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1 Introduction

The breakup of droplets occurs in the combustion of multiphase mixtures and the
atomization of liquid jets. Most experiments studying droplet breakup have used
the passage of a normal shock to provide a step change to uniform flow conditions.
In the late 1950s, Engel [2] investigated how water droplets of various sizes broke
up in the flow behind air shocks of different strengths. The subsequent deformation
and breakup of the water droplets were captured using spark pictures, and a fine
mist was observed to develop in the wake of the disintegrating droplet. Using drift
measurements, an attempt was made to calculate the accelerations and unsteady
drag coefficients of the deforming water droplets. Engel’s analysis concluded that
the drag coefficient compared well to that for a perforated disk. In his recent review,
Theofanous [10] summarized the aerobreakup of both Newtonian and viscoelastic
liquid drops, and highlighted the criticalities in the breakup process. Also discussed
were the interactions between the Kelvin-Helmbholtz and Rayleigh-Taylor instabil-
ities, and the interplay of the multitude of length and time scales present in the
problem. Using the novel diagnostic of laser-induced fluorescence, the experiments
of Theofanous et al. [11] were able to achieve the necessary temporal and spatial
resolutions to identify two primary breakup regimes: Rayleigh-Taylor piercing and
shear-induced entrainment.

Unfortunately, three-dimensional (3D) simulations are often too computationally
expensive to allow direct comparisons with droplet experiments. Therefore, breakup
is often studied using two-dimensional (2D) simulations which are physically equiv-
alent to the breakup of liquid columns or cylinders. The work of Igra and Takayama
[4, 5] provides useful validation for 2D simulations since their experiments inves-
tigated the breakup of water cylinders in the flow behind a shock wave. Columns
with initial diameters of 4.8 and 6.4 mm were impacted by Mach 1.18, 1.30,
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1.47, and 1.73 shocks in air. In the present work, the experiments of Igra and
Takayama [4, 5] are first duplicated for validation purposes. Then, by extending
the range of simulated shock strengths, the effects of the transition from subsonic to
supersonic freestream flow around the water cylinder are investigated.

2 Model and Methodology

The breakup of a water cylinder is simulated on a rectangular Cartesian grid com-
prised of 1200x600 cells. The grid has a nominal resolution of 100 cells per
original cylinder diameter, and grid stretching is employed in the streamwise direc-
tion as the boundaries are approached. Only half of the water cylinder is simulated
and a symmetric boundary condition is enforced along the bottom of the domain.
Non-reflecting boundary conditions are applied everywhere else. The water cylinder
and the air downstream of the planar shock are initially at rest. At the start of the
simulation, the shock is set in motion towards the water cylinder and establishes a
steady freestream flow field. The range of simulated shock strengths and their cor-
responding post-shock Mach numbers are shown in Table 1. Within the literature,
the Weber and Reynolds numbers have, respectively, been used to characterize the
relative importance of inertial-to-capillary forces and inertial-to-viscous forces. Us-
ing the experimental parameters for a water cylinder in air, the approximate Weber
numbers corresponding to the four weaker shock strengths range from 940-19,300.
The Reynolds numbers corresponding to the same shock Mach numbers range from
39,900-237,600. These high Weber and Reynolds numbers suggest that the phys-
ical mechanisms of breakup are primarily driven by inertia, and that a reasonable
first approximation can be made by neglecting the effects of surface tension and
viscosity.

Table 1 Post-shock Mach numbers in the shock-stationary (SS) and shock-moving (SM)
reference frames

Mg 1.18 130 147 173 2.00 2.50
M>(SS) 0.8549 0.7860 0.7120 0.6330 0.5774 0.5130
M>(SM) 0.2625 0.4056 0.5775 0.7885 0.9622 1.1970

The flow is then governed by the multicomponent, compressible Euler equations.
Following the five-equation model of Allaire et al. [1], the governing equations con-
sist of a mass equation for each fluid, one mixture momentum equation, one mixture
energy equation, and an advection equation for one of the volume fractions. Each
fluid is considered to be inviscid, immiscible, and compressible. The stiffened gas
equation of state [3] is used to close the system of equations, and models both gases
and liquids in the flow solver. Material interfaces, in the absence of mass transfer
and surface tension, are simply advected by the local velocity field, and are modeled
using volume fractions. In the limit of infinite resolution, the interfaces are sharp,
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but shock- and interface-capturing schemes diffuse the interface. In this case, the
nominal interface location is defined using a threshold liquid volume fraction above
which the individual cell is considered to be part of the coherent water column. The
mixture properties for cells in the transition regions are computed according to the
mixture relations found in [1].

