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Abstract. This chapter describes a comprehensive granular model for decision 
making with complex data. This granular model first uses information 
decomposition to form a horizontal set of granules for each of the data instances. 
Each granule is a partial view of the corresponding data instance; and aggregately 
all the partial views of that data instance provide a complete representation for the 
instance. Then, the decision making based on the original data can be divided and 
distributed to decision making on the collection of each partial view. The 
decisions made on all partial views will then be aggregated to form a final global 
decision. Moreover, on each partial view, a sequential M+1 way decision making 
(a simple extension of Yao’s 3-way decision making) can be carried out to reach a 
local decision. This chapter further categorizes stock price predication problem 
using the proposed decision model and incorporates the MLVS model for 
biological sequence classification into the proposed decision model. It is 
suggested that the proposed model provide a general framework to address the 
complexity and volume challenges in big data analytics.  
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1 Introduction 

Granular Computing [1] focuses on philosophy, methodology and paradigm for 
problem solving and information processing based on granular structures [3]. By using 
the concepts like granules, levels, and hierarchies, granular computing promotes 
structured thinking at the philosophical level and structured problem solving at the 
practical level [2]. In [4], Y. Y. Yao stated that “the principle of computing, guided by 
granular structures, is to examine the problem at a finer granulation level with more 
detailed information when there is a need or benefit for doing so.” Furthermore, Y. Y. 
Yao developed a sequential three-way decision framework based on a hierarchy of 
multiple levels of information granularity [5]. Decision tree can be viewed as a simple 
special case of the sequential three-way decision making.  

The three-way decision framework assumes a single vertical view of the 
granular structures, where each layer of information granulation is a complete 
representation of the original data at a particular coarse level. However, for 
complex decision making on data that is unstructured or big, it may be challenging 
or even impossible to form a single hierarchy of information granules for the data 
in order to carry out the sequential three way decision making. In order to address 
this issue, this chapter describes a comprehensive granular model for decision 
making with complex data. This granular model first uses information 
decomposition to form a horizontal set of granules for each of the data instances. 
Each granule is a partial view of the corresponding data instance; and aggregately 
all the partial views of that data instance provide a complete representation for the 
instance. Then, the decision making based on the original data can be divided and 
distributed to decision making on the collection of each partial view. The 
decisions made on all partial views will then be aggregated to form a final global 
decision. If a partial view is still complex enough, then the decomposition process 
can be continued on the partial view to form a horizontal set of sub partial views 
for that partial view. This decomposition process continues until a single 
hierarchical structure of information granules can be formed for a (sub) partial 
view. Then, a sequential M+1 way decision making (an extension of 3-way 
decision making) can be carried out on the collection of each partial view to reach 
a local decision. Decision forest can be viewed as a simple special case of this 
comprehensive granular model for decision making.  

The proposed comprehensive granular model fits well with parallel/distributed 
computing frameworks. Each collection of a partial view covers all data instances 
with respect to that partial view, and is independent from other collections of 
different partial views. Therefore, local decisions can be made on all collections of 
partial views in a parallel manner. On each collection of a partial view, the 
sequential M+1 way decision making process may be implemented as multiple 
iterations of MapReduce processes. Therefore, the proposed granular model can 
be viewed as a general solution framework for big unstructured data. This chapter 
will further categorize stock price predication problem and biological sequence 
classification problem using the proposed decision model.  
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2 A Generalized M+1 Way Decision 

In [5], Yao described a three way decision model for 2-state classification problems. 
Compared with traditional two way (acceptance/rejection) decision model, the three 
way decision model maps a data instance for decision to one of the three disjoint 
regions, POS, NEG, and BND. Decision of “acceptance” is made on those objects 
mapped to the POS region; decision of “rejection” is made on those mapped to the 
NEG region; and “noncommitment” is assigned to those mapped to BND region. A 
noncommitment assignment suggests that more information of the corresponding 
data instance is needed in order to accept or reject that object. The essential ideas of 
three way decision making has been widely used in real-life decision making in 
different domains, such as medical decision-making, social judgment theory, and 
hypothesis testing, and peering review processes [6]. In order to apply this idea to 
multi-class classification problem, Yao’s Three Way Decision Model can be 
naturally extended to a ܯ ൅ 1 Way Decision Model. Formally, the ܯ ൅ 1 Way 
Decision Model can be described as follows. 

