
Multi-Behaviour Robot Control using Genetic

Network Programming with Fuzzy
Reinforcement Learning

W. Wang1, N.H. Reyes1, A.L.C. Barczak1, T. Susnjak1, and Peter Sincak2

1 Massey University, Albany, New Zealand
N.H.Reyes@massey.ac.nz

2 Technical University of Kosiče, Slovakia
peter.sincak@tuke.sk

Abstract. This research explores a new hybrid evolutionary learning
methodology for multi-behaviour robot control. The new approach is an
extension of the Fuzzy Genetic Network Programming algorithm with
Reinforcement learning presented in [1]. The new learning system allows
for the utilisation of any pre-trained intelligent systems as processing
nodes comprising the phenotypes. We envisage that compounding the
GNP with more powerful processing nodes would extend its computing
prowess. As proof of concept, we demonstrate that the extended evo-
lutionary system can learn multi-behaviours for robots by testing it on
the simulated Mirosot robot soccer domain to learn both target pur-
suit and wall avoidance behaviours simultaneously. A discussion of the
development of the new evolutionary system is presented following an
incremental order of complexity. The experiments show that the pro-
posed algorithm converges to the desired multi-behaviour, and that the
obtained system accuracy is better than a system that does not utilise
pre-trained intelligent processing nodes.

1 Introduction

Fuzzy logic, reinforcement learning and evolutionary algorithms constitute a
handful of complementary family of algorithms that found enormous successes
in building cores of intelligence for robots. Firstly, fuzzy logic is a computational
paradigm that provides a mathematical facility for transforming vague linguis-
tic rules into precise real-time control systems. To mention a few, it was used
effectively for smoothly navigating robots and vehicles [2,3], autofocusing cam-
eras, colour correction for object recognition tasks [4] and even automated space
docking of satellites. As the control requirements grow, however, more fuzzy sys-
tems needs to be constructed and calibrated. As demonstrated in [2,5], steering
a robot for target pursuit with obstacle avoidance behaviours and automatic
speed adjustment can be achieved using a cascade of four fuzzy systems with
the guidance of an informed optimal search algorithm, called A*. Building fuzzy
systems necessitate expert knowledge in terms of control rules, and efficient cal-
ibration techniques tailored particularly for the control problem at hand. For
calibrating fuzzy systems for robot navigation, an example can be found in [6].

c© Springer International Publishing Switzerland 2015 151
J.-H. Kim et al. (eds.), Robot Intelligence Technology and Applications 3,
Advances in Intelligent Systems and Computing 345, DOI: 10.1007/978-3-319-16841-8_15

152 W. Wang et al.

Secondly, reinforcement learning is an inherently on-line learning paradigm
that allows robots to learn how to behave well through repeated interaction
with the environment, as conditioned by a reward function. In the course of its
training, a robot is able to learn dynamically a policy for maximising its rewards
in the long run. By combining fuzzy logic and reinforcement learning together
into one hybrid system, the fuzzy rules can be determined automatically on-line
using the mechanics of the RL, without any prior knowledge of the environments
dynamics, while paving the way for attaining optimal behaviour.

Lastly, Genetic Network Programming is a recent advancement over Genetic
Programming [7], allowing for a population of individuals (genotypes) to be rep-
resented using directed graph structures. A phenotype is comprised of three node
types, namely, a start node, processing nodes and judgement nodes. GNP was
introduced in [7] and was previously fused with Fuzzy Logic and RL algorithms
for learning a wall-following behaviour of a Khepera robot [1]. In [1], the fuzzy
logic component was used merely for implementing the fuzzy judgement nodes
of the Fuzzy GNP-RL algorithm. The degree of firing of each membership func-
tion in the judgement node is used as a measure of probability for selecting the
next node during node transitions. Furthermore, the processing nodes tested in
[1] did not make use of more sophisticated trained intelligent systems. Studies
in the literature also indicate that a GNP-RL integration was investigated, but
with findings showing less efficient exploration ability.

This work is an extension of the work presented in [1], and the main chal-
lenge addressed is that of building a hybrid evolutionary learning methodology
for generating intelligence with multi-objective behaviours that allows for the
utilisation of any pre-trained intelligent sub-systems as processing nodes inside
a phenotype. We envisage that compounding the GNP with more powerful pro-
cessing nodes would extend its computing prowess. As proof of concept, we
demonstrate that the extended evolutionary system can learn multi-behaviours
by testing it on the robot soccer domain to learn both target pursuit and wall
avoidance simultaneously during training.

