO4, HCl, HClO4, or HBF4 aqueous solutions. Conductivity of the
electropolymerized PAn is usually of the order of 10−1 * 101 S/cm. The electrop-
olymerization of aniline in the acidic aqueous solutions at a constant potential (such
as 0.8 V vs. SCE) often produces PAn with partial overoxidation [35]. Therefore,
cyclic voltammetry in a potential range (such as −0.15 to 0.78 V vs. SCE [36]) is
usually preferred for the preparation of a high quality PAn product.
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2.8.1.3 Electrochemical Preparation of Polythiophene

The most important characteristic of thiophene electrochemical polymerization is its
high polymerization potential of 1.6 V versus SCE (see Table 2.2), which requires
the electrochemical polymerization of thiophene to be performed in organic solu-
tion and the conducting polythiophene (PTh) produced is easily overoxidized
during the electropolymerization. Therefore, much effort has been devoted to
decreasing the polymerization potential with various strategies. Diaz et al. [37] and
Garnier et al. [38] studied the effect of substituents of thiophene on the polymer-
ization potential (see Table 2.3). The oxidative polymerization potentials of bithi-
ophene (dimer of thiophene) and the thiophene derivatives with the electron-
donating substituents are obviously decreased, which benefits the
electropolymerization.

Tourillon and Garnier [39] prepared polythiophene (PTh) electrochemically at
1.6 V versus SCE on a Pt anode in a solution of CH3CN + 0.1 M
(Bu)4NClO4 + 0.01 M thiophene (containing ca. 0.01 M water) with Ar pretreat-
ment (bubbling) for 15 min. They obtained PTh film with a conductivity of 10–
100 S/cm. They found that the pretreatment of the polymerization solution by Ar
bubbling is very important. Without the Ar pretreatment to remove oxygen in the
electrolyte solution, the conductivity of the as-prepared PTh films is only ca. 0.1 S/
cm. The PTh films deposited on the anode are easily overoxidized in the presence of
oxygen and water at the high electropolymerization potential. Sato et al. [40]
performed the electropolymerization of thiophene in a dry solution (removed water
carefully) under an Ar atmosphere, and they obtained the PTh film with the high
conductivity of 190 S/cm.

Thiophene derivatives with electron-donating substituents, such as alkyl or
alkoxy groups, show lower oxidative polymerization potentials, which is beneficial
for the electropolymerization. For example, the oxidative polymerization potential

Table 2.3 Oxidative
polymerization potential of
thiophene and it derivatives
[38]

Monomers Oxidative polymerization
potential (V vs. SCE)

Thiophene (T) 1.65

2,2′-Bithiophene (2,2′-bT) 1.20

3-Methyl thiophene (3-MeT) 1.35

3-Bromothiophene (3-BrT) 1.85

3,4-Dibromo thiophene (3,4-BrT) 2.00

3,4-Dimethyl thiophene (3,4-
MeT)

1.25

3,4-Methyl ethyl thiophene
(3,4-MeEtT)

1.26

3,4-Diethyl thiophene (3,4-EtT) 1.23

3-Thiomethyl thiophene
(3-SCH3T)

1.30
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of 3-methyl thiophene (3-MeT) dropped to 1.35 V in comparison with 1.65 V for
thiophene (see Table 2.3). The conductivity of poly(3-methylthiophene) [P(3-
MeT)] film, prepared in a solution of 0.2 M 3-methylthiophene, 0.03 M Et4NPF6,
PC (removing water carefully) at 5 °C under an Ar atmosphere, reached 450–510 S/
cm [40]. 3-Methoxythiophene can be electropolymerized in an aqueous solution
thanks to its lower polymerization potential with the substitution of strong electron-
donating methoxy group [41].

Poly(3,4-ethylenedioxythiophene) (PEDOT) has drawn much attention recently
because of its broad applications in transparent electrode materials, antistatic
painting, solid state capacitors, and the electrode buffer layer material on ITO
electrodes for PLEDs and PSCs. PEDOT can also be prepared by the electropo-
lymerization of its monomer EDOT. The polymerization potential of EDOT is
1.49 V versus SCE which is lower than that of thiophene. By using dimer of EDOT
as the monomer, the potential can be decreased further to 0.84 V versus SCE [42].

The polymerization potential of bithiophene is 1.20 V versus SCE, decreased by
0.45 V in comparison with that of thiophene. The lower polymerization potential
makes the bithiophene easy to electropolymerize. Therefore, many researchers
prepare PTh by the electropolymerization of bithiophene [43, 44]. The oxidative
polymerization potential of terthiophene decreases further [45]. However, the
molecular weight and conductivity of the PTh films prepared from bithiophene and
terthiophene are lower than that of the PTh films obtained from thiophene, probably
because of lower molecular weight of the conducting polythiophene due to the
larger size of bithiophene and terthiophene.

In 1995, Shi et al. [46] electropolymerized thiophene in very strongly acidic
boron trifluoride/ethylene ether (BFEE) solution, and obtained high quality PTh
films with strong mechanical properties. The polymerization potential of thiophene
dropped to ca. 1 V versus SCE in the BFEE solution. To improve further the ionic
conductivity of the BFEE solution, Li et al. [47] used a mixed solution of BFEE and
acetonitrile. By adding 10–20 % acetonitrile to the 0.1 mol/L Bu4PF6 BFEE
electrolyte solution, the oxidative polymerization potential is decreased to 1.2–
1.3 V versus SCE, and a PTh film with conductivity of ca. 120 S/cm was prepared
by such electropolymerization.

The electropolymerization mechanism of thiophene should be very similar to
that of the pyrrole electropolymerization [33].

2.8.2 Chemical Polymerization of Conducting Polymers

The chemical oxidation preparation of conducting polymers is performed in solu-
tion by using oxidants such as FeCl3 and (NH4)2S2O8, etc., and it is easy to enlarge
the production scale with the chemical polymerization. Chemical polymerization is
the most important method for the preparation of PAn, and it can also be used to
produce conducting PPy.
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2.8.2.1 Chemical Preparation of PAn

Similar to the electropolymerization of aniline, the chemical polymerization of
aniline also has to be performed in a strongly acidic aqueous solution. A typical
chemical polymerization method for the preparation of PAn in laboratory was
reported by MacDiarmid et al. in 1986 [48]. They performed the chemical poly-
merization in 1 mol/L HCl solution by using (NH4)2S2O8 as oxidant. The detailed
preparation processes are as follows: 2 mL (0.022 mol) aniline was dissolved in
120 mL, 1 mol/L HCl solution, and the solution was cooled to 5 °C in an ice-water
bath. At the same time, 0.025 mol (NH4)2S2O8 was added to 40 mL 1 mol/L HCl
solution to prepare the (NH4)2S2O8 solution. Under vigorous stirring of the aniline
HCl solution, the 40 mL (NH4)2S2O8 HCl solution was dropped into the aniline
HCl solution drop by drop, then allowed to react for 8 h with vigorous stirring at 0 °
C. The precipitate was collected and dried to obtain the HCl doped conducting
polyaniline (PAn-HCI) powder.

The PAn-HCl powder can be further treated by putting it into 0.1 mol/L NH3

aqueous solution for 3 h under stirring to get dedoped emeraldine base PAn. The
emeraldine base PAn can be dissolved in NMP, then the solution can be used to
prepare PAn films. The emeraldine base PAn can also be used to prepare con-
ducting PAn solution by appropriate proton-acid doping [9].

2.8.2.2 Chemical Preparation of PPy

PPy can also be prepared by chemical polymerization in aqueous solutions.
However, the product is conducting PPy powder, different from the conducting PPy
film prepared on electrodes by the electropolymerization mentioned above.

He et al. [49] prepared conducting PPy by the chemical polymerization of
pyrrole with FeCl3 as oxidant in an aqueous solution. By using 3 % poly(vinyl-
alcohol) (PVA) additive in the solution of 0.18 mol/L dodecyl-benzenesulfonic acid
(DBSA, used as dopant), 0.18 mol/L pyrrole, and 0.26 mol/L FeCl3 (used as
oxidant), conducting PPy powder with a conductivity of 43.18 S/cm (for the
compressed pellets of the PPy powder) was obtained.

The chemical polymerization method can also be used to prepare conducting
PPy nanotubes or nanofibrils by performing the chemical polymerization of pyrrole
in polycarbonate template membranes [50].

2.9 Summary

Conjugated polymers possess a doped conducting state and a neutral semicon-
ducting state, which lead to different applications. The doped conducting state could
be found applications in the fields of electrode materials for batteries, electro-
chromics and super-capacitors, anti-static and anti-corrosion materials, electrolyte
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capacitors, transparent electrodes, chemical and biosensors, etc. The neutral
(intrinsic) semiconducting state makes these materials applicable in PLEDs, PSCs,
polymer field effect transistors, etc. Table 2.4 summarizes the properties and
applications of some representative conjugated polymers.

In comparison with inorganic semiconductors for optoelectronic applications,
conjugated polymers possess the advantages of easy structural design, easy syn-
thesis, good film-forming properties, and flexibility. However, there are some
drawbacks to the conjugated polymers, such as poorer stability, lower charge carrier
mobility, difficulty in forming ordered structure, etc. How to overcome the draw-
backs by structural design and to realize large scale applications is the challenge for
researchers in the field of conjugated polymers. At present, the hot research topics
are the design and synthesis of highly stable conjugated polymers with high
luminescent quantum efficiency, broad absorption, narrow bandgap, high charge
carrier mobility, and suitable LUMO and HOMO energy levels for the applications
in PSCs and PLEDs etc.

Since the discovery of conducting polyacetylene in 1977, the studies of con-
ducting polymers have achieved great progress and have developed into a multi-
discipline science. Conducting polymers including intrinsic semiconducting
conjugated polymers are still a hot research fields in polymer science, materials
science, and optoelectronic materials and devices. I am sure the studies on con-
ducting polymers will make further great progress in the near future. Optoelectronic
materials and devices will reach every corner of our lives.
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Chapter 3
Organic Semiconductors for Field-Effect
Transistors

Weifeng Zhang and Gui Yu

Abstract An important application of organic semiconductors is to fabricate
organic field-effect transistors (OFETs) which are essential building blocks for the
next generation of organic circuits. In terms of molecular size or molecular weight,
organic semiconductors can be divided into small-molecule and polymer semi-
conductors, and thus their corresponding OFETs can also be categorized into
organic small molecule OFETs and polymer field-effect transistors (PFETs). On the
basis of the main charge carriers transporting in OFET channels, organic semi-
conductors can be further divided into p-type, n-type, and ambipolar semicon-
ducting materials. According to the characteristic of the organic semiconductors,
the OFETs can be classified into two types: organic thin film transistors (OTFTs)
and organic single crystal transistors. In any kind of OFET devices, organic
semiconductor materials are the core; their properties determine the performance of
the electronic devices. Therefore, the design and synthesis of high performance
organic semiconductor materials are the basis and premise of the wide application
of OFET devices. In the past few decades, great progress has been made in
developing organic semiconductors. Besides organic semiconducting materials,
there are many other factors influencing the performance of OFETs including
device configuration, processing technique, and other devices physical factors, etc.
In the following, a brief review of the development of p-type, n-type, ambipolar
organic semiconductors and their field-effect properties is given. The history,
mechanism, configuration, and fabrication methods of OFET devices and main
performance influencing factors of OFETs are also introduced.
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3.1 Introduction

3.1.1 Overview

Organic conjugated molecules are the basis of the design of new organic functional
materials. These large π-conjugated systems provide chemists with plenty of
inspiration for developing new functional materials. At the beginning of the
twentieth century, McCoy and Moore predicted that “people are likely to produce
organic metal conductors free of metal elements”. In 1970, Wudl successfully
synthesized the organic conjugated electron-donor tetrathiafulvalene (TTF). In
1973, Ferraris et al. found that TTF and organic conjugated electron-acceptor
7,7,8,8-tetracyanoquinodimethane (TCNQ) formed a charge-transfer complex with
high conductive properties, then inaugurated a new era of organic conductors and
superconductors. Organic semiconductors are a new and important extension of the
organic conjugated molecules research field, and their excellent optical, electrical,
and magnetic properties have received close attention in both academia and
industry in recent years.

An important application of organic semiconductors is to fabricate organic field-
effect transistors (OFETs) which are essential building blocks for the next gener-
ation of organic circuits. OFETs have wide potential applications, such as radio
frequency identification tags, flexible displays, electronic paper, electronic skin and
sensors, and so forth [1]. Compared with traditional silicon-based materials, organic
semiconductors have attracted particular attention because of their unique design-
ability of structure and tunability of properties, light weight, and ability to be
flexible and transparent [4–6]. According to the characteristics of organic semi-
conductors, OFETs can be subdivided into two types: organic thin film transistors
(OTFTs) fabricated by thin films of organic semiconductors and organic single
crystal transistors fabricated by single crystal organic semiconductors. OTFTs can
be fabricated over a large area at low cost. This advantage is the reason behind the
rapid progress of OFETs based on thin film technology [7, 8]. However, because
their characteristics are often strongly affected by imperfect thin film structure and
insufficient purity of organic materials, thin film transistors commonly exhibit an
exponential decrease of the mobility of field-effect charge carriers. Therefore, thin
film transistors cannot reflect intrinsic electronic properties of organic semicon-
ductors [9, 10]. On the other hand, because of their perfect molecular arrangements,
free of grain boundaries and minimized charge traps, single crystal transistors tend
to display higher performances than those of thin films counterparts, and are suit-
able to be used as a tool to study intrinsic electronic properties of organic semi-
conductors and the physical limitations in the performance of OFETs. Hence, well-
ordered, continuous films, especially crystalline films, are being seriously investi-
gated for high performance OFET applications.

In terms of molecular size or weight, organic semiconductors can be subdivided
into small-molecule semiconductors and polymer semiconductors, and thus their
corresponding OFETs can also be divided into organic small molecule OFETs and
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polymer field-effect transistors (PFETs). On the basis of the main charge carriers
transporting in OFET channels, organic semiconductors can be further divided into
p-type, n-type, and ambipolar semiconducting materials. The three kinds of organic
semiconductors have made great progress in the past decade. However, in com-
parison to p-type organic semiconducting materials, n-type, and bipolar counter-
parts are still rare.

3.1.2 History and Work Principle of OFETs

3.1.2.1 Brief History

In 1930, Lilienfeld [11] first put forward the principle of the field-effect transistor
(FET). In the patent he proposed that a field-effect transistor behaves as a capacitor
with a conducting channel between a source and a drain electrode. When voltage
was applied to the gate electrode, the amount of charge carriers flowing through the
system could be controlled. In 1960, Kahng and Atalla designed and prepared the
first field-effect transistor using a metal-oxide-semiconductor [12]. Afterwards,
field-effect transistors based on inorganic semiconductors had been expensively
investigated and introduced the world to the age of silicon-based semiconductors.
However, with the rising costs of materials and manufacturing, as well as public
interest in more environmentally friendly electronics materials, scientists also began
the discovering work of organic semiconductor-based electronics in the following
years. In 1982, Ebisawa et al. [13] prepared a capacitor using organic semicon-
ductors . The device was fabricated by using polyacetylene as the semiconductor,
polysiloxane as dielectric, aluminum as gate, and gold as source and drain elec-
trodes. Though the device only showed a few percent current modulations when it
worked, the potential of thin film transistors was recognized. In 1986, Tsumura
et al. [14] developed the first OFETs utilizing an insoluble film of an organic
macromolecule, polythiophene, as a semiconductor. In 1988, a soluble form of
polythiophene was developed by Jen et al. and applied to fabricate OFETs by
Assadi et al. [15]. The report ignited excitement about the possibility of printable
semiconductor systems which could be made with the same economies of scale as
printed paper media.

In recent years, lots of soluble small-molecule and polymer semiconductors have
been developed. The studies related to electrodes and insulators also continue to be
developed and refined. Moreover, better fabrication techniques have contributed to
improved device performance and reduced deposition cost and time. In addition,
continuing effort has led to an improved understanding of the relationship between
material structures and their charge transport properties. Nowadays, OFETs stand at
another new starting point. Remarkable progress has been made. For example,
some polymer-based and small-molecule-based devices both exhibited mobilities
over 10 cm2 V−1 s−1, which can be competitive with amorphous silicon
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semiconductors. However, the overall development of OFETs still lags behind the
demand in the organic electronics field. The inadequacy mainly affects device
stability and replicability as well as mobility.

3.1.2.2 Work Principle of OFETs

An OFET can be regarded as a plate capacitor consisting of a gate electrode and
organic semiconducting layer. The device is operated as follows. When a gate
voltage is pulsed, the carriers accumulate near the dielectric layer/organic layer
interface and form a conductive channel. Carriers are then injected from the source
electrode into the organic layer and transport takes place through the conductive
channel to the drain electrode. The work principle of OFETs is illustrated in more
detail in Fig. 3.1:

Fig. 3.1 Schematic work principles of OFETs: a linear regime; b start of saturation regime at
pinch-off; c saturation regime and corresponding current–voltage characteristics. Reprinted with
permission from [16]; © 2007, American Chemical Society
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1. Linear regime. When no source–drain bias is applied, the charge carrier con-
centration in the transistor channel is uniform. When a small source–drain
voltage (VD ≪ VG − VT) is applied, the charge concentration becomes distrib-
uted as a linear gradient in the channel, in which the current flowing through the
channel is directly proportional to VD (Fig. 3.1a).

2. Pinched off. As the source–drain voltage is further increased, a point
VD = VG − VT is reached, at which the channel is “pinched off.” There is no
longer any potential difference between the gate and the drain electrode in the
conductive channel near the drain electrode; this point is regarded as “pinched
off” voltage. A depletion area is also formed near the drain electrode, in which
there are no charge carriers left (Fig. 3.1b).

3. Saturation regime. Further increasing the source–drain voltage does not sub-
stantially increase the current but leads to an expansion of the depletion region
and thus a slight shortening of the channel. Under this circumstance, the tran-
sistor operates in the saturation regime (Fig. 3.1c).

Different to inorganic semiconductors, organic semiconductors often show a low
conductivity, and consequently OFETs usually operate in accumulation mode. In
the case of p-channel OFETs, holes should be accumulated in the conductive
channel by injecting holes from the source electrode into the semiconductor, which
requires the semiconductor molecules to be stable as cations [17]. In contrast, in the
case of n-channel OFETs, the electrons should be accumulated in the conducting
channel, and the semiconductor molecules should be stable as anions. Hence, p-
channel OFETs operate with negative gate voltages, whereas n-channel transistors
operate with positive gate voltages (see Fig. 3.2). In fact, an organic semiconductor
can transport holes and electrons in different degrees at the same time; however, it is
difficult to measure both hole and electron transport properties most times.
Moreover, charge transport may be heavily affected by other factors such as work
function of the source–drain electrode, the interface between gate insulator and
semiconducting layer, device configuration, etc., one organic semiconductor
material affording different behaviors in different conditions. For example, pentene
is a common p-type material; however, n-type [18] and even ambipolar charac-
teristics [19] can be observed in FET devices with different configurations. Thus,
deciding one semiconductor is p-type, n-type, or ambipolar should only depend on
the property of the FET device.

3.1.2.3 Performance Evaluation System of OFETs

The electric properties of OFETs are generally gauged by two characteristics and
three parameters. The two characteristics are (1) the output characteristics, IDS − VD

and (2) the transfer characteristics, IDS − VG (see Fig. 3.3). The three parameters
are:

1. Charge transport mobility, μ, which is the drift velocity of carriers under unit
electric field. Depending on the nature of the semiconductor and electrodes
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Fig. 3.2 Ideal energy level diagram of an OFET. a When no voltage is applied; b–e when
operated in electron accumulation (b, d) and hole accumulation (c, e) mode. Reprinted with
permission from [17]; American Chemical Society

Fig. 3.3 Representative FET characteristics of p-type OFET: output characteristics (left) and
transfer characteristics (right). Reprinted with permission from [20]; American Chemical Society
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used, the channel formed can be p-type; μh is used when holes (electron deficient
species) are the charge carriers, or n-type, and μe is used where electrons
function as carriers. Charge transport mobility can be subdivided into μ of linear
regime and μ of saturation regime which is very often used. The two kinds of
charge transport mobilities are calculated by the following equations.
For linear regime:

IDS ¼ WCi

L
l VG � VTð ÞVD

For saturation regime:

IDS ¼ WCi

2L
l VG � VTð Þ2

where W is channel width, L is channel length, Ci is capacitance of the insulator,
μ is field-effect mobility, VG is gate voltage, and VT is threshold voltage.

2. On/off current ratio, Ion/Ioff, the ratio of the maximum on state current to the
minimum off-state current.

3. Threshold voltage, VT, the minimum gate voltage required to turn on the
transistor.

A representative output and transfer characteristic of p-type OFET is shown in
Fig. 3.3 [20]. The ultimate goal for organic semiconductors should be application in
electronics, and thus the stability and replicability of OFETs are elements of the
performance evaluation system. In a certain sense, these two elements are the most
important.

3.1.3 Device Configuration and Processing Technique
of OFETs

3.1.3.1 Device Configuration

The device configuration of OFETs can be subdivided into four different types as
shown in Fig. 3.4 [21]: bottom gate/top contact (BGTC—Fig. 3.4a); bottom gate/
bottom contact (BGBC—Fig. 3.4b); top gate/bottom contact (TGBC—Fig. 3.4c);
and top gate/top contact (TGTC—Fig. 3.4d). The device configuration has an
important influence on the performance of OFETs. For thin film transistors, bottom
contact devices typically exhibit less than half the effective drive current of top
contact devices, although bottom contact devices are more easily integrated into
low-cost manufacturing processes, and smaller device feature sizes can be obtained
through photolithographic techniques. The device configurations also have as great
an influence on single crystal transistors as on thin film transistors. Moreover,
besides affording minimal contact resistance, the device configuration adopted also
needs to avoid the adverse effects brought about by subsequent deposition on single
crystals because of their low thermal stability.
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3.1.3.2 Processing Technique for OFETs

Processing Technique for Thin Film OFETs

A wide diversity of methods has been adopted to prepare organic thin films for the
fabrication of OFET devices since the first OFET was reported [14, 15]. The
vacuum deposition technique may result in high-quality thin films, and has been
widely adopted for the preparation of small-molecule semiconductor OFETs.
Because of its freedom from solvents, the vacuum deposition method usually
results in high-quality thin films. To avoid decomposition and degradation of small-
molecule semiconductors during the sublimation process, a high-vacuum envi-
ronment, typically lower than 10−4 Pa, should be adopted. In addition, deposition
conditions, including sublimation rate, substrate temperature, etc., have an impor-
tant influence on thin film morphology. Solution-processed techniques are widely
used to deposit organic thin films mainly because of the low cost of such processes
and the facility of obtaining large-area films by printing techniques. Moreover,
when either decomposition or degradation happens during the sublimation process,
it is necessary to adopt solution-processed techniques. Many elements such as
solvent, concentration, evaporation temperature and rate, and substrate properties as
well as the organic semiconductor itself can also affect the quality of the thin films.
Solution-processed techniques for the preparation of organic thin films include spin-
coating, dip-coating, drop-casting, zone-casting, the Langmuir–Blodgett (LB)

Fig. 3.4 Four types of OFETs device configuration (OSC: Organic Semiconductor). a Bottom
gate/top contact (BGTC). b Bottom gate/bottom contact (BGBC). c Top gate/bottom contact
(TGBC). d Top gate/top contact (TGTC).
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technique, printing, and solution-shearing. Of these, spin-coating is the most
commonly used solution-processed technique. The technique can provide uniform
thin films of both the polymers and small molecules. The rotation speed adopted has
a great influence on the thickness and morphology of thin films. Dip-coating, drop-
casting, and zone-casting are three very convenient methods without the require-
ment of complex and/or expensive equipment. The techniques relate to self-
assembled processes and can afford high orientation thin films. The LB technique is
mainly used for amphiphilic molecules. Among the diverse methods used to fab-
ricate organic thin films, the most exciting is the printing technique. Among the
types of printing technique available, microcontact printing and ink-jet printing are
considered to show the most promise. Solution-shearing is a new technique for
organic semiconductors in which lattice strain is used to increase charge carrier
mobilities by introducing greater electron orbital overlap between organic mole-
cules. Using solution processing to modify molecular packing through lattice strain
should aid the development of high-performance, low-cost organic semiconductor
devices [22].

Processing Technique for Single Crystal OFETs

The growth methods of single crystals can be subdivided into the physical vapor
transport technique (PVT) [23] and the solution-processed technique. The PVT can
be used to provide high-quality organic single crystals. The equipment is very
similar to the tube furnace, which requires a carrier gas to achieve an improved
removal of impurities. Solution-processed techniques are also used to prepare
organic single crystals. The solubility and intermolecular interactions are internal
factors that determine the crystal growth, the solvent, the concentration, the
deposition temperature, and the atmosphere being the major external factors. The
solution-processed techniques could also be subdivided into the single solvent
system and the solvent-exchange system. Of these, the solvent-exchange system
involves two solvents, in one of which the organic semiconductor material is highly
soluble and in the other almost insoluble. In the next step, the single crystals need to
be deposited to obtain the corresponding transistors. There are also several kinds of
techniques, which are different to those of their thin film counterparts. Of these, the
electrostatic-bonding technique is where organic single crystals are placed onto pre-
deposited electrodes to form a contact via an electrostatic force [24]. The technique
could eliminate any potential damage to crystals during device fabrication, and is
also convenient when one needs to change the position of the crystals in order to
investigate the anisotropic properties. Nonetheless, electrostatic bonding always
leads to a poor contact between the crystal and the drain/source electrodes. The
drop-casting technique is where the single crystals grow directly onto pre-patterned
drain/source electrode pairs [25]. Because the technique can improve contact
between the semiconductor and the drain/source electrodes, it is widely used for the
deposition of organic thin films and single crystals. In order to avoid the adverse
effects brought about by subsequent deposition on single crystals, the BGBC
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configuration is usually adopted in FET devices. The deposition parylene dielectric
technique uses parylene as the dielectric layer, avoiding either thermal- or solvent-
based damage to the organic single crystals [26]. Upon this, the device configu-
ration of top gate could be used for organic single crystals transistors. Shadow mask
techniques using a copper grid, gold wire, fiber, or organic ribbon as a shadow
mask are widely adopted to deposit drain/source electrodes of crystal FET devices
with BGTC configuration [27, 28]. This technique could exhibit a better contact
between the organic single crystals and the drain/source electrodes, and between the
crystals and the dielectric layer. Moreover, the technique makes it possible to
investigate the anisotropy on an individual single crystal because it permits sig-
nificant scaling down of the channel length in order to adapt the crystal size and to
form a good contact. The gold layer glue technique involves placing a gold film
directly onto the single crystals as drain/source electrodes [27]. This can eliminate
the thermal irradiation and maintain good contact of the top contact mode. When
using this technique, asymmetric electrodes can be obtained with relative ease using
only two different electrode films.

3.1.4 Factors Influencing the Performance of OFETs

3.1.4.1 Factors Related to Semiconducting π-Conjugated Systems

There are many factors influencing the FET properties of organic semiconductors;
however, there is no doubt that the most important factor is the semiconductor
itself. All factors influencing the charge carrier injection and transport related to
organic semiconductors are discussed in the following content.

HOMO and LUMO Energy Level

The whole motion process of charge carriers in the semiconduting material involves
two stages including charge injection and charge transport. The energy levels of the
highest occupied molecular orbitals (HOMOs) and the lowest unoccupied molec-
ular orbitals (LUMOs) have a large influence on charge carrier injection. In theory,
all organic semiconductors should be able to conduct both holes and electrons, but
the differences in internal reorganization energies or work functions of the elec-
trodes relative to the HOMO and LUMO energy levels of the semiconducting
material in the transistors can favor one type of charge transport [29]. At present,
the most commonly used metal for source and drain electrodes in OFETs is gold,
with a high work function of around 5.1 eV. Some low work function metals such
as calcium, magnesium, or aluminum are also used to help electron injection.
However, these metals are not environmentally stable. Thus, in order to obtain
effective charge injection, p-type, n-type, and ambipolar semiconductors should
have suitable HOMO, LUMO, and HOMO/LUMO energy levels to match with the
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high work functions of source and drain electrodes, respectively. This is because the
mismatch between the HOMO or LUMO energy level and work function of the
electrodes may cause the reduction of the measured mobility, though not affect the
intrinsic mobility directly. The performance of OFET devices depends largely on
the efficiency of the charge-transport processes; at the microscopic level, one of the
major parameters governing the transport properties is the amplitude of the elec-
tronic transfer integrals between adjacent organic semiconducting molecules.
Transfer integral means the splitting of the frontier molecular orbital between
adjacent molecules (the HOMO and LUMO energy levels) and is extremely sen-
sitive to the molecular packing (which is discussed in Section “Packing Mode in
Solid State”). There is no doubt that increasing the transfer integral helps to increase
the mobility. In other words, large splitting of the HOMO/LUMO energy levels
tends to produce the higher hole/electron mobility [6, 30].

In addition, the HOMO and LUMO energy levels also have an important
influence on the device stability. Nowadays, there are fewer accounts of n-type than
p-type organic semiconductors, primarily because of the inherent instability of
organic anions in the presence of air and water [8, 31], and problems with oxygen
trapping within these materials [32, 33]. In most cases, the mobilities of the n-type
OFETs can be one or even several orders of magnitude higher when taking pre-
cautionary measures to exclude atmospheric oxygen and water in vacuum or inert
atmosphere. Thus, in order to fabricate OFETs with high performance, the organic
semiconductors used should have suitable HOMO or LUMO energy levels.
Specifically, when gold is the most commonly used metal for source and drain
electrodes in OFETs, the HOMO energy level of p-type semiconductors should
locate around −5.1 ± 0.3 eV, and the LUMO energy level of n-type semiconductors
should locate close to −4.0 eV [6].

Packing Mode in Solid State

The packing mode of organic semiconductors in the solid state also have an
important influence on their FET properties. Besides the transfer integral, reorga-
nization energy can also affect intrinsic mobility of organic semiconductors [34].
The reorganization energy is the energy loss when a charge carrier passes through a
molecule. The reorganization energy must be sufficiently low to facilitate charge
transport. Reorganization energy is also extremely dependent on the the packing
mode of the organic molecules in combination with the conjugation length, degree,
and packing of the organic molecules [30]. A highly dense and ordered molecule
packing motif is beneficial to get a small reorganization energy. A large π-conju-
gated system also exhibits low reorganization energy. The reasons for this are that a
larger π-conjugated system can stabilize the +1 cation, and larger π-conjugated
systems with electron-withdrawing groups can stabilize the −1 anion.

The packing mode of organic small-molecule semiconductors in the solid state
can be divided into four types as shown in Fig. 3.5: (1) herringbone packing
without π–π overlap between adjacent molecules; (2) slipped π-stacking between
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adjacent molecules; (3) one-dimensional lamellar packing, and (4) two-dimensional
lamellar packing. Of the four kinds of packing modes, one-dimensional and two-
dimensional lamellar packing mean main one-dimensional and two-dimensional
charge carrier hopping pathways, respectively. Of these, the two-dimensional
charge carrier hopping pathway is believed to be the most efficient for charge
transport because it can increase the transfer integrals to the maximum and transport
the charge carriers through the shortest route [35–37]. For polymer semiconductors,
the packing modes include face-on and edge-on orientation of the polymer mole-
cules on the substrates (Fig. 3.6). The possible charge transport pathways of
polymer films can be subdivided into intrachain transport, along the π-conjugation
direction, interchain transport, along the π-stacking direction or alkyl stacking
direction. Although high performance FET devices usually adopt an edge-on ori-
entation, face-on orientation can also afford high performance.

Fig. 3.5 Molecular packing motifs in crystals. a Herringbone packing without π–π
overlap. b Slipped π-stacking between adjacent molecules. c One-dimensional lamellar packing.
d Two-dimensional lamellar packing [38]. Reprinted with permission from [6]. Copyright 2012,
The American Chemical Society

Fig. 3.6 a Possible charge transport mechanisms in crystalline polymer films (using P3HT for
illustration): intrachain transport, along the π-conjugation direction, interchain transport, along the
π-stacking direction and alkyl stacking direction. b Face-on and c edge-on orientation of the
polymer molecules on the substrates [39]. Reprinted with permission from [6]. Copyright 2012,
The American Chemical Society
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Size/Molecular Weight Related to Polymers

More recently, the influence of molecular weight on the electronic properties of
donor–acceptor conjugated copolymers has been examined, with field-effect
mobilities improving significantly with increasing molecular weight [40]. For
example, the thin film transistors based on (poly[(4,4-dihexadecylcyclo-penta-[2,1-
b:3,4-b′]dithiophene)-2,6-diyl-alt-(2,1,3-benzothiadiazole)-4,7-diyl] with molecular
weight of 11, 16, 25, and 35 kg mol−1 exhibited hole mobilities of 0.28, 0.59, 1.2,
and 3.3 cm2 V−1 s−1, respectively, displaying a nearly linear increase in transistor
performance with increasing molecular weight [41]. The increased performances
are accompanied by important changes in the thin film morphology: systems with
high molecular weight often exhibit reduced crystallinity and more isotropic films,
potentially leading to larger values for charge-carrier mobility [42]. Many opera-
tions, including optimizing organic and organometallic reaction conditions, have
been used to achieve high molecular weights of polymers [43–45].

Impurities and Purification of Organic Semiconductors

Impurities here refer to compounds that have a different chemical structure than the
compound nominally under investigation and which appear in small concentrations
mainly as side products of the chemical synthesis. The presence of impurities can
have a serious negative impact on the function of organic semiconductors because
impurities can introduce charge carriers or traps within the material, leading to
erroneous results [4]. Thus, from a synthetic perspective, preparative routes that
minimize difficult-to-remove by-products are growing in importance [46]. In order
to remove the impurities or side products effectively, a number of techniques have
been used in the synthetic processing of organic semiconductors. The common
techniques are as follows:

1. Recrystallization: widely used in purification of organic semiconductor samples.
The solubility difference between the target compound and impurities in typical
solvents is utilized to eliminate gradually any impurities. This procedure can be
carried out using hot filtration or solvent evaporation at room temperature.
However, for semiconductor samples showing a minimal association between
temperature and solubility, a kind of “multi-solvent recrystallization” precipi-
tation technique can be adopted, which purifies by slow diffusion of a poor
solvent into a saturated solution of a target compound in a good solvent.

2. Column chromatography and gel permeation chromatography: for soluble
organic small-molecule semiconductors, column chromatography techniques
could be used, which make use of the different polarities of the target compound
and the by-products. Silica gel- and alumina-based column chromatography
provides an efficient means of purifying an individual compound from a com-
plicated mixture. Different eluents and stationary phases are chosen to cooperate
in the separation of different mixtures. With the advancing eluent, individual

3 Organic Semiconductors for Field-Effect Transistors 63



components elute at different rates, and thus are separated from each other. For
soluble polymer semiconductors, the gel permeation chromatography technique
could be used, which makes use of the different molecular size or molecular
weight of the target polymer and the by-products. The technique is necessary to
separate polymers, both to analyze them and to purify the desired product.

3. Vacuum sublimation: for insoluble organic semiconductor samples, vacuum
sublimation technique could be used, which makes use of the different subli-
mation points of individual compounds in vacuum. In most cases, temperature-
gradient sublimation is adopted. Sometimes, an inert carrier gas is used to
facilitate the procedure, as well as to protect the deposition from atmospheric
impurities.

4. Soxhlet extraction: often used in purification of polymeric semiconductors to
remove low-molecular-weight fractions of the material and residual catalytic
metal. Normally, a polymer sample is placed inside a thimble made from thick
filter paper, which is loaded into the main chamber of the Soxhlet extractor. A
warm poor extraction solvent, such as hexane, acetone, methanol, chloroform,
etc., is first used to remove the undesired impurities, then a hot good solvent, for
example, chloroform, chlorobenzene, dichlorobenzene, etc., is used to extract
the desired high molecular weight and soluble polymer. This procedure involves
the repeated dissolution of a particular compound from a mixture, which may be
repeated many times, over hours or days. After the solvent is removed, the
desired polymers is obtained by precipitating the resulting solid residue in
certain solvent(s) by filtering.

3.1.4.2 Factors Related to Device Physics

Device Configuration

The device configuration has an important influence on the performance of OFETs.
Generally, the less the contact resistance, caused by intimate contact between the
semiconductor and the electrodes, the higher the charge transport mobility tends to
be [46]. The device configurations of BGTC and TGBC always give better per-
formances than those of BGBC and TGTC. The better performances were attributed
to the improved contact between the organic semiconducting layer and the elec-
trodes [21]. Bottom contact devices typically exhibit less than half the effective
driving current of top contact devices because of contact resistance and the diffi-
culty in preparing highly ordered films on an irregular surface [8, 47, 48]. Because
of shadowing effects, top contact has a limit as to how small the channel dimensions
can be, and this process is not readily amenable to large-scale manufacturing;
however, bottom contact devices are more easily integrated into low-cost manu-
facturing processes, and smaller device feature sizes can be obtained through
photolithographic techniques. Bottom gate devices are a conventional device
structure for material-testing purposes. Because the organic semiconducting layers
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are exposed to air and easily penetrated by oxygen and moisture, the performances
of this kind of device often degrade during storage. In contrast, in top gate devices,
the active layer is encapsulated by the gate dielectric layer and the gate electrode,
and therefore the device stability is significantly improved.

Morphology

Morphology is a crucial factor in achieving high performance FETs. Specifically,
morphology of high order, continuous thin film with lamellar packing is very
important to obtain high mobility and stability. The reason is that the morphology
leads to better molecular orbital overlap between neighboring molecules, and favors
better carrier transfer; and the morphology can also inhibit the charge carrier
trapping under ambient conditions by H2O or O2, and/or impurities of the atmo-
sphere. The π-stacking distances of lamellar packing are usually in the range of 3.3–
3.6 Å for small-molecule semiconductors and 3.6–4.0 Å for polymer semicon-
ductors. There are many methods adopted to improve the morphology. For
example, as mentioned above, sublimation rate and substrate temperature have an
important influence on thin film morphology of small molecules. Specifically,
higher substrate temperature and/or low sublimation favors the formation of large
grains. Thus, in order to obtain high quality thin film, varying substrate temperature
or sublimation rate are always used in a single deposition process. Sometimes a low
sublimation rate is used first to form large grains near the interface and subsequently
a high sublimation rate is used to fill the interspaces between grains, leading to
high-quality thin films [49]. Occasionally, a higher substrate temperature is used
first to obtain a large grain size close to the interface, followed by a lower substrate
temperature used to fill the interspaces [50]. Annealing is another important tool in
improving the thin film morphology of both small-molecule and polymer semi-
conductors. Annealing, naturally, is a self-assembly process of organic molecules in
thin film. After annealing the semiconducting layer at selected temperatures, the
performance of OFETs tends to be substantially improved. The reason is that the
morphology/molecular packing order in thin films becomes more ordered.
However, once beyond an optimal temperature, the mobility is found to decrease
owing to discontinuities in the film created by an increase in intergranular spaces
when the grain size becomes very large [51]. The contact between the organic
semiconductor and the gate insulator are both improved in the process of annealing.

Interfaces and Their Modification

The two major processes, carrier injection and carrier transport, occur at the elec-
trode/organic layer interface and the dielectric/organic layer interface, respectively.
Therefore, the properties of these interfaces influence the device characteristics
dramatically. Modification of the electrode/organic layer or dielectric/organic layer
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interfaces remains the most widely investigated approach to improving device
performance [21].

The electrode/organic layer interface has a key influence on carrier injection.
Many methods are used to modify the electrode/organic interface to improve the
carrier injection. Introduction of a buffer layer between the source–drain electrode
and organic layer is a common approach for modification of BGTC OFETs. The
technique is frequently applied with the aim of both reducing the energy barrier and
preventing metal atom penetration into organic layers. For example, when a very
thin layer of MoO3 is inserted as a buffer layer between an Al electrode and
pentacene, the injection barrier of pentacene-based OFETs reduces dramatically,
and thus the hole mobility increases from 2.8 × 10−3 to 0.4 cm2 V−1 s−1 [52]. In
addition, the formation of a CuXO buffer layer enabled Cu to be used as an elec-
trode in high performance OFETs. Chemical modification of the electrode is
another effective way to improve OFET performance. For example, Cu and Ag
source–drain electrodes were chemically modified with 7,7,8,8-tetracyanoquinodi-
methane (TCNQ), when the formation of Cu-TCNQ and Ag-TCNQ reduced the
hole injection barrier and improved electrodes/organic layer contact, which reduced
contact resistances. Taking pentacene-based OFETs with Ag-TCNQ modified
electrodes as an example, the mobility increased from 0.02 to 0.18 cm2 V−1 s−1

[53]. Gundlach et al. [54] demonstrated induced crystallization of an organic layer
by electrode interface modification. By using pentafluorobenzene thiol (PFBT)-
modified gold electrodes, 5,11-bis(triethylsilylethynyl) anthradithiophene is
induced to grow with large grain domains near the source–drain electrodes, indi-
cating that optimization of the source–drain electrodes is an alternative way to
improve carrier transport.

The dielectric/organic semiconductor interface implies an important influence on
device stability in three ways [21]. First, trap density on the dielectric layer surface
affects the device performance dramatically, especially for n-type OFETs. Second,
the dielectric layer can influence the morphology of the organic semiconductor
layers which in turn affect the device stability. The third way that the dielectric/
organic semiconductor interface influences the stability is its influence on the
aggregation of organic grains. For example, N,N-dioctyl-3,4,9,10-perylene tetra-
carboxylic diimide (PTCDI-C8) is generally believed to be unstable in air.
Modification of the SiO2 surface with hydroxyl-free polymer insulators, such as
poly(methyl methacrylate) (PMMA), afforded significant improvements in device
stability [55]. For another example, it has been observed that the stability of
pentacene-based OFETs is also strongly related to the dielectric layer [56]. For
pentacene-based OFETs with octadecyltrichlorosilane (OTS)-modified dielectric
layers, the surface energy of the modified surface is much lower than that of the
pentacene layer. As a result, the pentacene layer readily aggregates, leading to rapid
degradation of device performance. In contrast, the high surface energy of poly-
styrene (PS) impedes pentacene aggregation and ensures excellent device stability
for the devices with PS-modified dielectrics. Thus, optimization of the dielectric/
organic interface is an effective way to realize high performance OFETs with
excellent stability.
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There are some other factors affecting the performance of OFETs, for example
channel length/width ratio, and other environmental factors such as light, dust,
ambient temperature, humidity, oxygen, and so forth. In certain cases, each of such
factors could play a decisive role in the performance degradation of OFETs.

3.2 p-Type Semiconductors

As mentioned above, for p-type semiconductors, the charge carriers, holes, migrate
through HOMOs of the molecules. Because p-type semiconductors are always
comprised of electron-rich groups/π-conjugated systems, which are reactive to
electrophilic substitution reactions, the performance of most p-type semiconductor-
based devices exhibits small changes in different test circumstances. Great progress
has been achieved in p-type semiconductors, including p-type small-molecule
semiconductors and p-type polymer ones in past years. Nowadays, because new
materials and forms of known materials are being quickly synthesized and devel-
oped as processing and synthetic techniques improve, it is, to be frank, difficult to
catalog all p-type semiconductors. In the following, selected p-type small-mole-
cules and polymer semiconductors are discussed.

3.2.1 Selected p-Type Small-Molecule Semiconductors

3.2.1.1 Polycyclic Aromatic Hydrocarbons and Derivatives

Polycyclic aromatic hydrocarbons (PAHs) are an important class of small-molecule
semiconductors. These materials are composed of fused benzene rings in a linearly
or nonlinearly constructing manner. The π-conjugation of these materials increases
with elongation and expansion of the molecular structures. Linear PAHs always
form a planar and rigid molecular structure, resulting in strong intermolecular
interactions and tight packing mode in the solid state, in which charge carrier
transport is favored, but solubility is poor in common solvents. For that reason,
many substituted linear PAH derivatives were developed in order to improve the
solubility, reactant yields, and chemical stability, while maintaining an efficient
charge transport. Nonlinear PAHs with large π-conjugated systems had also
received attention. Nonetheless, because nonplanar structures could probably be
formed in these kinds of materials, some of them afford low mobilities. In terms of
their molecular structures, PAHs can be further subdivided into acenes, pyrene,
perylene, and other fused aromatic hydrocarbons.
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Acenes and Derivatives

The acenes refer to PAHs that are composed of linearly fused benzene rings (see
Chart 3.1 and Table 3.1). Anthracene, 1 is one of the simplest acenes with three
fused benzene rings. Its FET properties were examined with single crystal devices
exhibiting temperature dependence with the maximum mobility of
0.02 cm2 V−1 s−1 at ∼170–180 K [57]. With the expansion of the π-conjugated
dimension to four or five fused benzene rings, the intermolecular overlap of mol-
ecule orbitals is increased, and this results in larger transfer integral and lower
reorganization energy, and thus higher field-effect mobilities in the corresponding
OFETs. Thermally evaporated thin films of naphthacene, 2 showed a mobility of
0.1 cm2 V−1 s−1 with an on/off current ratio over 106 [58]. Studies showed a high
density of submicron-sized grains with a surprisingly high degree of molecular
order in a thin film of acene, 2. Its single crystal transistors were also fabricated by
Reese et al. with the use of a spin-coated poly(dimethylsiloxane) as gate dielectric
and photolithographically defined source and drain electrodes, and it exhibited a
mobility of 2.4 cm2 V−1 s−1 [59]. Pentacene, 3 with five fused benzene rings has
developed into a benchmark material because high-performance thin film transistor
devices are easily obtained from vacuum deposited thin films. Thin film transistors
based on 3 demonstrated mobilities of up to 1.5 cm2 V−1 s−1 with an on/off current
ratio over 108 [60] whereas its polycrystalline films afforded mobility as high as
5.0 cm2 V−1 s−1 with an on/off current ratio over 106 [61]. With thermally evap-
orated pentacene on flexible substrates, a higher mobility of up to 23.2 cm2 V−1 s−1

was observed [62]. Moreover, with 6,13-pentacenequinone films as gate insulators
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in 3-based FET devices fabricated with TGBC configuration, much higher mobil-
ities of up to 40 cm2 V−1 s−1 were achieved [63].

However, because of the narrow energy gap and high-lying HOMO energy
level, pentacene exhibited high sensitivity to light and high oxidation sensitivity to
oxygen [64]. Moreover, the low solubility of pentacene in common organic sol-
vents makes purification of pentacene highly challenging. For similar reasons, the
higher-order π-conjugated systems based OFETs, such as hexacene and heptacene,
have never been addressed [65, 66]. Encouraged by the high performance of acenes,
many acene derivatives, especially pentacene derivatives, have been synthesized
and examined as the active layer in FET devices with the hope of improving
solubility and high stability while maintaining high performance. Studies on acene
derivatives are usually focused on the improvement of solubility and stability. For
example, alkyl derivatives 2,3,9,10-tetramethyl-pentacene 6, 2,9-dimethylpenta-
cene, 7, and 2,9-dihexylpentacene 8 exhibited mobilities of 0.30, 2.5, and
0.251 cm2 V−1 s−1, respectively [67–69]. There are some other pentacene deriva-
tives, for example, 2,9-diethylpentacene 9, which showed even poorer field-effect
performance than those of derivatives 6, 7, and 8 [69]. With the introduction of
alkyl substituents, the solubility of the resulting materials has been significantly
improved. However, because of the donating effect of alkyl substituents, the
HOMO energy levels have also been driven up, and thus the stability of these
derivatives becomes worse. For this reason, some electron-withdrawing groups
including halogen, cyano, and trifluoromethyl, etc., had been introduced to the
backbones of acenes as substituents in order to lower their HOMO energy levels
and the reactivity of the resulting acene derivatives. For example, Bao et al. and
Wudl et al. reported series of this kind of pentacene derivatives, 10–16 [70, 71]. Of
these, derivative 13 afforded field-effect mobilities as high as 0.23 cm2 V−1 s−1 and
improved device stability compared to pentacene. The 13-based FET devices
exhibited no significant decrease in mobility or on/off ratio when stored in air, with
and without light exposure, even after 3 months. In addition, the thin film transistor
based on 6,13-dichloropentacene 17 showed a mobility of 0.21 cm2 V−1 s−1 [72]
and its crystalline ribbons-based FET devices afforded a high mobility of up to
9.0 cm2 V−1 s−1, which is one of the highest values reported for organic semi-
conducting materials [73]. This kind of naphthacene derivative had also been
reported by several groups [37, 74]. For example, 5,11-dichlorotetracene, 19 has the
slipped π-stacking structure in contrast to herringbone type tetracene between its
neighboring molecules. The single crystal transistors based on derivative 19 showed
high mobility as high as 1.6 cm2 V−1 s−1 [37]. 5,6,11,12-Tetrachloronaphthacene
20 also has slip π-stacks, and its single crystal transistors exhibited p-type behavior
with a field-effect mobility of 1.7 cm2 V−1 s−1 [74]. It is notable that higher
mobilities were afforded in peri-substituted acene derivatives than in their end-
substituted counterparts in combination with improved stability. These changes in
mobility could be attributed to the improved π–π packing in the solid state of
resulting peri-substituted derivatives. Similar phenomena could be distinctly
observed in acene derivatives with alkyl or aryl substituents in the peri-position, for
example, 9,10-diphenylanthracene, 21 and rubrene, 22. Time-of-flight results
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showed that the single crystals of anthracene 21 could afford high hole mobility of
up to 3.7 cm2 V−1 s−1 and electron mobility of up to 13 cm2 V−1 s−1 [75].
Moreover, rubrene, 22 is another benchmark material for organic semiconductors.
The single crystal of 22 exhibited higher mobility of 15.4 cm2 V−1 s−1 along the b-
axis and 4.4 cm2 V−1 s−1 along the a-axis [24]. These results indicate that sub-
stitutions in the peri-positions of acenes are in fact favorable to strong π–π inter-
molecular interactions and a large π–π overlap. However, it is pity that thin films of
22 could show only low mobilities of 0.07 cm2 V−1 s−1 when using pentacene as
buffer layer [76], and 0.7 cm2 V−1 s−1 when mixed with ultra-high-molecular-
weight polymer [77]. The low mobility could be attributed to poor planarity
structure of 22. In fact, derivative 21 also has a nonplanar structure, in which the
dihedral angle between the planes of substitution (benzene ring) and core
(anthracene) is about 67° [75, 78].

Similar to the effect of phenyl substitution in 21 and 22, 6,13-di(2′-thienyl)
pentacene, 23 showed a strengthened π-stacking mode and exhibited a low mobility
of 0.1 cm2 V−1 s−1 [79]. To avoid the dilemma, carbon–carbon triple bonds were
introduced into this kind of molecule affording nearly planar acene derivatives
while maintaining strengthened π–π stacking. Several groups synthesized a lot of
peri-alkynyl derivatives and examined their FET properties. Anthony et al. con-
sidered that the length ratio of the substituents and acene cores affected the packing
of the materials [80, 81]. If the length of the substituents was approximately half the
length of the acene core, the acene would form a lamellar π–π stacking mode.
Otherwise, a slipped π-stacking or herringbone packing structure could be adopted.
Indeed, laboratory findings are in good agreement with their assumption. For
example, acene derivative 26 showed a two-dimensional brick layer structure, and
its vacuum deposited technique films afforded high mobilities up to 0.4 cm2 V−1 s−1

[82]. Its drop-casting films showed high mobility of up to 1.8 cm2 V−1 s−1 with an
on/off current ratio over 107, and self-assembled ribbons exhibited high mobilities
of 1.42 cm2 V−1 s−1 [83]. The tetramethyl-substituted acene derivative, 27-based
thin film transistors fabricated by a solution-processed technique also showed
mobility as high as 2.5 cm2 V−1 s−1 [84]. The results showed that the introduction
of trialkylsilylethynyl groups on the peri-position of acene could afford nearly
planar molecule structures, improved solubility and stability while maintaining
strengthened π–π stacking as anticipated. Arylethynyl group as substituents were
also introduced in acene-based π-conjugated systems affording new acene deriva-
tives such as 29–31. Nonetheless, these derivatives exhibited low mobilities of
0.033 cm2 V−1 s−1 for vacuum deposited films of 29 [85], 0.52 cm2 V−1 s−1 for
single crystalline micro/nanoribbons of 30 [86], and 0.11 cm2 V−1 s−1 for vacuum
deposited films of 31 [87], although they all formed improved π–π stacking in solid
states. The low mobilities could arise from either the mismatching the lengths of
substituents and acenes, or large twisting molecule structure (Chart 3.2).
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Pyrene and Derivatives

Pyrene is a kind of nonlinear PAH with the same number of benzene rings as
tetracene (see Chart 3.3). Pyrene exhibits π–π stacking mode in crystals. Highly
pure pyrene single crystals showed low mobilities of (3.8 ± 0.1) × 10−3 cm2 V−1 s−1

for electrons and (3.3 ± 0.4) × 10−3 cm2 V−1 s−1 for holes at 345 K [88].
Nonetheless, high mobilities of 1.2 cm2 V−1 s−1 for holes and 3 cm2 V−1 s−1 for
electrons were obtained by judging from the transient photocurrent of the pyrene
crystal and calculating from the overlap integrals between two molecules at room
temperature [89]. Because of the nonplanar structure, the tetrasubstituted-deriva-
tives using pyrene as core including 33 and 34 tend to afford low mobilities [90–
92]. However, the derivatives 35 and 36 using pyrene as an end-capped group and
linear pyrene derivative 37 showed high mobilities [93–95]. For example, thin film
transistors based on derivatives 35, 36, and 37 exhibited mobilities of 0.21, 0.11,
and 2.1 cm2 V−1 s−1, respectively. It is notable that an organic radical-based pyrene,
namely 1-imino nitroxide pyrene, 38 was reported [96]. Vapor-deposited films of
the 38-based FET devices showed excellent p-type FET characteristics, with a
mobility up to 0.1 cm2 V−1 s−1 and an on/off current ratio at 5 × 104. The highest
performance of OFETs based on 38 indicates the potential of organic radicals for
the application in OFETs.
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Perylene and Derivatives

Perylene, 39 is an isomer of pentacene with five benzene rings (see Chart 3.3). The
charge carrier transport property of 39 was investigated by both thin film- and
single-crystal-based FET devices [97–99]. The single crystal of 39 showed a hole
mobility of 0.12 cm2 V−1 s−1, which is comparable with the mobilities of 0.15–
0.3 cm2 V−1 s−1 obtained from time-of-flight measurements. Compared with pyr-
ene, there are relatively less derivatives of perylene synthesized and applied in
OFETs. However, some derivatives exhibited high mobilities. For example, two
chalcogen-heterocyclic perylene derivatives 40 [100] and 41 [101] showed strong
chalcogen–chalcogen and π–π intermolecular interactions in single crystals. Single
crystal transistors based on an individual assembled microwire of 40 showed a
mobility as high as 0.8 cm2 V−1 s−1. It is worth noting that individual microribbons
of 41 exhibited a high mobility of 2.66 cm2 V−1 s−1. Furthermore, perylene
derivative, 42 afforded a compressed highly ordered packing mode, and the FET
based on individual nanoribbon exhibited a high mobility of 2.13 cm2 V−1 s−1

[102]. These results make perylene derivatives particularly attractive for electronic
applications.
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Chart 3.3 Pyrene- and perylene-based small-molecule semiconductors
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Other Polycyclic Aromatic Hydrocarbons

Besides pyrene, perylene, and their derivatives, other nonlinear PAHs were also
developed and used in FET devices (see Chart 3.4). For example, two novel
phenanthrene-based conjugated oligomers including derivative 43 were synthesized
[103]. Field-effect transistors based on 43 showed a mobility as high as
0.12 cm2 V−1 s−1 with an on/off current ratio at 105. These devices exhibited
excellent stability during long-time ambient storage and under UV irradiation. It is
interesting that α,ω-dihexyldithienyl-dihydrophenanthrene 44 also gave high
mobility of 0.42 cm2 V−1 s−1 [104]. Picene 45, a nonlinear isomer of pentacene,
showed p-channel characteristics with a mobility of 1.1 cm2 V−1 s−1 and an on/off
current ratio of 105 under atmospheric conditions [105]. Moreover, when the
devices are located under 500 Torr of oxygen for oxygen doping, a higher mobility
of 3.2 cm2 V−1 s−1 was achieved. The excellent stability could be attributed to its
high ionization potential of 5.5 eV and large energy bandgap of 3.3 eV. In theory,
larger π-conjugated systems should afford higher mobilities because the increased
transfer integrals, lowered reorganization energies, and strengthened π–π stacking
would be afforded in these systems. However, triphenylenes, coronenes, and their
derivatives with large π-conjugated systems showed low charge transport perfor-
mance. For example, star triphenylene derivative 46-based transistors exhibited
hole mobility of 1.4 × 10−4 cm2 V−1 s−1 [106]. Although hexabenzocoronene
(HBC) derivative 47 formed highly oriented films under magnetic field, FET
devices based on the oriented films showed charge carrier mobilities of
10−4 cm2 V−1 s−1 [107]. Derivative 48-based FETs fabricated by spin casting
technique also afforded a low mobility of 10−2 cm2 V−1 s−1 with an on/off current
ratio of about 106 [108]. The low performance of the three PAHs was probably

C12H25O OC12H25

C12H25O OC12H25

S S

S
C6H13C6H13

2 2 2

C12H25

C12H25

C12H25 C12H25

C12H25

C12H25

Ar Ar

Ar

ArAr

Ar

Ar =
S C6H13

4543 44

46 47

48

Chart 3.4 Other polycyclic aromatic hydrocarbon semiconductors
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caused by the nonplanar structure of the compounds concerned. The results also
indicated that there are many other factors heavily influencing the mobility of FETs
besides the size of the π-conjugated systems, such as solubility, stability, planar
property, and molecular packing, etc.

3.2.1.2 Chalcogen-Containing Heterocyclic Aromatic Hydrocarbons
and Derivatives

Sulfur-containing heterocyclic aromatic hydrocarbons and derivatives play an
important role in the development of OFETs. Plenty of these materials tend to
exhibit excellent OFET performance and high stability. The high performance
could be attributed to planar structure and ordering molecular arrangement of
chalcogen-containing PAHs concerned in solid state, which results in an effectively
intra-stack electronic coupling via strong intermolecular π–π, S–S, and CH–π
interactions. The high stability can be explained by the absence of a Diels–Alder
cyclization active center and low-lying HOMO energy level of these materials. It is
believed that the large atomic radius of sulfur and the high electron densities of the
sulfur atoms in the HOMO are two of the fundamental reasons for these
improvements. As a result, sulfur-containing materials have become one of the
most important semiconductors for OFET applications. Oxygen-, selenium-, and
tellurium-containing derivatives have all attracted a great deal of attention too.

Thienoacenes

Thienoacenes consist of fused thiophene rings in a ladder-type molecular structure
and have been intensively studied in OFETs (see Chart 3.5). For example, Takimiya
et al. used a series of benzothieno[3,2-b]benzothiophene (BTBT) derivatives, 49
and 50 in OFETs [20, 109, 110]. Spin-coated films of derivatives 49 showed
mobilities of over 0.1 cm2 V−1 s−1.

Of these, spin-coated films of 49a exhibited hole mobility of 1.8 cm2 V−1 s−1

with an on/off current ratios of 107 [109]. Inkjet printed single crystal films of 49a
gave an average mobility as high as 16.4 cm2 V−1 s−1 [110]. When its thin film was
grown by an off-center spin-coating method, much higher mobilities up to
43 cm2 V−1 s−1 were obtained [111]. Vacuum evaporated films of derivative 49b
also showed high mobility, for example, vacuum evaporated films of the dodecyl-
substituted derivative afforded a mobility as high as 3.9 cm2 V−1 s−1 [112]. Spin-
coated films of 49c gave high device performance with mobilities of
2.75 cm2 V−1 s−1 with an on/off current ratios of 107 [109]. Phenyl-substituted
derivative 50 also showed high OFETs performance. Vacuum evaporated films
afforded high mobilities of up to 2.0 cm2 V−1 s−1 with on/off current ratios of 108,
and excellent stability [20]. In stability tests of the devices, there was almost no
change in mobility after 250 days for the devices fabricated on the bare Si/SiO2

substrates, whereas the devices on the OTS-treated substrates showed a slight
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decrease in mobility. In 2012, Amin et al. reported a mono-substituted BTBT
derivative, 51. The material showed excellent p-type characteristics with large hole
mobilities up to 17.2 cm2 V−1 s−1 [113]. However, linear and angular analogues of
tetracenes, 52–55 showed low mobilities of 0.15, 0.20, 0.015, and
0.30 cm2 V−1 s−1, respectively [114–116]. Thieno[3,2-b]thieno[2′,3′:4,5]thieno-
[2,3-d]thiophene, 56 and derivatives, 57–59 showed mobilities larger than
0.1 cm2 V−1 s−1 with ideal solubility and environmental stability [117]. The ana-
logues of pentacene with one thiophene unit, 60–62 were synthesized and examined
[118–120]. They show low HOMO energy levels of −5.34 to −5.68 eV, respec-
tively. Thienoacenes 60- and 62-based transistors fabricated by vapor-deposited
methods afforded hole mobilities of 0.41 and 1.1 cm2 V−1 s−1, respectively. A
single crystal FET device of 62 gave a mobility up to 1.5 cm2 V−1 s−1. It is notable
that phototransistors based on the individual 61 microribbons prepared by a solu-
tion-phase self-assembly process showed a high mobility of 1.66 cm2 V−1 s−1, a
large photoresponsivity of 12,000 A W−1, and a photocurrent/dark current ratio of
6000 even under low light power condition of 30 mW cm−2.

Benzo[1,2-b:4,5-b′]bis[b]benzothiophene 63 and its butyl-substituted derivative
64 showed the HOMO energy level of −5.4 eV. Solution-processed devices based
on 63 and 64 showed a hole mobility up to 0.01 cm2 V−1 s−1 [121, 122]. Analogue
of pentacene containing three thiophene rings, 65, showed the HOMO energy level
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of −5.6 eV [49]. The thin film transistors based on 65 exhibited a hole mobility of
0.51 cm2 V−1 s−1 and high on/off ratio of 4.5 × 106. On the other hand, its single
crystals demonstrated mobility as high as 1.8 cm2 V−1 s−1 and high on/off ratio
greater than 107 [123]. However, isomer 66-based single crystal ribbons FET
devices afforded a mobility of 0.6 cm2 V−1 s−1 with on/off ratios over 106 [122].
Bao’s group synthesized tetraceno[2,3-b]thiophene, 67, which showed a mobility of
0.04–0.31 cm2 V−1 s−1 [114]. In 1998, Katz’s group reported the synthesis and
application of anthradithiophene 68 and alkylated derivatives 69–71 in OFETs.
They all form highly ordered polycrystalline vacuum-evaporated films with
mobilities as high as 0.15 cm2 V−1 s−1 [125]. Gao et al. [127] reported new five-
ring-fused pentacene analogs, with four symmetrically fused thiophene-ring units.
Employing the hexyl-substituted derivative 72 in solution-processed OFETs pro-
duced mobilities as high as 1.7 cm2 V−1 s−1, and an on/off current ratio of 107 for
long-range ordered thin film [126]. Liu’s group reported the application of penta-
thienoacene 73 in OFETs. The thienoacene has a HOMO energy level of −5.3 eV,
which is lower than that of pentacene, and its energy gap of 3.2 eV, which is much
larger than that of pentacene (1.8 eV). Highly extended thienoacenes were also
synthesized and investigated. For example, thienoacenes, 74 and 75 with six fused
rings were reported [128]. They exhibited hole mobilities of 0.15 and
0.047 cm2 V−1 s−1, respectively. Dianthra[2,3-b:2′,3′-f]thieno[3,2-b]thiophenes
(DNTTs), 76–78 are another kind of high performance semiconductor developed by
Takimiya et al. besides BTBT derivatives. For example, vacuum-sublimated films
of thienoacene 76 exhibited a mobility up to 2.9 cm2 V−1 s−1 with an on/off current
ratio of 107 [129]. FETs based on its single crystal showed a mobility as high as
8.3 cm2 V−1 s−1 with an on/off current ratio of up to 109 [130]. Similarly, derivative
77 showed a mobility as high as 1.9 cm2 V−1 s−1 [127]. Vacuum deposited films of
78 and 79 gave mobilities as high as 8.0 and 3.4 cm2 V−1 s−1, respectively [131,
132]. The fused seven ring compounds exhibited low charge transport behaviors.
Thin film of compound 80 afforded hole mobility of 0.15 cm2 V−1 s−1 [133] and the
single crystal microribbons of compounds 81 and 82 exhibited hole mobilities of
0.47 and 0.10 cm2 V−1 s−1, respectively [132].

Highly Fused Chalcogen-Containing Heterocyclic Aromatic Hydrocarbons

Many highly fused chalcogen-containing heterocyclic aromatic hydrocarbons had
also been synthesized and applied as semiconducting layers in OFETs (see
Chart 3.6). For example, fused heteroarene 83, in which the core is isoelectronic
with pyrene, was developed by Takimiya et al. [135, 136]. Compared to pyrene, the
HOMO energy levels of the heteroarene greatly increased, whereas the LUMO
energy levels were lowered. Thin films of 83 demonstrated a mobility as high as
0.11 cm2 V−1 s−1. Two dioxapyrene-based semiconductors 84 and 85 containing
oxygen atoms formed well-ordered polycrystalline films, the devices affording a
hole mobility as high as 0.25 cm2 V−1 s−1 for 84 and 0.1 cm2 V−1 s−1 for 85 [137].
Vacuum deposited thin films of 3,9-diphenyl-peri-xanthenoxanthene, 86 and
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3,9-bis(p-propylphenyl)-peri-xanthenoxanthene, 87 showed mobilities as high as
0.4 and 0.81 cm2 V−1 s−1, respectively [138]. It is notable that these thin film FETs
were also environmentally and thermally stable. Especially, for 86-based devices,
no significant degradation was observed after 5 months of storage in ambient
conditions. The FET devices based on hexathiapentacene, 88 exhibited mobilities in
a range of 0.005–0.04 cm2 V−1 s−1 [139]. Single crystals of 88 showed strong S–S
intermolecular interactions (3.37–3.41 Å).

Some “butterfly” shaped fused chalcogen-containing heterocyclic aromatic
hydrocarbons, 89–100 were designed and synthesized with the aim of enlarging π-
conjugated system, thus forming compressed π–π stacking, which is good for
charge carrier transport. However, it is a pity that the thin films of these materials
can only afford mobilities in a range of 10−3–10−1 cm2 V−1 s−1. The vacuum
evaporated films of 90 showed a mobility of 0.012 cm2 V−1 s−1 after thermal
annealing at 230 °C for 20 min [140]. The isomeric hexylated compounds 93
exhibited a mobility of 0.074 cm2 V−1 s−1 [141]. With the extension of π-conju-
gated system, alkyl functionalized chrysene derivatives 94 and 95 exhibited
mobilities as high as 0.4 cm2 V−1 s−1 based on their vacuum deposited films [142].
In addition, the benzo[1,2-b:4,5-b′]bis[b]benzothiophene derivative, 96 showed
good self-assembly characteristics [143]. Transistors based on individual 96 mi-
crowires obtained via slow crystallization showed typical p-channel behavior with a
mobility of 2.1 cm2 V−1 s−1. Crystalline nanoribbons of 97 formed through solution
self-assembly also exhibited excellent performance with a mobility of
0.42 cm2 V−1 s−1 [144]. In 2012, a series of larger fused π-conjugated systems, 98–
100 was synthesized upon highly regioselective bromination of naphthodithiophene
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in different solvents. The solution-processed OFETs based on 99 exhibited a hole
mobility of 0.072 cm2 V−1 s−1 with an on/off current ratio of 106 under ambient
atmosphere [145]. In addition, two novel “sunflower” small molecules, 101 and 102
were developed [146, 147]. OFETs using 100 as a semiconducting layer exhibited
mobilities of about 9 × 10−3 cm2 V−1 s−1. On the other hand, the tetrathiotetraseleno
[8] circulene, 102 provided a maximum mobility of 1 × 10−3 cm2 V−1 s−1, about
tenfold lower than that of 101.