Given a set of data instances ܷ with ܰ elements ሼݑଵ, ,ଶݑ … ,  ேሽ and a set ofݑ
class labels ܥ with ܯ elements ሼܿଵ, ܿଶ, … , ܿெሽ, the ܯ ൅ 1 Way decision model 
divides ܷ into ܯ ൅ 1 disjoint regions ሼݎ௖భ, ,௖మݎ … , ,௖ಾݎ  ௖ಾశభሽ, such that if a dataݎ
instance ݑ௜ א ௖ೕݎ  (where 1 ൑ ݆ ൑ then the class label ௝ܿ ,(ܯ  is assigned to ݔ௜ ; 

if ݑ௜ א   .௜ݑ ௖ಾశభ, a “noncommitment” is assigned toݎ
In [6], Yao uses a Two-Poset based evaluation to segment ܷ  into the 

acceptance region and the rejection region. We follow the exact same method to 
extend the Two-Poset based evaluation to a ܯ-Poset based evaluation for ܯ ൅ 1 
way decision model.  

Let ܮ஼ ൌ ቄቀ݈௥೎೔ , ௥೎೔ع ቁ ቚ1 ൑ ݅ ൑ ܯ ቅ be ܯ  posets, and ܸ ൌ ሼݒ௥೎೔ : ܷ ՜ ݈௥೎೔|1 ൑݅ ൑ ܯ ሽ beܯ  evaluation functions. Given ݔ א ܷ ܽ݊݀ 1 ൑ ݅ ൑ , ܯ ௥೎೔ݒ ሺݔሻ returns 

an acceptance value of ݔ  to ௖೔ݎ  . For two objects ݔ, ݕ א ܷ ܽ݊݀ 1 ൑ ݅ ൑ ܯ , if ݒ௥೎೔ሺݔሻ ௥೎೔ع  ௥೎೔ݒ ሺݕሻ , then ݔ is less acceptable than ݕ to ݎ௖೔ . Further let 1 ൑ ݅ ൑ܯ ܽ݊݀ ݈௥೎೔ା ك ݈௥೎೔  be the set of designated values of acceptance to ݎ௖೔ . Then, given 

an object ݔ א ܷ, we have ݔ א ௥೎೔ݒ ௖೔ if and only ifݎ ሺݔሻ א ݈௥೎೔ା . In other words, we 

can define ݎ௖೔  (1 ൑ ݅ ൑ ௖೔ሺ 1ݎ :ሻ as followsܯ ൑ ݅ ൑ ሻܯ ൌ ሼݔ א ௥೎೔ݒ|ܷ ሺݔሻ א ݈௥೎೔ା ሽ. 

Then we can further define ݎ௖ಾశభ as follows: ݎ௖ಾశభ ൌ ሼݔ א ሺ1׊|ܷ ൑ ݅ ൑ ሻܯ ՜ݒ௥೎೔ሺݔሻ ב ݈௥೎೔ା ሽ. 

3 A Generalized Sequential M+1 Way Decision Algorithm 

We further generalize Yao’s Sequential Three way decision algorithm [5] to 
Sequential ܯ ൅ 1 Way Decision Algorithm. Assume for each data instance ݔ ݊ there exists ,ܷא ൅ 1 levels of granular description of ݔ. By following the same 
notation used in [5], the ݊ ൅ 1  level of granular description of ݔ  can be 
represented as follows:  
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ሻݔ଴ሺܿ݁ܦ ع ሻݔଵሺܿ݁ܦ ع ڮ ع  ሻݔ௡ሺܿ݁ܦ
 

where the relation ع denotes a “finer than” relationship. In order to make a decision 
on ݔ, the Sequential ܯ ൅ 1 Way Decision Algorithm first uses ܿ݁ܦ௡ሺݔሻ as the 
representation for ݔ . A decision is made on ݔ by assigning the class label ܿ௜ to ݔ, 
if ׌ሺ1 ൑ ݅ ൑ ሻܯ  ՜ ௥೎೔ݒ ൫ܿ݁ܦ௡ሺݔሻ൯ א  ݈௥೎೔ା ; otherwise, we continue to use ܿ݁ܦ௡ିଵሺݔሻ as the representation for ݔ. If we are still unable to make decision on ݔ 
even reaching the level 0 of granular description of ݔ, we have two options. Option 
1: assign “noncommitment” as the label to ݔ as the final decision on ݔ. This option 
indicates that no decision can be made at required confidence level on ݔ based upon 
all information available on ݔ. Option 2: assign the class label that corresponds to 
the largest ݒ௥೎೔ ൫ܿ݁ܦ௡ሺݔሻ൯ (1 ൑ ݅ ൑  ሻ . Option 2 can be applied to the situationsܯ

where a data instance has to be categorized to one of the ܯ categories.  