2 Methods

A schematic diagram of the new hybrid evolutionary learning algorithm is
depicted in Fig.1.

2.1 Modified GNP Individual (Phenotype)

The first major change made to the original Fuzzy GNP-RL[1] is that the new
proposed architecture can now accommodate any pre-trained complete intel-
ligent systems as processing nodes within a GNP individual. A sample GNP
individual is given in Fig.2, detailing its composition: start node, simple action-
generator processing nodes, intelligent system processing nodes and judgement
nodes. In the experiments, as a proof of concept, we have set some of the process-
ing nodes to be a Fuzzy-RL system that was pre-trained to learn the ball pursuit

Multi-Behaviour Robot Control using Genetic Network Programming 153

behaviour. This intelligent processing node feeds on an input coming from the
environment (i.e. angle of the robot from the ball) and outputs a precise steering
angle for controlling the robot. The rest of the processing nodes were set to be
simple action-generator nodes. During the GNP evolutionary learning phase, the
Fuzzy-RL processing node is set to run only the Greedy policy for action selec-
tion. The rationale behind this approach is that if you have previously developed
a well-trained intelligent system that can efficiently implement a particular be-
haviour, it can be readily integrated into the hybrid architecture as a processing
node within a GNP individual without requiring any further training for that
particular intelligent processing node. It is the role of the evolutionary mech-
anisms of the GNP to alter the connections between the nodes, and allow for
mutations. On the other hand, during the testing phase, the Fuzzy-RL process-
ing node employs only the e-greedy policy for action selection; thus, allowing for
immediate adaptation to a dynamically changing environment.

The design of the composition of the processing nodes was suited to the prob-
lem domain. As can be viewed from an example in Fig.3, six different processing
node types were defined corresponding to six different behaviours. The first four
processing nodes are all related to wall avoidance actions, one per wall. On the
other hand, the fifth processing node is for adjusting the speed accordingly, hav-
ing the ball distance as input. Finally, the last processing node type corresponds
to the the Fuzzy-RL algorithm trained for ball pursuit.

There are two types of judgement nodes used within the GNP individual (see
the hexagonal nodes in Fig.3). The first one is used for judging the angle of the
robot in relation to the ball, while the second type is used for finding which
of the four walls is closest to the robot. An execution time of zero is set for
the judgement nodes as they do not execute any robot actions - based on the
decision made, the next node can be executed soon after the judgement node
finishes. The problem specific settings can be viewed from Fig.3.

2.2 Node Execution Time Component

The second major change done to the system is the new implementation of
the execution time (referred to as ”‘time delay”’ in the original GNP [8]) of each
node comprising a GNP individual. To illustrate how the execution time of nodes
works, referring to the example in Fig.2, according to the time allotment, the
Fuzzy-RL node will execute 5 complete times of ball pursuit behaviour before
transitioning to the next node (which is the judgement node, in the example).
It is important to note that the actual nodes executed within an individual
GNP relies solely on what the robot is experiencing while interacting with the
environment. The decisions selected by the judgement nodes dictate the flow
of control. As for evaluating the performance of a GNP individual, there is a
pre-defined maximum training time used.

154 W. Wang et al.

Simulation

Time step

If (node execs

enough time steps)

no

yes

Keep the

current node

Go to next

node

Execute node
Time steps >

maximum?

no

yes

Evaluation phase

Select GNP

Individual N
N > max
Population?

no

yes

Mutation

Crossover

Save Elites

Last

generation?
STOP

yes

Start

Generation X

Initialize population

Load the trained

Fuzzy-RL instance

no

Fig. 1. Schematic diagram of the GNP with Fuzzy-RL node

Fig. 2. A sample of the modified GNP individual used in this research

2.3 Fitness of a GNP Individual

The fitness function (Algorithm 1) was tailored specifically to the desired multi-
behaviour, as it is the basis for selecting the best GNP individuals. It consists of
three parts: the ball pursuit behaviour fitness, the speed control fitness and the
wall avoidance fitness. Note that the parameters, (e.g. thresholds for Distance-
FromBall and speed) can all be adjusted in the algorithm.