Thienoacene-Based Oligomers and Oligothiophenes

Oligomers of the smaller thienoacenes and oligothiophenes were widely investi-
gated because of their high planar structure and property of easy-to-modify with
alkyl substituents. Many oligothiophenes afforded promising FET performances.
For example, oligomers 103–107 gave good mobilities [148, 149]. Thin film FET
devices based on oligomers of 103, 104, 105, and 107 demonstrated mobilities as
high as 0.42, 0.12, 0.54, and 0.14 cm2 V−1 s−1, respectively. The device based on
104 maintained a hole mobility of about 0.1 cm2 V−1 s−1 even after 9 weeks [148].
The single crystal transistor based on 106 exhibited a mobility of 1.1 cm2 V−1 s−1

with a current on/off ratio of 6.5 × 104 [149]. Although there are similar mobilities
between α,α′-bis(dithieno[3,2-b:2′,3′-d]-thiophenes) 108, with mobilities of
10−2 cm2 V−1 s−1, and the vinylene-bridged dimer, 110 with mobility of
0.08 cm2 V−1 s−1 [150–152] a large difference in mobility exists between dimer 111
and vinylene-bridged dimer 112, which afforded the mobilities of 5 × 10−3 and
0.42 cm2 V−1 s−1, respectively. The similar phenomenon can also be found in
thieno[3,2-b] [1] benzothiophene-based dimers 114 and 115 [153]. The double
bond-linked derivatives 115 exhibited mobilities as high as 0.50 cm2 V−1 s−1 with
on/off current ratios of 4.8 × 106. Mobility was 10 times larger than the
7 × 10−3 cm2 V−1 s−1 of the dimer 114. The results showed that the vinylene bridge
is a useful π-conjugated building block for organic semiconductors. Oligomer, 113
end-capped with phenyl groups, showed mobilities even as large as
2.0 cm2 V−1 s−1, on/off current ratios up to 108, and high environmental stability
[154]. No obvious degradation was observed after storing in air for 7 months. In
combination with device stability of other oligomers, for example, 104, a conclu-
sion can be reached that FET devices based on the oligomers end-capped with
phenyl tend to have high stability under ambient conditions. Some other oligomers,
116–119 based on thienothiophene were also investigated. OFETs with 116 as the
active layer showed a mobility of 0.67 cm2 V−1 s−1 in air [155]. OFETs based on
117–119 showed mobilities as high as 0.12, 0.10, and 0.15 cm2 V−1 s−1, respec-
tively [156–158]. Planar oligothiophenes 120–122 were also used as semicon-
ducting materials in OFETs. Of these, oligothiophene 121 gave mobility of up to
0.1 cm2 V−1 s−1 [159]. In addition, oligothiophene 122 showed a higher mobility of
0.28 cm2 V−1 s−1 [48, 160]. However, with the increase of thiophene unit number,
the resulting oligothiophenes demonstrated distinctly decreased solubility in com-
mon solvents, which is not good for the synthesis and purification of these materials
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and their application in solution-processed FET devices. Thus, many alkyl-substi-
tuted oligothiophenes were synthesized. Sometimes, oligothiophenes end-capped
with alkyl chain showed highly increased mobilities. For example, dihexyl qua-
terthiophene, 123 afforded a mobility of 0.06 cm2 V−1 s−1, which is tenfold higher
than the 2.5 × 10−3 of quaterthiophene 120 [161]. Dihexyl sexithiophenederivative,
124 showed an increased mobility of 0.08 cm2 V−1 s−1 [162], and even gave
mobilities as high as 1.0 cm2 V−1 s−1 [48]. Besides the linearly alkyl groups,
cycloalkyl groups, the benzene ring, and the naphthalene ring have also been
introduced into the molecular structures as end-capping groups [163–165]. The
single crystal OFETs based on phenyl-capped quaterthiophene 125 and quinqu-
ethiophene 126 showed mobilities of 0.09 and 0.13 cm2 V−1 s−1. Naphthalene-
capped quaterthiophene 127 demonstrated a mobility of 0.4 cm2 V−1 s−1. In
addition, a novel cyclic oligothiophene of tetrathia-[22]annulene[2,1,2,1], 128 was
synthesized and used as active material in OFETs [166]. It adopted a nearly planar
structure and its evaporated films showed a mobility of 0.05 cm2 V−1 s−1

(Chart 3.7).
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Trialkylsilylethynyl Substituted Thienoacenes

As mentioned above, the introduction of trialkylsilylacetylene groups at the peri-
position of acenes leads to improved π–π packing as well as increased solubility and
stability. Thus the kind of thienoacene derivatives had also been widely studied by
several groups. For instance, Anthony et al. [167] synthesized a series of anth-
radithiophene derivatives, 129–131 through similar synthetic procedures. Drop-
casted films of 131, a mixture of syn- and trans-isomer, showed high mobilities of
up to 1.0 cm2 V−1 s−1, which was attributed to its close two-dimensional (2D) π-
stacking arrangement in the solid state. However, when small alkyl groups were
introduced to the π-conjugated backbone of derivative 131, the resulting com-
pounds, 132–134 afforded lower mobilities [168]. Of these, compound 132 formed
one-dimensional (1D) π-stacking arrangement and its solution-casting films showed
hole mobilities in a range from 0.1 to 0.4 cm2 V−1 s−1. Compounds 133 and 134
adopted 1D and 2D π-stacking arrangement, respectively. Nonetheless, the two
derivatives showed low mobilities, probably because of their poor morphology and
loose π-stacking mode. Partial fluorinated derivatives, 135 and 136 still behaved as
p-type semiconductors but with dramatic increases in thermal and photostability
compared to the non-fluorinated derivatives [169, 170]. Derivative 135 forms
highly crystalline films even from spin-cast solutions, leading to devices with high
mobility up to 1.5 cm2 V−1 s−1. Its single crystal OFETs showed mobilities as high
as 6 cm2 V−1 s−1 with an on/off current ratios of 108. The high mobilities could
arise from the non-covalent interactions of F–F and F–S which was observed in
single crystals. Encouraged by the results above, two isomerically pure syn-anth-
radithiophene derivatives, 135a and 136a were synthesized and investigated [171].
The performances of the two syn-isomers 135a and 136a and syn/anti mixture, 135
and 136 in single crystal OFET devices are comparable, showing mobility values of
1.07 cm2 V−1 s−1 for 135a and 0.30 cm2 V−1 s−1 for 136a (1.01 cm2 V−1 s−1 for
135 and 0.41 cm2 V−1 s−1 for 136 under the same conditions). The lack of any
difference between devices based on isomerically pure syn-isomer and syn/anti
mixture was attributed to the fact that both materials suffer from similar positional
disorder of the thiophene moieties in the solid state (Chart 3.8).

Bao et al. [172] reported a series of trialkylsilylethynyl-substituted thienoacene
derivatives including anthra[2,3-b]thiophenes (ADT), 137–139 and tetraceno[2,3-b]
thiophenes (TDT), 140–142. Of these, derivative 142 showed the highest mobilities
of up to 1.25 cm2 V−1 s−1 on bare SiO2 substrate. To investigate the impact of
backbone size on solid-state order and electrical properties, 5-, 6-, and 7-ringed tri-
sec-butylsilylethynyl-substituted ADT, TDT, and pentacenedithiophene (PDT)
derivatives, 143–145 were synthesized by Jurchescu et al. [173]. Studies demon-
strated that increasing the backbone size in fluorinated functionalized acenedithi-
ophenes had a dramatic effect on the structural and electrical properties, leading to
improved crystalline order, better π-stacking, and superior device performance.
Typical field-effect mobilities for drop-cast films were distinctly different over a
large range from 10−3 cm2 V−1 s−1 for the ADT derivative 143 to 10−2 cm2 V−1 s−1

for TDT derivative 144, and 1.0 cm2 V−1 s−1 for PDT derivative 145. The field-effect
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mobility correlated well with the solid state order presented in the thin films, where a
2D π-stacking and superior long range order yielded good electronic performance,
and a 1D stacking presented in the derivative 143, as well as film disorder in
derivative 144, were reflected in lower mobilities. Recently, Yu group reported a
series of trialkylsilylacetylene functionalized anthra[2,3-b]benzo[d]thiophene
derivatives, 146 and 147 [174]. Evaporated films of 147 showed hole mobility of
0.012 cm2 V−1 s−1, which is significantly larger than that of the non-chlorinated
counterpart 146. The improvements in mobility verified that chlorine atoms could
effectively tune intermolecular interaction. It is interesting that by utilizing the
rotation of large isopropyl groups, two types of single crystals of 146 with different
molecular conformation were successfully grown and separated. The related quan-
tum-chemical calculations predicted that the two conformers have nearly 200 times
difference in mobility. The results first demonstrated the important influence of
molecular conformation on charge carrier transport.
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Tetrathiafulvalene and Derivatives

Tetrathiafulvalene (TTF) and its derivatives are sulfur-rich small-molecules, and
have been widely investigated as organic conductors and superconductors (see
Chart 3.9) [175–177]. In 1993, TTF derivatives were first used in OFETs as
semiconducting layers [178]. The FETs based on TTF and its derivatives could
afford high mobilities up to 10 cm2 V−1 s−1 [179]. Of these, the devices based on
symmetrical derivatives tend to exhibit higher mobilities than those of unsym-
metrical ones, which can be attributed to more orderly arrangement in solid states.
Studies on crystals of TTF, 148 have found that the crystals which belonged to
monoclinic α-phase of TTF demonstrated a mobility of 1.2 cm2 V−1 s−1, higher
than the 0.23 cm2 V−1 s−1 of those belonging to triclinic β-phase TTF [25]. This
was attributed to the strong π-stacking along the b axis in the α-phase. Mas-Torrent
et al. had developed a series of TTF derivatives [180, 181]. Because the long alkyl
chains promoted intermolecular π–π overlapping because of their extremely closely
packed nature, TTF-4SC18, 149 easily assembled into one-dimensional stacks and
can be easily solution-processed by zone-casting. The FETs based on aligned films
of 149 showed a mobility up to 0.08 cm2 V−1 s−1 with an on/off current ratios of
104 [182]. The single crystals transistors of 150 exhibited the highest mobility of
3.6 cm2 V−1 s−1 [183]. Single crystals of 151 also displayed high mobility up to
1.0 cm2 V−1 s−1 [184]. As the extension of π-conjugation system, thin films of
derivatives 152–156 showed hole mobilities of 0.42, 0.2, 0.11, 0.2, and
0.64 cm2 V−1 s−1, respectively. Mobilities of chlorinated derivatives were higher
than the corresponding unsubstituted one which might be attributed to the stronger
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intermolecular interactions promoted by chlorine atoms [185, 186]. However, the
spin-coated films of N-alkylsubstituted bis(pyrrolo[3,4-d])tetrathiafulvalenes, 157
only showed a mobility of 0.013 cm2 V−1 s−1 and an on/off current ratio of about
104 [187]. Takahashi and co-workers reported another TTF derivative, 158, whose
single transistor employing thermally evaporated TTF-TCNQ films as the source/
drain electrodes exhibited mobilities over 10 cm2 V−1 s−1 [179]. The high per-
formance was attributed to the close two-dimensional lamellar arrangement and
ideal contact between active semiconducting layer and the TTF-TCNQ electrodes.
A hexyl group-substituted dibenzotetrathiafulvalene bisimide derivative, 159
showed a hole mobility of 0.4 cm2 V−1 s−1 with an on/off current ratio of up to 106–
108 [188]. The derivative, 160 with the TTF units separated by a cyclohexane unit
exhibited a mobility as high as 0.2 cm2 V−1 s−1 for thin films and 4 cm2 V−1 s−1 for
single crystals [189–191]. In addition, TTP derivatives, 161 and 162 were syn-
thesized. The transistors fabricated by vacuum deposited film of 162 showed a
mobility of 0.27 cm2 V−1 s−1 [192].

3.2.1.3 Nitrogen-Containing Heterocyclic Aromatic Hydrocarbons
and Derivatives

Azaacenes

The nitrogen atom is a versatile heteroatom, which can be used as an sp2 hybrid-
ization form, such as pyrrole-nitrogen and pyridine-nitrogen, sp3 and sp hybrid-
ization forms [193]. Because the lone pair of pyrrole-nitrogen is delocalized in
aromatic systems, the related semiconductors have high HOMO and LUMO energy
levels, and thus tend to exhibit p-type transport characteristics. However, because
the lone pair of pyridine-nitrogen does not take a part in a π-electron system in
combination with the stronger electronegativity of the nitrogen atom, the resulting
semiconductors often have low HOMO and LUMO energy levels, and thus could
exhibit n-type characteristics. Nuckolls et al. synthesized a series of nitrogen-
containing derivatives including dihydrodiazapentacene 163 (see Chart 3.10) [194].
The vacuum deposited film FET devices of 163 exhibited low hole mobility of
5 × 10−5 cm2 V−1 s−1. Later, Miao et al. found that derivative 163 could form three
crystalline polymorphs according to (001) spacing and the field-effect mobility of
163 is extremely sensitive to the polymorphs with the “12.9 Å phase” yielding a
mobility of 0.45 cm2 V−1 s−1, which is over 5000 times higher than those of the
other two phases [195]. Thin film transistors based on 164 and 165 afforded
mobilities of 1.4 and 0.13 cm2 V−1 s−1, respectively, when active films were
deposited on n-nonyltrichlorosilane-modified SiO2/Si substrates using a thin film of
pentacene as the buffer layer [196]. Novel nitrogen-containing heptacyclic bisin-
doloquinoline 166 was synthesized via an intramolecular cyclization of anthrazoline
derivatives. Its single crystal FETs had carrier mobility as high as 1.0 cm2 V−1 s−1

with on/off current ratios greater than 104 [197]. Tetraazapentacene derivatives, 167
and 168 exhibited mobilities of 0.02 and 0.01 cm2 V−1 s−1 in air, respectively [198].
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A thiazine derivative, 169 which contains sulfur and nitrogen atoms was reported
by Zhu and coworkers. A thin film of 169 exhibited a mobility of 0.34 cm2 V−1 s−1

[199]. However, its single crystals mobilities afforded high mobilities up to
3.6 cm2 V−1 s−1 [200]. 5,11-Bis(4-octylphenyl)indolo[3,2-b]carbazole, 170 readily
self-organized into highly crystalline layered structures during vacuum deposition.
FET devices based on the thin film of 170 exhibited mobility of 0.12 cm2 V−1 s−1

[201]. The chlorinated derivative 171 also easily formed highly crystalline films
with large interconnecting terrace-like layered domain structures, and showed a
mobility of 0.14 cm2 V−1 s−1 and an on/off current ratio of 107 under ambient
conditions [202]. Yu and Tao also reported a similar ditrifluoromethylphenyl-
substituted derivative 172, which possesses a close π–π stacking with an inter-
molecular distance of 3.38 Å. The single crystal transistors afforded a hole mobility
of 0.084 cm2 V−1 s−1 [203]. Linear and cyclic carbazolenevinylene dimers 173 and
174 were also synthesized [204]. Multicrystalline thin films were observed from
compounds 174, but only amorphous thin films could be obtained for the linear
compound 173. Another important difference between the cyclic and linear com-
pounds was the reduced reorganization energy for the cyclic compounds. These two
facts have resulted in improved FET mobility for the cyclic compound compared
with the linear counterpart. The FET devices based on 174 gave the highest
mobility of 5.3 × 10−3 cm2 V−1 s−1. The similar improvement in FET property
could be found in triphenylamine derivatives. Because the nonplanar structure of
triphenylamine derivatives results in the formation of amorphous films which are
not beneficial for charge transport, these compounds were rarely applied in field-
effect transistors and showed low mobilities [205]. However, cyclic triphenylamine
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dimer, 175 favored the formation of crystalline thin films and hence exhibited a
mobility of 0.015 cm2 V−1 s−1, which is much higher than 10−4 cm2 V−1 s−1 of its
linear analogue [206].

Phthalocyanines, Porphyrins, and Organometallic Complexes

Phthalocyanines and their organometallic complexes have also been investigated as
semiconducting layers in OFETs (see Chart 3.11). For example, OFETs based on
phthalocyanine, 176 showed low mobilities of 10−3 cm2 V−1 s−1 [207]. However, its
organometallic complexes such as copper phthalocyanine (CuPc), 177, titanyl
phthalocyanine (TiOPc), 178, and vanadyl-phthalocyanine (VOPc), 179 exhibited
higher mobilities. Highly-ordered CuPc thin films obtained by vacuum deposition
showed a hole mobility of 0.02 cm2 V−1 s−1 and an on/off current ratio of 105 [208].
The mobility of a single crystalline submicrometer-sized ribbon could even reach as
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high as 0.5 cm2 V−1 s−1 [209]. Complexes 178 and vanadyl-phthalocyanine 179 are
nonplanarly polar molecules. Thin film transistors based on 178 showed high
mobilities of 3.3 cm2 V−1 s−1 [210]. High quality films of 179 showed a hole mobility
of 1.5 cm2 V−1 s−1 [211]. Likewise, porphyrin and their complexes were also used in
OFETs. Devices of the tetraphenyl porphyrin 180 and tetrabenzoporphyrin 181
exhibited improved field-effect performance with mobilities of 0.012 and
0.017 cm2V−1 s−1, respectively [212, 213]. Annealing the as-deposited 182 film leads
to the formation of a polycrystalline film which exhibited excellent overall charge
transport properties with a charge mobility of up to 0.32 cm2 V−1 s−1 [214]. In
addition, the spin-coated films of nickel and copper tetrabenzoporphyrins, 183 and
184 demonstratedmobilities of up to 0.2 and 0.1 cm2V−1 s−1, respectively [215, 216].
Two porphyrin analogues, cyclo [6] pyrrole, 185 with a 22-π-electron system, and
cyclo [8] pyrrole, 186with a 30-π-electron system were developed and used as active
layers of FETs. The thin films of 185 and 186, which were prepared by the Langmuir–
Blodgett (LB) method, exhibited mobilities of 0.014 and 0.68 cm2 V−1 s−1, respec-
tively [217, 218]. In addition, there were some more complex phthalocyanine
derivatives such as rare earth and triple-decker complexes examined [219].

3.2.2 Selected p-Type Polymer Semiconductors

3.2.2.1 Polythiophene-Based Semiconductors

Since the first OFET based on 187 was reported in the 1980s, 3-alkylated poly-
thiophenes were most widely studied as active layers in PFETs because they were
solution-processable (see Chart 3.12 and Table 3.2) [13–15]. Of these, P3HT, 188 is
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the most famous. Studies on polymer 188 showed that (1) the regioregular form of
P3HT with head-to-tail (HT) coupling affords higher mobilities than regiorandom
forms (HH and TT) in its three kinds of couplings: head-to-head (HH), tail-to-tail
(TT), and head-to-tail (HT) coupling; (2) the regioregular form can adopt two kinds
of arrangements on substrates: face-on and edge-on orientations; (3) edge-on ori-
entation affords mobilities in the range 0.05–0.2 cm2 V−1 s−1, usually about two
orders of magnitude higher than those of the face-on orientation; and (4) the
practical applications of polymer 188 were limited by its stability, mainly caused by
its higher HOMO energy level. Most FETs based on the polymer were fabricated
and examined in a glovebox with a N2 atmosphere [47, 220–224]. Generally, there
are two approaches used to improve the properties of FETs based on polythio-
phenes. One is regioregular introduction of alkyl chain on the π-conjugated back-
bone of polymer 187. Alkyl groups can improve solubility, but also raise the
HOMO energy levels of polythiophenes, making them sensitive to oxygen. Ong
et al. developed a class of polythiophenes, 189, in which only half of the thiophene
rings were substituted by alkyl chains [225, 226]. The thin films afforded high
mobilities up to 0.14 cm2 V−1 s−1 and showed lower HOMO energy levels than that
of polymer 188, and thus better stability. Only slight degradation was observed after
storing its devices in air for 1 month. It is pity that the mobility of related devices
decreases under increasing humidity. However, alkyl groups were introduced with
head-to-head (HH) coupling, the resulting polythiophenes tending to afford low
mobilities. For example, polythiophene 190 exhibited the highest mobility of
around 0.03 cm2 V−1 s−1 though its HOMO energy level was found to be 0.20 eV
lower than that of P3HT [227]. The decrease in mobility can be attributed to torsion
of the polythiophene backbones caused by head-to-head (HH) coupling of side
chains [228].

The other way is the introduction of highly coplanar π-conjugated groups on
polythiophene backbones. The Kim group introduced vinylene groups to the main
chain of polymer 189, affording polythiophene 191 [229]. The increase of rotational
freedom by incorporation of the vinylene group, in combination with the reduction
of the alkyl group, made polymer 191 have lower HOMO energy level. In addition,
the wider side-chain spacing induced a shorter interchain lamellar d-spacing than
that of polythiophene 189. The FETs based on polymer 191 showed a high mobility
of 0.15 cm2 V−1 s−1 with a relatively high oxidative stability. Nonetheless, because
of highly packed molecular structure, polymer 191 exhibited relatively poor solu-
bility in common organic solvents. Two alkyl-substituted conjugated polymers
including 192 were developed by the same group [230]. Both polymers showed
high solubility in common organic solvents as well as thin film crystallinity. Of
these, thin films of the polymer 192 afforded a high mobility of over
1.0 cm2 V−1 s−1. McCulloch and co-workers synthesized a series of novel poly-
thiophenes, 193–195 by regiospecific incorporation of thieno[3,2-b]thiophene into
the polymer backbone [231–236]. The HOMO energy levels of 193–195 were
−5.1 eV, approximately 0.3 eV lower than that of P3HT. The low HOMO energy
levels arise mainly from the reduced delocalization from the thienothiophene aro-
matic ring in comparison with thiophene, along with reduced electron donation
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from the fewer alkyl groups on the backbone than polymer 188, as mentioned
above. After annealing, the thin films of polymers 193–195 exhibited classical
liquid-crystalline phases, of which crystalline domains are large—up to 200 nm.
Transistors based on polymers 193–195 exhibited mobilities as high as
0.7 cm2 V−1 s−1, and 1.0 cm2 V−1 s−1 was found for the polymer 195, even using Pt
as the source and drain electrodes. Ong et al. introduced the dithieno[3,2-b:2′,3′-d]
thiophene unit to the backbone, affording copolymer 196 [237, 238]. FET devices
based on 196 afforded a decreased mobility of 0.3 cm2 V−1 s−1. The decrease in
mobilities is probably because of the stronger rigid structure of dithieno[3,2-b:2′,3′-
d]thiophene than that of thieno[3,2-b]thiophene. Copolymers based on alkylated
thieno[2,3-b]thiophene cores usually showed lower HOMO energy levels than that
of polymer 195. Thin film transistors based on 197 showed a comparable perfor-
mance to that of polymer 195 with a hole mobility of 0.25 cm2 V−1 s−1 [239, 240].
The Malliaras group developed a series of alkylated thienothiophene-based
copolymers, 198–202 [241–243]. The trithienoacene- and pentathienoacene-based
copolymers, 198 and 201 exhibited mobilities of 0.0017–0.0023 cm2 V−1 s−1, but
the tetrathienoacene-based copolymers, 199 and 200 showed a higher mobility of
0.087 and 0.33 cm2 V−1 s−1, respectively. They ascribed this phenomenon to the
influence of C2 symmetry on device performance. Indeed, when the backbone of
the polymer 199 increased by one thiophene unit, affording the polymer 202, the
FETs based on polymer 202 showed a low mobility of 0.027 cm2 V−1 s−1. The
results verified the importance of C2 symmetry on device performance.

3.2.2.2 Nitrogen-Containing Heteroaromatic Polymer Semiconductors

In addition to thiophene rings, other fused heteroaromatic building blocks were also
explored and used in organic semiconductors. Of these, nitrogen-containing het-
eroaromatic building blocks including alkyldithieno[3,2-b:2′,3′-d]pyrrole, oxadi-
azole, thiazole, and benzobis(thiadiazole) were widely applied in OFETs.
McCullough et al. reported a series of copolymers based on N-alkyldithieno[3,2-
b:2′,3′-d]pyrroles (DTP) units [244]. The incorporation of soluble substituted
thiophenes and planar DTP units resulted in low bandgap, highly conductive
polymers. As-cast 203 thin films exhibited a poorly defined and randomly ordered
lamellar structure which improved significantly after thermal annealing. FET
devices based on polymer 203 showed typical p-channel transistor behavior.
Interestingly, the mobilities of as-cast less ordered samples were much higher than
those observed after annealing. The highest mobilities and average values were
observed for the polymer 203 to be 0.21 and 0.13 cm2 V−1 s−1, respectively.
However, the copolymer 203 has high HOMO energy level between −4.68 and
−4.96 eV, so the related FET device showed low stability. In order to improve the
stability, thiazole units were introduced, affording copolymers 204 and 205 [245].
The thiazole-based copolymers 204 and 205 were expected to possess high stability
because of their donor–acceptor systems. Transistors based on polymers 204 and
205 exhibited mobilities of 0.04 and 0.14 cm2 V−1 s−1, respectively. In fact, the
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devices were very stable and no obvious degradation was observed even after the
devices were stored in air for 60 days. A series of thiazolothiazole-based polymers,
206–208 showed hole mobilities of 0.05, 0.23, and 0.3 cm2 V−1 s−1, respectively
[246, 247]. Liquid-crystalline semiconducting copolymer, poly(didodecylquater-
thiophene-alt-didodecylbithiazole), 209, which contains thiazole units, was devel-
oped by the Bao group [248]. Thin films of this polymer adopt preferential well-
ordered intermolecular π–π stacking parallel to the substrate surface and showed
mobilities as high as 0.33 cm2 V−1 s−1. Ong et al. synthesized homopolymers 210
and 211 [249]. Polymer 210 showed a mobility of 0.02 cm2 V−1 s−1; however, no
FET performance was observed from 211. Osaka et al. [250] reported benzobis-
thiazole-based copolymers 212. FET devices showed excellent environmental sta-
bility in high-humidity air, which is an unusual performance for semiconducting
polymers, along with hole mobilities as high as 0.26 cm2 V−1 s−1, even with
disordered thin film structures. In addition, polytriarylamines constituted a class of
polymer semiconductors with high stability. The devices based on polymer 213
showed excellent stability under ambient condition with a mobility of
0.04 cm2 V−1 s−1 [251] (Chart 3.13).

3.2.2.3 p-Type Donor–Acceptor Copolymer Semiconductors

In recent years, donor–acceptor (D–A) copolymers have been widely developed
and applied in organic optoelectronics (see Chart 3.14) [252–254]. The properties
of D–A copolymers, such as solubility, photophysics, electrochemical properties,
crystallinity, packing mode, and device performance, can easily be modified by
tuning the structures of donor, acceptor, and side chains. Moreover, the intra- and
intermolecular “push-drag” effect between donor and acceptor units could effec-
tively improve the packing mode in thin film of polymers affording close and
orderly π–π arrangements of polymer, thus giving high device performance. In
2007, Müllen et al. reported a D–A copolymer, 213 based on benzothiadiazole (BT)
and cyclopenta[2,1-b:3,4-b′]dithiophene (CDT) [255]. With a number-average
molecular weight (Mn) of 10.3 kDa, thin films of 213 gave a mobility of
0.17 cm2 V−1 s−1 with an on/off current ratio of 105 after annealing at 200 °C for
2 h. After purifications of BT and CDT by passing the CDT monomer through a
recycling high performance liquid chromatography/gel permeation chromatography
(HPLC/GPC) system before polymerization, high molecular weight polymers with
Mn of 50.0 kDa were obtained, the thin films of which showed a hole mobility of up
to 0.67 cm2 V−1 s−1 for their spin-coated films. By using a dip-coating method, the
macroscopic organization was further improved, resulting in hole mobilities of 1.0–
1.4 cm2 V−1 s−1 along the dip-coating direction and 0.5–0.9 cm2 V−1 s−1 per-
pendicular to the dip-coated direction [256]. In 2011, Müllen et al. [41] further
modified polymers by tuning the molecular weight, side alkyl chain, and mor-
phology of thin film. Mobility was further improved to 3.3 cm2 V−1 s−1, which is
the world record for p-type thin film PFETs at that time. D–A copolymer, 215 based
on fused ladder indacenodithiophene (IDT) and benzothiadiazole (BT) units
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exhibited a lack of pronounced thin-film crystallinity, combined with the subopti-
mal orientation of the backbone and relatively large π-stacking distances, which
would not be expected to be favorable for charge transport [257]. However, these
thin film devices fabricated by spin-coating exhibited high mobilities in the range
0.8–1.2 cm2 V−1 s−1 with an on/off current ratio between 103 and 104. The results
demonstrated that the indacenodithiophene (IDT) unit has a huge potential for
application in high performance FETs. Bazan group developed a series of regio-
regular pyridal [1–3] thiadiazole–cyclopenta[2,1-b:3,4-b′]dithiophene copolymers
using the unsymmetrical pyridal [1–3] thiadiazole unit [258]. When the transistors
were fabricated by the polymer 216 with an Mn of 34 kDa, a high mobility of
0.6 cm2 V−1 s−1 was afforded. Similarly, when polymer molecular weight was
increased, the corresponding hole mobilities also increased, from 0.8 cm2 V−1 s−1

(Mn = 100 kDa) to 2.5 cm2 V−1 s−1 (Mn = 300 kDa) [259]. The mobility of polymer
216 with high molecular weight (Mn = 300 kDa) can be further improved to
6.7 cm2 V−1 s−1 using the macroscopic alignment method, by which long-range
orientation of the polymer chains was obtained. The transport is anisotropic in the
long-range alignment of polymer fibers, where the mobility for a direction parallel
to the polymer backbone is six times higher than that for a direction perpendicular
to the polymer backbone. Interestingly, the macroscopic alignment method is a
combination of directional solvent evaporation through a tunnel-like configuration
and slow drying, of the polymer on a nanostructured insulator, and operationally
simple, not requiring sophisticated equipment or instrumentation. Moreover, a
systematic study of OFETs based on polymer 216 with several weight average
molecular weights (Mw) ranging from 30, 50, 80, 160, to 300 kDa demonstrated
much higher mobilities of up to 23.7 cm2 V−1 s−1 [260]. Studies showed that the
high mobility values are relatively insensitive to Mw, which is consistent with long-
range alignment of the semiconducting polymer chains such that the transport
occurs dominantly along the conjugated backbone with occasional π–π hopping to
neighboring chains.

Isoindigo is a kind of pigment with planar structure and strong electron-with-
drawing ability. In recent years it had also been used as a building block to syn-
thesize polymer semiconductors with high performance [261–264]. In 2011, Pei
et al. reported an isoindigo-based D–A conjugated polymer, 217. Thin film of the
polymer had a low-lying HOMO energy level of −5.8 eV and showed crystalline
fibrillar intercalating networks. Its FET devices exhibited a high mobility up to
0.79 cm2 V−1 s−1, an on/off current ratio of 107, and good stability. They also
investigated how the branching position of alkyl side chains affects FET perfor-
mance of conjugated polymers 218–220. High mobility of 3.62 cm2 V−1 s−1 was
achieved for polymer 219, in comparison to the 1.76 cm2 V−1 s−1 for polymer 220
and 0.40 cm2 V−1 s−1 for polymer 218. The developed branching position variation
strategy revealed the significance of sophisticated side chain molecular engineering
of conventional alkyl chains and its dependence on the backbone structures. In
addition, the influence of symmetry and backbone curvature of polymers on inter-
chain π–π stacking, lamellar packing, and crystallinity of isoindigo-based polymers
was also investigated by introducing different donor units. Bao et al. introduced a
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novel siloxane-terminated solubilizing group to isoindigo-based conjugated poly-
mer, affording 221. The solution-processed thin film transistors showed an average
mobility of 2.00 cm2 V−1 s−1 (with a maximum mobility of 2.48 cm2 V−1 s−1). The
improvement in mobility was attributed to a combination of a small π-stacking
distance, mixed crystallographic orientation (texture), and a large crystalline
coherence length, all of which were induced by the introduction of siloxane-termi-
nated side chains. D–A polymer 222 containing a co-benzobisthiadiazole-quater-
thiophene unit showed typical p-channel OFET characteristics with a high carrier
mobility up to 2.5 cm2 V−1 s−1, which was attributed to the effectively long π-
conjugation system, the very tight packing pattern, and the high-order orientation in
the crystalline state [265]. Because of the highly π-extended structure and strong
electron affinity of naphthobisthiadiazole (NTz), polymers 223 exhibited a deeper
HOMO energy level of −5.54 eV. A thin film of 223 exhibited a hole mobility of
0.56 cm2 V−1 s−1 with an on/off current ratio of ∼107 [266] (Chart 3.14).

Diketopyrrolopyrrole (DPP)-based polymers are currently displaying some of
the highest mobilities because of the remarkable aggregating properties of the DPP
moieties (see Chart 3.15) [254]. In 2008, the Winnewisser group first applied DPP-
based polymers as the active layer in OFETs. Solution-processed ambipolar field-
effect transistors based on this material exhibited hole and electron mobilities of 0.1
and up to 0.09 cm2 V−1 s−1, respectively [267]. DPP-based copolymers, 224
comprising thieno[3,2-b]thiophene moieties was developed in 2010 [268]. The
strong intermolecular interactions led to the formation of interconnected polymer
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networks with an ordered lamellar structure and a small π–π stacking of 3.71 Å,
which established highly efficient pathways for charge carrier transport. Polymer
224-based FET devices showed a high hole mobility of up to 0.94 cm2 V−1 s−1.
However, high molecular weight polymer 224, obtained by an optimized synthetic
procedure, afforded a tighter π–π stacking distance of 3.43 Å [269]. OTFT devices
fabricated with this polymer semiconductor have exhibited very high mobilities of
up to 10.5 cm2 V−1 s−1 with an on/off current ratio of 106. Copolymerization of a
more rigid DPP-based building block starting from thieno[3,2-b]thiophene with the
thiophene unit afforded a polymer, 225 with a maximum hole mobility of
1.95 cm2 V−1 s−1 [270]. The D–A polymer, 226 comprising DPP and a β-unsub-
stituted quaterthiophene unit formed ordered layer-by-layer lamellar packing with
an edge-on orientation in thin films even without thermal annealing [271]. The
well-interconnected crystalline grains formed efficient intergranular charge trans-
port pathways. The polymer afforded a high hole mobility up to 0.97 cm2 V−1 s−1 in
FETs with polymer thin films annealed at a mild temperature of 100 °C and
similarly high mobility of 0.89 cm2 V−1 s−1 for polymer thin films, even without
thermal annealing. When the donor unit was further extended from β-unsubstituted
quaterthiophene to β-unsubstituted quintetthiophene, higher mobilities were
achieved in the resulting copolymer 227 [272]. Its hole mobility of the thin film
without thermal annealing reached 1.08 cm2 V−1 s−1, and a higher hole mobility of
3.46 cm2 V−1 s−1 was obtained for the film annealed at 200 °C directly in an air
atmosphere. The improved performance was attributed to the longer β-unsubstituted
quinquethiophene unit reducing the steric hindrance of the bulk side-chain groups,
which is favorable to enhance the molecular ordering capability.

In 2012, Yu group developed two new DPP-based copolymers, 228 and 229 by
copolymerization with (E)-2-(2-(thiophen-2-yl)vinyl)thiophene [273]. Polymers
228 exhibited high hole mobilities up to 4.5 cm2 V−1 s−1. For polymer 229, higher
mobilities up to 8.2 cm2 V−1 s−1 were achieved. The high performance of polymer
229 could be attributed to the strong intermolecular interactions in the solid state.
Corn leaf-like interconnected networks and ordered lamellar structure with inter-
layer distances of 21.11 Å, and small π–π stacking distances of 3.66 Å were formed
in thin films of polymer 229. Additionally, polymer 229 took predominantly edge-
on orientation, which was regarded as another major reason. A similar DPP-based
copolymer containing (E)-2-(2-(selenophen-2-yl)vinyl)selenophene, polymer 230
was reported by Kang et al. [274]. FET devices based on the polymer exhibited hole
mobilities of 4.97 cm2 V−1 s−1, higher than the value of 2.77 cm2 V−1 s−1 of the
counterparts containing S atoms under the same conditions. The increased mobility
was attributed to the stronger interaction between neighboring polymers chains,
resulting from the more mobile lone pair of selenophene atoms compared to thi-
ophene. In 2013, the π-conjugated backbones were further modified by a longer
branched alkyl chain with six methylenes spacer between the branching point and
the backbone, affording polymers 231 and 232 [275]. These showed record high
mobilities of 10.54 and 12.04 cm2 V−1 s−1, respectively. The improved perfor-
mances were attributed to the denser main chain packing and stronger
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intermolecular interaction in the two polymers. In thin films, smaller π–π stacking
distances of 3.62 Å for polymer 231 and 3.58 Å for polymer 232, were obtained.

3.3 n-Type Semiconductors

Compared with the breakthrough progress made in p-type semiconductors, the
development of n-type counterparts is lagging behind, and has been regarded as one
of the huge challenges of organic electronics. As mentioned above, electrons are
charge carriers in channels in this kind of FET. Thus high electron affinities to
facilitate charge injection and ambient stability are necessary for n-type semicon-
ductors. To obtain ideal n-type semiconducting material, many electron-withdraw-
ing groups or systems were synthesized and used to tune the LUMO energy level.

3.3.1 Selected n-Type Small-Molecule Semiconductors

3.3.1.1 Fullerenes

Fullerenes and their derivatives are spherical molecules with cage-like fused-ring
structures. Because of electron affinities, these kinds of molecules can afford n-type
characteristic in OFETs (see Chart 3.16 and Table 3.3). For example, the single
crystal of C60, 233 exhibited the highest electron mobility of 0.7 cm2 V−1 s−1 and
the highest hole mobility of 1.9 cm2 V−1 s−1 measured by the time of flight (TOF)
method [276]. Under ultrahigh vacuum conditions, the C60-based FET devices
showed electron mobilities of 0.08 cm2 V−1 s−1 with on/off ratios of 106 [33]. It is
notable that when amorphous alumina was used as insulating layer to shield C60

film from the air, the FET devices exhibited electron mobility of 0.1 cm2 V−1 s−1

and improved stability [277]. No degradation had been detected even for more than
1 month. With the introduction of pentacene as buffer layer, the resulting FET
devices based on C60 demonstrated high electron mobilities of 3.23 cm2 V−1 s−1

[278]. Moreover, when using divinyltetramethyldisiloxane-bis(benzocyclobutene)
(BCB) as the dielectric layer, the corresponding devices gave the highest mobility
of 6 cm2 V−1 s−1 [279]. In addition, a high mobility of 5.3 cm2 V−1 s−1 was
obtained when utilizing crystalline self-assembled monolayers of octadecyltrime-
thoxysilane-modified Si/SiO2 substrates [280].

Methanofullerene[6,6]-phenyl-C61-butyric acid methyl ester (PCBM), a soluble
C60 derivative, 234 is usually used as an acceptor in organic photovoltaic cells.
Using Ca as the drain and source electrodes, spin-coated films of PCBM showed a
mobility of 4.5 × 10−3 cm2 V−1 s−1 [281]. By optimizing dielectric materials, a high
mobility of 0.2 cm2 V−1 s−1 could be afforded [282]. Long-chain alkyl-substituted
C60, C60-fused N-methylpyrrolidine-meta-C12 phenyl (C60MC12), 235 exhibited
an electron mobility of 0.067 cm2 V−1 s−1, whereas 234 showed a mobility of

104 W. Zhang and G. Yu



0.023 cm2 V−1 s−1 under the same conditions [283]. Fluorinated C60 derivatives
demonstrated increased mobilities and improved stabilities [284]. For example,
derivative 236 displayed a high mobility of 0.25 cm2 V−1 s−1 in a vacuum and
0.078 cm2 V−1 s−1 in air. Similar to C60 and PCBM, C70, 237 and its derivative
PC71BM, 238 were also used as semiconducting layers in FET devices [285, 286].
Soluble PC71BM are also widely used as acceptor in organic solar cells. PC71BM
afforded electron mobility of 0.028 cm2 V−1 s−1 whereas PCBM showed electron
mobility of 0.022 cm2 V−1 s−1 under the same conditions. The FET performance of
other fullerene derivatives had also been examined, affording electron mobilities in
the range 10−4–10−3 cm2 V−1 s−1 [287–290].

3.3.1.2 Diimides

Diimides are electron deficient because of the substitution of an aromatic core with
two sets of strong electron-withdrawing carboxylic imide rings. Aromatic diimides
are one of the classical n-type organic semiconductors with high electron affinities,
high mobilities, and excellent stabilities. These diimides are subdivided into
naphthalene diimide, perylenediimide, and other diimide derivatives, etc.

O

O
N
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R2

O

O

233 234
235: R1 = C12H25, R2 = H
236: R1 = H, R2 = C12F25

237 238

Chart 3.16 C60, C70 and their derivatives
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Naphthalene Diimide and Derivatives

The precursor, naphthalene tetracarboxylic dianhydride, 239 of naphthalene diimide
is one of the first successes of this generation of n-type materials (see Chart 3.17).
Vacuum deposited films of 239 showed an electron mobility of
3 × 10−3 cm2 V−1 s−1 under vacuum [291, 292]. In air, however, there was one to
two orders of magnitude decrease in the electron mobilities. The naphthalene dii-
mide (NDI), 240a also showed n-channel properties with mobilities of
10−4 cm2 V−1 s−1. Although the electron mobility of NDI has obvious decreased,
the nitrogen atoms of NDI could be substituted by alkyls or other groups affording
us versatile ways to obtain solution-processable n-type semiconductors with dif-
ferent electronic properties. Indeed, a lot of alkyls or other groups substituting NDIs
exhibited high electron mobility [293–296]. For example, the hexyl-substituted
NDI, 240b showed a high electron mobility up to 0.7 cm2 V−1 s−1. The octyl-
substituted NDI, 240c and dodecyl-substituted NDI, 240d showed electron
mobilities of 0.16 and 0.01 cm2 V−1 s−1, respectively. It is notable that the cy-
clohexylsubstituted derivative, 240e, developed by Shukla et al., afforded high n-
type performance with mobilities of 6.2 cm2 V−1 s−1 with an on/off current ratio of
6 × 108. In addition, when the 240e-based thin film devices were tested in argon
atmosphere under low humidity conditions, their mobility further increased to
7.5 cm2 V−1 s−1, which is one of the highest values reported for n-type semicon-
ductors so far. The high performance was attributed to the bulk phase crystalline
packing with two-dimensional lamellar stacking and long axis of the molecule
nearly vertically oriented out of the substrate plane, which results in efficient charge
transport. Alkylphenyl-substituted NDI, 240f was also investigated [297]. Its thin
film FETs showed air stable electron transport properties with a mobility of
0.18 cm2 V−1 s−1. Fluorinated substituents including fluorinated alkyls and alkyl-
phenyls were also introduced on the nitrogen-positions of NDIs. The resulting
derivatives exhibited improved air stability because of the lowered LUMO energy
levels. For example, fluoroalkyl-substituted NDI, 240g showed the highest electron
mobility of 0.38 cm2 V−1 s−1 measured in nitrogen and 0.27 cm2 V−1 s−1 in air,
with an on/off ratio of over 107 [298]. The single crystal OFETs of 240g exhibited
electron mobility as high as 0.45 or 0.70 cm2 V−1 s−1 along different crystal
directions when tested in vacuum [299]. Derivative 240h with a longer fluorinated
alkyl chain afforded electron mobility approaching 0.7 cm2 V−1 s−1 in air [300]. Its
mobilities were stable in air for 1 week. After 100 days in air, the average mobility
of three OTFTs decreased from 0.62 to 0.12 cm2 V−1 s−1, but stabilized thereafter.
In addition, the NDI derivatives with fluorinated phenyl groups or phenyl group-
substituted fluorinated alkyls chain, 240i and 240j afforded the highest electron
mobilities of 0.57 and 0.87 cm2 V−1 s−1, respectively [301, 302]. The chlorine-
substituted NDIs 241a and 241b, which were reported by Oh et al., showed
excellent electron mobilities of 0.86 and 1.26 cm2 V−1 s−1 in nitrogen, respectively
[298]. When tested in ambient air, NDIs 241a and 241b showed some degree of
increased electron mobilities of 0.91 and 1.43 cm2 V−1 s−1, respectively. The
improvement in mobilities was attributed to the trapping of the charge carriers by
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ambient oxidants. Furthermore, 241a-based OFETs fabricated by solution shearing
technique, afforded electron mobility increased up to 4.26 cm2 V−1 s−1 under bias
stress after 1000 cycles [303], and the single crystal FET devices of 241a showed
higher mobilities of up to 8.6 cm2 V−1 s−1 [304]. The cyano-substituted derivative,
242 afforded a low mobility of about 4.7 × 10−3 cm2 V−1 s−1, whereas dicyano
substituted derivative 243 exhibited an electron mobility of 0.15 cm2 V−1 s−1,
which is comparable to that of 240c unsubstituted by cyano groups [305]. However,
because of the low-lying LUMO energy level, derivative 243-based devices
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exhibited improved air stability with electron mobilities of 0.11 cm2 V−1 s−1 in
ambient air.

Core-expanded NDI derivatives were also synthesized and examined, for
example, symmetrical derivatives 244 and unsymmetrical derivatives 245 and 246.
The 244c-based thin film FETs fabricated by the spin-coating technique exhibited
n-type performance with high mobilities up to 1.2 cm2 V−1 s−1 and an on/off current
ratio of 108 [306]. Moreover, these devices showed excellent stability with the
annealing process taking place in ambient air. The low LUMO energy level of
−4.3 eV and close π-packing in combination with long alkyl chains, which can
inhibit the ingress of oxygen, was thought to be the reasons behind the excellent
performance and stability. In 2013, three similar compounds, 244a, 244b, and 244d
were also synthesized [307]. Of these, 244d-based FETs afforded a electron
mobility of 3.5 cm2 V−1 s−1, which is one of the highest mobilities for solution-
processed air stable n-type OFETs. The kind of core-expanded NDIs with different
functional groups on the nitrogen of imide was also reported and showed similar
performance [308]. More recently, Zhang’s group reported another symmetrical
thiazole-fused NDI derivatives, which gave a mobility as high as 0.15 cm2 V−1 s−1

with a high on/off current ratio in air [309]. Unsymmetrical core-expanded NDIs,
245 and 246 were also developed by the same group [310, 311]. Derivatives 245-
and 246-based devices showed electron mobilities of 0.22 and 0.17 cm2 V−1 s−1

with a high on/off current ratio under ambient conditions after annealing. A new
family of NDIs, such as 247 and 248, also showed typical n-type OFET behavior.
For example, NDI derivative 247 afforded electron mobilities as high as
0.35 cm2 V−1 s−1 [51], whereas derivative 248 exhibited electron mobility as high
as 0.10 cm2 V−1 s−1 with good bias stress stability [312]. In 2012, two kinds of
NDI-based oligomers, such as 249 and 250, were synthesized by Kippelen et al.
[313, 314]. Optimized spin-coated OFETs based on 249 showed electron mobility
of up to 0.15 cm2 V−1 s−1. Inkjet-printed OFETs have also been fabricated in
ambient atmosphere on flexible plastic substrates, and exhibited mobility of up to
0.17 cm2 V−1 s−1. The flexible printed-OFETs exhibited excellent operational
stability. OFETs with a solution-processed derivative 250 showed ambipolar
transistor properties with an average electron mobility value of 1.2 cm2 V−1 s−1 and
an average hole mobility value of 0.01 cm2 V−1 s−1.

Perylene Diimide and Derivatives

Similar to naphthalene tetracarboxylic dianhydride 239, perylene tetracarboxylic
dianhydride, 251 also showed n-type charge transport properties (see Chart 3.18).
The thin film-based and single crystal-based FETs afforded electron mobilities of
10−4 and 10−3 cm2 V−1 s−1, respectively [315, 316]. N-Alkylated perylene diimides
(PDIs) exhibited good electron transport performance and high device stability. For
example, N-pentyl derivative 252a showed mobilities up to 0.1 cm2 V−1 s−1 [317].
Polycrystalline films of octyl-substituted derivative 252b afforded a high mobility
of 1.7 cm2 V−1 s−1 [318, 319]. The dodecyl- and tridecyl-substituted derivatives
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252c and 252d showed mobilities up to 0.52 and 2.1 cm2 V−1 s−1, respectively
[320–322]. The high electron mobility of 252d arises from its thin film morphology
of crystallinity and flat and large tile-like grains. A series of N-fluorinated alkyl
substituted PDIs, 252e, 252f, and 252g, were developed by Bao et al. Of these,
252e and 252g showed low mobilities of 0.049 and 0.11 cm2 V−1 s−1, respectively
[323, 324]. However, derivative 252f exhibited high mobilities up to 1.44 and
1.24 cm2 V−1 s−1 respectively when tested in vacuum and in air. It is notable that
solution-processed FET devices based on 252f exhibited a mobility as high as
1.42 cm2 V−1 s−1, which is much higher than the value of 0.72 cm2 V−1 s−1 of the
vapor-processed technique. In addition, 252g-based OFETs were not air stable in
ambient air until the thickness of semiconducting layer increased up to ten
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monolayers. The result demonstrated the importance of the thickness of semicon-
ducting layer in OFETs [325]. Different to N-cyclohexyl substituted 240e, the N-
cyclohexyl substituted PDI 252h, exhibited lower mobility of only about
1.9 × 10−4 cm2 V−1 s−1 [163]. The phenyl and perfluorophenyl substituted PDIs,
252i and 252j also afforded low mobilities of 0.017 and 0.068 cm2 V−1 s−1,
respectively [326]. Nonetheless, the two derivatives have improved stability. For
example, device performance of 252j exhibited no significant change, even after
storage in air for 72 days. The phenyl-ethyl substituted compounds, 252l exhibited
n-type charge transport properties with mobility of about 0.11 cm2 V−1 s−1 and
good air-stability [327]. The nanowire FET devices of 252l showed the highest
mobility of 1.4 cm2 V−1 s−1 [328]. Perfluorophenyl-ethylsubstituted derivative,
252m exhibited electron mobility of about 0.62 cm2 V−1 s−1 tested in vacuum and
0.37 cm2 V−1 s−1 in air [324]. Dicyano substituted PDIs were also synthesized and
applied in OFETs [329–331]. For example, the vacuum deposited thin film of 253a
showed mobilities of 0.16 cm2 V−1 s−1, and its OFETs fabricated by inkjet-printing
technique exhibited a mobility of 0.056 cm2 V−1 s−1 [332]. The evaporated films of
253b and 253c showed mobilities of 0.16 and 0.64 cm2 V−1 s−1, respectively [333].
The crystalline films of 253c afforded a mobility of 1.3 cm2 V−1 s−1 in ambient air
[334]. Its single crystal transistors exhibited the highest mobilities of 6 cm2 V−1 s−1

under a vacuum and 3.0 cm2 V−1 s−1 in ambient air [335]. The excellent perfor-
mance in air could be attributed to the low-lying LUMO energy level of −4.3 eV in
combination with the dense packed cores and fluoroalkyl chains. Furthermore, its
vacuum-gap single crystal could afford high mobility up to 10.8 cm2 V−1 s−1 [336].
The core-chlorinated and fluorinated PDIs also showed high stability. For example,
tetrachloro-substituted PDI 254 had the low LUMO energy level of −3.9 eV [327].
The 254-based FETs afforded electron mobility as high as 0.18 cm2 V−1 s−1. After
storage in air for 80 days, the mobility slightly decreased to 10−2 cm2 V−1 s−1. N-
Perfluorophenyl tetrachloro-substituted PDI 255 showed electron mobility of
0.38 cm2 V−1 s−1 with an on/off ratio of 107 [324]. Octachlorosubstituted PDI 256
showed a much lower LUMO energy level of −4.23 eV [337]. The 256-based FETs
exhibited electron mobilities of 0.91 cm2 V−1 s−1 when measured in vacuum and
0.82 cm2 V−1 s−1 in ambient air. It is notable that electrical parameters were almost
unchanged even when keeping the devices in air for about 20 months. The high
stability was also attributed to the low-lying LUMO energy level and high packing
density. Difluorinated PDIs usually showed higher electron mobilities than those of
PDIs only substituted at the nitrogen atoms. For example, difluorinated PDI
derivatives 257a, 257b, and 257c showed electron mobilities of 0.74, 0.66, and
0.85 cm2 V−1 s−1, respectively [324]. However, the tetrafluorinated PDI derivative
258 showed a decreased electron mobility of 0.056 cm2 V−1 s−1 and an increased
stability. The decreased mobility is probably because of the nonplanar structures
caused by too many substituents in the bay positions, and the increased stability
because of the lower LUMO energy level. In addition, the LUMO energy level of
PDI derivative 259 is located at −3.88 eV [51]. The derivative showed an electron
mobility of 0.15 cm2 V−1 s−1 in vacuum and 0.08 cm2 V−1 s−1 in air.
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Wang et al. reported series of large π-conjugated systems, such as dimer and
trimer of NDI and PDI derivatives. The extension of π-conjugated systems not only
leads to a dramatically broadened absorption spectrum but also increases the
electron affinities to facilitate electron injection and transport with ambient stability.
Dimers 260 exhibited good solubility in common organic solvents. Of these, 260a
demonstrated excellent thin film electron performance in air with the mobility as
high as 0.70 cm2 V−1 s−1 and an on/off current ratio of 4 × 107 [338]. Moreover,
single crystal ribbons of 260b were easily grown by a solvent vapor diffusion
strategy 339. The FET devices based on these individual ribbons exhibited electron
mobilities of over 1.0 cm2 V−1 s−1 with the highest mobility of 4.65 cm2 V−1 s−1.
Moreover, the devices exhibited excellent air stability. No obvious degradation was
observed, even after the devices had been stored in air for more than 6 weeks. The
molecular structure of highly fused derivative 261 is composed of two NDI units
and one PDI unit [340]. The spin-coating thin films of derivative 261 showed a
moderate electron mobility of 0.02 cm2 V−1 s−1 under ambient conditions. Thermal
annealing of the thin films led to an improved performance with the highest electron
mobility up to 0.25 cm2 V−1 s−1 and an on/off current ratio of 107.

Other Diimides and Derivatives

Besides NDIs and PDIs, other diimides were also developed and used as semi-
conducting layers in the n-type OFETs (see Chart 3.19). For example, pyromellitic
diimides have a benzene ring in the center, and the tetracarboxylic diimides on both
sides of the benzene ring. In 2008, Kate et al. synthesized a series of N-substituted
pyromellitic diimides [341]. The thin films of pyromellitic diimide 262a and 262b
exhibited electron mobilities of 0.074 and 0.079 cm2 V−1 s−1 when tested in vac-
uum, respectively. In addition, the on/off current ratios of n-channel devices are as
high as 106. The electrical parameters of the devices had a slight decrease when
measured in air. For example, the mobility and on/off current ratio for 262b
dropped to 0.054 cm2 V−1 s−1 and 104, respectively, because of the presence of
water and oxygen. The LUMO energy levels of 262a and 262c were estimated to be
about −3.9 eV. Angular-shaped naphthalene tetracarboxylic diimide, 263 afforded
the highest mobility of 0.515 cm2 V−1 s−1 [342]. The high electron mobility of the
OFETs was attributed to the improved crystallinity and enlarged grain sizes at the
high substrate temperature. Anthracene diimides have nearly planar structure with
potential application in organic electronics [343]. For example, the single crystal of
anthracene diimide 264 exhibited dense packing with a small π–π distance of
3.45 Å. Linear anthracene diimides 265 were reported in 2007 [344, 345]. Vapor-
deposited films of 265a, 265b, and 265c showed n-type charge transport perfor-
mance with mobilities in the range 0.01–0.02 cm2 V−1 s−1 with an on/off current
ratio of 106–107 in vacuum. However, core-cyanated diimide 265d showed a high
electron mobility of 0.03 cm2 V−1 s−1 in vacuum and 0.02 cm2 V−1 s−1 in air with
an on/off current ratio of 107. The device performance of 265d-based devices stored
in air with exclusion of light remained stable for at least 4 months after fabrication.
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Core-cyanated diimide 265d also showed improved solubility. The improved per-
formance of 265d was attributed to the low-lying LUMO energy level induced by
the nitrile groups. Angular-shaped tetracene- and pentacene-bisimides, 266 and 267
were synthesized via a similar double-cyclization reaction [346]. Vapor deposited
films of 266b showed low electron mobility of 3.3 × 10−3 cm2 V−1 s−1. Linear
pentacene-diimides 268 was also synthesized [347]. The core-cyanated diimide
268b showed a low-lying LUMO energy level of −4.15 eV. The thin film tran-
sistors based on 268b showed an electron mobility of 0.08 cm2 V−1 s−1 and a high
on/off current ratio of 106–107. The devices exhibited good air stability when
exposed to air for several months. Terylene tetracarboxdiimides (TDI) and qua-
terylene tetracarboxdiimides (QDI), homologues of PDI, were investigated by
several groups [348–350]. For example, 269 and 270 exhibited electron mobilities
of 10−2–10−3 cm2 V−1 s−1. It is interesting to note that ambipolar behavior could be
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observed in some FET devices based on these materials. In 2012, Wu et al.
developed a series of large disc-like ovalene diimides of 271 [351]. Because of the
attachment of electron-withdrawing imide and cyano groups, diimide 271c showed
a low-lying LUMO energy level of −3.9 eV and a lamellar packing with a small
π–π distance of 3.42 nm existing in thin films. The 271c-based FET devices fab-
ricated by solution processing exhibited high electron mobilities up to
0.51 cm2 V−1 s−1 in air and 1.0 cm2 V−1 s−1 in nitrogen atmosphere. Other diimides
had also been reported. For example, the coronene-based diimide 272 exhibited
mobilities as high as 6.7 cm2 V−1 s−1 as measured using the space-charge limited
current method [352]. The tetraazabenzodifluoranthene diimide 273 showed an
electron mobility of 0.12 cm2 V−1 s−1 in solution-processed thin film transistor
devices [353].

3.3.1.3 Cyano-, Halogen-Containing and Other n-Type Semiconductors

Besides diimides, other small molecule semiconductors with electron-withdrawing
groups and/or electron-deficient π-conjugated systems also exhibit good electron-
transporting properties. The electron-withdrawing groups include cyano, halogen,
halogenated alkyl, carbonyl, etc. The electron-deficient π-conjugated systems
involve pyrazine, oxadiazole, thiazole, and benzobisthiadiazole derivatives, etc.

Cyano-Substituted n-Type Small-Molecule Semiconductors

The cyano group has a strong electron-withdrawing ability and is widely used in
constructing n-type semiconductors (see Chart 3.20). The most famous is 7,7,8,8-
tetracyanoquinodimethane (TCNQ), 274, which itself is a very strong electron
acceptor. Later, the tetracyanothienoquinodimethane systems were found to have a
great potential as optoelectronics materials and their versatile functions are
endowed with the extended thienoquinoidal conjugated structures. A great draw-
back of these compounds is, however, that they become insoluble in common
solvents with quinoid extension. Developing soluble terthienoquinoid derivatives
became important in the field. Dicyanomethylene-substituted terthienoquinoid
compound 275 was highly soluble in common organic solvents [354]. Its highly
crystalline thin film showed strong intermolecular interaction and exhibited electron
mobilities up to 0.16 cm2 V−1 s−1. (Alkyloxy)carbonyl)cyanomethylene-substituted
thienoquinoidal derivatives, for example 276, showed high solubility and low-lying
LUMO energy levels in a range of −4.0*−4.2 eV, which is beneficial for injection
and transport of electrons and for getting n-type OFETs with high stability [355].
The solution-processed thin films of 276 afforded the highest electron mobility of
0.015 cm2 V−1 s−1 in air. Zhu et al. also developed a series of pyrrole-containing
quinoids with dicyanomethylene groups [356]. The incorporating pyrrole unit to
quinoidal core structure presented two main advantages: first, N-alkyl substituents
of pyrrole can serve as solubilizing groups for the realization of solution-
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processability; second, the properties of dicyanomethylene derivatives could easily
be modified by variation of N-alkyl substituents. Meanwhile, the retained quinoidal
core structure and the electron-withdrawing end-capped group ensures a sufficiently
low LUMO energy level, meeting the requirement for air stable n-channel organic
semiconductors. For example, the compound 277 showed a low-lying LUMO
energy level of –4.37 eV and its solution-processed thin films exhibited typical n-
channel FET characteristics with the electron mobility of 0.014 cm2 V−1 s−1 under
ambient conditions. Dicyanomethylene-substituted fused tetrathienoquinoid 278
also showed a low LUMO energy level of −4.3 eV [357]. It means that the com-
pound 278 could form high crystallinity film without thermal or solvent annealing,
and adopts a nearly perpendicular orientation on the substrate in the thin film. The
corresponding thin film transistors demonstrated high stability and high perfor-
mance with an average electron mobility of 0.43 cm2 V−1 s−1 and the highest value
up to 0.9 cm2 V−1 s−1 in ambient conditions. In addition, a novel series of
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diketopyrrolopyrrole (DPP)-containing quinoidal small molecules were developed
[358]. Of these, compound 279 showed a very low LUMO energy level of
−4.51 eV, well within the requirement for air stable n-type OFET materials. Under
ambient conditions, the vapor processed films of 279 afforded the maximum
electron mobility of 0.55 cm2 V−1 s−1 with an on/off current ratio of 106, whereas
the solution-processed films exhibited the highest electron mobility of
0.35 cm2 V−1 s−1 with an on/off current ratio of 105–106. Besides dicyanometh-
ylene, the strong electron-withdrawing tricyanovinyl groups were also introduced
into the π-conjugated systems affording n-type semiconductors [359]. For example,
derivative 280 showed the highest performance with an electron mobility of
0.02 cm2 V−1 s−1 on hydrophobic C16-alkane chain-terminated Al2O3 substrates.
Cyano-groups substituted into the backbone of π-conjugated systems had also been
reported. For example, Park et al. reported dicyanovinyl-substituted DPP based n-
channel organic semiconductor 281 [360]. The strong electron-withdrawing dicy-
anovinyl units in 281 lowered the LUMO energy level to −4.45 eV. The solubility
and crystallinity are slightly higher than those of dicyanomethylene-substituted
quinoidal molecule 279. The crystals of 281 displayed a dense and well-defined
lamellar packing with a uniform terrace step height corresponding to a molecular
monolayer. As a result of outstanding self-assembly characteristics derived from the
conformational planarity, the solution-processed single crystal FET devices of 281
exhibited electron mobility up to 0.96 cm2 V−1 s−1, whereas polycrystalline OFETs
afforded electron mobility of 0.64 cm2 V−1 s−1. Cross-conjugated aromatic qua-
terthiophene 282 with strongly electron-accepting tetracyanomethylene substituents
has the HOMO/LUMO energy levels of −5.60/−3.68 eV [361]. The vacuum
deposited films of 282 afforded an electron mobility of 0.34 cm2 V−1 s−1. Core-
cyanated isoindigo 283 showed a decreased LUMO energy level of −3.88 eV [362].
The thin film FET devices of 283 afforded ambient stable electron mobility up to
0.044 cm2 V−1 s−1. It is interesting that the isoindigo derivative exhibited ambipolar
charge transport behavior with electron and hole mobilities of 0.11 and
0.045 cm2 V−1 s−1 on FOPA-modified substrates. In 2013, a series of cyano-
disubstituted dipyrrolopyrazinedione (CNPzDP) small-molecules was developed
[363]. By incorporating cyano substituents, the HOMO and LUMO energy levels of
the electron-deficient PzDP 284 can be sufficiently decreased to −5.88 and
−4.04 eV, which facilitate the electron injection and transport. In OTFT devices,
284 showed n-type semiconductor behavior with a high electron mobility of
0.16 cm2 V−1 s−1 and an on/off current ratio of 106.

Halogen-Substituted and Other n-Type Small-Molecule Semiconductors

The introduction of halogen atoms into organic semiconductor molecules is another
important strategy for the design of n-type semiconductors (see Chart 3.21). Among
halogen atoms, the fluorine atom is the most widely used in the process of realizing
n-type behaviors. The main reason is that the fluorine atom has stronger electro-
negativity compared to other halogen atoms and smaller atomic radius than that of
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the hydrogen atom; therefore, it can be used to tune the molecular properties
without significantly changing the molecular geometry. For example, perfluoro-
pentacene, 285 showed typical n-type charge transport properties in FET devices
[364]. Perfluoropentacene possesses a planar structure as observed for pentacene.
The reduction and oxidation peaks of perfluoropentacene shift positively relative to
pentacene. A vacuum deposited film of 283 exhibited an electron mobility of
0.11 cm2 V−1 s−1. Under the same conditions, pentacene showed p-channel
transport behavior with a hole mobility of 0.45 cm2 V−1 s−1. The similar change
could also be seen in hexa-peri-hexabenzocoronene (HBC) and its fluorine-
substituted derivative, 286 [365]. The introduction of fluorine atoms made the
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LUMO energy level of derivative 286 lower than that of HBC by about 0.5 eV. A
vacuum deposited thin film of 286 showed an electron mobility of
0.016 cm2 V−1 s−1 with an on/off current ratio of 104. Fluorine-substituted and
trifluoromethyl-substituted oligomers with n-channel transport behavior were also
developed. Thin film transistors based on trifluoromethyl-substituted oligomer 287
afforded an electron mobility of 0.55 ± 0.05 cm2 V−1 s−1, whereas the single crystal
transistors exhibited high electron mobilities up to 3.1 cm2 V−1 s−1 in vacuum on
bare SiO2 dielectric [366]. In 2012, a series of tetrathienoacene-based oligomers
were developed by Youn et al. Of these, perfluorophenyl end functionalized
derivative 288 showed an electron mobility as high as 0.30 cm2 V−1 s−1 with an on/
off current ratio of 1.8 × 107 in vacuum [367]. For the phenyl-substituted analogue,
p-channel transport was observed with a hole mobility as high as 0.21 cm2 V−1 s−1

under the same conditions. Although halogen atoms could effectively tune the
energy levels and intermolecular interaction of semiconducting materials, and even
change their charge transport type from p-type to n-type, most acenes containing
halogen atoms have relatively high-lying LUMO energy levels, which lead to their
FET devices having low stability in air. In order to obtain high air stability and
high-performance n-type organic semiconductors, other electron-withdrawing
groups and/or electron-deficient π-conjugated systems are also used in combination
with halogen substituents. Shoji et al. [368] synthesized a series of oligomers
containing trifluoromethyl and cyano groups. Derivative 289-based FET devices
fabricated with top contact configuration afforded the highest mobility of
0.30 cm2 V−1 s−1, when deposited on OTS-treated SiO2 dielectric. Similar com-
pounds such as 290–292 were also developed and used in OFETs [369, 370].
Compound 292 showed an electron mobility of 0.03 cm2 V−1 s−1 for OFET with
evaporated film and 0.16 cm2 V−1 s−1 for single crystal OFET. However, com-
pounds 290 and 291 showed high transport performances. The thin film FET
devices based on 290 and 291 exhibited electron mobilities as high as 0.61 and
2.14 cm2 V−1 s−1 with on/off current ratios higher than 106. The high performances
of 290 and 291 were attributed to tight molecular stacking and optimized energy
levels, caused by incorporating these electron-withdrawing groups. Besides cyano
group, carbonyl groups were also used in combination with halogen atoms
affording n-type semiconductors. For example, indenofluorenediones, 293–295
with different numbers of fluorine substituents were synthesized and investigated as
active layers of n-type OFETs [371]. Of them, the 295-based FET devices fabri-
cated on polystyrene (PS) substrates showed n-type performance with a field-effect
mobility of 0.16 cm2 V−1 s−1 and an on/off current ratio of 106. The 293-based
FETs exhibited a dramatic decrease in the electron mobilities from 0.14 to
0.003 cm2 V−1 s−1 after 40 h of storage in air. However, the electron mobilities of
295-based FETs decreased from 0.15 to 0.07 after 40 min of storage in air, but
showed negligible changes even in the following 3 months. The high environmental
stability of 295-based FETs was attributed to the lower LUMO energy level, rel-
ative to that of 293. Fluorinated pentacenequinone 296 was reported by Miao et al.
[372]. X-ray crystallographic analysis revealed the molecular packing of 296 fea-
tures weak C–H···O/F hydrogen bonds and π–π stacking with a small distance of
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3.32 Å. Vacuum deposited film showed electron mobility up to 0.18 cm2 V−1 s−1

when measured in vacuum. In addition, oligomer 297 containing both carbonyl and
fluorohexyl groups showed the highest mobilities up to 2 cm2 V−1 s−1 on the PS
modified Si/SiO2 substrate in nitrogen [373]. Using Au as top contacts, oligomer
297 afforded higher electron mobility up to 4.6 cm2 V−1 s−1 [374]. Electron-
deficient π-conjugated systems, such as oxadiazole, thiazole, etc., were also used in
combination with halogen atoms for getting n-type semiconductors. For example, a
series of thiazolothiazole derivatives were developed by Ando et al. [375]. Of these,
thiazolothiazole derivative 298 has a nearly planar geometry, in which two thio-
phene rings take all-trans conformation. The thin film of 298-based FET devices
fabricated with top contact configuration exhibited an electron mobility of
0.30 cm2 V−1 s−1 with an on/off current ratio of 106. The high mobility was related
to the π-stacking structure with a distance of 3.53 Å and intermolecular short S···S
contact of 3.25 Å. By employing a self-assembled monolayer on a SiO2 gate
insulator, the highest electron mobility of 1.2 cm2 V−1 s−1 and on/off current ratio
of 107 were achieved in 298-based FET devices [376]. Thiazole-thiazolothiazole
conjugated molecule 299 also showed a nearly planar geometry [377]. However,
the HOMO-LUMO energy gap of 299 obtained from its absorption edge was
2.57 eV, larger than the 2.48 eV of 298. The thin film of 299-based FET devices
fabricated with top contact configuration exhibited high electron mobility of
0.64 cm2 V−1 s−1. Benzo[1,2-b:4,5-b′]-dithiophene-4,8-dione derivative 300 has a
deeper LUMO energy level of −4.1 eV, leading to efficient charge-carrier injection
and air stability [378]. A columnar structure with efficient intermolecular π-π and
horizontal direction interactions, leading to high electron mobilities, is formed in its
thin film. The 300-based OFET devices showed n-type characteristics, where the
electron mobility was 0.15 cm2 V−1 s−1 under vacuum conditions and above
0.1 cm2 V−1 s−1 in air. Oligomer 301 containing an electronegative unit, 4,9-
dihydro-s-indaceno[1,2-b:5,6-b′]dithiazole-4,9-dione, formed an almost planar
geometry with inter-ring dihedral angles less than 2° [379]. The C2-symmetric
oligomer 301 showed a cross-oriented layer-by-layer packing and dense π-stacking
with a distance of 3.38 Å in each layer. Moreover, the 301 film showed crystal-
shaped submicrometer-sized grains with no observable grain boundaries, which are
advantageous to electron transport. Its thin film showed electron mobility as high as
0.39 cm2 V−1 s−1 and good stability. Under air-exposed conditions there was only a
slight change in the mobility even after 3 months. In addition, Yu and coworkers
developed two air stable n-type trifluoromethyl-substituted triphenodioxazines, 302
and 303 [380]. The vacuum deposited thin films of compounds 302 and 303
exhibited electron mobilities of 0.07 and 0.03 cm2 V−1 s−1, respectively. Although
the two compounds had relatively high-lying LUMO energy levels of −3.67 eV, the
two compound-based FET devices exhibited outstanding environmental stability.
For example, the mobility of compound 302 varied from 0.05 to 0.047 cm2 V−1 s−1

even after its devices were stored for 30 days in air. The close molecular packing
resulting from trifluoromethyl groups could be responsible for the high stability of
these devices. Some pyrazine derivatives also afforded n-type characteristics. For
example, pyrazine derivative 304, which was synthesized by Islam et al., showed
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high n-type performance [381]. Single crystal FETs using 304 as the active semi-
conducting material and graphite as source/drain electrodes exhibited a very high
electron mobility of 3.39 cm2 V−1 s−1 in ambient conditions. A vacuum deposited
film of silylethynylated tetraazapentacene 305 exhibited an electron mobility of
3.3 cm2 V−1 s−1, which is one of the highest values for n-type organic semicon-
ductors [382]. The high electron mobility of 305 was attributed to its low-lying
LUMO energy level of −4.01 eV and highly ordered and denser two-dimensional
brickwork arrangement with a small π-stack distance of 3.28 Å. Another pyrazine
derivative 306 showed an electron mobility of 0.12 cm2 V−1 s−1 [365]. X-ray
diffraction patterns revealed that derivative 306 formed polycrystalline film.

