Chapter 9

Material Approximation
of Combinatorial Optimisation

“There’s a city in my mind,
Come along and take that ride ”

(David Byrne, 1985)

9.1 Introduction

The Travelling Salesman Problem (TSP) is a combinatorial optimisation
problem well studied in computer science, operations research and mathe-
matics. In the most famous variant of the problem a hypothetical salesman
has to visit a number of cities, visiting each city only once, before ending
the journey at the original starting city. The shortest path, or tour, of cities,
amongst all possible tours is the solution to the problem. The problem is of
particular interest since the number of candidate solutions increases greatly
as n, the number of cities, increases. The number of possible tours can be
stated as (n—1)!/2 which, for large numbers of n, renders assessment of every
possible candidate tour computationally intractable. Besides being of theo-
retical interest, efficient solutions to the TSP have practical applications such
as in vehicle routing, tool path length minimisation, and efficient warehouse
storage and retrieval.

The intractable nature of the TSP has led to the development of a number
of heuristic approaches which can produce very short — but not guaranteed
minimal — tours. A number of heuristic approaches are inspired by mech-
anisms seen in natural and biological systems. These methods attempt to
efficiently traverse the candidate search space whilst avoiding only locally
minimal solutions and include neural network approaches (most famously in
[204]), evolutionary algorithms [207], simulated annealing methods [208], the
elastic network approaches prompted in [209], ant colony optimisation [206],
living [195] and virtual [210] slime mould based approaches, and bumblebee
foraging [205].
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Human performance on the TSP has also been studied in both naive and
tutored subjects (see, for example, [211]). This is of particular interest be-
cause, unlike many nature inspired approaches, the human computation of
TSP is by an individual and not based on population methods which evaluate
a number of candidate solutions. Human performance on the TSP is also, for
a limited number of cities at least, comparable in performance with heuristic
approaches [212], [213]. Although there are a number of competing theories
as to how exactly humans approximate the TSP [214],[212], [215], discovery
of the methods employed may be useful as an insight into the mechanisms
underlying complex perceptual and cognitive processes and potentially as an
aid for the development of computational algorithms.

In this chapter we adopt a material-based, minimum complexity approach.
We show how a spatially represented non-classical, or unconventional, compu-
tational mechanism can be used to approximate the TSP. Taking inspiration
from the non-neural, material-based computational behaviour of slime mould,
we employ a sheet, or ‘blob’ of virtual material which is placed over a spatial
map of cities. By shrinking this blob over time, it conforms and adapts to the
arrangement of cities and a tour of the TSP is formed. We give an overview
of the inspiration for the method in Section 9.2. The shrinking blob method
is described in Section 9.3. Examples of the performance of the method com-
pared to exact solutions generated by a TSP solver are given in Section 9.4,
along with an analysis of the underlying mechanism and factors affecting the
performance of the approach. We conclude in Section 9.5 by summarising the
approach and its contribution in terms of simplicity. We examine similarities
between the underlying mechanism of the shrinking blob method and pro-
posed models of TSP tour perception and construction in studies of human
performance on the TSP. We suggest further research aimed at improving
the method.

9.2 Can Slime Mould Directly Compute the TSP?

Although Physarum has been previously been used in the approximation of
TSP [195], this was achieved by an indirect encoding of the problem represen-
tation to enable it to be presented to a confined plasmodium in a controlled
environment. In the work by Aono et. al. it was shown that the morphol-
ogy of the plasmodium confined in a stellate chamber could be dynamically
controlled by light irradiation of its boundary. When coupled to an elegant
feedback mechanism using an analysis method (to assess the presence of
plasmodium at the extremities of the chamber), combined with Hopfield-
Tank type neural network rules [204], the plasmodium was used to generate
candidate solutions to simple instances of the TSP [85, 86]. In its natural
propagative state, however, Physarum does not approximate area represen-
tations of a set of points, including the Convex Hull, Concave Hull [81] and the
TSP. This is because the material comprising the plasmodium spontaneously
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forms networks spanning the nutrient sources. Even when the plasmodium is
arranged initially as a solid sheet of material, the sheet is soon transformed
into a network structure by competitive flux of material within the sheet [9].
It is physically impractical to force a freely foraging plasmodium to conform
to a TSP network structure during its nutrient foraging, as shown in Fig. 9.1.
Nevertheless, the material computation embodied within Physarum
presents interesting possibilities towards generating novel spatially repre-
sented methods of unconventional computation. The feedback control of net-
work evolution demonstrated in Chapter 8 resulted in extremely complex
transitions of network dynamics and only partial success in constructing TSP
tours. In the approach outlined in this chapter we attempt a simpler approach
which utilises a larger aggregate mass of the same multi-agent collective which
behaves as a morphologically adaptive cohesive ‘blob’ of virtual material.

