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Abstract. Rule based classification is a popular approach for decision making. It 
is also achievable that multiple rule based classifiers work together for group deci-
sion making by using ensemble learning approach. This kind of expert system is 
referred to as ensemble rule based classification system by means of a system of 
systems. In machine learning, an ensemble learning approach is usually adopted in 
order to improve overall predictive accuracy, which means to provide highly 
trusted decisions. This chapter introduces basic concepts of ensemble learning and 
reviews Random Prism to analyze its performance. This chapter also introduces an 
extended framework of ensemble learning, which is referred to as Collaborative 
and Competitive Random Decision Rules (CCRDR) and includes Information En-
tropy Based Rule Generation (IEBRG) and original Prism in addition to 
PrismTCS as base classifiers. This is in order to overcome the identified limita-
tions of Random Prism. Each of the base classifiers mentioned above is also intro-
duced with respects to its essence and applications. An experimental study is  
undertaken towards comparative validation between the CCRDR and Random 
Prism. Contributions and Ongoing and future works are also highlighted. 

Keywords: Data Mining, Machine Learning, Rule Based Classification, Ensemble 
Learning, Collaborative Decision Making, Random Prism. 

1 Introduction 

Rule based classification is a common approach used for decision making. It is  
also feasible for multiple rule based classifiers to collaborate for group decision 
making by adopting ensemble learning approaches. This kind of expert system is 
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referred to as ensemble rule based classification system by means of a system of 
systems. In this context, the ensemble rule based classification system is seen as a 
super system and consists of a number of single rule based classification systems, 
each of which is seen as a sub-system of the ensemble rule based classification 
system. In machine learning, an ensemble learning approach is usually adopted in 
order to improve overall predictive accuracy, which means to provide highly 
trusted decisions. 

Ensemble learning can be done in parallel or sequentially. In the former way, 
there are no collaborations among different algorithms in training and only their 
predictions are combined for final decision making [1]. In this context, the final 
prediction is typically made by means of majority voting as part of the classifica-
tion tasks. In the latter way of ensemble learning, the first algorithm learns a mod-
el from data and then the second algorithm learns to correct the former one etc [1]. 
In other words, the model built by the first algorithm is further corrected by the 
following algorithms sequentially. In parallel ensemble learning, a popular ap-
proach is to take sampling to a data set in order to get a set of samples. A classifi-
cation algorithm is then used to train a classifier on each of these samples. The 
group of classifiers constructed will make predictions on test instances indepen-
dently and final predictions on the test instances will be made based on majority 
voting. A commonly used sampling method is Bagging [2]. The Bagging method 
is useful especially when the base classifier is not stable due to high variance of 
data sample. This is because the method is robust and does not lead to overfitting 
as the number of generated hypothesizes is increased [1]. Some unstable classifi-
ers include neural networks, decision trees and some other rule based methods [3]. 

In this chapter, all of the base classifiers used for ensemble learning tasks are 
rule based classification methods, namely original Prism [4], PrismTCS [5] and 
Information Entropy Based Rule Generation (IEBRG) [6]. All of the three me-
thods follow ‘separate and conquer’ approach [7], which is one of the rule genera-
tion approaches. This is because each of the three methods generates if-then rules 
directly from training instances. The other approach of rule generation is referred 
to as ‘divide and conquer’ approach [8], which generates classification rules in the 
intermediate form of decision trees. As the generation aims to construct decision 
trees, the above approach is also referred to as Top-Down Induction of Decision 
Trees (TDIDT). A principal problem that usually arises with rule based classifica-
tion methods is the overfitting of generated hypothesis to training data [9]. As 
mentioned earlier, the Bagging method is robust and helps avoid overfitting for 
rule based classifiers. It thus motivates the use of Bagging as a sampling method 
for ensemble learning tasks, especially when rule based methods are used as base 
classifiers. 

The rest of this chapter is organized as follows. Section 2 introduces the three 
rule based classification methods, namely original Prism, PrismTCS and IEBRG. 
An existing ensemble learning method, called Random Prism [10, 11], is also in-
troduced in the Section 2 in order to comparatively analyze the performance of the 
method. Section 3 introduces an extended framework of ensemble learning, which 
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is referred to as Collaborative and Competitive Random Decision Rules (CCRDR) 
and includes the three base classifiers mentioned above. An experimental study is 
undertaken towards comparative validation between the CCRDR and Random 
Prism in Section 4. The contributions and further directions of this research area 
are also highlighted in Section 5. 