4 Decision Making on Complex Data  

The sequential M+1 way decision algorithm assumes a single vertical view of the 
granular structures, where each layer of information granulation is a complete 
representation of the original data at a particular coarse level. However, for 
complex decision making on data that is unstructured or big, it may be challenging 
or even impossible to form a single hierarchy of information granules for the data 
in order to carry out the sequential ܯ ൅ 1 way decision algorithm. In order to 
address this issue, we propose a comprehensive granular model for decision 
making with complex data. This granular model first uses information 
decomposition to form a horizontal set of granules for each of the data instances. 
Each granule is a partial view of the corresponding data instance; and aggregately 
all the partial views of that data instance provide a complete representation for the 
instance. Then, the decision making based on the original data can be divided and 
distributed to decision making on the collection of each partial view. The 
decisions made on all partial views will then be aggregated to form a final global 
decision. More formally, assume that for each data instance ݔ א ܷ, we decompose ݔ into a set of ݈ ൒ 1 partial views ܲ ௫ܸ ൌ ሼݔଵ, ,ଶݔ … , ܲ ௟ሽ, whereݔ ௫ܸሾ݅ሿ ൌ ௜ݔ . This 
decomposition could be lossless or lossy. For lossless decomposition, ܲ ௫ܸ contains the same amount of information as what ݔ contains; i.e., there exists 
an operator ݌݋ , such that ݔ ൌ ܽ݃݃௢௣ሼݔ௜|ݔ௜ א ܲ ௫ܸሽ . For lossy decomposition, ܲ ௫ܸ contains less information than ݔ. Furthermore, for each of the partial view of ݔ, we assume there exists ݊ ൅ 1 levels of granular description of the partial view; 
i.e., for the ݄݅ݐ partial view of ݔ, ܲ ௫ܸሾ݅ሿ, we have  ܿ݁ܦ଴ሺܲ ௫ܸሾ݅ሿሻ ع ଵሺܲܿ݁ܦ ௫ܸሾ݅ሿሻ ع ڮ ع ௡ሺܲܿ݁ܦ ௫ܸሾ݅ሿሻ 

Overall, the representation of the set of complex data instances can be 
illustrated in figure 1.  

If a partial view is still complex enough, then the decomposition process can be 
continued on the partial view to form a horizontal set of sub partial views for that  
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partial view. This decomposition process continues until a single hierarchical 
structure of information granules can be formed for a (sub) partial view. For 
simplicity of description, we will not further illustrate this situation. 

Based on this decomposition on each data instance in ܷ, the set of all data 
instances ܷ  is decomposed into ݈  sets ଵܷ ,  ଶܷ, … , ௜ܷ , … , ௟ܷ , where ௜ܷ ൌሼܲ ௨ܸೕሾ݅ሿ|ݑ௝ א ܷሽ, i.e., the set of the ݄݅ݐ partial views from all data instances in ܷ. 

The decomposition on ܷ can be illustrated in figure 2. 
Then the overall decision process on ܷ  can be decomposed to a decision 

process on each ௜ܷ. In other words, given a data instance ݑ௝ א ܷ, we will have ݈ 
completely independent decision process that can be carried out by ݈ distributed 
computing processes. The final decision on ݑ௝ will be an ensemble of the results 
of the ݈ independent decision processes. One possible ensemble approach can be 
described as follows.  