(&) 36h

Fig. 9.1 Foraging plasmodium of Physarum does not approximate the TSP in
both unconstrained and constrained environments. (a) Physarum plasmodia are
inoculated at oat flakes on non-nutrient agar, (b) individual plasmodia extend from
oat flakes and fuse, (c-d) the plasmodium continues to forage and the shape of the
TSP is not represented. (e) foraging of plasmodium is constrained by placing a ring
of saline soaked thread (1g NaCl / 100g water) at the periphery of the arena, (f)
as the salt diffuses into the agar the shape of the plasmodium is confined, (g) the
pattern of the plasmodium at 36h is confined but is disconnected from outer nodes
(note empty tube remnants) and does not approximate the T'SP. Images from [216].
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9.3 Material Approximation of the TSP by a Shrinking
Blob

In the shrinking blob method we use a piece, or ‘blob’ of a virtual plasmodium
material to approximate the TSP. In this application we use a relatively large
population of particles which collectively behaves as a sheet of deformable
virtual material. An overview of the method follows.

9.3.1 Shrinkage Process

We initialise a sheet of the virtual material around a set of data points cor-
responding to TSP city nodes (Fig. 9.2a). Chemoattractant is projected into
the diffusive lattice at node locations, however, projection is reduced at re-
gions which are covered by the blob sheet. The initial shape of the sheet corre-
sponds to the Convex Hull of the data points. We then shrink the material by
systematically removing some of its constituent particle components. The city
nodes act as attractants to the material, effectively ‘snagging’ the material at
the locations of uncovered nodes and affecting its subsequent morphological
adaptation. As the material continues to shrink its innate minimising proper-
ties conform to the locations of the city nodes and the area occupied by the
material is reduced, becoming a concave area covering the nodes (Fig. 9.2b-e).
The shrinkage is stopped when all of the nodes are partially uncovered by the
sheet (Fig. 9.2f). The reader is encouraged to view the supplementary video
recordings of the shrinkage process as described in the Appendix. The adapta-
tion of the blob to the data stimuli is not entirely smooth, the video recordings
show that the blob sheet adapts to the changing stimuli as data nodes are tem-
porarily uncovered and re-covered by the blob. When the shrinkage is halted
the area of the sheet corresponds to the area enclosed by a tour of the Eu-
clidean Travelling Salesman Problem. The exact tour formed by the blob can
be elucidated by tracking along the perimeter of the blob, adding a city to the
tour list when it is first encountered. The tour is complete when the start city
is re-encountered. The approach is simple, making use of the innate adaptive
emergent properties of the material. Despite being completely unguided and
containing no population based heuristic optimisation strategies the approach
yields efficient tours. The separate stages of the approach will now be described
in detail.

9.3.2 Halting the Computation

It is important to halt the shrinkage of the blob at the right time. If the
shrinking is stopped too early an incomplete tour will be formed (i.e. only
a partial subset of the nodes will be included in the tour if not all of the
nodes are uncovered). Unlike guided heuristic methods a set of candidate
tours is not initially formed and subsequently modified. Only a single tour
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(d) t=3360 (e) t=6360 (f) t=7102

Fig. 9.2 Visualisation of the shrinking blob method. (a) sheet of virtual material
initialised within the confines of the convex hull (grey polygon) of a set of points.
Node positions are indicated by circles. Outer partially uncovered nodes are light
grey, inner nodes covered by the sheet are in dark grey, (b-e) sheet morphology
during shrinkage at time 60, 520, 3360, 6360 respectively, (f) shrinkage is stopped
automatically when all nodes are partially uncovered at time 7102.

is formed and the shrinking blob approach is akin to the ‘instance machines’
(as opposed to universal machines) proposed by Zauner and Conrad [61]. To
automatically halt the computation we use a so-called ‘traffic light” system.
At the start of the method the sheet covers the entire set of nodes. Only the
outer nodes are partially covered by the blob. To measure whether a node
is covered by the sheet we assess the number of particles in a 5 x 5 window
around each node. If the number of particles is < 15 then the node is classified
as uncovered and the node indicator is set to green. Otherwise the node is
classified as covered and the node indicator is set to red. At each scheduler
step the indicators of all nodes are checked. When all nodes are set to green,
all nodes underneath the blob are partially uncovered and the shrinkage is
stopped.

