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1 Introduction

The internal structure and transition solutions for planar shock waves based on
solutions of the Navier-Stokes equations for diatomic and polyatomic gases are ex-
amined. The numerical solution of the steady, one-dimensional form of the Navier-
Stokes equations describing compressible flows with full viscous and thermal heat
conduction effects, including volume viscosity, are considered. The governing ordi-
nary differential equations (ODEs) are solved to obtain the variation of temperature,
pressure, density, flow velocity and entropy in both the physical and state planes,
through shock waves of varying strength.

The ODE solutions for shock structure described above are compared to numeri-
cal predictions of shock wave transitions obtained using high-fidelity computational
fluid dynamics (CFD). In particular, a parallel fully implicit finite-volume scheme
with a Newton-Krylov-Schwarz (NKS) iterative solution method and anisotropic
block-based adaptive mesh refinement (AMR) is used to obtain solutions to the
multi-dimensional conservation form of the Navier-Stokes equations with volume
viscosity. The anisotropic AMR scheme and efficient Newton method enable the
rapid solution of the steady-state shock wave structure such that computational mesh
densities for mesh-independent solutions can be readily established.

The effects of volume viscosity on both the internal structure and thickness of
shock fronts are examined for several gases, including diatomic nitrogen (N2), also
previously considered by Elizarova et al. [1], as well as for air. The predicted shock
structure and thickness for solutions including volume viscosity are shown to be in
good agreement with experimental results for shock Mach numbers up to 6, demon-
strating the importance of these additional effects on internal shock structures.
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2 Navier-Stokes Equations

The Navier-Stokes equations governing laminar compressible gaseous flows, with
and without volume viscosity, are used herein to examine the internal structure of
shocks for diatomic and polyatomic gases. For a two-dimensional Cartesian coordi-
nate system, (x,y), these equations can be expressed in the following conservation
form using matrix-vector notation:
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where the vector of conserved solution variables, U, inviscid flux vectors, F and G,
and viscous flux vectors, Fv and Gv are given by
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In Eq. (2), ρ is the gas density, u and v are the x and y components of the flow
velocity, and E = e+ 1

2 (u
2 + v2) is the specific total energy, where e is the internal

energy. The pressure is given by the ideal gas equation of state, p = ρRT , where R
is the specific gas constant and T is the temperature. The non-zero elements of the
viscous stress tensor are
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for which μ and μv are the dynamic and volume viscosities of the gas, respectively.
The x and y components of the heat flux vector, qx and qy, are given by

qx =−κ
∂T
∂x

and qy =−κ
∂T
∂y

, (4)

where κ is the thermal conductivity. The dynamic viscosity and thermal conductiv-
ity for pure species and their mixtures are calculated according to the multicompo-
nent mixture formulations employed by Gordon et al. [2]. Explicit expressions for
the volume viscosity of pure species and their mixtures are adopted from Ern and
Giovangigli [3] and gas properties and data are included from other sources [4–7].
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3 ODE Solution Method for Shock-Wave Transitions

For the study of stationary planar shock waves, it is convenient to re-express the
Navier-Stokes equations of Eq. (1) in an alternative non-dimensional form for a
one-dimensional coordinate frame in which the direction normal to the shock is
aligned with the x-coordinate direction. The resulting one-dimensional conservation
equations governing the transport of mass, momentum, and energy through a steady
shock are given by
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where Ωv = μv/μ is the ratio of volume and dynamic viscosities. The equation of
state can also be re-written in non-dimensional form as
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The various non-dimensional variables and constants that appear in Eqs. (5)–(6) are:
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where D, U , P, T, S, and X are non-dimensional forms of the density, velocity,
pressure, temperature, entropy, and distance normal to the shock, respectively. The
parameter Γs is the Rankine-Hugoniot jump relation for the density across a shock
front, Pr is the Prandtl number, Ms is the shock Mach number, cp is the specific heat
at constant pressure, and γ is the ratio of specific heats, taken to be equal to 7/5 for
both air and nitrogen. The subscripts 1 and 2 denote quasi-steady flow conditions in
the regions ahead of and behind the shock front, respectively.

The solution of U and T as a function of X through the shock transition requires
the simultaneous integration of two nonlinear ODEs having the form
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subject to appropriate boundary conditions (i.e., 0≤U ≤ 1 and 0≤T≤ 1). A fourth-
order Runge-Kutta integration method is used to solve this coupled system. A nu-
merical technique similar to that employed by Elizarova et al. [1] is utilized, wherein
the transition solutions are solved first downstream and then upstream of the shock
front, starting from the midpoint of the U distribution. The variations of D, P and S
with X are then computed using the relations given above.