 
 

 

 

 

 

 

 

 

 

Fig. 1 An Illustration of the Proposed Model for Representing a Complex Data Set 

 

 

 

 

 

Fig. 2 An Illustration of Decomposing a Data Set ܷ into ݈ sets of Partial Views 

Given a data instance ݑ௝ א ܷ， assume a class label ܿ௞ ሺ1 ൑ ݇ ൑ ሻܯ  is 

assigned to ݑ௝ on ܿ݁ܦ௣ ቀܲ ௨ܸೕሾݏሿቁ in ௦ܷ, where ቀܲ ௨ܸೕሾݏሿቁ is the ݏ௧௛ሺ1 ൑ ݏ ൑ ݈ሻ 
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partial view of ݑ௝  and ܿ݁ܦ௣ ቀܲ ௨ܸೕሾݏሿቁ  is the granular representation of this 

partial view ܲ ௨ܸೕሾݏሿ at ݌ ሺ0 ൑ ݌ ൑ ݊ሻ level. Then the weight of this decision can 

be represented as ߠ௝,௦,௣,௞ሺ0 ൏ ௝,௦,௣,௞ߠ ൑ 1ሻ , where ߠ௝,௦,௣,௞ ൌ ݂ሺ݆, ,ݏ ,݌ ݇ሻ can be 
evaluated by a function that reflects the confidence of the decision that assigns ܿ௞ to ݑ௝  based on ௦ܷ  at the granularity level ݌ . For instance, a possible 
expression of this weight function can be ߠ௝,௦,௣,௞ ൌ ߱௦ כ ሺ݌ ൅ 1ሻ/ሺ݊ ൅ 1ሻ, where ߱௦ሺ0 ൏ ߱௦ ൑ 1ሻ  reflects the relative significance of using ௦ܷ  in the overall 

decision making; 
௣ାଵ௡ାଵ (where ݌ is the granularity level of data representation at 

which the decision is made and 0, 1, … , ݊ are the available granularity levels from 
finest to coarsest) suggests that reaching decision at a courser level justifies a 
stronger differential power of this partial view for ݑ௝ . Therefore, the overall 

weight for assigning ܿ௞ to ݑ௝  can be calculated as ∑ ௝,௦,௣ሺ௦ሻ,௞ଵஸ௦ஸ௟ߠ , where ݌ሺݏሻ 
represents the coarsest granularity level at which ܿ௞ is assigned to ݑ௝ using ௦ܷ. 
The class label with the highest overall weight will be the final class label that is 
assigned to ݑ௝.  

5 Categorizing Stock Price Prediction Using the Proposed 
Decision Model 

As is well known, stock price prediction is a broad yet very challenging research 
area. In this section, we will categorize one particular stock price prediction task 
by using the proposed decision model. This prediction task can be described as 
follows. Given the historical price movement of a stock or index, such as SPY, in 
a particular time frame (which can be weekly, daily, hourly, 5 minutes, and so on), 
predict the price movement for the next time unit (next week, next day, next  
hour, or next 5 minutes). If we visualize the price movement at a historical time 
unit using a bar as shown in figure 3, the task is to predict what will be the 
upcoming bar.  

We now use the proposed decision model to categorize this prediction task. We 
first annotate each historical bar by using the bar that immediately follows it. For 
instance, bar1 in figure 3 can be annotated as Lower Open Lower Close (LOLC), 
given that its following bar has a lower open and lower close compared to its own 
close price; bar2 can be annotated as Higher Open Higher Close (HOHC), given 
that its following bar has a higher open and higher close (HOHC) compared to its 
own close price; bar3 can be annotated as Lower Open Higher Close (LOHC), 
given that its following bar has a lower open and higher close compared to its own 
close price; and bar4 can be annotated as higher open and lower close (HOLC), 
given that its following bar has a higher open and lower close compared to its own 
close price. Therefore, we identify a set of 4 class labels {LOLC, HOHC, LOHC, 
HOLC}. Now, the task is to predict the class label for the current bar which is the 
last bar shown in figure 3. The class label assigned to the current bar is the 
predication of the price movement for the upcoming time unit.  



A Comprehensive Granular Model for Decision Making with Complex Data 39 

 

 
Fig. 3 A Sample Chart of Stock Price Movement (copy from www.barchart.com) 

In order to predict the class label for the current bar, we need to identify 
features that can be used to describe each bar. This is where complexity comes 
into the picture, given that each historical bar could be associated with numerous 
factors that may indicate or correlate with the stock price movement at next time 
unit. Moreover, those factors may be heterogeneous in nature, formats, and scales; 
and some features are complex data by themselves. Therefore, it is very 
challenging for any typical machine learning algorithm to utilize all these features 
together. However, by using our proposed decision model, each of those features 
or a combination of a group of features can serve as a partial view for a given bar, 
and all partial views deliver comprehensive information for that bar. A partial 
view can be certain technique analysis (TA) features, sentimental features, or 
fundamental analysis (FA) features. Therefore, the proposed decision model 
provides a framework for a comprehensive analysis of stock price movement.  