The numerical method is based on a finite-volume framework, and was shown
by Johnsen and Colonius [6] to be both shock- and interface-capturing. Spatial re-
construction is accomplished with a third-order WENO scheme coupled with the
HLLC Riemann solver. An explicit third-order total variation diminishing Runge-
Kutta scheme is used to march the equations forward in time. The time step is chosen
to limit the CFL = 0.25 for stability. Time is non-dimensionalized by a characteristic
breakup time, t* = t'ff, found in the literature [7, 8, 9].

Analysis of the cylinder’s behavior requires computing the position, velocity, and
acceleration of the cylinder’s center of mass (COM). In addition to the straightfor-
ward calculation of the COM location, analytical expressions can be derived for the
COM’s velocity and acceleration, provided there is no flux of liquid mass across the
domain boundaries.
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where u and a are the local velocity and acceleration fields. (1) is easily computed
by a discrete integration over the entire computational domain. Once liquid mass is
lost through the boundaries, (1) is no longer valid, and the analysis is terminated.

3 Results and Discussion

To validate the computational results, comparison is first made with the experimen-
tal data in [4, 5]. In order to quantify the time history of the cylinders’ deformation,
Igra and Takayama measured the centerline width and coherent body area from
holographic interferograms. Since it was not possible to positively determine the
criteria used to define the cylinder boundaries in [4, 5], an appropriate range of
threshold volume fractions (shown in Fig. 1) is chosen in an attempt to bound the
experimental data. Numerical measurements of the cylinders’ centerline width and
coherent body area compare well to the experimental data. Both the streamwise di-
mension of the cylinder and its coherent body area monotonically decrease as the
cylinder is compressed and material is stripped away from the cylinder’s periphery.
This mode of breakup is consistent with the features of stripping breakup expected
for the relevant Weber numbers. From their visualizations, Igra and Takayama were
able to track the drift of the water cylinders by measuring the location of the front
of the cylinder. Figure 2 shows good agreement between simulation and experiment
for the weaker shock strengths. For reasons not yet fully understood, the comparison
deteriorates for the higher shock strengths.
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Fig. 1 Measurements of cylinder deformation. Discrete data represent experimental measure-
ments. The two lines for each shock strength represent choosing threshold volume fractions
of 0.50 and 0.99. a centerline width. b coherent body area.
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Fig. 2 Drift of the water cylinders as measured off the forward stagnation point

Fig. 3 Numerical schlieren images of the breakup behind Mach 1.47 (fop) and Mach 2.50
(bottom) shockwaves at at* = 6.213 b t* = 15.533

Numerical schlieren images of the breakup of the water cylinders behind Mach
1.47 and 2.50 shocks are shown in Fig. 3. The supersonic velocity behind the Mach
2.50 shock is evidenced by the detached bow shock preceding the deforming water
cylinder. Cylinder wakes for supersonic post-shock flow appear to be narrower than
their subsonic counterparts and standing shocks are visible along the length of the
wake. Looking at the full range of simulated shocks, the drift and velocities of the
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Fig. 5 a Acceleration of the cylinders’ center of mass. b Unsteady drag coefficient of the
deforming cylinders.

cylinders” COM are shown in Fig. 4. The transition from subsonic to supersonic
freestream flow speeds does not appear to significantly alter the cylinder’s behavior.
As the incident shock Mach number is increased, the faster post-shock flow around
the cylinder induces greater cylinder velocities. The time history of the cylinder’s
trajectory remains a smooth, parabolic curve, which has led previous work to assume
constant acceleration. However, fluctuations are observable in the velocity curves.
The acceleration of the COM (as computed from the analytical expression in (1)) is
shown as the left half of Fig. 5. Here, the acceleration has been non-dimensionalized
asa* = a;ig ﬁ ; Using this scaling, the transient acceleration behavior collapses for
all subsoniGc and supersonic post-shock velocities. Knowing all the relevant flow
variables, the unsteady drag coefficient can be calculated for the deforming water
cylinder. The drag coefficient is defined as
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Using (2), the unsteady drag coefficients for different shock strengths collapse for a
significant period of time. Though oscillations are present, they appear to fluctuate
around a relatively steady value. It is notable that wave drag does not significantly al-
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ter the drag coefficient (as expected in the rigid body case). Since the water cylinder
is undergoing large deformations, it would appear that parasitic drag is dominant.

4 Conclusions

In summary, the breakup of water cylinders was simulated and compared to ex-
perimental data. Measurements of the cylinders’ drift and various benchmarks of
deformation showed reasonable agreement between simulations and experiments.
The transition from subsonic to supersonic post-shock flow speeds did not alter the
similarity of the solutions, and collapse was shown for the unsteady acceleration
and drag coefficient for all simulated shock strengths. When computed using the
deformed diameter, the drag coefficient fluctuated around a relatively steady mean
value. Future 3D simulations will capture the effects of the third dimensionality and
facilitate comparisons with droplet experiments.
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