3.3.2 Selected n-Type Polymer Semiconductors

3.3.2.1 Selected Diimide-Based n-Type Polymer Semiconductors

In the same way that the development of n-type semiconductors is lagging behind
that of p-type counterparts, the development of n-type polymer semiconductors has
lagged far behind that of p-type counterparts. Most n-type semiconducting poly-
mers exhibit low electron mobilities below 0.1 cm2 V−1 s−1 under ambient con-
ditions. Despite this, many new n-type polymer semiconductors have also been
reported recently and some of them exhibit high n-type charge transport properties
(see Chart 3.22). Jenekhe et al. reported a ladder-shaped polymer, poly(ben-
zobisimidazobenzophenanthroline) (BBL), 307. The polymer has highly rigid
structure and strong intermolecular interaction, with extremely high glass transition
temperature up to 500 °C. The thin films of 307, which were prepared by spin-
coating from methanesulfonic acid solution, showed an electron mobility up to
0.1 cm2 V−1 s−1 under ambient air conditions and excellent air stability. The
electrical parameters of 305-based transistors were found to be constant over
4 years. In addition, self-assembled nanobelts with tight π-stacking of 3.36 Å of
polymer 307 showed electron mobilities of 7 × 10−3 cm2 V−1 s−1. The high
mobility and stability can be attributed to the low-lying LUMO energy level of
−4.2 eV, highly crystalline morphology, and tight π-stacking. However, polymer
307 is insoluble in common solvents, which limits its wide application [383–385].
A solution-processable ladderized novel n-type NDI-based copolymer, 308 showed
average electron mobilities of 0.0026 cm2 V−1 s−1, and on/off current ratios on the
order of 104 [386]. In 2009, Facchetti et al. reported a solution-processable polymer
309 containing NDI and 2,2′-dithiophene unit. The N3-based transistor device with
top gate configuration showed high n-type performance with an electron mobility
up to 0.85 cm2 V−1 s−1 and remarkable stability [387]. Because of high perfor-
mance, afterward, the polymer 309 became one of the most widely investigated n-
type polymer semiconductors. Upon the polymer, the relationship between
dielectric layers, morphology (molecule packing), device geometry, and electron
transport was widely studied. In 2010, Luscombe et al. further synthesized another
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three NDI-based polymers differing only in the number of thiophene units, being
zero, one, and three [388]. Of these, polymer 310-based FETs with bottom gate top
contact configuration afforded the highest electron mobility of 0.076 cm2 V−1 s−1,
whereas 309-based FETs showed a mobility of 0.039 cm2 V−1 s−1 with the same
device geometry.

The NDI-based polymer, 311 containing electron-neutral (E)-1,2-diethoxy-1,2-
di(thiophen-2-yl)ethene as donor unit, showed a low-lying LUMO energy level of
−4.0 eV, which favors the injection of electrons and portends transistor device
stability [389]. The 309-based FET devices fabricated with bottom gate top contact
configuration without annealing exhibited electron mobility of
2.3 × 10−3 cm2 V−1 s−1, consistent with the low crystallinity. However, annealing at
200 °C increased the mobility to 0.2 cm2 V−1 s−1. When 311-based FET devices
were fabricated with top gate bottom contact configuration, an increased electron
mobility up to 0.5 cm2 V−1 s−1 in ambient was achieved. The copolymer 312
comprised of NDI and phenothiazine (PTZ) units showed a slightly high LUMO
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energy level of −3.8 eV [390]. The copolymer 312-based FETs with bottom gate
top contact geometry exhibited electron mobility of 0.05 cm2 V−1 s−1 and on/off
current ratios of 105 in nitrogen. In 2008, Letizia et al. developed a series of novel
N-alkyl-2,2′-bithiophene-3,3′-dicarboximide-based π-conjugated homopolymers
[391]. Of these, homopolymer 313 exhibited extremely high crystallinity and an
electron mobility of over 0.01 cm2 V−1 s−1 with on/off current ratios of 107, which
is remarkably independent of film-deposition conditions. It is notable that thin films
of 313 also exhibited terracing in AFM images with a step height matching the X-
ray diffraction d-spacing, a rare phenomenon for polymeric organic semiconduc-
tors. Similar to NDI-based polymers, PDI-based polymers can also afford n-type
performance. For example, the first soluble PDI-based copolymer 314 was reported
by Zhan et al. [392]. Polymer 314 showed high thermal stability and solution-
processable properties. Its LUMO energy level locates at −3.9 eV. The FET devices
with a bottom gate configuration afforded electron mobility of 0.013 cm2 V−1 s−1,
whereas top gate devices showed high electron mobility up to 0.06 cm2 V−1 s−1.
These top gate devices exhibited high stability, affording electron mobility of
0.005 cm2 V−1 s−1 after being kept in air for 3 months. PDI-based copolymer 315
gave an electron mobility of 0.05 cm2 V−1 s−1 with an on/off current ratio of 105 in
nitrogen [390]. Another PDI-based copolymer 316-based PDI incorporating planar
electron-deficient fluorenone exhibited an air stable n-type performance with an
electron mobility of 0.01 cm2 V−1 s−1 [393].

3.3.2.2 Other n-Type Polymer Semiconductors

Besides NDI- and PDI-based n-type polymers, other high performance polymers
have been developed (see Chart 3.23). For example, poly(pyridiniumphenylene)s
are water-soluble and display high degrees of electroactivity [394]. When n-doped,
these materials displayed in situ conductivities as high as 160 S/cm. The high
conductivity was attributed to the planar structure, which was enforced by the cyclic
structures of the polymer. Of these, poly(pyridiniumphenylene) 317 showed high
electron mobility up to 3.4 cm2 V−1 s−1. In recent years, DPP-based conjugated
copolymers 318 and 319 were designed and synthesized for n-channel OFETs. For
DPP–DPP copolymer 318 based on the DPP units functionalized with triethylene
glycol side chains, spontaneous chain crystallization was induced, providing
maximum solubility and allowing the synthesis of high molecular weight DPP–DPP
copolymers [395]. Polymer 318 showed extended absorption characteristics up to
1100 nm. The thin films of 318-based FETs with a top gate configuration and using
CYTOP as dielectric layer showed high electron mobilities exceeding
3 cm2 V−1 s−1. DPP-based polymer 319 was reported by the Jo group [396]. The
polymer has a low-lying LUMO energy level of −4.18 eV, which favors the
injection of electrons and means high air stability. The 319-based transistor devices
exhibited high electron mobility of 2.36 cm2 V−1 s−1. Both the face-on and edge-on
packing orientation on the substrate was observed in thin films. The electrical
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characteristics of 319-based OFETs did not change significantly after 7 months
storage in ambient atmosphere.

In 2013, a novel electron deficient unit, (3E,7E)-3,7-bis(2-oxoindolin-3-yli-
dene)-benzo[1,2-b:4,5-b′]difuran-2,6(3H,7H)-dione was synthesized by Lei and by
Li et al. by different synthetic procedures [397–399]. The two groups had highly
electron-deficient large fused aromatic backbones with electron-withdrawing car-
bonyl units, and contributed to intermolecular interaction and the overlaps of
intermolecular frontier orbitals, thus facilitating interchain transport. Cyclic vol-
tammetry (CV) curves displaying the electron deficient unit with 4-octadecyl-
docosyl groups has low HOMO/LUMO energy levels of −6.21/−4.24 eV.
Moreover, Lei et al. thought that the aromatic backbone was an almost planar
backbone with small dihedral angles of ∼7.6°, which was attributed to the carbonyl
groups forming intramolecular hydrogen bonds to prevent the conformational
transformation of the double bonds, affording a giant “locked” aromatic plane
through careful analysis of the optimized structure and 1H NMR spectra of the new
aromatic unit and its precursors. Based on the new aromatic unit, a series of

N

N

O

O

S

S
S

N

N

O

O
S

N

N

O

O

S

S

F
F

F
F

C6H13

C8H17

C6H13

C8H17

n

C8H17

C10H21

C8H17

C10H21

O
O

O
O

n

N

N

Cl

Cl

n

2

2

317 318 319

O

O

O

O

NO

N O

n

O

O

O

O

NO

N O
n

S

C12H25

C10H21

C12H25

C10H21

O

O

O

O

NO

N O n

S

C12H25

C10H21

C12H25

C10H21

S

C18H37

C18H37

C18H37

C18H37

O

O

O

O

NO

N O n

C18H37

C18H37

C18H37

C18H37

S S

320 321

322 323

Chart 3.23 Other n-type polymer semiconductors

3 Organic Semiconductors for Field-Effect Transistors 129



copolymers including 320–323 were synthesized and used in OFETs. For example,
copolymer 320 with 4-octadecyldocosyl groups, synthesized by Lei et al. [397],
exhibited significantly lowered HOMO/LUMO levels of −6.12/−4.10 eV. Its FET
performance was investigated with a top gate/bottom contact (TG/BC) device
configuration. Copolymer 320 showed electron mobilities up to 1.1 cm2 V−1 s−1

with an average mobility of 0.84 cm2 V−1 s−1 under ambient conditions. The
devices had high stability, affording an electron mobility of 0.31 cm2 V−1 s−1 after
being stored for 30 days under room light and ambient conditions. Li et al. syn-
thesized the copolymers 321 and 322 [398]. The HOMO and LUMO energy levels
of 322 were estimated to be −5.79 and −4.11 eV, which favors the injection of
electrons. The 322-based FET device encapsulated by PMMA with a bottom gate,
bottom contact configuration showed n-type characteristics with an electron
mobility of 5.4 × 10−3 cm2 V−1 s−1 even though the polymer films are rather
disordered. It is interesting that the non-encapsulated devices exhibited ambipolar
charge transport behavior with balanced electron/hole mobilities of up to
8.2 × 10−3/1.0 × 10−2 cm2 V−1 s−1. However, the polymer 321 is essentially
insoluble in any solvent, although bearing very large branched 2-decyltetradecyl
side chains. Lei et al. [399] synthesized polymer 323 with the same π-conjugated
backbone of 321 and longer alkyl chains of 4-octadecyldocosyl groups. The cyclic
voltammetry (CV) measurement of 323 gave HOMO/LUMO energy levels of
−5.72/−4.15 eV. Polymer 323 had better solubility, for example, 3 mg/mL in 1,2-
dichlorobenzene. The 323-based FET devices fabricated in a glovebox with top
gate/bottom contact configuration showed high electron mobilities up to
1.74 cm2 V−1 s−1 and an average mobility of 1.42 cm2 V−1 s−1 under ambient
conditions. As with polymer 322, ambipolar charge transport behavior could also
be observed for polymer 323. For devices fabricated under ambient conditions, the
hole mobilities of 323 significantly increased. The highest hole mobility of
0.47 cm2 V−1 s−1 and an average mobility of 0.20 cm2 V−1 s−1 were obtained,
whereas the highest electron mobility of 323 only slightly decreased to
1.45 cm2 V−1 s−1 (average: 1.20 cm2 V−1 s−1). From the results above, two points
could be concluded. First, the new electron-deficient unit is an effective building
block in tuning the energy level of polymers. Second, alkyl side chains have a huge
influence on FET performance of the related polymers.

3.4 Ambipolar Semiconductors

Ambipolar semiconductors can provide both n- and p-channel performance in a
single device. Upon these, large-area manufacturing of complementary integrated
circuits can be obtained without requiring micro-patterning of the individual p- and
n-type semiconductors. In addition, light emission can be achieved by recombi-
nation of holes and electrons within the transistor channel. To be efficient in pro-
ceeding with injection and transport of electron and hole, this kind of
semiconductor should both satisfy the requirement of p-type semiconductors for the
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HOMO energy level, and satisfy the requirements of n-type semiconductors for
LOMO energy level. Specifically, the semiconductors are required to have a
HOMO energy level below −5.0 eV and the LUMO level needs to be below or at
least close to −4.0 eV.

3.4.1 Selected Ambipolar Small-Molecule Semiconductors

In 2008, Bao et al. introduced fluorine atoms to asymmetric silylethynylated tet-
raceno[2,3-b]thiophene affording thienoacene 324 (see Chart 3.24 and Table 3.4).
The 324-based thin film showed a balanced ambipolar performance with a hole
mobility of 0.12 cm2 V−1 s−1 in air and an electron mobility of 0.37 cm2 V−1 s−1

inside the nitrogen glovebox [400]. The introduction of fluorine atoms at the ter-
minal rings exhibited a reduced π–π stacking distance of 3.32 Å in a 2D brick layer
structure of thienoacene 324. Similarly, silylethynylated N-heteropentacene 325,
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with N atoms on the terminal rings of the pentacene backbone, exhibited a hole
mobility up to 0.22 cm2 V−1 s−1 as measured in ambient air and an electron
mobility up to 1.1 cm2 V−1 s−1 as measured under vacuum. It is worth noting that
molecules of 325 form bilayer π-stacks with C–H–N hydrogen bonds, which
enabled the herringbone packing mode to retain a possible pathway for charge
transport [401]. When measured in ambient air, the electron mobility of 325
decreased to the region of 10−3 cm2 V−1 s−1, suggesting that most of the mobile
electrons were trapped by oxygen or water. In 2011, two azapentacene derivatives
were synthesized [402]. Of these, derivative 326 exhibited high and balanced
ambipolar transport properties in the glovebox, with the hole and electron mobilities
reaching up to 0.12 and 0.14 cm2 V−1 s−1 using Au as source/drain electrodes,
respectively, and average electron and hole mobilities of 0.10 and 0.11 cm2 V−1 s−1

were also obtained by using Ag as source/drain electrodes, respectively. The high
performance of 326 was attributed to the unoccupied 3d orbital in the chlorine atom
which can delocalize electrons from the conjugated core and thus the chlorine
atoms act as an additional electron pathway. More recently, Miao et al. reported a
series of cyclopenta-fused anthracenes 327 and 328 [403]. The 327-based devices
showed ambipolar transport properties with balanced hole and electron mobilities of
0.1 cm2 V−1 s−1, and 328-based devices afforded a hole mobility of
0.21 cm2 V−1 s−1, but lower electron mobility in the region of 0.01 cm2 V−1 s−1.
Natural dye isoindigo, 327 and Tyrian purple, 330 were also used as semicon-
ducting layer in OFETs [404, 405]. Sariciftci and coworkers fabricated 329-based
devices on AlOx passivated with tetratetracontane. Upon encapsulation, the devices
showed mobilities of around 1 × 10−2 cm2 V−1 s−1 for electrons and 5 × 10−3 to
1 × 10−2 cm2 V−1 s−1 for holes, and good operational stability in air. The 330-based
FET devices with similar composites demonstrated high hole and electron mobil-
ities of 0.22 and 0.03 cm2 V−1 s−1 and air stable operation. The good operational
stability in air of 329 and 330 could be attributed to their low-lying LUMO energy
levels. The ambipolar behavior of linearly oligo(p-phenylenevinylene) derivatives,
331–333 were reported by Nakanotani et al. [406]. Of these, the single crystal
OFETs of 333 exhibited balanced hole and electron mobilities of higher than
0.1 cm2 V−1 s−1. Recently, a series of naphthalene-based semiconductors with
ambipolar transport properties were developed by Zhang et al. [311, 407]. For
example, compound 334-based devices exhibited relatively high hole and electron
mobilities in air, reaching 0.03 and 0.003 cm2 V−1 s−1, respectively. Compound
335-based devices also showed relatively balanced hole and electron mobilities of
0.047 and 0.016 cm2 V−1 s−1, respectively. More recently, Wang et al. reported a
cyano-terminated dithienyldiketopyrrolopyrrole dimer 336. The thin film transistor
devices based on 336 fabricated by solution processing showed ambipolar perfor-
mance with hole and electron mobilities of 0.066 and 0.033 cm2 V−1 s−1, respec-
tively, under ambient conditions [408].
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3.4.2 Selected Ambipolar Polymer Semiconductors

3.4.2.1 DPP-Based Ambipolar Polymer Semiconductors

DPP-based polymers showed high p-type or n-type charge transport properties, and
high ambipolar properties were observed in some DPP-based polymers (see
Chart 3.25). The first ambipolar DPP-based polymer, 337 was reported by the
Winnewisser group [267]. The FETs based on 337 exhibited hole and electron
mobilities of 0.1 and 0.09 cm2 V−1 s−1, respectively. Ambipolarity in this material
was not limited to one particular transistor architecture, but had been observed in five
different configurations including transistors with solution-processed gate dielectrics
in bottom gate as well as top gate structures. Copolymer 338, containing DPP and
electron-withdrawing benzothiadiazole units has ideal HOMO (5.2 eV) and LUMO
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(4.0 eV) energy levels for the formation of electron and hole accumulation layers
[409]. 338-based transistor devices exhibited high and balanced ambipolar perfor-
mance with a hole mobility of 0.35 cm2 V−1 s−1 and electron mobility of
0.4 cm2 V−1 s−1. Adopting a top gate configuration, 338-based OFETs afforded even
higher mobilities with both holes and electrons of over 0.5 cm2 V−1 s−1 [410]. Beside
the suitable energy levels, semicrystallinity and highly ordered lamellar packing also
favor the high and balanced ambipolar performance in 338-based OFETs. The
counterparts containing furan and selenophene were also synthesized and examined
[411, 412]. For example, with replacing the thiophene unit with the furan unit, the
resulting polymer 339 has HOMO and LUMO energy levels of −5.37 and −3.74 eV,
respectively. 339-based transistor devices with bottom gate top contact configuration
demonstrated a hole mobility of 0.20 cm2 V−1 s−1 and electron mobility as high as
0.56 cm2 V−1 s−1. The selenophene-substituted polymer, 340 afforded increased
mobilities, with hole and electron mobilities of 0.46 and 0.84 cm2 V−1 s−1,
respectively. The improvement in mobilities of 340-based FETs was attributed to the
small π–π stacking distance of 3.64 Å.

Mohebbi et al. [413] developed a novel DPP-based copolymer 341 containing
the emeraldicene (EMD) unit. As anticipated, enhanced intermolecular interaction
forces were formed because of the π–π stacking of the fused rings and the D–A
interaction between EMD and DPP units. The strong intermolecular interaction is
better for getting high charge mobility. The thin films of polymer 341 showed
equivalent hole and electron mobilities of 0.29 and 0.25 cm2 V−1 s−1, respectively.
Copolymers 342 and 343 comprised of DPP and benzobisthiadiazole (BBT) units
showed high and balanced ambipolar performance [414]. Because of the strong
electron-withdrawing ability, it is the BBT unit, not DPP, which plays ‘acceptors’ in
the D–A copolymers, which have narrow bandgaps of 0.65 eV. Thin films of
polymers 342 and 343 showed equivalent hole and electron mobilities above
0.5 cm2 V−1 s−1. In particular, 343 demonstrated both hole and electron mobilities
exceeding 1 cm2 V−1 s−1.

DPP-bithiophene polymers 344 and 345, reported by Li and coworkers, have
HOMO and LUMO energy levels of −5.40 and −4.20 eV, respectively, which are
suitable for injection and transport of both holes and electrons [415]. 345-based
devices also showed ambipolar characteristics with balanced hole mobility of
0.024 cm2 V−1 s−1 and electron mobility of 0.056 cm2 V−1 s−1. A new DPP-based
polyazine 346 was developed by the same group [416]. The azine linkage was
found to be a strong electron-withdrawing moiety, which is useful for lowering the
LUMO energy level to achieve good electron transport characteristics. The FET
devices based on 346 showed equivalent ambipolar performance with an electron
mobility up to 0.41 cm2 V−1 s−1 and a hole mobility up to 0.36 cm2 V−1 s−1. The Jo
group synthesized four alternating copolymers composed of DPP and a fluorinated
phenyl unit, where the number of fluorine substitutions on phenylene varies from
zero, one, two to four for n-type OFET application as mentioned before. When the
number of fluorine substitutions is zero and one, the resulting polymers, 347 and
348, both showed high ambipolar performance with hole and electron mobilities of
about 0.30–0.40 cm2 V−1 s−1 [396].
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Copolymer 224 was previous reported by Li et al. and showed only hole
transport performance [417]. In 2012, Chen et al. fabricated the 224-based FETs
using top gate and solvent-cleaned gold contact instead of previously reported
bottom gate and O2-plasma-cleaned gold contact [418]. The devices exhibited
balanced ambipolar performance with a hole mobility of 1.36 cm2 V−1 s−1 and
electron mobility of 1.56 cm2 V−1 s−1 under nitrogen atmosphere. The main reason
for this is that the work function of solvent-cleaned gold (4.7–4.9 eV) is more
suitable for electron injection compared with O2-plasma-cleaned gold (5.0–5.5 eV).
Zhao and coworkers also fabricated the FET devices based on 224 with high
molecular weight. Ambipolar characteristics were observed in these devices under
vacuum. The highest hole and electron mobilities at 373 K were respectively 13.5
and 1.58 cm2 V−1 s−1 [269]. Similar copolymers 349 and 350 containing DPP and
another fused ring, naphthalene, have optical bandgaps of ∼1.4 eV. The highest
hole and electron mobilities achieved in polymer 350 were as high as 1.3 and
0.1 cm2 V−1 s−1, respectively [419].

A series of selenophene-DPP copolymers were developed by Chen et al. and Oh
et al. The copolymer 351-based FET fabricated by spin-coating process from 1,2,4-
trichlorobenzene exhibited a dense nanofiber morphology with lamellar chain
packing, leading to the relatively high hole and electron mobility up to 1.62 and
0.14 cm2 V−1 s−1, respectively [420]. The copolymer 352 substituted by longer
branched alky chains, 2-octyldedecyl groups, afforded similar ambipolar perfor-
mance with those of 351 [421]. However, hybrid siloxane-substituted polymers,
353–355 showed higher ambipolar performance. For example, 355-based FET
devices fabricated by a solution shearing process showed balanced hole mobility as
high as 3.97 cm2 V−1 s−1 and electron mobility as high as 2.20 cm2 V−1 s−1.
Furthermore, Oh et al. systematically studied the -conjugated system with different
alkyl spacer length of hybrid side chains [422]. The annealed films of 354 with
pentyl spacer exhibited extraordinary hole and electron mobilities of up to 8.84 and
4.34 cm2 V−1 s−1, respectively. These hole and electron mobilities are the highest
reported ambipolar mobilities measured in organic or polymer-based semiconduc-
tors to date. The high performance of these polymers with hybrid siloxane side
chains was attributed to the formation of efficient π–π stacking and three-dimen-
sional conduction channels in thin films.

3.4.2.2 Other Ambipolar Polymer Semiconductors

As well as DPP-based ambipolar polymers, some other polymers with ambipolar
performance were discovered (see Chart 3.26). For example, Lei et al. [423] syn-
thesized a fluorinated isoindigo-based polymer 356. The introduction of two fluo-
rine atoms to the -conjugated backbone effectively lowered the LUMO energy level
to −3.96 eV, and led to the formation of highly ordered thin film with lamellar
structure and low π-stacking distance of 3.53 Å. The 356-based devices showed a
significant increase of electron mobility to 0.43 from 0.07 cm2 V−1 s−1 obtained by
unfluorinated polymer, while maintaining a high hole mobility of up to
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1.85 cm2 V−1 s−1. Then the group developed a chlorinated isoindigo-based
copolymer 357, in which 2,2′-diselenophene was used as donor unit [424]. The
polymer 357-based FETs demonstrated a rather balanced hole mobility of
1.05 cm2 V−1 s−1 and electron mobility of 0.72 cm2 V−1 s−1. The results verified
that chlorination and fluorination are useful methods for tuning the properties of
organic semiconductors. Ashraf et al. [425] developed a novel copolymer, 358-
based on a new thienopyrrolone building block, in which the outer phenyl rings of
isoindigo were replaced with thiophene rings. The thiophene–thiophene links along
the backbone optimize planarity, thus maximizing π-conjugation and further
enhancing close intermolecular contacts, which also promotes the polar function-
ality. The strong D–A character created a highly hybridized frontier molecular
orbital system leading to low-lying LUMO and high-lying HOMO orbitals, optimal
for ambipolarity. This polymer 358 exhibited high ambipolar charge transport with
hole and electron mobilities of over 0.1 cm2 V−1 s−1.

Some naphthalene diimide (NDI)-based copolymers also showed ambipolar
performance. For example, copolymer 359 is comprised of 2,2′-dithiophene as
donor unit and naphthalene diimide (NDI) as acceptor unit [426]. The alkoxy
groups successfully raised the HOMO energy level to −5.28 eV and kept the
LUMO energy level at about −3.9 eV. Thin film FET devices based on the polymer

N

N
S S

O

O

F

F

C14H29

C14H29

C14H29

C14H29

n

N

N
Se Se

O

O

Cl

Cl

C14H29

C14H29

C14H29

C14H29

n

N

N

O

O

n

C10H21

C8H17

C10H21

C8H17

N

NO O

O O

R

R

S

n
S

S S
S

S

C10H21
C8H17

C10H21

C8H17

N
SN

N
S N

N

N

O

O

N
N

N

N

O

O
RO

RO

OR

OR

S

S

S

S
Ar

N

N

O O

O O

C11H23 C11H23

C11H23C11H23

n

n

n

n

S S

NS
N

N

NO O

O O

S n

C2H5

C4H9

C2H5

C4H9

S

OC12H25

C12H25O

360: R = 2-Octyldodecyl
361: R = 2-Decyltetradecyl

362: Ar =

363: Ar =

S

S
S

OC12H25

C12H25O

S

S SC8H17

C10H21

C8H17

C10H21

356 357 358

359

364 365 366

Chart 3.26 Other ambipolar polymer semiconductors

3 Organic Semiconductors for Field-Effect Transistors 139



359 afforded ambipolar performance with hole and electron mobilities of 0.04 and
0.003 cm2 V−1 s−1, respectively. Other NDI-based copolymers containing different
thiophene moieties with varied electron-donating strength and conformations
showed LUMO energy levels of −3.9 to −3.8 eV [427]. Ambipolar OFETs with
electron mobilities of 0.006–0.02 cm2 V−1 s−1 and hole mobilities of greater than
10−3 cm2 V−1 s−1 were observed in the NDI copolymers with high-lying HOMO
energy levels higher than −5.4 eV. More recently, the Yu group reported two NDI-
based copolymers, 360 and 361 [428]. The incorporation of vinyl linkages into
polymer backbones maintains the LUMO energy levels at −3.90 eV, and the
HOMO energy levels between −5.82 and −5.61 eV. The energy levels ensured the
efficient injection of holes and electrons. The 360-based devices exhibited good
ambipolar characteristics in ambient conditions (20*40 % air humidity) with hole
mobility up to 0.30 cm2 V−1 s−1 and electron mobility up to 1.57 cm2 V−1 s−1.
These mobilities are among the highest values observed to date for NDI-based
polymers. Based on polymer 361, ambipolar inverters had been realized in ambient
conditions, exhibiting a high gain of 155. The results provided important progress
in solution-processed ambipolar NDI-based copolymeric FETs and complementary-
like inverters. In addition, Usta and coworkers synthesized a class of new highly
extended π-electron deficient diimide building blocks, coronenediimide (DTCDI)
core [429]. The HOMO and LUMO energy levels of the DTCDI core are *0.3–
0.4 eV higher than those of well-studied PDI cores. DTCDI-based copolymers 362
and 363 demonstrated charge carrier mobilities up to 0.30 and 0.04 cm2 V−1 s−1 for
electrons and holes in ambient conditions, respectively. The efficient charge
transport of the DTCDI-based polymer system was attributed to a highly planar
polymeric backbone and enhanced regioregularity, which may facilitate intrachain
charge delocalization, interchain charge transport, and thin-film microstructure.

A new BBT-based polymer 364 with a bi(thiophen-2-yl)-thieno[3,2-b]thiophene
unit located between each pair of BBT units along the chain has the LUMO energy
level of −3.8 eV, which is advantageous to the injection and transport of electrons
[430]. The 364-based FETs showed balanced ambipolar transport performance with
hole mobility of 0.7 cm2 V−1 s−1 and electron mobility of 1.0 cm2 V−1 s−1. The
highly ordered thin films with lamellar structure and low -stacking distance of
3.53 Å were responsible for the high charge transport performance. Other ambi-
polar copolymers containing the strongly accepting BBT moiety were also syn-
thesized [431]. Hong et al. [432] developed two new low bandgap conjugated
polymers, for example 365, containing dipyrrolo[2,3-b:2′,3′-e]pyrazine-2,6
(1H,5H)-dione (PzDP). The stronger electron-withdrawing inherence of the PzDP
unit was expected to bring about strong intermolecular interactions and a short π–π
stacking distance. The resulting polymers have HOMO energy levels of around
−5.50 eV, and LUMO energy levels in the range −4.17*−4.31 eV, which is
favorable to the injection of electrons and shows the potential for ambipolar
semiconductors. The 365-based devices showed ambipolar transport with hole
mobility of 0.053 cm2 V−1 s−1 and electron mobility of 0.021 cm2 V−1 s−1, and high
on/off current ratios up to 106. In recent years, a series of phenyl-flanked benzo-
dipyrrolidone (BPP)-based copolymers were synthesized by several groups
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[433–435]. However, because the phenyl moieties of BPPs are often responsible for
introducing steric twisting along the backbone, leading to large dihedral angles
between linked units, the relating polymers often afforded low charge mobilities. In
2013, Rumer et al. [436] developed a thiophene-flanked benzodipyrrolidone (BPT)
building block and synthesized a series of BPT-based copolymers, which all
showed HOMO/LUMO energy levels of −5.4 eV and below −3.8 eV, respectively.
The electrochemical data indicated that BPT is an effective unit for constructing
low-bandgap polymers and the injection of electrons and holes is favorable in these
polymers. 366-based FETs with top gate configuration showed balanced ambipolar
transport behavior with hole mobility of 0.2 cm2 V−1 s−1 and electron mobility of
0.1 cm2 V−1 s−1, respectively.

3.5 Outlook

During the past 20 years, especially the past 10 years, interdisciplinary research
focused on the design and synthesis of organic semiconductors, analysis of various
elemental mechanisms involved in charge carrier transport processes, and fabrica-
tion technology of organic field-effect transistors has made remarkable progress:
plenty of semiconducting materials with mobility higher than that of amorphous
silicon, and demonstration systems and products based on OFETs becoming
available on a commercial basis. Nonetheless, the electrical parameters and stability
of the OFETs still lag far behind that of their inorganic counterparts.

For semiconducting materials, new π-conjugated molecules with high stability
and high performance still need to be developed. More clear relationships between
molecular structure, aggregation structure, and properties still need to be set up. In
addition, a general charge transport mechanism need to be put forward, although
various types of transport mechanism have been proposed. For processing tech-
niques, low cost fabricating techniques, mainly printing technique, for use in large-
area production of OFETs, need to be constantly improved. The technique related to
flexible OFETs devices also need to be studied further.

In brief, exploiting the properties of OFETs and translating them into killer
applications are common goals of the OFET research community. Great opportu-
nities exist in the field of OFETs; however, there are also a lot of challenges that we
have to face on the road to success.
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Chapter 4
Organic Semiconductor Photovoltaic
Materials

Zhi-Guo Zhang

Abstract Organic solar cells (OSCs) are an emerging alternative photovoltaic
technology and thus they have recently gained much attention. In this chapter,
recent developments in organic photovoltaic materials, involving small molecule
donors and non-fullerene acceptors for vacuum and solution-processed photovoltaic
cells, are summarized. A general overview of the structure–property relationships of
these organic photovoltaic materials and the design rules for such materials is
presented. Critical factors which determined their photophysical properties such as
energy levels, absorption, and carrier mobilities are also highlighted.

Keywords Small molecule donors � Non-fullerene acceptors � Donor–acceptor
systems � Organic photovoltaic properties

4.1 Introduction

In the past few decades, intensive research effort has been devoted to the development
of organic solar cells (OSCs) based on solution-processed small-molecule (SM)
donors or acceptors [1–5]. These materials are competitive alternative to widely used
conjugated polymer-based donors or acceptors because of their potential advantages
over conjugated polymer systems. The advantages of organic photovoltaic materials
are easier purification and synthesis, defined structures without end group contami-
nants, and better batch-to-batch reproducibility [2–4]. With these advantages, a
substantial amount of research in both academic and industrial circles has been
directed towards OSCs in an effort to improve their processability, power conversion
efficiency, and stability. Power conversion efficiency (PCE) is the most important
parameter used to evaluate solar cell performance. PCE is determined by open-circuit
voltage (VOC), short-circuit current density (JSC), and fill factors (FF), as shown by the
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formula PCE = (JSC × VOC × FF)/Pin, where Pin is the input light power [6]. Recently,
PCE of OSCs approached 8 % by synthesizing planar Acceptor-Donor-Acceptor-
based conjugated molecule donor materials [7, 8], which makes solution-processed
OSCs comparable to polymer solar cells (PSCs).

For device fabrication, two main approaches have been explored: (1) vacuum
deposition for the planar-heterojunction (PHJ) and bulk-heterojunction (BHJ) solar
cells and (2) solution processing (spin-coating, doctor blade, and dip-coating) for
BHJ solar cells. The so-called BHJ represents the ideal case as bicontinuous donor-
acceptor composites for large surface area.

In this chapter, the latest developments in SM donors are examined, namely,
donor–acceptor SMs for vacuum, solution-processed OSCs and non-fullerene
acceptors. By summarizing the structure–property relationships of representative
photovoltaic materials, the design rules for such materials are highlighted. Chemical
strategies for tuning their photophysical properties such as the optical bandgaps,
energy levels, and charge mobilities are also discussed. For the donor materials,
representative classes of materials include dyes (squaraine, boron dipyrromethene,
porphyrin, and diketopyrrolopyrroles), triphenylamine derivatives, oligothiophenes,
and push-pull type oligomers; for the non fullerene acceptor, those constructed from
D-A structure and naphthalenediimide (NDI) and perylene diimide (PDI) deriva-
tives are summarized.

4.2 Organic Solar Cells by Vacuum Deposition

Compared with solution processing, a distinct advantage of vacuum deposition is
the ability to prepare multi-layer thin films. With this virtue, the interfaces for
carrier collection can be carefully tuned, and multi-junction structures are easier to
realize. For example, Heliatek GmbH reported certified PCE of 12.0 % for a tandem
device fabricated by the connection of two BHJ devices, rendering OSCs more
competitive [9].

Acenes are formed by fused benzene rings. Because of their intriguing photo-
physical and electronic properties, these materials have the potential to be used as
organic electronics [10]. However, the numbers of higher order polyacenes reported
so far are still limited because of their poor stability and solubility. Based on a
pentacene (1a, Fig. 4.1)/C60 heterojunction, Kippelen and coworkers have fabri-
cated an efficient OSC [11]. The efficiency is 2.7 % with a JSC of 15 mA cm−2 and
an FF of 0.50, but a low VOC of 0.36 V. Brütting et al. reported vacuum deposited
OSCs based on diindenoperylene (DIP, 1b) as a new donor material and the ful-
lerene C60 as an electron acceptor. The high HOMO of DIP and the favorable
energy level offset with C60 produced large VOC values close to 1 V and PCEs of
about 4 % in the planar heterojunction and planar-mixed heterojunction cell
architectures [12]. Adachi and coworkers fabricated vacuum deposited OSCs with
tetraphenyldibenzoperiflanthene (1C) as donor and C60 as acceptors. To prevent
exciton quenching, a layer of tris[4-(5-phenyl thiophen-2-yl)phenyl]amine was
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deposited between the donor layer and the PEDOT:PSS layer, and a high PCE of
5.24 % was reached together with a VOC of 0.94 V, JSC of 7.25 mA cm−2, and a
high FF of 0.77 [13]. To make the less soluble organic materials compatible with
solution processable techniques, Nakayama et al. reported the photoprecursor
method. In addition, this approach enables the formation of multi-layer device
structures using solution processes.

Structurally well-defined oligothiophenes have attracted much attention in terms
of high mobility, environmental/thermal stability, and, most importantly, synthetic
versatility. Without any chemical modifications or substitutions, α-sexithiophene
(1d) was easy to crystallize by poor miscibility with C70. BHJ OSCs using a blend
of α-sexithiophene (1d) [14] and C70 were fabricated by the vacuum co-evaporation
method. At a 1d:C70 ratio of 1:5 (w/w), the OSC devices showed a PCE of 2.38 %.
Notably, the wide bandgap and relatively high HOMO level of 1d are the two
factors limiting its efficiency. Bäuerle prepared a family of terminally acceptor
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dicyanovinyl-substituted oligothiophenes (1e) without solubilizing side chains, and
implemented them in vacuum-deposited planar heterojunction solar cells.
Optimization of BHJ devices based on a 40-nm active layer of 1e and C60 in 2:1
ratio resulted in a PCE of 5.2 % for a 5.06 mm2-sized and masked device [15].
Alkyl side chains of butyl groups and ethyl groups were appended on the backbone
1e and tested in PHJ solar cells. Compared to the ethyl-substituted analogue 1f-2
(2.5 %), devices with butyl-substituted SMs (1f-1) showed a higher PCE (3.4 %).
The differences in the molecular packing and the hole mobilities of the two oli-
gothiophenes [16] was acceptable as the hole injection between the hole-transport
layer and the oligothiophene are the reasons for the differences in their device
performances (Table 4.1).

To improve the efficiency further, Bäuerle synthesized a series of methyl-
substituted 1e oligothiophenes. In these materials, the positions of methyl substit-
uents were systematically varied [17]. These oligomers exhibited PCEs of 4.8–
6.1 % in vacuum-deposited p-i-n-type BHJ solar cells. The PCE of oligomer
1i-based device was improved to 6.9 % by device optimizations. The authors point
out that the morphology of D-A blends and consequently the device performance
can be effectively tuned by the methyl substitution in oligothiophenes.

Squaraine (SQ) dyes have a unique aromatic four-membered ring with reso-
nance-stabilized zwitterionic structures, and are characterized for their high
absorption coefficients and broad absorptions which can extend from the green to
the NIR region [18, 19, 21–24]. Forrest, Thompson, and coworkers reported a
squaraine-based molecule (1j), for structure see Fig. 4.1) as a photovoltaic donor
(C60 as acceptor) in vacuum-deposited BHJ OSCs [18]. Under AM 1.5G simulated
solar irradiation, devices exhibited a PCE of 3.1 % with a VOC of 0.76 ± 0.01 V,

Table 4.1 Properties and device characteristics of molecules in Fig. 4.1

Molecules HOMO/LUMO
(eV/eV)

Eg

(eV)
Voc

(V)
Jsc
(mA cm−2)

FF
(%)

PCE
(%)

Reference

1a −3.0/−4.9 1.77 0.36 15.0 0.50 2.70 [11]

1b N.A. N.A. 0.91 8.40 0.52 4.10 [12]

1c N.A. 1.90 0.94 7.25 0.77 5.24 [13]

1d −3.1/−5.3 N.A. 0.58 9.20 0.45 2.38 [14]

1e −3.7/-5.7 1.69 0.97 11.1 0.49 5.20 [15]

1f-1 N.A. N.A. 1.00 8.90 0.51 3.40 [16]

1f-2 N.A. N.A. 1.00 8.40 0.40 2.50 [16]

1g −3.73/−5.64 2.01 0.61 9.60 0.63 4.80 [17]

1h −3.71/−5.61 2.03 0.95 9.40 0.62 4.80 [17]

1i −3.73/−5.62 1.99 0.95 11.5 0.63 6.90 [17]

1j N.A./ −5.10 1.77 0.76 7.01 0.56 3.10 [18]

1k −3.70/−5.30 1.75 0.90 10.0 0.64 5.70 [19]

1l −3.44/−5.30 1.86 0.79 15.08 0.48 5.70 [20]

1m −3.36/−5.50 2.14 0.93 13.48 0.53 6.60 [20]

1n −3.35/−5.43 2.08 1.00 11.28 0.45 5.00 [20]
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a JSC of 7.01 ± 0.05 mA cm−2, and an FF of 0.56 ± 0.05. The attaching of N,N-
dialkyl groups can produce soluble squaraines, although the carrier transport can be
hindered. To improve the molecular stacking and hence charge transport, Forrest,
Thompson, and coworkers synthesized 1k by substitution of isobutylamines in the
common “parent Squaraine” with arylamines. The strong electron-withdrawing a-
rylamine group results in a lower HOMO of −5.3 eV, compared to −5.1 eV for the
parent SQ (1j), thereby leading to an increased VOC. Heterojunction 1k/C60/
bathocuproine solar cells shows an improved efficiency of 5.7 % with a VOC of
0.90 V, FF of 0.64, and JSC of 1.1 mA cm−2 [19].

Organic dyes with a D-A-A (donor−acceptor−acceptor) structure have both a
smaller bandgap and lower-lying highest occupied molecular orbital (HOMO) level
as compared with their analogs. Wong, Lin, and coworkers recently reported a new
D-A-A donor materials 1l-1n. In these materials, an electron-donating ditolylami-
nothienyl group and an electron-deficient dicyanovinylene group are bridged by
another electron acceptor of benzothiadiazole unit [20].

Using 1l as donor and C70, a vacuum-deposited solar cell as acceptor gives a
PCE of 5.81 %. This respectable PCE value is attributed to its broad solar response
range extending to the near-IR region and the ultra compact absorption dipole
stacking of 1l in a thin film. This delicate molecular structure tuning along with
device engineering allows manipulation of the trade-off between the VOC and JSC.
Planar heterojunction cells using 1m as the donor and C70 as the acceptor dem-
onstrated the best performance with a PCE of 6.6 ± 0.2 % (the highest PCE of
6.8 %), along with a VOC of 0.93 ± 0.02 V, and a JSC of 13.48 ± 0.27 mA cm−2.

4.3 Organic Solar Cells by Solution Processing

4.3.1 Dyes

Boron dipyrromethene (BODIPY) dyes are characterized by unique chemical and
photochemical stabilities, redox activities, and optical features. Their photophysical
properties can easily be tuned by chemical modification, allowing them to act as
prominent donors in BHJ solar cells. In 2009, Roncali and coworkers described the
first examples of solar cells using boron dipyrromethene (2c-1 and 2c-2 Fig. 4.2)
donors involving one (2c-1) or two styryl units (2c-2) in the structure [25]. The
more extensively conjugated compound 2c-2 has a lower oxidation potential and
red-shifted absorption. The absorption onset corresponds to the bandgap (Eg) of
1.95 and 1.70 eV for 2c-1 and 2c-2, respectively. The solar cell using donor 2c-1
shows a VOC of 0.796 V, together with an FF of 0.34, and a resulted PCE of 1.17 %.
However, 2c-2 has a higher efficiency of 1.34 % with a JSC of 4.14 mA cm−2 and a
VOC of 0.753 [25]. Later, Roncali and coworkers connected a 5-hexyl-2,2’-bithienyl
to the axial phenyl ring of compound 2c-2, thus producing 2d. This structural
modification has little effect on the energy levels and absorptions of 2d but
improves its charge-transport properties, as supported by the electrochemical,

4 Organic Semiconductor Photovoltaic Materials 169



I

NN

R R
B

F F

2e-2, R=
S

S C6H13

2e-1, R=
S C6H13

I

NN

R1
R2

B

O

O

O
O

O

O

O

Z =

2c-1: R1 = CH3,R2 = Z

2c-2: R1 = R2 = Z

R3

NN
B

O

O

O

O

O

O

O

O

O

O

S

S

C6H13

2d: R3 = W

R3 =

N HN

NNH

N HN

NNH

N

N

O

O

R

R

S

S
C6H13

S

S
C6H13

R =
O

O

N

N

O

O
S

O

S

O

N

N

O

O

S
S

N

N

N
NN

N

N

N

O

O

S
S

S

S

O

ON

N

O

O
S

S

N

N

O

O

R

R

S

S

S

S
EtOOC

COOEt

N

N

O

O

SSC6H13 S S
C6H13

N

N

O

O

S S

N

N

O

O

2f-22f-1

2g-1 2g-2

2h

2j 2k

2l
2m

2i

N

NH N

HN

OC8H17

OC8H17

N

N

O

O
SS

N

N

O

O
SS

2n

Fig. 4.2 Chemical structures of dyes

170 Z.-G. Zhang



optical, and mobility data. Thus improved efficiency of 2.17 % was obtained with a
VOC of 0.75 V and JSC of 7.0 mA cm−2 [26]. Ziessel and coworkers reported a new
series of thienyl-BODIPY dyes (2e-1 and 2e-2) and studied their photophysical and
electronic properties as well as their performances as donor component in OSCs,
with a special focus on the influence of the solubilizing chains. In THF solution, 2e-
1 and 2e-2 show two strong absorptions in the 430−450 and 560−750 nm ranges,
with extinction coefficients of about 100000 M−1 cm−1. In contrast to the mono-
thiophene styryl units, red-shifted absorption by 47 nm can be found in 2e-2. This
could be explained by its more conjugated styryl bithiophene arms. With 2e-1 as
donor and PCBM as acceptor, a PCE of 1.4 % was obtained with a JSC of
5.84 mA cm−2 and VOC of 0.76 V, whereas for 2e-2, a higher PCE of 4.7 % was
obtained with a JSC of 14.2 mA cm−2 and a VOC of 0.70 V [27] (Table 4.2).

Nakamura demonstrated new solution-processable three layered p-i-n OSCs (the
i meaning an inter-layer contains donor and acceptor components), composed of
tetrabenzoporphyrin (BP, 2f) and silylmethyl [60] fullerene acceptor (SIMEF). The
thermally transformable phthalocyanine enables formation of an “ordered” het-
erojunction rather than BHJ. A impressive PCE of 5.2 % was obtained [28]. The
controllable trilayer cells deliver a large JSC (10.3 mA cm−2) and FF (65 %),
leading to a respectable overall PCE of 5.2 %.

The diketopyrrolopyrrole (DPP) structure is an ideal aromatic building block for
organic electronic materials because of its good photochemical stability, intense
light absorption, and an extended π-conjugated framework. In addition, the
accessibility of the lactam nitrogens for chemical modification provides a versatile
handle for altering its physical properties, such as solid-state packing and solubility
[37–40].

Table 4.2 Properties and device characteristics of dyes in Fig. 4.2

Molecules HOMO/LUMO
(eV/eV)

Eg

(eV)
Voc

(V)
Jsc
(mA cm−2)

FF
(%)

PCE
(%)

Reference

2c-1 −3.66/−5.69 1.95 0.796 4.43 34.0 1.17 [25]

2c-2 −3.75/−5.56 1.70 0.753 4.14 44.0 1.34 [25]

2d −3.70/−5.61 1.70 0.750 7.70 0.38 2.17 [26]

2e-1 −3.81/−5.46 1.60 0.760 5.84 31.0 1.40 [27]

2e-2 −3.84/−5.34 1.45 0.700 14.30 47.0 4.70 [27]

2f-2 N.A. N.A. 0.750 10.50 65.0 5.20 [28]

2g-1 −3.00/−5.03 1.51 0.670 8.42 45.0 2.33 [29]

2g-2 −3.70/−5.20 1.55 0.750 9.20 44.0 3.00 [30]

2h −3.40/−5.20 N.A. 0.920 10.0 48.0 4.40 [31]

2i −3.60/−5.33 1.65 0.940 8.55 0.50 4.02 [32]

2j −3.60/−5.31 1.70 0.63 14.6 0.58 5.30 [33]

2k −3.68/−5.40 1.72 0.84 11.27 0.42 4.06 [34]

2l −3.90/−5.50 1.67 0.66 2.40 0.36 0.55 [35, 36]

2m −3.80/−5.50 1.76 0.95 7.80 0.45 3.31 [35]
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Nguyen et al. synthesized a series of SM (2g-1, 2g-2, and 2h). In molecule 2g-1,
the lactam nitrogens of the DPP unit were protected by tert-butyloxycarbonyl (Boc)
groups to increase the solubility. This molecule delivers intense absorption in the
visible and near-infrared regions and exhibits a hole mobility of ∼10−6 cm2/V s, as
determined by the SCLC (space-charge limited current) model. A 7:3 weight ratio
of donor/PCBM ([6]-phenyl C61-butyric acid methyl ester) provided a PCE of
2.3 % under simulated AM 1.5G solar irradiation of 100 mW/cm2 [29]. To improve
the thermal stability and solubility, the Boc groups on the DPP structure in 2g-1 was
replaced by ethylhexyl chains, affording 2g-2. Compared to the Boc derivative, this
structure modification does increase its thermal stability and solubility, lowers the
HOMO level, and further enhances film forming properties. The high degree of
ordering in the pristine donor film is maintained in blended films, and thus good
hole motilities were obtained. After thermal annealing (100 °C for 5 min), devices
prepared from a 2g-2: PC70BM (1:1, w/w) blend gave a PCE of 3.0 % with an FF of
0.45 [30]. To tune the electronic and optical properties further, the terminating
group of hexylthiophene units in 2g-2 was replaced by benzofuran units, thus
affording 2h. After thermal annealing (100 °C for 10 min), devices prepared from a
2h 5:PC70BM (6:4, w/w) blend gave a PCE of 4.4 % with an FF of 0.48 [31]. Chen
and coworkers reported an ethyl thiophene-2-carboxylate group end-capped DPP
molecule, 2i. Benefiting from its narrow bandgap and lower-lying HOMO, the
OSCs based on 2i showed a broad photovoltaic response range extending to around
750 nm and a very high VOC of 0.94 V, affording a PCE of 4.02 % [32]. Using
triazatruxene as the end-capper group and DPP as the central group, Ziessel, Leclerc
and coworkers reported the synthesis and photovoltaic properties of dumbbell-
shaped solution-processable 2j. The result suggested that the triazatruxene core is
an effective electron-donating unit for OSCs, providing a good trade-off between
planarity and solubility. It shows end-to-end π–π interactions in the solid phase and
leads to favorable active layer morphologies with low ratios of fullerene acceptors.
With a 1:0.75 2j:PC70BM weight ratio, solar cells demonstrated a high PCE of
5.3 % with a VOC of 0.63 V and JSC of 14.6 mA cm−2 after thermal annealing (110 °
C for 20 min) [33]. Using a naphthadithiophene donor group as the core and DPP as
terminal arms, an alternative A-D-A (Acceptor-Donor-Acceptor) structure (2K) was
employed by Marks et al. Solar cells prepared from a 2K:PCBM (1.5:1.02) deliver
a high PCE of 4.06 %, with a VOC of 0.84 V, JSC of 11.27 mA cm−2, and FF of 0.42
by annealing at 110 °C for 10 min [34].

Inspired by the prominent device performance of using diketopyrrolopyrrole dyes
as photovoltaic donors in BHJ OSCs, isoindigo-based dyes have also been inves-
tigated as donor materials in OSCs in recent years. The unique structure of isoindigo
delivers a strong electron-withdrawing character and this character benefits from the
conjugation of the lactam rings in conjunction with an extended large π-system
under the bis-oxindole framework. In 2010, Reynolds and coworkers first utilized
isoindigo dyes in OSCs. Using donor-acceptor-donor (D-A-D) and acceptor-donor-
acceptor (A-D-A) structures, isoindigo-based dyes (2l and 2m) were synthesized in
conjunction with bithiophene as an electron donor. Annealed photovoltaic devices
(100 °C) of 2m deliver modest PCEs of 0.55 %, with a VOC of 0.66 V, JSC of
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2.4 mA cm−2, and a low fill factor of 0.36. The BHJ cells made from 2l performed
significantly better than devices made from 2m. After annealing at 100 °C, solar cells
made from 2l showed a PCE of up to 1.76 %, with a VOC of 0.74 V, JSC of
6.3 mA cm−2, and fill factor of 0.38 [35]. By combining solvent additives with
complementary effects, further refinement of the device processing conditions was
achieved, and the PCE of 2l was further increased to near 3.7 % [36].

Inspired by the natural photosynthetic systems that utilize chlorophylls to absorb
light, Peng and coworker explored porphyrin derivatives as the donor materials for
OSC studies [41–43]. To facilitate the intramolecular charge transport, they intro-
duced ethynylene to link a porphyrin core with different acceptor units. High PCEs
of 7.23 % for 2n with a JSC of 16 mA cm−2, VOC of 0.71 V, and FF of 0.63 were
achieved for the solution-processed BHJ OSC [43]. This value is the highest PCE
for solution-processed BHJ OSCs based on porphyrin dyes. This result also ranks as
one of the best PCEs (over 7 %) for solution-processed BHJ OSCs.

4.3.2 Triphenylamine Derivatives

Organic molecules containing triphenylamine (TPA) units have good solubility
because of the propeller structure of TPA units, and high hole mobility. Therefore,
the studies of TPA-containing molecules for OSCs, pioneered by Roncali and
coworkers [44, 45] attracted wide attention. Here we have divided the TPA-con-
taining molecules into two categories, namely, linear (Fig. 4.3) and star-shaped
(Fig. 4.4). With this classification, the structure-property relationships are
discussed.

Li and coworkers reported D-A-D type molecules with TPA as donor, benzo-
thiadiazole (BT) as acceptor, and vinylthiophene as the bridge [46]. Based on the
blend of 3a and PCBM (1:1), the PCE was only 0.26 % for the device with a Ba/Al
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cathode. Higher efficiency of 1.44 % with a VOC of 0.74 V was realized by using a
fused thiophene as bridge because of a larger conjugation in 3b [47]. Under the
molecular architecture of 3a, removing of the vinyl group also affords 3c. This
chemical modification brought a larger VOC of 0.86 V together with an improved
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efficiency of 1.06 % [48]. Replacing the acceptor unit of benzothiadiazole with
thiazolothiazole (TTz), another D-A-D type molecule was obtained (3d). Because
of the weak electron-accepting ability of the TTz unit, 3d demonstrated a wide
bandgap with an optical bandgap of 2.31 eV in film [49]. By tuning donor/acceptor
blend ratio variation, OSCs with PC70BM as acceptor delivered perfect phase
separation sizes of 10–20 nm and balanced carrier transport, leading to a PCE as
high as 3.73 % under thermal annealing.

By combining a triphenylamine electron donor unit with a dicyanovinyl thiophene
electron acceptor group, Roncali reported D-A type SM donors 3e and 3f. In 3f, the
dicyanovinyl group has been fused to the thiophene by a phenyl ring to modulate the
absorption. In bilayer PHJ solar cells (with C70 as acceptor), the reference molecule
3e demonstrated an efficiency of 2.53 % with a VOC of 0.92 V, an FF of 0.42, and JSC
of 5.77 mA cm−2, whereas for the molecule 3f with larger conjugation, a higher
efficiency of 2.97 % was obtained with a JSC of 5.32 mA cm−2, a VOC of 0.97 V, and
FF of 0.52 under the illuminaiton of AM 1.5G at 90 mW cm−2 [50].

Early in 2006, with TPA as core, a family of star-shaped SMs was first reported
as donor materials by Roncali and coworkers. For the molecule with TPA as the
core derivatized with dicyanovinyl group (4a), a PCE of 1.02 % together with a
VOC of 0.96 V was obtained [44]. Later, Li et al. reported two star-shaped D-π-A
molecules (4b and 4c) as donor components in solution-processed OSC [51]. These
materials contain triphenylamine (TPA) as core and donor unit, dicyanovinyl
(DCN) as end group and acceptor unit, and bithiophene or 4, bithiophene vinylene
as the conjugated bridge. PCE of the OSC based on 4b as donor is 1.4 %.
Benefitting from the vinylene bridge, the absorption profile of the 4c film covers a
wide wavelength ranging from 380 to 750 nm, and its absorption is red-shifted by
ca. 40 nm compared to that of the 4b film. With a JSC of 7.76 mA cm−2 and a VOC

of 0.88 V, the PCE of the BHJ OSC based on a composite of 4c and PC70BM (1:2,
w/w) reached 3.0 %. The removing alkyl chain in the bithiophene bridge to the
DCN acceptor end group afforded molecule 4d with improved planarity [52]. By
addition of a new additive 4-bromoanisole, devices based on a blend of 4d and
PC70BM demonstrated a PCE of 3.1 % without any post-treatment and further
improved to 3.6 % under simulated AM 1.5G. Similar to the alkyl DCN group, the
alkyl cyanoacetate acceptor group is another interesting electron-deficient group
containing both cyano moiety and alkyl chain, Thus the greatest advantage of this
alkyl cyanoacetate acceptor group is to induce internal charge transfer and
improved solubility simultaneously [53]. With alkyl cyanoacetate acceptor group as
the acceptor end group, Zhan reported another new star-shaped molecule 4e [54].
Specifically, the use of alkyl cyanoacetate acceptor group can avoid tedious and
time-consuming multi-step reactions. Without any post-treatment, the BHJ OSCs
based on a 4e:PC70BM (1:2, w/w) blend afforded a PCE of 3.60 % and an FF of
0.56 (Table 4.3).

Another star-shaped TPA-containing molecule is based on the D-A-D archi-
tecture arms. Recently, Li and coworkers reported such a type of molecule con-
taining TPA as core and benzothiadiazole-(4-hexyl) thiophene as arms (4f), for
application in solution-processed OSCs [55]. A thin film of 4f shows broad and
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intense absorptions in the range 300–630 nm. The OSC device based on a blend of
4f and PC70BM (1:3, w/w) exhibited a JSC of 8.58 mA cm−2, a VOC of 0.85 V, and
an FF of 0.327, leading to a PCE of 2.39 %, under the illumination of AM.1.5G,
100 mW cm−2. Similar to 4f, the removing of the vinyl group affords 4g with higher
efficiency. BHJ OSC cells based on 4g:PC70BM (1:2, w:w) deliver a JSC of
9.51 mA cm−2, VOC of 0.87 V, FF of 0.52, and PCE of 4.3 %. The PCE value of
4.3 % is among one of the highest reported values for solution-processed BHJ
OSCs containing TPA-based small molecules [56]. In the above examples, the TPA
unit plays an important roles as electron donor and hole transport mediator, but its
propeller structure aroused the issue of intermolecular packing and resulted in lower
hole mobility in BHJ active layer of the OSCs. To improve the planarity, Ko, Li,
and coworkers introduced dimethylmethylene-bridged TPA core to replace TPA
and synthesized 4h. Relative to its counterpart with TPA as core, the planar star-
shaped 4h showed a slight redshift absorption and stronger absorbance. A note-
worthy PCE value of 4.16 % was recorded with a JSC of 11.34 mW cm−2 [57].

4.3.3 Oligothiophenes

For oligothiophenes, one synthetic advantage is to be relatively readily extended to
longer oligomers. The other is to be appropriately functionalized at the terminal α-
positions or the side β-positions. Under these chemical approaches, versatile
structures can be obtained and their characteristics relevant to solar cells applica-
tions (such as mobilities, energy levels, and solid state packing) can be well

Table 4.3 Properties and device characteristics of triphenylamine molecules in Figs. 4.3 and 4.4

Molecules HOMO/LUMO
(eV/eV)

Eg

(eV)
Voc

(V)
Jsc
(mA cm−2)

FF
(%)

PCE
(%)

Reference

3a −3.30/−5.10 1.80 0.74 0.619 33.0 0.19 [46]

3b −3.42/−5.10 1.64 0.74 5.71 34.0 1.44 [47]

3c −2.99/−5.16 2.03 0.86 3.23 38.0 1.06 [48]

3d −2.91/−5.39 2.31 0.91 9.39 43.7 3.73 [49]

3e −3.79/−5.96 2.03 0.92 5.77 42.0 2.53 [50]

3f −4.22/−5.96 1.59 0.97 5.32 52.0 2.97 [50]

4a N.A. 1.78 0.96 3.65 29.0 1.02 [44]

4b −3.34/−5.22 1.88 0.84 5.21 30.8 1.40 [51]

4c −3.42/−5.03 1.61 0.88 7.76 43.9 3.00 [51]

4d −3.41/−5.32 1.89 0.96 7.81 50.0 3.60 [52]

4e −3.41/−5.32 1.95 0.88 7.30 56.0 3.60 [53]

4f −3.08/−5.19 1.96 0.85 8.58 32.7 2.39 [55]

4g −3.11/−5.28 1.90 0.87 9.51 52.0 4.30 [56]

4h −3.66/−4.94 1.75 0.74 11.34 50.0 4.16 [57]
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controlled. To broaden absorption and improve solubility, branched oligothioph-
enes were developed [14].

Roncali et al. developed a tetrahedral oligothienyl silane derivative 5a [58].
Compared with parent linear terthiophene, a 19-nm red-shifted absorption was
observed. In blending with PCBM at 1:3 w/w ratio, a moderate PCE of 0.3 % was
obtained under the simulated irradiation of AM 1.5G, 80 mW cm−2. Although the
device performances are mainly limited by the narrow absorption of the donor,
results obtained with this short chain model compound confirmed the interest of the
3D approach. By changing the core to a phenyl group, a four-arm dendrimer with
longer thiophene chains was developed [59]. The better conjugation in 5b brought
an improved PCE of 1.3 % using PCBM as acceptor under simulated AM 1.5G
illumination. Under the 3D architecture, all-thiophene dendrimer (5c Fig. 4.5) with
highly branched arms was reported by Peter Bäuerle [60] and used in BHJ solar
cells as donor in combination with PCBM as acceptor. BHJ solar cells using
dendrimer 5c in a D-A ratio of 1:2 generated a PCE of 1.7 % with a high VOC of
0.97 V. In order to improve the photon harvesting ability further, acceptor groups
have been incorporated into the core or the terminal of the branched oligothioph-
enes. Under such an approach, Bäuerle et al. introduced an electron-deficient
pyrazino[2,3 g]quinoxaline as core into the dendritic structure [61]. Dendrimer 5d
showed a broad absorption in the range 300–700 nm and a reduced bandgap of
1.7 eV, giving an efficiency of 1.3 %. Kopidakis and coworkers have developed
such an oligothiophene (5e) with electron-deficient tricyanobenzene as core and
electron-rich dendrons [62]. Compared to the control dendrimer with the same
structure but without the electron-deficient core (5e-1), the appending electron-
deficient core in 5e-2 planarizes the structure and lowers the bandgap, thus leading
to enhanced structure order in bulk heterojunction films. The optical bandgap of
5e-2 was reduced to 1.8 eV, compared to 2.4 eV for 5e. Oligomer 5e-2 showed a
much higher PCE of 1.1 % compared to only 0.4 % for 5e-1. Notably, despite its
lower bandgap, an expected larger JSC for 5e-2 as comparison to 5e-1 was not
recorded. The electron trapping effect in the cyanobenzene core can account for its
lower JSC, impeding electron transfer to the acceptor [62]. Another approach for
broadening the absorption is introducing acceptors into the terminal of oligothi-
ophenes. Wong et al. incorporated dicyanovinyl units to the terminal branched
oligothiophenes in thin films and, accompanied with a strong spectral broadening,
the optical bandgap of the dendritic oligothiophene 5f was reduced to 1.74 eV [63].
Together with a JSC of 4.19 mA cm−2, VOC of 0.97 V, and FF of 0.42, device
optimization produced a PCE of 1.72 %. Compared to linear D-A small molecules,
however, this family of oligothiophenes usually delivers low FF values in solar
cells because of the low mobility, and therefore more studies are needed to improve
their FF values and solar cell performances.
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4.3.4 Linear D-A Oligothiophenes

Thin-film deposition using solution-processed methods have many advantages
leading to simplicity, low cost, low temperature, and large area device fabrication,
meaning high throughput that enables the fabrication of high-performance, low-cost
electronics. Chen and coworker developed solution-processed linear oligothioph-
enes with terminal acceptors (6a–6d). They systematically varied the position and
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density of the alkyl side chain or the terminal acceptor group as well as the core in
the as-developed oligothiophenes. Because of the efficient conjugation of the aro-
matic skeleton and intramolecular charge transfer (between the terminal acceptor
unit and the central donor unit), the SMs obtained exhibited high hole mobilities
and wide absorptions with high coefficients.

In 2010, Chen and coworkers reported DCV-substituted oligothiophene and
used it as donor component for solution-processed OSCs. The BHJ solar cell with
(6a-1 (Fig. 4.6) and PCBM at the ratio of 1:1.4 exhibited a PCE as high as 3.7 %
under AM 1.5G illumination in air [64]. Instead of a DCV terminal group, they
incorporated the alkyl cyanoacetate terminal group in the oligothiophenes. In these
oligothiophenes, by changing the ethyl group to longer octyl and 2-ethylhexyl
groups, their absorption maxima in thin films are gradually blue shifted. These SMs
all demonstrate high PCEs (4.46–5.08 %) for solution-processed BHJ OSCs. A
high PCE of 5.08 % was recorded based on a blend of 6a-2 and PCBM without any
special treatment [65]. However, this molecule contains a weak acceptor end unit of
cyanoacetate group, which could not contribute too much to the overall light
absorption. The change of cyanoacetate group to a stronger acceptor group of 3-
ethylrhodanine, oligothiophene of 6a-3 with broader absorption was obtained [66].

S
S

S
S

S
S

S

C8H17

C8H17

C8H17C8H17

C8H17

C8H17

R R
R =

CN

CN

CN

COOC8H17
S N

O

S

S
S

S S
S

S

C8H17

C8H17

C8H17 C8H17

C8H17

C8H17
S

S

CN

C8H17OOC
COOC8H17

CN

S
S

S S
S

S

C8H17

C8H17

C8H17 C8H17

C8H17

C8H17CN

C8H17OOC
COOC8H17

CN
S

Si

S

C8H17 C8H17

S
S

S S
S

S

C8H17 C8H17

S

S

O

O

R1

R1

C8H17 C8H17

R1= 2-ethylhexyl

SN

S

O S

N

S

O

S

Si

S
R1

R2 R3 R4

NS
N N

SN

SS
S S

C2H5

C4H9

C2H5

C4H9

C6H13 C6H13

6e-1: R1 = R4=C,R2 =R3= N

6e-2: R2 = R3= C,R1 =R4= N

6e-4: R1 = R4= C,R2 =R3= C

6e-5: R2 = R3= C-F,R1 =R4= C

6a 6a-1 6a-2 6a-3

6b

6c

6d

6e-3: R1 = R3= C,R2 =R4=N

Fig. 4.6 Linear D-A oligothiophenes

4 Organic Semiconductor Photovoltaic Materials 179



The broad absorption resulted in a higher JSC of 13.98 mA cm−2. Together with a
VOC of 0.92 V, a high PCE of 6.10 % was obtained by using a blend of 6a-3:PCBM
as the active layer. Also, based on the molecular architecture of 6a-2, Chen replaced
the thiophene core with benzodithiophene (BDT) [67] and dithienosilole unit (DTS)
[68] under the consideration of their large and rigid planar aromatic skeleton.

For the oligothiophene containing BDT units [67], this material (6b) showed
high PCEs for solution-processed BHJ cells. With a high VOC of 0.93 V and an FF
of 0.599, a PCE of 5.44 % was recorded in a 6b/PCBM blend with 1:0.5 weight
ratio without any special treatment. For the DTS based oligothiophenes (6c), a
higher PCE of 5.84 % was obtained along with a high fill factor of 0.64 [68].

With the success of the molecular architecture of 6b, Chen and coworkers
further modified the terminal acceptor group and the soluble side chains. Thus the
small molecule, 6d, was designed and synthesized [69], this molecule containing
BDT as the central building block, 3-ethylrhodanine as terminal acceptor group,
and dioctylterthiophene as the bridge. A PCE as high as 7.38 % (certified 7.10 %)
for the device using 6d as donor under the illumination of AM 1.5G irradiation,
100 mW cm−2 has been realized using the solution process. The efficiency is also
comparable with that of the most highly efficient PSCs. This result demonstrated
that highly efficient SM BHJ devices could indeed be realized through rational
molecular design and device engineering (Table 4.4).

