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1 Introduction

Shock-induced deformations of solid bodies are of practical interest to those who
are concerned with explosive processing of materials, demolition of buildings, pre-
cautions against accidental explosions, etc. In order to simulate the shock-induced
deformations of solid bodies, a large number of numerical codes based on contin-
uum mechanics, which are called hydrocodes, have been developed so far [1, 2].
When the amount of deformation is relatively small, Lagrangian hydrocodes have
been used to simulate the dynamic response of shock-loaded materials. When the
deformation is large, Eulerian hydrocodes have been utilized instead. This is be-
cause the computational grids distorted along with the deformation of materials in
the Lagrangian approach make the simulations either inaccurate or unstable, while
the Eulerian approach where grids are fixed in space can handle such large defor-
mations of materials. On the contrary, material interfaces that are precisely defined
in the Lagrangian approach are not traced exactly in the Eulerian one.

To resolve the deficiencies of the grid-based methods such as mentioned above,
alternative methods named particle methods have been proposed [3]. In the particle
methods, the governing equations are discretized using moving particles and their
interactions. Driven by interaction forces determined from the discretized form of
the governing equations, each particle moves in Lagrangian coordinates. The advan-
tages of the particle methods are that there is no need to trace the material interfaces
and that the calculation will continue to run regardless of the amount of deforma-
tion. In the present work, we have developed a particle-based simulation code for
shock-induced deformation problems based on the Moving Particle Semi-implicit
(MPS) method, which was originally developed for incompressible fluid flow simu-
lations [4, 5], and applied it to large deformation of a rubber rod caused by a shock
impingement to examine its feasibility.
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2 Numerical Method

2.1 Governing Equations

In developing the governing equations for the dynamics of an elastic body (rubber),
we assume that: (a) the body is an isotropic elastic medium and the change in its
internal energy is negligibly small, and (b) friction and gravity forces acting on the
body are negligibly small. Under these assumptions, the governing equations are
given as

Drα
Dt

= vα , ρ
Dvα
Dt

=
∂

∂xβ
(λ εγγ δαβ + 2μεαβ ) (1)

where rα : position vector, t: time, D/Dt: the substantial derivative, vα : velocity, ρ :
density, xα : the Cartesian coordinates, λ , μ : Lamé’s constants, δαβ : Kronecker’s
delta, εαβ : strain tensor, and the subscripts α,β ,γ represent standard tensorial
notation.

2.2 Particle Interaction Models

In the MPS method, the elastic material is expressed by moving particles, and the
differential operators in the governing equations are discretized by using several par-
ticle interaction models. The gradient of arbitrary scalar quantity φ can be approxi-
mated by the average of gradient between particle i and neighboring particle j as

〈∇φ〉i =
d
n0 ∑

j �=i

φ j −φi

|r j − ri|
r j − ri

|r j − ri|w(|r j − ri|) (2)

where d is the number of space dimension (2 for two-dimensional and 3 for three-
dimensional fields), n0 is the initial number density of particles, and w(r) is the
weight of interaction between two particles that are a distance of r = |r j − ri| apart
and given as

w(r) =

{
re/r− 1 if 0 < r < re

0 if re ≤ r

Here re is the radius of the interaction area and set to be 2.1l0 (l0: initial distance
between the particles). Similarly, the divergence of arbitrary vector quantity u can
be given as the average of those between particle i and neighboring particle j:

〈∇ ·u〉i =
d
n0 ∑

j �=i

u j −ui

|r j − ri| ·
r j − ri

|r j − ri|w(|r j − ri|) (3)
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Fig. 1 (a) Initial position vector of particle j relative to particles i, (b) displacement vector of
particle j relative to particle i and (c) torque induced by the shear stress between particles i
and j

2.3 Method of Solution

In the MPS method for two-dimensional problems such as considered in the present
work, the motion of each particle can be expressed by a two-dimensional position
vector r and its time derivative (velocity v), and a rotational angle around the cen-
ter of the particle θ and its time derivative (angular velocity ω), all of which are
functions of time t.

When the position vector of particle j relative to particle i is given by ri j = r j−ri,
the relative displacement between particles i and j, ui j is expressed as ui j = ri j −
R(θi j)r0

i j, where r0
i j is the initial relative position vector and R(θi j) is the matrix

representing a rotation through an angle θi j = (θi + θ j)/2 about the center of the
particle i (see Fig. 1),

R(θi j) =

[
cosθi j −sinθi j

sinθi j cosθi j

]
(4)

The normal stress σn
i j (stress component parallel to ri j) and the shear stress σ s

i j
(stress component perpendicular to ri j) are then obtained from the following rela-
tions: σn

i j = 2μεn
i j = 2μun

i j/|r0
i j| and σ s

i j = 2μεs
i j = 2μus

i j/|r0
i j|, where un

i j and us
i j

are the normal and the shear components, respectively, of the relative displacement
ui j. Also, the pressure at the position of particle i can be defined as pi = −λ (εγγ )i,
where the trace of the strain tensor (εγγ )i is calculated using the divergence model
(Eq. 3). The contributions from these stress components to the acceleration of par-
ticle i is separately computed as follows.