2 Related Work 

As mentioned in Section 1, this chapter investigates parallel ensemble learning 
approaches which use Bagging as the sampling method and rule based methods as 
base classifiers. Therefore, this section introduces three rule based methods, name-
ly original Prism, PrismTCS and IEBRG, the Bagging method and Random Prism. 

2.1 Original Prism 

The original Prism method was introduced by Cendrowska in [4] and the basic 
procedure of the underlying Prism algorithm is illustrated in Fig. 1. This algorithm 
is primarily aimed at avoiding the generation of complex rules with many redun-
dant terms [9] such as the ‘replicated subtree problem’ [4] that arises with decision 
trees as illustrated in Fig. 2. 

 
Execute the following steps for each classification (class= i) in turn and on the 
original training data S:  
1. S’=S. 
2. Remove all instances from S’ that are covered from the rules induced so far. If 
S’ is empty then stop inducing further rules 
3. Calculate the conditional probability from S’ for class=i for each attribute-
value pair.  
4. Select the attribute-value pair that covers class= i with the highest probability 
and remove all instances from S’ that comprise the selected attribute-value pair 
5. Repeat 3 and 4 until a subset is reached that only covers instances of class= i 
in S’. The induced rule is then the conjunction of all the attribute-value pairs 
selected.  
Repeat 1-5 until all instances of class i have been removed  
 
*For each rule, no one attribute can be selected twice during rule generation  

Fig. 1 Basic Prism algorithm [12] 

The original Prism algorithm cannot directly handle continuous attributes as it 
is based on the assumption that all attributes in a training set are discrete. When 
continuous attributes are actually present in a dataset, these attributes should be 
discretized by preprocessing the dataset prior to generating classification rules [12, 
13, 14]. In addition, Bramer’s Inducer Software handles continuous attributes as 
described in [12, 13, 14].  
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If a clash occurs while generating rules for class i: 
1. Determine the majority class for the subset of instances in the clash set.  
2. If this majority class is target class i, then compute the induced rule by assign-
ing all instances in the clash set to class i. If it is not, discard the whole rule.  
3. If the induced rule is discarded, then all instances that match the target class 
should be deleted from the training set before the start of the next rule induction. 
If the rule is kept, then all instances in the clash set should be deleted from the 
training data.  

Fig. 3 Dealing with clashes in Prism [12, 16, 17] 

Also, the original Prism may generate a rule set which may result in a classifi-
cation conflict in predicting unseen instances. This can be illustrated by the  
example below: 

Rule 1: If x=1and y=1 then class= a 
Rule 2: If z=1 then class= b 

What should the classification be for an instance with x=1, y=1 and z=1? One rule 
gives class a, the other one gives class b. A method is required to choose only one 
classification to classify the unseen instance [12]. Such a method is known as a 
conflict resolution strategy. Bramer mentioned in [12] that Prism uses the ‘take the 
first rule that fires’ strategy in dealing with the conflict problem and therefore it is 
required to generate the most important rules first. However, the original Prism 
cannot actually introduce an order to a rule according to its importance as each of 
those rules with a different target class is independent of each other. As mentioned 
in [5, 13, 14], this version of Prism would restore the training set to its original 
size after the completion of rule generation for class i and before the start for class 
i+1. This indicates the rule generation for each class may be done in parallel so 
the algorithm cannot directly rank the importance among rules with different tar-
get classes. Thus the ‘take the first rule that fires’ strategy may not deal with the 
classification confliction well. 

2.2 PrismTCS 

Bramer pointed out that the original Prism algorithm always deletes instances 
covered by those rules generated so far and then restores the training set to its 
original size after the completion of rule generation for class i and before the start 
for class i+1. This results in a high number of iterations resulting in high computa-
tional cost [5] when the training data is very large. For the purpose of increasing 
the computational efficiency, a modified version of Prism, called PrismTCS, was 
developed by Bramer [5]. PrismTCS always chooses the minority class as the tar-
get class pre-assigned to a rule being generated as its consequence. Besides this, it 
does not reset the dataset to its original state and thus introduces an order to  
each rule according to its importance [5, 13, 14]. Therefore, PrismTCS is not only 
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faster in generating rules compared with the original Prism, but also provides a 
similar level of classification accuracy [5, 13, 14]. 

