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6.1            Introduction 

 In the United States, over two-thirds of women of reproductive age have a high 
body mass index (BMI >25 kg/m 2 ), and more than one-third are obese (BMI 
>30 kg/m 2 ) [ 1 ]. Maternal obesity represents signifi cant health risks for both 
mother and child. Pregnant mothers who are obese have an increased risk of 
developing hypertension, preeclampsia, and gestational diabetes. Infants born to 
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obese and gestational diabetic mothers are likely to have greater adiposity, ele-
vated levels of proinfl ammatory cytokines, and insulin resistance [ 2 ]. Children of 
obese mothers are susceptible to childhood obesity and to develop cardiovascular 
disease, type 2 diabetes, and obesity as adults [ 3 ]. Animal models and clinical 
studies suggest that the intrauterine environment plays a critical role in mediating 
the adverse effects of maternal obesity on the offspring and therefore offers a 
unique window of opportunity for intervention. However, few strategies are cur-
rently available for the prevention of obesity or metabolic dysfunction in children 
of obese mothers. Recent studies demonstrate that children born to women who 
had undergone bariatric surgery and weight loss had a lower prevalence of obesity 
compared to their siblings born before surgical weight loss [ 4 ]. Although bariatric 
surgery is limited to morbidly obese patients, this fi nding establishes the impor-
tance of the maternal metabolic environment on the in utero transmission of obe-
sity to the next generation. 

 In the past decade, the search for potentially unifying mechanisms underlying 
the pathogenesis of obesity-associated diseases has revealed a surprisingly close 
relationship between signaling pathways regulating cellular immune response and 
metabolic homeostasis. This has given rise to the concept of “metafl ammation” 
(metabolically induced infl ammation) which refers to a distinct set of infl amma-
tory responses principally triggered by nutrients and metabolites [ 5 ]. In contrast 
to the acute innate immune response induced by microbial stimuli, metafl amma-
tion is characterized by multisystemic chronic low-grade infl ammation leading to 
insulin resistance in several tissues including the adipose, liver, and muscle [ 6 ]. 
While pregnancy itself represents a physiologic infl ammatory state, women enter-
ing pregnancy with preexisting obesity exhibit enhanced systemic infl ammation 
associated with peripheral insulin resistance [ 7 ], which may lead to the develop-
ment of gestational diabetes. In recent years, placental infl ammation has emerged 
as a common observation in these pregnancy disorders [ 8 – 12 ], although the mech-
anisms regulating placental infl ammatory processes in maternal obesity have been 
a matter for debate [ 8 ,  10 ,  11 ]. 

 The human placenta is the direct interface between maternal and fetal circula-
tions. The placenta performs many indispensable tasks including hormone produc-
tion, nutrient transfer, and gas exchange. Optimal placental function is thus 
paramount to support the growth and development of a healthy infant. Maternal diet 
and disease can infl uence placental development and function, leading to changes in 
the supply of nutrients, hormones, and oxygen to the fetus. The placenta therefore 
plays a central role in determining the impact of maternal obesity on fetal develop-
ment and the long-term health of the infant. Clinical studies now indicate that 
maternal obesity is associated with changes in placental function [ 13 – 17 ]. In par-
ticular, placental circulation [ 17 ,  18 ], nutrient transporters [ 13 ,  19 ,  20 ], and meta-
bolic function [ 14 ,  15 ] have been reported to be infl uenced by maternal adiposity. 
Whether these changes are associated with or caused by placental infl ammatory 
processes is currently unclear.  
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6.2     Inflammatory Mechanisms Involved in Metabolic 
Disorders 

 All tissues possess infl ammatory mechanisms which mediate a highly coordinated 
homeostatic response to harmful stimuli. The short-term adaptive infl ammatory 
response is a crucial component of tissue repair involving the integration of multiple 
signals in distinct cells and tissues. However, if left unresolved, long-term infl am-
mation may result in permanent organ damage. The chronic nature of obesity pro-
duces low-grade infl ammation that disrupts metabolic homeostasis over time. An 
adverse in utero environment may place individuals at risk of lifelong metafl amma-
tion predisposing the infant to the development of metabolic syndrome in later life. 