(
Dv
Dt

)n (or s)

i
=

d
ρn0 ∑

j �=i

2σn (or s)
i j

|r0
i j|

w(|r0
i j|),

(
Dv
Dt

)p

i
=− d

ρn0 ∑
j �=i

2pi jri j

|r0
i j||ri j|

w(|r0
i j|)

(5)
where pi j = (pi + p j)/2. The acceleration of particle i is finally obtained from the
summation of these contributions:
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(
Dv
Dt

)
i
=

(
Dv
Dt

)n

i
+

(
Dv
Dt

)s

i
+

(
Dv
Dt

)p

i
(6)

In the MPS method for elastic problems, a torque −Ti j/2 is applied to particles
i and j in order to conserve the angular momentum of the system, where Ti j is the
torque induced by the shear force Fi j between the two particles with the same mass
m (see Fig. 1 (c)) and given by

Ti j =−ri j ×Fi j , Fi j = m

(
Dv
Dt

)s

i j
=

m
ρ

2d
n0

σ s
i j

|r0
i j|

w(|r0
i j|) (7)

The following equation of rotational motion is then solved for two-dimensional
problems: Ii (Dω/Dt)i = −1/2∑ j �=i Ti j, where Ii is the moment of inertia of par-
ticle i about its center of mass.

The velocity, position, angular velocity, and rotational angle of each particle are
finally updated as follows.

vk+1
i = vk

i +Δ t

(
Dv
Dt

)k

i
, rk+1

i = rk
i +Δ tvk+1

i (8)

ωk+1
i = ωk

i +Δ t

(
Dω
Dt

)k

i
, θ k+1

i = θ k
i +Δ tωk+1

i (9)

where the superscript k is the time level and Δ t is the time interval during the nu-
merical time integration.

2.4 Numerical Conditions and the Treatment of the Motion of a
Rigid Body

Figure 2 schematically illustrates the problem to be solved, which is similar to one of
those in [6]. A normal shock wave propagates from left to right at a constant velocity
and at time t = 0 it collides head-on with a rigid plate (60 mm × 6 mm), which is
supported by a rubber rod (40 mm × 100 mm). The step-like force resulting from
the head-on collision of the shock wave with the rigid plate is applied on the left-
hand side of the rubber rod and the rubber rod then starts deforming. The rubber
rod is fixed on a rigid wall as shown in Fig. 2 and its expansion in the direction
normal to the page is also restricted by other, two rigid walls (not shown), so that
it deforms two-dimensionally under the biaxial stress condition. The time step size
Δ t during the numerical integration was set to be 10 ns, which was determined from
preliminary simulations with different step sizes.

In the present work, the motion of the rigid plate attached to the rubber rod was
also simulated in a similar particle-based fashion [7]. When a rigid body is com-
posed of N particles with the same mass m, the center of gravity rg and moment of
inertia I of the rigid body are represented by rg =∑N

i=1 ri/N and I =m∑N
i=1 |ri−rg|2,

respectively. In each time step, the motion of each particle is calculated using
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Fig. 2 Schematic description of the problem to be solved

(a) t = 0.0 ms (b) t = 0.5 ms (c) t = 1.0 ms

Fig. 3 Nonphysical results obtained from the simulation with F = 55.9 kN

the same procedure with that of the rubber particles at first. The translational
and angular velocities of the rigid body are then evaluated as V = ∑N

i=1 vi/N and
R = m∑N

i=1 vi × (ri − rg)/I, respectively. The velocity of each rigid particle is fi-
nally replaced by vi = V+(ri − rg)×R to keep the distances between all pairs of
them constant.

3 Results

Representative results from the present simulations are shown in Figs. 3 and 4,
where the location of each particle is designated by a dot and a set of successive re-
sults saved 1.0 ms apart are presented. In the case shown here, the two-dimensional
rubber rod is represented by 20× 50 particles (l0 = 2 mm), and the rigid plate was
represented by 30× 3 particles with the same density as the rubber. The particle
number of the rubber rod was determined from preliminary simulations with dif-
ferent particle numbers. The Young’s modulus (E), Poisson’s ratio (ν) and density
(ρ) of the rubber were set to be the same as those in the experiment by Mazor et
al. [6]; E = 2.8 MPa, ν = 0.495, ρ = 1.01 kg/m3. When, however, the force equiv-
alent to that in the experiment (F = 55.9 kN) was applied, the numerical simulation
exhibited an unphysical behavior and finally blowed up as shown in Fig. 3. The
force applied to the rubber rod in the case shown in Fig. 4 was so reduced 11.2 kN
that physically reasonable results could be obtained. For comparison, shadowgraphs
obtained from the shock tube experiment [6] are shown in Fig. 5. The rubber com-
pression in the horizontal direction and its expansion in the vertical direction are
clearly seen in these figures. Although the applied force is different from that in
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(a) t = 1.5 ms (b) t = 2.5 ms (c) t = 3.5 ms

Fig. 4 Results obtained from the simulation with F = 11.2 kN

Fig. 5 Shadowgraphs obtained from the shock tube experiment [6]. The time elapsed be-
tween successive frames is 1.2 ms.

the experiment, the simulated response of the shock-loaded rubber rod qualitatively
agrees with that observed in the experiments.

4 Conclusion

A particle-based simulation code has been developed for shock-induced deforma-
tion problems and applied to the large deformation of a rubber rod caused by the
head-on collision of a shock wave. Typical features of the response of the shock-
loaded rubber rod observed in shock tube experiments are successfully reproduced
by using the present code. Future work will be directed to improve its robustness un-
der high loading conditions and to apply it to fluid-structure interaction problems.
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