Multi-Behaviour Robot Control using Genetic Network Programming 155

Require: Thresholds for: Speed S1, S2, S3, S4; Distance from ball Db1, Db2, Db3;
Fitness adjustment Fa1, Fa2, Fa3, Fa4, Fa5, Fa6; Distance from Wall Dw1, Dw2;

1: individual starts
2: Fitness = 0
3: repeat {each time step}
4: if DistanceFromWall < Dw1 then
5: if AngleFromWall <= −90 or AngleFromWall > 90 then
6: Fitness+ = (Fa1 +BallPursuitReward)
7: else
8: Fitness+ = BallPursuitReward
9: end if
10: end if
11: if (DistanceFromBall < Db1 and speed == S1) or

(Db1 <= DistanceFromBall < Db2 and speed == S2) or
(Db2 <= DistanceFromBall < Db3 and speed == S3) or
(DistanceFromBall >= Db3 and speed == S4) then

12: Fitness+ = Fa2

13: end if
14: if DistanceFromWall < Dw2 then
15: Fitness− = Fa3

16: end if
17: if Robot moves away from the ball then
18: Fitness− = Fa4

19: end if
20: until time steps exceeded the maximum training time for one individual
21: Fitness+ = Fa5 − Fa6 ∗DistanceFromBall
22: individual training ends

Algorithm 1. Fitness Function. The following thresholds were found empir-
ically: S1=0.5, S2=1.0, S3=1.5, S4=2.0, Db1=10, Db2=20, Db3=50, Fa1=20,
Fa2=6, Fa3=50, Fa4=15, Fa5=500, Fa6=10, Dw1=20, Dw2=15.

Lastly, a hill climbing algorithm is employed in tandem with the evolutionary
learning of GNP (see line 15 of Algorithm 2). Its job is to explore the different
ways of connecting the nodes using a greedy approach, to further improve an
individual’s fitness. As this greedy search is very time-consuming, it is employed
only to a few top GNP individuals, after every 10 generations, or so. This can
also be employed when the top fitness of the population is no longer improving
after a number of generations.

2.4 Experiment Results and Discussion

The experiments were carried out using our own simulation of the robot soccer
platform, using simplified physics, which includes both collision and friction. Util-
ising the proposed fitness function (Algorithm 1), and the following GNP param-
eters: population size: 200, number of mutations: 77, number of crossovers: 120,
tournament size: 5, probability of mutation: 0.1 and probability of crossover: 0.5.

156 W. Wang et al.

1: Load trained Fuzzy-RL instance into the GNP individual
2: Initialise the population
3: repeat {for each generation}
4: repeat {for each individual}
5: repeat {for each time step}
6: Execute current node
7: Update environment
8: Update fitness of individual
9: if there is enough time steps for this individual then
10: go to next node
11: end if
12: until time steps exceeded the max value of individual
13: Calculate final fitness of individual
14: until all individuals have been evaluated
15: Apply hill-climbing algorithm for elites {e.g., top 3 individuals}
16: Keep elites, select more individuals using tournament selection
17: Apply Mutation Operation
18: Apply Crossover Operation
19: until maximum generation is reached

Algorithm 2. GNP with Trained Fuzzy-RL

The hybrid evolutionary algorithm was run for at least 50 generations onwards,
per experiment.

Our first initial training results did not readily give us a good solution. Even
after 200 generations, the best individual ran in circles. This compelled us to
increase the number of instances for each type of nodes within a GNP individual,
to allow the GNP to generate more variations in the phenotypes.

Consequently, after many experiments, it was observed that identifying the
final best GNP individual necessitates picking at least the top 5 elites and eval-
uating them visually. The best performing individual that completely succeeded
in meeting the desired behaviour; that is, ball pursuit with wall avoidance be-
haviour and automatic speed adjustment, garnered a fitness of at least 4,000,
using Algorithm 1. Interestingly, as depicted in Fig. 4, the best trained robot
never makes a mistake of colliding against any of the four walls, while follow-
ing the ball. The robot is the red square (with yellow lines) and the ball is the
little red circle.The dotted red line indicates the path of the ball, while the dot-
ted white lines indicate the path of the robot. Although it is difficult to see in
the static pictures, the robot smoothly follows the ball and adjusts speed very
rapidly. The space between the dots allows for tracing the variations in speed. In
general, the robot behaves in such a way that when the ball gets too close to one
of the walls, the robot avoids it; nevertheless, it kept trying to hit the ball, in a
somewhat Brownian movement in the region where the ball is. A recorded video
of the experiment testing how well the trained robot behaves can be viewed from
the following link: http://youtu.be/woqMnbO-CKg