 Insulin resistance is a hallmark of the metabolic syndrome, occurring as a result of 
decreased insulin sensitivity in the adipose, liver, and muscle. To maintain homeostasis, 
insulin secretion from pancreatic β-cells is increased. Over time, β-cells may fail to 
meet the increasing demand for insulin, resulting in hyperglycemia and diabetes. A link 
between infl ammation and insulin resistance was fi rst established by the demonstration 
that TNFα knockout mice were protected against obesity-induced insulin resistance 
[ 21 ]. Compared to wild-type obese mice, TNFα- null obese mice exhibited increased 
insulin signaling in adipose and muscle tissues, improved glucose metabolism, and 
reduced circulating levels of free fatty acids. Indeed, TNFα levels during pregnancy 
predicted maternal insulin resistance even in euglycemic women [ 22 ], and a proinfl am-
matory maternal  milieu  is associated with a number of pregnancy disorders. 

 Infl ammation is initiated by cytokines and pathogen-associated molecular patterns 
(PAMPs), such as carbohydrates, lipoproteins, and lipopolysaccharide components of 
bacterial and fungal cell walls, that stimulate plasma membrane-bound cytokine recep-
tors or toll-like receptors (TLR) to initiate an infl ammatory signaling cascade. These 
signaling pathways in turn activate transcription factors which drive the expression of 
genes which collectively assist in the recruitment and activation of immune cells and 
removal of pathogens and accelerate tissue repair. In recent years, TLR4 has emerged as 
a sensor for both microbial products and nutrients. The archetypal TLR4 agonist is lipo-
polysaccharide (LPS), a component of Gram-negative bacteria cell wall. Interestingly, 
saturated fatty acids (SFAs) acylated in the lipid A moiety of LPS were suffi cient to 
invoke TLR4-mediated biological effects [ 23 ], implicating a role for circulating fatty 
acids in the infl ammatory response. The effect of fatty acids on TLR4 activity depends 
on chain length and saturation [ 24 ]. Saturated fatty acids such as palmitic (C16:0) and 
stearic (C18:0) acid promote TLR4-mediated infl ammatory response, whereas the 
omega-3 polyunsaturated fatty acid (n-3 PUFA) docosahexaenoic acid (C22:6) attenu-
ates TLR4 signaling. Additionally, TLR4 is activated by other endogenous molecules 
especially in response to stress. Otherwise known as danger-associated molecular pat-
terns (DAMPs), these endogenous TLR4 agonists include heat shock proteins, oxidized 
lipids and sterols, and breakdown products of the extracellular matrix [ 25 – 27 ]. 

 TLR4 activates two major signaling pathways, the mitogen-associated protein 
kinase (MAPK) pathways (p38 MAPK and c-Jun N-terminal kinases (JNK)) and 
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nuclear factor kappa B (NF-κB). Activation of JNK results in nuclear translocation 
where it regulates the activity of activating protein-1 (AP-1), a heterodimeric protein 
composed of multiple transcription factors belonging to c-Fos, c-Jun, ATF, and JDP 
families that regulate a vast array of genes. Conversely, NF-κB activation results in 
nuclear translocation of one of its fi ve subunits which directly controls gene transcrip-
tion. Moreover, reports of AP-1 regulation of NF-κB and vice versa suggest signifi cant 
crosstalk between these signaling pathways [ 28 ,  29 ]. Collectively, activation of these 
signaling pathways results in increased transcription of cytokines, such as IL-6, IL-1β, 
and TNFα, which inhibit insulin signaling in many tissues. Research in the last decade 
provides signifi cant evidence for the involvement of these pathways in the initiation, 
propagation, and development of metabolic diseases [ 30 ,  31 ]. Figure  6.1  illustrates an 
overview of the major infl ammatory mechanisms implicated in metabolic disorders.   
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  Fig. 6.1    Regulation of placental infl ammatory response by dietary fatty acids. Saturated and monoun-
saturated fatty acids activate TLR4 leading to downstream infl ammatory pathways JNK and NF-κB. JNK 
activates AP-1 transcription factors, while NF-κB subunits directly translocate to the nucleus and bind 
promoter regions of proinfl ammatory cytokines. Omega-3 fatty acids bind to the GPR120 plasma mem-
brane receptor to inhibit infl ammatory pathways. The intracellular NLRP3 infl ammasome, which is 
responsible for IL-1β maturation, is also activated by dietary fatty acids and inhibited by omega-3 fatty 
acids.  AP-1  activating protein-1,  GPR120  G protein-coupled receptor 120,  IKK-β  inhibitor of nuclear 
factor kappa B kinase,  JNK  c-jun-N-terminal kinase,  MUFA  monounsaturated fatty acid,  NF-κB  nuclear 
factor kappa B,  NLRP3/Infl ammasome  nod-like receptor 3 infl ammasome,  SFA  saturated fatty acid       
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6.3     Placental Inflammation in Maternal Obesity 