Without loss of generality, we only consider some technique analysis features 
for an illustration. These features include price movement within a time unit, price 
movement over a period of time, volume, RSI, and moving average. Based on 
these features, we form two partial views for each bar. The first partial view, 
denoted as ܸܲሾ1ሿ , is the combination of price movement within a time unit, 
volume, RSI, and moving average; the second partial view, denoted as ܸܲሾ2ሿ, is 
the combination of price movement over a period of time, volume, and RSI. As 
can be seen, ܸܲሾ1ሿ  is for predicting next price movement based on price 
movement at the current time unit; whereas ܸܲሾ2ሿ is for predicting next price 
movement based on price movement cross multiple time units. Furthermore, for 
each partial view, we form multi-level descriptions with different granularities. 
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For instance, the multi-level granular descriptions of ܸܲሾ1ሿ on bar 1 are shown 
below:  ܿ݁ܦଶሺܲ ௕ܸ௔௥ଵሾ1ሿሻ: Price movement within a time unit – {Open High, Close 
Low},  

 Volume – {High} 

 RSI – {Median} 

 Moving average – {above moving average} ܿ݁ܦଵሺܲ ௕ܸ௔௥ଵሾ1ሿሻ: Price movement within a time unit – {High-Low, Low-
Low, Open-Low, Close-Low},  

 Volume – {High} 

 RSI – {Median}  

 Moving average – {above moving average} ܿ݁ܦ଴ሺܲ ௕ܸ௔௥ଵሾ1ሿሻ: Price movement within a time unit – {time series of price 
movement within this time unit*},  

 Volume – {High} 

 RSI – {Median}  

 Moving average – {above moving average} 

*The time series of price movement within the time unit for bar 1 and the 

current bare are illustrated in figure 3. 

Based on the multi-level granular descriptions of ܸܲሾ1ሿ for each bar, a 4+1 
Way Sequential Decision Algorithm can be applied in order to make a decision on 
the current bar. The algorithm first compare ܿ݁ܦଶሺܲ ௖ܸ௨௥௥௘௡௧ሾ1ሿሻ  with each ܿ݁ܦଶ൫ܲ ௕ܸ௔௥_௫ሾ1ሿ൯ , where ܾܽݔ_ݎ  is a historical bar. This comparison finds all 
historical bars that match the current bar on Volume, RSI, moving average, and 
price movement values. If at least ߙ% of all matched bars share the same class 
label, then decision can be reached at this level on this partial view; otherwise; the 
4+1 Way Sequential Decision Algorithm goes down to the finer level of 
granularity to look for a decision. That is, the algorithm further compares ܿ݁ܦଵሺܲ ௖ܸ௨௥௥௘௡௧ሾ1ሿሻ  with each ܿ݁ܦଵ൫ܲ ௕ܸ௔௥_௬ሾ1ሿ൯ , where ܾܽݕ_ݎ  is one of the 
matched historical bars found by the comparison at the previous granularity level. 
For this comparison, we find the K nearest neighbors of the current bar by 
calculating the similarity on the price movement within the time unit between the 
current bar and each of the bars selected as a match at the previous granularity 
level. If at least ߙ% of the K nearest neighbors share the same class label, then 
decision can be reached at this level on this partial view. Otherwise, the algorithm 
further goes down to the finest level of granular descriptions to look for a decision 
by comparing ܿ݁ܦ଴ሺܲ ௖ܸ௨௥௥௘௡௧ሾ1ሿሻ with each ܿ݁ܦ଴൫ܲ ௕ܸ௔௥_௬ሾ1ሿ൯, where ܾܽݕ_ݎ is 
one of the matched historical bars found by the comparison at the coarsest 
granularity level. The computing at this finest granular level is most intensive, 
since each comparison between ܿ݁ܦ଴ሺܲ ௖ܸ௨௥௥௘௡௧ሾ1ሿሻ  and ܿ݁ܦ଴൫ܲ ௕ܸ௔௥_௬ሾ1ሿ൯ 
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requires computing similarity between two time series by using techniques like 
Dynamic Time Warping (DTW) [7]. The 4+1 Way Sequential Decision Algorithm 
reduces the requirement of this intensive computing by 1) trying to make decision 
at a coarser level of granular representation; and 2) reducing the number of times 
of executing intensive computing by taking advantage of the results that have been 
generated at a coarser level.  