As mentioned in Section 2.1, original Prism has some disadvantages in dealing 
with continuous attributes, tie-breaking, clashes and classification conflict. For 
each of these issues, Bramer introduces a corresponding solution in [12]. Each of 
the solutions is also applied to PrismTCS for each of the corresponding issues. In 
comparison to original Prism, PrismTCS can deal with conflict of classification 
better. This is because PrismTCS generates a set of ordered rules as mentioned 
earlier in this section. However, similar with original Prism, the way of dealing 
with clashes also results in underfitting of training data. As mentioned earlier, 
PrismTCS always chooses the minority class in the current training set as the tar-
get class of the rule being generated. Since the training set is never restored to its 
original size as mentioned above, it can be proven that one class could always be 
selected as target class until all instances of this class have been deleted from the 
training set because the instances of this minority class covered by the current rule 
generated should be removed prior to generating the next rule. This case may re-
sult in that the majority class in the training set may not be necessarily selected as 
target class to generate a list of rules until the termination of the whole generation 
process. In this case, there is not even a single rule having the majority class as its 
consequence (right hand side of this rule). 

Although PrismTCS can generate a rule set which includes a default rule as in-
troduced in [15] and thus leads to the decrease of number of unclassified  
instances, the default rule is likely to give a wrong classification to those unseen 
instances that are not covered by the generated rule set. This is because the as-
sumption needs to be guaranteed that the training set covers complete patterns in a 
domain, which is in order to make the default rule unlikely to give wrong classifi-
cations. Otherwise, the rule set could still underfit the training set as the conditions 
of classifying instances to the other classes are probably not strong enough. 

2.3 Information Entropy Based Rule Generation 

IEBRG is developed in [6] in order to overcome the limitations of both original 
Prism and PrismTCS. This method is attribute-value-oriented like Prism but it 
uses the ‘from cause to effect’ approach. In other words, it does not have a target 
class pre-assigned to the rule being generated. The main difference from Prism is 
that IEBRG focuses mainly on minimizing the uncertainty for each rule being 
generated no matter what the target class is. A popular technique used to measure 
the uncertainty is information entropy introduced by Shannon in [18]. The basic 
idea of IEBRG is illustrated in Fig.4 as below: 
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1. Calculate the conditional entropy of each attribute-value pair in the 
current subset 

2. Select the attribute-value pair with the smallest entropy to spilt on, i.e. 
remove all other instances that do not comprise the attribute-value 
pair. 

3. Repeat step 1 and 2 until the current subset contains only instances of 
one class (the entropy of the resulting subset is zero). 

4. Remove all instances covered by this rule. 
Repeat 1-4 until there are no instances remaining in the training set. 
 
* For each rule, no one attribute can be selected more than once during gen-

eration. 
 

Fig. 4 IEBRG algorithm 

As mentioned in Section 2.1, all versions of Prism need to have a target class 
pre-assigned to the rule being generated. In addition, an attribute might not be  
relevant to each particular classification and sometimes only one value of an 
attribute is relevant [19]. Therefore, the Prism method chooses to pay more atten-
tion to the relationship between attribute-value pair and a particular class. Howev-
er, the class to which the attribute-value pair is highly relevant is probably  
unknown, as can be seen from the example in Table 1 below with reference to the 
lens 24 dataset reconstructed by Bramer in [12]. This dataset shows that P 
(class=3|tears=1) =1 illustrated by the frequency table for attribute “tears”. The 
best rule generated first would be if tears=1 then class=3. 

Table 1 Lens 24 dataset example 

Class Label Tears=1 Tears=2 
Class=1 0 4 
Class=2 0 5 
Class=3 12 3 
total 12 12 

 
This indicates that the attribute-value “tears=1” is only relevant to class 3. 

However, this is actually not known before the rule generation. According to 
PrismTCS strategy, the first rule being generated would select “class =1” as target 
class as it is the minority class (Frequency=4). Original Prism may select class 1 
as well because it is in a smaller index. As described in [12], the first rule generat-
ed by Original Prism is “if astig=2 and tears=2 and age=1 then class=1”. It indi-
cates that the computational efficiency is slightly worse than expected and the  
resulting rule is more complex. When a large data set is used for training, the 
Prism method would be even likely to generate an incomplete rule covering a 
clash set as mentioned in Section 2.2 if the target class assigned is not a good fit to 
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some of those attribute-value pairs in the current training set. Then the whole rule 
would be discarded resulting in underfitting and redundant computational effort. 