Table 4.4 Properties and device characteristics of oligothiophenes in Figs. 4.5 and 4.6

Molecules HOMO/LUMO
(eV/eV)

Eg

(eV)
Voc

(V)
Jsc
(mA cm−2)

FF
(%)

PCE
(%)

Reference

5a N.A. 2.65 0.85 1.13 24.0 0.29 [58]

5b N.A. 2.10 0.94 3.35 40.0 1.30 [59]

5c −3.07/−5.28 2.28 0.97 4.19 42.0 1.70 [60]

5d −3.90/−5.40 1.70 1.00 3.30 0.38 1.30 [61]

5e-1 −2.80/−5.40 2.40 0.75 2.00 28.0 0.40 [62]

5e-2 −3.30/−5.40 1.80 0.95 2.50 47.0 1.10 [62]

5f −3.21/−5.06 1.74 0.97 4.19 42.0 1.72 [63]

6a-1 −3.40/−5.10 1.68 0.88 12.4 34.0 3.70 [64]

6a-2 −3.29/−5.13 1.74 0.86 10.74 55.0 5.08 [65]

6a-3 −3.68/−5.21 1.72 0.92 13.98 47.4 6.10 [66]

6b −3.54/−5.11 1.83 0.93 9.77 59.9 5.44 [67]

6c −3.26/−4.95 1.73 0.80 11.51 64.0 5.84 [68]

6d −3.27/−5.02 1.74 0.93 12.21 65.0 7.38 [69]

6e-1 −3.72/−5.22 1.50 0.78 14.4 59.3 6.70 [70]

6e-2 −3.72/−5.26 1.50 0.73 12.70 60.0 5.56 [70]

6e-3 −3.78/−5.30 1.52 0.72 9.80 45.0 3.16 [70]

6e-4 −3.57/−5.15 1.58 0.83 0.90 25.8 0.19 [70]
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Bazan et al. developed a series of isomorphic, solution-processable molecules,
comprising electron rich 2-hexylbithiophene and dithienosilole as the donor
[70, 71]. In these molecules, electron-deficient acceptor groups of 2,1,3-benzo-
thiadiazole (BT) and [1, 2, 5] thiadiazolo[3,4-c]pyridine (PT) were employed as the
building blocks (6e). In their study, by comparing BT- and PT-based SMs, the
effect and significance of the pyridyl N-atom in the acceptors (BT or PT) was
indentified, and the role of the regiochemistry on the device performance was
disclosed. In solid film, when blended with fullerene acceptor (PC70BM), the BT-
based SM of 6e-4 shows no observable crystalline phase, and thus a poor efficiency
of 0.18 % was obtained. For PT-based SMs, the PT regiochemistry within the
aromatic skeleton was found to be close related to the solid state packing and BHJ
cell efficiency.

When the pyridyl N-atoms in 6e-1 (6e-2) is symmetrically located at the prox-
imal/proximal position (distal/distal position) relative to the central DTS donor unit,
when blended with fullerene acceptors (PC70BM), the composite film delivers a
highly ordered nanomorphology, leading to high PCEs up of 7 % (5.6 %).
However, relative to the central DTS donor unit, when the position of the pyridyl
N-atoms (6e-3) changed from favored proximal/proximal configuration (distal/
distal position) to less symmetric distal/proximal configuration, the self-assemble
ability of the materials were reduced. Together with a low JSC and FF value, the
best PCE was only 3.2 % [70, 71].

Notably, the high efficiency of 6e-1 was achieved by employing metal oxides,
i.e., MoOX, as an anode buffer layer. Diminished performance was obtained using a
PEDOT:PSS interlayer which is because of the protonation of the PT pyridyl
nitrogen caused by the acidic nature of PEDOT:PSS. To remove this site sensitive
group, 5-fluorobenzo[c] [1, 2, 5] thiadiazole (FBT) was used as the acceptor unit,
affording 6e-5 [72]. With no lone pairs of electrons, the advantage of FBT is that of
providing an electron-deficient functionality and being prone to participate in acid/
base reactions. With PEDOT:PSS as anode buffer layer, a high efficiency of 7.0 %
was obtained (VOC = 0.81 V, JSC = 12.8 mA cm−2, and FF = 0.68), with the
treatment of solution additive of DIO (0.4 vol. %), followed by thermal annealing at
70 °C [72]. By inserting an optical spacer (zinc oxide) between the active layer and
the top Al electrode, its efficiency can be further improved to 8.9 %, which is
comparable to that of polymer counterparts. The function of the ZnO buffer layer is
to improve the light-harvesting of the active layer, increase the carrier collection
efficiency, serve as a hole blocking layers, and reduce the carrier recombination at
the interlayer [73]. To improve the efficiency further, Li and coworker extended the
two-dimensional-conjugation concept to small molecule-based solar cells. Their
motivation is inspired by the advantage of two-dimensional (2D)-conjugated
polymers, such as main chain and side chain constructed broad absorptions (con-
tributed by both the main chains and conjugated side chains) and 2D charge
transport features [74–76] (Table 4.5).

Thus, with thiophene (7c) or bithiophene (7a) as conjugated-bridges, two
solution-processable A-D-A-type SMs containing thienyl-substituted benzodithi-
ophene (BDTT) as central and donor building block, and indenedione (ID) as
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acceptor end groups, were designed and synthesized as photovoltaic donor mate-
rials in OSCs [77]. Their results show that solution absorptions of 7a and 7c with
thiophene conjugated side chains are significantly enhanced in comparison with
those of 7b and 7d without conjugated side chains. Further investigation shows
that, the photovoltaic performance of 7a and 7c is also better than that of the
corresponding molecules (7b and 7d) with alkoxy side chains on BDT units. Solar
cells were fabricated based on the organic molecules/PC70BM (1.5:1, w/w), the
PCEs of the solar cells being 6.75 % for 7a, 5.67 % for 7c, 5.11 % for 7b, and
4.15 % for 7d under the illumination of AM 1.5G, 100 mW cm−2. Instead of
attaching the conjugated side-chain to the central BDT unit, Cui et al. [64] modified
the thiophene linkage with conjugated side chains to synthesize the molecule 7e.
The BHJ OSCs based on 7e/PCBM (1:0.5, w/w) delivers a PCE of 4.0 % together
with a high Voc of 0.92 V and a relatively high FF of up to 0.63 without any post-
treatment [78].

Chen et al. also synthesized a series of SMs with conjugated side chains on the
central BDT unit and investigated the effect of different conjugated side chains on
the photovoltaic properties [7]. Among these molecules, 7f-3 gave the highest
efficiency of 8.12 %. Notably, compared with the other three molecules, the highest
JSC is consistent with its most red-shifted absorption and lowest
bandgap. Compared to 7f-3, the bulkier bithiophene substituents in 7f-4 on BDT
units side chains caused blue shift absorption. The OSC devices based on 7f-1 or
the other three SMs all deliver high VOC values over 0.9 V. For 7f-2 with long-
alkyl-chain substituent on the thiophene units, the bulk effect of long alkyl chains
can account for its especially high VOC of 0.96 V. Also, based on the BDTT units,
Lin et al. [79] and Huang et al. [21] independently reported a linear D-A SMs (7g)
containing 5-alkylthiophene-2-yl-substituted BDT as core and DPP as arms.
Although the device fabrication process for both sets of work is slightly different, a

Table 4.5 Properties and device characteristics of oligothiophenes in Fig. 4.7

Molecules HOMO/LUMO
(eV/eV)

Eg

(eV)
Voc

(V)
Jsc
(mA cm−2)

FF
(%)

PCE
(%)

Reference

7a −3.52/−5.16 1.60 0.92 11.05 66.4 6.75 [77]

7b −3.52/−5.16 1.60 0.92 8.58 64.8 5.11 [77]

7c −3.56/−5.19 1.61 1.03 10.07 54.7 5.67 [77]

7d −3.56/−5.18 1.59 0.91 9.47 48.2 4.15 [77]

7e −3.56/−5.18 1.83 0.92 6.89 63.0 4.00 [78]

7f-1 −3.27/−5.02 1.74 0.93 12.21 65.0 7.38 [7]

7f-2 −3.29/−5.06 1.77 0.96 11.92 59.4 6.79 [7]

7f-3 −3.27/−5.02 1.72 0.93 13.17 66.3 8.12 [7]

7f-4 −3.29/−5.07 1.76 0.92 12.09 72.1 8.02 [7]

7g −3.45/−5.23 1.65 0.84 11.97 57.6 5.79 [79]

182 Z.-G. Zhang



high efficiency of over 5 % was achieved for both cases, demonstrating that 7g is
also a promising photovoltaic donor material for solution-processed BHJ OSCs.

4.3.5 Organic Molecule Acceptors

The widely used photovoltaic acceptors are fullerene derivatives, such as PCBM
and newly developed ICBA (fullerene bis-adducts) [80]. The unique features of
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fullerene acceptors include deep lower-lying LUMO (*3.70−4.2 eV), high elec-
tron mobility, reversible reduction with the ability to accept up to six electrons, and
ultra-fast three-dimensional charge transfer. The aim of developing non-fullerene
acceptors is to overcome their shortcomings associated with the fullerenes [81, 82].
Fullerene derivatives have disadvantages because of the weak absorption capacity
in the visible range, high cost, and the limited variation range of LUMOs. Another
motivation for developing n-type small molecules for photovoltaic acceptors is to
overcome its VOC limitation (ca. 1.1 V) [83]. In order to improve the PCEs of OSCs
further, scientists have started to utilize n-type molecules with strong and broader
absorptions and/or tunable LUMO energy levels as photovoltaic acceptors.

Current n-type organic semiconductors used for acceptors can be roughly clas-
sified into two types: (1) D-A structured molecules with a strong electron-with-
drawing (A) unit and (2) naphthalenediimide (NDI) and perylene diimide (PDI)
derivatives [84]. The first bilayer PHJ cells were reported by Tang, using Cu-
phthalocyanine as the donor component and perylene-3,4,9,10-bis-benzimidazole
(8a) as the acceptor component using the vacuum deposition method. Under AM2
conditions (75 mW cm2), an efficiency of 0.95 % was obtained with an impressive
FF of 65 % [85]. By incorporating soluble alkyl chain on the imide nitrogen atoms,
the pentyl substituted PDI derivative (8b) was obtained. By blending with P3HT,
corresponding OSC devices showed a JSC of 1.65 mA cm−2, VOC of 0.45 V, FF of
0.34, and PCE of 0.25 % [86]. Notably, by changing the donor material with a
narrow bandgap small molecule (6e-5), a high efficiency of 3.0 % was obtained
with a VOC of 0.78 V, a JSC of 7.4 mA cm−2, and an FF of 0.52 [87]. This efficiency
value is one of the highest PCEs for a BHJ OSCs utilizing a non-fullerene acceptor
at that time. The dramatic change in efficiency induced by the donor components
indicated that the compatibility between donor and acceptor is very important.

To improve the performance of perylene diimides (PDI)-based acceptors further,
one issue to be overcome is the over-strong aggregation behavior. This behavior
leads to formation of phase separated acceptor domains (typically over 100 nm) in
the active layer. This large domain size is largely beyond the efficient exciton
diffusion length (normally 20–30 nm) [88, 89]. Thus, within these large domains,
the excitons generated are strongly trapped, and this behavior leads to poor device
performance. Reducing the aggregation size of the acceptor domains is thus very
important to improve the efficiency of the PDI-based OSCs. To reduce the over-
strong aggregation, Zhan et al. [90] recently developed twisting PDI derivative (8c-
2). Compared to its monomeric counterpart 8c-1, the twisting PDI of 8c-2 dem-
onstrated significant reduction in its aggregation size. With 2D conjugated polymer
PBDTTT-CT as donor, BHJ OSC was fabricated with 5 % DIO as additive. PDI
acceptor of 8c-2 gave a best PCE of 4.03 %, whereas 8c-1 demonstrated a poor PCE
of 0.13 %. This high PCE value is an outstanding result for non-fullerene photo-
voltaic acceptors. The result showed that, by just using n-type materials as pho-
tovoltaic acceptors, highly efficient OSC cells can also be fabricated by the
modification of the structures of the PDIs (Table 4.6).
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As a structural analogue to PDI, naphthalene diimide (NDI) is also attractive for
constructing n-type molecular acceptors. One of the challenges for developing NDI-
based acceptors is to overcome their absorption limitations. To broaden the
absorption of NDI-based acceptors, Jenekhe and coworkers incorporated oligothi-
ophene at the 2,6-positions of NDI to afford: 8d. With this D-A motif, its absorption
was extended to 790 nm. After thermal annealing of the cells at 100 °C for 10 min
and using diiodooctane (0.2 %) as additive, the optimized cells with P3HT as donor
and 8d as acceptor showed a PCE of 1.5 % [91].

Besides the organic molecule acceptors based on PDI and NDI, some other n-
type non-fullerene acceptors have also been designed in recent years. In order to
function as n-type semiconductors, electron-deficient groups such as cyano and
imide groups are introduced into the molecular architectures. Sellinger et al.
reported non-fullerene acceptor based on aromatics (biphenyl, benzothiadiazole,
fluorene) flanked with 2-vinyl-4,5-dicyanoimidazole [92]. Of the imidazole-based
materials, 8e has the most promising properties for OSC applications. With P3HT
as donor, a PCE of 0.45 % was obtained with a VOC of 0.67 V. Later, they modified
the 2-vinyl-4,5-dicyanoimidazole group with vinylimides (phthalimide and naph-
thalimide). Of these two imide acceptors using P3HT as donor component, the
phthalimide derivative of 8f delivered a high VOC of 0.96 V together with a
maximum PCE of 2.54 %. This value is greater than the device (PCE = 0.1 %)
using NI-BT (8e) as acceptor [93]. Pei and coworkers developed a series of fluo-
ranthene-fused imide derivatives (8g) as non fullerene acceptors [94, 102]. With
P3HT as donor, the PCEs vary from 2.14 to 2.89 %. The highest PCE of 2.89 %
was achieved when 8g-2 served as the acceptor. Further studies show that the JSC
values of the inverted BHJ OSCs is determined by electron mobility of the blends

Table 4.6 Properties and device characteristics of oligothiophenes in Fig. 4.8

Molecules HOMO/LUMO
(eV/eV)

Eg

(eV)
Voc

(V)
Jsc
(mA cm−2)

FF
(%)

PCE
(%)

Reference

8b N.A. N.A. 0.78 7.40 52.0 3.0 [87]

8c-1 −3.74/−5.98 2.03 0.97 0.33 41.8 0.13 [90]

8c-2 −3.84/−5.65 1.69 0.85 8.86 54.1 4.03 [90]

8d −4.10/−5.50 1.57 0.82 3.51 52.0 1.50 [91]

8e −3.49/−5.87 N.A. 0.67 1.80 37.0 0.45 [92]

8f −3.30/−5.8 N.A. 0.96 4.70 56.0 2.54 [93]

8g −3.44/−6.27 2.83 0.95 6.35 0.48 2.90 [94]

8h −3.70/−5.30 1.59 0.79 5.14 44.0 1.80 [95]

8i −3.70/−5.40 N.A. 0.54 4.85 54.7 1.43 [96]

8j −4.10/−5.90 N.A. 0.48 5.72 0.57 1.57 [97]

8k −3.26/−5.26 1.85 1.18 2.68 37.9 1.20 [98]

8l −3.28/−5.30 1.83 0.97 4.91 43.0 2.05 [99]

8m −3.75/−5.95 2.10 0.95 3.92 67.0 2.43 [100]

8n −3.79/−5.40 1.73 0.65 3.09 60.0 1.21 [101]
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containing different acceptors [94]. Jenekhe and coworkers reported a series of
tetraazabenzodifluoranthene diimides (BFIs), molecules containing a structure-
tunable tetraazaanthracene core and two naphthalene imide units [95]. The 11-ring
BFI system has an even larger aromatic skeleton than NDI and PDI. This larger
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aromatic skeleton is beneficial to extend the π conjugation, promote orbital over-
lapping, and improve carrier mobilities. By changing the substituents connected at
the core position, the BFIs delivered large electron affinities (3.6–4.3 eV) with
attractive low optical bandgaps of 2.5–1.6 eV. Using 8h as acceptor and P3HT as
donor, a PCE of 1.80 % was realized together with a VOC of 0.79 V, a JSC of
5.14 mA cm−2, and an FF of 0.44.

Dicyanovinylene (DCV)-substituted arenes recently received focused attention
as acceptors. Meredith and coworkers prepared the DCV-substituted fluorene-
benzothiadiazole-based oligomer (8i) as a non-fullerene acceptor [96, 103]. 8i has
an optical gap of 1.7 eV and an electron affinity close to the standard fullerene
acceptor (PCBM). The P3HT:8i bulk heterojunction solar cells give an efficiency of
1.43 % with a VOC of 0.54 V, JSC of 4.85 mA cm−2, and FF of 0.547 [96].

Wang developed a class of DCV-substituted quinacridone derivatives [97]. This
family of SMs showed intense absorption in the region from 650 to 700 nm where
the donor component P3HT has a weak absorption. Among the quinacridone
acceptors, 8j demonstrated a best PCE of 1.57 % (JSC = 5.7 mA cm−2,
VOC = 0.48 V, and FF = 0.57).

In search of non-fullerene materials, chemical modified DPP units also produced
promising acceptors. Under a 3D star-shaped structure, Lin et al. reported a new
acceptor containing triphenylamine as core and diketopyrrolopyrrole as arm. Using
P3HT as donor, solution-processed BHJ OSCs-based 8k delivered a PCE of
1.20 %, and a high VOC of 1.18 V, among the highest values reported for sin-
gle junction organic solar cells [98]. Higher efficiency non-fullerene acceptor (8l)
was realized by replacing the triphenylamine unit in 8k with the dibenzosilole
(DBS) unit. With the solvent annealing approach, solution-processed OSCs based
on the P3HT:DBS-2DPP blend showed a PCE of 2.05 %, indicating that 8l is a
promising non-fullerene acceptor [99]. Watkins et al. presented an indandione-
derived small molecule (8m) as acceptor [100]. With P3HT as donor, a PCE of
2.4 % with high VOC of 0.95 V was realized. In particular, their findings show,
besides the energy offset, that the electronic coupling should be considered, which
is an extremely important parameter in the design of non-fullerene electron
acceptors [100]. Thayumanavan et al. reported a series of A-D-A molecules con-
taining 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene as terminal acceptor moieties
connected at the meso position. Deep LUMO energy levels and strong visible
absorption make them good photovoltaic acceptors in BHJ OSCs. With P3HT as
acceptor, inverted cells based on 8n as acceptor shows a PCE of 1.51 %.

To use the multiple complementary absorbers better, Cnops et al. [104] devel-
oped multilayer cascade architecture. The three-layer structure contains two n-type
non-fullerene acceptors (8o and 8p) and a donor (1d). In the device, an efficient
two-step exciton dissociation process was facilitated by this energy-relay cascade.
All the three complementary absorbing materials contributed to the photocurrents,
thus leading to a quantum efficiency above 75 % between 400 and 720 nm. For a
fullerene-free device, the PCE of 8.4 % obtained (with a VOC of 0.96 V, JSC of
14.5 mA cm−2 and FF = 0.61) is extraordinarily high. This value even exceeds the
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PCEs of previously reported fullerene-based OSCs. For improving the performance
of non-fullerene-based devices, the new device architecture is an important alter-
native to conventional device structure.

4.4 Conclusion and Future Perspectives

In this chapter we have summarized the recent progress of OSCs involving small
molecule donors, non-fullerene organic molecule acceptors, and donor–acceptor
dyad systems for vacuum and solution-processed OSCs. The disclosed structure–
property relationships of representative photovoltaic materials is beneficial for new
material development. Some chemical strategies used for tailoring the photophysics
properties, such as energy levels, the absorption, and charge mobilities, are also
discussed. However, further challenges for developing SM OSCs are in-depth
understanding of the relationship between their molecular structures, solid state
packing, and photovoltaic properties. At the same time, the synthesis of photo-
voltaic material with high yields and large scale and good processability without
using chlorinated solvents (such as chloroform, chlorobenzene, and dichloroben-
zene) is also important for practical applications. Under the disclosed structure–
property correlations, developing new small molecules in the context of device
durability would certainly facilitate widespread application of this photovoltaic
technology.
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Chapter 5
Conjugated Polymer Photovoltaic
Materials

Long Ye and Jianhui Hou

5.1 Introduction

During the past few decades, conjugated polymers with various molecular struc-
tures have been explored for applications in polymer solar cells (PSCs). In order to
obtain more efficient PSCs, great effort has been devoted to optimizing and syn-
thesizing conjugated polymers with superior photovoltaic properties, which boost
the power conversion efficiency (PCE) toward or even above 8–10 % in several
research groups [1–13]. In this chapter, an overview of conjugated polymer pho-
tovoltaic materials is given to provide insights for molecular design and fine-tuning
of high-performance photovoltaic polymers. First, we briefly summarize and pro-
vide design considerations of conjugated polymer photovoltaic materials. Second,
representative photovoltaic polymers are introduced. Third, representative conju-
gated polymer acceptor materials are briefly introduced and discussed. Because
photovoltaic properties of conjugated polymers are susceptible to device fabrication
conditions and device structures, excluding the factors of optical and interfacial
enhancement by device engineering, the ‘initial PCE’ of the PSCs used in simple
conventional devices of ITO/PEDOT: PSS/Polymer: PCBM/Ca (or Mg, Ba, LiF)/
Al (or Ag, Au), as depicted in Fig. 5.1, is discussed.
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5.1.1 Brief Summary of Photovoltaic Polymers

As the key photovoltaic materials in PSCs, conjugated polymers can be classified
into two types, namely donor and acceptor photovoltaic polymers. Following the
pioneering works of Heeger et al. and Friend et al. in the 1990s [14, 15], thousands of
polymer donors with different backbones and side groups have been developed,
synthesized, and used in polymer solar cells during the past few decades, and have
been deemed to be one of the driving forces of the development of PSCs. Conjugated
polymer photovoltaic donor materials have been well discussed and reviewed
recently [16–30]. However, to classify the polymer donors rationally is still quite
difficult because of the rapid growth of the numbers of polymer donors. Herein, three
types of the first used homopolymer donor materials, i.e., the derivatives of poly(1,4-
phenylene vinylene) (PPVs), polythiophene (PTs), poly(thienylene vinylene)
(PTVs), etc., are discussed as the first category of polymer donors (see Fig. 5.2). In
recent years, the Donor–Acceptor copolymers (D–A copolymers) based on two or
more conjugated building blocks have played important roles in promoting the
development of the PSC field, so we provide more examples of conjugated D–A
copolymers as the second category of polymer donors. For example, benzothiadi-
azole (BT)-based polymers, silole-containing polymers, diketopyrrolopyrrole
(DPP)-based polymers, indacenodithiophene (IDT)-based polymers, Benzo[1,2-
b:4,5-b′]dithiophene (BDT) based polymers, Thienopyrroledione (TPD) based
polymers, etc., are introduced and discussed (see Fig. 5.2). In comparison with
polymer donors, polymer acceptors have attracted less attention, although some
recent work has shown that polymer acceptors have great potential in realizing
highly efficient PSCs without using fullerene derivatives. Therefore, in the last
section of this chapter, we give a brief introduction of polymer acceptors.

5.1.2 Design Considerations of Conjugated Polymer
Photovoltaic Materials

The basic requirements for molecular design of high efficiency photovoltaic poly-
mers have been discussed and summarized in several reviews [16–25]. It is known

Fig. 5.1 Simple conventional device structure of a polymer solar cell
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that the PCE of PSC can be calculated based on three photovoltaic parameters: the
open circuit voltage (Voc), the short circuit current (Jsc), and the fill factor (FF). For
highly efficient photovoltaic polymers, important factors including solubility, light
absorption, molecular energy level, mobility as well as morphology should be
considered.

Appropriate solubility and good film-forming properties should first be con-
sidered in designing novel conjugated polymers. To get high quality thin films of
conjugated polymers by solution coating processes, conjugated polymer donor
materials must have good solubility in commonly used organic solvents such as
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chloroform (CF), chlorobenzene (CB), toluene, and dichlorobenzene (DCB).
Because conjugated polymers have rigid backbones and intermolecular π–π inter-
action provides strong driving force for aggregation, the unsubstituted conjugated
polymers are all insoluble in organic solvents. Therefore, long, flexible and/or
branched side groups, such as alkyls or alkoxys, are introduced as functional groups
onto their backbones to overcome the strong aggregation effect and hence to afford
solution processability for conjugated polymers. For example, as shown in Fig. 5.3,
the unsubstituted polythiophene is an insoluble polymer; however, when alkyls,
such as hexyl, octyl, or alkyls with more carbon numbers, are introduced as side
groups, the derivatives can be readily dissolved in many types of organic solvents
such as CF, toluene, CB, o-DCB, and so on.

For a polymer photovoltaic material, a broader and stronger absorption,
matching well with the solar radiation spectrum, is necessary to achieve high Jsc. As
shown in Fig. 5.4a, solar irradiation has a very broad spectrum, which is mainly
distributed at the visible and infrared regions with a peak at ca. 700 nm, so to
harvest solar light the photovoltaic polymer should absorb the majority of the
wavelength region from 400 to 900 nm. Clearly, from the point of view of the
absorption spectrum, the PSCs based on P3HT cannot make good use of solar light.
Therefore, conjugated polymers with low band gaps (LBG polymers) were devel-
oped and used in PSCs, leading to the possibility of realizing high Jsc. In fact, the
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development of LBG polymers has played a very important role in the rapid pro-
gress in the PSC field.

The highest occupied molecular orbital (HOMO) and lowest unoccupied
molecular orbital (LUMO) energy levels of photovoltaic polymers should be
appropriate to maintain efficient charge separation and reduce energy loss. The
schematic diagram of molecular energy and open-circuit voltage has been drawn in
Fig. 5.4b. The value of Voc for a PSC is directly proportional to the energy dif-
ference between the HOMO of the polymer donors and the LUMO of the acceptor
materials [31]. As the LUMO of [6,6]-phenyl-C61 (or C71)-butyric acid methyl ester
(PC61BM or PC71BM) is generally considered to be −3.9 eV, the Voc of polymer/
PCBM-based polymer solar cells should rely on the HOMO level of polymers.
Therefore, lowering the HOMO level of the polymer donors and thus reducing the
energy loss during the charge separation process have been seen as key to achieving
high Voc.

Furthermore, in order to facilitate charge transport in the BHJ active layer, a high
mobility should also be required for the polymer donors. The hole and electron
mobility (μh and μe) are important parameters to evaluate the photovoltaic prop-
erties of the donor and acceptor photovoltaic materials. Moreover, in order to
reduce or avoid germinate and bimolecular recombination in the BHJ layers, the
donor and acceptor materials used in a BHJ active layer in a PSC device should
have balanced mobilities for holes and electrons. For example, considering that μe
of PCBM is ca. 10−3 cm2/(V s), when PCBM is used as the acceptor, μh of the
polymer donors should be kept at the same level or higher than that of PCBM.

Morphological properties of polymer/PCBM blends are also of great importance
for the photovoltaic performance of polymers [32–35]. For example, because of the
low dielectric constants, the exciton diffusion length in the bulk of conjugated
polymers is less than 10 nm, so nanoscale phase separation in the BHJ active layer
is needed. If the aggregations of the donor and/or the acceptor are too big, the
excitons are not diffused to the D/A interface efficiently, so that strong geminate
recombination is observed. Besides of the size of phase separation in the BHJ
blend, the crystallinity of conjugated polymers is also an important issue. As is well
known, the transport of π-electrons in polymer aggregations is anisotropic, i.e., the
intramolecular charge transport is along the conjugated backbones, whereas the
intermolecular charge transport is along the overlapped π-orbits, which are per-
pendicular to the conjugated backbones. Therefore, various methods have been
developed to modulate morphologies of conjugated polymers in the BHJ blends.
For example, for the photovoltaic system based on a LBG polymer called PDPP3T
[34] and PCBM, when the blend was processed with CF, a very low PCE (<2 %)
was achieved; using CF and 1,8-diiodooctane as binary solvent, a moderate PCE of
4.7 % was achieved. Recently, Ye et al. [35] introduced a ternary solvent system of
DCB/CF/DIO to optimize the morphology as well as the overall performance of the
PDPP3T/PCBM system, which increased the PCE to 6.71 %. Morphological
studies of the photovoltaic system of PDPP3T and PCBM clearly revealed that the
phase separation size and the crystallinity of the polymer in the blend can be tuned
effectively by modulating the processing solvents of the films. On the other hand,
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morphologies of conjugated polymers can also be tuned by changing their
molecular structures, which have been deemed as one of the main tasks for
molecular design of conjugated polymers.

To meet the above requirements for highly efficient polymer donors, various
molecular design strategies have been developed to modulate the photovoltaic
properties of conjugated polymers and many new conjugated polymers have been
designed and used in PSCs. In the following sections, the design strategies and
some of the representative conjugated polymer photovoltaic materials are discussed
in detail.

5.2 Conjugated Polymer Donor Materials

5.2.1 Three Important Types of Homopolymer

5.2.1.1 Poly(1,4-Phenylene Vinylene) Derivatives

In 1995, Yu et al. [14] pioneered the concept of the bulk-heterojunction (BHJ) in
MEH-PPV:fullerene systems, which is considered to be the best PSC device archi-
tecture to date. Two poly(1,4-phenylene vinylene) (PPV) derivatives including poly
[(2-methoxy-5-(2-ethyl-hexyloxy))-1,4-phenylenevinylene] MEH-PPV and poly[(2-
methoxy-5-(3′,7′-dimethyloctyloxy))-1,4-phenylenevinylene] (MDMO-PPV) are
very important donor polymers, which have played a very important role in the early
stage of the development of the field of PSCs. Their molecular structure and corre-
sponding photovoltaic results are shown in Fig. 5.5 and Table 5.1, respectively.
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MEH-PPV and MDMO-PPV show excellent solubility in commonly used sol-
vents such as tetrahydrofuran, CF, toluene, xylenes, CB, and 1, 2-DCB. The
solutions of these two polymers show very good film forming abilities, and the
dilute solution of MEH-PPV or MDMO-PPV in CB (1–2 mg/mL) can still form
high quality films by the spin coating process, which gives more opportunity to
utilize these polymers to carry out studies in device physics and device engineering.
Actually, these two polymers can also be used as electroluminescent materials in
polymer light emitting devices.

PPV and its derivatives can be synthesized via various methods, including the
Wessling precursor method [36], Gilch method [37], Heck coupling reaction [38],
Knoevenagel polycondensation [39], etc. With the Wessling method, the PPV
precursor can be synthesized by the reaction of bis-(sulfonium halide) salts of p-
xylene with a base (NaOH) in water or alcohol solution, and then the precursor
solution is spin-cast on ITO substrate, PPV film being formed by heat treatment at
180–300 °C under vacuum. The PPVs prepared by the Wessling precursor method
have a lot of defects and impurities because of the oxidation of the precursor
polymer, the residual precursor moieties, and undesired side reactions during the
thermal conversion.

By Heck coupling reaction [38], organic halides and vinylbenzene compounds
can be coupled to generate a carbon–carbon bond under the catalysis of Pd(0).
Many functional groups, such as aldehyde, ester, nitryl, hydroxy and carboxy, have
no obviously negative effects on the coupling reaction, so that this reaction has been
widely used for preparation of PPVs. Cyano-substituted PPV can be readily pre-
pared by the Knoevenagel polycondensation reaction between equimolar amounts
of a terephthaldehyde derivative and a 1,4-diacetonnitrile-benzene derivative [39].
The condensation reaction takes place upon addition of excess potassium tert-
butoxide or tetrabutylammonium hydroxide in THF/tert-butanol mixture at 50 °C.
In the Knoevenagel condensation reaction, tetrabutylammonium hydroxide is used
as catalyst, and the solvent for the reaction can be THF, toluene, or DMF.

As shown in Fig. 5.5, the Gilch method is very convenient to prepare PPV and
its derivatives, and, by this method, 1,4-bis-chloromethyl-benzenes were treated
with potassium tert-butoxide in non-hydroxylic solvents such as tetrahydrofuran
[37]. The temperature of the reactant, the concentration of the monomer and the
base, and the speed of the base addition are all crucial conditions for molecular

Table 5.1 Photovoltaic results of some of the representative polymer donors of PPVs, PTVs, and
the like

Materials HOMO (eV) Voc (V) Jsc (mA/cm2) FF (%) PCE (%) Ref.

MEH-PPV −5.07 0.80 6.5 50 2.6 [42]

MDMO-PPV −5.10 0.82 5.25 61 2.5 [40]

biTV-PTV −4.77 0.48 2.27 30 0.32 [46]

P3CTV −5.26 0.86 5.47 42.8 2.01 [47]

PBDTV −5.16 0.71 6.46 57 2.63 [48]
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weight and PDI of the polymer. The molecular weight can also be controlled by
using a benzylchloride derivative as the end capping reagent. Many PPV deriva-
tives can be prepared with high molecular weight and high purity. Therefore, the
Gilch method is the most successful method for the synthesis of PPVs, and the
classic materials of PPVs, MEH-PPV and MDMO-PPV, are synthesized by this
method.

A breakthrough in the PCE of the PSC devices based on PPV derivatives were
presented by Brabec, Sariciftci, and coworkers [40]. In 2001, Shaheen et al. [40]
introduced LiF as the n-type buffer layer in MDMO-PPV-based PSC devices and
investigated the effect of processing solvent on the photovoltaic performance. By
replacing toluene with CB, optimal phase separation and increased interactions
between conjugated polymers were observed in MDMO-PPV-based PSC devices.
As a result, a dramatically improved PCE up to 2.5 % was achieved, which was a
nearly a threefold enhancement over previously reported values and also the world
record at that time. Afterwards, Brabec et al. [41] systematically investigated the
effect of the thickness of LiF on the photovoltaic performances of MDMO-PPV/
PC61BM-based PSC devices. Under optimal conditions, the PSC achieved an
improved PCE of 3.3 %. Compared to PSCs without the LiF interfacial layer, the
white light efficiencies of LiF-based PSC increased by over 20 %. Cao et al. [42]
investigated the photovoltaic performance of MEH-PPV with a series of PCBM
derivatives with different alkyl end groups on its side chain. The results revealed
that the PC61BM derivative appending the butyl end group performs best as
acceptor blended with MEH-PPV and achieved a high PCE of 2.6 %. Wienk et al.
[43] incorporated PC71BM as the electron acceptor in thin-film polymer photo-
voltaic cells based on MDMO-PPV and provide a high Jsc because of the increased
absorption in the visible region from PC71BM and an ultrafast charge transfer upon
photoexcitation of MDMO-PPV or PC71BM. In 2008, Tajima et al. [44] investi-
gated the effect of regioregularity on the photovoltaic properties of the MDMO-
PPV-based PSC devices. Fully regioregular MDMO-PPV was utilized for polymer
photovoltaic devices, and their performance was compared with that of regioran-
dom MDMO-PPVs. A PCE up to 3.1 % was recorded in regioregular MDMO-PPV,
whereas a moderate PCE of 1.7 % was achieved with regiorandom MDMO-PPV.
The higher PCE of regioregular MDMO-PPV originated from both higher hole
mobility and better nano-morphology. Mikroyannidis et al. [45] synthesized a novel
LBG PPV derivative in 2010, which generated a record PCE for the PPV/PCBM
system so far. However, although MEH-PPV and MDMO-PPV played vital roles in
the early years (1995–2003) of PSC study, the narrow absorption range (400–
560 nm) and poor hole mobility (*10−7 cm2 V−1 s−1) limited the photovoltaic
performance of PPV derivatives.

5.2.1.2 Poly(thienylene vinylene) Derivatives and the Like

The likes of PPVs, poly(thienylene vinylene) derivatives (PTVs) were developed
and applied in the PSC field because of their broad absorption and higher hole
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mobility. The molecular structure and corresponding photovoltaic results of a few
PTV derivatives are provided in Fig. 5.6 and Table 5.1, respectively. Hexyl-
substituted PTV, namely P3HTV, is the simplest soluble polymer among PTVs,
although the photovoltaic performance of P3HTV is rather poor (PCE is *0.2 %).
The Stille coupling polycondensation reaction is widely used for synthesis of PTVs.
As show in Fig. 5.6, PTVs can be easily prepared by using 2,5-dibromothiophenes
and 1,2-bis-tributylstannylethylene as starting materials. In this reaction, aromatic
solvents such as toluene, xylenes, and CB can be used as reaction solvents; the Pd(0)
compound with appropriate ligand-like tetrakis(triphenylphosphine)palladium(0)
can be used as the catalyst. Actually, the Stille coupling polycondensation reaction is
also one of the most widely used methods for synthesis of other types of conjugated
alternating copolymers. Therefore, although photovoltaic performance of the PSCs
based on PTVs is quite low, the synthesis of PTVs paved the way for the study of
molecular design and synthesis of highly efficient photovoltaic polymers.

Hou and Li et al. [46] introduced the conjugated side chains in the PTV back-
bone and synthesized a series of PTV derivatives with extended absorption in the
UV-vis range from 350 to 740 nm. The PCE of the biTV-PTV-based PSC reached
0.32 %, which exhibited 52 % enhancement in comparison with that of the PSC
device based on P3HTV under the same conditions. To overcome the intrinsic
drawbacks of PTVs, for instance, high-lying HOMO levels and low Voc, Li and
coworkers [47] introduced an electron-deficient carboxylate group in P3HTV. The
results indicated that the introduction of the carboxylate group in side chains can
lower both LUMO and HOMO values of PTVs. Meanwhile, the photoluminescence
of PTV can improved significantly. As a result, a higher Voc up to 0.86 V was
achieved. Under the D/A weight ratio of 1:2, a high PCE of 2.01 % was recorded.
Notably, the PCE of the P3CTV-based PSC device is about 10 times higher than
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that of the device based on P3HTV. The PCE of 2.01 % is the highest efficiency for
PSCs based on PTVs. The dramatic improvement of the photovoltaic performances
of PTV by the carboxylate substitution demonstrated that PTVs might be promising
photovoltaic polymers upon suitable structural modification.

In 2010, He et al. [48] reported a new vinylene-based polymer, PBDTV, which
was copolymerized by vinylene and BDT via Pd-catalyzed Stille-coupling method.
The PBDTV film depicted a broad absorption range covering from 350 to 618 nm
and high hole mobility of 4.84 × 10−3 cm2 V−1 s−1. At the optimal conditions (the
weight ratio of PBDTV:PC71BM of 1:4 and the active layer thickness of 65 nm),
the PCE of the PBDTV-based PSC device reached 2.63 % with Voc of 0.71 V, Jsc of
6.46 mA/cm2, and FF of 57 % under the illumination of AM 1.5G, 100 mW/cm2.

5.2.1.3 Polythiophene Derivatives

Polythiophenes (PTs), particularly regioregular poly(3-alkylthiophene)s (P3ATs),
are a widely used class of polymer donors because of their excellent thermal and
chemical stability as well as good charge transport properties. The photovoltaic
properties of representative polythiophene derivatives (see Fig. 5.7) are listed in
Table 5.2. Because PTs do not dissolve in most of the common solvents, alkyl
substitution is a useful method to help with the solubility of P3ATs. The length of
alkyl group in P3ATs plays an important role in determining the solubility, crys-
tallinity, and morphology.
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Table 5.2 Photovoltaic performances of some PT derivatives

Materials HOMO (eV) Voc (V) Jsc (mA/cm2) FF (%) PCE (%) Ref.

P3HT −4.70 0.61 10.6 67.4 4.37 [61]

P3PT −4.76 0.66 9.63 69 3.7 [69]

biTV-PT −4.93 0.72 10.3 43 3.18 [73]

P3HDTTT −5.30 0.82 6.33 66 3.4 [74]

PT-C3 −5.10 0.78 9.68 51.2 3.87 [75]
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Generally, the polymerization of thiophenes is carried out at their 2- and 5-
positions. For many PTs, such as poly(3-alkylthiophene)s, the repeated units are
asymmetric, so there are three relative orientations available when two thiophene
rings are coupled between the 2- and 5-positions. Usually, the 2-position is called
the head, and the 5-position the tail. As shown in Fig. 5.8, this leads to a mixture of
four regioisomers when 3-substituted (or asymmetric) thiophene monomers are
employed [49]. The HT-HT structure of PTs is seen as regioregular polymers, and
the HT-HT isomer proportion in the polymer is known as regioregularity.
Regioregular poly(3-substituted thiophene) can easily access a low energy planar
conformation, so the regioregularity is an important factor in characterization of
poly(3-substituted thiophene).

1H and 13C NMR can be used to determine the structure and the regioregularity
of PTs [50]. In a regioregular PT (HT-coupling ≈ 100 %), the proton at the 4-
position of thiophene exhibits a neat peak at δ = 6.98. There are four chemically
distinct triad regioisomers in regioirregular PATs, as shown in Fig. 5.9. In 1H NMR
spectra, the TT-HT isomer has a peak at δ = 7.00, HH-TT isomer has a peak at
δ = 7.05, and the HT-HH isomer has a peak at δ = 7.02. Therefore, using the
integral area of the peaks, the relative ratio of HT-HT couplings to non-HT-HT
couplings can be determined. In the 13C NMR spectrum, regioregular PTs exhibits
four resonances in the aromatic region (δ = 128.5, 130.5, 134.0, and 140.0 ppm),
but regioirregular PTs show many resonances from 120 to 150 ppm.

PT derivatives can easily be synthesized by chemical oxidation methods [51]. In
typical oxidation polymerization of PTs, 2,5-unsubstituted thiophenes, such as
thiophene, 3-alkylthiophenes or 3-phenylthiophenes, etc., can be dissolved in CF,
and, under an inert gas, the excessive oxidant (FeCl3, MoCl5, or RuCl3) is added.
The polymerization can take several hours. Generally, the FeCl3 oxidation method
has been widely used. The molecular weights of PTs prepared from this method
range from 30 to 300 K, and the polydispersities range from 1.5 to 5.0. By this
method, the regioregularities of poly(3-alkyl thiophene)s range from 70 to 80 %,
whereas the regioregularity of poly(3-phenyl thiophene)s (P3PTs) can reach
90–95 %. The poor reproducibility is one of the major problems for oxidation
polymerization reactions. As reported by Pomerantz et al. [52], the polymerization
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of 3-octylthiophene with FeCl3 was repeated under identical reaction conditions
five times, and the molecular weights of the five samples of poly(3-octylthiophene)
ranged from 54 to 122 K with PDIs ranging from 1.6 to 2.7. Additionally, by using
the identical preparation process, the polymer samples obtained from varied batches
contain different levels of Fe impurities. Therefore, the oxidation method is seldom
used to prepare PTs for applications in PSCs.

As shown in Fig. 5.9, regioregular poly(3-alkylthiophene)s can be prepared by
various methods, such as the McCullough and GRIM method [53], the Rieke
method [54], and the Stille [55] and Suzuki [56] coupling reactions. In 1992,
McCullough et al. [53] reported the first synthesis method of head-to-tail coupled
poly(3-alkylthiophene)s, and, from this method, close to 100 % HT-HT couplings.
In this method, the monomer, 2-bromo-5-(bromomagnesio)-3-alkylthiophene, is
obtained from 2-bromo-5-alkylthiophene at cryogenic temperature, and is then
polymerized with catalytic amounts of Ni(dppp)Cl2 (dppp is diphenylphosphino-
propane). In this method, regioregular PTs were obtained in yields of 44–69 %. The
Rieke method can also be used to synthesize regioregular poly(3-alkylthiophene)
[54]. Regioselective control was realized on the basis of steric congestion at the
reductive elimination step in the catalytic cycle. When the Ni(dppe)Cl2 or Ni(dppp)
Cl2 was used as catalyst, the HT-couplings were more than 98.5 %. Other catalysts
with less bulky, labile ligands such as PPh3 combined with larger metal centers
such as Pd lead to regiorandom poly(3-alkylthiophenes). The Stille [55] and Suzuki
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[56] coupling methods are two convenient approaches to synthesize regioregular
PTs, and these two methods exhibit great advantages in synthesis of multi-func-
tional PTs because of the compatibilities of a large number of organic functional
groups.

Regioregular poly(3-hexyl) thiophene (P3HT) is the most widely studied poly-
mers in the field of PSC. The photovoltaic performance of P3HT/PCBM has been
widely studied by numerous groups. It should be noted that the photovoltaic
properties of P3HT/PCBM-based PSC devices are strongly dependent on the
molecular weight and regioregularity of P3HT as well as the device fabrication
methods [57–59]. Various strategies have therefore been developed to optimize the
performance of P3HT-based polymer solar cells. In 2003, Sariciftci et al. [60]
developed a postproduction treatment, namely, applying external voltage, which
considerably improved the photovoltaic performance of solar cells based on the
P3HT/PCBM system. Using this method, an enhancement of Jsc and an increase in
external quantum efficiency (EQE) of 70 % are demonstrated. The breakthrough in
the photovoltaic performance of P3HT/PCBM was realized by Li et al. [61] and Ma
et al. [62] in 2005. Li et al. [61] developed a method of slow growth to optimize the
morphology of P3HT/PCBM and an extremely high PCE of 4.4 % was realized,
which was the highest value in the past decade. Alternatively, Ma et al. [62] applied
post-production annealing at 150 °C, and P3HT/PCBM-based PSC devices with
PCE approaching 5 % were achieved. In addition, these devices exhibited
remarkable thermal stability. The improved performance was ascribed to the
improved nanoscale morphologies, the increased crystallinities of P3HT, and the
improved interfacial contact to the cathode, thereby enhancing the overall device
efficiency. In 2010, He and Li et al. [63] introduced a novel fullerene acceptor,
namely ICBA with a higher-lying LUMO level for the P3HT based polymers,
which promoted the performance of P3HT to a new height by greatly increasing
Voc. After that, solvent additives and device engineering methods were utilized and
increased the PCE of P3HT/ICBA to over 6.5 % [64, 65]. Clearly, the success of
P3HT is largely associated with the active layer morphology [66, 67], such as using
different casting solvents and film-forming speed, solvent and thermal annealing,
etc.

Other P3HT-analogue polymers, for example poly(3-butylthiophene) (P3BT) and
poly(3-pentylthiophene) (P3PT), were also explored in the device fabrications
because of their similar crystalline and absorption characteristics. Nguyen et al. [68]
investigated the effect of different alkyl lengths such as butyl, hexyl, octyl, decyl, and
dodecyl on the photovoltaic properties of P3ATs-based PSC devices. Results
revealed that longer alkyl chains (number of carbon atoms over 8) give poor effi-
ciency and larger scale of phase separation. Jenekhe et al. [69] demonstrated that
P3PT/PCBM-based BHJ PSC devices also give similar performances to those of
P3HT/PCBM under the same conditions. Jenekhe and coworkers [70] also prepared
P3BT nanowires and P3PT nanowires by solution-phase self-assembly, which were
used to construct highly efficient P3AT/PCBM PSC devices. The fullerene/P3AT
nanocomposite films showed an electrically bicontinuous nanoscale morphology and
desirable PCE up to 3.3 %, which were identical with those of P3HT/PCBM-based
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photovoltaic cells. Afterwards, Gadisa et al. [71] optimized the performance of P3PT/
PCBM and a high PCE of 4.6 % was observed. Later, Li et al. [72] optimized the
performance of P3PT with different fullerene acceptors. A PCE of 3.1 % and a PCE
up to 5.4 % were achieved in P3PT/PCBM- and P3PT/ICBA-based PSC devices,
respectively.

Two structurally related polymers of P3HT with high performance were
developed by Hou and coworkers [73, 74]. Hou and Li et al. introduced conjugated
side chains in PTs and developed a novel class of two-dimension (2D) conjugated
polymers. A typical example among these 2D polymers is PTs with bi(thienyl-
enevinylene) side chains. Three 2D conjugated PTs with bi(thienylenevinylene)
side chains biTV-PTs (see PbTV in Fig. 5.7) were designed and synthesized by Hou
and Li et al. in 2006 [73]. Compared with the properties of P3HT, the biTV-PTs
show broad absorption bands (350–650 nm), much stronger absorbance, and lower
HOMO levels. The PCE of the biTV-PT-based PSC devices reached *3.2 %,
which is *40 % increased relative to that (*2.4 %) of the devices based on P3HT
under the same conditions. This discovery expanded the scope of designing 2D
conjugated polymers for efficient PSC devices.

Although photovoltaic performance as well as the photocurrent of P3HT can be
improved via morphological optimizations, the low voltage (*0.6 V) is still the
limiting factor of P3HT. In 2009, Hou et al. [74] also developed an easy and
effective way to promote the Voc of a poly(3-alkylthiophene) by reducing the
number of alkyl chains of P3HT, and a novel P3HT-analogue polymer, P3HDTTT
(see Fig. 5.7) with a Voc up to 0.82 V was obtained. In 2011, Li et al. [75] also
introduced carboxylate substituent in polythiophene derivatives to tune downward
the HOMO of polythiophene. A novel polythiophene derivative of PT-C3 (see
Fig. 5.7) was also synthesized and characterized. The PSCs based on PT-C3/
PC71BM exhibited relatively high Voc of *0.8 V. The PCE of the PSCs based
on PT-C3 reached 3.87 % with Voc = 0.78 V, Jsc of 9.68 mA cm−2, and FF of
51.2 % under the illumination of AM1.5G, 100 mW/cm2. These studies indicated
that, in respect of further enhancing the Jsc, P3HDTTT would be a potential
polymer to replace P3HT as blue absorber in tandem PSC devices.

5.2.2 Donor–Acceptor Copolymers

5.2.2.1 Benzothiadiazole (BT)-Based Polymers

D–A copolymers based on BT and its derivatives (see the molecular structures and
photovoltaic parameters in Fig. 5.10 and Table 5.3) were explored because the
HOMO and LUMO energy levels as well as band gaps can been effectively tuned
by choosing donor (D) and acceptor (A) building blocks with appropriate electron-
donating or -accepting natures. In 2003, the fluorene (FL) and benzothiadiazole
(DTBT) copolymer, PFDTBT, was synthesized by Andersson and coworkers [76],
which was generally considered as one of the first reports of donor–acceptor (D–A)
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conjugated polymers. In this work, PFDTBT exhibited poor solubility but reached a
moderate PCE of 2.2 %. Although the PCE was not high, the D–A copolymer
exhibited potentials such as LBGs and tunable energy levels. Following the pioneer
work of Andersson et al., numerous novel D–A copolymers based on different
donor units and acceptor units were synthesized and utilized in PSC devices. It
should be noted that D–A copolymers have been the most successful class of
polymer photovoltaic materials for PSCs in recent years.

Considering the Voc of this polymer is as high as 1 V, the performance of
PFBTBT still has a large promotion space. In 2008, Hou et al. [77] altered the alkyl
chains in the classical PFDTBT backbone. Two novel polymers, bisEH-PFDTBT
and bisDMO-PFDTBT, employing the same polymer backbone as PFDTBT but
different side chains, were studied to investigate the side-chain effects. After
carefully optimizing the side chains, the PCE of bisDMO-PFDTBT was increased
to 4.5 %. Notably, the saturated alkyl chains have little influence on the molecular
energy levels of PFDTBT. From quantum-chemical calculations, both the ethyl
groups are in the proximity of the conjugated backbone, and thus decreased the
probability of π–π stacking in bisEH-PFDTBT originating from the steric effect. In
contrast, there are two small methyl groups located on the third and seventh carbons
of the bisDMO-PFDTBT which not only decrease the steric effect but also increase
the solubility and hole mobility.
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Fig. 5.10 Molecular structures of D–A copolymers based on benzothiadiazole

Table 5.3 Photovoltaic results of D–A copolymers based on benzothiadiazole

Materials Voc (V) Jsc (mA/cm2) FF (%) PCE (%) µh [cm
2/(Vs)] Ref.

BisDMO-PCDTBT 0.97 9.1 51 4.5 3 × 10−5 [77]

PCPDTBT 0.62 16.2 55 5.5 – [79]

PCDTBT 0.89 6.9 56 3.6 3 × 10−3 [80]

HXS-1 0.81 9.6 69 5.4 – [83]

Pt-DTBT 0.80 15.1 40 4.8 – [84]
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The cyclopentadithiophene and DTBT copolymer, PCPDTBT, is also a well-
known LBG D–A copolymer, which was developed by Brabec et al. [78] in 2006.
PCPDTBT is the first LBG polymer with high efficient photovoltaic activity in the
IR spectral region. In 2008, Bazan et al. [79] introduced solvent additive 1,8-
octanedithiol (OT) to optimize the nanomorphology of this polymer, and a twofold
enhancement was observed. A high PCE of 5.5 % was recorded and regarded as a
milestone of novel photovoltaic polymers. It should be noted that PCPDTBT is an
amorphous polymer. The approach provided a feasible tool for modulating the
heterojunction morphology in donor/acceptor systems where thermal annealing is
not effective.

Another representative D–A copolymer is PCDTBT, which was copolymerized
by carbazole (CZ) and DTBT by the Leclerc group [80]. PCDTBT had a low-lying
HOMO level of −5.45 eV and a moderate band gap of 1.88 eV. A preliminary PCE
of 3.6 % was measured at a donor/acceptor weight ratio of 1:4. Various methods
were proposed to optimize the photovoltaic properties of PCDTBT. Notably,
PCDTBT is among the most efficient, stable, and low-cost photovoltaic materials
for PSC devices with a high Voc (0.85–0.90 V), high PCE (6–7 %), and long
lifetime (*7 years), which is now considered to be one of the new benchmarks for
the development of highly efficient BHJ solar cells [81, 82]. Afterwards, Bo et al.
[83] optimized the side chains of DTBT; a novel polymer, HXS-1 with planar
configuration, achieved a high PCE over 5 % and excellent FF approaching 70 %.

A platinum metallopolyyne (herein called Pt-DTBT) with a LBG of 1.85 eV was
also reported by Wong et al. [84]. The PSCs based on the metallated polymer
exhibited an average PCE of 4.1 % without annealing. It is noteworthy that the
devices based on the Pt-DTBT/PCBM system exhibited a very high Jsc of
*15 mA/cm2 and relatively high Voc of *0.80 V. This is the first time that a
metallated polymer was applied in PSC devices to get such a high PCE.

5.2.2.2 Silole-Containing Polymers

Fused coplanar thiophene-based heterocycles, such as dithieno[3,2-b:2′,3′-d]silole
(DTS) and IDT, have been actively utilized as donor units to construct novel D–A
copolymers. To optimize the photovoltaic performance of D–A copolymers as
discussed above, such as PFDTBT and PCPDTBT, silole-containing building
blocks, such as silafluorene (SiF) and dithienosilole (DTS), have been widely uti-
lized in efficient D–A polymers. In the following we overview the representative
polymers in the third generation. The majority of these polymers exhibited high
PCE ranging from 5 to 7 %.

Cao and coworkers [85] successfully introduced the silicon atom into FL units
and copolymerized the novel SiF unit and 4,7-di(2′-thienyl)-2,1,3-benzothiadiazole
(DTBT). High-performance polymer solar cells composed of an alternating
copolymer PSiF-DBT as the electron donor and PC71BM as the electron acceptor
were investigated. A high PCE up to 5.4 % with a high Voc of 0.90 V, a Jsc of
9.5 mA cm−2, and a FF of 50.7 % was achieved under the illumination of AM
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1.5G 80 mW/cm2. Moreover, PSiF-DBT also showed a high hole mobility
of ∼1 × 10−3 cm2 V−1 s−1. Bo and coworkers [86] optimized the side chains in
DTBT of the PSiFDBT, and obtained an improved PCE of up to 6.05 %. Driven by
the high performance of PCPDTBT and PSiFDBT, Hou et al. [87] designed and
synthesized a LBG DTS-containing polymer, PSBTBT. The preliminary PCE
obtained with thermal annealing (140 °C, 5 min) was 5.1 % and then was increased
to *5.6 %. Chen et al. [88] further revealed the origin of the high performance of
PSBTBT relative to PCPDTBT. Striking morphological changes were observed in
polymer: fullerene bulk heterojunctions upon the substitution of the bridging atom.
GIXRD investigations indicated increased π–π stacking in silole-based polymers
compared to the carbon-bridged analogue [89, 90]. More importantly, the response
range of the PSBTBT covered the whole visible range from 380 to 800 nm, which
indicated that PSBTBT is an efficient red-absorbing polymer for tandem PSCs.
Benefitting from the broad absorption (300–800 nm), PCE values up to 7 % were
achieved in tandem PSC devices by the Yang group and others.

Afterwards, various units were copolymerized with these silole-containing
building blocks and a class of low-band gap polymers was developed. Their
molecular structure and photovoltaic parameters are depicted in Fig. 5.11 and
Table 5.4. In particular, DTS-based copolymers show a broad absorption, relatively
lower HOMO energy level, and higher hole mobility, which are attractive for
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Fig. 5.11 Molecular structures of silole-containing polymers

Table 5.4 Photovoltaic results of silole-containing polymers

Materials Voc (V) Jsc (mA/cm2) FF (%) PCE (%) µh [cm
2/(Vs)] Ref.

PSiF-DBT 0.90 9.5 50.7 5.4 1 × 10−3 [85]

PSiF-DTBT 0.91 11.5 58 6.05 3.2 × 10−3 [86]

PSBTBT 0.68 12.7 55 5.1 3 × 10−3 [87]

Si-PCPDTBT 0.58 14.92 61 5.24 1 × 10−3 [89]

PDTSTTz 0.77 11.9 61 5.59 3.56 × 10−3 [91]

PDTSNTDO 0.88 9.24 64 5.21 – [92]

PDTS-BTI 0.80 12.81 62.3 6.41 – [93]

PDTSTPD 0.88 12.2 68 7.3 1 × 10−4 [94]

5 Conjugated Polymer Photovoltaic Materials 211



researchers. Considering that the thiazolothiazole (TTz) unit has a rigid and
coplanar configuration and thereby ensures a highly extended π-electron system and
strong π–π stacking, Zhang et al. [91] copolymerized DTS with the TTz acceptor
unit. The PCE of the PSC based on PDTSTTz/PC71BM (1:1, wt/wt) reached 5.59 %
with Voc = 0.77 V, Jsc = 11.9 mA/cm2, and FF = 61 % under optimized conditions
(thermal annealing at 100 °C for 15 min). Cui et al. [92] designed a strong electron-
withdrawing unit, naphtho[2,3-c]thiophene-4,9-dione, which was copolymerized
with DTS to construct a D–A copolymer, PDTSNTDO, with a narrow band gap and
lower lying HOMO level. The PCE of the PDTSNTDO-based device reached
5.21 %, with a high Voc of 0.88 V.

Marks et al. [93] synthesized a new series of bithiopheneimide (BTI)-based
donor–acceptor copolymers for efficient PSCs. Among these, PSC featuring BTI
and DTS copolymer as donor and PC71BM as acceptor exhibited promising device
performance with PCE up to 6.41 % and high Voc over 0.80 V. The BTI analogue,
TPD-based device exhibited 0.08 V higher Voc with an enhanced PCE of 6.83 %,
which is mainly attributed to the lower-lying HOMO induced by the higher imide
group density in the backbone. Lu and Tao et al. [94] recently synthesized a new
D–A copolymer PDTSTPD of DTS and thienopyrrole-4,6-dione (TPD) obtaining
both a LBG (1.73 eV) and a deep HOMO level of −5.57 eV. When blended with
PC71BM, PDTSTPD exhibited an excellent PCE of 7.3 % on the photovoltaic
devices with an active area of *1 cm2. These results demonstrate the great
potential of DTS-based polymers for high-performance solar cells, and provide
valuable insights into structure-property relationship of atom substitution.

5.2.2.3 Diketopyrrolopyrrole (DPP)-Based Polymers

As one of the high-performance pigments, the DPP unit was developed in the past
few decades for constructing LBG (1.5 eV) conjugated polymers produced by its
strong electron-withdrawing properties. Another attractive property of DPP is its
excellent charge carrier mobility for both holes and electrons. Most of the photo-
voltaic performance of DPP-based polymers is likely to depend on its solvent-
induced morphology [32].

Janssen et al. [95] introduced DPP unit in D–A copolymers in 2008. Dozens of
newly designed DPP-based LBG polymers have been frequently reported since
2009. The molecular structure and photovoltaic parameters of these DPP based
polymers are depicted in Fig. 5.12 and Table 5.5. Hou et al. [96] copolymerized
DPP with various electron-donating monomers and obtained a series of new LBG
polymers based on the DPP unit. Among these DPP-based polymers, benzodithi-
ophene and DPP copolymer, PBDT-DPP showed a small band gap of 1.34 eV and a
moderate PCE of 4.45 % was achieved.

When copolymerizing DPP with thiophene and the like, ultra-LBG (Eg *1.3 eV)
polymers such as PDPP3T [34] and PDPP3MT [97] can be obtained. The first highly
performing DPP-containing polymer, PDPP3T, was synthesized [34] and applied in
organic photovoltaic and field-effect transistor devices by Janssen et al. in 2009. After
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optimizing processing solvent and molecular weight, the moderate PCE of 4.7 %was
increased to 6.7 % by Ye et al. [35] and 7.0 % by Janssen et al. [97]. To tune the
coplanarity of PDPP3T, Janssen et al. [97] introduced methyl into the thiophene
group of DPP unit, and a higher performance ultra-LBG polymer PDPP3MT was
achieved with PCE of 6.8 % in the classic device configuration. Bronstein et al. [98,
99] reported the synthesis and polymerization of a novel thieno[3,2-b]thiophene-
DPP-based building block in recent years. Copolymerization with thiophene afforded
the resulting polymer, PTT-DPP-T, with a high hole mobility of 1.95 cm2 V−1 s−1.
PSC devices comprised of PTT-DPP-T and PC71BM also exhibited an excellent PCE
of 5.4 % and high Jsc up to 15 mA/cm2 [98]. Later, Li et al. [100] designed a high-
molecular-weight conjugated polymer based on an alternating electron-rich TT unit
and an electron-deficient DPP unit, which also provided efficient polymer solar cells
with PCE up to 6.9 %. The optimal morphology of the new polymer/PCBM blend
reduced bimolecular recombination and thereby allowed a high FF up to 70 % and
high PCEs over 6 % with film thickness up to 300 nm to be achieved. Because of the
lower π-electron density of the benzene unit compared with thiophene, the DPP and
benzene copolymer, PDPPTPT [101], showed a relatively higher band gap of
1.53 eV and lower HOMO level (−5.35 eV) together with a broad photo-response
range up to 800 nm. When blended with PC71BM, higher PCE of 5.5 % with
Jsc = 10.8 mA/cm2, Voc = 0.80 V, and FF = 65 %was achieved. Clearly, PDPPTPT is
a suitable photovoltaic polymer for multi-junction devices because of the balance
between the broad absorption range and high voltage.
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Fig. 5.12 Molecular structures of representative DPP-based efficient polymers

Table 5.5 Photovoltaic performances of the representative D–A copolymers based on DPP units

Copolymers Voc (V) Jsc (mA/cm2) FF (%) PCE (%) µh [cm
2/(Vs)] Ref.

PDPP3T 0.66 15.41 65.92 6.71 3.9 × 10−3 [35]

PDPP3MT 0.60 17.8 66 6.8 – [97]

PTT-DPP-T 0.58 15 61 5.4 – [98]

PDPP2T-TT 0.66 14.8 70 6.9 – [100]

PDPPTPT 0.80 10.8 65 5.5 – [101]

PDPP2FT 0.65 14.8 64 6.5 7 × 10−4 [102]
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Frechet et al. [102, 103] developed a series of furan-containing DPP-based
polymers, such as PDPP2FT and PDPP3F, with substantial power conversion
efficiencies. Inserting furan into the backbone of the conjugated polymers enables
the utility of relatively small solubilizing alkyl chains because of the significant
contribution of the furan to overall polymer solubility in common organic solvents.
PSC devices fabricated from PDPP2FT and PC71BM as active layers showed a high
PCE reaching 6.5 % [102]. The design and synthesis of the successful examples of
furan-containing LBG polymers paved the way to developing environmental
photovoltaic polymers. Interestingly, it is also noted that furan-containing LBG
polymers with high side-chain tunability also provide insights into molecular order
in efficient PSCs. In recent years, the PCE of DPP based polymers was also
increased to exceed 7 % by the Janssen group [104] and the Yang group [9–11]
because of the molecular weight and side chain optimization. These highly efficient
polymers are introduced in the fourth generation. Moreover, these red absorber
materials exhibited potential applications in tandem and triple junction PSCs.

5.2.2.4 Indacenodithiophene (IDT)-Based Polymers

Ladder type units such as IDT, also known as thiophene-phenylene-thiophene
(TPT), constitute a class of efficient D–A copolymers, which have been emerging as
efficient building blocks since 2008 [105, 106]. Typically, the IDT unit is extremely
versatile with a coplanar aromatic ring structure, and the electron density can be
manipulated by the choice of the bridging group between the rings. The coplanarity
of the IDT unit could enhance interchain interaction of the polymers and is expected
to afford higher hole mobility. Ting et al. pioneered the IDT-based random and
alternating copolymers for photovoltaic applications [107, 108]. In 2008, two LBG
IDT-based polymers with high hole mobility (3.4 × 10−3 cm2 V−1 s−1) were
designed and synthesized for application in PSCs by Ting and coworkers [106].
High-performance PCE of 4.4 % was obtained, which was superior to that of the
analogous P3HT based PSC device under the same device fabrication condition. In
2010, Ting and collaborators [108] also synthesized an alternating copolymer (a-
PTPTBT) based on IDT and BT and the highest PCE reached 6.4 % of the cor-
responding PSC under the optimal condition of solvent vapor annealing. The
molecular structure and photovoltaic parameters of the representative IDT based
polymers are depicted in Fig. 5.13 and Table 5.6.

Jen et al. [109] first applied aryl side chain substituted IDT in quinoxaline-based
conjugated polymers and combined IDT and two quinoxaline derivatives to form
novel polymers (PIDT-diphQ and PIDT-phanQ; Fig. 5.13). Because of the
enhanced planarity of phenanthrenequinoxaline (phanQ), PIDTphanQ/PC71BM-
based PSC device exhibited an improved PCE of 6.24 % compared to the PCE of
5.69 % in PIDT-diphQ/PC71BM-based device. Jen et al. also developed several
high-performance IDT-based D–A copolymers such as PIDT-DFBT [110, 111].
Huang, Cao and coworkers [112] synthesized three low band-gap conju-
gated polymers via Stille copolymerization of IDT and naphtho[1,2-c:5,6-c]
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bis(1,2,5-thiadiazole) (NT) based monomers. The energy levels, absorption spectra,
and band gaps of the target polymers were well tuned by utilizing different thio-
phene derivatives as spacer between IDT and NT units, and polymer PIDT-C12NT
which employed bithiophene attached with dodecyl side chain as spacer exhibited
superior properties compared with the other two copolymers. All polymers
exhibited deep HOMO levels and subsequently led to high open circuit voltages of
the fabricated PSC devices. The best performance (5.05 %) was achieved with
PIDT-C12NT as donor polymer, which can be ascribed to its higher hole mobility,
the optimal interpenetrating network, as well as enhanced absorption coefficient
with respect to the other two polymers. The photovoltaic results demonstrated that
the combination of IDT and NT with appropriate spacers might be a promising
approach for the application of solar cells.
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Fig. 5.13 Molecular structures of the representative IDT-based efficient polymers

Table 5.6 Photovoltaic results of the representative IDT-based polymers

Materials Voc (V) Jsc (mA/cm2) FF (%) PCE (%) µh [cm
2/(Vs)] Ref.

a-PTPTBT 0.85 11.2 67.2 6.41 2.4 × 10−5 [108]

PIDT-diphQ 0.87 10.9 60 5.69 1.14 × 10−3 [109]

PIDT-phanQ 0.87 11.2 64 6.2 2.06 × 10−3 [109]

PIDT-DFBT 0.97 11.2 55 5.97 4 × 10−5 [111]

PIDT-C12NT 0.90 10.21 55 5.05 2.42 × 10−4 [112]

PIDT-TTz 0.89 13.3 48.9 5.79 4.99 × 10−3 [113]

PIDT-DTBT 0.82 12.27 56.7 6.17 2.24 × 10−3 [113]

PIDSe-DFBT 0.89 13.7 56.3 6.8 0.15 [114]

PIDTT-DFBT 0.95 12.21 61 7.03 3 × 10−4 [111]

PIDTT-DFBT-TT 0.96 11.9 63 7.2 4 × 10−2 [111]

PIDT-DTQx 0.87 12.34 70.23 7.51 1.18 × 10−4 [115]
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Considering potentials of the alkyl-substituted IDT, such as good planarity, good
solubility, and high hole mobility, Zhang et al. [113] copolymerized alkyl-substi-
tuted IDT with different acceptor units including bithiazole (BTz), thiazolothiazole
(TTz), tetrazine (TZ), and benzothiadiazole (DTBT). Among these copolymers,
PIDTTTz has the highest hole mobility of 4.99 × 10−3 cm2 V−1 s−1 and the PCE of
the PSC based on PDTSTTz/PC71BM reached 5.79 % with a Voc of 0.89 V, a Jsc of
13.3 mA/cm2, and a FF of 48.9 %, under the donor/acceptor component ratio of
1:2 (wt/wt). In comparison with PIDT-TTz, PIDT-DTBT has a medium band gap of
1.68 eV and a similar hole mobility of 2.24 × 10−3 cm2 v−1 s−1. The PSC based on
PIDT-DTBT/PC71BM reached an even higher PCE of 6.17 %. These results
indicated that the D–A copolymers based on the alkyl-substituted IDT unit are
promising photovoltaic polymer materials because of the excellent hole mobility
and solubility as well as deeper HOMO levels. The selenophene and other ana-
logues of IDT were developed in recent years. For instance, Jen et al. [114]
improved the molecular weight of IDSe-based polymers and a high PCE up to
6.8 % was recorded for a PIDSe-DFBT-based PSC device, which exhibited over
10 % enhancement compared to that of a PIDT-DFBT-based PSC device. This
work demonstrated that selenium substitution on the IDT is an effective method to
reduce the band gap and improve the photovoltaic performance of IDT-based
polymers with higher molecular weight.

Recently, several IDT-based polymers realized high PCEs over 7 % and
exhibited unique charge transport properties. For instance, Jen et al. [111] incor-
porated TT moiety in IDT unit and designed an IDTT unit. Utilizing IDTT unit in
DFBT and TT bridged DFBT-based polymers, corresponding copolymers PIDTT-
DFBT and PIDTT-DFBT-TT with PCE up to 7 % as well as Voc over 0.95 V were
observed. Hou et al. [115] incorporated IDT with DTQx and produced a highly
efficient polymer PIDT-DTQx with a PCE up to 7.5 %, which was the highest value
in IDT-based copolymers. Interestingly, PIDT-DTQx exhibited the best perfor-
mance under the donor/acceptor weigh ratio of 1:4.