Similarly, the multi-level granular descriptions of ܸܲሾ2ሿ on bar 1 are shown 
below ܿ݁ܦଶ൫ܲ ௕ܸ௔௥_ଵሾ2ሿ൯: Price movement for 2 most recent time units – {Close 
High, Close Low}*,  

 *bar_1 itself closed low, the previous bar closed high 

 Volume – {High} 

 RSI – {Median}  ܿ݁ܦଵ൫ܲ ௕ܸ௔௥_ଵሾ2ሿ൯: Price movement for 3 most recent time units – {Close 
High, Close High, Close Low},  

 Volume – {High} 

 RSI – {Median}   ܿ݁ܦ଴൫ܲ ௕ܸ௔௥_ଵሾ2ሿ൯: Price movement for 4 most recent time units – {Close 
Low, Close High, Close High, Close Low},  

 Volume – {High} 

 RSI – {Median}  

Again, a 4+1 Way Sequential Decision Algorithm can be carried out on ܸܲሾ2ሿ 
in order to make a prediction on the current bar. Finally, decision made on each 
partial view can be assembled to form a final decision. 

6 Incorporating the MLVS Model for Biological Sequence 
Classification into the Proposed Decision Model 

Bioinformatics methods are increasingly important for biomedical research, as 
advances in high throughput sequencing have drastically reduced the cost per base 
for genomic sequencing. For the first time, we are in an era where our ability to 
sequence genomes is quickly outstripping our capacity to analyze them in a useful 
manner. Developing novel methods to detect and analyze features of interest 
within biological sequences is a critical step in fully utilizing the wealth of 
information made available by advanced sequencing techniques [8]. A significant 
challenge in analyzing such data is the extraction and representation of significant 
features from the data. To address this challenge, we recently developed a model, 
called Multi-Layered Vector Spaces (MLVS), for representing biological 
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sequences for the purpose of characterization and classification [10, 11]. 
Experiments show that MLVS-based classifiers are able to outperform or perform 
on par with existing methods for classifying biological sequences [10, 12]. 

The MLVS model is based on the idea of mapping biological sequences into a 
set of vectors. In general, each vector contains the location of ݄-step ordered pairs 
of symbols, where a symbol is an element of the alphabet from which the 
sequence is constructed and ݄  represents the number of spaces between two 
symbols. If all ordered pairs made up of consecutive symbols of the alphabet form 
1-step pairs, ଵܷ , then allowing multiple spaces between the elements of the 
ordered pair generates a set of m-step pairs, ଵܷ, ଶܷ, … , ܷ௞, forming a multi-layered 
space. The original sequence can thus be conceptually viewed as the union of all 
such ordered pairs stratified at ݇  distinct layers. The mapping of biological 
sequences into such a vector space has the potential to bring out subtle local 
patterns that may be overlooked by existing methods. We now present a formal 
description of the MLVS model and illustrate how it can be successfully 
incorporated into the proposed granular decision making model. 

A sequence S of finite length |ܵ| defined over a finite alphabet ∑ is viewed to 
have a multi-layered structure made up of a set of m-step ordered pairs ሺ݅, ݆ሻ, with ሺ݅, ݆ሻ ∈ ∑, denoted by ܷ௛|ሺ௜,௝ሻ, where 1 ൑  ݄ ൑  ݇. The parameter h stands for the 
number of spaces between the elements of the pair downstream in the flow (left to 
right) of the sequence, and k is the maximum admissible value of h. Ordered pairs 

made up of consecutive elements of the sequence are said to form the family of 1-
step (one-step) pairs, ଵܷ|ሺ௜,௝ሻ. Allowing multiple spaces between the elements of an 
ordered pair generates a multitude of ݉ -step pairs (families) ଵܷ, ଶܷ, … , ܷ௞ , 
creating a multi-layered ݇-clustering ܥ௞ made up of sets ܷ௛|ሺ௜,௝ሻ, ݉ ൌ  1,2, . . . , ݇ 
as follows: ܥ௞  ൌ ׫ ௠ ሺ௜,௝ሻ׫  ܷ௛|ሺ௜,௝ሻ. The upper bound for parameter ݇ is |ܵ| െ 1. 
The binding factor between the elements of a particular set ܷ௛|ሺ௜,௝ሻ is the step size ݄ , common for all ordered pairs making up the family. The total number of 
ordered pairs that can be drawn from the alphabet is |∑|ଶ. A sequence ܵ can be 
viewed as the union of all such ordered pairs at ݇ distinct layers. The following 
example demonstrates how the said structures are built.  