In order to find a better strategy for reducing the computational cost, the 
IEBRG method is developed in [6]. In this method, the first iteration of the rule 
generation process for the “lens 24” dataset can make the resulting subset’s entro-
py reach 0. Thus the first rule generation is complete and its rule is represented by 
“if tears=1 then class=3”. 

In dealing with continuous attributes, IEBRG takes the same way as applied to 
the Prism family, which includes original Prism and PrismTCS in the Inducer 
software implementation. With regard to tie-breaking, IEBRG deals with this issue 
in the way similar to that Prism family does, which means that when two or more 
attribute-value pairs have the same smallest entropy value the one with the highest 
total frequency is selected as introduced by Bramer in [12]. IEBRG can also deal 
with conflict of classification well because the method also generates a set of or-
dered rules like PrismTCS. In dealing with clashes, majority voting, which assigns 
the most common classification of the instances in the clash set to the current rule 
[12], is usually used for IEBRG, especially when the objective is to validate this 
method and to find its potential in improving accuracy and computational efficiency. 

In comparison with the Prism family, this algorithm would reduce significantly 
the computational cost when the training set is large. In addition, in contrast to 
Prism, the IEBRG method deals with clashes by assigning a majority class in the 
clash set to the current rule. This would potentially reduce the underfiting of rule 
set thus reducing the number of unclassified instances although it may increase the 
number of misclassified instances. As mentioned in [12], Prism prefers to discard 
a rule rather than to give a wrong classification when a clash occurs and thus is 
more noise tolerant than TDIDT. However, if the reason that a clash occurs is not 
due to noise and the training set covers a large amount of data, then it would result 
in serious underfitting of the rule set by discarding rules as it would leave many 
unseen instances unclassified at prediction stage. The fact that Prism would decide 
to discard the rules in some cases is probably because it uses the so-called ‘from 
effect to cause’ approach. As mentioned in Section 2.1, each rule being generated 
should be pre-assigned a target class and then the conditions should be searched 
by adding terms (antecedents) until the adequacy conditions are met. Sometimes, 
it may not necessarily receive adequacy conditions even after all attributes have 
been examined. This indicates the current rule covers a clash set that contains in-
stances of more than one class. If the target class is not the majority class, this in-
dicates the search of causes is not successful so the algorithm decides to withdraw 
the task by discarding the incomplete rule and deleting all those instances that 
match the target class in order to avoid the same case to happen all over again [13, 
14]. This actually not only increases the irrelevant computation cost but also re-
sults in underfitting of the rule set. On the other hand, the IEBRG would also have 
the potential to avoid occurring clashes better compared with Prism. This is due to 
the strategy of rule generation from IEBRG as mentioned earlier in this section. 
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2.4 Bagging 

As mentioned in Section 1, Bagging is a popular method of data sampling for en-
semble learning tasks due to its robustness in avoiding overfitting. The term Bag-
ging stands for bootstrap aggregating which is a method for sampling of data with 
replacement [1]. In detail, the Bagging method is to take a sample with a size as 
same as the original data set and to randomly select an instance from the original 
data set to be put into the sample set. This means that some instances in the origi-
nal set may appear more than once in the sample set and some other instances may 
not even appear once in the sample set. According to the principle of statistics, the 
bagging method would produce a sample that is expected to contain 63.2% of the 
original data instances [1, 2, 10, 11]. Therefore, the Bagging method is useful es-
pecially when the base classifier is not stable due to high variance of data sample 
as mentioned in Section 1 and thus helpful to rule based classification methods in 
avoiding overfitting. For example, the method is successfully applied with 
PrismTCS into Random Prism for construction of ensemble learners [10, 11], 
which is further introduced in Section 2.5. 

2.5 Random Prism 

Random Prism, an existing ensemble learning method [10, 11], follows the parallel 
ensemble learning approach and uses Bagging for sampling as illustrated in Fig.5. It 
has been proven in [10, 11] that Random Prism is a noise-tolerant method alternative 
to Random Forests [20]. However, the Random Prism has two aspects in which can 
be improved in training and testing stages respectively. The above two aspects are 
also mentioned with suggestions for further improvements in [10, 11]. 