5.2.2.5 Benzodithiophene (BDT)-Based Polymers

Although various efficient photovoltaic polymers have been developed, the poly-
mers discussed above (PCE < 7 %) still could not meet the need of commercial
requirements. In this part, we overview the representative highly efficient photo-
voltaic polymers. In particular, the rapid progress of benzo[1,2-b:4,5-b′]dithiophene
(BDT) and two dimensional BDT-based polymers are introduced. These polymers
with PCE over 7 % draw lots of attention from both the industrial and the academic
communities.

Benzodithiophene (BDT) has a large planar conjugated structure and easily
forms π–π stacking, and thereby improves the hole mobility [116]. In 2008, Hou
et al. [117] first introduced the BDT unit in the synthesis and application of pho-
tovoltaic polymers. In the work, alkoxy-substituted BDT was copolymerized with
seven different units. The band gap and absorption spectrum of the BDT-based
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polymers could be effectively tuned within a wide range. In 2009, Yu and
coworkers copolymerized BDT with thieno[3,4-b]thiophene (TT) and designed a
series of BDT-TT copolymers, namely the PTB series [118–120]. Among these
PTB series polymers, PTB7 [120] is the best-performing photovoltaic polymer
because of the optimal side chain and functional substituents. Hou et al. also
designed a series of BDT and TT copolymers, such as PBDTTT-C [121], PBDTTT-
CF [122], and PBDTTT-S [123]. It should be mentioned that PBDTTT-CF and
PTB7 are the first two polymers with PCE exceeding 7 %, which significantly
pushes the PSC research to a new height. Following this pioneering work, PCEs of
more than 7 % were frequently reported in various groups, as depicted in Fig. 5.14.
The photovoltaic results of the corresponding polymers are listed in Table 5.7.

Besides TT, numerous building blocks including DPP, thieno[3,4-c]pyrrole-4,6-
dione (TPD), benzothiadiazole (BT), and benzoxadiazole (BO) have been
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Fig. 5.14 Molecular structures of BDT-based highly efficient polymers
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successfully combined with the BDT unit to constitute highly efficient photovoltaic
polymers.

You and collaborators [124] reported the first successful application of fluori-
nated benzothiadiazole in BDT-based polymers. The resulting polymer
PBDTDTffBT exhibited down-shifted HOMO and LUMO energy levels and a
similar band gap relative to its non-fluorinated analogue. As a result, the PSC
device employing PBDTDTffBT achieved a greatly improved PCE of 7.2 %.
Similarly, fluorine was incorporated into 2-alkyl-benzotriazoles (TAZ) by You et al.
[125] and a novel polymer PBnDT–FTAZ was designed. Interestingly, although the
band gap of fluorinated polymer PBnDT–FTAZ was *2.0 eV, the copolymer
exhibited a PCE above 7 % when mixed with PC61BM, and a PCE above 6 % was
still attained even for thickness up to 1 μm. The superior performance originated
from their high hole mobility and low HOMO and LUMO levels. Very recently,
Wang et al. [126] successfully optimized the similar fluorinated benzothiadiazole-
based conjugated copolymers, PBDTDTBTff, with different side chains. A PCE up
to 8.30 % was achieved in PBDTDTBTff-3-based PSC devices with *100 nm
thickness active layers without any processing additives or post-treatments, which
was the highest value for the conventional single-junction polymer solar cells via
simple fabrication architecture. In addition, it is noteworthy that PBDTDTBTff-3
could afford high PCEs of 7.27 % at *200 nm thickness active layers and 6.56 %,
even for thicknesses up to *300 nm. Therefore, the results demonstrated that BDT

Table 5.7 Photovoltaic performance of the representative D–A copolymers based on BDT and
BDT analogues

Materials Voc (V) Jsc (mA/cm2) FF (%) PCE (%) µh [cm
2/(Vs)] Ref.

PBDTTT-CF 0.76 15.2 66.9 7.73 7 × 10−4 [122]

PTB7 0.74 14.5 68.97 7.4 5.8 × 10−4 [120]

PBnDTDTffBT 0.91 12.91 61.2 7.2 8.3 × 10−3 [124]

PBDT-FTAZ 0.79 12.45 72.2 7.1 1.03 × 10−3 [125]

PBDTDTBTff-3 0.78 15.38 69.2 8.30 – [126]

PBDT-TT-BO 0.76 13.87 66.6 7.05 0.023 [128]

PBDT-TFQ 0.76 18.2 58.1 8.0 – [129]

PBDTFBZS 0.88 12.36 71.2 7.74 4.3 × 10−3 [127]

PBDTTT-C-T 0.74 17.48 58.7 7.59 0.27 [131]

PBDTDTTT-S-T 0.70 17.07 66.3 7.81 2.76 × 10−3 [132]

PBDTT-SeDPP 0.69 16.8 62 7.2 6.9 × 10−4 [10]

PBDTP-DTBT 0.88 12.94 70.9 8.07 8.89 × 10−2 [139]

PBDTTBT 0.92 10.7 57.5 5.66 – [130]

PBDTTTZ 0.85 10.4 59.0 5.22 1.67 × 10−5 [138]

PBDTDTNT 0.80 11.71 61.0 6.00 3 × 10−5 [137]

PBT-3F 0.78 15.2 72.4 8.6 – [140]

PDT-S-T 0.73 16.63 64.13 7.79 – [143]

PTDBD2 0.89 13.0 65.3 7.6 – [144]
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and fluorinated benzothiadiazole polymers should be promising candidates for
developing high-performance large-scale roll-to-roll fabrication of PSCs.

Peng et al. [127] further applied dialkylthiol-substituted BDT in the synthesis of
conjugated copolymers based on monofluorinated benzotriazole (TAZ) acceptor
block, and a high-performance PBDTFBZS was developed. As expected, wide
band-gaps and deep HOMO and LUMO energy levels were observed in the
resulting copolymers. A PCE up to 7.74 % was achieved from the regular single
device based on PBDTFBZS with a Voc = 0.88 V, a Jsc = 12.36 mA/cm2 as well as a
high FF of 71.2 %. The enhanced Voc can be ascribed to a low-lying HOMO energy
level by the introduction of dialkylthiol and fluorine substituents on the PBDT-
DTBT polymer backbone. The improvements in Jsc FF are probably because of
high hole mobility, suppressed charge recombination, and optimal blend mor-
phology. Because of the excellent performance of polymers, tandem PSC devices
featuring PBDTFBZS as blue absorber material and DPP-based polymer as red
absorber material exhibited high PCE up to 9.40 %. Compared to BT-based
polymers, benzoxadiazole (BO)-based polymers exhibited a rather disappointed
performance. Very recently, to overcome the relatively poor performance and low
solubility of BO-based polymers, Li and coworkers [128] designed a TT-bridged
polymer, namely, PBDT-TT-BO, which was copolymerized by BDT unit and TT-
bridged BO acceptor unit. The PCE of the PSC device featuring PBDT-TT-BO as
donor polymer reached 7.05 %, which was the champion result in BO containing
conjugated polymers and comparable to that of its BT counterparts. A medium-
band gap fluorinated quinoxaline-based conjugated polymer of PBDT-TFQ was
designed and synthesized by Chou and coworkers [129]. With an optimized blend
ratio of PBDT-TFQ:PC71BM (1:1, wt/wt), a high PCE of 8.0 % was obtained, with
a Voc of 0.76 V, a Jsc of 18.2 mA/cm2, and a FF of 58.1 %. The resulting copolymer
achieved an extremely high Jsc, which was probably caused by the higher hole
mobility of PBDT-TFQ together with the better morphology for efficient exciton
dissociation and charge transport.

In recent years, a large class of donor–acceptor copolymers based on the two-
dimensional conjugated BDT units (collectively called 2D-BDT units) was devel-
oped by Hou and coworkers [130–136]. In 2010, Huo et al. [130] copolymerized
thiophene bridged 2,1,3-benzothiadiazole (BT) with an alkylthienyl-substituted
BDT unit, and the first 2D-BDT-based polymer, PBDTTBT with Voc up to 0.92 V
and PCE over 5.6 % was achieved. By introducing the 2D-BDT units such as
alkylthienyl substituted BDT, the PCEs of several novel polymers, including
PBDTTT-C-T, PBDTTDTT-S-T, PBDTP-DTBT, and PBT-3F, have been
increased to 8–9 % in Hou’s group. A typical example is PBDTTT-C-T. Huo et al.
[131] replaced the alkyl chain with an alkylthienyl side chain in the BDT unit of
PBDTTT-C, which resulted in a high-performance polymer PBDTTT-C-T.
Notably, PBDTTT-C-T has been widely utilized in versatile photovoltaic devices
such as inverted devices because of its excellent properties. The 2D-BDT design
rules were also successfully applied to more than three pairs of BDT-based systems
[132–136]. Two donor–acceptor conjugated polymers, PBDT-DTBT and PBDT-
DTNT, based on 2,1,3-benzothiadiazole (BT) and naphtho[1,2-c:5,6-c]bis [1, 2, 5]
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thiadiazole (NT), have been designed, synthesized, and characterized by Huang and
collaborators [137]. Compared with BT, NT contains two fused 1,2,5-thiadiazole
rings which narrow the band gap, enhance the interchain packing, and improve the
charge mobility of the resulting polymer. Consequently, the NT-based polymer
PBDT-DTNT exhibited considerably better photovoltaic performance with a PCE
of 6.00 %, which is significantly higher than that of the BT-based polymer PBDT-
DTBT under identical conditions. Huo et al. [138] also synthesized a wide band gap
BDTT-based polymer, PBDTTTZ, and achieved a desirable PCE of 5.21 %, which
is one of the highest among wide band gap (>2 eV) polymers. Considering that the
absorption edge of the PBDTTTZ is 620 nm, which is ∼20 nm shorter than that of
P3HT, PBDTTTZ should be an excellent blue absorber for tandem devices relative
to P3HT. Clearly, the impressive performance of BDT-based polymers has shown
its obvious potential for achieving high performance in PSCs. The photovoltaic
results demonstrated that photovoltaic polymers based on 2D-BDT units exhibited
improved hole mobilities, and significantly improved photovoltaic performance
relative to those of their corresponding alkoxy-substituted BDT-based photovoltaic
polymers. Therefore, replacing BDT with 2D-BDT units should be a method to
enhance the efficiency with wide applicability.

Similarly, Chen et al. [12] recently introduced the alkylthienyl side chain in the
BDT unit of PTB7-Th, which produced a significantly improved PCE (*9.35 %)
relative to PTB7 under the same conditions. Yang et al. [9–11] incorporated the 2D-
BDT unit in the DPP based polymers, and high-performance low band-gap poly-
mers such as PBDTT-DPP [9] and, PBDTT-SeDPP [10] were designed and syn-
thesized. These PBDTT-DPP materials played vital roles in versatile highly efficient
semi-transparent and tandem PSC devices. It is worth mentioning that the tandem
devices incorporating PBDTT-DPP as LBG absorbing polymers have increased the
PCE to a new height (PCE > 9 %) and have drawn worldwide attention.

Recently, alkylphenyl substituted BDT (BDT-P) has attracted much attention as
a weak electron-donating unit with a large π-conjugated area and good planarity.
Yang and coworkers [11] reported a series of copolymers based on BDT-P for
photovoltaic application. Results revealed that BDT-P-based polymers exhibit
similar photovoltaic performance and relatively higher Voc in comparison with
polymers based on alkylthienyl substituted BDT. Afterwards, Zhang et al. [139]
designed and synthesized a novel copolymer PBDTP-DTBT based on benzothia-
diazole and BDT-P. The best-performing PSC device based on PBDTP-DTBT/
PC71BM (1:1.5, wt/wt) reached a PCE up to 8.07 % with a Voc = 0.88 V, a
Jsc = 12.94 mA/cm2, and a FF = 70.9 % under the irradiation of AM 1.5G,
100 mW/cm2. Interestingly, with only 0.5 vol.% DIO, the PBDTP-DTBT-based D/
A blends exhibited the best performance because of the well-tuned morphology.
Although the DIO volume was higher than 1 %, the PCE was greatly reduced to a
moderate value (<7 %). To ameliorate the relatively low voltage in alkylthienyl-
substituted BDT and thiophene-bridged TT-based copolymers, Zhang et al. [140]
further demonstrated the synergistic effect of introducing fluorine (F) atoms of
lowering the molecular energy levels, HOMO and LUMO levels of copolymers of
alkylthienyl substituted BDT and thiophene-bridged TT. When three F atoms were
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introduced in both the donor and acceptor units, the PSC device based on the
trifluorinated polymer (PBT-3F) showed an extremely high PCE of 8.6 % and a
significantly improved Voc of 0.78 V, which was the efficiency record for PSCs
utilizing the classic device configuration. This work demonstrated that introducing
F onto the appropriate positions of the donor units in D–A polymers, especially
BDT-based polymers, is a promising method to modulate effectively the molecular
energy levels for better applications in PSCs.

Driven by the great success of BDT, various BDT analogues were designed and
synthesized for producing high-performance D–A copolymers [141–144]. For
instance, Hou et al. [142] designed a novel BDT analogue, namely DTBDT, and
synthesized a series of DTBDT-based copolymers. Among these polymers, PDT-S-
T [143] exhibited the best performance with PCE up to 7.79 % because of favorable
and ordered molecular packing originating from the linear conformation of the
backbone. Yu et al. [144] copolymerized DTBDT and TT, and a highly efficient
polymer, PTDBD2, with PCE over 7.5 % was obtained. The Voc of the PTDBD2-
based PSC device is as high as 0.89 V, which is remarkably higher than that
(0.74 V) of the PTB7-based PSC device. These high results indicated that DTBDT
should be a promising candidate building block for highly efficient photovoltaic
materials.

From the photovoltaic results listed in Table 5.7, BDT and its analogues have
been shown to be the most successful building block for highly efficient photo-
voltaic polymers over 7 %. Notably, the photovoltaic performance of BDT-based
polymers such as PTB7, PBDTTT-C-T, and PBDT-DTNT was further increased to
9 % by several groups via device innovations [2–8]. These device optimizations are
not presented in this chapter in detail.

5.2.2.6 Thienopyrroledione (TPD)-Based Polymers

The thieno[3,4-c]pyrrole-4,6-dione (TPD) family of conjugated polymers has
shown promise for PSC applications (see Fig. 5.15 and Table 5.8). The advantage
of TPD is relatively cheap and easy synthesis. Incorporation of appropriate alkyl
chains on TPD not only enables the preparation of soluble polymers but also greatly
tunes the molecular packing as well as blend morphology. TPD-based push-pull
polymers for photovoltaic applications were proposed in 2010 by Leclerc and co-
workers [145, 146].

In the search for novel polymers suitable for PSCs, Leclerc [146], Jen [147], Xie
[148], and Frechet [149] independently synthesized PBDTTPD, which included the
benzodithiophene (BDT) unit as donor moiety and TPD as acceptor moiety. The
preliminary PCE of the PBDTTPD/PC71BM-based PSC device was as high as 5.5 %
without additive optimization [146]. After utilizing coadditives of chloronaphthalene
(CN) and diiodooctane (DIO), a PCE up to 7.1%was achieved by Tao and coworkers
[150]. Very recently, alkyl chain engineering was successfully utilized in PBDT-
TPD, which dramatically promoted the efficiency of PBDT-TPD by Frechet and
coworkers [151]. In their work, replacing branched side chains by linear ones in the
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BDT motifs induced a critical change in polymer self-assembly and backbone ori-
entation in thin films which correlates with a dramatic drop in solar cell efficiency. In
contrast, for polymers with branched alkyl-substituted BDT motifs, controlling the
number of carbon atoms in the linear alkyl-substituted TPD motifs could effectively
improve material performance. Optimized through this approach, PBDTTPD poly-
mer-based PSC devices acquired high PCE of 8.5 % and high Voc of 0.97 V, making
PBDTTPD one of the best polymer candidates for the wide band gap subcell of
tandem PSCs. This report emphasized the determining role that linear side-chain
substituents play in the device performance of PBDTTPD.

In the previous part, a TPD-silole copolymer, PDTS-TPD with high PCE up to
7 %, was introduced [94]. In order to improve the intermolecular interactions of
silole-based polymers further, Reynolds and co-workers [152] substituted silicon by
the larger germanium atom and prepared the first dithienogermole (DTG)-con-
taining conjugated polymer. The dithienogermole-thienopyrrolodione copolymer,
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Fig. 5.15 Molecular structures of TPD-based highly efficient polymers

Table 5.8 Photovoltaic performance of the representative D–A copolymers based on BDT
analogues

Materials Voc (V) Jsc (mA/cm2) FF (%) PCE (%) µh [cm
2/(Vs)] Ref.

PDTS-TPD 0.88 12.2 68 7.3 1 × 10−4 [94]

PBDT-TPD 0.97 12.6 70 8.5 – [151]

PDTG-TPD 0.85 12.6 68 7.3 – [152]

PDTTG-TPD 0.81 13.85 64 7.2 – [154]

PBTTPD 0.92 13.1 61 7.3 – [155]

PTPD3T 0.80 12.5 79.6 7.9 1.2 × 10−3 [157]
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PDTG-TPD, displayed an absorption shift to 735 nm, and a higher HOMO level
than the analogous copolymer containing the commonly utilized DTS heterocycle.
When PDTG-TPD was utilized in inverted PSCs, the cells displayed an average
PCE of 7.3 %, relative to 6.6 % for the DTS-containing PSCs prepared under
identical conditions. Notably, Reynolds et al. [153] also fabricated highly efficient
PSC devices based on PDTG-TPD with a certified PCE up to 7.4 %, which is
among the highest PCEs reported for photovoltaic polymers compatible with the
roll-to-roll process. Followed by PDTS-TPD and PDTG-TPD, dithienogermolodi-
thiophene (DTTG) was also incorporated as building blocks in TPD-based poly-
mers because of the potentials of extended conjugation length and improved
coplanarity. Very recently, Heeney et al. [154] reported the first synthesis of a novel
ladder-type fused ring donor, DTG, in which two thieno[3,2-b]thiophene units are
held coplanar by a bridging dialkyl germanium (Ge). Polymerization of DTTG
with TPD afforded a polymer, PDTTG-TPD, with an optical band gap of 1.75 eV
combined with a HOMO level of −5.68 eV. Bulk heterojunction PSC devices based
on PDTTG-TPD/PC71BM afforded a PCE up to 7.2 % without the need for thermal
annealing or processing additives. The preliminary results indicated that DTTG-
based polymers are promising candidates for high-performance PSC devices. It
should also be noted that the synthetic route provides considerable synthetic scope
to promote the performance further by altering the bridging atoms.

Another interesting example of TPD-based copolymer was published by Wei
and co-workers [155]. Wei et al. designed a crystalline polymer PDTTPD, which
was constructed by bithiophene and TPD. A preliminary PCE of 5.0 %
(Voc = 0.94 V, Jsc = 9.1 mA/cm2) was achieved for the PBTTPD/PC71BM system.
Incorporating a small amount of diiodohexane (DIH) in the blend resulted in the
formation of substantially enhanced polymer crystallinity and smaller as well as
better dispersed PC71BM domains. As anticipated, an improved Jsc as high as
12.1 mA/cm2 and a PCE of 7.3 % were recorded. Following the work of Wei et al.,
Marks and co-workers [156, 157] developed a series of TPD copolymers bearing
thiophene, bithiophene, terthiophene, and quaterthiophene derivatives, respectively,
as electron-donating moieties. Among these, a high-performance polymer PTPD3T
[157] exhibited a high PCE of 7.9 % and extremely high FF up to 79.6 %. It is
important to emphasize that the synthesis of monomers and polymers is both easy
and versatile, wheres that of DTS or DTG derivatives is not.

5.2.2.7 Other Highly Efficient Polymers

As shown in Fig. 5.16 and Table 5.9, besides the above-mentioned polymers, other
efficient polymers based on monomers such as quinoxaline (QX), thiazolo[5,4-d]
thiazole (TTZ), thiophene bridged 2,1,3-benzothiadiazole, or naphtho[1,2-c:5,6-c]
bis [1, 2, 5] thiadiazole also exhibited a high PCE over 6 %. QX has been widely
implemented as an electron-deficient monomer of LBG polymers in PSCs. In 2010,
Wang et al. [158] developed an easily synthesized donor–acceptor polymer (TQ-1)
which showed PCE up to 6 %, with a high Voc of 0.89 V, indicating that this
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polymer is a particularly promising candidate for high-efficiency low-cost polymer
solar cells. Similar to DPP, isoindigo (IID) is also a high-performance pigment,
which was developed in recent years for constructing LBG (<1.5 eV) conjugated
polymers because of its strong electron-withdrawing character. By choosing the
appropriate electron-rich unit terthiophene as the donor and IID as the acceptor, an
easily accessible IID-based high-performance photovoltaic polymer (P3TI) was also
reported by Wang and coworkers [159]. P3TI/PC71BM-based PSC devices have an
IQE of ∼ 87 % and a Voc of 0.7 V with an optimized device PCE up to 6.3 %. Qian
et al. [160] designed a novel polymer, PBT1, which is copolymerized with ben-
zodithiophene-4,8-dione (BDD) and α-quaterthiophene units. Interestingly, a PCE
up to 6.88 % was recorded in a PBT1-based PSC under optimal condition of high
donor:acceptor ratio (1.5:1, wt:wt) and small thickness (75 nm). This work pro-
vided a successful example of using molecular structure as a tool to realize optimal
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Fig. 5.16 Molecular structures of other highly efficient polymers with PCE over 6 %

Table 5.9 The photovoltaic parameters of other highly efficient polymers with PCE over 6 %

Materials Voc (V) Jsc (mA/cm2) FF (%) PCE (%) µh [cm
2/(Vs)] Ref.

TQ-1 0.89 10.5 64 6.0 – [158]

P3TI 0.70 13.1 69 6.3 – [159]

PBT-1 0.83 11.57 71 6.88 – [160]

PIIDDTC 0.78 15.2 69 8.2 4.9 × 10−4 [161]

PNNT-BT 0.82 15.6 64 8.2 1.7 × 10−3 [162]

PDPP3TaltTPT 0.75 15.9 67 8.0 – [163]

PBTI3T 0.86 12.9 77.8 8.66 1.5 × 10−3 [153]

PDTP-DFBT 0.70 18.0 63 8.0 3 × 10−3 [164]
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photovoltaic performance with high polymer content, thereby enabling the reali-
zation of efficient absorption in thin films.

A recent breakthrough in several building units was made. Geng and coworkers
[161] designed a five-ring-fused aromatic unit, namely dithieno[3,2-b;6,7-b]car-
bazole (DTC), which is structurally related to FL. Optimized by inverted device
structures, PIIDDTC achieved an extremely high PCE of 8.2 %. Notably, PIIDDTC
is the first IID-based polymer with a PCE beyond 7 %, and amorphous polymer
with a PCE beyond 8 %. Naphthodithiophene (NDT) also emerged as an efficient
building block in highly efficient photovoltaic polymers. Osaka et al. [162] recently
developed photovoltaic copolymers based on naphthodithiophene (NDT).
Introducing linear alkyl chains improved the solubility as well as gave rise to a
change in the orientation without any alteration of the energy levels, which resulted
in quite an impressive PCE over 8 % in a conventional single-junction PSC device.
Surprisingly, the introduction of linear alkyl chains led to a drastic change in
polymer orientation into the face-on motif, which was beneficial for the charge
transport in solar cells and promotion of the photovoltaic performance. In addition,
PSC devices based on the NNT-BT yielded PCEs as high as 8.2 % with thickness
up to 300 nm. These results indicated that this polymer platform is of particular
interest in the understanding of molecular packing and carrier transport in high-
performance photoelectronic polymers.

A regular alternating terpolymer design strategy was proposed and applied to
produce a photovoltaic polymer with tailored energy levels and optical band gap by
Janssen and collaborators [163]. High-molecular-weight photovoltaic materials the
terpolymer PDPP3TaltDPP were obtained with high efficiencies up to 8.0 % in
PSCs employing PC71BM as acceptors. Relative to the PCE of control copolymers
PDPP3T (7.1 %) and PDPPTPT (7.4 %), the PCE of PDPP3TaltTPT exhibited
more than 5 % improvement, which demonstrated that terpolymer could outperform
the two parent copolymers when the design strategy was applied.

Similar to PTPD3T, Facchetti [26, 170] also developed a high-performance
polymer PBTI3T, which demonstrated excellent PCE over 8.6 % and exceptionally
high FF approaching 80 %. The high FF of PBTI3T is comparable to that of their
inorganic counterparts. The extremely high FFs originated from the highly ordered,
closely packed, and properly oriented active-layer microstructures with optimal
horizontal phase separation and vertical phase gradation, which is beneficial for
efficient charge collection and eliminated bulk as well as interfacial bimolecular
recombination. This work depicted a comprehensive example to produce high FF in
PSC device by integrating complementary materials design, synthesis, processing,
and device engineering strategies.

Recently, a dithieno[3,2-b:2′,3′-d]pyran (DTPy)-containing polymer, PDTP-
DFBT, was reported by Yang and coworkers [164]. The electron-donating property
of the DTPy unit was found to be the strongest among the most frequently used
donor units such as benzodithiophene (BDT) or cyclopentadithiophene (CPDT)
units. When DTPy unit was polymerized with the strongly electron-deficient dif-
luorobenzothiadiazole (DFBT) unit, a LBG (Eg = 1.38 eV) polymer PDTP-DFBT
was obtained. In comparison with BDT or CPDT units, the DTP-based polymer
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PDTP-DFBT showed significantly improved solubility and processability as well as
PCE. Excellent performance in single and double junction solar cells was obtained
with the PCEs reaching 8.0 and 10.6 %, respectively, which demonstrated that DTPy
unit is a promising building block for high-performance photovoltaic materials.

5.3 Conjugated Polymer Acceptor Materials

Although fullerene acceptors, particularly the well-known PCBM, bis-PCBM, and
ICBA have been widely used and performed well with photovoltaic donor polymers
in BHJ PSC devices, these materials are still not the best choices for photovoltaic
industry due to the high cost and narrow absorption coverage [165]. Because of the
high absorption coefficient, broader absorption, and high electron mobilities as well
as suitable affinities, non-fullerene acceptors such as perylene bisimide small
molecules [166–168], as well as polymers [169, 170], have attracted substantial
interest as alternative acceptor materials to fullerene acceptors.

LBG conjugated polymers can also be used as an acceptor in a PSC if its LUMO
energy level is low enough. As an electron-deficient building block, PDI can be
copolymerized easily with a wide variety of electron-rich units to tailor the
molecular levels as well as absorption properties of the resulting D–A copolymers.
The molecular structures and photovoltaic results of all-polymer solar cells with
PCE over 1 % are summarized in Table 5.10 and Fig. 5.17. In 2007, Zhan et al.
[171] reported the synthesis of the first soluble rylene containing polymer based on
alternating perylene diimide (PDI) and dithienothiophene (DTT), which exhibited
good solution processability, broad absorption, excellent thermal stability, and high
electron affinity. Electron mobilities as high as 1.3 × 10−2 cm2 V−1 s−1 have been
measured by the OFET method. All-polymer solar cells using this polymer as
acceptor polymer and a polythiophene derivative as donor polymer achieved a high
PCE of over 1 % under AM 1.5G at 100 mW/cm2. Similarly, a novel D–A
copolymer of perylene diimide (PDI) and dithienothiophene, PPDIDTT-2, was also

Table 5.10 The photovoltaic results of representative acceptor polymer-based PSC devices

Acceptors Donors Voc (V) Jsc (mA/cm2) FF (%) PCE (%) Ref.

PPDIDTT PT-1 0.63 4.2 39 1.03 [171]

PPDIDTT PBDTTT-C-T 0.75 8.55 51.5 3.45 [180]

PPDIDTT-2 PT-2 0.69 5.02 43 1.48 [173]

PC-PDI PT-2 0.70 6.35 50 2.23 [174]

F8TBT P3HT 1.1 4.0 41 1.8 [176]

P(NDI2OD-T2) PTB7 0.62 3.4 39 1.1 [178]

N2200 PTQ-1 0.84 8.40 56.0 4.00 [182]

PC-NDI PTB7 0.88 4.07 38.0 1.34 [181]

PC-NDI TTV7 0.88 7.71 54.0 3.68 [181]

PNDIT PSEHTT 0.61 3.80 56 1.30 [179]

PNDIS-HD PSEHTT 0.76 7.78 55 3.26 [179]
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synthesized by Zhan et al. [172], showing a LBG of 1.46 eV and high electron
affinity with a LUMO level of 3.9 eV. The copolymer exhibited broad absorption
throughout the visible and into the near-IR region. All PSCs were fabricated with
the blend PPDIDTT-2 as acceptor and PT-2 as donor (1:1 wt/wt), showing a PCE
over 1 %. Soon after, Tan et al. [173] optimized the all-polymer solar cells based on
the narrow band gap alternating copolymer of perylene diimide and bis(dithieno-
thiophene) (PPDIDTT-2). In their work, a polythiophene derivative substituted by a
tris(thienylenevinylene) conjugated side chain (PT-2) are used as donor polymer.
The optimized device based on the blend of PT-2 and PPDIDTT-2 in the ratio 3:1
(wt/wt) achieved a Jsc of 5.02mA cm−2 and a PCE of 1.48 %, under AM 1.5 G
illumination at 100mW cm−2. In 2010, Zhou et al. [174] systematically investigated
all-polymer solar cells based on six perylene diimide-containing polymers (PX-
PDI) as acceptor polymers and two polythiophene derivatives (P3HT and PT-2) as
donor polymers. The highest PCE of 2.23 % was obtained in all-PSCs. The pho-
tovoltaic results also depicted that the PSC devices based on the PT1/PX-PDI
systems have higher Voc (0.58–0.76 V) than those of the devices based on the
P3HT/PX-PDI blends (0.44–0.58 V). Owing to the application of solvent mixtures
(toluene/CF, 9:1), the highest PCE of all-PSCs based on PT-2/PC-PDI reached
2.23 % because of the optimal phase separation. This work demonstrated that the
solvent strategy and two-dimensional conjugated polymer donors are two effective

Fig. 5.17 Typical examples of highly efficient acceptor polymers with PCE over 1 %
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methods to promote the performance of all-polymer solar cells. Pei et al. [175]
developed two perylene diimide (PDI)-based acceptor polymers, r-PDI-diTh and i-
PDI-diTh, which were synthesized by introducing a bulky side chain and thereby
suppressing the π–π interactions between PDI units in the backbones of acceptor
polymers. Therefore, more effective phase segregation of these acceptors with
P3HT was realized. When regio-random polymer i-PDI-diTh was blended with
P3HT, the PSC device gave a low PCE of 0.45 %. By using a similarly structured
but regioregular polymer, r-PDI-diTh, the PCE further increased to 0.94 % because
of the limited defect. By employing the inverted device configuration to match the
vertical phase separation of donor polymer/acceptor polymer system better, a
desirable PCE up to 2.17 % was achieved from the regioregular acceptor polymer,
r-PDI-diTh-based PSC devices.

In 2007, McNeill and coworkers [176] reported efficient photovoltaic diodes
which used ambipolar poly((9,9-dioctylfluorene)-2,7-diyl-alt-[4,7-bis(3-hexylthien-
5-yl) -2,1,3-benzothiadiazole]-2′,2′′-diyl) (F8TBT) both as acceptor polymer
blending with P3HT and as donor polymer blending with PC61BM. In both cases,
external quantum efficiencies of over 25 % were achieved. In particular, a PCE up
to 1.8 % and extremely high Voc over 1 V were recorded for the optimized F8TBT/
P3HT-based PSC device. Further studies by McNeill et al. [177] demonstrated that
the relatively low efficiency of the P3HT/F8BT system can be attributed to poor
charge generation and separation efficiencies which result from the failure of P3HT
reorganization.

McNeill et al. [178] recently applied PTB7 as the donor polymer in the all-
polymer solar cells. A relatively low efficiency of 1.1 % was observed. Clearly, the
lack of suitable acceptor polymers has limited the photocurrent and efficiency of
polymer/polymer bulk heterojunction solar cells. To overcome the problem,
Jenekhe et al. [179] evaluated three naphthalene diimide (NDI) copolymers as
acceptor materials in BHJ solar cells. Relatively poor performance (*1.3 %) was
observed in the NDI and thiophene copolymer, PNDIT based all-polymer solar
cells. PSCs based on an NDI-selenophene copolymer (PNDIS-HD) acceptor and a
thiazolothiazole copolymer (PSEHTT) donor exhibited a high PCE of 3.3 %. The
observed FF values of 55–60 % were impressively high among all-polymer solar
cells and comparable to typical values observed in polymer/PCBM systems.
Amazingly, this efficiency was comparable to the performance of PSEHTT/PCBM-
based PSC devices. The lamellar crystalline morphology of PNDIS-HD, leading to
balanced electron and hole transport in the polymer/polymer blend solar cells,
should account for the good performance.

Cheng et al. [180] recently introduced two-dimensional polymer PBDTTT-C-T
as donor polymer and proposed a binary additive approach to optimize the per-
formance of PPDIDTT-based all-polymer solar cells, and a dramatically improved
PCE up to 3.45 % was observed. Zhou et al. [181] recently reported a high PCE of
3.68 % for the all-polymer solar cell utilizing TTV as the donor polymer and PC-
NDI as the acceptor polymer. By introducing a conjugated side chain in the TT unit
of donor polymer PTB7, the miscibility of the polymer/polymer blend was greatly
improved. In addition, adding a small amount (1 vol.%) of 1,8-diiodooctane (DIO)

228 L. Ye and J. Hou



could increase the aggregation of acceptor polymer, PC-NDI. For the PTB7/PC-
NDI-based all-PSCs, the PCE decreased to 1.12 % with Voc = 0.86 V,
Jsc = 3.83 mA/cm2, and FF = 34 %. This work demonstrated that two-dimensional
conjugated polymer might be ideal donor polymers for all-polymer solar cells
because of the superior properties. More recently, Mori et al. [182] fabricated
highly efficient LBG donor/acceptor polymer blend solar cells by utilizing TQ-1 as
donor polymer and N2200 as acceptor polymer. The device performance was
optimized at a donor/acceptor blending ratio of 7:3 (wt:wt) to result in a high Jsc of
8.85 mA/cm2, a FF of 55 %, and a Voc of 0.84 V. The high PCE exceeded 4 %,
which was among the highest values reported for all-polymer solar cells. The high
photovoltaic performance demonstrated the great potential of polymer/polymer
blend solar cells as a promising alternative to polymer/fullerene solar cells.

Because the typical exciton diffusion length of polymer/polymer blends is
approximately 10 nm, the larger phase separation length and smaller donor/acceptor
interfacial area in the polymer/polymer systems might be the origin of inefficient
exciton dissociation and relatively low performance in these systems. To improve
the performance of all-polymer solar cells, two strategies could be utilized. One
strategy is morphology tuning, for instance, altering the processing solvent to
modulate the scale and degree of phase separation of D/A blends. The other strategy
is to rationally select and design superior donor polymers.

5.4 Summary and Outlook

In this chapter, an overview of conjugated polymer photovoltaic materials devel-
oped during the past two decades are summarized and commented. The basic
design considerations of the conjugated polymer photovoltaic materials for the
application in polymer solar cells are also discussed along with examples. The rapid
progress in novel conjugated photovoltaic polymers demonstrates that there is
plenty of room to bring the cost of PSCs down by developing low-cost and highly
efficient polymeric photovoltaic materials [183, 184]. Guided by computational
calculations and screening [185], further improvements will be realized in the near
future by fine optimization of integrated backbones, side chains, and molecular
weight [186] based on well-defined highly efficient polymers.
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Chapter 6
Organic Semiconductor
Electroluminescent Materials

Gufeng He

Abstract This chapter reviews the important progress made on small molecule
electroluminescent materials used in organic light-emitting diode (OLED). In many
cases we describe not only the material structures but also the properties associated
with these materials, such as energy level, absorption and photoluminescence (PL)
peaks, PL quantum yield, exciton life time, and so on. The performances of related
devices are covered as well if they are available.

Keywords Organic light-emitting diodes � Fluorescence � Phosphorescence �
Efficiency

6.1 Introduction

The organic light-emitting diode (OLED) has attracted tremendous interest since
the scientists at Kodak reported a high efficiency device with a double layer
structure in 1987 [1]. Actually, as an electroluminescence (EL) phenomenon, it can
be traced back to Pope’s early work in the 1960s [2], where he used single crystals
of anthracene as EL material and the driving voltage was around 400 V. To reduce
the driving voltage and to improve the efficiency, much effort has been spent ever
since. A major step forward in this field was the development of thin-film organic
electroluminescent devices with relatively low driving voltages (below 30 V) by
Vincett in 1982 [3].

The first practical OLED demonstrated by Tang in 1987 used a heterojunction
structure of organic amorphous thin films deposited by vacuum thermal evaporation
of small molecules. One of these layers was a hole-transporting aromatic diamine,
whereas the other was an electron-transporting and emissive layer of tris
(8-hydroxyquinoline) aluminum (Alq3). This was the first time that an organic
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electroluminescent device could reach a high brightness (>1000 cd m−2) with a
relatively low operating voltage (<10 V) and an external quantum efficiency (EQE)
of about 1 %. To approach this, each material has its own function, and this strategy
has become a basic rule for designing high-performance OLED structures. Soon
after, in 1990, Richard Friend et al. [4] successfully discovered an OLED using a
conjugated polymer as emitter by spin-coating a soluble precursor and then thermal
treating it to form a conjugated polymer, which is usually called a polymer light-
emitting diode (PLED). In this device, a single layer of poly(p-phenylenevinylene)
(PPV), sandwiched between indium tin oxide (ITO) and Al electrodes, emitted
green-yellow light under applied voltage. The device efficiency and relatively low
turn-on voltage held promise for a large-area, low-cost solution-processable com-
mercial application. In 1998, the Thompson and Forrest groups [5] boosted OLED
internal quantum efficiency limit from 25 to 100 % by using phosphorescent
electroluminescent emissive materials. Heavy metal atoms were widely used in
phosphorescent materials to mix the triplet excited states and the singlet excited
states to make the radiative decay possible from triplet state to ground state.
Recently, Adachi group [6, 7] from Kyushu University realized 100 % internal
quantum efficiency via Thermally Activated Delayed Fluorescence (TADF),
without using heavy metal chelate. This is another breakthrough in the development
of organic electroluminescent materials.

The performance of an OLED depends very much on the electroluminescent
materials used in the device. In this chapter, we attempt to review the important
small molecule materials used in OLEDs, especially electroluminescent materials,
and have tried to present a simple unbiased selection of representative data from the
original authors’ works.

6.2 Working Mechanism of OLEDs

6.2.1 Working Mechanism

A simple OLED structure is composed of an extremely thin organic electrolumi-
nescent film, sandwiched between two electrodes. When an external bias is applied
to the device, holes and electrons are injected from the anode and the cathode,
respectively, into the organic semiconductor layer. The holes and electrons migrate
in the organic layer, then meet and recombine to form excitons. Finally, the exci-
tons decay to the ground states radiatively and emit light.

However, to improve the charge carrier injection and transport and to confine
excitons to reach high performance, a multi-layer structure is commonly applied in
OLEDs.A typical high efficiencyOLED consists offive organic semiconductor layers
—hole injection layer (HIL), hole transport layer (HTL), emissive layer (EML),
electron transport layer (ETL), and electron injection layer (EIL)—where the HTL is
often used as electron blocking layer (EBL), whereas ETL is used as hole blocking
layer (HBL) (Fig. 6.1).
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6.2.2 Anode and Hole Injection Material

As a perfect anode of an OLED, it must have high conductivity, good stability, and
high transparency in the visible range when used in a bottom-emission or trans-
parent OLED. To ensure an effective hole injection into the organic semiconductor,
the anode should have high work function, which is close to the highest occupied
molecular orbital (HOMO) of the adjacent HIL to minimize the hole injection
barrier. The commonly used anode materials are transparent conducting oxide
(TCO) and high work function metals such as Ni, Au, and Pt.

ITO is the most widely used TCO for anodes because of its fairly high electrical
conductivity and outstanding optical transparency. The work function of ITO is
quite sensitive to the cleaning procedure. Untreated ITO has a work function of
4.5~4.8 eV, and it can be increased up to 5 eV with oxygen plasma [8] or UV ozone
treatment [9].

Although the work function of ITO can be up to 5 eV [10], about 0.4 eV hole
injection barrier still exists between ITO and most of the hole transport materials
(HTM). To minimize the energy barrier for injection and thus lower the operating
voltage, a HIL is often employed. The HIL not only acts as an interfacial layer
between the anode and the HTL to facilitate efficient hole injection, but also
enhances the device stability by smoothing the surface and improving the film
forming property of the subsequent organic layers. The most common organic HIL
materials include porphyrinic metal complexes [11], star arylamines [12], and
conducting polymer such as PEDOT:PSS(poly-3,4-ethylenedioxythiophene doped
with polystyrene sulfonic acid; Fig. 6.2) [13].

Copper phthalocyanine (CuPc; Fig. 6.2) is a widely used pigment with very high
thermal stability. Van Slyke et al. [11] inserted a thin CuPc layer between the anode
(ITO) and the HTL (N,N′-diphenyl-N,N′-bis(1-naphthyl phenyl)-1,1′-biphenyl-4,4′-
diamine, NPB), and achieved a low voltage and highly stable OLED with optimized
thickness. This was attributed to a lower energy injection barrier from ITO to CuPc.
Besides CuPc, other phthalocyanines and porphyrin materials with similar structure
have also been used for HIL applications [14].

Fig. 6.1 Device structure and working mechanism
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In 2004, LG Chem, Ltd. [15] developed an effective material for a HIL,
1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile (HAT-CN; Fig. 6.2). It is a
strongly electron-withdrawing molecule because of its six nitrile groups, and a
material with such a property is usually applied as an ETL. However, it was found
that it could significantly improve hole injection even with low work function
metals such as Al or Ag, which is critical for top-emission OLEDs. It has some
interesting properties, including a very large value of HOMO level, a LUMO level
very close to the Fermi level, and a high work function of over 6.0 eV.

Another category of HIL is conductive polymer such as PEDOT:PSS [13], PANI
(polyaniline) [16], or PPy (polypyrrole) [17]. The most widely used is PEDOT:PSS,
which is water soluble and can be deposited by solution processes such as spin
coating, ink-jet printing, etc. The spin-coated PEDOT:PSS layer can smooth the
ITO surface and provide better hole injection because of its relatively high work
function (>5.0 eV). However, most of the available conductive polymer materials
are strongly acidic because of the doping necessary to improve the solubility and
conductivity. The acidity may destroy the underlying ITO surface by dissolving and
even reacting with amine-containing materials, leading to a short device life time
and poor shelf life.

The HILs described above are used as energy compatible materials to reduce the
injection energy barrier. A thin insulating layer inserted between ITO and HTL has
also been discovered to enhance the hole injection effectively, which is often called
a buffer layer such as SiO2 [18], SiOxNy [19], Teflon [20], LiF [21], and TiO2 [22].
With an optimum thickness, such a buffer layer can reduce the operating voltage
and improve the performance. Hou et al. [21] explained it with a tunneling model;
the introduced insulating layer has two effects: the voltage drop across it lowers the
ITO EF which reduces the injection barrier, and the buffer layer itself adds an
additional tunneling barrier. If the sum of these two barriers is lower than the initial
barrier, the hole injection capability via tunneling is enhanced and the operating
voltage decreases. However, if this buffer layer is too thick, the latter effect is more
pronounced, i.e., the injection barrier reduced is smaller than the barrier introduced,
and the buffer layer has negative effect. Some researchers attribute the enhanced
performance to more homogeneous adhesion of the following HTL resulting from
the improved smoothness of the ITO surface.

Some HTM can be mixed with oxidizer, Lewis acid, or strong electron-acceptors
such as FeCl3 [23], SbCl5, iodine [24], tetrafluorotetracyanoquinodimethane
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(F4-TCNQ; Fig. 6.2) [25], or tris(4-bromophenyl)aminiumhexachloroantimonate
(TBAHA; Fig. 6.2) [26] to form effective p-type doping and obtain fantastic hole
injection properties. The organic p-type doping, together with n-type doping is
further discussed in detail later.

6.2.3 Cathode and Electron Injection Material

Opposite the anode material, a satisfactory cathode should have low work function
to facilitate electron injection into the LUMO of the adjacent organic layer, as well
as high conductivity. A low work function metal, such as Li, Mg, Ca, and Ba, is a
good candidate. However, low work function usually means high chemical reac-
tivity and poor stability. The reactive metals are sensitive to moisture and oxygen,
making them difficult to process. A general solution is to use an alloy composed of
low work function metal and noncorroding metal, and this usually provides good
film-forming properties and stability.

The Mg:Ag (10:1 by volume) alloy was the most popular cathode material
during the early stage of OLED development [27]. The addition of metal Ag not
only improves the cathode stability but also enhances the adhesion of the cathode
on the organic layer. Al is quite a stable metal, but the relatively high work function
makes it difficult to inject electrons to the LUMO of most electron transport
materials (ETM). Naka et al. [28] systematically investigated the influence of
doping Al with various metals (Li, Ca, and Mg). They found that the lower the
work function of the doped metal, the less the injection Schottky barrier.

Although the metal alloy as cathode provides good electron injection and rela-
tively good stability, Li and Mg atoms may diffuse into the organic layer and form
quenching sites for excitons, which influences the long-term stability of an OLED.
Therefore, to use a high work function stable metal such as Al and Ag as cathode, a
common approach is to insert an EIL between the cathode and the organic layer to
enhance the electron injection.

The typical electron injection materials are alkali metal compounds and alkaline
earth metal compound [29–31], such as Li2O, Cs2CO3, CH3COOM (M=Li, Na, K,
Rb, Cs), LiF, CsF, and so on. The most popular electron injection material is LiF
[32, 33], which is still widely used at the present day. The LiF/Al bilayer can reduce
the injection barrier significantly, and the current-voltage characteristics of the
OLED are greatly improved in the presence of a 0.5–1-nm LiF layer. Although the
exact mechanism of such a buffer layer is unclear [34–36], one of the commonly
accepted explanations is that LiF reacts with evaporated Al and liberates Li atoms,
and Li dopes into the electron transport material at the interface and forms n-type
doping [37, 38]. Because the thermal evaporation of LiF is a bit difficult, lithium-
quinolate complexes (Fig. 6.3) 8-hydroxyquinolinolatolithium (Liq), 2-methyl-8-
hydroxyquinolinolatolithium (LiMeq), 4-phenanthridinolatolithium (Liph), and 2-
(5-phenyl-1,3,4-oxadiazolyl)phenolatolithium (LiOXD) have been synthesized and
investigated as electron injection materials [39–43]. The results confirm that the
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function of these lithium-quinolate complexes is the same as that of LiF. A very
thin layer (0.5–5.0 nm) of the complex deposited on the Alq3 (8-hydroxyquinoline
aluminum) layer enhances the electron injection and reduces the driving voltage. In
addition, another advantage of using Liq over LiF as an injection layer is that the
efficiency is less sensitive to the Liq thickness. Liq is recently more and more
replacing LiF as EIL both in academia and industry for its superior properties.

6.2.4 Hole and Electron Transport Materials

HTM are very common in OLEDs, providing a hole-conductive pathway for
positive charge carriers to migrate from the anode into the EML. It is usually
required that they possess thermal stability with high glass transition temperature
(Tg), high hole-mobility, and the capability of forming stable pin-hole-free thin-
films upon evaporation. Hence it is important that the HTL materials are easily
oxidized by removing an electron and the redox processes are reversible. To
facilitate the hole transport into the EML, the HTL should have HOMO levels
comparable to EML. As a good HTL, it is appreciated that it can confine the charge
carriers and excitons in the EML effectively. Therefore a shallow LUMO level to
block the electrons from the cathode side and large band gap to prevent exciton
diffusion and quenching are desirable. With these properties in mind, some of the
commonly employed HTL materials are triaryl amines (e.g., 4,4′,4″-tri(N-carbaz-
olyl) triphenylamine, TCTA and 4,4′,4″-tris(3-methylphenylphenylamino)-tri-
phenylamine, m-MTDATA) [44, 45], biphenyl diamine derivatives (e.g., N,N′-(3-
methylphenyl)-1,1′-biphenyl-4,4′-diamine, TPD and NPB), and so on (Fig. 6.4).

For organic materials, the charge transport property of electrons is usually inferior
to that of holes. Therefore, it is more important to select ETM with high mobility.
Besides themobility, the strategy of selecting a goodETM is similar toHTM.As such,
the material needs to have a LUMO level close to the work function of the cathode to
aid charge injection. ItsHOMOneeds to be deep to block the holes from the anode side
and the band gap should be large. Furthermore, as all organic layers, it should have a
highTg for good stability and form smooth amorphous thinfilms.On the basis of these
criteria, typical examples are: oxadiazole derivatives (5(4-biphenyl)-2-(4-tert-buty-
phenyl)-1,3,4-oxadiazole, PBD) [46], azole-based materials (1,3,5-tris(N-phenyl-
benzimidizole-2-yl)benzene, TPBI, and 3-phenyl-4-(1′-naphthyl)-5-phenyl-1,2,4-
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triazoles, TAZ) [47, 48], quinolone derivatives, quinoxaline derivatives (bis(phe-
nylquinoxaline, BPQ) [49], anthrazoline derivatives, phenanthroline derivatives (4,7-
diphenyl-1,10-phenanthroline, BPhen and 2,9-dimethyl-4,7-diphenyl-1,10-phenan-
throline, BCP) [50–54], silole [55, 56], pyridine-basedmaterials (1,3,5-tri(m-pyrid-3-
yl-phenyl)benzene, Tm3PyPB) [57, 58], cyano and F-substituted compounds, metal
chelates, and others (Fig. 6.4).

6.2.5 p- and n-Type Doping Materials

Similar to inorganic materials, some organic semiconductor materials can be doped
by electron donors or acceptors to obtain excellent charge injection and transport
properties. In organic semiconductors, the dopants either extract electrons from the
HOMO states of the hosts to generate holes (p-type doping), or donate electrons to
the LUMO states (n-type doping). Large aromatic molecules with strong π-electron
donating or withdrawing properties are often used in organic electrical doping to
avoid easy diffusion which happens with small dopants.

As for p-type doping, strong electron acceptor molecules such as orthochloranil
[59], tetracyano-quinodimethane (TCNQ) [60], or dicyano-dichloroquinone (DDQ)
[61] are required as dopants (Fig. 6.5). Among them, 2,3,5,6-tetrafluoro-7,7,8,8-
tetracyanoquinodimethane (F4-TCNQ), capable of being doped in a variety of hole
transport matrices [62, 63], is considered as the most successful dopant material in
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the application of optoelectronic devices. When it is doped into hole transport
material N,N,N′,N′-tetrakis(4-methoxyphenyl)-benzidine (MeO-TPD, Fig. 6.5), a
conductivity of 5 × 10−6S/cm at 2 % doping ratio can be achieved, which is four
orders higher than that of the undoped one. With such high conductivity, the
voltage drop over a thick doped HTL at the normal driving condition is negligible,
which enables a more freely OLED structure design.

More importantly, doped HTL provides much easier electron injection than
undoped. In a model doped system, ZnPc:F4-TCNQ (30:1) doped on ITO substrate,
a much stronger level bending of 0.9 eV is observed, and the Fermi level is only
0.23 eV away from the HOMO level [64]. The space charge layer is very thin, and
the holes are easily injected via tunneling and form a quasi-ohmic contact.

F4-TCNQ has great successes in improving the hole injection and conductivity of
HTLs. However, its low glass transition temperature and high volatility raise serious
concerns over issues of cross-contamination, reproducibility, and thermal stability of
the OLED devices. Some other p-type dopants with better thermal stability have been
synthesized (Fig. 6.5), e.g., 3,6-difluoro-2,5,7,7,8,8-hexacyanoquinodimethane (F2-
HCNQ) [65], 1,3,4,5,7,8-hexafluorotetracyanonaphthoquinodimethane (F6-TNAP)
[66], and 2,2-(perfluoronaphthalene-2,6-diylidene) dimalononitrile (F6-TCNNQ) [67–
69]. Because this field is now mainly of commercial interest and most of the improved
dopants are proprietary materials [70, 71], they are not discussed in detail here.

In contrast to p-type doping, n-type molecular doping is intrinsically more dif-
ficult. For efficient doping, the HOMO level of the dopant must be energetically
aligned with the LUMO level of the host material, which makes such materials
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unstable against oxygen in air. With increasing LUMO energy, the difficulty in
finding suitable materials is increased. Hence, the most widely used n-type dopant
is actually alkali metals, such as Li and Cs. In 1998, Kido [72] reported efficient
OLEDs using electron transport material of bathophenanthroline (BPhen) doped
with Li. Parthasarathy et al. [73] reached a conductivity of 3 × 10−5S/cm for a
100 nm-thick BCP:Li film. Such bulk doping can also be reached by Li deposition
on top of the organic layers, if it is followed by metal deposition. The high tem-
perature during metal deposition may cause the Li to diffuse into the organic layer.
The alkali metal acts as an efficient electron donor to the ETM to produce n-type
doping. An analysis by secondary ion mass spectrometry (SIMS) depth profiling
shows that a strong Li diffusion into the organic material can be up to 80 nm.
However, the propensity to diffuse into the emission layer (EML) because of the
alkali metal’s small atom size may impact on light emission as well as stability [72].
Organic dopants are more robust and more stable because of their large aromatic
ring. Bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF) is the first n-type donor
molecule coevaporated into naphthalene tetracarboxylic dianhydride (NTCDA)
[74], but the conductivity is only one to two orders above that of nominally
undoped NTCDA. Tetrathianaphthacene (TTN) is found to be an efficient donor in
hexadecafluorophthalocyaninatozinc (F16ZnPc) but not in Alq3 which has a higher
lying LUMO so that an energy transfer from the dopant to Alq3 LUMO is not
possible [75]. The strongly reducing molecule bis(cyclo-pentadienyl)cobalt(II)
(cobaltocene, CoCp2) [76] has an ionization energy of 4 eV, making it a promising
material for molecular n-type doping. When it is doped into an electron transport
material, a tris(thieno)hexaazatriphenylene derivative, it shows a 0.56-eV shift of
the Fermi level toward the unoccupied states of the host.

Today the most successfully commercial p- and n-type dopants and corresponding
host materials are produced by Novaled AG, which claims to have high stability and
ease of handling in air and control of the evaporation. They reported the first practical
molecular n-type dopant W2(hpp)4 [77–79], which could be doped into ETLmaterial
2,4,7,9-tetraphenyl-1,10-phenanthroline (TPPhen; Fig. 6.5). The doped ETL signif-
icantly reduced the operating voltages in OLED. However, the dopant is sensitive to
air, and can only be handled in an inert atmosphere. Later, they announced an air stable
n-type dopant NDN26 [80, 81], although thematerial structure has not been disclosed.

When the electrically intrinsic EML is sandwiched between p-doped and n-
doped transport layers, it forms a p-i-n OLED structure. A typical p-i-n bottom
emission OLED consists of five organic layers with distinct functionalities: two
doped transport layers, two undoped blocking layers, and an EML [82]. The doped
charge transport layers (HTL and ETL) are responsible for efficient charge injection
from the contacts into the devices, and for efficient charge transport to the EML.
Although this three-layer structure already works rather well, one often faces
problems with lacking charge balance, interface exciplexes, or exciton quenching
by excess charge carriers. For this reason, the introduction of additional blocking
layers (HBL and EBL) between the charge transport layers and the EML to confine
the injected charges and generated excitons within the EML and to ensure a good
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charge balance is sometimes necessary to reach really high efficiency and high
stability [83].

Because of electric doping in HTL and ETL, the conductivity of the organic
stack increases to induce band bending at the interface, and thus it also reduces
carrier injection energy barrier as well as operating voltage. For example, using
CBP:Ir(ppy)3 as the emitter system, green phosphorescent OLEDs with extremely
low operating voltages and high quantum efficiency have been demonstrated [84].
These p-i-n devices attain a luminance of 1000 cd/m2 at only 3 V, with an EQE of
9 % and a power efficiency of 28 lm/W. Remarkable for these p-i-n OLEDs is their
low driving voltage: 100 cd/m2 are reached at 2.6 V, which is close to the equiv-
alent of the photon energy (2.4 eV, corresponding to the triplet energy in Ir(ppy)3).
This result confirms that the p-i-n structure significantly reduces the operating
voltage while improving the current efficiency of organic EL devices.

The question of stability and operational life time is a very important issue for p-
i-n OLEDs as dopants may diffuse to the emitting layer to produce potential
luminance quencher, particularly for Li-doped device. Using a larger size of atomic
dopant such as Cs or organic dopant can overcome most of the problems and the
insertion of a stable hole blocking interlayer also plays an important role in
improving life time. Meerheim et al. [85] demonstrated extremely stable and highly
efficient red p-i-n OLEDs based on an iridium-based phosphorescent dye. Ten
million hours of life time at initial luminance of 100 cd/m2 is reached with 12.4 %
EQE, which is attributed to low current density and the highly stable materials
against both charge carriers and excitons.

The advantage of low operating voltage and high luminous efficiency of p-i-
n structure are very important for the development of both AMOLED displays and
lighting applications. As the increase of voltage drop over the entire doped transport
layer with respect to thickness is very small, it makes it possible to optimize
resonant light outcoupling with strong microcavity without impacting on charge
carrier balance [81].

6.3 Fluorescent Electroluminescent Materials

The electroluminescent materials are definitely the most important materials in the
OLED because they generate light. The first efficient OLED reported by the Kodak
group used a pure Alq3 film as EML [1]. Two years later, the same group developed a
host-guest doped emitter system which is considered the key technology to realize
high efficiency, long term stability OLED devices and make it possible to use for full
color display and lighting application [86]. The energy of excitons electrogenerated
on the host materials can be efficiently transferred to the red, green, and blue dopants,
and then radiatively decay to the ground states and give out efficient EL. Because the
dopant concentration is usually below 1 %, the self-quenching effect is significantly
suppressed, high efficiency and pure color can be achieved [87].
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The functions of host materials are mainly to act as transport charge carriers and
to generate excitons, hence they should have the following properties: good hole or
electron transport capability with thermal, chemical, and electrochemical stabilities,
matching HOMO and LUMO energy levels with the dopant materials, and large
overlap between photoluminescence (PL) spectrum of the host and the absorption
of the dopant materials. Typical host materials can be either electron transport hosts,
hole transport hosts, or bipolar hosts.

In a perfect host-guest emitter system, the emission should be exclusively from
the dopant to achieve high efficiency and pure color. The dopant materials must
have high PL yield and a satisfying color suitable for the applications. The color is
often described with color chromaticity coordinates of Commission Internationale
de l’Eclairage (CIE) 1931. For example, the color chromaticity coordinates of three
primary red, green, and blue colors of NTSC standard in displays are (0.67, 0.33),
(0.21, 0.71), and (0.14, 0.08), respectively. In the following sections, the devel-
opment of some typical fluorescent red, green, and blue electroluminescent mate-
rials is discussed.

6.3.1 Red Fluorescent Materials

Red emitter 4-(dicyanomethylene)-2-methyl-6-[p-(dimethylamino)styryl]-4H-pyran
(DCM) was the first dopant used in the host-guest doped emitter system introduced
by Kodak in 1989 [27]. The PL quantum yield is 78 % with a peak maximum at
596 nm. The emission is quite broad, and the full width at half maximum (FWHM)
is as large as 100 nm. A simple structure of ITO/HTL/Alq3:DCM/Mg:Ag reaches
an EQE of 2.3 %, which is twice as high as that without doping. However, the color
is yellowish and the color coordinates are (0.56, 0.44). High doping concentration
results in more saturated red emission, but the efficiency gets lower because of
concentration quenching.

The DCM molecule has a donor-acceptor (so-called push-pull) structure. To shift
the chromophore’s color more reddish in the organic molecule design, one of the
most effective ways is introducing regidization structure into the donor moiety. The
researchers in Kodak introduced a more rigid julolidine ring into the DCM mole-
cule; the 4-(dicyanomethylene)-2-methyl-6-(julolidyl-9-enyl)-4H-pyran (DCJ)
molecule obtained has a peak wavelength of 630 nm, which is about 30 nm longer
in wavelength. With the same structure as DCM, the device with DCJ shows a more
saturated red emission compared with DCM. However, such red emission (0.64,
0.36) is only obtained when the dopant concentration is as high as 3 %, and the
efficiency is only half of the maximum value because of self-quenching. At lower
concentration, a green emission from the host material Alq3 is observed, resulting
from incomplete energy transfer. With four additional methyl groups on julolidine,
the interaction between DCJT molecules is significantly suppressed, and the con-
centration quenching is less pronounced. All the DCM series molecules have an
active methyl on pyran group, which may cause condensation reactions to form
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undesired bis-condensation by-products. This by-product shows a broad, very weak
fluorescence [88].

To solve this problem, the active methyl group is substituted by bulky and
sterically significant tert-butyl group to form DCJTB. The bulky tert-butyl group on
the pyran ring avoids further condensation and improves the purity and thermal
stability of the materials. Because of the inefficient energy transfer processes,
emission from the Alq3 is often observed when it is doped into Alq3 host. To
overcome this, Hamada et al. [89] reported improved red emission by using an
emitter assist dopant such as rubrene as a sensitizer to assist the energy transfer
processes between the host and the red dopant. Using the same strategy, Chen et al.
[90, 91] developed a so-called co-hosted emitter system. A high efficiency of
4.5 cd/A is obtained and maintains a driving current density of 700 mA/cm2 by
optimization of device structures. The optimized OLED structure is ITO/CFx/NPB
(120 nm)/Rubrene:Alq3 (6:4):2 % DCJTB (30 nm)/Alq3 (50 nm)/LiF(1 nm)/Al
(200 nm). More importantly, the half-life is longer than 30,000 h at an initial
luminance of 100 cd/m2 (Table 6.1).

6.3.2 Green Fluorescent Materials

The luminous efficiency of a green OLED is much higher than the other two
primary colors, red and blue, because the human eye is more sensitive to green. The
most widely investigated green fluorescence dopant was the coumarin family
because of its high PL quantum yield (up to 90 %) and saturated green color. One of
the best green fluorescent dopants is (10-(2-benzothiazolyl)-1,1,7,7-tetramethyl-
2,3,6,7-tetrahydro-1H,5H,11H-[l]benzo-pyrano[6,7,8-ij]quinolizin-11-one) (C-
545T) [95]. With the julolidine group at the C-7 position, the molecule has better
structural coplanarity, and the p-orbital of nitrogen overlaps with the p-orbitals of
the phenyl ring for more effective conjugation. The relative movements between the
molecular bonds become less active and the probability of non-radiative decay is
getting smaller, which results in increased PL quantum yield to more than 90 %.
The steric effects of the four methyl groups on the julolidyl ring significantly reduce
the interaction between the molecules [96]. Further improvement of the coumarin
dyes has been achieved by substituting tert-butyl groups at the benzothiazolyl ring
as in C-545TB, or by adding a methyl group at the C-4 position as in C-545MT
[97]. The concentration quenching problem could be further suppressed over a wide
range of doping concentration from 2 to 12 % and the thermal property was also
greatly improved without compromising its emissive color. In the device structure
of ITO/CHF3 plasma/NPB/Alq3:1 % C-545TB/Alq3/Mg:Ag, a saturated green
emission CIE (0.30, 0.64) with a luminescent efficiency of 12.9 cd/A at driving
current density of 20 mA/cm2 was obtained.

Chen’s group [98] has synthesized another green dopant C-545P by introducing
asymmetric 4 methyl steric groups beside the nitrogen atom on the julolidyl ring.
C-545P has good properties and photostability, and when used as a dopant in an
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Alq3-hosted OLED, it shows 10 % higher luminous efficiency than that of C-545T
while keeping the same color coordinates at (0.31, 0.65). This is attributed to the
asymmetric substituents, which minimize aggregation at high concentration.

The coumarin dyes were usually doped in Alq3 as the emitter system in the
OLED research, which resulted in an unstable Alq3

+ cation with excessive holes.
Recently, more and more blue emissive materials have been employed as the hosts
for green fluorescent dopants. In 2006, researchers in Sanyo [95] published an ultra-
high green fluorescent green OLED using C545T as the dopant. The host material is
9,9′,10,10′-tetraphenyl-2,2′-bianthracene (TPBA), whose PL spectrum has excellent
overlap with the absorption of C545T. An efficient energy transfer from the host to
the dopant is expected. By using a novel electron transport material 9,10-bis[4-(6-
methylbenzothiazol-2-yl)phenyl]anthracene (DBzA) in the device, a luminous
efficiency as high as 29.8 cd/A has been reached at a current density of 20 mA/cm2,
which translates to an EQE of about 10 % (Table 6.2).

The second class of green dopants is the family of quinacridone (QA). QA was
patented by Pioneer [99], although the patents on its derivatives have been filed by
Kodak [102] for use in OLEDs. The imino and carbonyl groups on the QA mol-
ecule easily form intermolecular hydrogen bonding, which results in QA excimer or
exciplex with Alq3, leading to quenching of the fluorescence. Wakimoto et al. [103]
substituted steric isopropyl groups beside the imino group to avoid the formation of
hydrogen bonds and found that the steric hindrance invoked by the bulky substit-
uents of QA prevents excimer formation and prolongs the life time of the devices.
Another strategy to avoid forming excimer or exciplex by the hydrogen bonds is
replacing the hydrogen on an imino group with an alkyl group, such as N,N-
dimethylquinacridone (DMQA) developed by Kodak [87]. In a simple structure of
ITO/Teflon/Alq3:0.7 % DMQA/BAlq/Alq3/Mg:Ag, Qiu et al. [104] achieved a
luminous efficiency of 21.1 cd/A (EQE of 5.4 %) at current density of 418 mA/cm2.
Murata et al. [100] used N,N′-diethylquinacridone (DEQ) as green dopants in
structure ITO/1-TNATA/NPB/Alq3:DEQ/Alq3/Mg:Ag, and found that the device
was thermally durable and the quantum efficiency was temperature-independent.

6-N,N-Dimethylamino-1-methyl-3-phenyl-1H-pyrazolo[3,4-b]-quinoline (PAQ-
NEt) is another green fluorescent dopant. Using a high doping level of ca. 16 % of
PAQ-Net as a dopant in the device ITO/NPB/NPB:16 % PAQ-NEt/TPBI/Mg:Ag,
Tao et al. [101] fabricated a device which gave a sharp, bright, and efficient green
EL peaked at 530 nm with an FWHM of 60 nm. Interestingly, whereas the PL of
the doped film showed emission of the host NPB material even at the high doping
concentration of 20 %, the host emission was not observed in the EL spectrum. This
is presumed to be because of charge-trapping processes, which occur in competition
with the energy transfer process.

Other useful green dopants with very good EL performance belong to the class
of bis(amine)-substituted anthracene derivatives which were reported by Idemitsu.
One of the best green fluorescence dopants with high efficiency, good color and
device life time was GD-403 [105] which had a luminous efficiency of 30 cd/A
(EQE 8.5 %) at 20 mA cm−2 (3.7 V) with CIEx,y (0.25, 0.65). The T50 life time at
an initial luminance of 1000 cd/m2 was about 50,000 h.
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6.3.3 Blue Fluorescent Materials

High efficiency and long living phosphorescent red and green emitter are now
commercially available. However, a high efficiency deep blue color as well as long
life time is still a big challenge for phosphorescent emitters. As a result, the blue
fluorescent materials are of particular importance in display and lighting
applications.

The band gap of blue emitter is larger than red and green ones, and even larger
band gaps are required for host materials to satisfy energy transfer requirements.
Many large band gap organic materials have been explored for blue emission. They
can be roughly categorized as follows: anthracenes, distyrylarylene, perylenes,
fluorenes, heterocyclic compounds, and metal complexes.

Anthracene has a very high PL quantum yield because of its rigid ring structure
which minimizes vibronic energy levels. Actually the first organic EL observed by
Pope in 1963 was based on anthracene. Since then, anthracene derivatives have
been intensively studied as an attractive building block and starting material
because the chemical modification of anthracene is relatively easier than for most
other rigid aromatic materials because of its better solubility in common organic
solvents.

Anthracene itself is highly crystalline and tends to crystallize in thin films, which
greatly limits its application in OLEDs. Fortunately, anthracene can be easily
modified by directly introducing different functionalized blocks at the 9,10-posi-
tions or bulky steric substituents on the 2,6-positions to prevent its crystallization
and improve its film-forming property.

Adachi et al. [106] introduced phenyl groups at 9,10-positions of anthracene, the
obtained compound DPA having a PL quantum yield of almost unity. However the
stability and OLED device efficiency were really poor. Substituting tert-butyl
groups at various positions of DPA improves the thermal stabilities.

In 2002, Shi and Tang [107] at Kodak reported the first stable blue OLED
emitter using 9,10-di(2-naphthyl)anthracene (ADN) as the host material, which
showed high PL quantum yield both in solution and solid state. When it was doped
with 2,5,8,11-tetra(tert-butyl)perylene (TBP) blue dopant emitter, the device
achieved a luminous efficiency of 3.5 cd/A with CIEx,y coordinates of (0.15, 0.23)
and a half-life of about 4000 h at an initial luminance of 636 cd/m2. In further
investigation it was observed that the ADN thin film was unstable and tended to
crystallize under prolonged electrical stress or annealing at elevated temperatures
(95 °C).The blue color was a bit greenish with CIEx,y of (0.20, 0.26). In attempts to
solve these issues, the Kodak group [108] substituted tert-butyl group at C-2
position of anthracene, namely with 2-(tert-butyl)-9,10-di(2-naphthyl)anthracene
(TBADN). Using the same dopant and device configuration, TBADN was able to
generate a deeper blue emission of CIEx,y (0.13, 0.19), but its efficiency was lower
than that of ADN (Table 6.3).