Multi-Behaviour Robot Control using Genetic Network Programming 157

Processing

Node

Speed control

Judgement

Node for

Angle

Judgement

Node for

walls

Processing

Node

Avoid wall 1

Processing

Node

Avoid wall 2

Processing

Node

Avoid wall 3

Processing

Node

Avoid wall 4

Not a wall

Processing

Node

Navigation

Start Node If angle
in [-0.5,0.5]

If angle>0.5

or angle <-0.5

Which wall?

Fig. 3. Sample GNP individual with minimum number of nodes

Fig. 4. An example of the general performance of a good individual

158 W. Wang et al.

3 Conclusion

This work proposes a new hybrid evolutionary learning methodology that allows
for the integration of any pre-trained intelligent system into the previous Fuzzy
GNP-RL architecture presented in [1]. The proposed modifications strength-
ens the computing capabilities of the hybrid architecture as it caters for more
complex processing nodes in the composition of the GNP individual. There is
virtually no limitations to the different types of pre-trained intelligent systems
that can be employed as processing nodes in the new architecture. The exper-
iments performed show strong evidences that the new hybrid system can learn
multiple robot behaviours with exceptional results. We envisage that using the
new architecture, more sophisticated robot learning problems can be solved.

References

1. Sendari, S., Mabu, S., Hirasawa, K.: Fuzzy genetic network programming with rein-
forcement learning for mobile robot navigation. In: Proceedings of the IEEE Inter-
national Conference on Systems, Man and Cybernetics, Anchorage, Alaska, USA,
pp. 2243–2248. IEEE (2011)

2. Reyes, N.H., Barczak, A.L., Susnjak, T., Sincák, P., Vašcák, J.: Real-Time Fuzzy
Logic-based Hybrid Robot Path-Planning Strategies for a Dynamic Environment.
In: Efficiency and Scalability Methods for Computational Intellect, pp. 115–141. IGI
Global (2013)

3. Vascák, J., Reyes, N.H.: Use and perspectives of fuzzy cognitive maps in robotics.
In: Papageorgiou, E.I. (ed.) Fuzzy Cognitive Maps for Applied Sciences and Engi-
neering. ISRL, vol. 54, pp. 253–266. Springer, Heidelberg (2014)

4. Reyes, N.H., Dadios, E.P.: Dynamic color object recognition using fuzzy logic.
JACIII 8(1), 29–38 (2004)

5. Gerdelan, A., Reyes, N.: Synthesizing adaptive navigational robot behaviours using
a hybrid fuzzy a* approach. In: Reusch, B. (ed.) Computational Intelligence, Theory
and Applications, vol. 38, pp. 699–710. Springer, Heidelberg (2006)

6. Reyes, N.H., Barczak, A.L.C., Susnjak, T.: Tuning fuzzy-based hybrid naviga-
tion systems using calibration maps. In: Kim, J.-H., Matson, E., Myung, H.,
Xu, P. (eds.) Robot Intelligence Technology and Applications. AISC, vol. 208,
pp. 713–722. Springer, Heidelberg (2013)

7. Hirasawa, K., Okubo, M., Katagiri, H., Hu, J., Murata, J.: Comparison between
genetic network programming (gnp) and genetic programming (gp). In: Proceedings
of the 2001 Congress on Evolutionary Computation, vol. 2, pp. 1276–1282 (2001)

8. Katagiri, H., Hirasama, K., Hu, J.: Genetic network programming - application to
intelligent agents. In: IEEE International Conference on Systems, Man and Cyber-
netics, vol. 5, pp. 3829–3834 (2000)

	Multi-Behaviour Robot Control using Genetic
Network Programming with Fuzzy Reinforcement Learning
	1 Introduction
	2 Methods
	2.1 Modified GNP Individual (Phenotype)
	2.2 Node Execution Time Component
	2.3 Fitness of a GNP Individual
	2.4 Experiment Results and Discussion

	3 Conclusion
	References