The first aspect is that there is only a single base classifier, PrismTCS, involved 
in training stage for Random Prism, which cannot always generate strong hypo-
thesis (robust models). In fact, it is highly possible that a single algorithm per-
forms well on some samples but poorly on the others. From this point of view, it is 
motivated to extend the ensemble learning framework by including multiple base 
classifiers involved in training stage. This is in order to achieve that on each data 
sample the learner created is much stronger.  

On the other hand, Random Prism uses weighted majority voting to determine 
the final prediction on test instances. In other words, each model is assigned a 
weight, which is equal to the overall accuracy checked by validation data from the 
sample. In prediction stage, each model is used to predict unseen instances and 
give an individual classification. The ensemble learning system then makes the fi-
nal classification based on weighted majority voting instead of traditional majority 
voting. For example, there are three base classifiers: A, B and C. A predicts the 
classification X with the weight 0.8 and both B and C predicts classification Y 
with the weights 0.55 and 0.2 respectively so the final classification is X if using 
weighted majority voting (weight for X: 0.8> 0.55+0.2=0.75) but is Y if using tra-
ditional majority voting (frequency for Y: 2>1). However, for the weighted major-
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set and a classifier correctly predicts the 5 instances as positive but incorrectly 
predicts other 5 instances as positive as well. In this case, the recall/true positive 
rate is 100% as all of the five positive instances are correctly classified. However, 
the precision on positive class is only 50%. This is because the classifier predicts 
10 instances as positive and only five of them are correct. This case indicates the 
possibility that high recall could result from low frequency of a particular classifi-
cation. Therefore, precision is sometimes more reliable in determining the weight 
of a classifier on a particular prediction from this point of view. Overall, both pre-
cision and recall would usually be more reliable than overall accuracy in determin-
ing weight of a classifier especially for unbalanced data sets but it is important to 
determine which one of the two metrics is used in resolving special issues. 

The modifications to Random Prism with regard to its two weak points general-
ly aim to improve the robustness of models built in training stage and to more  
accurately measure the confidence of each single model in making a particular 
prediction. In this chapter, original Prism, PrismTCS and IEBRG are used as base 
classifiers in the CCRDR framework due to the better noise tolerance of Prism 
family in comparison with TDIDT as well as the advantages of IEBRG listed in 
Section 2.3 in comparison with Prism family. However, in general, this framework 
could incorporate any type of rule based classification methods or even other type 
of machine learning methods such as Neural Networks [36] and Support Vector 
Machine [37]. With regard to the way to choose machine learning methods that 
are incorporated into the framework, it is typically based on theoretical analysis on 
the suitability of a particular method to a particular dataset. For example, some 
methods cannot directly deal with continuous attributes such as some rule based  
methods. In this case, it is required to discretize continuous attributes by prepro-
cessing the dataset prior to training stage. One of popular approaches is ChiMerge 
[38]. There are also some methods that cannot effectively discrete attributes such 
as Neural Networks and Support Vector Machine. In this case, it needs to split the 
discrete attributes into n binary attributes, while n is the number of values for the 
attribute, and each of the n binary attributes corresponds to a value of the original 
attribute. For example, gender is a discrete attribute with two values (male and 
female) and can be divided into two binary attributes named male and female re-
spectively. Each of the binary attributes is judged either yes or no. If a dataset con-
tains a large number of discrete attributes and each of them has a large number of 
possible values, it would significantly increase the number of attributes for the da-
taset resulting in the curse of dimensionality [39]. On the basis of above descrip-
tion, one way to decide which methods are chosen for training could be based on 
the type of attributes as part of data characteristic. On the other hand, as men-
tioned in Section 2.4, the training instances are randomly selected from original 
dataset and different methods may demonstrate different level of robustness with 
respect to the change of sample. Therefore, the decision on choosing methods 
could also be based on the robustness of a particular method validated in experi-
mental studies. Appropriate selection of algorithms would obviously help increase 
the overall performance of using the CCRDR framework with respects to both 
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predictive accuracy and computational efficiency. The empirical validation of 
CCRDR framework against Random Prism is introduced in Section 4.  