Chen and co-workers [113] systematically investigated the effects of alkyl
substitution on the 2-position of ADN and found that the best way to stabilize the
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morphology was to place a relatively small methyl group. It is well known as 2-
methyl-9,10-di(2-napthyl)anthracene (MADN). The methyl substituent slightly
disrupts the symmetry and increases the intermolecular distance, which can effec-
tively suppress the problematic crystallization to fabricate the robust and amor-
phous film, but still keeping the HOMO and LUMO energy of ADN at 2.5 and
5.5 eV, respectively. The optimized MADN-based blue OLED (ITO/CFx/NPB/
MADN/Alq3/LiF/Al) can reach an efficiency of 1.4 cd/A with deep blue color
coordinates of (0.15, 0.10), which is higher than that of the equivalent TBADN
device (1.0 cd/A).

When using p-bis(p-N,N-diphenyl-aminostyryl)benzene (DSA-Ph) as a dopant,
an optimized device with structure ITO/CFx/NPB/MADN:DSA-Ph/Alq3/LiF/Al
achieved a very high efficiency of 9.7 cd/A at 20 mA/cm2 (5.7 V) [115]. The
projected half-life is 46,000 h at an initial luminance of 100 cd/m2, although the
color purity is sacrificed with a major peak at 464 nm with a shoulder centered at
490 nm with CIE (0.16, 0.32).

In 2006, an isomer of MADN, 2-methyl-9,10-di(1-naphthyl)anthracene(α,α-
MADN) was synthesized by replacing the 2-naphthysubstituents at C-9 and C-10
positions with the sterically more demanding 1-naphthyl substituent [117]. The
peak of PL wavelength is 413 nm, around 17 nm blue-shift from that of MADN.
The blue-shifted emission spectrum of α,α-MADN provides better overlap with the
absorption of the deep blue emitter which is essential for efficient energy transfer.
The device using di(4,4′-biphenyl)-[4-(2-[1,1′,4′,1″]terphenyl-4-yl-vinyl)phenyl]
amine (BD-1) as blue dopant and α,α-MADN as the host produced a current effi-
ciency of 3.3 cd/A with color coordinates of (0.15, 0.13), which is 1.5 times
as high as that of the MADN:BD-1 system of 2.2 cd/A, although the life time is
similar.

The introduction of bulky substituent leads to larger intermolecular distances and
is a hindrance in packing, and shows amorphous behavior. A slight change of the
unsymmetrical substituents at the 9 and 10 positions of anthracene not only effi-
ciently improved the efficiency, but also strengthened amorphous morphological
stability. Kang et al. [131] designed and synthesized a series of unsymmetric 9-(2-
naphthyl)-10-arylanthracene derivatives with high thermal stability. By doping
6,12-bis(di(3,4-dimethylphenyl)amino)chrysene in such a host, the highest lumi-
nous efficiency is 9.9 cd/A at 20 mA/cm2 with color coordinates of (0.14, 0.18).

The anthracene derivatives are often used as the host materials because of their
high carrier mobility, good film morphology, and large band gap. However, the
most efficient fluorescent blue emitters are the distyrylarylene (DSA) series patented
by Idemitsu Kosan Co. Ltd., Japan. The basic structure of DSA is Ar2C=CH-(Ar′)-
CH=CAr2.

In 1995, Hosokawa et al. [132] first reported DSA-based host material 4,4′-bis
(2,2-diphenylvinyl) biphenyl (DPVBi) and amino-substituted DSA dopants such as
BCzVB and BCzVBi [120]. The nonplanar host DPVBi has nice film-forming
properties and the LUMO and HOMO levels are 2.8 and 5.9 eV, respectively. The
band gap of 3.1 eV is similar to that of ADN. With OLED structure of ITO/CuPc/
TPD/DPVBi:DSA-amine/Alq3/Mg:Ag, both BCzVB and BCzVBi gave almost
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identical EL emission with a peak at 468 nm and two shoulders at 445 and 510 nm.
The EQE of 2.4 % was obtained at a current density of 8.28 mA/cm2. The initial
half-decay life time of the above device was measured to be 500 h at an initial
luminance of 100 cd/m2. Later, the same group used an improved HTL with a DSA
host and a DSA–amine dopant that gave a life time of over 5000 h.

In 2004, eMagin disclosed a blue host material DPVPA [128], which replaces
the biphenyl core of DPVBi with diphenylanthracene. The PL quantum yield is
2.6 times as high as that of DPVBi with a peak wavelength at 448 nm, which is
around 20 nm red-shift caused by the extended conjugation chain. The EQE of
DPVPA-based OLED is 3 % with CIE of (0.14, 0.17), which is much higher than
that of MADN (1.5 %).

The perylene family is probably one of the most stable blue dopants because it
doesn’t have any functional group sensitive to chemistry, heat, or light. With 0.5 %
tetra (tert-butyl) perylene (TBP) doped into MADN, the device can reach a lumi-
nous efficiency of 3.4 cd/A with CIE of (0.13, 0.20), and a half-life of 5000 h can be
obtained. Jiang et al. [133] reported a stable blue OLED based on anthracene
derivative JBEM host. With a structure of ITO/CuPc/NPB/JBEM:perylene/Alq/Mg:
Ag, the device shows a maximum luminance of 7526 cd/m2with CIE (0.14, 0.21).
The device life time is over 1000 h at initial luminance of 100 cd/m2, which is
relatively higher longer than that of the device using DPVBi as the host.

6.3.4 Advanced Delayed Fluorescent Materials

In OLED devices, the injected electrons and holes form singlet or triplet excitons in
the ratio of 1:3 according to the statistics of spin multiplicity. Therefore the upper
limit of internal quantum efficiency is 25 % for fluorescent emitters, because only
singlet excitons can decay radiatively to the ground state. The measured EQE
cannot exceed 5 % for fluorescent OLED when an out-coupling efficiency of 20 %
is accounted for. However, more and more ultra-high efficiencies of fluorescent
OLEDs exceeding 10 % have been reported recently, which are attracting wide
research interests in both academic institutions and industry.

Most of these studies focus on delayed fluorescent materials which can convert
triplet excitons to singlet excitons through reverse intersystem crossing (ISC). There
are two main methods to achieve efficient ISC: triplet-triplet annihilation (TTA) and
TADF.

Since 2008, a few ultra-high efficiency red fluorescent OLEDs have been
reported by companies such as Kodak, Idemitsu, and Novaled. For example, Kodak
reported a high efficiency of 6–9 % EQE with fluorescent material 4,4′-bis[4-(di-p-
tolylamino)styryl] biphenyl doped in 9,10-bis(2-naphthyl)-2-phenylanthracene
(PADN), which is attributed to TTA contribution [134]. Based on the assumption
that spin statistics dictate 20 % probability of generating a singlet exciton through
TTA, they proposed a formula to estimate the maximum EQE of such a system:
0.2 × (25 % + 0.2 × 75 %) = 8 %. Soon they [135] obtained an EQE of >11 % at
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3 V using rubrene as emitter. This value is far beyond the theoretical limit of the
fluorescent emitter imposed by spin statistics, and cannot be satisfactorily explained
by previous equation. They surmise that the fluorescent OLED devices are capable
of using a considerably larger fraction of triplet states than was previously believed.
With the appropriate emissive material and host material, every two triplet excitons
can form one singlet exciton to contribute to the light emission, i.e., the upper limit
for the singlet excited state yield in the TTA process is 0.5. Therefore the maximum
internal quantum efficiency of fluorescent OLEDs is to be 25 % + 0.5 ×
75 % = 62.5 %. The estimated maximum EQE of the fluorescent OLEDs should be
revised to at least 0.2 × 62.5 % = 12.5 % when assuming the optical outcoupling
efficiency of 0.2.

TADF materials have a very small energy gap between singlet and triplet states,
which allows the upconversion from triplet to singlet excited states. However, the
reverse ISC rate (*106 s−1) is usually lower than the radiative rate (*109 s−1),
resulting in an inefficient upconversion from triplet to singlet excited states. In
addition, such materials always exhibit low fluorescence efficiencies. Thus it is
really difficult to verify the effectiveness of TADF materials for emissive layers in
OLED. It was not until 2009 that Adachi group at Kyushu University first intro-
duced tin(IV) fluoride–porphyrin complexes into OLED [6]. It is demonstrated that
the PL efficiency of such TADF material can be increased from ~1 to 3 % with an
increase in temperature caused by reverse ISC. However, the activation energy of
the reverse ISC (ΔEST) was still rather high at 0.24 eV, leading to inefficient reverse
ISC, and the overall EL efficiency is still very low. In 2011, they designed a donor-
acceptor system with steric hindrance incorporated between them to form intra-
molecular excited states, and the resulting molecule 2-biphenyl-4,6-bis(1,2-
phenylindolo[2,3-a] carbazol-11-yl)-1,3,5-triazine (PIC-TRZ) has ΔEST of only
0.11 eV. With this molecule, a significant contribution of 30 % reverse ISC effi-
ciency was realized under both PL and EL processes [136]. Later in 2012, the
Adachi group [7] proposed a strategy to realize high reverse ISC efficiency by
exciplex of electron-donating and electron-accepting molecules. A high reverse ISC
of 86.5 % has been demonstrated using an exciplex system of 4,4′,4″-tris[3-
methylphenyl(phenyl)amino]triphenylamine (m-MTDATA) as a donor and tris-[3-
(3-pyridyl)mesityl]borane (3TPYMB) as acceptor. Using this emission system, the
OLED achieves an EQE greater than 5 %, even with the rather low PL efficiency of
26 %, showing the contribution of efficient ISC significantly. For such a donor-
acceptor system, the HOMO and the LUMO in exciplexes are mainly located on the
donor and acceptor molecules, respectively. It is possible that the hole and electron
wavefunctions are spatially separated and electronic exchange energy is very small,
resulting in the triplet levels being very close to the singlet levels. However, the
limited overlap of hole and electron wave functions generally results in very low
fluorescence efficiency of exciplex materials according to the Franck–Condon
principle. Therefore, the researchers focus more on intramolecular donor-acceptor
system for both high fluorescence efficiency and high reverse ISC efficiency.
Adachi’s group further developed a series of highly efficient TADF emitters [137–
144], which contains carbazole group as a donor and dicyanobenzene group as an
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electron acceptor. A small ΔEST is realized because the HOMO and the LUMO of
these emitters are localized on the donor and acceptor moieties, respectively.
Furthermore, most of these materials containing carbazolyl dicyanobenzene
(CDCB) have PL quantum yields over 79 %, especially 1,2,3,5-tetrakis(carbazol-9-
yl)-4,6-dicyanobenzene (4CzIPN) (94 ± 2 %). Using these TADF emitters in
OLED, an EQE of 19.3 % for green emission is achieved, which is much higher
than those of conventional fluorescent OLED, and comparable to high-efficiency
phosphorescent OLEDs.

Although TADF materials have the potential to harvest *100 % excitons, the
mechanism of TADF still requires further clarification. The efficiency roll-off is
quite serious for most TADF emitter based OLEDs [140, 145], which could be
attributed to pronounced triplet-triplet or singlet-triplet quenching because of slow
reverse ISC process. It is necessary to improve further the performance of TADF
materials to meet the requirements of real applications [146].

6.4 Phosphorescent Electroluminescent Materials

Although fluorescent OLEDs have been extensively studied since the first practical
OLED was invented by Kodak in 1987, a breakthrough of its development is the
discovery of electrophosphorescence by Forrest and Thompson in 1998 [5].
Compared with fluorescent OLEDs using only singlet excitons for light emission,
phosphorescent OLEDs can utilize both singlet and triplet excitons, which boosts
the internal quantum efficiency (IQE) of OLEDs by a factor of four theoretically.
Hence, phosphorescence has attracted tremendous research interest in both acade-
mia and industry for its significant performance potential. In fact, red phospho-
rescent electroluminescent material has already been used in commercial mobile
phones since 2003. Highly efficient and long-living green phosphorescent material
is also undergoing commercialization. Compared with the great achievements in red
and green phosphorescent materials, blue phosphorescence seems to be the last
obstacle against commercialization because of the lack of deep color and poor life
time, although the EQE of blue phosphorescent OLED has already been over 20 %
[57, 147–149].

Phosphorescence is the radiative decay from triplet excited state to the ground
state, whereas fluorescence is the emission from singlet excited state in photo-
physics. Most organic material is singlet in the ground state (S0) because of the
covalent bonding nature. The electrons in organic materials are all paired up, and
the paired-up electrons must have opposite electron spins because of the Pauli
Exclusion Principle. When receiving enough energy, such as from light, the mol-
ecules can be excited from ground state to excited state. The two electrons have
either the opposite spin orientation called singlet or the same spin orientation called
triplet. Each electron spin is denoted ‘s’ and it equals either +1/2 or −1/2. The spin
multiplicity (total spin number, S) is calculated by S = 2∑s + 1, i.e., a spin mul-
tiplicity of 1 for singlet and 3 for triplet. If an organic material is excited from the
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ground state, the excited state usually remains as singlet because of the Wigner–
Witmer selection rule in quantum mechanics for the process of electronic transition.
Similarly, the phosphorescence of transition from the triplet excited state to ground
state is prohibited.

In EL, the excited states are formed by the recombination of injected electrons
and holes from the electrodes. The spin orientation of electrons and holes can be
either positive or negative, and the generated excitons by electron and hole
recombination can be either singlet or triplet. The quantum mechanical spin sta-
tistics dictates that for every singlet exciton created there are three triplet excitons.
However, the attained triplet excitons in OLEDs radiatively decay very little to
ground state because of the limitation of aforementioned selection rule.

The typical life time of the triplet excited state of organic material is usually
longer than milliseconds (ms), which is long enough for releasing its energy via
non-radiative decay such as the thermal vibration motion. The way to enable
phosphorescence from organic materials is to suppress the thermal vibration motion
by lowering temperatures down to liquid nitrogen temperature (77 K). However it is
surely not practical for OLEDs, which should usually operate at room temperature.
A practical and effective way is to reduce the life time of the triplet excited state so
that the transition process can compete with the thermal vibration motion.

To enhance the phosphorescence, the most effective way is to use heavy metal
atoms in organic molecules, which enhances spin-orbital coupling, the interaction
between spin magnetic moment and orbital magnetic moment. The strength of such
coupling is proportional to the proton number in the atomic nucleus, which is in
turn related to the electromagnetic field generated by atomic electrons circling
around. This is called the “heavy atom effect”. The difference between triplet and
singlet state become diminished when the spin-orbital coupling constant is large.
The selection rule loses its restriction and radiative decay from the triplet excited
state to the singlet ground state becomes feasible and the emission life time
shortens, faster than the molecular thermal vibration motion. Up to now, the heavy
atoms used in phosphorescent materials are all transition metals such as Ru, Re, Os,
Ir, Pt, Au, and Hg. Among them, most phosphorescent materials focus on group
VIIIB elements, Os, Ir, and Pt. Ir-containing phosphorescent materials in particular
attract the most attention.

6.4.1 Red Phosphorescent Materials

The first phosphorescent material reported by Forrest and Thompson in 1998 was
2,3,7,8,12,13,17,18-octaethyl-21H,23H-porphine platinum(II) (PtOEP) [5], a red
phosphorescent dye based on the heavy metal Pt. When doped into Alq3 with co-
evaporation, a peak EQE of 4 % was obtained with saturated red emission of (0.7,
0.3). The EQE can be further improved to 5.6 % when CBP is used as the host [50].
The efficiency was considerably higher than other fluorescent emitters, hence Pt
complexes have attracted strong attention because of their phosphorescence nature
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—phosphorescence instead of fluorescence mainly because of the following factors.
First, PtOEP has an absorption peak at around 540 nm, and its fluorescence
emission peak is at around 580 nm from the literature. In contrast, the observed EL
peak is at 650 nm with a very nice narrow red emission band, which is much longer
than the fluorescence emission of PtOEP and the Stokes shift is more than 100 nm.
This is direct proof that the observed EL emission is phosphorescence instead of
fluorescence. Furthermore, the life time of the emission at*650 nm in solution was
measured to be about *50 μs, which is significantly longer than the typical fluo-
rescence life time of 0.1–10 ns. All these spectroscopic data infer that the EL
emission at 650 nm is phosphorescence rather than fluorescence. However, this
PtOEP phosphorescent OLED shows serious efficiency roll-off, a typical EL
behavior for phosphorescent OLEDs at elevated current density, which can be
ascribed to their relatively long triplet life time. More Pt-based phosphorescent
emitters have been revealed by Kwong et al. [150], such as PtOX and PtDPP, which
show similar performance to PtOEP and the device performances are sensitive to
driving current density. Bright saturated red emission with high efficiency at low
current density and blue shifted to orange emission color with reduced efficiency
are observed, which are caused by the saturation of triplet emissive sites because of
the long-lived phosphorescence state of the platinum–porphyrin complex. The
phosphorescence life time of Pt(II)–porphyrin complexes doped into Alq3 with a
concentration of 6 mol% are in the tens of μs range, for example, 39 μs for PtOX,
21 μs for PtDPP, and 37 μs for PtOEP. In order to achieve a stable red PHOLED, a
phosphor of bis(2-(2′-benzo [4,5-a] thienyl)pyridinato-N, C3′)Pt(acetylacetonate)
[btpPt(acac)] [151] with short life time of triplet state was synthesized. The life time
of btpPt(acac) in TPBI host is only 5.6 μs, minimizing the saturation of triplet
emissive states and TTA.

When the central metal atom Pt is replaced by iridium, the obtained red phosphor
bis(2-(2′-benzo[4,5-a]thienyl)pyridinato-N,C3′) iridium(acetylacetonate) (btp2Ir
(acac)) [151] has an even shorter phosphorescence life time of 4 μs. The maximum
emission peak is at a wavelength of 616 nm with additional intensity peaks at 670
and 745 nm with CIE coordinates of (0.68, 0.32), which are close to the video
display standards. A maximum EQE of 7.0 % is achieved at a current density of
0.01 mA/cm2. At a higher current density of 100 mA/cm2, an EQE of 2.5 % is still
obtained. The reduced efficiency roll-off of btp2Ir(acac)doped PHOLED at high
currents is mainly ascribed to short triplet life time.

The HOMO level of heavy metal complex is a mixture of the highest energy
orbitals of the metal (e.g., 5d orbital for Ir, Pt, Os, or Re, 4f orbital for Tb) and the
π-orbitals of the ligand, whereas the π*-orbitals of the ligand make a contribution to
the LUMO level [152, 153]. Ligands therefore play an important role in color
emission and quantum efficiency. Ir(piq)3 [154] and (piq)2Ir(acac) [155] have been
reported by two different research groups about the same time, respectively. The
common feature of these two Ir complexes is the cyclometalate ligand 1-phenyl-
isoquinoline (piq). The difference between the two Ir complexes is the homoleptic
one for Ir(piq)3 and the heteroleptic one for (piq)2Ir(acac). In fact, cyclometalate
ligand piq is very powerful for red phosphorescence. Most of the red
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phosphorescence materials developed later are based on derivatives of 1-phenyl-
isoquinoline ligand. Both Ir(piq)3 and (piq)2Ir(acac) show similar phosphorescence
quantum yields of about 0.2 and resulting OLEDs have the same color coordinates
of (0.68, 0.32). Ir(piq)3 has a shorter phosphorescence life time of 3.5 μs and higher
thermal stability. An EQE of 10.3 % and a power efficiency of 8.0 lm/W are
obtained at 100 cd/m2. (piq)2Ir(acac) has an even shorter life time of 1.2 μs, and an
EQE of 8.46 % is achieved even at 20 mA/cm2.

The performance of the OLED depends not only on the phosphorescent emitters
but also on the host materials, as well as the HTL and ETL materials surrounding
the EML. When (piq)2Ir(acac) was doped into four different host materials, Alq3,
BAlq, BCP, and OXD-7 (ITO/NPB/host:(piq)2Ir(acac)/Alq3/Li2O/Al), it was con-
firmed that the electron-transporting host BAlq outperforms the rest of the host
materials [156]. (piq)2Ir(acac) can also be employed in solution processed [157]
device ITO/PEDOT:PSS/PVK/blends/Ba/Al, where the active layer contains a
blend of electron-transporting 2-(4-biphenyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiaz-
ole (PBD) or 3-phenyl-4-(1′-naphyl-5-phenyl-1,2,4-triazole) (TAZ), and one of
three kinds of polymeric host material: poly-9,9-dioctylfluorene (PFO), polyvi-
nylcarbazole (PVK), and polyfluorene-p-substituted triphenylamine (PFTA).
Among them, PFTA blended with PBD is the best device, having EQE near 12 %,
which is higher than that of (piq)2Ir(acac) OLED with the thermal evaporation
process. Shortly after, the EQE of a similar device ITO/PEDOT:PSS/PVK:PBD:
(piq)2Ir(acac)/cathode was pushed up to 13 % by inserting a hole-transporting layer
between PODOT:PSS and (piq)2Ir(acac) EML [158]. More recently, a new host
material 2,5-bis(2-N-carbazolylphenyl)-1,3,4-oxadiazole (o-CzOXD) [159] has
been employed in a (piq)2Ir(acac)-based device, and an EQE of 18.5 % was
obtained.

Liu’s group [155] substituted a fluorine on 1-(phenyl)isoquinoline ligand; the
obtained Ir(piq-F)2(acac) has a slightly blue-shifted emission with CIEx, y of (0.61,
0.32) although the EQE remains 8.67 % at a current density of 20 mA/cm2. Yang
et al. [160] developed Ir(m-piq)2(acac) by adding a methyl group on position 5 of 1-
(phenyl)isoquioline, whose EL emission is around 623 nm. When the phenyl is
replaced by a naphthyl ring, the Ir(1-niq)2(acac) or Ir(2-niq)2(acac) formed have
emission peaks at 664 and 633 nm, respectively. Ir(4F5Mpiq)3 was reported in
2005 [161] by the same research team who developed Ir(piq)3. The maximum EQE
is as high as 15.5 % at a more reasonable current density of 1.23 mA/cm2, and the
EQE remains at 7.9 % at a current density of 120 mA/cm2 with luminance of
10,000 cd/m2. However, the color is a bit worse with CIEx, y of (0.66, 0.34). Cheng
and co-workers [162] have synthesized Ir complex of (RDQ)2Ir(acac) with 2-R-
dibenzo[f,h]quinoxaline (RDQ) ligands, where R=H or methyl. With the devices of
ITO/NPB/CBP:(RDQ)2Ir(acac)/TPBI or BCP/Alq3/Mg:Ag, a maximum EQE of
12.4 % has been reached, and the color coordinates are (x = 0.60–0.63, y = 0.37–
0.40). When a p-i-n structure is applied, 20 % of EQE is achieved for the red emitter
of Ir(MDQ)2(acac), and the operating voltage for 100 cd/m

2 is less than 2.4 V, close
to the thermodynamic limit for the red emission. To get more red-shifted emission,
a ligand with larger π-conjugation, such as benzo[c]acridine (BA) is desired. The
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PHOLED with (BA)2Ir(acac) as the red phosphor shows a wavelength of 666 nm
and the color coordinates are (0.64, 0.33) [163].

In addition to the larger π-conjugation space, the intramolecular donor-acceptor
(D-A) systems can also shift the emission spectra to a longer wavelength [154].
Thiophene is an electron-donor group and pyridine an electron-acceptor group, thus
the ligand of 2-thiophen-2-yl-pyridine (thpy) itself has a D-A character. To
strengthen the D-A character, Tsuboyama et al. introduced a methyl group (an
electron donor) into the thiophene moiety and a −CF3 group (an electron acceptor)
into the pyridine moiety of thpy, respectively. Visible red shifts in the PL spectra
are found in the Ir(III) complex based on the modified ligands. Xu and co-workers
[164] introduced the substituents of CH3 and CF3 into the pyridyl ring of btp ligand
to tune Ir(III) complexes into the red region. HOMO levels are a mixture of Ir and
2-benzo[b]thiophen-2-yl-4-methyl-pyridyl (btmp) ligand orbitals, while the LUMO
is predominantly btmp ligand based. (btmp)2Ir(acac) with the CH3 group has a
slightly lower oxidation potential, but (btfmp)2Ir(acac) (btfmp = 2-benzo[b]thio-
phen-2-yl-5-trifluoromethyl-pyridine) containing the CF3 group is much more dif-
ficult to oxidate than (btp)2Ir(acac). The emission characteristics of these complexes
can be tuned by either changing the substituents and their position on 2-benzo[b]
thiophen-2-yl-pyridine or using different monoanionic ligands, showing emission
λmax values from 604 to 638 nm in CH2Cl2 solution at room temperature
(Table 6.4).

From the color point of view, the above-mentioned iridium-based red phos-
phorescent materials are not as good as PtOEP, which has CIEx, y of (0.7, 0.3). In
2005, Sanyo [169] published on deep red phosphorescent emitters, diphenylqui-
noxaline-iridium compounds including Q3Ir and (QR)2Ir(acac), which show EL
emission from 653 to 675 nm, with color coordinates of (0.70, 0.28). These
materials have phosphorescence life time quantum yields of 50–79 %, and the life
time of the triplet excited state of Q3Ir is only 1 μs. Zhou et al. [181] reported Ir(III)
complexes by introducing triphenylamine dendrons to the key ligands, where the
triphenylamine group lifted the HOMO level of the Ir(III) complexes. Compared
with the tri(phenylisoquinoline) Ir(III), the HOMO of the Ir(III) complexes tailoring
phenyl isoquinoline with triphenylamine groups was increased from −5.11 to
−4.96 eV. The OLED devices emit pure red light with an EL maximum at around
640 nm and excellent CIE color coordinates of (0.70, 0.30). Some other red
phosphorescent dyes, such as (dpq)2Ir(acac) [170], (NAPQ)2Ir(acac) [171], and
(Mpnq)2Ir(acac) [172], have even larger x-coordinates of 0.71 and comparable y-
coordinates below 0.30.

In addition to Ir(III)- and Pt(II)-based red phosphorescent emitters, as discussed,
there are many organometallic phosphors based on other heavy metal ions, e.g., Os
(II), Eu(IV), Ru(II), and Re(I).

Os is one of heavy metal atoms often used in phosphorescent materials. Jiang
et al. [182] have designed a series of Os complexes, and the emission color can be
tuned by changing the ligand. The phosphorescence life time is 0.6–1.9 μs, and the
EL emission peak is from 620 to 650 nm, with color coordinates around (0.65,
0.33). (fppz)2Os(PPhMe2)2 [173], (fppz)2Os(PPh2Me)2 [174], and (tptz)2Os
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(PPh2Me)2 [175] are all charge neutral red phosphorescent emitters. When
(fptz)2Os(PPh2Me)2 was reported for the first time, NPB or 9,9-bis[4-(N,N-bis-bi-
phenyl-4-yl-amino)phenyl]-9H-fluorene (BPAPF) were used as HTL and batho-
cuproine (BCP) was used as HBL. CBP was used for the host material in the device.
Device emits orange instead of red EL if the dopant concentration is less than 20 wt
%. At current density of 20 mA/cm2, EQE is 11.5 % (NPB as HTL) and 13.3 %
(BPAPF as HTL), respectively. When the same red phosphorescence emitter was
doped into tris[4,9-phenylfluoren-9-ylphenyl]amine (TFTPA) and used 13,5-tris(N-
phenylbenimidazol-2-yl)benzene (TPBI) as HBL, the device exhibits a maximum
luminous efficiency of 29.9 cd/A and a power efficiency of 25 lm/W [176]. It is
quite remarkable that the device has minor efficiency roll-off, and the efficiencies
remain 29.2 cd/A and 22.2 lm/W at 1000 cd/m2.

Recently, the EQE of (fptz)2Os(PPh2Me)2-based OLED has been further
improved to 19.9 % at a luminance of 100 cd/m2 [177]. For such high EL efficiency
performance, it was attributed to the use of the new host material 2,7-bis(diphen-
ylphosphoryl)-9-[4-(N,N-diphenylamino)phenyl]-9-phenylfluorene (POAPF). The
bipolar property of the host POAPF guarantees the charge balance of the device.
(fptz)2Os(PPh2Me)2 has a sufficiently high phosphorescence quantum yield of 0.62,
although its emission peak is relatively short (617 nm). In order to reach a longer
phosphorescence wavelength (more saturated red color), a relatively high dopant
concentration (*20 wt%) is required, which normally results in severe TTA. The
observed slight efficiency roll-off (EQE of 18.6 % at a luminance of 1000 cd/m2) is
mainly attributed to the short phosphorescence life time (*0.7 μsec) of (fptz)2Os
(PPh2Me)2. On the other hand, the symmetrical structure of (fptz)2Os(PPh2Me)2
induces a small net dipole moment and reduces dipole–dipole interaction and
quench emission.

Zheng et al. [183] obtained Eu(TFacac)3phen using 1,1,1-trifluoroacetylacetone
as ligand, and Male et al. [178] demonstrated Eu(TTFA)3phen using tris-(thi-
ophenyltrifluoromethylacetylacetonate)(phenanthroline) as the ligand. Both emit-
ters can be solution processed and mixed with PVK and PBD to fabricate the OLED
devices. The EL emission from Eu complexes is extremely sharp because the
emission is from the f-f transition of the europium atom.

Ru(II) complexes have attracted great attention owing to their high quantum
efficiencies. The inadequate evaporation and serious thermal degradation resulting
from the ionic nature makes cationic Ru(II) complexes unsuitable for wide appli-
cation in PHOLEDs. However, a breakthrough has been achieved by Tung et al.
[179, 184], who synthesized charge-neutral Ru(II) complexes which can be used in
PHOLED by the vacuum-deposition method. An optimized device using (ifpz)2Ru
(PPh2Me)2 (ifpz = 3-trifluoromethyl-5-(1-isoquinolyl) pyrazolate) doped in CBP as
EML reaches an EQE of 7.03 %, luminous efficiency of 8.02 cd/A, power efficiency
of 2.74 lm/W at 20 mA/cm2, and CIE coordinates of (0.67, 0.33).

Re(I) complexes are hardly used in PHOLEDs owing to the disadvantage of the
saturation of emission states resulting from TTA, which leads to low efficiency at
high current density. Li et al. [180] incorporated two butylformate groups at the 4
and 4′ positions of 2,2′-bipyridine, increased the steric hindrance effect, and reduced
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the TTA of (4,4′-dibutyl formate-2,2-bipyridine)Re(CO)3Cl (dbufbpy-Re). A red
PHOLED with a peak wavelength of ∼610 nm, a maximum efficiency of 2.5 cd/A,
and a maximum brightness of 1852 cd/m2 is obtained and the efficiency was
maintained at a value of 1.4 cd/A, even at a current density of 100 mA/cm2.

6.4.2 Green Phosphorescent Materials

Ir(ppy)3 was the first iridium-based green phosphorescent material for OLEDs,
which was shortly followed by (ppy)2Ir(acac) with a similar structure by the same
research group. Both of them are transition metal coordinate complexes with simple
molecular structure. They stand for two types of Ir complex phosphorescent
materials: homoleptic complexes [C^N]3Ir and heteroleptic complexes [C^N]2Ir
(LX). Their cyclometalation ligand 2-phehylpyridine (ppy) is the parent structure
for many other cyclometalation ligands of phosphorescent materials. The photo-
physical properties of Ir(ppy)3 and (ppy)2Ir(acac) are quite similar, although Ir
(ppy)3 is homoleptic and (ppy)2Ir(acac) is heteroleptic. The phosphorescence
quantum yield of Ir(ppy)3 is 0.40 and that of (ppy)2Ir(acac) is 0.34. The triplet life
time of Ir(ppy)3 is 1.9 μs and that of (ppy)2Ir(acac) is 1.6 μs. The emission peak of
Ir(ppy)3 is 514 nm with CIEx,y of (0.27, 0.63), which is a bit shorter than the
525 nm of (ppy)2Ir(acac) with CIEx,y of (0.31, 0.64). The smaller CIE x-coordinate
means that the emission of Ir(ppy)3 is greener than that of (ppy)2Ir(acac), whereas a
slightly smaller CIE y-coordinate indicates a less saturated color of Ir(ppy)3. Such
difference of color chromaticity is not large but substantial and very similar trends
have been observed for other homoleptic and heteroleptic coordination complexes
as well. First, acac ancillary ligand has a weaker ligand-field strength than ppy.
Weaker ligand-field strength causes less d-orbitals splitting, which results in lower
energy of MLCT and hence longer phosphorescence wavelengths. Second,
experimental evidence indicates that the molecular dipole quenches phosphores-
cence of the material. In terms of molecular dipole moment, facial homoleptic
coordination complexes are smaller than heteroleptic coordination complexes,
which in turn are smaller than meridional homoleptic coordination complexes.

When Ir(ppy)3 was first reported, the maximum EQE had reached 8 %, which
was the first time that the EQE of OLEDs surpassed 5 %, which was considered
then the theoretical upper limit for fluorescent OLEDs. The (ppy)2Ir(acac) OLEDs
reported thereafter achieved even higher EQE up to 12 %. The Kido group [185]
used a polymer buffer layer, tetraphenyldiamine-containing poly(arylene ether
sulfone) (PTPDES) doped with tris(4-bromophenyl) aminium hexachloroantimo-
nate (TBPAH) as an electron acceptor, and the Ir(ppy)3-based OLED obtains an
EQE of 21.6 % and a power efficiency of 82 lm/W (77 cd/A) at 3.0 V. In 2004, He
et al. [186] employed double-emission layers with one predominantly hole trans-
porting EML at anode side and one predominantly electron transporting EML at the
cathode side in a p-i-n structure, and the optimized Ir(ppy)3 OLED reaches a
maximum EQE of 19.5 % and a power efficiency of 64 lm/W at 1000 cd/m2 with
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smaller efficiency roll-off in comparison with the single EML. Mikami [187] used
highly refractive index glass substrate (n = 2.0) and micro lens array as the
extraction method; the Ir(ppy)3-based OLED demonstrated a power efficiency of
210 lm/W at 10 cd/m2 (an EQE of 50 %), and 100 lm/W at 1000 cd/m2.

CBP is a widely used host material for green phosphorescent emitters; however,
its thermal stability is relatively poor, which influences the operational life time of
the OLED. Chen’s group [188] synthesized 4,4′-N,N′-[di(3,6-di(tert-butyl)carba-
zole)biphenyl (ttbCBP) which possesses both a wide band gap (3.2 eV) and high Tg
(175 °C) in 2008. Tsuzuki and Tokito [189] designed 4,4-bis-N-carbazolyl-9,9-
spirobifluorene (CFL) host with spirobifluorene and two carbazole moieties. The Tg
of CFL is 151 °C and the life time of the OLED using CFL as the host is longer
than that of the OLED using CBP. A long–living Ir(ppy)3 OLED is achieved by
using a silane host, 9-(4-triphenylsilanyl-(1,1′,4,1″-yl)-9H-carbazole (TSTC) as the
host material [190]. The tetraphenylsilane moiety is introduced to provide a high
triplet energy level (2.4 eV), thermal and chemical stability, and glassy properties
leading to high efficiency and operational stability of the devices. Ir(ppy)3-based
OLEDs using the TSTC host result in a maximum EQE of 19.8 % and power
efficiency of 59.4 lm/W. High operational stability with a half-life of 160,000 h is
also obtained at an initial luminance of 100 cd/m2. High morphological stability of
the host is desired for high efficiency and operational stability for electrophos-
phorescent devices. Yang’s group [159] has developed a bipolar host o-CzOXD
with twisted structure by linking the 9-position of carbazole with the ortho position
of 2,5-diphenyl-1,3,4-oxadiazole, which results in good thermal and morphological
stabilities and a high triplet energy level. Devices containing Ir(ppy)3 dopant and o-
CzOXD host show maximum external quantum efficiencies as high as 20.2 %,
which is much higher than that of identical devices with the CBP host. The out-
standing EL performances are attributed to the well-matched energy levels, which
consequently leads to a more balanced injection and recombination of charge
carriers.

Kido and co-workers reported a series of phenylpyridines and phenylpyrimi-
dines as the combinational ET and HB materials with very high electron mobilities
and higher triplet energy level than Ir(ppy)3, e.g., bis-4,6-(3,5-di-3-pyridylphenyl)-
2-methylpyrimidine (B3PYMPM) [191], 2-phenyl-4,6-bis(3,5-dipyridylphenyl)
pyrimidine (BPyPPM) [192], 3,5,3′,5′-tetra-(p-pyrid-4-yl)phenyl[1,1′]biphenyl
(p4PPP) [193], 3,5,3′,5′-tetra(m-pyrid-3-yl)phenyl[1,1′]biphenyl (m3PPP) [193],
3,5,3′,5′-tetra-(m-pyrid-4-yl)phenyl-1,1′-biphenyl (m4PPP) [193], 3,5,3′,5′-tetra(p-
pyrid-3-yl)phenyl-1, 1′-biphenyl (p3PPP) [193], TmPyPB [194], and TpPyPB
[194]. The electron mobilities of TmPyPb and TpPyPb are 1.0 × 10−3 and
7.9 × 10−3 cm2/Vs, respectively, which are even higher than the hole mobilities of
most HTM. By using B3PYMPM as the hole block and ETL [191], the EQE of Ir
(ppy)3-based OLED can be increased to 29 % at 100 cd/m2, corresponding to a
power efficiency of 133 lm/W (Table 6.5).

As the first (C^N)2Ir(acac) type green phosphorescent emitter, a lot of device
optimization efforts have been applied to (ppy)2Ir(acac)-based OLEDs. Qin and co-
workers [207] fabricated a (ppy)2Ir(acac)-based OLED on p-silicon anode using
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Sm/Au as the semi-transparent cathode, and the device shows a maximum current
efficiency of 69 cd/A with a turn-on voltage of 3.2 V. Recently, a new efficiency
record of green phosphorescence OLED belongs to. Lu’s group [195] and dem-
onstrate a highly simplified green OLED on a chlorinated ITO transparent electrode
with a work function of >6.1 eV which provides a direct match to the energy levels
of the active light-emitting materials. EQE of the Cl-ITO device reaches 29.1 %
(93 cd/A) at 100 cd/m2, 29.2 % (94 cd/A) at 1000 cd/m2, and 25.4 % (81 cd/A) at
10,000 cd/m2. More importantly, the device shows significantly suppressed effi-
ciency roll-off. Even at an ultrahigh luminance of 100,000 cd/m2, the EQE of the
Cl-ITO device is still as high as 14.3 % (46 cd/A). By applying a simple lens-based
structure to extract light being trapped at the glass-air interface (the substrate mode),
the EQE can be further increased up to 54 % at 1000 cd/m2, and the maximum
power efficiency is 230 lm/W.

Based on Ir(ppy)3 and (ppy)2Ir(acac), more green phosphorescent Ir complexes
have been developed by directly grafting carbazole moiety onto ppy cyclometala-
tion ligand, such as Ir(Czppy)3 [196], Ir(FCzppy)3 [197], Ir(CCzppy)3 [197], Ir
(CzppyF)3 [197], Ir(CzppyC)3 [197], Ir(CzppyF)2Ir(acac) [197], and Ir(CzppyC)2Ir
(acac) [197]. Because of the hole transporting nature of the carbazole moiety, one of
the most commonly used structures for the host material, HOMO energy level has
been raised less than 5.0 eV. It is also appreciative of green color chromaticity of
these Ir complexes and is attributed to the rigid and bulky carbazole moiety which
prevents the close π–π interaction among molecules. The efficiency roll-off of their
OLEDs is thus somewhat alleviated. Ir(mCP)3 [198] and (mCP)2Ir(bpp) [198] are
designed and applied for OLEDs based on a similar principle.

By substituting various functional groups (X-), such as SiPh3, GePh3, NPh2,
POPh2, OPh, SPh, and SO2Ph2 on the 4-position of ppy cyclometalation ligand,
more green to yellow phosphorescence materials Ir(X-ppy)3 [199] and (X-ppy)2Ir
(acac) [200] have been developed recently. Except for Ir(Oppy)3 [199] and
(Oppy)2Ir(acac) [200], most of these phosphorescence materials have CIE x-coor-
dinates between 0.32 and 0.37, and hence they are not truly green but yellow-green
in color. The experimental results on OLEDs also show that most Ir(X-ppy)3 are
better than Ir(ppy)3 because of the presence of electron transporting X-substituent.
Jung et al. [201] reported a homoleptic Ir(III) complex of fac-tris[2-(3′-trimethyl-
silylphenyl)-5-trimethylsilylpyridinato]iridium [Ir(dsippy)3] with narrow green
emission (full-width at half-maximum: 50 nm) and higher efficiency than Ir(ppy)3.
The bulky silyl group on the ppy ring seems to play a key role in suppressing
various intermolecular excited-state interactions, which illustrates a way to solve
the problem of color purity for green phosphorescence.

Liu et al. [202] designed two iridium complexes, both containing carbazole-
functionalized beta-diketonate, Ir(ppy)2(CBDK) [bis(2-phenylpyridinato-N,C-2)
iridium(1-(carbazol-9-yl)-5,5-dimethylhexane-2,4-diketonate)], Ir(dfppy)2(CBDK)
[bis(2-(2,4-difluorophenyl)pyridinato-N,C-2)iridium(1-(carbazol-9-yl)-5,5-dimeth-
ylhexane-2,4-diketonate)] for non-doped devices. The designed Ir(ppy)2(CBDK)
shows not only a good hole transporting ability, but also a good electron trans-
porting ability. The improved performance of Ir(ppy)2(CBDK) and Ir
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(dfppy)2(CBDK) can be attributed to the introduced bulky carbazole-functionalized
beta-diketonate, resulting in improved carrier transporting properties and sup-
pressed TTA.

Another high-efficiency series of iridium complexes is based on benzoimidazole
ligands complex such as in Ir(bim)2acac [203]. Ir(bim)2acac exhibits green phos-
phorescence with a maximum peak emission at 509 nm and a quantum yield of
about 40 %.

Similar to red phosphorescent emitters, another class of green phosphorescent
material is based on the Pt heavy atom. The flat square planar molecular shape is
not conducive to solid state luminescence because of molecular π–π stacking which
quenches the emission readily. One of the Pt-based green phosphorescent materials,
(dmbipy)Pt(CCPh)2 [204], was reported in the early stages of phosphorescent
material development. However, the solution fabricated OLEDs (using PVK as the
host material) show unsatisfactory performance. It is not until the changes of cy-
clometalate ligand to tridentate N^C^N that the performance of OLEDs is
improved. Pt(dpt)(oph) [205], Pt(dpp)Cl [206], Pt(dpt)Cl [206], Pt(dpppy)Cl [206],
and Pt(dppmst)Cl [206] are some typical examples. The highest EQE can be up to
16 % with no significant roll-off over a four-decade current intensity span roll-off.
The emission color from the yellow to the green-bluish region can be simply tuned
by changing the substituents at the central 5-position of the cyclometalating ligand.
However, OLEDs fabricated with these Pt complexes are sensitive to the concen-
tration of phosphorescent dopant materials. One of them, Pt(dpppy)Cl OLED,
exhibits a very high CIE y-coordinate of 0.76, very close to the saturated green
color. This can be attributed to its quite narrow emission peak with FWHM about
30 nm, which is probably because of the small and rigid molecular structure of Pt
(dpppy)Cl. Chang et al. [208] synthesized new series of luminescent platinum(II)
azolate complexes Pt(N^N)2, in which N^N = mppz, bppz, bzpz, bmpz, bqpz, fppz,
hppz, bptz, and hptz. Large EL red-shift in the solid state is observed caused by the
aggregation of platinum(II) complexes.

6.4.3 Blue Phosphorescent Materials

Compared with other phosphorescent materials, blue phosphorescent materials have
been less developed, less satisfactory, and generally recognized as the “weakest
link” in the realization of a high-efficiency all phosphorescence OLED. One par-
ticular problem is finding a material with a high-enough triplet state to correspond
to a blue emission wavelength. Furthermore, in addition to the necessary hole-
transporting or blocking properties, sufficiently high triplet energy becomes an
obstacle and challenge in the design of effective host material for blue phospho-
rescent dopants. Finding a host into which this material may be doped without
quenching the emissive state is a major challenge because the triplet state of the
host must be even higher in energy than the emitter triplet state. The high-energy
triplet state of a blue phosphorescent emitter appears to be difficult to maintain
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without degradation, and therefore life times of phosphorescent blues are a prob-
lem. Hence, the host materials for blue phosphorescent OLEDs are more crucial
than the red and green ones.

Recently much effort has been devoted to the selection of suitable ligands and
central heavy atoms. Cyclometalated iridium complex is one of the best candidates
for phosphorescent dyes with high quantum yields because of the short life time of
triplet excited states. The most famous blue phosphorescent materials are hetero-
leptic iridium(III)bis[(4,6-di-fluorophenyl)-pyridinato-N,C2′-picolinate] (FIrpic)
[209] and bis(4′,6′-difluorophenylpyridinato)tetrakis-1-pyrazolyl)borate (FIr6)
[210] using fluoro-substituted phenylpyridine ligands and an anionic 2-picolinic
acid or poly(pyrazolyl)borate as an auxiliary ligand, respectively. However, these
emissions are either greenish-blue (0.17, 0.34) or sky-blue (0.16, 0.26), far from a
saturated blue color as the National Television Standards Committee (NTSC)
standard of (0.14, 0.08).

As the first blue phosphorescent material, FIrpic has two emission peaks at 470
and 494 nm with phosphorescence quantum yield of 50–60 %. The strong vibration
peak which appears at a longer wavelength of the main emission peak makes the
color actually cyan containing a lot of green emission. With improved blue color,
FIr6 has a shorter emission wavelength (λmax at 457 and 485 nm) and a higher
phosphorescence quantum yield (96 %) than those of FIrpic, but its device stability
was worse. Because the emission is mainly from the ππ* state of cyclometalate
ligands mixing with d-orbital of heavy transition metal via MLCT, such an emis-
sion state because of the mixing of d-orbital is often inadequate, particularly for the
short wavelength blue phosphorescence. Consequently, such phosphorescence
usually has a longer triplet life time closer to that of pure organic species (organic
compound without containing heavy atom). Triplet state life time of μs range is
required for a fast emissive decay process and a high phosphorescence quantum
yield is desirable to achieve a theoretical maximum EQE over 20 %. It has been
known that Ir-based organometallic compounds show a short excited state life time
because of singlet-triplet mixing and easy control of emission spectra by managing
the chemical structure of ligands. In general, Ir-based phosphorescent dopant
materials have been developed to meet the requirements of deep blue phospho-
rescent dopant materials.

Phenylpyridine groups are widely used as the ligand structure of Ir-based
phosphorescent dopant. The HOMO is mainly composed of the π-orbitals of the
phenyl ring and the d-orbitals of the metal ion, whereas the pyridine moiety is the
principal contributor to the LUMO. Electron-withdrawing groups attached to the
phenyl group or changing the ancillary ligand to be more electron accepting
decrease the HOMO level, whereas electrondonating groups substituted to the
pyridine unit or replacing the pyridine ring to a N-heterocyclic ligand with a higher
LUMO increase the LUMO level (Table 6.6).

FIrpic has two fluorines on the phenyl unit to shift the HOMO level downward for
high triplet energy. The triplet energy was increased by the electron-withdrawing
fluorine and a bulky picolinic acid ancillary ligand. Although the emission spectrum
of FIrpic is blue-shifted, it exhibits only a sky blue color with y-coordinate over 0.30.
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The color coordinate is further blue-shifted by changing the ancillary ligand from
picolinate (pic) to bulky tetrakis(1-pyrazolyl)borate ligand (FIr6). The Fir6 has a
bulky tetrakis(1-pyrazolyl)borate ligand to reduce the conjugation of the main ligand
through steric hindrance. The peak wavelength of the FIr6 is 458 nm compared with
the 470 nm of FIrpic. Similarly, triazole (FIrtaz) [212] and tetrazole (FIrN4) [212]
derivatives were adopted as the ancillary ligands. The emission wavelengths of
FIrtaz and FIrN4 were 459 and 460 nm, respectively. The color coordinates of the
blue PHOLED are (0.15, 0.24) with a quantum efficiency of 5.8 %.

Chiu et al. [213] synthesized Ir(fppz)2(dfbdp) by changing ppy ligand with a
larger π–π* energy gap of ppz together with weak conjugated and strong ligand-
field strength benzyl phosphine (C^P) chelate, and obtained a deep blue light with
CIE coordinates of (0.15, 0.11). A maximum EQE of 12 % was obtained from a
device of ITO/NPB 30 nm/TCTA 20 nm/CzSi 3 nm/CzSi:6 % of Ir(fbppz)2(dfbdp)
35 nm/UGH2:6 % Ir(fbppz)2(dfbdp) 3 nm/UGH2 2 nm/BCP 50 nm/Cs2CO3 2 nm/
Ag 150 nm, which is the highest true blue PHOLED reported.

As mentioned above, a deep HOMO level can also be obtained by adding an
electron-withdrawing substituent on the phenyl ring of ppy ligand. Ragni et al.
[214] prepared a blue emitting iridium(III) complex containing 4-fluorine-substi-
tuted phenylpyridine ligands, tris[2-(3′,4′,5′,6′-tetrafluorophenyl)pryidinato-N,C2′]
iridium(III) (Ir(F4ppy)3). A blue PHOLED, with the structure of ITO/PEDOT: PSS/
PVK:fac-Ir(F4ppy)3:Br-PBD/TPBI/Ba/Al, emitted blue light with the emission
peak at 471 nm and an EQE of 5.5 %. Phenylpyridine derivatives with cyano-
(FCNIr or FCNIrpic) [215] or trifluoromethyl-(FCF3Irpic) [222] groups along with
two fluorine units further shift the color coordinate of blue PHOLEDs. A color
coordinate of (0.15, 0.16) with a quantum efficiency of 9 % are obtained by doping
FCNIr into the common mCP host [223]. The device performances of the FCNIr-
doped blue PHOLED are further improved by carefully tuning the charge balance in
PPO1, PPO2, and PPO21 host materials [224]. The highest EQE of deep blue
PHOLED is achieved by heteroleptic FCNIrpic emitter with picolinic acid ancillary
ligand, which is as high as 25.1 % with color coordinate of (0.14, 0.17), and the
quantum efficiency remains at 22.3 % at 1000 cd/m2 [216]. Seo et al. [217]
employed FCF3Irpic emitter in a double-emission layer structure, which was also
evaluated as a deep blue emitting dopant using a double layer emitting structure; a
maximum EQE of 23.3 % was obtained with color coordinates of (0.15, 0.21).
However, the efficiency roll-off is significant and the efficiency at 20 mA/cm2 was
only 4.2 %.

Kang and co-workers [218] reported a fac-tris-(2′,4-difluoro-2,3-bipyridinato-N,
C4′)iridium(III) (Ir(dfpypy)3) containing fluorine-substituted bipyridine ligand. The
use of a difluoropyridine unit instead of common difluorophenyl further shifts the
emission wavelength to the blue region because of electron deficiency of the pyr-
idine ring, and significantly improves the thermal stability and molecular rigidity
because of intermolecular interactions in the solid state. It exhibits intensive pure
blue PL (quantum yield of 0.77 in CH2Cl2) with the peaks blue-shifted to 438 and
463 nm and the color coordinate was (0.14, 0.12). This indicates that N-heterocyclic
substitution of phenyl in the ppy ligand is the most effective way to decrease the
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HOMO level of the complex to enlarge the energy gap of phosphorescent dye
without much deteriorative effect on the PL quantum yield.

Although many arylpyridine-type dopant materials have been synthesized to
shift the emission wavelength to short wavelength, the most effective way to get a
deep blue emission is to modify the aryl group with strong electron-withdrawing
groups such as F, CF3, and CN. However, those strong electron-withdrawing
groups have been known to degrade the long-term stability of deep blue PHOLEDs,
dramatically shortening the life times of devices. Therefore, the arylpyridine type
dopant materials modified with strong electron-withdrawing groups may not be
used in commercial application and fluorine-free phosphorescent dopant materials
are being developed.

To avoid using strong electron-withdrawing groups, one strategy is to increase
the LUMO level through the addition of electron-donating groups to the pyridine
ring or replacing the pyridine ring with an N-heterocyclic ligand with a higher
LUMO. Tamayo et al. [153] replaced the pyridine ring by N-pyrazole with a higher
LUMO and obtained tris(phenylpyrazolyl)-iridium(III) [Ir(ppz)3] which exhibited
PL at 414 nm for its facial isomer and 427 nm for its meridional isomer at 77 K,
with no observable emission at RT. However when the pyridine ring was replaced
by triazole, which has a higher LUMO energy, to obtain tris-(1-methyl-5-phenyl-3-
propyl-[1, 2, 4] triazolyl)iridium (III) [Ir(mpptz)3], PL at 449 and 479 nm with a
high quantum yield of 0.66 was achieved [219].

The best blue chromaticity phosphorescence OLED is achieved by tris(phenyl-
methyl-benzimidazolyl) iridium(III) [Ir(pmb)3] [220] emission wavelength to
395 nm corresponding to CIE coordinates of (0.17, 0.06). However, its EL effi-
ciency and stability were low and far from satisfactory. Nonetheless, Ir(pmb)3 was
the first non-fluorine-containing blue phosphorescent dopant material and the first
iridium complex using carbene (=C:) as the coordinating atom. Carbene-containing
ligand is stronger than azolate ligand in terms of ligand-field splitting and hence
LUMO energy is higher and the band gap is larger. However, low phosphorescence
quantum yield (*0.04) is the weakness of f-Ir(pmb)3 and its maximum EQE is only
5.8 %. Moreover, Ir(pmb)3 OLEDs exhibit serious efficiency roll-off: EQE
decreases to 2.3 % at a current density of 10 mA/cm2 and EQE is as low as 0.5 % at
a current density of 100 mA/cm2. Another carbene-containing blue phosphores-
cence material is (dfbmb)2Ir(tptz) [221] and it has a much better quantum yield of
*0.73 but somewhat worse in color coordinates of (0.16, 0.13). EQE of (dfbmb)2Ir
(tptz) OLED can reach 6.0 % but efficiency roll-off is intense. At display brightness
(100 cd/m2), EQE decreases to 2.7 %; EQE decreases further to 0.7 % at lighting
condition (brightness of 1000 cd/m2). Such EL efficiency is worse than many other
fluorescence materials with similar blue chromaticity.

Various heteroleptic bis(carbene)-type Ir dopant materials have also been studied
for the last several years. The carbene derivatives, [(fbmb)2Ir(bptz)] (fbmb = 1-(4-
fluorobenzyl)-3-methylbenzimidazolium, bptz = 4-tert-butyl-2-(5-(trifluoromethyl)-
1, 2, 4-triazol-3-yl)pyridine) and [(dfbmb) 2Ir(fptz)] (dfbmb = 1-(2, 4-difluorob-
enzyl)-3-methylben-zimidazolium, fptz = 2-(5-(trifluoromethyl)-1, 2,4-triazol-3-yl)
pyridine) exhibit deep blue PL emission peak at 460 and 458 nm, respectively
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[221].Their phosphorescence quantum yield are much higher than phenylimidazole-
based [(fpmb)2Ir(bptz)] (fpmb = 1-(4-fluorophenyl)-3-methylbenzoimidazolium,
bptz = 4-tert-butyl-2-(5-(trifluoromethyl)-1, 2, 4-triazol-3-yl)pyridine) because of
distinctively low nonradiative decay constant of the benzylimidazole-based dopant
materials. The best performing (dfbmb)2Ir(fptz)-doped PHOLED shows a maxi-
mum quantum efficiency of 6 % with deep blue color coordinates of (0.16, 0.13).
The use of CzSi and UGH2 host materials with mismatched energy levels with the
dopant materials degraded the device performances of deep blue PHOLEDs doped
with benzylimidazole-type carbene phosphorescent emitting materials.

Although platinum complexes [167, 225] have been reported to give blue
phosphorescent emission at room temperature, the light purity and the efficiency of
platinum complexes are not comparable to those of iridium complexes because of
the longer life times of the triplet states. However in 2008 Yang et al. [226] reported
platinum(II) [1,3-difluoro-4,6-di(2-pyridinyl) benzene] chloride (Pt-4), and the
device based on this Pt complex exhibits a peak EQE of 16 %, a power efficiency of
20 lm/W, and CIE coordinates of (0.15, 0.26), which are comparable to FIr6 (0.16,
0.26). It suggests that the utilization of Pt complexes is a viable approach for the
development of blue PHOLED. The high quantum yield and narrow emission
spectra are mainly attributed to its strong mixing with 1MLCT character to the
lowest excited state.

6.5 Summary and Outlook

OLEDs have achieved tremendous progresses in the application of flat panel display
and solid state lighting since their invention in 1987. Small and medium size OLED
panels have been successfully applied in portable devices, such as mobile phones,
digital cameras, mp3 players, and so on. Large size OLED TVs are also available
from Samsung and LG. In the development of OLEDs, the electroluminescent
materials play a critical role. The first generation of electroluminescent materials is
fluorescent, which can provide satisfactory red, green, and blue colors and life
times, but efficiency is limited because of the spin statistics. The second generation
phosphorescent materials can utilize nearly 100 % excitons, and significantly boost
the efficiencies. The red and green phosphorescent materials have already been
commercialized because of their high efficiencies and fairly long life times.
However, highly efficient deep blue phosphorescence light is still difficult to
achieve because of the lack of highly efficient emitters and corresponding wide gap
charge transporting materials and hosts. Furthermore, the shortages of iridium
resources makes it difficult to lower the cost of phosphorescent materials.
Considering the key role in OLED technology, high efficiency and low-cost elec-
troluminescent materials need to be developed in the future.
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Chapter 7
Conjugated Polymer Electroluminescent
Materials

Xing Guan, Shenjian Liu and Fei Huang

Abstract Polymer light-emitting diodes (PLEDs) are promising devices for use in
large-area, flat-panel displays and next-generation solid-state lighting because of the
advantages of ease of fabrication and low production cost for the large-size devices.
This chapter provides an overview of the recent development of polymer electro-
luminescent materials as the active layer in PLEDs. These polymer electrolumi-
nescent materials are reviewed according to the classification of traditional
electroluminescent polymers, luminescent polymers based on dopant/host systems,
hyperbranched polymers, and supramolecular luminescent polymers. Emphasis is
placed on the relationships between molecular structure and device performance.
Finally, some scientific problems and developing trends on PLEDs are discussed.

Keywords Conjugated polymers � Electroluminescence � Polymer light-emitting
diodes

7.1 Introduction

Organic light-emitting diodes (OLEDs) have drawn intense attention in both sci-
entific and industrial communities in the past decade because of their potential
applications in large-area, flat-panel displays and next-generation solid-state light-
ing [1–3]. Considerable progress has been made in this area, and vacuum deposited
small molecule OLEDs have been successfully commercialized [4, 5]. Compared to
small-molecular-based OLEDs, polymer light-emitting diodes (PLEDs), which can
be processed by spin-coating or ink-jet printing techniques via solution processing
[6, 7], have also attracted great attention because of the advantages of ease of
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fabrication and low production cost for the large-size devices [8, 9]. For high
performance PLEDs, highly efficient conjugated polymer electroluminescent
materials with good color purity are critical. As a consequence, various strategies
toward high performance polymer electroluminescent materials have been devel-
oped [9, 10]. In this chapter, we first present a brief description of the basic
principles of electroluminescence (EL) and PLEDs and then introduce the progress
of luminescent polymers in the recent 5 years.

7.1.1 Electroluminescence and PLEDs

EL is the result of radiative recombination of electrons and holes injected into a
semiconductor in the presence of an external circuit. This electron-hole recombi-
nation leads to the formation of singlet and triplet excitons in a ratio of 1:3 [11]. The
relaxation of the singlet excitons results in emission of light (fluorescence), whereas
triplet excitons do not produce fluorescence in most cases, other than by indirect
processes such as triplet-triplet annihilation, or by phosphorescence [12]. The color
of the emission is determined by the value of the highest occupied molecular orbital
(HOMO)–lowest unoccupied molecular orbital (LUMO) energy gap of a semi-
conductor, which for visible light (380–780 nm) corresponds to 1.5–3.2 eV.

PLED is an EL device that uses a conjugated polymer as the active layer. In a
simple, single layer PLED, a thin film of an emissive polymer is sandwiched
between two electrodes. Generally, indium tin oxide (ITO) on a glass or polymer
substrate is chosen as the (transparent) anode, and the cathode consists of a vac-
uum-deposited metal layer. To get a better performance, most PLEDs need a
multilayer device structure, where a hole-transporting/injection layer (HTL) and an
electron-transporting/injection layer (ETL) are used to facilitate hole and electron
injection/transport from anode and cathode, respectively, to maximize the device
performance, resulting in a generally used multilayer device structure: ITO anode/
HTL/emissive layer (EML)/ETL/metallic electrode cathode (Fig. 7.1) [13, 14].
During device operation, a voltage is applied across the PLED such that the anode
is positive with respect to the cathode. The electrons are injected into the LUMO of
the EML from the cathode and the holes are injected into the HOMO of the EML
from the anode. The electrons and holes recombine in the EML and lead to light
emission. Therefore, balancing the charge injection and transporting plays an
important role in achieving high EL efficiency PLEDs.

With regards to materials design, many factors should be considered in
designing a new light-emitting polymer for high performance PLEDs. For exam-
ples, proper HOMO and LUMO energy levels which match the desired electrode
materials give better charge carrier transporting/injection properties, and lead to an
improvement in the charge balance of electrons and holes in PLEDs; a decent
solubility affords facilities for fabricating PLED devices through spin-coating; and a
strong intermolecular interaction brings on an enhancement for transporting of
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charges and/or emission quenching which could influence the performance of
PLEDs. The recent progress on newly developed conjugated EL polymers and their
application in PLEDs is discussed in the following.

7.2 Conjugated Electroluminescent Polymers
and Performance Tuning

7.2.1 Early Efforts

Conjugated polymers are organic semiconductors with delocalized π-molecular
orbitals along the polymeric chain. In the past decade a variety of conjugated
polymers such as poly(p-phenylene vinylene) (PPV), poly(p-phenylene) (PPP),
polyfluorene (PF), polycarbazole (PCz), and polythiophene (PT) have been widely
used as electroluminescent polymers in PLEDs. PPV and its soluble derivatives,
which have relatively small optical band gaps and emit green to orange fluores-
cence, are among the most widely studied luminescent polymers [8]. PPP deriva-
tives are of particular interest as blue-emitting polymers because their ring twisting
caused by steric interactions effectively limits the intrinsic conjugation length and
hence endow their relative large band gaps [15]. PFs are promising blue-light
emission conjugated polymers because of their wide band gaps and high photo-
luminescence (PL) quantum efficiency as well as good thermal and chemical sta-
bility [16]. However, PLEDs based on PF homopolymers usually exhibit poor EL
efficiency and insufficient color stability because of their strong interchain inter-
actions, aggregations of polymer chains, and oxidative degradation during device
operation [17–21]. The rigid biphenyl structure, good hole-transporting ability, and
short π-conjugation length of 3,6-PCzs make them potential candidates as blue-light
emitters or hosts for phosphorescence materials in PLEDs [22, 23]. 2,7-PCzs are
also very attractive for the development of blue light PLEDs [24]. PTs are relatively
stable light-emitting materials and their properties can be easily varied by changing
the substituents on the starting monomer. However, the luminescence efficiency
(LE) of PTs in the solid state is relatively low because of a tendency towards strong

ITO anode

Metallic electrode cathode 

Emissive layer 

Electron transporting/injection layer  

Glass 

Hole transporting/injection layer 

Fig. 7.1 Schematic drawing
of a typical multilayer PLED
device
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interchain interactions [25]. More details of the chemical and physical character-
istics of these traditional luminescent polymers can be found in some compre-
hensive review articles and books [10, 26, 27].

7.2.2 Performance Tuning

To improve the performance and stability of PLEDs, considerable effort has been
made on tuning the chemical structure of these traditional EL polymers and many
useful strategies have been developed. For example, it was found that the intro-
duction of substituents into the EL polymers’ skeleton or side chains could allow
fine tuning of their electronic properties (e.g., emission color, band gap, electron
affinity, and ionization potential). The charge (hole/electron) carrier units could also
be introduced to the polymer’s main chain or side chains to achieve more balanced
hole and electron transporting in EL polymers,and thus yield the maximum exciton
formation.

7.2.2.1 Main-Chain Tuning

Tuning Conjugation Length

The optoelectronic properties of conjugated polymers are highly dependent on their
conjugation length. One approach to tune the conjugation length is to develop
polymers composed of short conjugated fluorescent segments interconnected via
nonconjugated linkers [28]. Wide band-gap polymers with pure blue emission and
hosts for phosphorescent dyes with high triplet energy levels (ET) could be acquired
in this way.

A series of polymers (P1–P5, Fig. 7.2) had been prepared by incorporating a
nonconjugated polyurethane (PU) segment with 9-butyl-3,6-bis(4-hydroxyphenyl)
carbazole and 2,5-bis(4-hydroxyphenyl)-1,3,4-oxadiazole segments through con-
densation polymerization [29]. PU moieties endowed polymers with large band
gaps and high ET, and the carbazole and oxadiazole units endowed polymers with
balanced hole and electron transport/injection properties. Therefore, these polymers
could be used as hosts for phosphorescent dyes. Red EL emission was obtained
when Ir(btp)2(acac) or Ir(2-phq)2(acac) was used as the phosphorescent dyes in P2–
P5. PLEDs based on P2 with a structure of ITO/poly(3,4-ethylenedioxythiophene):
poly(styrenesulfonate) (PEDOT:PSS)/Ir(2-phq)2(acac) (8 %) in polymer/(2,9-
dimethyl-4,7-diphenyl-1,10-phenanthroline) (BCP)/tris(8-hydroxyquinolinolato)
aluminum (Alq3)/LiF/Al showed the maximum luminescence (Lmax) and a LE of
394 cd/m2 and 1 cd/A, respectively.

δ-Si structure could also be introduced into conjugated polymers to interrupt the
extended π-conjugation and achieve high values of ET. Cho et al. [30] studied two
novel types of PF copolymers containing siloxane linkages or distilbene moieties on
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their main chains (P6–P9, Fig. 7.2). More obvious blue shift of the peak in UV-
visible absorption profiles was observed for the polymers with a higher molar
percentage of siloxane linkages or distilbene moieties The blue shift of the maxi-
mum in the UV-visible absorption was greater in polymers with a higher molar
percentage of siloxane linkages or distilbene moieties than in homo poly(dihexyl-
fluorene) (PDHF). However, the PL spectra of the polymers were similar to those of
PDHF in terms of the onsets and patterns. The maximum EL emission wavelengths
of the polymers were at around 425–450 nm, corresponding to a pure blue light.
The Commission Internationale de L’ Eclairage (CIE) coordinates of the PFs
containing siloxane linkages or distilbene moieties ranged from (0.21, 0.21) to
(0.17, 0.10), indicating a deeper blue light than that of PDHF. PLEDs based on P8
with a structure of ITO/PEDOT:PSS/polymers/Ca/Al showed the maximum
external quantum efficiency (EQEmax) of 0.11 %. Koguchi et al. [31] developed a
series of poly[oligo(2,7-carbazolylene)-alt-diphenylsilylene]s by Suzuki couplings
(P10–P14, Fig. 7.2). The polymers consist of the conjugated units of dimer, trimer,
pentamer, heptamer, and nonamer of the N-[p-(2-ethylhexyloxy)phenyl]carbazole-
2,7-diyl and the connecting diphenylsilylene portion between the oligomer units.
The full width at half-maximum in PL spectra of these polymers in the solid state
became narrower as the conjugation length got longer. The HOMO and LUMO
energy levels of all of the polymers were located at about −5.6 and −2.6 eV,
respectively. PLEDs based on P12 and P13 with a structure of ITO/PEDOT:PSS/
copolymer/CsF/Al exhibited better performances with Lmax (>8000 cd/m2) and LE
(>0.5 cd/A) than PLEDs based on other poly(oligomer)s. A similar wide band-gap
polymer (P15, Fig. 7.2), derived from 3,6-carbazole and tetraphenylsilane, was used
as the host for green and blue emission phosphorescent materials [32]. The con-
jugation length of P15 was effectively confined because of the δ-Si interrupted
polymer backbone. The polymer exhibited a violet emission with a peak at 392 nm
in solution, and an optical band gap of 3.26 eV. The green and blue phosphorescent
PLEDs based on P15 with a structure of ITO/PEDOT:PSS/polymer:dopants/
(2,2′,2″-(1,3,5-benzenetriyl)-tris-(1-phenyl-1H- benzimidazole)) (TPBI)/LiF/Al
exhibited the LE of 27.6 and 3.4 cd/A, respectively. Jiang et al. [33] reported a
series of monosilylene-oligothienylene copolymers (P16–P19, Fig. 7.2). All the
resulting copolymers exhibited obvious red shifted absorption and PL spectra with
increasing the number of thienylene rings in the repeat units of their main chains.
When used in single-layer PLEDs, the turn-on voltages (Von) of the resulting
devices decreased with increase in the number of thienylene rings, which was
caused by the increase of charge carrier mobility and decrease of the bandgap as the
π-conjugation length increased.