Table 1 Sample Sequence 

1 2 3 4 5 6 7 8 9 10

g c t g g g c t c a 

11 12 13 14 15 16 17 18 19 20

g c t a a t g a g c 

 

Example-1: Given the alphabet ∑  ൌ  ሼܽ, ܿ, ݃, |∑| ሽ, withݐ  ൌ  4, |∑|ଶ ൌ 16, and 
the following biological sequence ܵ  defined over ∑ , with |ܵ| =20: ܵ ൌ ሾ݃, ܿ, ,ݐ ݃, ݃, ݃, ܿ, ,ݐ ܿ, ܽ, ݃, ܿ, ,ݐ ܽ, ܽ, ,ݐ ݃, ܽ, ݃, ܿሿ.  
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Table-1 shows the step locations of the elements making up the sequence. The 
following are sample ݄-step pairs: 1-step ordered pairs for ሺ݃, ܿሻ are located at 
step locations ሾ1,2ሿ, ሾ6,7ሿ, ሾ11,12ሿ, and ሾ19,20ሿ; 1-step ordered pairs for ሺ݃, ݃ሻ 
are located at step locations ሾ4,5ሿ, and [5,6ሿ; 2-step ordered pairs for ሺ݃,  ሻ areݐ
located at step locations ሾ1,3ሿ, ሾ6,8ሿ, and ሾ11,13ሿ; 4-step ordered pairs for ሺܿ, ݃ሻ 
are located at step locations ሾ2,6ሿ, and ሾ7,11ሿ. For a selected value of h and a 
given ordered pair ሺ݅, ݆ሻ א   ∑,  the sequence of anchor positions is taken as 
forming the scalar components of an ݍ -dimensional feature vector ௛ܸ|ሺ௜,௝ሻ 

associated with the ordered pair ሺ݅, ݆ሻ. The union of such vectors for all ordered 
pairs (for a given ݄ ) forms a vector cluster Ž௛  at step size ݄ ,  Ž௛  ൌ ׫ሺ௜,௝ሻ ௛ܸ|ሺ௜,௝ሻ, providing a single-step representation for the sequence.  

The union of vector clusters Ž௛ provides a multi-layered feature vector space  Ž௞  ൌ ׫௠ ׫ሺ௜,௝ሻ ௛ܸ|ሺ௜,௝ሻ, one layer for each value of ݄, for the original sequence. 

The grand vector space Ž௞ provides the option of controlling the accuracy and 

resolution of the solution space by selecting ݉, the step size for ordered pairs, and ݍ , the dimensionality of the vectors ௛ܸ|ሺ௜,௝ሻ  in an appropriate manner. Vector ௛ܸ|ሺ௜,௝ሻ , functioning as a feature vector in this paper, represents the sequential 

positions of the leading anchor elements of ordered pairs throughout the entire 
sequence. 

Feature vectors for each ݄-step ordered pair can be structured in at least two 
different ways. One approach is to simply record the step (spatial index) locations 
of anchor positions as Boolean values ሺ1,0ሻ . This approach is suitable for 
collections of equal length sequences. An alternative approach is to partition a 
sequence into q equal segments and record the number of anchor positions that fall 
into each segment. The number of segments ݍ will determine the dimension of 
the vectors thus formed. The size of ݍ can be adjusted to meet restrictions or 
expectations on resolution and accuracy. This approach has the advantage of 
mapping sequences of unequal length into fixed length feature vectors.  