The authors also define a novel way of understanding ensemble learning in the 
context of system theory by referring an ensemble classifier to as an ensemble rule 
based classification system. This is because an ensemble classifier actually con-
sists of a number of single base classifiers as mentioned in Section 1. Therefore, in 
the context of system theory, an ensemble rule based classification system consists 
of a group of single rule based classification systems as mentioned in Section 1, 
each of which is a subsystem of the ensemble system. In other words, it is a sys-
tem of systems like a set of sets in set theory. In addition, an ensemble rule based 
classification system can also be a subsystem of another ensemble system in 
theory. In other words, a super ensemble rule based classification system contains 
a number of clusters, each of which represents a subsystem that consists of a 
group of single rule based systems. 

4 Comparative Validation 

The validation of CCRDR framework against Random Prism is in terms of classi-
fication accuracy. The experimental study is undertaken by splitting a data set into 
a training set and a test set in the ratio of 80:20. For each data set, the experiment 
is repeated five times and the average of the corresponding accuracies is used for 
comparative validation. The reason is that ensemble learning is usually computa-
tionally more expensive because the size of data set dealt with by ensemble learn-
ing is as same as n times the size of the original data set when using Bagging. In 
other words, a data set should be pre-processed to get n samples, each of which 
has the same size of original data set. In addition, the proposed ensemble learning 
method includes two or more base classifiers in general (three base classifiers in 
this experiment) used for each of the n samples. Therefore, in comparison with 
single learning such as use of IEBRG or Prism, the computational efforts would be 
the same as 3*n times that conducted by a single learning task. In this situation, 
the experimental environment would be computationally quite constrained on a 
single computer if cross validation is used to measure the accuracy. On the other 
hand, instances in each sample are randomly selected with replacement from the 
original data set. Thus the classification results are not deterministic and the expe-
riment is setup in the way mentioned above to make the results more convincing. 
Besides, the accuracy performed by random guess is also calculated and compared 
with that performed by each chosen algorithm. This is in order to check whether a 
chosen algorithm really works on a particular data set as mentioned earlier. The 
validation of the proposed ensemble learning method does not include this meas-
ure of efficiency. This is because, on the basis of above descriptions, the computa-
tion conducted using the proposed method is theoretically much more complex if 
it is done on a single computer. However, the efficiency can be easily improved in 
practice by adopting parallel data processing techniques and is thus not a critical 
issue. 
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In addition, the comparison is also against the random classifier, which predicts 
classification by random guess. The corresponding accuracy depends on number 
of classifications and distribution of these classifications. For example, if the ob-
jective function is a two class classification problem and the distribution is 50:50, 
then the accuracy performed by random guess would be 50%. Otherwise, the ac-
curacy must be higher than 50% in all other cases. This setup of experimental 
study is in order to indicate the lower bound of accuracy to judge if an algorithm 
really works on a particular data set. 

All of the data sets used in this evaluation are retrieved from UCI repository 
[21], some of which contain missing values in input attributes or class attributes. 
This is usually a far large issue that needs to be dealt with effectively as it would 
result in infinite loops for rule based methods in training stage. In machine learn-
ing tasks, there are typically two ways of dealing with missing values [12]: 

 
1) Replace all missing values by the most frequent occurring value for 

each attribute. 
2) Discard all instances with missing values. 

In this experimental study, the first way is adopted because all of the chosen da-
ta sets are relatively small. It indicates that if the second way is adopted both train-
ing and test sets would be too small to be representative samples. Under this kind 
of situation, the model generated is likely to introduce biased patterns with low 
confidence especially if the model overfits the training data. However, this way of 
dealing with missing values also potentially introduces noise to the data set. Thus 
such an experimental setup would also provide the validation with respect to the 
noise tolerance of an algorithm in the meantime. On the other hand, if missing 
values are in the class attribute, then the best approach would be by adopting the 
second way mentioned above. This is because the first way mentioned above is 
likely to introduce noises to the data sets and thus incorrect patterns and predictive 
accuracies would be introduced. It is also mentioned in [12] that the first way is 
unlikely to prove successful in most cases and thus the second way would be the 
best approach in these cases. In practice, the two ways of dealing with missing 
values can easily be achieved by using the implementations in some popular ma-
chine learning software such as Weka [22, 23]. 