 While there have been numerous animal models of maternal obesity in pregnancy 
demonstrating placental infl ammation [ 18 ,  32 – 34 ], we have limited our discussion 
to human studies. Several studies show increased expression of proinfl ammatory 
cytokines IL-6, IL-1β, and TNFα in placental tissues of obese mothers [ 8 ,  10 – 12 ]. 
The mechanism(s) of placental infl ammation in maternal obesity, however, has been 
a source of contention. Analogous to adipose tissues, increased accumulation of 
maternal macrophages in placentas of obese mothers has been reported by some 
investigators [ 9 ,  10 ], while others were unable to show any differences [ 11 ]. 
Similarly, Saben et al. have implicated placental JNK and NF-κB with maternal 
obesity [ 12 ,  35 ], while we could not fi nd any changes in these pathways, but discov-
ered increased STAT3 and p38 MAPK activity in placentas of obese mothers [ 8 ]. 
One possible explanation for these differences may be related to subject selection, 
since maternal obesity is also associated with several comorbidities including 
hypertension and gestational diabetes, conditions potentially more likely to invoke 
a greater multisystemic infl ammatory response than obesity per se. 

 While activation of placental infl ammatory processes in maternal obesity has 
been described [ 8 ,  12 ,  35 ,  36 ], the physiological signifi cance of placental infl am-
mation has not been addressed in adequate detail. Infl ammation of the fetal mem-
branes (chorioamnionitis) is a major risk factor for preterm birth, which may result 
in premature rupture of the membranes (PROM). Recent epidemiological studies 
demonstrate increased risk of preterm deliveries in obese mothers [ 37 ,  38 ]. 
However, it is currently unclear if placental infl ammation associated with maternal 
obesity increases the risk of PROM. Systemic or placental infl ammation may also 
result in endothelial dysfunction. Pre-gravid obesity increases maternal levels of 
markers of endothelial dysfunction [ 39 ] and is associated with impaired vascular 
function in placental arteries [ 17 ]. Consequently, this may impact upon fetal heart 
development, because uteroplacental circulation has been linked with fetal vascu-
lar function [ 40 ]. 

 Previous work from our lab demonstrated that proinfl ammatory cytokines infl u-
ence placental nutrient transport functions [ 41 ,  42 ]. Using concentrations similar to 
circulating cytokine concentrations in obese women, IL-6 and TNFα were shown to 
stimulate amino acid transport activity [ 41 ], while higher concentrations were 
required to stimulate fatty acid uptake into primary trophoblasts [ 42 ]. STAT3 activ-
ity was required for IL-6 (and leptin)-stimulated amino acid uptake [ 41 ,  43 ], while 
our preliminary data suggests a role for p38 MAPK in regulating the TNFα response 
(Aye et al, 2015 unpublished observations). In addition to cytokines, insulin and 
leptin (hormones elevated in maternal obesity) also signifi cantly increase placental 
amino acid transport [ 44 ,  45 ]. Interestingly, IL-1β which is also upregulated in the 
placentas of obese mothers [ 8 ,  10 ,  11 ] was shown to inhibit insulin-dependent [ 46 ] 
and insulin-independent [ 47 ,  48 ] amino acid transport in placental primary tropho-
blasts and trophoblast cell lines. These fi ndings suggest complex interactions 
between proinfl ammatory cytokines and maternal hormones in the regulation of 
placental nutrient transfer to the fetus.  
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6.4     The Emerging Role of Placental Inflammasomes 
in Pregnancy Disorders 

 Infl ammasomes are multi-protein complexes composed of a cytoplasmic receptor, 
an apoptosis-associated speck-like protein (ASC) containing a caspase activation 
and recruitment domain (CARD) adaptor, and pro-caspase-1, which associate upon 
cellular exposure to microbial or endogenous danger signals. Upon activation, the 
infl ammasome complex formation results in caspase-1 maturation leading to pro-
teolytic cleavage of pro-IL-1β into mature IL-1β (Fig.  6.2 ). This is then followed by 
either secretion of IL-1β into the circulation which may lead to systemic infl amma-
tory effects or more locally induced pyroptosis. Currently, six members of the nod- 
like receptor (NLR) family are known to function as “pathogen” or “danger” sensors 
to initiate infl ammasome complex formation. Of these, NLRP3 is best characterized 
for its role in both immune and metabolic disorders.  

