
A Hierarchical WENO Reconstructed
Discontinuous Galerkin Method
for Computing Shock Waves

Y. Xia, M. Frisbey, and H. Luo

1 Introduction

The discontinuous Galerkin (DG) methods[1] have recently become popular for the
solution of systems of conservation laws because of their several attractive features
such as easy extension to and compact stencil for higher-order (> 2nd) approxi-
mation, flexibility in handling arbitrary types of grids for complex geometries, and
amenability to parallelization and hp-adaptation. However, the DG Methods have
their own share weaknesses. In particular, how to effectively control spurious oscil-
lations in the presence of strong discontinuities, and how to reduce the computing
costs and storage requirements for the DGM remain the two most challenging and
unresolved issues in the DGM.

In order to reduce high costs associated with the DGM, Dumbser et al[2] have
introduced a new family of reconstructed DGM, termed PnPm schemes and referred
to as RDG(PnPm) in this paper, where Pn indicates that a piecewise polynomial of
degree of n is used to represent a DG solution, and Pm represents a reconstructed
polynomial solution of degree of m (m≥ n) that is used to compute the fluxes. The
RDG(PnPm) schemes are designed to enhance the accuracy of the discontinuous
Galerkin method by increasing the order of the underlying polynomial solution. The
beauty of RDG(PnPm) schemes is that they provide a unified formulation for both
finite volume and DGM, and contain both classical finite volume and standard DG
methods as two special cases of RDG(PnPm) schemes, and thus allow for a direct
efficiency comparison. When n=0, i.e. a piecewise constant polynomial is used to
represent a numerical solution, RDG(P0Pm) is nothing but classical high order finite
volume schemes, where a polynomial solution of degree m (m > 1) is reconstructed
from a piecewise constant solution. When m=n, the reconstruction reduces to the
identity operator, and RDG(PnPn) scheme yields a standard DG method.
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The objective of the effort discussed in this paper is to develop a reconstructed
discontinuous Galerkin method based on a Hierarchical WENO reconstruction,
termed HWENO(P1P2)[3] [4] for computing shock waves on 3D hybrid grids. The
HWENO(P1P2) method is designed not only to reduce the high computing costs of
the DGM, but also to avoid spurious oscillations in the vicinity of strong disconti-
nuities, thus effectively addressing the two shortcomings of the DGM. The devel-
oped HWENO(P1P2) method is used to compute a variety of shock wave problems
on hybrid grids to demonstrate its accuracy, robustness, and non-oscillatory perfor-
mance. The numerical experiments indicate that this HWENO(P1P2) method is able
to capture shock waves sharply without any spurious oscillations, and achieve the
designed third-order of accuracy for smooth flows.

2 Numerical Method

The Euler equations governing unsteady compressible inviscid flows can be
expressed in conservative form as

∂U(x, t)
∂ t

+
∂F j(U(x, t))

∂x j
= 0, in Ω (1)

where Ω is a bounded connected domain in Rd , d is the number of spatial dimen-
sion, U is the conservative state vector, and F is the flux function vector.

The governing equation (1) is discretized using a discontinuous Galerkin finite
element formulation. We assume that the domain Ω is subdivided into a collection
of non-overlapping elements Ωe, which can be tetrahedral, prism, pyramid, and hex-
ahedral or their combinations. We introduce the following broken Sobolev space V p

h

V p
h = {vh ∈ [L2(Ω)]m : vh |Ωe∈ [V m

p ]∀Ωe ∈ Ω}, (2)

which consists of discontinuous vector-valued polynomial functions of degree p,
and where m is the dimension of conservative state vector and Vp is the space of
all polynomials of degree ≤ p. To formulate the discontinuous Galerkin method,
we introduce the following weak formulation, which is obtained by multiplying the
above conservation law (1) by a test function Wh, integrating over an element Ωe,
and then performing an integration by parts,

{
find Uh ∈V p

h such as
d
dt

∫
Ωe

UhWhdΩ +
∫

Γe
F j(Uh)n jWhdΓ − ∫

Ωe
F j(Uh)

∂ Wh
∂ x j

dΩ = 0 ∀Wh ∈V p
h ,

(3)

where Uh and Wh are represented by piecewise-polynomial functions of degree p,
which are discontinuous between element interfaces and nk denotes the unit outward
normal vector to Γe: the boundary of Ωe. Assume that Bi is the basis of polynomial
function of degrees p, this is then equivalent to the following system of N equations,
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d
dt

∫
Ωe

UhBidΩ +

∫
Γe

F j(Uh)n jBidΓ −
∫

Ωe

F j(Uh)
∂Bi

∂x j
dΩ = 0 1 ≤ i ≤ N, (4)

where N is the dimension of the polynomial space.
In our work, the numerical polynomial solutions are represented using a Taylor

series expansion at the centroid of the cell. The unknowns to be solved in this for-
mulation are the cell-averaged variables and their derivatives at the center of the
cells, regardless of element shapes. This formulation belongs to the so-called modal
discontinuous Galerkin method and has a number of attractive, distinct, and use-
ful features. For example, cell-averaged variables and their derivatives are handily
available in this formulation, making the implementation of both in-cell and inter-
cell reconstruction schemes straightforward and simple. The use of the same basis
functions for any shapes of elements: tetrahedron, pyramid, prism, and hexahedron
makes the implementation of DGM on arbitrary meshes straightforward.