Using the alphabet and sequence from the previous example (Table 1), the 
following are sample feature vectors for a select group of ordered m-step pairs: 
Anchor positions of 1-step ordered pairs for ሺ݃, ܿሻ are located at step (index) 
locations ሾ1,6,11,19ሿ ; vector ଵܸ|ሺࢉ,ࢍሻ,  is represented by the Boolean vector ൏ 1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0 ൐  if step anchor locations are used 
directly as vector components. If we instead partition the sequence into 4 equal 
segments (ݍ ൌ  4), the vector ଵܸ|ሺࢉࢍሻ, is represented by the 4D vector ൏ 1,1,1,1 ൐ 
with vector components representing the number of anchor elements in each 
segment; anchor positions of 1-step ordered pairs for ሺ݃, ݃ሻ are located at step 
(index) locations ൏ 4,5 ൐; vector ଵܸ|ሺࢍ,ࢍሻ  is represented by the Boolean vector ൏ 0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ൐  or by the 4D vector ൏ 2,0,0,0 ൐ ; 
anchor positions of 2-step ordered pairs for ሺ݃,  ሻ are located at step (index)ݐ
locations [1,6,11]; vector ଶܸ|ሺࢍ,࢚ሻ  is represented by the Boolean vector ൏1,0,0,0,0,1 ,0,0,0,0,1,0,0,0,0,0,0, 0,0,0 ൐ or by the 4D vector ൏ 1,1,1,0 ൐.  
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The MLVS model, with its correspondingly very large vector space, is an 
excellent domain in which to apply the proposed granular model for decision 
making. There are numerous ways in which to define partial views in the context 
of the MLVS model. These include the construction of partial views based on 
individual ordered pairs specified across one or more step sizes, and partial views 
based on combinations of multiple ordered pairs specified across one or more step 
sizes. To illustrate, consider the classification of protein sequences. Such 
sequences are typically defined in terms of an alphabet consisting of twenty amino 
acids. Thus, a given protein sequence can be transformed into four hundred MLVS 
feature vectors in which individual vectors correspond to a specific ordered pair / 
step size combination. Each vector can be regarded as a partial view and 
collectively all vectors for a given sequence x represent the set of partial views,  ܲ ௫ܸ ൌ ሼݔଵ, ,ଶݔ … ,  ସ଴଴ሽ. A classification of the protein sequences can be obtainedݔ
based on the output of the four hundred independent decision making processes 
defined by the partial views. As described in Section 4, each decision making 
process would start with analyzing MLVS vectors represented at a coarse level of 
granularity (i.e. low dimension vectors) and, if necessary, repeat the decision 
making process using vectors represented at finer levels of granularity (i.e. higher 
dimensional vectors). The results of the individual decision processes are 
subsequently combined using an ensemble approach to obtain an overall 
classification of the protein sequences. 

The benefits using the proposed granular model for classifying MLVS feature 
vectors are twofold. First, classification accuracy may improve as a result of 
processing data at different levels of granularity by minimizing the curse of 
dimensionality phenomena. This benefit is particularly significant when analyzing 
high dimensional MLVS vectors. Second, the process of classifying MLVS 
vectors can be easily distributed across multiple computing processors and 
therefore provide a reduction in processing time.  

7 Conclusion and Future Work 

The major challenges of data analytics comes from the complexity and volume of 
the data. In this chapter, we propose a comprehensive granular model for decision 
making in order to tackle both challenges. There are different types of data 
complexity. One is that the structure of a data instance is complex. For this type of 
complexity, this chapter suggests that a complex data instance is first decomposed to 
multiple partial views, each of which has simpler structures. Then the proposed 
decision model can be applied to those partial views for decision making. Another 
type of data complexity is that each data instance is associated with multiple 
heterogeneous features with different natures, formats, and scales. For this type of 
data, we can first categorize those features into different partial views, based on 
which the proposed granular model can be applied for decision making. This chapter 
uses protein sequence classification and stock price movement predication to 
illustrate how to apply the proposed decision model for both types of complexity.  
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For complex data with large volume, the proposed decision model first 
distributes the overall decision making process onto different partial views. On 
each partial view, the decision making starts with coarsest granular descriptions, 
which typically requires much less intensive computation. For those data instances 
where more intensive computation is needed at a finer level of granular 
representation, often the number of data instances that need to be involved in 
intensive computation can be reduced by using the results generated at some 
previous coarser level as filters. We plan to conduct large-scale experimental 
studies on various types of complex data, including stock data and protein 
sequence data, to further refine the proposed decision model. Another future 
research work is to implement a computational framework that supports the 
proposed decision model on big data computing platforms such as Spark [13, 14]. 
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