The validation is divided into two parts of comparison. The first part is to prove 
empirically that combination of multiple learning algorithms would usually out-
performs a single algorithm as a base classier for ensemble learning with respect 
to accuracy. The second part is to prove that the use of precision instead of overall 
accuracy or recall as the weight of a classifier would be more reliable in making 
final prediction. In Table 2, CCRDR I represents that the weight of a classifier is 
determined by the overall accuracy of the classifier. In addition, the CCRDR II 
and III represent the weight determined using precision for the former and using 
recall for the latter.  
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Table 2 Ensemble learning results 

Dataset  Random 
Prism 

CCRDR I CCRDR II CCRDR III Random clas-
sifier 

anneal  71% 78% 79% 80% 60% 

balance-scale 44% 56% 68% 64% 43% 

diabetes 66% 68% 73% 68% 54% 

heart-statlog 68% 71% 74% 63% 50% 

ionosphere 65% 68% 69% 65% 54% 

lympth 68% 60% 89% 65% 47% 

car 69% 68% 71% 70% 33% 

breast-cancer 70% 72% 74% 73% 58% 

tic-tac-toe 63% 65% 66% 67% 55% 

breast-w 85% 75% 81% 75% 55% 

hepatitis 81% 84% 87% 82% 66% 

heart-c 70% 74% 83% 65% 50% 

lung-cancer 75% 79% 88% 75% 56% 

vote 67% 82% 95% 80% 52% 

page-blocks 90% 90% 90% 89% 80% 

 
The results in Table 2 show that all of the chosen methods outperform the ran-

dom classifier in classification accuracy. This indicates that all of the methods re-
ally work on the chosen data sets. In the comparison between Random Prism and 
CCRDR I, the results show that the latter method outperforms the former method 
in 12 out of 15 cases. This indicates empirically that combination of multiple 
learning algorithms usually helps generate a stronger hypothesis in making classi-
fications. This is because the combination of multiple algorithms could achieve 
both collaboration and competition. The competition among these classifiers, each 
of which is built by one of the chosen algorithms, would make it achievable that 
for each sample of training data the learner constructed is much stronger. All of 
the stronger learners then effectively collaborate on making classifications so that 
the predictions would be more accurate. 

As mentioned earlier, the second part of comparison is to validate that precision 
would usually be a more reliable measure than overall accuracy and recall for the 
weight of a classifier. The results in Table 2 indicate that in 12 out of 15 cases 
CCRDR II outperforms CCRDR I and III. This is because in prediction stage each 
individual classifier would first make classifications independently and their pre-
dictions are then combined in making a final classification. For the final predic-
tion, each individual classifier’s prediction would be assigned a weight to server 
for final weighted majority voting. The weight is actually used to reflect how reli-
able the individual classification is. The heuristic answer would be based on the 
historical record on how many times the classifier has recommended this classifi-
cation and how correct it is. This could be effectively measured by precision. The 
weakness of overall accuracy is that this measure can only reflect the reliability  
of a classifier on average rather than in making a particular classification as  
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mentioned in Section 2.5. Thus overall accuracy cannot satisfy this goal  
mentioned above. In addition, although recall can effectively reflect the reliability 
of a classifier in making a particular classification, the reliability is affected by the 
frequency of a particular classification and thus cheats the final decision maker, 
especially when the frequency of the classification is quite low as mentioned in 
Section 3. Therefore, the results prove empirically that precision would be more 
reliable in determining the weight of a classifier for weighted majority voting. 

The basis of above description with regard to CCRDR validates that combina-
tion of multiple learning algorithms would be more effective in improving the 
overall accuracy of classification and that precision would be a more reliable 
measure in determining the weight of a classifier to successfully serve for 
weighted majority voting, especially on unbalanced data sets. 

5 Conclusion and Future Work 

This chapter reviews an existing ensemble learning method called Random Prism 
and three rule based classification methods, namely original Prism, PrismTCS and 
IEBRG. An extended framework of ensemble learning is developed, which is re-
ferred to as CCRDR and includes the three methods mentioned above as the base 
classifiers. The experimental study reports that CCRDR outperforms Random 
Prism in terms of classification accuracy while the overall accuracy measured by 
validation data is used as the weight of a particular base classifier. In addition, the 
study also reports that precision would usually be more reliable than recall and 
overall accuracy in measuring the confidence of a classification made by a clas-
sifier. However, all of the data sets used in the validation introduced in Section 4 
are noise free and include well representative samples. Each method may have a 
particular level of noise tolerance and stability with regard to change of sample. 
Therefore, the authors will further check the tendency with respect to the change 
of level of predictive accuracy as the change of noise level. The authors will also 
further check the variance of the accuracy when the sample of training and test da-
ta is changed. These are in order to validate the noise tolerance and stability of the 
CCRDR against Random Prism. 