Another strategy for conjugation length tuning is changing the connection ways
of the repeat units on the conjugated main chains. Fluorene, carbazole, silafluorene,
and dibenzothiophene-S,S-dioxide (SO) are popular building blocks for light-
emitting conjugated polymers. There are always two connection ways for these
units on the skeleton, the 2,7- or 3,6- linkage, except for SO units, which can be
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2,8- or 3,7-linkage. Generally, because of a reduction of conjugation in the 3,6- (or
2,8- for SO)—vs a 2,7- (or 3,7- for SO)—linkage in these units, the 3,6- (or 2,8- for
SO) based polymers exhibited a larger band gap and a higher ET. Both 2,7-fluorene-
based and 3,6-fluorene-based polymers are widely use as electroluminescent
materials. As the 3,6-fluorene-based polymers exhibited a larger band gap and a
higher ET, they are a good candidate for pure blue light-emitting devices and a good
host material for green and blue phosphorescent complexes [34–36]. Similar to 2,7-
fluorene, 2,7-carbazole-based polymers have longer effective conjugation lengths,
and the 3,6-carbazole-based polymers exhibit larger band gaps and higher ET than
the 2,7-carbazole-based polymers. Therefore 3,6-carbazole-based polymers are
suitable hosts for green iridium complexes [37, 38]. Polysilafluorene is a typical
wide band-gap conjugated polymer with low-lying LUMO. Silafluorene has a
chemical structure similar to that of fluorene, but because the silicon cannot be
oxidized to a ketone, the emission of polysilafluorene is much more stable than that
of PF, and no green emission band appeared even after prolonged heating in air.
Therefore, 2,7-silafluorene-based polymers could be used as blue or deep blue light-
emitting materials. As the silicon bridges could interrupt the through conjugation,
3,6-silafluorene-based polymers exhibit ultraviolet light emission. Incorporating
3,6-silafluorene with another unit, such as fluorene, could give a stable deep blue
emission [39–41]. Recently, Mo et al. [42] reported novel 3,6-silafluorene-based
copolymers (P20–P26, Fig. 7.2). They incorporated the monomer containing
vinylene, anthracene, and tri-arylamine moieties into the poly(3,6-silafluorene)
backbone and formed efficient deep-blue emitting copolymers with a EL efficiency
of 1.1–1.9 %. Those silicon-containing copolymers with tri-arylamine derivatives
had higher electroluminescent efficiencies than other 3,6-fluorene-based copoly-
mers. As the electron-withdrawing SO unit could effectively suppress the formation
of keto-defects, the SO unit become a novel building block for stable blue light-
emitting polymers. Recently, Liu et al. [43] reported a 3,7-SO-based polymer (P27,
Fig. 7.2). Blue PLEDs (ITO/PEDOT:PSS/polymer/Ba/Al) based on it showed a Von

of 4.8 V, a Lmax of 200 cd/m2, and a LE of 0.2 cd/A.
Having remarkable inherent properties such as intense fluorescence, strong π-

stacking, and good chemical stabilities, naphthalene-containing polymers have also
attracted attention as luminescent materials. Park et al. [44] developed a new blue
light-emitting polymer that alternated between fluorene and alkoxynaphthalene
structure (P28, Fig. 7.2). Because of steric interaction between the hydrogen at the
3-position of fluorene and the hexyloxy group at the 3-position of naphthalene, rigid
fluorene and naphthalene units were distorted with each other, and thus the main
chain would be distorted, resulting in a stable blue emission. The film PL spectrum
(peaking at 405 nm) of P28 was consistent with that of solution and the polymer did
not show any emission in the long wavelength region. The double-layered device
with an ITO/PEDOT/polymer/LiF/Al structure had a Von of about 5.4 V, a Lmax of
110 cd/m2, and a LE of 0.09 cd/A. The PLED generated pure blue EL emission
(λmax = 405 nm) with good CIE coordinates (0.15, 0.10).
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Tuning Charge Transporting Properties

It is well known that balanced transporting/injection of electrons and holes is
critical to achieving high performance PLEDs, and thus it is highly desirable to
obtain EL materials possessing excellent hole and electron transporting/injection
capabilities simultaneously. Electron-rich moieties with high-lying HOMO energy
levels could give a reduced hole injection barrier, and electron-deficient moieties
with low-lying LUMO energy levels could give a reduced electron injection barrier.
Consequently, these electron-rich and electron-deficient moieties are often intro-
duced into the EL polymers’ main chains to improve the resulting polymers’ hole
and electron transporting/injection capabilities [45, 46].

Pyridine and oxadiazole are two widely used electron-deficient moieties which
can improve the electron affinity of the resulting materials. Qi et al. [47] reported a
series of highly soluble copolymers p-/n-poly[(2,5-divinyl-3,4-dialkylthiophene)-
alt-2,6-pyridine] (P29, P30, Fig. 7.3) and poly[(2,5-divinyl-3,4-dialkylthiophene)-
alt-(2,5-diphenyl-1,3,4-oxadiazole)] (P31, P32, Fig. 7.3). The optical band gap
energy of these polymers was similar, ranging from 2.68 to 2.80 eV in solid films.
The electron affinities of these polymers range from 2.79 to 3.09 eV, which were
propitious to electron injection from the cathode. These novel copolymers presented
some EL performance in their single layer PLED with configuration of ITO/poly-
mer/Al, which showed Von between 4.0 and 5.8 V and emitted bright green-yellow
(538 nm) and yellow (545–552 nm) EL light. Gong et al. [48] developed an
ambipolar charge-transport semiconducting polymer containing both a hole-trans-
porting moiety triphenylaniline, and an electron-transporting moiety oxadiazole, in
the main chain (P33, Fig. 7.3). One hundred times enhanced LE was observed from
single layer PLEDs (ITO/PEDOT:PSS/polymers/Al) made by the polymer with
oxadiazole units compared with the PLEDs made by the polymer without oxadi-
azole units. This could effect an improvement in the charge balance of electrons and
holes inside this ambipolar polymer. The existence of 5,8-quinolinenevinylene units
in the polymer main chain could not only improve the electron-injection and
transport in the polymer, but also tune the color of the copolymer. Therefore, Liu
et al. [49] developed such a nitrogen-containing electroluminescent copolymer
(P34, Fig. 7.3) by Wittig–Horner polymerization. The absorption peaks of the
copolymer in solution and a thin film are at 490 and 516 nm and the PL emission
peaks in solution and thin film are at 571 and 629 nm, respectively. The HOMO and
LUMO of the polymer were −5.30 and −3.30 eV, respectively. PLEDs (configu-
ration: ITO/PEDOT:PSS/polymer/Ca/Al) based on P34 showed a very pure red
light emission with maximum peaks around 618 nm, and exhibited a Lmax of
188 cd/m2 with a LE of 0.01 cd/A. Zhu et al. [50] reported a series of blue light-
emitting copolymers based on 9,9′-dioctylfluorene and 2,2′-(1,4-phenylene)-bis
(benzimidazole) moieties (P35, P36, Fig. 7.3). The benzimidazole moiety in P35,
P36 could improve the electron-transport property of the copolymer. P35 emitted
blue light efficiently, with the quantum yield up to 99 % in chloroform. PLEDs
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based on P36 with the configuration of ITO/PEDOT:PSS/polymer/LiF/Al emitted
blue light with the maximum at 448 nm, and exhibited a Lmax of 1534 cd/m2 with
the LE and power efficiency (PE) of 0.67 cd/A and 0.20 lm/W, respectively.
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Carbazole and triphenylamine (TPA) are the most widely used hole transporting
moieties for EL polymers. Chen et al. [51] presented a stable blue-light-emitting
copolyfluorene (P37, Fig. 7.3) consisting of carbazole, oxadiazole, and charge
trapping anthracene groups. It was found that the hole-transporting carbazole and
electron-transporting oxadiazole units improved charge injection and transporting
properties of the resulting polymers, whereas the anthracene was the ultimate
emitting chromophore. In the film state, P37 showed a blue emission at 451 nm
attributed to the anthracene chromophore. PLEDs using P37 as the emitting layer
(ITO/PEDOT:PSS/polymer/Ca/Al) exhibited good performance with a LE of
5.1 cd/A) and a CIE coordinate of (0.16, 0.11). A carbazole and fluorene-based
random (P38, Fig. 7.3) and an alternating copolymer (P39, Fig. 7.3) were developed
for high-performance blue light-emitting polymers [52]. These copolymers absorb
light energy at about λmax 400 nm in the film state, and emit light at about λmax

430 nm in the thin film state. Energy gaps between their HOMO and LUMO are
about 2.9 eV. PLEDs (configuration: ITO/PEDOT:PSS/polymer/CsF/Al) based on
P38 showed notably higher performance with the Lmax of 31,200 cd/m2, and the
maximum LE (LEmax) of 1.68 cd/A. Mori et al. [53] reported a series of carbazole-
containing 1,5-disubstituted poly(2,6-naphthalene) derivatives, including a 2,6-
naphthalene homopolymer which had a carbazolyl side chain at 1,5-positions (P40,
Fig. 7.3), a random copolymer, and an alternating copolymer that consisted of 1,5-
dialkoxynaphthalene-2,6-diyl and N-phenylcarbazole-2,7-diyl (P41, P42, Fig. 7.3).
These polymers exhibited blue PL in the film states. PLEDs (configuration: ITO/
PEDOT:PSS/polymer/CsF/Al) based on these copolymers emitted blue-green to
green emissions with an EL λmax at around 490 nm. PLEDs fabricated with P41
exhibited the best performance, showing a Lmax of 8370 cd/m2 at 13 V and a LEmax

of 2.16 cd/A at 7 V. By introducing nonsymmetric and bulky aromatic groups at C-
9 position, a PF derivative (P43, Fig. 7.3) was developed as an efficient deep blue-
emitting materials [54]. With a configuration of ITO/PEDOT:PSS/poly(fluorene-co-
triphenylamine) (PFO-TPA)/polymer/Cs2CO3/Al, PLEDs with P43 as the EML,
PFO-TPA derivative as the hole-injection/transporting layer exhibited a deep blue
emission centered at 430–450 nm with the CIE chromaticity coordinate of (0.15,
0.14), a Lmax of 35,054.2 cd/m2 and a LE of 14.0 cd/A (at 2975.0 cd/m2). Jiang
et al. [55] reported a series of novel aryl-bridged TPA alternating copolymers, 7-
tert-butyl-5,5,9,9-tetraaryl-13b-aza-naphtho[3,2,1-de]anthracene/dihexylfluorene
P44 and TPA/dihexylfluorene P45 (Fig. 7.3). The HOMO energy levels of the two
polymers were very close (−5.15 eV for P44 and −5.13 eV for P45). The maximum
absorption peak of P44 was 398 nm in film, which was red shifted by 21 nm with
respect to P45. Because of the well-matching HOMO energy level of the polymers
with ITO and its good hole-transporting properties which were endowed by the
incorporation with the TPA unit, the device configuration could be fabricated
without using PEDOT:PSS as the hole injection layer. PLED with a simple con-
figuration of ITO/P44/tetranaphthalen-2-yl-silane/Alq3/Al emitted a blue light with
emission peak at 436 nm, and exhibited a LEmax of 1.89 cd/A and a Lmax of
4183 cd/m2, which was superior to the device with P45 as EML under the identical
condition. P46–P50 (Fig. 7.3) were a series of blue-light-emitting conjugated
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polymers containing TFA as a building block [56]. The emission color could be
effectively tuned in the region of deep-blue and light-blue by introducing various
substituents onto the TFA unit as the pendants. Because of the high-lying HOMO,
energy levels of the trifluoren-2-yl-amine (TFA) unit could give a reduced hole
injection barrier, PLEDs based on P48 (structure: ITO/PEDOT:PSS/polymers/
TPBI/CsF/Al) showed a LEmax of 2.44 cd/A, corresponding to an EQEmax of
3.00 %, with a CIE coordinate of (0.16, 0.12). Harkema et al. [57] carried out a
study of PLEDs based on blue-emitting fluorene polymers containing various hole-
transporting units. Ten polymers containing a systematically varied amount of two
different (benzidine-based and phenoxazine-based) aromatic amine comonomers
(P51, Fig. 7.3) were developed. It was found that, with decreasing hole mobility,
EQEmax increased and the peak voltage decreased. They explained this voltage
dependence of the efficiency from a drift–diffusion device model [58].

N-Hexylphenotiazine is another type of electron-rich moiety which could
enhance the hole transporting/injection of the resulting EL polymers. Park et al.
[59] reported an alternating copolymer composed of bis-(4-octyloxyphenyl)fluorene
and bis((3-hexyloxy-3-ethyl)oxetane) fluorene P52, and a polymer composed of the
above two monomers with N-hexylphenotiazine P53 (Fig. 7.3). These polymers
would become insoluble after UV irradiation in the presence of a proper photo-acid
generator. PLEDs (configuration: ITO/PEDOT:PSS/polymer/LiF/Al) using the
photo-cross-linked polymer films also showed lower operating voltages than the
devices using the corresponding polymer films without cross-link. Moreover,
PLEDs based on P52 with photo-cross-link showed the best device performances
with a Lmax of 4750 cd/m2 and a LE of 0.68 cd/A, respectively. Furthermore, Kim
et al. [60] developed poly[10-(4′-octyloxyphenyl)-phenothiazine-3,7-diyl] P54,
poly[9,9-bis(4′-octyloxyphenyl) fluorene-2,7-diyl] P55, and their random copoly-
mers P56 (Fig. 7.3). PLEDs (configuration: ITO/PEDOT:PSS/polymer/Ca/Al)
constructed with homopolymers P54 or P55 exhibited poor device performance,
whereas the device based on the random copolymer P56 exhibited much higher PE
and brightness. This enhanced efficiency of the copolymer devices resulted from the
improved hole injection and much better charge carrier balance. To improve the
electron injection/transporting ability, electronegative 1,2,4-triazole group was
introduced into an N-hexylphenotiazine-based polymer (P57, Fig. 7.3) [61]. The PL
maximum wavelength, the band gap energy, and the HOMO energy level of P57
film were 509 nm, 2.67, and −5.06 eV, respectively. The LEmax and Lmax of the
PLEDs based on P57 were 0.247 cd/A and 771 cd/m2, respectively.

7.2.2.2 Side-Chain Tuning

Tuning Solubility and Intermolecular Interaction

Good solubility of conjugated polymers is a crucial premise for their solution-
processable application. To increase the solubility of luminescent conjugated
polymers, solubilizing side chains (such as long alkyl chains or bulky substituent
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groups) are usually introduced to their rigid backbones. Besides the improved
solubility, it was found that the introduced side chains have multiple effects on the
resulting polymers, including improving their thermal properties, impeding inter-
molecular aggregation, depressing PL quenching, and enhancing PL quantum
efficiency, etc. [62].

Saikia et al. [63] synthesized a series of PPP derivatives (P58, Fig. 7.4) with high
molecular weights. It was found that the introduction of alkoxy side chains not only
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improved the solubility of polymers in organic solvents but also affected their optical
properties. Because of crystallization, simple, single-layer PLEDs made with neat
polymers exhibited high threshold voltages from 8 × 105 to 2.5 × 106 V/cm and
enhanced emission at the second peak around 480 nm. Kim et al. [64] studied a new
series of conjugated polymers having diphenylanthracene vinylene biphenylene and
diphenylanthracene vinylene terphenylene in the main chain and fluorene as the
pendant group (P59, P60, Fig. 7.4). The introduced bulky fluorene pendant groups
could not only enhance solubility of the resulting polymer, but also shorten the
effective conjugation length of the backbone because of steric hindrance. These
polymers showed blue emission (λmax 461 nm for P59 and λmax 455 nm for P60)
when excited by UV light. PLEDs with the structure ITO/PEDOT:PSS/P60/LiF/Al
exhibited a Von of about 5.8 V, a Lmax of 152 cd/m2, and an electroluminescent
efficiency of 0.143 lm/W.

The incorporation of bulky side functional groups into PFs, in particular the
attachment of bulky aromatic substituents at the 9-position of fluorene, has been
reported to be an effective way to improve the PFs derivatives’ device performance
[65]. Recently, Jin et al. [66] reported a series of highly efficient and pure blue-
emitting PF-type polymers (P61–P66, Fig. 7.4) which contained 9,9-di(9,9-di-
hexylfluoren-2-yl)fluorene and 9-(9,9-dihexylfluoren-2-yl)-9-(3,4-di(2-methyl)bu-
tyloxyphenyl)fluorene units. It was found that these bulky aromatic side chains
could effectively suppress interchain interactions of PFs. As a result, these polymers
exhibited good PL characteristics as a blue-light-emitting polymer and showed
highly enhanced color integrity and color stability against oxidative conditions.
When N4,N4′-bis(4-methoxyphenyl)-N4,N4′-diphenylbiphenyl-4,4′-diamine was
incorporated into the polymer backbone, the polymer exhibited a good EL per-
formance with a LE of 4.12 cd/A and a CIE coordinate of (0.15, 0.15) in the device
with the structure of ITO/PEDOT:PSS/polymer/LiF/Al.

Constructing conjugated polymers with larger spiro-units which stretch out to
prevent further inter-chain interaction could enhance the spectral stability in PLEDs
[67]. Wang et al. [68] prepared conjugated polymers (P67–P68, Fig. 7.4) based on
naphthalene-containing spirofluorene units and 9,9-dioctylfluorene, 2,5-dioctylbe-
zene. These two polymers showed good blue emission both in solution and thin
film. The white PLEDs by using P67 as the host material, containing two typical
phosphorescent Ir complex dopants, green emitter Ir(mppy)3 and red emitter Ir
(piq)2, were fabricated. The LEmax and Lmax of these devices were determined to be
2.8 cd/A and 13,500 cd/m2 at 11.2 V, respectively. The color coordinate CIE stayed
nearly constant, changing from (0.32, 0.31) to (0.28, 0.31) when the current density
varied from 2 to 20 mA/cm2.

Tuning Charge Transporting/Injection Properties

The charge transporting/injection properties of the conjugated polymers can also be
tuned through side chain modification. A typical example is so-called water/alcohol
soluble conjugated polymers (WSCPs), which have been widely used as ETL in
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PLEDs. It was found that the pendant highly polar side chains among WSCPs
endow them with not only good solubility in highly polar solvents but also a unique
electron-injection ability from high work-function metal cathodes, because of the
dipole interaction at the interface [69]. Hence, these WSCPs can be used as active
layer in PLEDs with stable high work-function metals (such as Al, Ag, Au) as
cathode [70].

Recently, Shi et al. [71] reported a series of novel cationic conjugated poly-
electrolytes with alternating TPA and fluorene as backbones and attached by
ammonium (amino)alkyl side chains (P69–P72, Fig. 7.5). Both the hole and the
electron injection capabilities of these polymers were improved because of the
simultaneous introduction of the TPA segment and the aminoalkyl (ammonium)
group. PLEDs based on these polymers (ITO/PEDOT (or poly(9-vinylcarbazole)
(PVK))/polymer/Al (or Ba/Al)) showed a Lmax of 1194 cd/m2 and a EQEmax of
0.61 %, respectively. Liu et al. [72] synthesized a series of blue, green, and red-
emitting aminoalkyl functionalized PF derivatives (P73–P84, Fig. 7.5) containing
SO, benzothiadiazole (BT), and thiophene-BT-thiophene (DTBT) as chromophores,
respectively. It was found that the variation of molar ratio of aminoalkyl functional
groups did not significantly influence thermal stability, UV-vis absorption, PL, or
electrochemical properties of copolymers. The application of the resulting amino-
alkyl functionalized copolymers in PLEDs exhibited dual-function including effi-
cient light-emission and electron injection from Al cathode. The increase of molar
ratio of aminoalkyl side groups leads to enhanced device performances for both
green- and red-emitting copolymers. Yu et al. [73] developed a WSCP containing
pendant crown ether moieties (P85, Fig. 7.5). In the film state, its PL spectrum
(peaking at 430 and 452 nm) showed a noticeable red shift relative to that of poly
(9,9-dihexylfluorene) (peaking at 423 and 448 nm). The HOMO and LUMO levels
of P85 were estimated to be 5.68 and 2.65 eV, respectively. PLEDs based on P85
(ITO/PEDOT:PSS/P85/Ca/Al) exhibited higher Lmax (7910 cd/m2) and LEmax

(2.3 cd/A) than those of PF devices (860 cd/m2, 0.29 cd/A). Moreover, inserting a
P85 layer between the PF emitting layer and the calcium cathode led to a reduced
Von and an enhanced device performance.

Similar to the strategy used in main chain tuning, the electron-rich hole-trans-
porting and electron-deficient electron-transporting moieties can be introduced to the
conjugated polymers’ side chains to enhance their charge transporting capability,
where the resulting bulky side chains can also suppress the interchain aggregation of
the resulting polymers [74]. Recently, Lin et al. [75] developed a novel blue light-
emitting PF-based copolymer (P86, Fig. 7.5) containing electron-rich TPA and
electron-deficient phenylquinoline side chains in the C-9 position of the fluorene
unit. PLEDs based on this polymer (configuration: ITO/PEDOT:PSS/polymer
(70 %) + 2-(4-tert-butylphenyl)-5-(4-biphenylyl)-1,3,4-oxadiazole (PBD) (30 %)/
1,3,5-tris(N-phenylbenzimidizol-2-yl)benzene (TPBI)/LiF/Al) exhibited a main EL
emission peak at 428 nm with two shoulder peaks at 452 and 484 nm, and showed a
Lmax of 2367 cd/m

2 and a LEmax of 1.02 cd/A. Lin et al. [76] also prepared a similar
bipolar conjugated PF copolymer with TPA and cyanophenylfluorene as side chains
(P87, Fig. 7.5). The HOMO and LUMO energy levels of the polymer were
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electrochemically estimated as −5.68 and −2.80 eV, respectively. PLEDs based on
this polymer (configuration: ITO/PEDOT:PSS/polymer/CsF/Ca/Al) exhibited a
deep-blue emission, and showed a Von of 4.2 V, a Lmax of 1189 cd m2, and a LE of
0.72 cd/A. Furthermore, a bipolar unit consisting of electron-transporting aromatic
1,2,4-triazole directly linked with hole-transporting TPA was introduced into the
polymer (P88–P90, Fig. 7.5) as pedant groups [77], and the resulting polymers were
blended with MEH-PPV as the emission layer in PLEDs. The resulting device
(configuration: ITO/PEDOT:PSS/polymer + MEH-PPV/Ca/Al) based on P90
exhibited the best performance with a Lmax of 11,090 cd/m2 and a LE of 0.56 cd/A
(ca. 0.4 wt% of bipolar residue).

When side chains are attached laterally to the gravity centers of the main chain
without spacers, the main chains of polymers are forced to extend and to conform
rigidly because of the high population of both bulky and rigid side groups around
the backbone, and the “jacket’’ is formed [78]. Therefore, jacketed derivatives with
electron-deficient side-chain building blocks could suppress the long wavelength
emission and improve the luminescent efficiencies of PF. Following this theory,
Wang et al. [79] reported a series of new copolymers (P91–P97, Fig. 7.5) com-
prised of 9,9-dioctylfluorene and jacketed units 2,5-bis[(5-octyloxy-phenyl)-1,3,4-
oxadiazole]-1-(3,5-dibromophenyl)-benzene. PLEDs (configuration: ITO/PEDOT:
PSS/polymer/Ca/Ag, ITO/PEDOT:PSS/polymer/TPBI/Mg:Ag(10:1, wt)/Ag, and
ITO/PEDOT:PSS/PVK/polymer/TPBI/Ca/Ag) based on these polymers exhibited
pure blue EL emissions. P96- and P97-based devices showed a Lmax of 5097.8 and
3122.8 cd/m2, a LE of 0.484 and 0.416 cd/A, respectively. Yang et al. [80]
developed a series of similar copolymers (P98–P102, Fig. 7.5) based on 3-{2,5-bis
[(4-hexadecyloxy-phenyl)-1,3,4-oxadiazole]phenyl}-2,5-dibromothiophene. The
HOMO and LUMO energy levels of the resulting polymers were both lower than
those of PF, which resulted in better electron injection and transport but still good
blue-green emission. PLEDs based on P99 (configuration: ITO/PEDOT-PSS/
polymer/Ca/Al) exhibited the best device performance, with a Lmax of 5558 cd/m2

and a LE of 0.39 cd/A.
Electron-rich carbazole side chains are also widely used to enhance hole trans-

porting ability of light-emitting polymers in PLEDs. Lin et al. [81] reported two new
blue light-emitting polymers (Fig. 7.5), poly{[2,5-bis(4-phenylene)-1,3,4-oxadiaz-
ole]-[9,9-dihexylfluorene-2,7-diyl]-[N-(4-(9H-carbazol-9-yl)phenyl)-N,N-bis(p-
phenylene)aniline]} (P103) and poly{[2,5-bis(4-phenylene)-1,3,4-oxadiazole]-[9,9-
dihexylfluorene-2,7-diyl]-[4-(3,6-(di-9H-carbazol-9-yl)-9H-carbazol-9-yl)-N,N-bis
(p-phenylene)-aniline]} (P104). PLEDs (configuration: ITO/PEDOT:PSS/polymer/
TPBi/LiF/Al) based on P104 displayed a stable blue emission having color coor-
dinate of (0.15, 0.20), a Lmax of 4762 cd/m

2, and a LEmax of 1.79 cd/A. By using this
polymer as the host material doped with 1 wt% 4,4′-bis[2-(4-(N,N-diphenylamino)
phenyl)vinyl]biphenyl, the achieved Lmax, LEmax and maximum PE of the resulting
device were 13,613 cd/m2, 3.38 cd/A, and 1.84 lm/W, respectively. Lin et al. [82]
reported a series of novel blue light-emitting copolymers (P105–P107, Fig. 7.5),
composed of different ratios of electron-withdrawing segments (spirobifluorene
substituted with cyanophenyl groups) and electron-donating segments (carbazole-
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TPAs). Incorporation of the rigid spirobifluorene units substituted with cyanophenyl
groups into the polymer backbone improved not only the thermal stabilities but also
the PL efficiencies of the resulting polymers. PLEDs based on these polymers
(configuration: ITO/PEDOT:PSS/polymers:PBD/CsF/Ca/Al) showed the best per-
formance when P106 was used as the active layer, with the lowest Von of 3.1 V, the
highest Lmax of 6369 cd/m2, and the highest LE of 1.97 cd/A.

By introducing the carbazole pendant groups, new polyfluorenevinylenes, P108–
P110 (Fig. 7.6) with cyano-substituted vinylene units had been synthesized by Song
et al. [83] The EL emission maxima of the polymers appeared at around 496–
504 nm. PLEDs (configuration: ITO/PEDOT:PSS/polymer/Ca/Al) based on P109
exhibited a Lmax of 1724 cd/m2 and a LEmax of 0.18 cd/A. Peng et al. [84] reported
a series of new PFs with dendritic functional carbazole and oxazole side chains
(P111–P113, Fig. 7.6). With the steric hindrance of dendritic functional carbazole
and oxazole units, the PL and EL emission color quality was improved because of
the lower aggregate of the main chains. Huang et al. [85] designed a series of highly
efficient electroluminescent polymers (P114–P121, Fig. 7.6) by introducing mul-
tiple charge transport moieties into spiro-PF for efficient charge injection. The TPA
and carbazole units were integrated in the same side chain of spiro-PF for more
efficient hole injection and the electron transport moiety with an electron-accepting
unit triazole was introduced to enhance the electron injection. Deep blue PLEDs
(configuration: ITO/Al/polymer/CsF/Al) based on these polymers exhibited a
EQEmax of 7.28 %. A series of new 9,10-diphenylanthracene-based, 2,6-linked
blue-light-emitting copolymers (P122–P127, Fig. 7.6) bearing hole- or electron-
transporters as well as bulky substituents were reported by Chen et al. [86]. Among
all the copolymers, P125 exhibited a balanced hole/electron injection/transporting
capability because of the substituted electron-transporting oxadiazole units. As a
result, the PLED based on P125 showed a very mild efficiency roll-off: only
0.13 cd/A LE drops from current densities of 10–100 mA/cm2, corresponding to EL
brightness of 169–1558 cd/m2.

Dong et al. [87] synthesized a series of 9,9-dioctylfluorene-alt-benzothiadiazole
(FOBT)-based copolymers (P128–P131, Fig. 7.6) with carbazole substituted side
chains. The ratios of fluorene and BT units in polymers were adjusted to balance the
electron and hole transport, and it was found that P130 exhibited 13 times higher
LEmax (10.8 cd/A) than PFOBT (0.8 cd/A) in a double-layered device (configura-
tion: ITO/PEDOT: PSS/polymer/TPBI/CsF/Al). Moreover, the carbazole unit was
found to be a highly electroactive group with a relatively low oxidation potential.
By using the novel multifunctional conjugated polymer precursor (P132, Fig. 7.6)
as electrochemical deposition precursor, Gu et al. [88] showed for the first time that
cross-linked polymer electrochemical deposition films exhibit high quality and
good device performance. This is a breakthrough for cross-linking conjugated
polymers from uncontrollable to controllable preparation. PLEDs (configuration:
ITO/electrochemical deposition film/TPBi/LiF)/Al) based on it exhibited a LE of
3.8 cd/A.

The cyano group with high electron affinity could modulate the electron affinity
of the π-conjugated system and balance the charge transport. The introduction of a
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peripheral CN group could enhance the electron injection property of the polymer,
and does not affect the energy gap. Following this strategy, Hu et al. [89] reported a
novel blue phosphor host (P133, Fig. 7.6) using 3,6-linked carbazole with a δ-π
tetraphenylsilane segment as the main chain modified by a peripheral cyanohexyl
group, where the backbone provided the polymer with wide bandgap, high ET, and
good hole-transporting ability. PLEDs (configuration: ITO/PEDOT:PSS/polymer:
iridium(III) bis(4,6-(difluorophenyl)pyridinato-N,C2)picolinate (FIrpic) (8 wt%)/
TPBi/LiF/Al), using P133 as the host for blue iridium complex FIrpic, exhibited a
LEmax of 15 cd/A and a EQEmax of 6.7 %, respectively.

To achieve a high ET and good hole transport/injection host for phosphorescent
materials, Liu et al. [90] developed a novel conjugated polymer (P134, Fig. 7.6) by
attaching carbazole unit to poly(m-phenylene) backbone. An ET as high as 2.64 eV
was achieved and this was the first conjugated polymer with ET higher than that of
state-of-the-art blue phosphorescent dopant, FIrpic. Because of the high ET and good
miscibility, blends of P134 with FIrpic showed no triplet energy back-transfer and
exhibited emission exclusively from FIrpic, even at FIrpic concentrations as low as
1 wt%. Single-layer blue phosphorescent PLEDs (structure: ITO/PEDOT:PSS/
polymer:dopants/CsF/Al) based on the blend exhibited a LE of 4.69 cd/A.
Furthermore, Liu et al. [91] reported a poly(m-phenylene) derivative (P135, Fig. 7.6)
tethering TPA unit. The poly(m-phenylene) backbone endowed P135 with an ET as
high as 2.65 eV, which was sufficiently high to prevent triplet energy back transfer.
As a result, the blue phosphorescent PLEDs (structure: ITO/PEDOT:PSS/polymer:
FIrpic/2,2′-(1,3-phenylene)bis[5-(4-tert-butylphenyl)-1,3,4-oxadiazole] (OXD-7)/
CsF/Al) based on P135 showed a LE of 17.9 cd/A and an EQEmax of 9.3 %. The
white phosphorescent PLEDs based on P135 showed a LE of 22.1 cd/A and an
EQEmax of 10.6 %.

7.3 Luminescent Polymers Based on Dopant/Host System

In most cases, blue-emitting homopolymers have a large band gap and emit pure
blue emission in solution and thin films when excited by UV light. However, when
used in PLEDs, they always exhibited poor color stability and low EL efficiency
because of aggregate/excimer or defect formation [18, 21]. Despite their poor
device performance, these large band gap blue emitters can be developed into high
efficiency EML materials by using dopant-host strategy. It was found that by
incorporating small amounts of narrow band gap units (dopants) into the blue
emitting homopolymers’ (hosts) main chain or side chain, the resulting materials’
device performance can be greatly improved because of charge trapping and energy
transfer mechanisms. Moreover, in these systems, the dopant is covalently con-
nected with the hosts to realize molecular dispersion of the dopant and avoid phase
separation. This results in good color stability, which is an obvious advantage
compared to the homopolymers. In this way, high-efficiency green-, red-, and blue-
emitting polymers have been achieved [92–94]. Later on, phosphorescent
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complexes were also introduced to polymers’ main chain or side chain as dopants to
enhance further the resulting materials’ EL efficiencies [95]. Another obvious
advantage of dopant-host copolymer design is that the emission color and device
performance can easily be tuned by choosing different dopants or controlling their
ratios, without complicated synthesis procedures [96]. Such fine-tuning strategy
could also be used in developing high performance white emission polymers for
potential applications in solid-state lighting [97].

7.3.1 Electrofluorescent Polymers

7.3.1.1 Polymers with Dopants in the Main Chains

Red pigment diketopyrrolopyrrole (DPP) derivatives have attracted much attention
because of their excellent photostability, high quantum yield of fluorescence, and
potential applications for PLEDs. Qiao et al. [98] reported high efficiency red
polymers (P136–P140, Fig. 7.7) via introducing DPP into host polymer main chain
as acceptor. Only very few DPP units (0.2 %) were needed to quench completely
the emission from fluorene segments in the copolymers because of the efficient
energy transfer from fluorene to exciton trapping on the narrow band gap DPP sites.
Emission colors of PLEDs changed from orange to red, and the EL peaks were
gradually red-shifted from 582 to 600 nm with increase of DPP content in polymer
chains. The best EL performance (EQEmax of 0.25 % and Lmax of 259 cd/m2) was
achieved when P140 was used as EML in PLED with an ITO/PEDOT:PSS/PVK/
polymer/Ba/Al structure. Because BT and DTBT moieties have smaller gaps than
PF, the excitation energy on the fluorene segments can be transferred to BT and
DTBT units efficiently. By incorporating BT, DTBT moieties into cross-linkable
polymer main chains, the polymers (P141–P143, Fig. 7.7) emitted blue, green, and
red light, respectively [99]. A double-layer device with an ITO/PEDOT/polymer/
Ca/Al structure by using P141–P143 as the EML showed good performance.
Moreover, a white-light-emitting device with a CIE coordinate of (0.34, 0.33) was
achieved by blending P142–P143 into a host material P142 as EML. Liao et al.
[100] and Su et al. [101] synthesized copolymers (P144–P153, Fig. 7.7) slightly
doped with a small amount of green chromophore 2,5-dihexyloxy-1,4-bis(2-phenyl-
2-cyanovinyl)benzene or 2,5-bis(2-phenyl-2-cyanovinyl)thiophene. The intensity of
green emission increases significantly with increasing doped chromophore content,
indicating the efficient energy transfer from the fluorene segments to the green
chromophores. The performance of the PLEDs with an ITO/PEDOT:PSS/polymer/
Ca/Al structure was improved with increased chromophore content in emitting
copolyfluorenes, i.e., the P148-based PLED showed the best performance with a
Lmax of 6790 cd/m2 and a LEmax of 1.69 cd/A. Moreover, PLED was successfully
fabricated by blending P146 with 0.1 wt% of red phosphor [Ir(piq)2(acac)], with the
Lmax and a CIE coordinate being 4120 cd/m2 and (0.31, 0.28), respectively.
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Diblock copolymers (P154–P155, Fig. 7.7) [102], where the emission of PFO-
TPA block overlaps very well with the absorption of PFOBT block, allowing
efficient both intra- and inter-chain energy transfer processes, were developed to
improve the stability and the efficiency of PLEDs. It was found that the two blocks
showed different morphological and structural properties. PFO-TPA showed a
stable amorphous phase, whereas the PFOBT phase exhibited a noticeable degree
of order. After thermal annealing, the P155 based PLED device exhibited good
device performance with an EQEmax of 5.5 %, a Lmax above 50,000 cd/m2, a LEmax

of 22.5 cd/A, and a CIE coordinate of (0.36; 0.59) in the structure of ITO/PEDOT:
PSS/PVK/polymer/Ba/Al. By introducing electron-withdrawing fluorenone units,
both LUMO and HOMO levels of poly(fluorene-co-fluorenone)s (P156–P159,
Fig. 7.7) were slightly lowered with the increase in fluorenone contents [103]. Their
PL spectra in film were mainly originated from fluorenone chromophores because
of the efficient energy transfer from the fluorene to fluorenone segments. The
performances of the PLEDs with an ITO/PEDOT:PSS/polymer/Ca/Al structure
were significantly enhanced depending on the contents of fluorenone. The Lmax and
LEmax were 4400 cd/m2 and 1.52 cd/A for P159-based devices.

Fluorene-based conjugated copolymers (P160–P161, Fig. 7.7) contained both
the electron-rich TPA groups and electron-deficient 1,2,4-triazole groups [104]. A
small number of BT units were introduced as the emission centre and the energy
transfer efficiency from fluorene segment to low bandgap BT unit increased sig-
nificantly with the increase of BT content. The P161-based PLED with a structure
of ITO/PEDOT:PSS/polymer/Ca/Al showed emission peak at 542 nm with a CIE
coordinate of (0.345, 0.625), a low Von of 5 V, a Lmax of 696 cd/m2, and a LEmax of
2.02 cd/A. By introducing a directly linked hole transporting TPA and electron
transporting aromatic 1,2,4-triazole segment into a PPV derivative’s (P165) skel-
eton, Wu et al. [105] synthesized two bipolar copolymers (P163–P164, Fig. 7.7).
By blending P163, P164 with P165 as an EML, the PLEDs’ (structure: ITO/
PEDOT:PSS/polymer blend/Ca/Al) emission efficiency was effectively improved.
The Lmax and LEmax were significantly enhanced from 310 cd/m2 and 0.03 cd/A
(EML: P165) to 1450 cd/m2 and 0.20 cd/A (EML: P165/P163), respectively. Wang
et al. [106] designed three conjugated polymers (P166–P168, Fig. 7.7) with elec-
tron-deficient main chains and electron-donating pendant groups. The incorporation
of BT into P168 reduced the coplanarity of the conjugated polymer, which pro-
hibited the polymer from aggregation. Because of a good charge balance, PLEDs
with an ITO/PEDOT:PSS/P168/Ca/Ag structure exhibited a LEmax as high as
2.60 cd/A.

In most cases, those blue-emitting homopolymers (such as PFs, PCZs. etc.) have
a large band gap and emit pure blue light in solution and thin films when excited by
UV light, whereas they always exhibit poor color stability and low EL efficiency in
PLED devices because of the aggregate/excimer or defect formation [18, 21].
Dopant-host strategy has also been successfully employed to solve these problems
and achieve high efficiency blue-emitting polymers.
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Liu et al. [107] reported spectrally stable blue-light-emitting PFs with high
efficiencies via introducing SO isomer (3,7-diyl or 2,8-diyl) into P169–P176’s
(Fig. 7.7) main chain because of their excellent electron-transporting properties,
good electron affinity, and high fluorescence efficiency. By introducing SO isomer
into PF backbone, the spectral stability and efficiency of the blue-emitting PFs are
significantly improved. Furthermore, green emission, which was usually associated
with excimer/aggregation or defects, was absent in PL and EL spectra. PLED with
an ITO/PEDOT:PSS/PVK/P173/Ba/Al structure exhibited the best performance
with a LEmax of 6.0 cd/A, an EQEmax of 5.5 %, and a CIE coordinate of (0.16,
0.19). To improve further the solubility of the SO-based blue-light-emitting poly-
mers, the 2,8-dioctyldibenzothiophene-S,S-dioxide (DOSO) was introduced into the
P177–P180’s (Fig. 7.7) backbone [43]. The optical band gap increased from 2.95 to
3.20 eV as the content of DOSO unit increased. The EL spectra of the resulting
polymers showed a CIE coordinate around (0.16, 0.07), independent of the ratio of
DOSO units in the polymers, because of the efficent internal charge transfer. A high
efficiency PLED (configuration: ITO/PEDOT:PSS/P178/Ba/Al) with a LEmax of
3.1 cd/A and an EQEmax of 3.9 % was obtained.

Li et al. [108] also synthesized a series of SO-containing PFs (P181–P188,
Fig. 7.7). PLEDs with an ITO/PEDOT:PSS/polymer/Ba/Al structure based on P181
and P188 showed a EQEmax of 3.6 %, a LEmax of 3.7 cd/A with a CIE coordinate of
(0.16, 0.07), and a EQEmax of 3.8 %, a LEmax of 4.6 cd/A with a CIE coordinate of
(0.15, 0.12), respectively. In other research work, King et al. [109] found that when
the SO unit contents increased to 30 %, these copolymers display broad emission,
observed as greenish-white light, which arises from dual fluorescence, viz. both
local excited states and charge transfer states.

By introducing dinaphtho-s-indacene into a PF host, Guo et al. [110] developed
a series of spectrally stable blue-light-emitting copolymers (P189–P194, Fig. 7.7) as
the guest for energy transfer. High efficiency, good color stability, and purity of
results were achieved because of the formation of low energy segments in the main
chain. The best device performance with a LEmax of 3.43 cd/A, a Lmax of 6539 cd/
m2, and a CIE coordinate of (0.152, 0.164) was achieved for P191-based PLED
with an ITO/PEDOT:PSS/polymer/poly(9,9-bis(diethoxylphosphorylhexyl)fluo-
rene) (PF-EP)/Al structure.

Lee et al. [111] developed a series of novel fluorene-based copolymers (P195–
P197, Fig. 7.7) containing ambipolar moieties, such as 10-n-hexylphenothiazine or
2-(2,6-bis-2-(5-(cyanomethyl)thiophen-2-yl)vinyl)-4H-pyran-4-ylidene)malononit-
rile (DCM). These ambipolar moieties could prompt the formation of the β-phase
along the polymer chain. PLEDs based on the β-phase PF copolymers P195 and
P196 exhibited a deep blue emission which originated from an energy transfer from
the amorphous matrix to the β-phase and a weaker long-wavelength tail. As an
increasing fraction of the DCM units in P197, an additional peak which appeared at
606 nm was observed. The PLED with an ITO/PEDOT:PSS/polymer/Ca/Al
structure based on P195 exhibited a greater LEmax of 0.74 cd/A and an improved
Lmax of 1900 cd/m2 relative to the devices containing PF.
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7.3.1.2 Polymers with Dopants in the Side Chains

An alternative approach to design high efficiency EL polymers of dopant/host
system with molecular dispersion features is to attach covalently small amounts of
dopant units to the side chains of the polymer host. Zhou et al. [112] synthesized a
series of red EL polymers (P198–P200, Fig. 7.8) by using PF as blue host and BT
derivatives with different emission wavelengths as red dopants on the side chains.
By introduction of an ethanol soluble polymer PF-EP as the ETL, PLEDs with an
ITO/PEDOT:PSS/polymer/PF-EP/LiF/Al structure showed a pure red emission at
624 nm with a LEmax of 5.50 cd/A and a CIE coordinate of (0.62, 0.35) for P198, a
saturated red emission at 636 nm with a LEmax of 3.10 cd/A, and a CIE coordinate
of (0.63, 0.33) for P199, respectively [113]. By attaching small amounts of highly
efficient red emission D-A-D-type 2,1,3-benzoselenadiazole and 2,1,3-naphthothi-
adiazole derivatives to the side chains of PF hosts (P201–P204, Fig. 7.8), complete
energy transfer from the PF host to the red dopants occurred [114]. The EL spectra
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of the resulting polymers showed predominantly a red emission, attributed to the
dopants. Among all the polymers, P204 exhibited the best device performance in
the PLED with the structure of ITO/PEDOT:PSS/polymer/Ca/Al and showed a pure
red emission with a peak at 632 nm, a LEmax of 3.04 cd/A, and a CIE coordinate of
(0.63, 0.35).

The emission spectra of novel arylene ether polymers (P205–P209, Fig. 7.8)
containing both pentafluorene (5F) and distyrylarylene derivative (BCzVF) units in
the side chains indicated that color tuning could be achieved through efficient
Förster energy transfer from the deep-blue emssion 5F host to the pure-blue
emission BCzVF dopant [115]. Single-layer PLEDs with an ITO/PEDOT:PSS/
polymer/Ca/Al structure based on P207 exhibited a voltage-independent and stable
pure blue emission with a CIE coordinate of (0.15, 0.15), a Lmax of 3576 cd/m

2, and
a LEmax of 2.15 cd/A.

Park et al. [116] designed a series of new fluorene-based copolymers (P210–
P214, Fig. 7.8) with varying molar ratios of the low band gap comonomer 2{3-
vinyl)-2,5-bisoctyloxyphenyl]vinyl}-5,5-dimethyl-cyclohex-2-enylidene)malono-
nitrile (BTBM). All the coplolymers exhibited both red PL and EL emissions
produced by the efficient energy transfer between the blue-light-emitting fluorene
segments and the orange-light-emitting BTBM units. The P212-based PLED with
an ITO/PEDOT:PSS/polymer/bis(2-methyl-8-quinolinolato-N1,O8)-(1,1′-biphenyl-
4-olato)aluminum/LiF/Al structure showed the best performance with a Lmax of
510 cd/m2 and a LEmax of 0.57 cd/A.

Conjugated PF derivatives (P215–P219, Fig. 7.8) were comprised of electron-
donating TPA based backbone and electron-accepting quinoxaline based pendant
groups [117]. These copolymers’ PL spectra displayed a significant red-shift rela-
tive to that of P220 and P221, and peaked in the range of 475–510 nm. The
disappearance of the emission bands at *423 nm indicated that the efficient
energy-transfer happened between the fluorene segment and D-A moiety. PLEDs
with an ITO/PEDOT:PSS/polymer/Ba/Al structure exhibited superior performance
compared to that of corresponding P220- and P221-based PLEDs.

7.3.2 Electrophosphorescent Polymers

Electrophosphorescence materials, especially heavy-metal complexes, have attrac-
ted much attention recently because they can make full use of both singlet and
triplet excitons due to strong spin-orbital coupling of heavy-metal ions in phos-
phorescent complexes. As a result, electrophosphorescence can theoretically
approach 100 % internal quantum efficiency [118, 119]. Although the high-effi-
ciency PLEDs with phosphorescent dye doped into a small molecule or polymer
host have been successfully realized, there are some problems that need to be
overcome, such as complexity in fabrication procedure and fast decay of efficiency
with increase in current density, which might become more serious during a long-
term operation because of the intrinsic instability of such blend systems [120]. A
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possible solution to these problems is to introduce a phosphorescent dye into the
polymer main chain or side chain, which is a simple and effective strategy to
develop high-efficiency light emitting electrophosphorescent polymers.

Ma et al. [121] reported a series of red-light emitting electrophosphorescent PFs
(P222–P227, Fig. 7.9) with various contents of a red dye quinoline-based iridium
complex (PPQ)2Ir(acac) (bis(2,4-diphenylquinolyl-N,C2′)iridium(acetylacetonate))
in the side chains. Even at a low Ir content of 1 mol%, the resulting polymer’s EL
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emission from fluorene unit was completely quenched because of the efficient
energy transfer and direct charge trapping in the polymer. A single-layer device
based on P223 showed a gentle efficiency roll-off at high current density, and a
LEmax of 5.0 cd/A. In poly(arylene ether phosphine oxide)-based bipolar hosts
(P228, P229, Fig. 7.9), oxygen atoms could interrupt the conjugation length along
the main chain. In comparison to PVK, P228’s HOMO and LUMO levels were
tuned to −5.7 and −2.3 eV, respectively, resulting in a good charge injection
property although the triplet energy remained as high as 2.96 eV. With P229 as the
host and the blue phosphor FIrpic as the dopant, a promising LEmax of 23.3 cd/A
had been attained [122]. Promoted by this state-of-the-art performance, FIrpic was
introduced to the side chain of fluorinated polymers (P230–P234, Fig. 7.9) via
covalent bonding. The resulting polymers emitted blue phosphorescence from
FIrpic, and the corresponding devices gave a LEmax of 19.4 cd/A [123]. Moreover,
P230 is also a suitable scaffold for efficient yellow phosphorescent complexes. A
series of novel yellow-emitting electrophosphorescent polymers (P235–P239) had
been developed by grafting a yellow dye (bis[2-(9,9-diethyl-9H-fluoren-2-yl)-1-
phenyl-1H-benzimidazolate-N,C] (acetylacetonato)-iridium(III) ((fbi)2Ir(acac)) on
the side chains [50]. Because of the efficient intermolecular energy transfer from
host to (fbi)2Ir(acac) and charge trapping on (fbi)2Ir(acac), the EL from host is
almost completely quenched, even when the Ir complex content incorporated into
the polymer was as low as 2 mol%. The resulting device exhibited good perfor-
mance with a LEmax of 10.4 cd/A. Fei et al. reported a series of blue-light emitting
electrophosphorescent polymers (P240–P242, Fig. 7.9) with 3,6-carbazole-alt-tet-
raphenylsilane copolymers as the host and blue emissive iridium complex FIrpic on
the side chains as the dopant, in which the content of the complex can be controlled
by adjusting the feed ratio of monomers [124]. In thin film, the polymer films
mainly show blue emission from FIrpic, and the emission from the host was
completely quenched because of the efficient energy transfer from host to cova-
lently bonded FIrpic dopant. The resulting PLEDs with the structure of ITO/
PEDOT:PSS/polymer/TPBI/LiF/Al exhibited good performance with a LEmax of
2.3 cd/A, and the efficiency roll-off at high current densities was suppressed.
Amino-alkyl-containing light emitting conjugated polymers can significantly
enhance the high work-function metal cathode devices’ performance because of the
interfacial dipole formation between the amino groups and the cathode, which can
effectively reduce the work function of metal cathode and are beneficial for electron
injection. Ying et al. reported a series of amino-alkyl-containing polymers (P243–
P246, Fig. 7.9) with Ir complexes on the side chains [125]. All the polymers
exhibited good performance in the device with a high work function metal (Al or
Au) as cathode, and the EQEmax reached 3.7 and 1.6 % for Al and Au cathode
devices, respectively.

Ying et al. [126] developed novel poly(fluorene-alt-carbazole)-based copoly-
mers (P247–P251, Fig. 7.9) with 3,6-carbazole-N-alkyl grafted iridium complex
using 2,3-diphenylpyrazine as ligand (IrBpz). The emission of host, poly(fluorene-
alt-carbazole), was completely quenched when the copolymer contained 1 mol% of
iridium complex. An orange-red emission with a CIE coordinate of (0.56, 0.42) was
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observed from PLEDs with an ITO/PEDOT:PSS/polymer + PBD/Ba/Al structure
with a LEmax of 5.58 cd/A and a Lmax of 8625 cd/m2. By tuning the content of
iridium complex, high efficiency white light with a CIE coordinate of (0.33, 0.27)
was observed from PLEDs with a LEmax of 2.30 cd/A and a Lmax of 2068 cd/m2.

Tan et al. [127] reported two D-A-based phosphorescent PF derivatives (P252,
P253, Fig. 7.9). These polymers contain the carrier-transporting units of carbazole
and oxadiazole and the end-capped phosphorescent unit of red-emitting iridium(III)
bi(phenylisoquilonato) (picolinato) [Ir(Piq)2(pic)]. All carrier-transporting and
phosphorescent units were appended by unconjugated linkage as substitutes in the
C-9 position of fluorene. In the PLEDs with an ITO/PEDOT/polymer/LiF/Al
structure, the P276 showed the best EL properties with a LEmax of 0.72 cd/A and a
Lmax of 1398 cd/m2.

Besides introducing a phosphorescent dye into the polymer side chain, intro-
ducing a phosphorescent dye into the polymer main chain has also attracted much
attention. By introducing extended π-conjugated iridium complex ligands
((ptb)2Irdbm) and long alkyl chains which contribute to control the HOMO energy
level and the solubility, Park et al. [128] synthesized a series of copolymers (P254–
P258, Fig. 7.10). The P256-based PLED showed the best performance with a Lmax

of 2260 cd/m2 and a LEmax of 1.1 cd/A at 7.5 V because of the balanced electron
and hole injection in the device.

Huang et al. [129] developed a series of 2,8-disubstituted fluorene-dibenzothio-
phene (D)- and 2,8-disubstituted fluorene-dibenzothiophene-S,S-dioxide (DO)-
based copolymers (P259–P267, Fig. 7.10) with 3 and 10 mol% of covalently-bonded
iridium segments in the backbones. With increasing contents of D or DO segments in
the copolymers, the HOMO/LUMO levels and ET values were enhanced. PLEDs
with an ITO/PEDOT:PSS/polymer/TPBI/LiF/Al structure showed high performance
with a LEmax of 6.20 cd/A and a CIE coordinate of (0.47, 0.43).

Huang et al. [130] synthesized a series of novel electroluminescent copolymers
(P268–P277, Fig. 7.10) containing fluorene-1,4-bis(9-octyl-9Hcarbarzol-3yl)-2,5-
dioctyloxy-benzene (BCB) segments and phosphorescent benzimidazole-based
iridium (Ir) complexes in the backbones. As the content of BCB units in the
copolymers increased, the triplet energy of copolymers grew; thus the energy
transfers induced from the polymer backbones to the iridium units were much more
efficient, and energy back transfers induced from the iridium units to the polymer
backbones were much less efficient. When the Ir-containing copolymer P275 was
used as EML in PLED with an ITO/PEDOT:PSS/polymer/TPBI/LiF/Al structure, a
high performance white-light emission with a LEmax of 1.88 cd/A and a Lmax of
1960 cd/m2 was achieved.

Zhang et al. [131] introducd large steric hindrances oxadiazole derivatives into
phosphorescent polymers (P278–P281, Fig. 7.10) effectively to suppress the
aggregation of the polymer backbones. With the excellent electron-transporting and
hole-blocking property of the oxadiazole units, the LUMO level of the polymers
reduced. Among simple devices with an ITO/PEDOT:PSS/polymer/Ca/Al struc-
ture, the device with P281 showed the best performance with a Lmax of 846 cd/m2

and a LEmax of 0.61 cd/A because of the charge balance and high PL efficiency.
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Another way to develop electrophosphorescent polymers is to introduce a
nonconjugated covalent linkage between phosphorescent dopants and nonconju-
gated polymer hosts. In such systems, the polymer’s backbone does not take part in
charge transport or emission because of its extremely high bandgap of more than
4 eV. A series of different iridium complex dopants were attached to the polysty-
rene backbone as the emission units. Moreover, N,N-di-p-tolyl-aniline and 2-(4-
biphenyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole (tert-BuPBD) were also attached
to the polystyrene backbone to improve the resulting polymers’ charge injection
and transport ability [132]. PLEDs with an ITO/PEDOT:PSS/polymer/CsF/Ca/Ag
structure based on these multiple functionalized polymers (P282–P287, Fig. 7.11)
exhibited high efficiencies of 28 cd/A at 6 V (green), 4.9 cd/A at 5 V (red), and
4.3 cd/A at 6 V (blue).

OC8H17C8H17O

O O

N

SS

OC8H17

C8H17O

Ir 2

x1-x n

P254, x = 0.0005; P255, x = 0.001; P256, x = 0.0025; P257, x = 0.005; P258, x = 0.03

C8H17C8H17

n

C8H17 C8H17
S

C8H17 C8H17

N

N

C8H17C8H17

N

N

Ir
O

O

x y

z

C8H17C8H17

n

C8H17 C8H17
S

C8H17 C8H17

C8H17C8H17

x y

z

C8H17C8H17

n

C8H17 C8H17
S

C8H17 C8H17

N

N

C8H17C8H17

N

N

Ir
O

O

x y

z

OO

N

N

N

N

Ir
O

O

O

O

P259, x/y/z = 27:20:3; P260, x/y/z = 20:20:10; P261, x/y/z = 0:47:3; P262, x/y/z = 0:40:10

P263, x/y/z = 0:40:10

P264, x/y/z = 27:20:3; P265, x/y/z = 20:20:10;
P266, x/y/z = 0:47:3; P297, x/y/z = 0:40:10

n

C8H17 C8H17

N

N

C8H17C8H17

N

N

Ir
O

O

y

z

C8H17 C8H17

C8H17 C8H17

P268 x/y/z = 50:50:0; P269, x/y/z = 100:10:10; P270 x/y/z = 24:24:2; P271, x/y/z = 22.5:22.5:5;
P272, x/y/z = 20:20:10; P273, x/y/z = 20:10:20; P274, x/y/z = 48:0:2; P275, x/y/z = 45:0:5;
P276, x/y/z = 40:0:10; P277, x/y/z = 30:0:20

N
C8H17

N

C8H17

OC8H17

C8H17O

N

C8H17 C8H17 OXD

DXO

Ir

N

2

0.5 0.5-x
x n

O

N
N

N
N

O

OC8H17

OC8H17

OOOXD=

P278, x = 0.01; P279, x = 0.03; P280, x = 0.05; P281, x = 0.07

Fig. 7.10 Chemical structures of P254–P281

7 Conjugated Polymer Electroluminescent Materials 331



Koga et al. [133] developed phosphorescent cyclometalated iridium-containing
metallopolymers (P288–P293, Fig. 7.11), in which near-red luminescent iridium
complexes bearing phosphine-containing copolymers are used as polymer ligands.
PLEDs fabricated from the P288–P293 and its nonpolymer analog, [IrCl(piq)2PPh3],
exhibited quite similar luminescence behavior, except for the emission from the
free-phosphine-units in the polymer side chain and their energy-transferring prop-
erties from host to guest materials. PLED with a structure of ITO/PEDOT:PSS/P293
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(20 wt%):PFO-TPA/Ba/Al exhibited the best result with a Lmax of 73.4 cd/m2 and a
LEmax of 0.13 cd/A, respectively.

By using a novel polymerizable Eu3+ complex as the ligands, Xu et al. [134]
developed two metallopolymers (P294, P295, Fig. 7.11). The Eu3+-complexed
moieties served as the double-carrier traps (Eu trap) in the copolymers. The single-
layer spin-coated devices with an ITO/PEDOT:PSS/polymer:PBD/Ba/Al structure
realized the pure red emissions from Eu3+ ions with the Lmax of 149.1 cd/m2, which
is one of the highest EL among Eu3+-containing copolymers.

A prototype polymetallayne (P296, Fig. 7.11) is a type of polymer in which the
polymer had a linear backbone comprised of the metal center M, the spacer group
R, and the auxiliary ligand L on the metal center [135]. These polymers were based
on the group 10 platinum metal with the formulation trans-[-Pt(PBu3)2C≡C(p-
C6H4)C≡C-]n. Recently, a series of soluble and thermally stable group 10 platinum
(II) polyyne polymers (P297, P298, Fig. 7.11) were synthesized by Pd catalyzed
sp2-sp alkynylation reactions [136]. Geometry optimizations predict totally planar
molecules for these metalated polymers, allowing better π-conjugation across the
main chain. The ligands were strongly fluorescent but also became phosphorescent
when the Pt atom was introduced in the backbone of the conjugated organometallic
polymers. PLEDs using P298 as a phosphorescent dopant with a structure of ITO/
PEDOT-PSS/polymer + PVK + PBD/BCP/Alq3/LiF/Al had been prepared with
good morphological properties, and exhibited a EQEmax of 0.15 % and a LEmax of
0.58 cd/A.

Ho et al. [137] developed a series of platinum(II)-acetylide polymers by using
2,7-carbazole (P299, Fig. 7.11), 3,6-carbazole (P300, Fig. 7.11), and 2,7-fluorene
(P301, Fig. 7.11) as building blocks. P299 and P301 had similar photophysical
properties, but there was a significant different between the photophysical properties
of P299 and P300. Multilayer PLEDs with an ITO/PEDOT:PSS/
polymer + PVK + PBD/TPBI/LiF/Al structure fabricated with P301 as the EML
gave a strong green-yellow electrophosphorescence and exhibited a LEmax of
4.7 cd/A and a EQEmax of 1.5 %.

7.3.3 Single White Emitting Polymers

Single white emitting polymers (SWEPs) are capable of white emission from
simultaneous blue, green, and red emissions or complementary blue, orange emis-
sions [97]. The basic strategy to obtain such a polymer is covalently binding
chromophores with RGB or complementary colors in the main or side chain of
polymer hosts. By decreasing the doping content of the incorporated chromophores
at a certain low level, the white emission could be achieved from the simultaneous
emission of the host and the chromophores because of incomplete energy transfers.
Lee et al. [138] reported a series of SWEPs (P302–P309, Fig. 7.12) containing
dioctylfluorene, 2,3-bis(4-methyloxyphenyl)quinoxaline (moQ) and 5,8-bis(N,N-
diphenylamino)-2,3-bis(4-methyloxyphenyl)quinoxaline (DPAmoQ) units. The
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DPAmoQ units exhibited a longer wavelength emission because of the intramo-
lecular charge transfer, where the biphenylamine group acts as an electron donor,
and the quinoxaline unit acts as an electron acceptor. By adjusting the molar ratios of
the monomers, white emission could be observed from the devices of P308 and
P309. The devices (structure: ITO/PEDOT:PSS/polymer/Ca/Ag) of P308 and P309
exhibited a Lmax of 12,300 and 7256 cd/m

2 as well as a LEmax of 2.02 and 1.87 cd/A
with CIE coordinates of (0.33, 0.40) and (0.30, 0.36), respectively.

Lo et al. [139] reported a series of SWEPs synthesized by using azide-alkyne
click reaction between RGB polymer precursors (PFB1, PFB2, PFG1, and PFR1,
Fig. 7.12) with specific end-capping groups. The EL spectra of the resulting SWEPs
(P310–P315, Fig. 7.12) showed three distinguishable emission peaks in the blue,
green, and red regions produced by the incomplete energy transfer from the blue
emissive segments PFB1 and PFB2 to the green emissive segment PFG1 or red
emissive segment PFR1. The relative intensities of RGB emissions vary in accor-
dance with the relative composition proportion of the different segments. By using
P314 as emitting material, PLEDs with an ITO/PEDOT:PSS/TFB/polymer/Cs/Al
structure exhibited the best EL performance with a Lmax of 7551 cd/m2, a LEmax of
6.21 cd/A, and a CIE coordinate of (0.30, 0.33).

A number of PFs and their derivatives have been studied as blue-emitting host
polymers because of their large band gap, high PL and EL efficiency. However, the
intrinsic emission of PF is located around 420 nm, where the human eye is not very
sensitive. In comparison, polyindenofluorenes have emission maxima in regions
two or three times as sensitive, relative to PFs. Jeong et al. [140] developed an
indeno[1,2-b]fluorene-based copolymer (P316, Fig. 7.12) derived from tetraocty-
lindenofluorene, BT and DTBT derivatives as blue-, green-, and red-emitting
moieties, respectively. Stable and pure white emission with simultaneous balanced
RGB emission was achieved. The resulted PLEDs with an ITO/PEDOT:PSS/
polymer/Ca/Al structure showed a Lmax of 4088 cd/m2 and a LEmax of 0.36 cd/A
with a CIE coordinate of (0.34, 0.32).

Su et al. [141] demonstrated a two-color-combined SWEP poly(3-hexylthioph-
ene-alt-fluorene) (P317, Fig. 7.12), comprising blue-green light-emitting fluorene
and red-orange light-emitting 3-hexylthiophene. To enhance the optoelectronic
performance of polymers, graphene is added into P317, and the electric conductivity
increases with an increase in the amount of graphene. The resulting PLEDs with an
ITO/PEDOT:PSS/(P317 1 % graphene)/Ca/Al structure showed two-color white EL
with a Lmax of 1273 cd/m

2, a LEmax of 0.83 cd/A, and a CIE coordinate of (0.28, 0.34).
Li et al. [142] developed two multicomponent copolymers (P318, P319,

Fig. 7.12) containing PF, oligo(phenylenevinylene) (OPV), and porphyrin (Por)
derivatives. PF acted as the host and blue-emitting unit because of its large band
gap, and small amounts of OPV and Por derivatives acted as the guests for the
green- and red-emission, respectively. By carefully controlling the concentrations
of the guest species in the resulting copolymers, white EL, with contributions from
all the three primary red, green, and blue colors, was achieved. The single layer
PLEDs with an ITO/PEDOT:PSS/polymer/Ca/Al structure based on P319 emitted
white light with a CIE coordinate of (0.29, 0.30), and a Lmax of 443 cd/m2.
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Besides all-fluorescent SWEPs, all-phosphorescent SWEPs have also attracted
much attention because this class of SWEPs can potentially make full use of both
singlet and triplet excitons, leading theoretically to 100 % internal quantum effi-
ciency. However, highly efficient all-phosphorescent SWEPs remains as a challenge
because of the lack of suitable polymer hosts with high triplet energies above
2.75 eV as well as suitable HOMO/LUMO levels matched with the Fermi levels of
the electrodes. Shao et al. [143] reported a series of all-phosphorescent SWEPs
(P320–P324, Fig. 7.12) based on a fluorinated poly(arylene ether phosphine oxide),
which had high triplet energy (2.96 eV) and matched HOMO/LUMO levels,
simultaneously grafted with blue FIrpic and yellow (fbi)2Ir(acac) phosphors. By
tuning the incorporated contents of FIrpic and (fbi)2Ir(acac), individual blue and
yellow emissions were generated to give standard white EL emssions and the
resulting devices exhibited a prominent efficiency as high as 18.4 cd/A with a CIE
coordinate of (0.31, 0.43).

Park et al. [144] developed SWEPs (P325–P328, Fig. 7.12) containing a novel
iridium complex with a β-diketonate unit, bis(2-benzothiazol-2-yl-N-ethylcarbaz-
ole)iridium-1,3-bis(p-bromophenyl)1,3-propanedione ((bec)2IrdbmBr), as the red
emission unit. The resulted polymers exhibited two strong emission bands in both
the blue and red spectral regions. By controlling monomer ratios and energy
transfer, white light emissions were realized. PLEDs based on P326 with an ITO/
PEDOT:PSS/poly(TPD)/polymers/TPBI/LiF/Al structure exhibited a white light
emission with a CIE coordinate of (0.31, 0.32) and a LEmax of 0.05 cd/A.
Moreover, the EL spectrum of P326 was stable with respect to applied voltage, and
a CIE coordinate was almost not changed at various driving voltages.

Chen et al. [145] reported a series of SWEPs (P329–P332, Fig. 7.12), where the
fluorescent chromophore BT and phosphorescence chromophore iridium(III)bis(2-
(1-naphthalene)pyridine-C2′,N)-2,2,6,6- tetramethyl-3,5-heptanedion [(1-npy)2Ir
(tmd)] units were incorporated into PF’s backbone as green and red emission units,
respectively. By adjusting the monomer feed ratios, the white emission from three
individual emission species in a single polymer was achieved. The device with an
ITO/PEDOT:PSS/PVK/polymer/CsF/Al structure from P356 showed a LEmax of
5.3 cd/A and a Lmax of 9900 cd/m2 at a current density of 453 mA cm−2 and a CIE
coordinate of (0.32, 0.34). Moreover, the EL efficiencies decline slightly with
increase of current density.

7.4 Hyperbranched Polymers

As an alternative to linear polymers, hyperbranched polymers (HBPs) have
received considerable attention because of their unusual molecular structures and
properties. The hyperbranched structure helps to reduce the intramolecular and
intermolecular interactions of the polymers, which in turn gives them much better
solubility and highly fluorescent quantum yields in the solid state [146–148].
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Chen et al. [149] developed star-like single-polymer systems (P333, P334,
Fig. 7.13) through incorporating six blue PF arms onto star-shaped D-A type orange
cores. The six blue PF chains acted as the branching arms and were expected to
prevent the orange cores from aggregation and suppress their concentration
quenching effect more effectively than previous linear and star-shaped single-
polymers, which resulted in a higher PLEDs efficiency. As a result, their single
layer devices with an ITO/PEDOT:PSS/polymer/Ca/Al structure achieved a high
LEmax of 18.01 cd/A and an EQEmax of 6.36 % with a CIE coordinate of (0.33,
0.35), which was one of the best single-layer white PLEDs based on single-polymer
fluorescence systems. To improve further the solubility of P334, three methyl
groups were introduced, and a novel star-shaped orange core was designed [150].
The single-polymer (P335, Fig. 7.13), which was obtained by incorporating three
PF arms into the TPB3 orange core, also showed a high EL efficiency. A typical
single-layer device with an ITO/PEDOT:PSS/polymer/Ca/Al structure showed pure
white emission with a LEmax of 16.62 cd/A, an EQEmax of 6.28 %, and a CIE
coordinate of (0.33, 0.36) for P335 containing 0.02 mol% orange core.

Lin et al. [151] reported a series of new star-shape white electroluminescent
polymers (P336–P342, Fig. 7.13) containing an orange core made of maleimide and
three blue arms made of either PF or PCZ. These materials exhibited blue emission
from PF and yellow to red emission from the maleimide as a result of partial energy
transfer between the fluorene and maleimide segments. The EL spectra of devices
can be adjusted by changing the molar ratio of maleimide to fluorene. A typical
device based on the star-shape polymer P341 containing 0.01 mol% of maleimide
exhibited a LEmax of 7.2 cd/A and an EQEmax of 3.2 %. The device based on P338
with a methyl substituent on the indole group can be improved to reach a Lmax of
11,450 cd/m2, whereas the device based on P341 with arms comprising equal
amount of PF and PCZ can be boosted to a maximum PE of 4.8 lm W−1.

For the purpose of achieving high efficiency HBPs-based red, green, blue, and
white emission materials (Fig. 7.14), three HBPs—HB-terfluorene (P343), HB-4,7-
bis(9,9′-dioctylfluoren-2-yl)-2,1,3-benzothiodiazole (P344), and HB-4,7-bis[(9,9′-
dioctylfluoren-2-yl)-thien-2-yl]-2,1,3-benzothiodiazole (P345)—were developed by
Shih et al. [152]. The Lmax of the double-layer devices with an ITO/PEDOT:PSS/
polymer/CsF/Al structure of P343, P344, and P345 were 48, 42, and 29 cd/m2,
respectively, and the LEmax of the devices were 0.01, 0.02, and 0.01 cd/A,
respectively.