4 High-Fidelity CFD Solution Method

The ODE solutions for shock-front transitions described above are also compared
herein to high-fidelity CFD solutions obtained using a parallel, fully implicit, finite-
volume scheme with a NKS iterative solution method [8] and anisotropic block-based
AMR [9] to solve the two-dimensional conservation form of the Navier-Stokes equa-
tions including the effects of volume viscosity. The anisotropic AMR scheme and ef-
ficient NKS method enable the rapid solution of steady-state shock-front structures
such that computational mesh densities for mesh-independent solutions are readily
established. As noted in the introduction, the comparisons of the ODE and high-
fidelity CFD solutions provide a thorough verification of the two solution methods
for predicting internal shock structures and allow for the establishment of mesh re-
quirements for accurate and fully resolved CFD solutions of shock transition profiles.

5 Numerical Results and Conclusions

The smooth but rapid transition of non-dimensional flow properties through a shock-
front of moderate strength Ms = 2.62 in air, computed using the ODE solution
method, are presented in Fig. 1. Solutions in the physical plane on the left-hand side
demonstrate that volume viscosity increases the localized dissipation in the shock
front and produces a larger shock thickness. However, volume viscosity does not
affect the Rankine-Hugoniot shock jump conditions, so the solution on either side
of the shock front is unchanged with or without volume viscosity. The gradients of
temperature, pressure, density and flow velocity within the shock front are thereby
smaller when volume viscous effects are included. The smaller temperature gradi-
ent, in particular, results in a reduced localized heat conduction, which gives a lower
entropy peak inside of the shock front, as illustrated. Solutions in the state plane are
provided on the right-hand side of Fig. 1 and show the variation of non-dimensional
flow properties as functions of the non-dimensional flow velocity.

The predicted reciprocal shock wave thicknesses, λ/Δx, computed from the ODE
solutions for shock wave strengths of 1 ≤ Ms ≤ 6 in air and nitrogen, are presented
in Fig. 2. Experimental measurements for shock wave thicknesses in nitrogen that
are available in the paper by Alsmeyer [10] are also included in Fig. 2, and they
are represented using various symbols from previous experimenters. The mean free
path, λ , has been defined from the kinetic theory of gases and is based on molecular
collisions of rigid impenetrable spheres. The shock thickness, Δx, has been calcu-
lated from the velocity profile according to the standard maximum-slope thickness
method of Becker [11] and others.
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Fig. 1 A comparison of both physical (left-hand side) and state (right-hand side) planes for
a shock wave of strength Ms = 2.62 in air, for Ωv = 0 (top half) and Ωv �= 0 (bottom half).

Fig. 2 Reciprocal thickness comparisons for shock waves in air and nitrogen

In general, the reciprocal shock-wave thickness is expected to increase as a func-
tion of shock strength from weak to moderate shock waves and then plateaus for
strong shocks. The numerical computations of shock thickness as obtained in this
study over the range 1 ≤ Ms ≤ 6 follow this pattern. Moreover, the shock-wave so-
lutions are up to 48% thicker in air and nitrogen with the addition of volume viscos-
ity as shown in Fig. 2. For nitrogen, the comparison of the ODE solutions for shock
thickness to experimental measurements indicate that very good agreement between
predictions and experiments can be achieved when volume viscosity is included. It
would seem that the inclusion of volume viscosity in the Navier-Stokes equations
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for compressible flow applications improves the continuum fluid-dynamic descrip-
tion of shock-front transitions by accounting for the rotational non-equilibrium be-
haviour of gases that occurs within a shock wave.

Although not shown here due to space limitations, it was also found that the high-
fidelity CFD solution method using the parallel implicit finite-volume scheme was
able to obtain shock-wave thicknesses that were typically accurate to within 0.05%
of the results computed using the ODE solutions, when twenty-three levels of
anisotropic AMR were used to fully resolve the shock front. It is believed this minor
discrepancy is attributed solely to small numerical errors and possible differences
in the modelling. The good agreement between the ODE solutions and CFD pre-
dictions provide a strong indication of appropriate computational mesh densities
that are required for the numerical treatment of shock waves via a high-fidelity ap-
proach. In order to ensure the recovery of fully resolved, mesh-independent numer-
ical shock-front transition solutions, the smallest cell sizes in a given computational
domain must be on the order of 10−9 m, or 1 nm, for the nitrogen and air shocks con-
sidered herein under standard atmospheric conditions. Depending on the strength of
the shock wave under investigation, this requires approximately 100− 200 cells to
reside within the entire thickness of the shock front in a given CFD simulation.
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