On the other hand, as mentioned in Section 4, ensemble learning methods are 
usually computationally more expensive than single learning methods such as 
IEBRG and Prism family. This is because the size of data set dealt with by ensem-
ble learning is as same as n times the size of the original data set. In the CCRDR 
framework, the size would be m× n times the size of the original data set, where m 
is the number of learning algorithms involved in training stage. However, as men-
tioned in Section 1, this type of ensemble learning tasks belongs to parallel en-
semble learning, which indicates the tasks can be parallelized to improve the com-
putational efficiency in both training and testing stages. In practice, each company 
or organization may have branches in different cities or countries so the databases 
for the companies or organizations are actually distributed over the world. As the 
existence of high performance cloud and mobile computing technologies, the  
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ensemble learning framework can also be easily transplant into distributed or mo-
bile computing environments such as multi-agent systems [29]. 

However, the theoretical framework introduced in this chapter still has space 
for extension. The ensemble learning concepts introduced in the chapter focus on 
parallel learning, which means that the building of each classifier is totally parallel 
to the others without collaborations in training stage and only their predictions in 
testing stage are combined for final decision making. However, the ensemble 
learning could also be done in sequential ways with collaborations in training 
stage. For example, there are two learning algorithms involved; the first one learns 
a model and the second one learns to correct the former as mentioned in Section 1. 
This is a direction to extend the theoretical framework further. 

So far, ensemble learning concepts introduced in the machine learning literature 
lie in single learning tasks. In other words, all algorithms involved in ensemble 
learning need to achieve the same learning outcomes in different strategies. This is 
defined as local learning by the authors in the chapter. In this context, the further 
direction would be to extend the ensemble learning framework to achieve global 
learning by means of different learning outcomes. The different learning outcomes 
are actually not independent of each other but have interconnections. For example, 
the first learning outcome is a prerequisite for achieving the second learning out-
come. This direction of extension is towards evolving machine learning approach 
in a universal vision. To fulfil this objective, the networked rule bases as illu-
strated in Fig.7 can actually provide this kind of environment for discovering and 
resolving problems in a global way.  

 

 

Fig. 7 Rule Based Network (modular rule bases) from [24, 25, 26, 27, 28] 

In this network, each node represents a single rule base. The nodes can be con-
nected sequentially or in parallel. In detail, each variable labelled xm-1, while m 
represents the number of layer in which the node locates, represents an input and y 
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represents the output. In addition, each of these labels labelled zm-2 represents an 
intermediate variable, which means this kind of variable is used as output for a 
former rule base and then again as inputs for a latter rule base as illustrated in 
Fig.7. On the other hand, there are two kinds of nodes representing rule bases as il-
lustrated in Fig.7, one of which is a type of standard rule bases and labelled RBm-1. 
This kind of nodes is used to transform the input(s) to output(s). The other type of 
nodes, in addition to the standard type, represents identities. It can be seen from the 
Fig.7 that this type of nodes does not make changes between inputs and outputs. 
This indicates the functionality of an identity is just like an email transmission, 
which means the inputs are exactly the same as the outputs. 

In practice, a complex problem could be subdivided into a number of smaller sub-
problems. The sub-problems may need to be solved sequentially in some cases. 
They can also be solved in parallel in other cases. In connection to machine learning 
context, each sub-problem could be solved by using a machine learning approach. In 
other words, the solver to each particular sub-problem could be a single machine 
learner or an ensemble learner of which a single rule base can consist. 

In military process modelling and simulation, each networked rule base can be 
seen as a chain of command (chained rule bases [24]) with radio transmissions 
(identities). In a large scale raid, there may be more than one chain of command. 
From this point of view, the networked topology should have more than one net-
worked rule bases parallel each other. All these networked rule bases should final-
ly connect to a single rule base which represents the Centre of command.  

The basis of above descriptions highlights the further directions of this research 
area. The extensions with respects to both sequential ensemble learning and net-
worked rule bases would improve the intractability among different algorithms or 
models during the process of collaborative decision making. In addition, this also 
improves towards reduction of complexity in problem solving by dividing a com-
plex problem into a set of simple problems. Therefore, the contributions would al-
so be to complexity management [30], systems engineering [31, 32, 33, 34] and 
Big Data processing [35] in addition to machine learning. 
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