 The placenta expresses the cytosolic NLRP1, NLRP3, and NLRC4 [ 49 ], which 
respond to multiple factors associated with both pathogenic and sterile infl amma-
tion. Activation of infl ammasomes in gestational tissues has been reported in a num-
ber of pregnancy complications including preterm birth [ 50 – 52 ], preeclampsia 
[ 53 – 55 ], and microbial infections [ 56 ]. The resulting release of mature IL-1β medi-
ates a myriad of effects in gestational tissues including induction of IGFBP-1 
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  Fig. 6.2    Increased placental infl ammasomes in maternal obesity – regulation by dietary fatty 
acids. ( a ) Representative immunoblot showing caspase-1 activation and increased IL-1β matura-
tion with maternal adiposity. ( b ) Immunoblot demonstrating increased infl ammasome activation 
by oleic and palmitic acid (100 μM) in primary human trophoblasts. ( c ) Immunoblot of decreased 
infl ammasome activation by 50 μM DHA treatment in primary human trophoblasts.  BMI  body 
mass index,  DHA  docosahexaenoic acid,  N  normal,  OW  overweight,  OB  obese,  Cnt  BSA-control, 
 OA  oleic acid,  PA  palmitic acid       
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expression in decidual tissues thereby decreasing the bioavailability of IGF-I in the 
feto-maternal interface and in the maternal circulation [ 57 ] and stimulating placen-
tal production of progesterone [ 58 ], hCG [ 59 ], and activin-A [ 60 ]. Furthermore, 
IL-1β is a highly apoptotic agent in human gestational tissues [ 61 ]. Hence knowl-
edge of the mechanisms governing IL-1β production in the placenta plays a critical 
role in understanding the pathogenesis of several pregnancy disorders. 

 We recently identifi ed increased caspase-1 activation in placentas of women with 
high BMI ([ 62 ] and Fig.  6.2 ), despite no changes in placental NF-κB DNA-binding 
activity. Likewise, expression of the mature IL-1β protein (17 kDa) in placental tis-
sues was also positively correlated with maternal BMI, whereas pro-IL-1β (32 kDa) 
was not signifi cantly altered by maternal BMI. These fi ndings indicate a novel 
mechanism in which IL-1β is regulated at the posttranslational level by maternal 
obesity. We further determined the impact of IL-1β on placental function and dem-
onstrated that IL-1β inhibits insulin signaling and function (as measured by insulin- 
mediated amino acid transport) in primary human trophoblasts [ 46 ]. Inhibition of 
insulin signaling was mediated at the level of the insulin receptor substrate-1 (IRS- 
1), where IL-1β increased the inhibitory serine phosphorylation of IRS-1 (Ser307), 
decreased tyrosine phosphorylation-mediated activation of IRS-1 (Tyr612), and 
reduced total IRS-1 levels. Decreased IRS-1 activity led to inactivation of both the 
PI3K and GRB2 signaling pathways downstream of IRS-1. Taken together, these 
fi ndings suggest that the increased infl ammasome activation in placentas of high 
BMI mothers may lead to decreased placental insulin sensitivity. However, the sig-
nals activating infl ammasomes in these placentas are currently unclear. 

 Because the classical infl ammatory pathways associated with the microbial 
response (namely, NF-κB and JNK) were not altered in the placenta in pregnancies 
complicated by maternal obesity, we hypothesized that placental infl ammasome acti-
vation is a result of DAMPs or nutritional and/or oxidative stress. Robust activation 
of the infl ammasomes requires two signals: a fi rst “priming” signal, which promotes 
NF-κB activity leading to pro-IL-1β expression, and a second “activating” signal that 
activates caspase-1. In the placenta, constitutive NF-κB activity is likely to contrib-
ute to pro-IL-1β expression, whereas caspase-1 activation requires a specifi c event. 
DAMPs including cholesterol crystals, ATP, potassium effl ux, and ceramide initiate 
caspase-1 maturation in many cell types [ 63 ]. However, it is currently unclear if 
DAMPs provide the mechanistic link to placental infl ammasome activation because 
these factors have not been implicated in maternal obesity. On the other hand, mater-
nal obesity is associated with oxidative stress, which may provide the necessary 
signal required for caspase-1 activation [ 12 ,  14 ,  64 ]. Dietary SFAs activate infl am-
masomes in a cell-specifi c manner [ 65 ,  66 ]. In immune cells palmitic acid, but not 
oleic acid, triggered infl ammasome activation [ 67 ]. In contrast, both these saturated 
fatty acids increased caspase-1 activity and IL-1β maturation in cultured primary 
human trophoblast cells (Fig.  6.2 ). This discrepancy is particularly relevant in preg-
nancy because obese mothers typically have high circulating levels of SFA, espe-
cially palmitic acid and monounsaturated fatty acid (MUFA) such as oleic acid [ 68 ]. 
Interestingly, both palmitic and oleic acids are capable of activating TLR4 [ 35 ,  69 ], 
suggesting that these fatty acids stimulate both the necessary pathways required for 
robust infl ammasome activation. Moreover, most Western diets have low levels of 
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long-chain n-3 PUFA – in particular docosahexaenoic acid (DHA) [ 70 ], which has 
previously been shown to prevent infl ammasome activation in macrophages [ 71 – 73 ]. 
Consistent with these reports, our preliminary data demonstrates that DHA decreases 
(pro-)caspase-1 expression thereby attenuating IL-1β maturation (Fig.  6.2 ). The high 
dietary SFA and MUFA combined with low n-3 PUFA may therefore favor infl am-
masome activation in the placentas of high BMI mothers (Fig.  6.3 ). 