TPA derivatives with excellent hole mobility can be viewed as 3D systems, in
which several electron-donating ethynylene units (carbazole, fluorene, or dialk-
oxybenzenes) have been introduced in the branched sides with TPA as the core
[153]. Moreover, ethynylene units in the HBPs (P346–P349, Fig. 7.14) could pro-
vide an enhanced π-electron delocalization because of the coplanar molecular
structure, which resulted in better charge-balancing. These HBPs were found to be
highly fluorescent with PL quantum yields around 33–42 %. The EL maxima of
these HBPs (P346–P349) were found to be in the range 507–558 nm. A Lmax of 316–
490 cd/m2 could be achieved for the PLEDs with an ITO/PEDOT:PSS/polymer/LiF/
Al structure.
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The AB2 type HBPs, where AB2 monomers polymerize intermolecularly to
build up hyperbranched structures, have a mass of conjugated defects which may
influence luminescent performance and result in increased probability of self-
quenching and decreased luminescent efficiency. To overcome these problems, Lu
et al. [154] synthesized a partially conjugated HBP (2,5-dimethoxy-substituted
hyperbranched PPV, MOHPV) (P350, Fig. 7.14) based on rigid fluorescent con-
jugated segments, 2,5-dimethoxy-substituted distyrylbenzene (a derivative of oligo-
PPV), and flexible non-conjugated spacers, trioxymethylpropane via a A2 + B3
approach. The three-dimensional and hindered structure of the HBPs endow them
with a high fluorescence quantum yield because of their lower tendency to self-
aggregate. A Lmax of 1500 cd/m2 and a LEmax of 1.38 cd/A were achieved when
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P350 was used as EML in double-layer PLEDs with an ITO/PEDOT:PSS/
P374 + PBD/Alq3/Ca/Al structure. Moreover, Lu et al. [155] synthesized a novel
partially conjugated HBP (P351, Fig. 7.14) via A2 + B4 approach, in which A2 is
1,4-distyrylol-2,5-butoxybenzene and B4 is pentaerythritol tetra(methylbenzene
sulfonate). A single-layer device with an ITO/P351/Ca/Al structure reached an
optimistic Lmax of 190 cd/m2 at 8.2 V.

Tsai et al. [156] prepared fluorescent hyperbranched copolymers (P352,
Fig. 7.15) with inherent tetraphenylthiophene, TPA, and quinoline (Qu) moieties. In
P352, TPA-Qu was used as the branching point of the HBPs, the electron-donating
TPA units being separated by the electron-accepting Qu unit. With the wholly
aromatic-heterocyclic structures, the resultant P352 were rigid materials with high
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thermal transitions and stabilities, which enhanced their corresponding thermal and
spectral stability during annealing at temperatures below glass transition tempera-
ture (Tg). With a high Tg of 315 °C, the EL spectrum of the P352-based device after
heating at 300 °C for 4 h remained essentially the same as the pristine one before
heating.

P353–P356 (Fig. 7.16), in which fluorene or TPA were used as donor chro-
mophores and DCM was used as acceptor chromophore, were obtained through
A2 + B3, A2 + B3 + B2, and A2 + B2 approaches by Vanjinathan et al. [157]. The
symmetrical combination of DCM with fluorene or TPA assures better conjugated
length and coplanarity. DCM is a strong electron-accepting group, which can
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increase electron affinity and reduce the band gap of the conjugated system, and
TPA is a well-known hole-transporting unit. As a result, the PLEDs with an ITO/
PEDOT:PSS/polymer P355/BCP/Alq3/LiF/Al structure showed high efficiency red-
light emission with a Lmax of 4104 cd/m2 and a LEmax of 0.55 cd/A.

A series of HBPs (P357–P360, Fig. 7.17) with electron-deficient group triazine
and hole-conducting group TPA as core and end-cap groups was developed to
clarify systematically the influences of the type of core and end-cap group on the PL
and EL properties [158]. Among all the HBPs-based PLEDs with an ITO/PEDOT:
PSS/polymer/Ca/Al structure, the device based on P359 containing the triazine core
and tetraphenylsilane end-cap group exhibited the best performance with a Lmax of
1702 cd/m2 and a LEmax of 0.72 cd/A.

A novel series of hyperbranched interrupted π-conjugated polymers (P361–P363,
Fig. 7.17) based on complicated 9,9-diarylfluorenes branching core and end-capped
with high carrier-mobility pyrene moieties were synthesized via the ‘‘A2 + A2 + B3’’
approach [159]. The TPA linked fluorene unit via the C9 position in the polymers
break the conjugation between fluorene and TPA groups. Thus, the resulting HBPs
had a better confined conjugation length and improved spectrum stability. The P363-
based device with an ITO/PEDOT:PSS/PVK/P363/Ba/Al structure showed stable
blue emission with the peaks at 422 and 447 nm and a CIE coordinate of (0.18, 0.16).
The brightness of the device reached 1051 cd/m2 at 15.7 V.

Li et al. [160] reported a new “A3 + B2”-type blue-emitting HBPs (P364–P367,
Fig. 7.17) using 1,2,4-tribromohexaphenyl-benzene as the core and 1,3,4-oxadi-
azole with high PL quantum yields and high electron-transport mobility as branch
units. The deep blue light emission of their films was very pure and stable, and no
long wavelength excimer-like emissions at 500–600 nm were observed, even after
annealing at 150 °C for 0.5 h because of the effective suppression of the formation
of aggregation/excimer and keto defects. A two-layer PLED with an ITO/PEDOT:
PSS/polymer/TPBI/Ca/Ag structure based on P366 showed the best performance
with a LEmax of 0.72 cd/A and a Lmax of 549 cd/m2.

To improve further the efficiency of HBPs-based PLEDs, the aggregation-
induced emission (AIE) active tetraphenylethene (TPE) units (B4) were used to
construct all-conjugated polymer HBPs (P368–P370, Fig. 7.17) with carbazole,
fluorene, and benzene moieties (A2), through an ‘‘A2 + B4’’ approach [161]. These
polymers exhibited interesting aggregation-induced enhanced emission (AIEE)
behavior. The advantages of the 3D topological structure of HBPs were reflected
clearly in the fabricated PLEDs. All the performances (such as Von, LE, L, etc.) of
these HBPs-based PLEDs were much better than those of their analog linear
copolymers. The PLED devices based on P368 with an ITO/PEDOT:PSS/Poly-
TPD/polymer/TPBI/Cs2CO3/Ag structure showed a Lmax of 948 cd/m

2, and a LEmax

of 1.15 cd/A, which was higher than most of conjugated HBPs. Moreover, the same
group [162] developed AIE active TPE units (A2) contained in HBP (P371,
Fig. 7.17) with carbazole moieties (B4), a good hole-transporting and electrolu-
minescent group, through an ‘‘A2 + B4’’ approach. The PLED with an ITO/
PEDOT:PSS/poly-TPD/P371/TPBI/Cs2CO3/Ag structure exhibited a remarkably
enhanced LEmax of 2.13 cd/A and a Lmax of 5914 cd/m2.
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Guan et al. [163] designed a series of phosphorescent HBPs (P372–P376,
Fig. 7.18), in which a charge transport balanced 3,6-carbazole, 2,6-pyridine-based
copolymer with high triplet energy level acted as branch, and green light-emitting
iridium, tris[2-(2-pyridinyl-κN)phenyl-κC] (Ir(ppy)3) complex acted as core. Such a
highly branched framework provided a novel molecular design for highly efficient
phosphorescent green light-emitting polymers. The HOMO and the LUMO levels
of copolymers reduced gradually on increasing the content of 2,6-pyridine units
from 10 to 30 mol%. The incorporation of the pyridine moiety into the PCZ
backbone resulted in significantly enhanced device efficiencies. The PLEDs with an
ITO/PEDOT/P374 + PBD/Ba/Al structure showed high performance with an
EQEmax of 13.3 % and a LE of 30.1 cd/A at 5.6 V. To improve further the electron
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injection/transportation and charge transport balance, the 2,6-pyridine units were
replaced by SO which has high fluorescence efficiency, high electron affinity energy
and excellent electron transport properties [164]. The P377–P384’s (Fig. 7.18)
branches have a triplet energy level above 2.5 eV and can effectively prevent energy
feedback from the phosphorescent core to carbazole-co-DOSO. A P380-based
device with an ITO/PEDOT:PSS/polymer/CsF/Al structure exhibited the best per-
formance, with a LEmax of 50.5 cd/A and a EQEmax of 15.3 %. When the core Ir
(ppy)3 complex was replaced by (1-phenylisoquinoline)2Ir(3-(pyridin-2-yl)-1H-
1,2,4-triazole) ([(Piq)2Ir(Pytz)]), a series of red-emitting HBPs were achieved via
the “A2 + A2′ + B3” approach by utilizing poly(fluorene-alt-carbazole) (P385–
P387, Fig. 7.18) and PF (P388–P390, Fig. 7.18) as the branches [165]. The HBPs
P388–P390 with fluorene branches exhibited a better device performance. A LEmax

of 6.54 cd/A, an EQEmax of 4.88 % with a CIE coordinate of (0.65, 0.34) were
obtained from the P388-based PLED with an ITO/PEDOT/PVK/polymer/CsF/Al
structure. Moreover, the device efficiencies from these materials show a reduced
roll-off upon the increase of the current density.

7.5 Supramolecular Luminescent Polymers

Although significant progress has been made in PLEDs, there are still many
challenges in developing high performance and long lifetime PLEDs. For example,
most conjugated polymers are synthesized by the transition-metal-catalyzed cross-
coupling reactions. It has also been shown that the remaining traces of metal
catalysts have a detrimental effect on the resulting thin film device performance. In
addition, the molecular weights as well as polydispersity of conjugated polymers
that also play an important role on the performance of the resulting devices are hard
to be defined during the polymerization process, which usually generate the batch to
batch variation [166, 167].

To overcome these challenges, a possible solution is to replace the traditional
conjugated polymers with supramolecular light-emitting polymers (SLEPs) gener-
ally formed from the monomeric units by directional and reversible secondary
interactions such as hydrogen bonding, π-stacking, host-guest interactions, hydro-
phobic interactions, etc. [166, 167].

Abbel et al. [168] reported the pioneering work of using hydrogen bonded
supramolecular copolymers (M1–M3, Fig. 7.19) for PLEDs, although the resulting
devices exhibited poor performances with LE less than 0.1 cd/A. It is challenging to
develop high performance supramolecular copolymers for optoelectronic device
applications. SLEPs based on host-guest interactions were developed by Zhang
et al. [169] in which the dibenzo-24-crown-8 functionalized blue-emitting conju-
gated oligomer (M4, Fig. 7.19) and green-emitting conjugated oligomer (M6,
Fig. 7.19) were used as the host materials, and the dibenzylammonium salt func-
tionalized blue-emitting conjugated oligomer (M5, Fig. 7.19) was used as the guest
material. It was found that the SLEPs’ emission colors can be well tuned from blue
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to green with significantly enhanced photoluminescent efficiencies by using M6 as
the dopant, which is because of the efficient energy transfer caused by the exciton
trapping on narrow band gap oligomer M6 in the SLEPs. As a result, the devices
with an ITO/PEDOT:PSS/SLEPs/TPBI/CsF/Al structure of SLEPs based on M4,
M5, and M6 showed a LEmax more than 3 cd/A, which is much higher than that of
devices of SLEPs based on M4 and M5. A large band gap supramolecular polymer
based on host-guest interactions, was developed as the host material for phos-
phorescent PLEDs [170]. Because the host-guest interactions cannot enhance the
conjugated length of the resulting SLEPs (M7 + M8) (Fig. 7.19), the SLEPs
(M7 + M8) retains a high ET similar to those of M7 and M8 monomers. Moreover,
the SLEPs can be formed by the precisely defined monomers without using any
metal catalysts, and have good film formation capability. As a result, the yellow-
light emitting LED with an ITO/PEDOT:PSS/PBD:SLEP:Ir(Flpy)3/TPBI/CsF/Al
structure showed good performance with a LEmax of 18.2 cd/A.

Besides the supramolecular fluorescence polymer, supramolecular phosphores-
cent polymers (SPPs) were also developed and used as EML in PLEDs by Liang
et al. [171]. The SPPs (M4 + M5 + M9) (Fig. 7.19) were formed by utilizing the
efficient nonbonding self-assembly of luminescent iridium monomer M4 and
“terfluorenyl”-based monomers M5 and M9, tethered with either a crown ether or
dibenzylammonium unit. The SPPs (M4 + M5 + M9) exhibited an obvious glass
transition with a Tg of 72.5–81.5 °C, which is absent in the monomers. The PLED
with an ITO/PEDOT:PSS/SPPs + PBD/CsF/Al structure gave an LE of 14.6 cd/A at
a L of 450 cd/m2. Moreover, novel supramolecular sky-blue phosphorescent iridium
complexes through efficient non-bonding assembly of dibenzo-24-crown-8 and
dibenzylammonium-functionalized monomer units (M10, M11, Fig. 7.19) were
also reported [172]. Of great importance is that the sky-blue SPPs exhibited
attractive PL and EL efficiency.

7.6 Conclusion

This chapter provides an overview of recent development of polymer electrolu-
minescent materials as the active layer in PLEDs. A variety of electroluminescent
polymers have been developed in the past few years because of the aspiration for
the commercialization potential of PLEDs in the future. In addition to the new
chemical structure design, the strategies which have been adopted in small molecule
OLEDs (such as dopant/host system, electrophosphorescent materials, etc.), have
also been successfully applied in polymer electroluminescent materials, resulting in
significantly improved performance of PLEDs. Encouraging results have been
reported by Cambridge Display Technology, which announced a blue-emitting
PLED with a LEmax of 10 cd/A and a lifetime of 13,000 h, a green-emitting PLED
with a LEmax of 73 cd/A and a lifetime of about 100,000 h, and a red-emitting
PLED with a LEmax of 21.8 cd/A and a lifetime above 350,000 h [173]. The new
fabrication techniques for PLEDs also developed rapidly and 1.5-inch PLED
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displays have been fabricated without any dead pixels or dead lines through all-
solution processing [7], indicating the unique advantage of PLEDs for low-cost
large-area devices. All these results show us the promising commercialization
future for PLEDs. However, to realize this, the performance of polymer electro-
luminescent materials, especially blue-emitting polymers, need to be further
improved. The recent significant progress on new generation small-molecule light-
emitting materials [174, 175] may provide new direction to improve further the
performance of polymer electroluminescent materials and hence offer the oppor-
tunities to exploit fully the potential of low-cost fabrication of polymer optoelec-
tronic devices with a large area size.
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Chapter 8
Transparent Conducting Polymers

Yijie Xia and Jianyong Ouyang

Abstract A conjugated polymer in neutral state is semiconductive. It becomes
conductive after it is doped by oxidation or reduction. The optical properties of
neutral conjugated polymers are predominantly determined by the electron transi-
tion from the highest occupied molecular orbital (HOMO) to the lowest unoccupied
molecular orbital (LUMO), whereas the optical properties of conducting polymers
are related to new energy levels, polaron and bipolaron levels, which are generated
during oxidation or reduction. The appearance of the new energy levels signifi-
cantly changes the optical properties. Some conjugated polymers with low energy
band gap can have high transparency in the visible range after they are oxidized and
become conductive. Poly(3,4-ethylenedioxythiophene) (PEDOT), its derivatives
and analogues are the most popular transparent conducting polymers. This chapter
reviews the preparation, structure, properties, and application of transparent con-
ducting polymers, particularly the PEDOTs. PEDOTs can be prepared by solution
chemical polymerization, vapor-phase polymerization, or electrochemical poly-
merization of its monomer. Poly(3,4-ethylenedioxythiophene):poly(styrenesulfo-
nate) (PEDOT:PSS) prepared by chemical polymerization in solution is particularly
interesting because it can be dispersed in water and some polar organic solvents.
High-quality PEDOT:PSS films can be readily prepared through solution pro-
cessing techniques. Less conductive PEDOT:PSS has been used as the buffer layer
in optoelectronic devices, such as organic and polymer light-emitting diodes
(OLEDs and PLEDs) and organic and polymer solar cells (OSCs and PSCs).
However, as-prepared PEDOT:PSS films from aqueous solution cannot be directly
used as the transparent electrode of optoelectronic devices because its conductivity
is below 1 S cm−1. This conductivity is lower than the conductivity of indium tin
oxide (ITO), the conventional transparent electrode material, by three to four orders
of magnitude. A couple of methods have been developed to improve significantly
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the conductivity of PEDOT:PSS. Conductivity of more than 3000 S cm−1 was
recently observed with PEDOT:PSS films after treatment with acids. This con-
ductivity is higher than that of ITO on plastic and comparable to ITO on glass. It is
anticipated that the conductivity of PEDOT:PSS can be further increased if the
molecular weight of PEDOT can be increased. Thus, transparent conducting
polymers are very promising candidates to replace ITO as the next-generation of
transparent electrode materials.

Keywords PEDOT:PSS � Conductivity � Optoelectronics � Transparency

8.1 Electronic Structure and Optical Properties
of Conducting Polymers

Since the report on conducting polyacetylene by MacDiarmid, Shirakawa, and
Heeger in the 1970s, conducting polymers have been attracting considerable
attention [1]. The high conductivity of conducting polymers makes them quite
different from conventional polymers such as polyethylene and polystyrene. Those
conventional polymers are insulators. The different electrical behavior of con-
ducting polymers from conventional polymers arises from their different chemical
structures. Conducting polymers have conjugated π-bonds along the main chain.
The 2s and 2p atomic orbitals of carbon atoms hybridize in an sp2 manner. The pz
orbital which does not participate in the hybridization is perpendicular to the plane
formed by the three sp2 orbitals. The three sp2 orbitals form three σ-bonds whereas
the pz orbital form a π-bond with neighboring atoms. As a result, there are alter-
native σ- and π-bonds along the backbone. The π-electrons are delocalized along the
whole polymer chains, leading to the formation of valence and conduction bands.
However, the bandwidth of the conduction band and valence band is so narrow for
neutral conjugated polymers so that to use the lowest unoccupied molecular orbital
(LUMO) and highest occupied molecular orbital (HOMO) is more popular for
describing their electronic structure.

The optical properties of conjugated polymers in the neutral state are mainly
determined by the electron transition from HOMO to LUMO. The oxidation or
reduction doping of conjugated polymers turns them highly conductive. The dra-
matic increase in the conductivity after doping is related to the appearance of new
energy levels (Fig. 8.1). For most conjugated polymers, two polaron levels are
generated when the conjugated polymers are lightly doped. After the conjugated
polymers are further doped, the polarons interact and the coupling turns two po-
larons into a bipolaron. Correspondingly, the two polaron levels become two bi-
polaron levels. There is one electron on the lower polaron level, whereas there is no
electron on the bipolaron levels. When the conjugated polymers are heavily doped,
the bipolarons interact, causing the bipolaron levels to become bipolaron bands.
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Finally, the bipolaron bands overlap and merge as one band. As a result, the energy
gap disappears, and the doped conjugated polymers behave as metals.

The change in the electronic structure gives rise to significant changes in the
optical properties when conjugated polymers change from neutral to a doped state.
There are remarkable color changes for conjugated polymers during this process. In
fact, the in situ optical absorption spectra of conducting polymers during oxidation
are important evidence for the occurrence of the polarons and bipolaron levels.
Figure 8.2 shows the change in the absorption of polypyrrole during oxidation [2].
There is no absorption in the infrared range for neutral polypyrrole. The absorption
in the infrared range increases after polypyrrole is further doped. The strong light

Fig. 8.1 Change of the electronic structure of conducting polymers during oxidation doping. VB
valence band, CB conduction band, P polaron, BP bipolaron

Fig. 8.2 Optical absorption
spectra of polypyrrole doped
with perchlorate counter
anions (oxidation doping)
with the doping degree
increasing from the bottom
curve (almost neutral) to the
top curve (doping degree is
0.33). Reproduced from [2]
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absorption in the infrared range for heavily doped polypyrrole is attributed to the
plasmon oscillation of the metallic polymer. Apart from the absorption in the
infrared range, the absorption in the visible range also changes significantly.

8.2 Transparent Conducting Polymers

The optical properties of conjugated polymers are mainly determined by the band
gap between HOMO and LUMO. The band gap of conjugated polymers can be
altered by modifying the chemical structure. For example, the band gap of poly(3-
hexylthiophene) is about 2.0 eV. It decreases to 1.5 eV for PEDOT. The chemical
structure of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:
PSS) is shown in Scheme 8.1. PEDOT is the most important transparent conducting
polymer. For undoped PEDOT, the maximum absorption appears at about 2.0 eV
[3]. The absorption maximum shifts to 0.5 eV after it is doped, so that the con-
ductive PEDOT films are highly transparent in the visible range.

Conductive polymers with high transmittance in the visible range can have
important applications for optoelectronic devices, including liquid crystal displays
(LCDs), light-emitting diodes (LEDs), solar cells, touch panel displays, lasers, and
detectors. At least one electrode of an optoelectronic device should be transparent to
emit or harvest light. Although the most popular material for the transparent
electrode is indium tin oxide (ITO), ITO has several severe problems. Indium is a
scarce element on Earth. The indium price has been skyrocketing, and the long-term
availability of indium is a big concern. In addition, ITO is a brittle material so it is
unsuitable for flexible electronic devices which are regarded as the next-generation
electronic devices [4, 5]. For instance, Samsung and LG recently demonstrated
flexible mobile phones. Thus, new transparent conductive materials are in urgent
need to substitute ITO as the transparent electrode. Among the candidates,
including conducting polymers [6–19], carbon nanotubes [19–24], graphene [25–
27], and metal nanowires [28, 29], conducting polymers are very promising because
they are cheap and highly flexible.

Apart from application as the transparent electrode of optoelectronic devices,
transparent conducting polymers can also be used as the active materials for
electrochromic displays. Transparent conducting polymers have advantages over
other conducting polymers for use in smart windows. Materials for smart windows
should be highly transparent when in the bleached state, whereas they should block
most of the visible light when in the color state.

The transparent conducting polymers discovered hitherto are mainly PEDOT, its
derivatives and analogues. PEDOT is the most important transparent conducting
polymer because of its merits in processability, optical properties, and thermal
properties. Figure 8.3a presents the absorption spectrum from 400 to 900 nm for
PEDOT in neutral and doped states [30]. Neutral PEDOT has a blue color with an
absorption maximum at about 600 nm, and doped PEDOT is highly transparent in
the visible range. Although alkylation of PEDOT can change the electronic

362 Y. Xia and J. Ouyang



structure and optical properties, those derivatives are usually highly transparent in
the visible range as well. As shown in Fig. 8.3b, the absorption spectrum of neutral
C14H29-PEDOT, which has a C14H29 side group connecting to the ethylene group,
is different from that of neutral PEDOT. However, both of them are highly trans-
parent in the visible range when in the doped state.

Apart from changes in the electronic structure and optical properties, the con-
formation and configuration of PEDOT change as well when PEDOT changes from
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Scheme 8.1 Chemical
structure of PEDOT:PSS

Fig. 8.3 UV-vis absorption
spectra of a PEDOT and
b C14H29-PEDOT in neutral
(solid curve) and doped
(dashed curve) states.
Reproduced from [30]
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the neutral to conductive state. Lenz et al. [31] calculated the geometry of PEDOT
in neutral and doped states. They found that the thiophene ring has the benzoid
structure for neutral PEDOT and it turns to the quinoid structure after being doped.
Because the doping changes the charges on the conducting polymers, the dielectric
constant of PEDOT increases after it is doped [32].

8.3 Preparation of PEDOTs by Electrochemical
Polymerization

PEDOTs are prepared through the polymerization of its monomer, ethylenedi-
oxythiophene (EDOT), through the cation radical polymerization. EDOT becomes
a positively charged radical after it loses an electron. The radical structure makes
the monomer chemically active, and the monomer molecules can connect into a
polymer chain. The monomer can be oxidized by applying an electrochemical
potential or using an oxidizing agent.

Pei et al. [3] were the first to report the electrochemical polymerization of EDOT.
The oxidation of EDOT in an acetonitrile solution of 0.1 M Bu4NClO4 starts at
1.04 V. Oxidation at this potential leads to the growth of a PEDOT on the anode.
They observed a conductivity of about 200 S cm−1 for the PEDOT doped with ClO4

−.
The electropolymerization of EDOT can also proceed in aqueous solution.

Surfactant is used for the dispersion of the monomer in water [33]. For example,
Bhandari et al. [33] prepared PEDOT by electropolymerization of EDOT in an
aqueous micellar solution comprising camphorsulfonic acid, lithium trifluoro-
methanesulfonate (LiCF3SO3), and the monomer. Camphorsulfonic acid is a sur-
factant and forms micelles in water. The solvent, surfactant, and counter anion can
affect the morphology of PEDOT films [34]. By carefully controlling the experi-
mental conditions during the electropolymerization, nanostructured PEDOTs were
demonstrated [35, 36].

When the substrate surface was passivated, PEDOT films could be electro-
chemically deposited on active metals [37]. Sakmeche et al. electrochemically
deposited PEDOT on iron and mild steel substrates by using sodium phthalate as a
passivating agent in a 0.1 M sodium dodecylsulfate (SDS) micellar aqueous
solution. Homogeneous, regular, adhesive and thick (*15 μm) PEDOT films were
electrochemically deposited on iron.

8.4 Preparation of PEDOTs by Chemical Synthesis

Scheme 8.2 presents the chemical polymerization of EDOT in solution. Oxidizing
agents, such as persulfate salts, iron(III) salts, and bromine, were used for the
polymerization [38].
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Seo and Chung [39] studied the polymerization mechanism of EDOT in aqueous
solution for different concentrations of potassium persulfate. The polymerization
and doping take place in one step, which yields conductive PEDOT. The electrical
conductivity and yield of PEDOT increased as the molar ratio of potassium per-
sulfate to EDOT increased until reaching the molar ratio of unity and then
decreased. The reaction rate (Rp) was found to be governed by the concentration of
the reactants: Rp ∝ [potassium persulfate]0.64 × [EDOT]0.16. The reaction rate is also
affected by the acidity of the solution. It reaches the maximum at a pH of 2.7.

PEDOT doped with tosylate (PEDOT:TsO) exhibited the highest conductivity.
Ha et al. [40] carried out a comprehensive investigation on the chemical poly-
merization of EDOT with iron tosylate as the oxidizing agent. By optimizing
experimental conditions, they attained a conductivity of 750 S cm−1 for PEDOT:
TsO and a conductivity of 900 S cm−1 when methanol-substituted EDOT was used.
PEDOTs doped with small counter anions are insoluble in any solvent. Conductive
PEDOT thin films can be prepared by spin coating a solution consisting of EDOT
and an oxidizing agent prior to the polymerization. To get good quality for the
conductive PEDOT films, the experimental conditions should be precisely
controlled.

When polystyrenesulfonate (PSS–) is used as the counter anion of PEDOT, the
polymer can be dispersed with good stability in water and some polar organic
solvents [41]. Positively charged PEDOT chains are stabilized by negatively
charged PSS− chains in solvent. PEDOT is in fact an oligomer with molecular
weight less than 1000–2500 Da (about 6–18 repeating units). Oligomeric PEDOT
chains are tightly attached to the PSS chains which have a much higher molecular
weight. PEDOT:PSS forms gel particles consisting of roughly 90–95 % water. The
PEDOT:PSS aqueous solution can be readily processed into polymer films on
various substrates.

The conductivity of PEDOT:PSS depends on the ratio of PEDOT to PSS.
Increasing the PSS content reduces the electrical conductivity of PEDOT:PSS. It is
about 1 S cm−1 when the molar ratio of PEDOT to PSS is 1:2.5, and it decreases to
10−3 S cm−1 when the molar ratio changes to 1:6. The conductivity of the PEDOT:
PSS films is also affected by the polymer gel particle size [42]. The smaller the gel
particles, the lower the conductivity of the PEDOT:PSS films.

Scheme 8.2 Oxidative polymerization of EDOT with potassium persulfate. Reproduced from
[39]
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Doped PEDOT can be reduced to some extent with hydrazine, hydroxylamine,
etc. [43]. However, a truly neutral state of PEDOT has never been observed.
Residual charged moieties could not be removed completely. Electrochemical
methods can lead to a more pronounced reduction of PEDOT [44, 45]. However,
even in this case a complete reduction is impossible. The residual conductivity of
the reduced PEDOT layers by electrochemical dedoping is about 5 × 10−4 S cm−1.
Electron paramagnetic resonance investigations demonstrate the presence of the
radicals in the electrochemically reduced PEDOT, even after the most extensive
dedoping [46–48]. Thus, the intense blue colour of reduced PEDOT can be caused
by the polythiophene radical cations (polarons).

8.5 Vapor-Phase Polymerization of EDOT

A variation for the chemical polymerization of EDOT in solution is the vapor-phase
polymerization (VPP) [49–54]. An oxidizing agent, typically iron(III) tosylate, is
coated onto a substrate. It forms a solid thin film on substrate after drying. Exposure
of this substrate to EDOT vapor produces a PEDOT:TsO film on substrate. The
conductivity of the PEDOT:TsO films can be as high as 1500 S cm−1 by this
method. Recently, Evans et al. modified the VPP method by blending the oxidizing
agent with a tri-block polymer, poly(ethylene glycol–propylene glycol–ethylene
glycol) (PEG–PPG–PEG) [55]. They observed a conductivity of about
2500 S cm−1.

The VPP method was combined with the electrospinning technique to fabricate
PEDOT nanofibers [56]. The fibers had average diameters of around 350 nm. The
nanofibers are highly ordered at the molecular level, and the non-woven nanofiber
mats had a high conductivity of ∼60 S cm−1.

The conductivities of PEDOTs prepared by these methods are summarized in
Table 8.1. PEDOT:PSS prepared by chemical synthesis in aqueous solution has a
conductivity of less than 1 S cm−1, but it can be dispersed in water and some polar
organic solvents. This advantage in solution processability renders PEDOT:PSS
important for application in many areas. Moreover, many methods have been
developed to enhance significantly the conductivity of PEDOT:PSS.

Table 8.1 Conductivities (σ) of PEDOTs prepared by different methods

Synthesis method Doping anions σ (S cm−1) References

Chemical synthesis Small anions Up to 750 [40]

PSS (1:2.5 ratio) <1 [41, 42]

VPP TsO− Up to 1500 [49–54]

Modified VPP TsO− Up to 2500 [55]

Electrochemical polymerization Small and polymer anions *200 [40]
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8.6 Development of Highly Conductive PEDOT:PSS

Among the PEDOTs, solution-processable PEDOT:PSS has gained the most
attention. High-quality PEDOT:PSS films can be readily prepared on various
substrates through the conventional solution processing techniques such as coating
and printing [57, 58]. However, an as-prepared PEDOT:PSS film from its aqueous
solution usually has a problem of low conductivity, which is usually below
1 S cm−1 and remarkably lower than ITO. The conductivities of ITO on glass and
plastic are 3000–6000 and *2000 S cm−1, respectively. Thus, PEDOT:PSS is
usually used as a buffer layer rather than the transparent electrode in electronic
devices.

The conductivity of PEDOT:PSS should be greatly improved to be used as the
transparent electrode of optoelectronic devices. As a substitute of ITO as the
transparent electrode of optoelectronic devices, the conductivity of PEDOT:PSS
should be higher than 2000 S cm−1. This is particularly important for the devel-
opment of flexible electronic devices, the next-generation electronic devices. The
first work on the conductivity enhancement of PEDOT:PSS was reported by Kim
et al. in 2002 [59]. The addition of dimethyl sulfoxide (DMSO) or dimethyl-
formamide (DMF) into PEDOT:PSS aqueous solution can improve the conductivity
of PEDOT:PSS films by one to two orders of magnitude. Since then, many ways
have been developed for the conductivity enhancement of PEDOT:PSS [60–82].
Recent work demonstrated that a treatment of PEDOT:PSS films with inorganic or
organic acids can enhance the conductivity of PEDOT:PSS films to be more than
3000 S cm−1 [83, 84].

8.6.1 Structure of PEDOT:PSS

There are two components, the positively charged PEDOT and negatively charged
PSS, in PEDOT:PSS. Its conductivity is affected by the doping degree, the
microstructure, and amount of PSS. PEDOT is hydrophobic and cannot be directly
dispersed in water. Excess PSS is adopted for the dispersion PEDOT in water and
polar organic solvents [85, 86]. PSS serves for two roles, as the counter anions for
the charge neutralization and as a surfactant to stabilize PEDOT in solvents.
Nevertheless, the presence of insulating PSS can suppress the charge transport and
thus decrease the conductivity of PEDOT:PSS.

PEDOT:PSS aqueous solutions are commercially available from both Heraeus
and Agfa. There are several grades, such as Clevios P and Clevios PH 1000 by
Heraeus, on the market in terms of their conductivity and application. In these
aqueous solutions, the molecular weight of PEDOT is about 1000–2500 g mol−1,
which is much lower than the molecular weight of PSS (*400,000 g mol−1) [87].
The PEDOT chains are thus much shorter than the PSS chains. The Coulombic
attraction among PEDOT and PSS leads to the attachment of short PEDOT chains
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to the long PSS chains. The short PEDOT chains are hydrophobic whereas the long
PSS chains are hydrophilic. Hence, PEDOT:PSS has a necklace structure in water.
Because of the different Coulombic interactions in the polymer chains and different
interactions between the segments of the polymers and water medium, the PSS
segments mainly have two kinds of conformations. For the PSS segments attached
with PEDOT, the Coulombic attraction between the positively charged PEDOT and
negatively charged PSS is stronger than the repulsions among the PSS anions. They
thus have a coil conformation (Scheme 8.3). These PSS segments form blobs to
keep PEDOT from contacting water. There is a core/shell structure for the blobs.
The core is rich in the hydrophobic PEDOT, whereas the shell is rich in the
hydrophilic PSS. However, the PSSH segments that do not attach to PEDOT have a
different conformation. These PSSH segments are in excess because their role is not
concerned with charge balance. They dissociate into PSS anions and protons in
water. Owing to the Coulombic repulsions among the PSS anions, they adopt a
linear conformation so that the PSS anions have the greatest separation. The linear
PSS segments behave as strings between the blobs. In addition, the blobs are
separated as far as possible in order to lower the repulsion arising from the PSS
anions in the shell of each blob. This necklace structure in water is conserved in the
as-prepared PEDOT:PSS films. The shell that is rich in the insulating PSS con-
structs an energy barrier which inhibits the charge transport across the conductive
PEDOT chains. The PEDOT conformation also affects the charge transport. A
linear conformation is favorable for the charge transport. However, the PEDOT
chains in the shell have to follow the coil conformation of PSS. The coil confor-
mation causes the localization of the charge carriers. Both the excess PSS and coil
PEDOT conformation are seen as the reasons for the low conductivity of as-
prepared PEDOT:PSS films.

8.6.2 Conductivity Enhancement by Adding Compounds
to PEDOT:PSS Aqueous Solution

In 2002, Kim et al. [59] found that the addition of a polar organic solvent, such as
DMSO, DMF, or tetrahydrofuran (THF), to Clevios P PEDOT:PSS aqueous
solution could lead to the conductivity enhancement of the PEDOT:PSS films. The
conductivity was enhanced by about two orders of magnitude at room temperature

Scheme 8.3 Schematic structure of PEDOT:PSS in water. The thin and thick curves represent the
PSS and PEDOT chains, respectively. Reproduced from [72]
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by adding DMSO. The conductivity enhancement is less by adding DMF or THF.
However, the charge transport has the same mechanism of charge hopping for the
pristine and treated PEDPOT:PSS films as revealed by the temperature dependences
of the resistance. In 2002, Ouyang et al. [88] also added polyoxyethylene(12)
tridecyl ether, a nonionic surfactant, into PEDOT:PSS aqueous solution. However,
the surfactant was used to improve the wettability of PEDOT:PSS aqueous solution
on plastic substrate. They did not report whether the addition of the surfactant
affected the conductivity of PEDOT:PSS. Later, it was found that the nonionic
surfactant could also enhance the conductivity of PEDOT:PSS by a factor of about
20 [64].

Since then, many methods have been developed for the conductivity enhance-
ment of PEDOT:PSS. Apart from DMSO, DMF, and THF, many other organic
solvents or organic solids were also used to enhance the conductivity of PEDOT:
PSS. It was reported that polar organic solvents with high boiling point, including
ethylene glycol (EG), nitromethanol, glycerol, and other organic solvents with
multiple hydroxyl groups, can significantly enhance the conductivity to about
200 S cm−1 for PEDOT:PSS prepared from Clevios P aqueous solution. The
addition of organic solids such as D-Sorbitol can enhance the conductivity of
PEDOT:PSS to a similar degree as the organic solvents with high boiling point. The
conductivity of PEDOT:PSS prepared from the Clevios PH1000 aqueous solution
can reach 600–700 S cm−1 by adding EG or DMSO [75]. Untreated Clevios P and
Clevios PH1000 are two grades of PEDOT:PSS aqueous solutions supplied by
Heraeus. The as-prepared PEDOT:PSS films from these two solutions have almost
the same conductivity of about 0.3 S cm−1. However, after the same treatment, the
conductivity of the PEDOT:PSS films prepared from Clevios PH1000 is usually
higher than that from Clevios P by about one order of magnitude. The different
conductivities for the treated PEDOT:PSS films are ascribed to the different
PEDOT molecular weights in the two grades of PEDOT:PSS aqueous solution [78].
The PEDOT chains in Clevios PH1000 have a higher molecular weight than in
Clevios P.

Room-temperature ionic liquids are nonvolatile solvents. They were also
investigated for the conductivity enhancement. It was observed that the structure
and concentration of the ionic liquids affected the conductivity enhancement of
PEDOT:PSS [64]. When 1-butyl-3-methylimidazolium tetrafluoroborate tetrafluo-
roborate [(BMIm)BF4] or 1-butyl-3-methylimidazolium bromide [(BMIm)Br] was
added into Clevios P aqueous solution, the maximum conductivity of PEDOT:PSS
was higher than 100 S cm−1. The optimal concentration of the ionic liquids is 40–
70 % by weight. Badre et al. [89] recently studied the conductivity enhancement
through the addition of ionic liquids into Clevios PH1000 aqueous solution. They
observed a conductivity as high as 2084 S cm−1 when 1-ethyl-3-methylimidazolium
tetracyanoborate (EMIM-TCB) was used. They observed a transmittance of 96 %
for the highly conductive PEDOT:PSS films with a thickness of about 96 nm.

Surfactants have both hydrophobic and hydrophilic units. They were also added
into PEDOT:PSS aqueous solution. The addition of polyoxyethylene(12) tridecyl
ether, a nonionic surfactant, into PEDOT:PSS aqueous solution can enhance the
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conductivity of PEDOT:PSS by a factor of 20 [65, 88]. Besides nonionic surfac-
tants, ionic and cationic surfactants were also studied for the conductivity
enhancement of PEDOT:PSS. When an anionic surfactant is added, the conduc-
tivity enhancement is more than two orders of magnitude (Fig. 8.4). However, the
conductivity enhancement is negligible when a cationic surfactant is added. Anionic
surfactants, particularly fluoro-containing surfactants, were also studied for the
conductivity enhancement of Clevios PH1000 [90–92]. Zonyl was added into the
Clevios PH1000 aqueous solution [90, 91]. Not only can it enhance the conduc-
tivity of the PEDOT:PSS films—it also improves the coating of the Clevios
PH1000 aqueous solution on elastomers.

8.6.3 Conductivity Enhancement of PEDOT:PSS Through
a Post-coating Treatment

As well as by the addition of compounds into the PEDOT:PSS aqueous solution,
the conductivity of the PEDOT:PSS films can be increased through a post-coating
treatment. Ouyang et al. [61] reported the conductivity enhancement through the
treatment with EG or DMSO. The conductivity enhancement is similar for the two
methods when organic compounds such as EG and DMSO are used. However, the
conductivity enhancement is quite different when some other compounds, for
example salts, cosolvents, and acids, were exploited. Although a post-coating
treatment with these compounds can significantly enhance the conductivity of

Fig. 8.4 Variations of the conductivity of PEDOT:PSS films with the molar ratio of the anionic
surfactant to the PEDOT repeating unit in PEDOT:PSS aqueous solution. The additives are
a sodium dodecyl sulfate (SDS), b sodium tosylate, and c dodecylbenzenesulfonic acid sodium
salt. Reproduced from [65]
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PEDOT:PSS films, the conductivity enhancement is negligible if they are added
into the PEDOT:PSS aqueous solution [69–73]. The post-coating treatment also has
the advantage of easy removal of the compounds from the final PEDOT:PSS films
after the treatment.

Organic solvents with multiple hydroxyl groups, such as EG or glycerol, have
been extensively investigated for conductivity enhancement of PEDOT:PSS. Similar
conductivity enhancement can be achieved when geminal diols that have two
hydroxyl groups on one carbon atom are used to treat PEDOT:PSS.
Hexafluoroacetone (HFA), which could hydrolyze into a geminal diol with water,
was adopted to enhance the conductivity of PEDOT:PSS films prepared from
CleviosTM PH1000 [75]. The conductivity of the PEDOT:PSS films was enhanced
from 0.3 to 1164 S cm−1 after the treatment with HFA·3H2O. It even reached higher
than 1300 S cm−1 by treating the PEDOT:PSS films with HFA·3H2O three times.

Apart from HFA·3H2O, other geminal diols were also studied to treat PEDOT:
PSS films prepared from Clevios PH1000. The conductivity enhancement is related
to the formation of the germinal diols. The geminal diol formation constants of
HFA, formaldehyde, and acetone are 106, 103, and 10−3, respectively. The con-
ductivity is enhanced more for the compound with a higher germinal diol formation
constant (Table 8.2).

Alcohols with one hydroxyl group were also investigated for conductivity
enhancement. Chu et al. observed that a post-coating treatment with alcohols could
significantly improve the conductivity of PEDOT:PSS films prepared from Clevios
PH1000 [79]. The conductivity enhancement depends on the chemical structure of
alcohols. It is 1015 S cm−1 when methanol is used for the treatment, whereas it is
only 286 S cm−1 if the polymer films are treated with isobutanol. They also
observed that the alcohol treatment gives rise to a better stability in conductivity
than EG-treated and pristine PEDOT:PSS films.

Vapor of EG was also studied for conductivity enhancement of PEDOT:PSS
film [93]. Na et al. treated PEDOT:PSS films with EG vapor at 150 °C (Fig. 8.5).

Table 8.2 Conductivities of PEDOT:PSS films prepared from CleviosTM PH1000 after treatment
with geminal diols

Name Melting point (°C) Boiling point (°C) Conductivity (S cm−1)a

Cyclohexanehexone
octahydrate

99 345 349 (0.1 M)

HFA trihydrate −129 −28 1164

Formaldehyde −92 −19 862 (122 M)
Acetaldehyde −124 20 83 (18.2 M)

Acetone −95 56 1

Perfluorobenzophenone 90–95 359 0.3 (1 M)

Reproduced from [77]
aConductivity of PEDOT:PSS after treatment with a neat compound or aqueous solution of a
compound with the highest concentration. The concentrations of aqueous solutions used for the
treatments are presented in parentheses
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Longer vapor treating time leads to higher conductivity of PEDOT:PSS films. The
conductivity was higher than 1000 S cm−1 after the PEDOT:PSS films were treated
for 120 min.

Kim et al. [74] carried out post-coating treatment on PEDOT:PSS films prepared
from Clevios PH1000 with adding EG (Fig. 8.6). The conductivity of PEDOT:PSS
prepared from Clevios PH1000 is more than 600 S cm−1. It is enhanced to more
than 1400 S cm−1 after the PEDOT:PSS films are further treated with EG vapor.

Salts were studied for conductivity enhancement of PEDOT:PSS films as well
[70, 73]. A treatment of PEDOT:PSS films with aqueous solutions of CuCl2 or
InCl3 improves the conductivity of PEDOT:PSS by more than two orders of
magnitude. The softness parameter of the cation of the salts is a key factor for
conductivity enhancement (Table 8.3). When a salt, whose cation has a positive
softness parameter, such as InI3, InBr3, InCl3, CuCl2, Cu(ClO4)2, or CuBr2, is used,
the conductivity enhancement is significant. In contrast, when a salt, whose cation
has a negative softness parameter, such as NaCl, MgCl2, or NaiCl2 is used, there is
no remarkable conductivity enhancement. In terms of the definition of the softness
parameter, the softness parameter of an ion implies the binding energy of this ion to
other species [94]. A cation with a negative (or positive) softness parameter is a
hard (or soft) Lewis acid. The softness parameters of cations are thus related to the
binding strength between the cations and PSS. The experimental results indicate
that the conductivity enhancement of the PEDOT:PSS films by the salt treatment is
related to interaction between the metal ions of the salt and the PSS anions of
PEDOT:PSS.

Apart from the cation, the anion of the salts also affect conductivity enhance-
ment. An example is the treatment with Cu2+ salts. Treatment with CuSO4 enhances
the conductivity of PEDOT:PSS by about one order of magnitude, whereas treat-
ment with Cu(CH3COO)2 hardly affects the conductivity of PEDOT:PSS. Further
investigation suggests that the conductivity of PEDOT:PSS is not very consistent
with the softness parameter of the anions but it is really consistent with the

Fig. 8.5 Variation of the conductivity of PEDOT:PSS films treated with polar solvent vapor with
treating time. The inset schematically illustrates the treatment process. Reproduced from [93]
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association constant of the anions with proton. As the association constant can be
expressed with the acid association constant (Ka) in the reversal process, the con-
ductivity enhancement of PEDOT:PSS by the salt treatment is ascribed to the
association of the cations with PSS anions and the association of the cations with
PEDOT cations. The associations of the cations and anions with PEDOT:PSS can
screen the Coulombic attraction between the PEDOT and PSS chains.

Fig. 8.6 Variations of the
conductivity, transmittance
and film thickness of PEDOT:
PSS films treated with EG
with respect to a EG
concentration and b solvent
post-treatment time (PEDOT:
PSS doped with 6 vol.% EG).
The error bars represent the
standard deviation from
several measurements.
Reproduced from [74]

Table 8.3 Conductivities of PEDOT:PSS films after treatment with 0.1 M solution of a salt

Salt Softness parameter
of metal iona

Softness parameter
of aniona

Conductivity
(S cm−1)

AgNO3 +0.18 +0.03 7.4

CuCl2 +0.38 −0.09 29.0

InCl3 +0.48 −0.09 95.5

LiCl −1.02 −0.09 0.6

NaCl −0.75 −0.09 1.5

MgCl2 −0.41 −0.09 0.2

NiCl2 −0.11 −0.09 0.3

Reproduced from [45]
aSoft parameters are obtained from [94]
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Small amount of ions can remain in PEDOT:PSS films after a salt treatment.
These ions can diffuse under electric field into other parts of electronic devices and
cause deterioration of the device performance. To solve this problem, zwitterions
which have both positive and negative charges in the same molecules are used to
enhance the conductivity of PEDOT:PSS. Three zwitterions were used by Xia et al.
[71] to treat PEDOT:PSS films prepared from Clevios P. Similar to the treatment
with CuCl2 solution, the conductivity of PEDOT:PSS can be significantly enhanced
by zwitterions.

PEDOT:PSS has the two components, PEDOT and PSS. They have different
hydrophilicities. These give them different interactions with solvents of different
polarities. A cosolvent can be formed by solvents of different polarities. Cosolvents
of water with several organic solvents, including methanol, ethanol, isopropyl
alcohol (IPA), acetonitrile (ACN), acetone, and THF, were investigated to treat
PEDOT:PSS prepared from Clevios P (Fig. 8.7) [72]. The conductivity of PEDOT:

Fig. 8.7 Variation of the
conductivities of PEDOT:PSS
films treated with cosolvents
of water and organic solvents
with the volume percentage of
the organic solvents:
a methanol, ethanol, IPA;
b ACN, acetone, and THF.
Reproduced from [72]
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PSS reached almost 100 S cm−1 at the optimal composition with about 80 vol.%
organic solvent. Preferential solvations of PEDOT and PSS with the organic solvent
and water are proposed for the conductivity enhancement.

A cosolvent can also be formed by a polar organic solvent with a nonpolar
organic solvent. This type of cosolvent was also studied for conductivity
enhancement of PEDOT:PSS films. When PEDOT:PSS films prepared from
Clevios P were treated with a cosolvent of methanol and 1,2-dichlorobenzene, their
conductivity hardly changed after the treatment. Nevertheless, a similar treatment
for PEDOT:PSS films prepared from Clevios P VP Al 4083 can significantly
enhance the conductivity [76]. At the optimal ratio of methanol to 1,2-dichloro-
benzene, the conductivity increased from 10−3 S cm−1 to almost 10 S cm−1. These
results suggest that the preferential solvations of PEDOT and PSS are affected by
the compositions of PEDOT:PSS.

The mechanism for the conductivity enhancement of PEDOT:PSS suggests that
treatment can cause phase segregation between PEDOT and PSS. The phase seg-
regation can take place when the Coulombic attraction between PEDOT and PSS is
lowered. As discussed above, various compounds can screen the Coulombic
attraction, so they can significantly enhance the conductivity of PEDOT:PSS. Phase
segregation can also occur through the protonation of PSS, PSS− + H+ → PSSH.
There is no Coulombic attraction between the positively charged PEDOT chains
and neutral PSSH chains, giving rise to the phase segregation between PEDOT and
PSS. Hence, treatment of PEDOT:PSS with acids can also enhance the conduc-
tivity. Various organic and inorganic acids are used to treat PEDOT:PSS films
prepared from Clevios P, and the conductivities are presented in Fig. 8.8 [69].
When oxalic acid or sulfurous acid is used to treat PEDOT:PSS, the conductivity
can be higher than 100 or 200 S cm−1. PEDOT prepared by vapor deposition was
treated with acids by Howden et al. [95] and conductivity enhancement was also
observed.

The conductivity enhancement is presumably caused by the protonation of PSS.
The conductivity enhancement thus depends on the pKa value of the acids. A strong
acid with a low pKa value in principle enhances the conductivity more significantly.
Nevertheless, similar conductivity enhancement was observed on the PEDOT:PSS
films treated with hydrochloric acid and weak organic or inorganic acids (Fig. 8.8).
This is because HCl readily vaporizes during the treatment.

The treatment with sulfuric acid gives rise to very significant conductivity
enhancement. PEDOT:PSS films prepared from Clevios PH1000 were treated with
sulfuric acid (Fig. 8.9). The conductivity increases to about 2400 S cm−1 after a
treatment with 1.5 M H2SO4. When the PEDOT:PSS films are treated with
1 M H2SO4 solution at 160 °C three times, the conductivity is further enhanced to
3065 S cm−1. This conductivity is impressive, because it is higher than that
(*2000 S cm−1) of ITO on plastic and comparable to that (3000–6000 S cm−1) of
ITO on glass.

Moreover, the conduction mechanism of the PEDOT:PSS films significantly
changes after the H2SO4 treatment. Figure 8.10 presents the temperature depen-
dence of the resistances of PEDOT:PSS films before and after treatment. The
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Fig. 8.8 Variation of the
conductivities of PEDOT:PSS
films treated with solutions of
a organic and b inorganic
acids with the acid
concentration. The acids are
acetic acid, propionic acid,
butyric acid, oxalic acid,
sulfurous acid, and
hydrochloric acid.
Reproduced from [69]

Fig. 8.9 Variation of the
conductivities of H2SO4-
treated PEDOT:PSS films
with acid concentration at
160 °C. Reproduced from
[83]
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pristine PEDOT:PSS film exhibits a resistance increase when the temperature is
lowered. Its temperature-dependence agrees well with the one-dimensional variable
range hopping (VRH) model [96],

RðTÞ ¼ R0 exp
T0
T

� �1=2
" #

:

After the H2SO4 treatment, the temperature dependence of the resistance becomes
quite different. The resistance is almost constant from 320 K down to 240 K. It then
increases with lowering temperature. The temperature dependence of the H2SO4-
treated PEDOT:PSS films is consistent with the hopping model only at temperature
below 240 K. The H2SO4-treatment PEDOT:PSS is metallic or semi-metallic at

Fig. 8.10 Variation of the
normalized resistance with
temperature for untreated and
H2SO4-treated PEDOT:PSS
films. a Normalized
resistances versus
temperature. b Analysis of the
temperature dependence of
the resistance of the H2SO4-
treated PEDOT:PSS film with
the one-dimensional VRH
model. The PEDOT:PSS film
was treated with 1 M H2SO4

three times. Reproduced from
[83]
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room temperature. It is rare to observe metallic behavior on solution-processed
conducting polymers.

Although the acid treatment significantly enhances the conductivity of PEDOT:
PSS, it does not affect transmittance in the visible range. As shown in Fig. 8.11, the
three H2SO4-treated PEDOT:PSS films with different thicknesses have high trans-
mittance. For the 66 nm-thick PEDOT:PSS film, which has a sheet resistance of
67 Ω □−1, its transmittance is 87 % at 550 nm. At wavelengths shorter than 500 nm,
the transmittance is higher than 90 %. Although the transmittance decreases a little at
longer wavelength, it is still higher than 80 % at wavelengths longer than 550 nm.
Even for the 109 nm-thick PEDOT:PSS film, which has a sheet resistance of
39 Ω □−1, its transmittance is more than 80 % at 550 nm. The last PEDOT:PSS film
has a thickness close to that (100 nm) of the ITO layer of ITO/PET.

The PEDOT:PSS films treated with sulfuric acid can have high conductivity and
high transparency in the visible range. However, sulfuric acid can bring some
problems because it is a strong and corrosive acid. Other acids were investigated for
the conductivity enhancement of PEDOT:PSS films prepared from Clevios
PH1000. It was recently observed that mild organic acids can give rise to similar
conductivity enhancement to sulfuric acid. The conductivity of PEDOT:PSS films
becomes higher than 3300 S cm−1 after treatment with methanesulfonic acid, which
is an organic acid and not corrosive [84]. Methanesulfonic acid treatment has a
similar mechanism for conductivity enhancement to of sulfuric acid treatment. The
acidity of methanesulfonic acid is almost the same as PSSH. However, it can
protonate PSS− into PSSH because PSSH and PEDOT have different hydrophi-
licities. The different hydrophilicities give rise to phase segregation of PSSH from
PEDOT. The driving force for the protonation of PSS− by methanesulfonic acid is
the phase segregation.

The methods used to treat PEDOT:PSS and the conductivities of PEDOT:PSS
are summarized in Tables 8.4 (Clevios P) and 8.5 (Clevios PH1000). The PEDOT:
PSS grade is the dominant factor for conductivity enhancement. The conductivity

Fig. 8.11 Transmittance
spectra of H2SO4-treated
PEDOT:PSS films. The
transmittance spectrum of
ITO/PET is included for
comparison. The sheet
resistance of the ITO/PET is
50 Ω □−1. Reproduced from
[83]
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enhancements for PEDOT:PSS from Clevios PH1000 are much more salient than
from Clevios P.

8.6.4 Mechanisms for the Conductivity Enhancements
of PEDOT:PSS

It took a long time to understand the mechanisms for the conductivity enhancement
of PEDOT:PSS because of the difficulty in observing remarkable changes in its
structure. The absorption of PEDOT:PSS aqueous solution and films almost do not
change in the visible and infrared range. Differential scanning calorimetry (DSC)
and thermal gravimetric analysis (TGA) also do not reveal any structural change
induced by the treatments. Among the different mechanisms proposed for

Table 8.4 Conductivities of PEDOT:PSS (Clevios P) treated with various methods

Method Compound σ (S cm−1) References

Addition into solution DMSO
EG
DMF
D-Sorbitol

30–250 [59–82]

Ionic liquids Up to 100 [64]

Anionic surfactants Up to 100 [65]

Post treatment DMSO
EG

Up to 250 [61]

Salts Up to 230 [70, 73]

Zwitterion Up to 100 [71]

Water/organic cosolvents Up to 100 [72]

Acids Up to 230 [70, 95]

Table 8.5 Conductivities of PEDOT:PSS (Clevios PH1000) treated with various methods

Method Compound σ (S cm−1) References

Addition into solution DMSO
EG

600–700 [75]

Ionic liquids Up to 2084 [89]

Fluorosurfactants Hundreds [90, 91]

Post treatment DMSO
EG

600–700 [75]

Geminal diols Up to 1300 [75]

Alcohols Up to 1000 [79]

DMSO vapor *1000 [93]

Acids >3000 [83, 84]

Addition + post treatment EG *1460 [74]
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conductivity enhancement, the treatment-induced phase segregation between
PEDOT and PSS is believed to the major reason. It can cause the removal of some
PSS chains from the PEDOT:PSS films and the change in the conformation of the
PEDOT chains.

Jönsson et al. [67] employed X-ray photoelectron spectroscopy (XPS) to study
the effect of sorbitol and 1-methyl-2-pyrrolidinone (NMP) on the composition of
PEDOT:PSS films. The change in the S 2p signals suggested the wash-away of
some PSS chains from the surface region of the PEDOT:PSS films after the
treatment. Crispin et al. [97] also used XPS to investigate the mechanism for the
conductivity enhancement by adding EG into PEDOT:PSS aqueous solution. Their
results confirmed the removal of PSS from PEDOT:PSS. Figure 8.12 presents the
XPS spectra of the PEDOT:PSS films with and without EG in the PEDOT:PSS
aqueous solutions. The S 2p XPS bands in the range 163–167 eV originate from the
S atoms on PEDOT. With respect to the S 2p XPS bands of PSS, the EG treatment
induces the increase in the intensity of the S 2p bands of PEDOT. In another word,
the loading of PSS in the PEDOT:PSS film decreases after the EG treatment. This is
attributed to the wash-away of some PSS from PEDOT:PSS.

The UV-visible absorption spectroscopy confirms the treatment-induced
removal of some PSS chains from the PEDOT:PSS films. Figure 8.13 presents the
UV-visible absorption spectra of PEDOT:PSS films with and without CuCl2
treatment [70]. The absorption in the infrared and visible range hardly changes after
the treatment. In contrast, the treatment induces a remarkable decrease in the
intensities of the two absorption bands in the UV range, which originate from the
benzene rings of PSS. The drop in the two absorption bands confirms that the CuCl2
treatment induces the removal of some PSS from PEDOT:PSS.

In addition, the treatment induces the change in the conformation of the PEDOT
chains. However, it is hard to obtain any solid evidence for the conformational
change by both DSC and UV-visible absorption spectroscopy. In early works, only

Fig. 8.12 S 2p XPS bands of
PEDOT with the EG-to-
PEDOT/PSS weight ratio.
The intensities were
normalized to the S 2p XPS
band of PSS. Reproduced
from [97]

380 Y. Xia and J. Ouyang



amorphous XRD patterns were observed on pristine and treated PEDOT:PSS films.
Recently, Takano et al. [98] observed nanocrystal structure by wide-angle X-ray
scattering on PEDOT:PSS after the EG treatment. Pristine PEDOT:PSS films
exhibited only broad bands, whereas a relatively sharp band was observed at
q = 18.5 nm after the EG treatment.

The Raman spectroscopy also provided solid evidence for the treatment-induced
conformational change of PEDOT chains [61]. As shown in Fig. 8.14, the Raman
band between 1400 and 1500 cm−1 is assigned to the stretching vibration of Cα-Cβ

on the five-member ring of PEDOT. After the EG treatment, this Raman band shifts
to red and becomes narrower. Thus, the EG treatment induces the change of the

Fig. 8.13 UV-visible-NIR absorbance spectra of PEDOT:PSS films before (solid curve) and after
the treatment with 0.1 M MgCl2 (dashed dotted curve), 0.1 M NaCl (dotted curve), and
0.1 M CuCl2 (dashed curve) solution. Reproduced from [70]

Fig. 8.14 Raman spectra of a
PEDOT:PSS film a before
and b after the EG treatment.
The wavelength of the
excitation laser is 632.8 nm.
Reproduced from [61]
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resonant structure of PEDOT chain from a benzoid to a quinoid structure
(Scheme 8.4). For a coil conformation, the benzoid structure can be the favorite
structure, whereas the favorite structure for a linear or expanded-coil conformation
may be the quinoid structure. The Raman spectra thus imply the treatment-induced
change of some PEDOT:PSS chains from the coil conformation into linear or
expanded-coil conformation.

The treatment-induced conformational change is further evidenced by the
electron spin resonance (ESR). The g-value does not change. However, the inte-
grated ESR intensity of PEDOT:PSS decreases to about 50 % after the EG treat-
ment. The ESR signal is produced by the polarons on PEDOT. Because a polaron
has a spin of 1/2 whereas a bipolaron is spinless [99], roughly half of the polarons
in the PEDOT:PSS film turn to bipolarons after the EG treatment. Because bipo-
larons are more delocalized on PEDOT than polarons, the change of polarons into
bipolarons suggests the conformational change from the coil to linear or expanded-
coil structure. The charges on the PEDOT chains become more delocalized after the
EG treatment (Fig. 8.15).

Scheme 8.4 Transformation of the PEDOT chain from the benzoid to quinoid structure. The ‘·’
and ‘+’ signs represents an unpaired electron and positive charge on the PEDOT chain,
respectively. Reproduced from [61]

Fig. 8.15 ESR signal of
pristine (solid line) and EG-
treated (dash line) PEDOT:
PSS films at 300 K.
Reproduced from [61]
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8.7 Application of PEDOT:PSS for Optoelectronic Devices

The application of PEDOT:PSS in electronic devices is related to its conductivity.
Though PEDOT:PSS has strong potential as the transparent electrode, less con-
ductive PEDOT:PSS is only used as the buffer layer in organic light-emitting diodes
(OLEDs) and organic solar cells (OSCs), because PEDOT:PSS can be used to make
the rough surface of ITO smooth. It can also help the hole injection for OLEDs and
hole collection for OSCs, because it has a work function of ca. 5.0 eV. The molar
ratio of PEDOT to PSS is 1:6 for PEDOT:PSS used for the buffer layer. The highly
excess PSS leads to a low conductivity of 10−3–10−4 S cm−1. The less conductive
PEDOT:PSS was treated with organic solvents and also exploited as the buffer layer
for PSCs [76, 82, 100]. The treatment can improve the photovoltaic efficiency of
PSCs.

It is certainly more important to use PEDOT:PSS directly to substitute ITO as
the transparent electrode of optoelectronic devices. The treated PEDOT:PSS can
have high conductivity, whereas the treatment hardly affects its transparency in the
visible range and its work function (ca. 5.0 eV). A slight increase in the work
function of PEDOT:PSS to 5.35 eV was observed by Na et al. after treatment with
polar solvent vapor [93]. That is attributed to the treatment-induced change on the
vertical structure of PEDOT:PSS films. Highly conductive PEDOT:PSS films have
been reported as a replacement for ITO in the transparent electrode of PLEDs and
PSCs [6–18, 101–105].

The EG-treated PEDOT:PSS films prepared from Clevios P aqueous solution
was adopted as the transparent anode of PLEDs [16]. The current-voltage curves of
a PLED with poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-
PPV) as the active materials are shown in Fig. 8.16. The current density for the
device with EG-treated PEDOT:PSS film as the anode exhibits is quite close to that
with ITO/PEDOT:PSS. In addition, this current is almost three orders of magnitude
higher than the control devices with untreated PEDOT:PSS as the anode.

The PLEDs with an EG-treated PEDOT:PSS film as the transparent electrode
emit light uniformly under external electric field. Figure 8.17 presents the lumi-
nance-voltage curves of such a PLED. An EG-treated PEDOT:PSS 300 nm thick
was used as the transparent electrode. The luminance of the PLED is almost half as
that of the control device with ITO/PEDOT. The low luminance is attributed to the
low transmittance of the 300 nm-thick PEDOT:PSS film. The thickness of the
PEDOT:PSS layer can be lowered by using treated PEDOT:PSS films prepared
from Clevios PH1000. Cai et al. [105] recently reported that OLEDs with EG-
treated PEDOT:PSS films as the transparent electrode could even exhibit a lumi-
nous efficiency and power efficiency higher than those of the control devices with
ITO. They attributed the improvement to the advantageous optical properties of
PEDOT:PSS films over ITO.

Treated PEDOT:PSS films with high conductivity were also studied as the
transparent electrode of PSCs [74, 79, 83, 102–104]. Scheme 8.5 presents the
architecture of a PSC with an H2SO4-treated PEDOT:PSS film as the transparent
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electrode. Because of the high conductivity of the H2SO4-treated PEDOT:PSS film,
it only has a thickness of 70 nm. Figure 8.18 illustrates the current density–voltage
—(J)–(V)—curves of the PSC. The device exhibited high photovoltaic performance
with the short-circuit current (Jsc) of 9.29 mA cm−2, open-circuit voltage (Voc) of
0.59 V, fill factor (FF) of 0.65, and power conversion efficiency (PCE) of 3.56 %.
The photovoltaic performance is only slightly lower than that of the control devices
using ITO anodes. This is ascribed to the lower transmittance of the acid-treated
PEDOT:PSS film than that of ITO in the visible and infrared ranges.

Treated PEDOT:PSS films with high conductivity were also studied as the top
electrode of inverted PSCs. There is a wettability problem, because the active film
of PSCs is hydrophobic whereas PEDOT:PSS aqueous solution is hydrophilic [106,
107]. Two methods were developed to coat PEDOT:PSS on the active organic film

Fig. 8.16 Current–voltage
curves of PLEDs, glass/
anode/MEH-PPV/Ca/Al, with
different anodes: a ITO/
untreated PEDOT:PSS
(40 nm thick); b EG-treated
PEDOT:PSS (300 nm thick);
c untreated PEDOT:PSS
(300 nm thick). Reproduced
from [16]

Fig. 8.17 Luminance–
voltage curves of the PLEDs,
glass/anode/MEH-PPV/Ca/
Al, with different anodes:
a ITO/untreated PEDOT:PSS
(40 nm thick); b EG-treatment
PEDOT:PSS (300 nm thick).
The inset is the chemical
structure of MEH-PPV.
Reproduced from [16]
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of PSCs [102, 108, 109]. One is the addition of surfactant to PEDOT:PSS aqueous
solution, and another is to spray coat PEDOT:PSS aqueous solution. Colsmann
et al. prepared Clevios PH1000 aqueous solution by spray coating on P3HT:PCBM
films for inverted PSCs [109]. Because both electrodes are transparent, the inverted
PSCs are semitransparent and show a photovoltaic effect when they are exposed to
light from either side of the devices. They observed a power conversion efficiency
of about 2 % for the devices illuminated from the front side.

Scheme 8.5 a Architecture
of a PSC with a H2SO4-
treated PEDOT:PSS film to
replace ITO as the transparent
electrode. b Chemical
structures of P3HT and
PCBM

Fig. 8.18 J–V characteristics
of PSCs with ITO and an
H2SO4-treated PEDOT:PSS
film prepared from Clevios
PH1000 as the anodes under
AM 1.5G illumination
(100 mW cm−2). Reproduced
from [83]
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Another interesting application for PEDOT:PSS with D-sorbitol is the trans-
parent electric glue. D-Sorbitol, a solid at room temperature, is adhesive in melting
[17]. D-Sorbitol can be coated on PEDOT:PSS films by solution coating or thermal
deposition. On being heated above the melting point of D-sorbitol, it can glue the
PEDOT:PSS film to other polymer films, including conjugated polymers or plastic
sheets. The melting D-sorbitol can simultaneously enhance the conductivity of
PEDOT:PSS films. The transparent electric glue can play a crucial part in the roll-
to-roll fabrication of polymer optoelectronic devices, which has advantage of low
fabrication cost. PLEDs and PCSs with PEDOT:PSS/D-sorbitol as the transparent
electric glue were fabricated by lamination [17, 104].

8.8 Outlook for Transparent Conducting Polymers

Transparent conducting polymers can have important applications for electronic
devices. PEDOT:PSS is still the most important transparent conducting polymer. It
can have important advantages as the transparent electrode of optoelectronic
devices. The key issue for this application is to enhance significantly the conduc-
tivity of PEDOT:PSS. The addition of polar organic solvents with high boiling
point into the PEDOT:PSS aqueous solutions can enhance the conductivity of
PEDOT:PSS to higher than 200 S cm−1 for Clevios P and 600–700 S cm−1 for
Clevios PH1000. The addition of ionic liquids into the Clevios PH1000 aqueous
solution can further enhance the conductivity to higher than 2000 S cm−1.
Alternatively, the conductivity enhancement can be achieved by a post-coating
treatment. Some compounds such as salts, zwitterions, cosolvents, and acids can
significantly enhance the conductivity by post-coating treatment, but the addition of
these compounds into a PEDOT:PSS aqueous solution hardly affects the conduc-
tivity. Recent results demonstrated that treatment with H2SO4 or methanesulfonic
acid can enhance the conductivity of PEDOT:PSS films prepared from Clevios
PH1000 to more than 3000 S cm−1. This conductivity is even higher than that of
ITO on plastic and comparable to that of ITO on glass.

We believe that the conductivity of PEDOT:PSS can be even higher than that of
ITO on glass if PEDOT:PSS with higher PEDOT molecular weight is developed. In
terms of the comparative study on Clevios P and Clevios PH1000, the conductivity
of the treated PEDOT:PSS films depends on the PEDOT molecular weight.
Moreover, the conductivity of the acid-treated PEDOT:PSS films is significantly
higher even than the highest conductivity of PEDOT polymers doped with small
anions. This implies the potential to develop PEDOT:PSS with even higher con-
ductivity. Furthermore, the knowledge of enhancing the conductivity of PEDOT:
PSS can be very useful for the development of other transparent conducting
polymers. Many low-bandgap conjugated polymers have been developed as the
donor materials for PSCs [103, 104]. However, they have rarely been studied as the
transparent conducting polymers. They can have high transparency in the visible
range after they are oxidized.
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