In comparison with reconstructed FV methods, the DGM have a significant draw-
back in that they require more degrees of freedom, additional domain integration,
and more Gauss quadrature points for the boundary integration, and therefore more
computational costs and storage requirements. On the one hand, the reconstruction
methods that FV methods use to achieve higher-order accuracy are relatively inex-
pensive but less accurate and robust. On the other hand, the DGM that can be viewed
as a different way to extend a FV method to higher orders are accurate and robust
but costly. It is only natural and tempting to combine the efficiency of the recon-
struction methods and the accuracy of the DG methods. This idea was originally
introduced by Dumbser et al[2] in the frame of PnPm scheme, where Pn indicates
that a piecewise polynomial of degree of n is used to represent a DG solution, and
Pm represents a reconstructed polynomial solution of degree of m (m ≥ n) that is
used to compute the fluxes and source terms.

Our reconstructed DG method [3] [4] is based on a Hierarchical WENO recon-
struction, termed HWENO(P1P2), and designed not only to reduce the high com-
puting costs of the DGM, but also to avoid spurious oscillations in the vicinity of
strong discontinuities, thus ensuring the nonlinear stability of the RDG method. In
this HWENO(P1P2) method, a quadratic solution is first reconstructed to enhance
the accuracy of the underlying DG method in two steps: (1) all second derivatives on
each cell are first reconstructed using the solution variables and their first derivatives
from adjacent face-neighboring cells via a strong interpolation; (2) the final second
derivatives on each cell are then obtained using a WENO strategy based on the re-
constructed second derivatives on the cell itself and its adjacent face-neighboring
cells. This reconstruction scheme, by taking advantage of handily available and yet
valuable information namely the gradients in the context of the DG methods, only
involves von Neumann neighborhood and thus is compact, simple, robust, and flex-
ible. As the underlying DG method is second-order, and the basis functions are at
most linear functions, fewer quadrature points are then required for both domain
and face integrals, and the number of unknowns (the number of degrees of freedom)
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remains the same as for the DG(P1). Consequently, this RDG method is more effi-
cient than its third order DG(P2) counterpart. The gradients of the quadratic polyno-
mial solutions are then modified using a WENO reconstruction in order to eliminate
non-physical oscillations in the vicinity of strong discontinuities, thus ensuring the
non-linear stability of the RDG method.

3 Numerical Examples

As illustrative examples, a few numerical results are presented to demonstrate the
accuracy and robustness of this DG method. One of advantages of the present RDG
method is its ability to compute 1D, 2D, and 3D problems using the very same
code, which greatly alleviates the need and pain for code maintenance and upgrade.
Results for one-dimensional problems can be readily obtained by using hexedral
cells and by setting the number of cells in both y- and z-directions to be 2. For two-
dimensional problems, the number of cells in the z-direction is simply set to be 1.
All computations use an explicit three-stage third-order TVD Runge-Kutta scheme
to advance the solution in time.

Example 1: Sod Shock Tube Problem. The first example is the well-known Sod
shock tube problem, which is chosen to demonstrate the ability of the HWENO(P1P2)
method for sharply resolving shock waves without any spurious oscillations.
Figure 1 compares the density and velocity profiles between computed and exact
solutions, respectively.

Fig. 1 Comparison of computed density and velocity profile for Sod shock tube problem by
HWENO(P1P2) solution with the analytical solution

Example 2: Woodward-Collela Blast Wave Problem. The second example is
Woodward-Collela blast wave problem, which is chosen to demonstrate that the
HWENO(P1P2) can produce an essentially non-oscillatory solution for strong blast
waves. Four hundred cells are used in this case, and the computed results are shown
in Figure 2 for the density distribution at t=0.038, where the solid lines are obtained
from the same computation with 4000 cells.
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Fig. 2 Comparison of the computed RDG solutions between coarse and fine meshes for the
Woodward-Collela blast wave problem

Example 3: Shu-Osher Shock-Entropy Wave Interaction Problem. The Shu-
Osher shock-entropy wave interaction problem consists of not only large scales
waves but also shocklets and fine scales structures, thus providing a good test case
for the accuracy and robustness of the HWENO(P1P2) method at different scales.
The computed density distribution at time t = 1.8 obtained by RDG solution is shown
in Figure 3 using 400 cells, where the solution obtained using 2000 grid cells is also
presented for comparison.
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Fig. 3 Comparison of computed density with reference solution for Shu-Osher shock-entropy
wave interaction problem

Example 4: An Incident Shock Past a Wedge. This example is presented to
demonstrate the ability of the HWENO(P1P2) method for computing shock waves
in a two-dimensional setting. The computed density contours for an incident shock
past a wedge using the developed HWENO(P1P2) method is shown in Figure 4,
where one can see that the HWENO(P1P2) method is able to capture wave struc-
tures accurately.

Example 5: A Blast Wave Past a Wall. Finally, a 3D blast simulation past a
wall is presented in Figure 5 to demonstrate that the HWENO(P1P2) method can
be used for solving problems of practical interests for realistic, engineering-type
configurations.
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Fig. 4 Computed density contours for an incident shock Ms=1.3 past a wedge using the
HWENO(P1P2) method.

Fig. 5 Computed pressure contours at different times for an air blast wave past a wall

4 Conclusion

A hierarchical WENO reconstruction-based DG method, HWENO(P1P2), has been
presented for computing shock waves on 3D hybrid grids. A number of numerical
experiments for a variety of shock wave problems have been conducted to demon-
strate the accuracy, robustness, and non-oscillatory performance of the HWENO
(P1P2) method. The numerical results obtained indicate that the HWENO(P1P2)
method is able to provide sharp resolution of shock waves without over- and under-
shoots and achieve the designed third-order of accuracy for smooth flows, without
significant increase in computing costs and memory requirements.
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