 The clinical signifi cance of increased infl ammasome activation leading to IL-1β- 
mediated insulin resistance in the placenta may be substantial. Although, increased 
placental amino acid transport activity has been reported in obese [ 13 ] or diabetic 
mothers [ 74 ], other studies demonstrate either no changes [ 75 ] or reduced transport 
activity [ 76 ,  77 ]. The discrepancy between these reports may be due to the infl am-
matory status of these placentas. It is possible that an increased placental infl amma-
tory response associated with maternal obesity [ 8 ,  10 – 12 ,  35 ] or diabetes [ 78 – 81 ] 
may limit placental insulin-mediated transport, featuring an adaptive mechanism to 
limit excessive fetal growth in the presence of maternal hyperinsulinemia. Providing 
circumstantial support for this concept are reports demonstrating that the infl amma-
tory processes associated with fetal growth restriction also inhibit placental 
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transport activity in pregnancies complicated by malaria, a condition which 
increases the risk of fetal growth restriction [ 48 ].  

 Glyburide is a sulfonylurea agent which stimulates insulin release in the pan-
creas. The use of glyburide in the management of gestational diabetes has been 
actively explored, due to its glucose-lowering effects. While generally considered a 
safe alternative to insulin treatment in gestational diabetes pregnancies [ 82 ], a recent 
meta-analysis demonstrated that glyburide use in pregnancy is associated with 
increased fetal growth [ 83 ]. Although it is currently unclear if the association repre-
sents a cause and effect, it is interesting to note that glyburide is a potent inhibitor 
of infl ammasome activation [ 84 ]. Hence inhibition of infl ammasomes by glyburide 
may reduce IL-1β maturation, resulting in unrestricted insulin signaling in the pla-
centa. Because insulin stimulates placental amino acid transport [ 45 ,  85 ], this may 
result in increased nutrient transfer to the fetus. In vitro studies testing this hypoth-
esis will establish a mechanistic link between glyburide use in pregnancy and fetal 
growth.  

    Conclusions 
 The incidence of maternal obesity and its comorbidities (diabetes and cardiovas-
cular disease) continues to surge, with major public health ramifi cations. Maternal 
obesity not only affects newborn health, but it also impacts the long-term health of 
the child leading to increased risk of childhood obesity and diabetes. Given all the 
evidence for the critical role of the in utero environment for lifelong health, under-
standing the impact of obesity in pregnancy represents a signifi cant challenge, but 
also an intriguing opportunity to improve the health of future generations. Obesity 
is associated with the triad of metabolic complications: insulin resistance, dyslip-
idemia, and infl ammation. Studies in recent years have demonstrated intimate 
links between these metabolic pathways, for example, infl ammation causes insu-
lin resistance and dyslipidemia, and dyslipidemia causes infl ammation and insulin 
resistance. Excess nutrients, in particular dietary fatty acids, have emerged as a 
common instigator of these metabolic complications infl uencing insulin signaling 
and infl ammatory pathways. As an organ of exchange, the placenta is a critical 
mediator of fetal health and is highly responsive to maternal health and diet. We 
recently reported infl ammasome activation in the placentas of high BMI mothers, 
which inhibits placental insulin signaling and nutrient transport function. In vitro 
data suggests that placental infl ammasomes are highly responsive to dietary fatty 
acids, with SFA and MUFA promoting infl ammasome activation and n-3 PUFA 
inhibiting its activity. Future clinical studies are warranted to determine whether 
dietary interventions during pregnancy can impact upon infant and placental 
health by altering placental infl ammatory pathways.     
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