9.3.3 Reading the Result of the Computation

To trace the path of cities in the tour discovered by the blob a manual process
is used. The collection of partially uncovered nodes and blob shape may
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be interpreted as an island shape with the nodes representing cities on the
coastline of the island (Fig. 9.3). We begin by selecting the city at the top of
the arena. If more than one city is at this y location the left-most city at this
y location is selected. This city is the start city of the tour and is added to
the tour list T. Moving in a clockwise direction we trace the perimeter of the
blob (walking around the shore of the island ... ). Each time we encounter a
city, it is added to T. If a city is subsequently re-encountered (as in the case
of narrow peninsula structures as described below) it is ignored. When the
path reaches the starting city the tour is complete and the list in T represents
the tour of the TSP found by the shrinking blob.

j

3

Fig. 9.3 Reading the TSP tour formed by the shrinking blob by perimeter tracking.
(a) Tracking is initialised at the top most node. Perimeter of blob is traced in a
clockwise direction. Each time a node is encountered for the first time it is added
to the tour. The tour is completed when the start node is re-encountered.

Some special cases in the tracking process must be noted in the case where
a city lies on a narrow ‘peninsula’ of the blob as indicated in Fig. 9.4. In Fig.
9.4a the city nearest position x in the path lies close to one side of a narrow
peninsula. However the side at which the city is located can be deduced by a
small convex bulge on the left side of the blob. In this case the city is not added
until it is encountered on the left side of the peninsula. In the case of Fig.
9.4b, however, the city at = is located exactly in the middle of a peninsula and
its closest side cannot be discerned. In this instance two interpretations are
possible and the subsequent differences in possible tour paths are indicated
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by the dotted lines in Fig. 9.4b, i) and ii). In interpretation i) the city is
added to T immediately and in ii) it is not added until it is encountered on
its opposite side. If this situation occurs during the tracking process we add
the city to T when it is first encountered.

9.4 Results

We assessed the shrinking blob method by generating 20 datasets, each con-
sisting of 20 randomly generated nodes within a circular arena in a 200 x 200
lattice. To aid the manual tracking process we added the condition that points
must have a separation distance of at least 25 pixels. For each run a pop-
ulation of particles was generated and initialised within the confines of the
convex hull (algorithmically generated) of the point set. Any particles mi-
grating out of the convex hull area were removed. As the shrinkage process
started the cohesion of the blob emerged and, as shrinkage progressed, the
blob adapted to the shape of the city nodes. Ten experimental runs were
performed on each dataset and the resulting blob shape was recorded and
tracked by the manual tracking process to reveal the tour. The best, worst
and mean performance over 10 runs for each 20 datasets was recorded and
these results are shown in Fig. 9.5. Results of the shrinking blob method (Fig.
9.5, circles with standard deviation bars) are compared to the shortest exact
tour (Fig. 9.5, diamonds) computed by the Concorde TSP solver [217].

Over the 20 datasets tested, the mean tour lengths found by the shrinking
blob method was 6.41% longer than the exact minimum TSP tours. The
mean best performance over all datasets was 4.27% longer than the exact
tours and the mean worst performance was 9.22% longer than the minimum
tours. There is significant variation in the performance of the blob method
on different datasets. In some instances the minimum blob tour length is
very close (0.45% longer) to the minimum tour whereas in other cases it is
significantly more (20.13% longer). As indicated in Fig. 9.5 there are also
significant differences between the wariations in performance on the same
dataset. Datasets 3 and 16 gave identical tours over their ten runs (1.84% and
0.45% longer than the minimum tour respectively), whereas the performance
on dataset 7 ranged from between 7.72% and 20% longer than the minimal
tour.

9.4.1 Tour Construction by Concavity Insertion

Although the final tour list is read off by tracking the perimeter of the
shrunken blob, the construction of the tour actually occurs by an insertion
process as the blob shrinks. The blob is initially patterned with the shape of
the convex hull. This is only a partial tour, since only the peripheral nodes
which are part of the Convex Hull are included. By recording the stages
by which nodes are uncovered and added during the shrinkage process, the
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(b)

Fig. 9.4 Special cases of when nodes are located on a narrow peninsula, close, or
equidistant from either side of the ‘land’. (a) The node at ‘x’ is close to the middle
of a narrow portion of the blob. The slight convex bulge in the blob indicates that it
is closest to the left side and the node is not added to the tour until it is encountered
on the left side. (b) The node at ‘x’ is directly in the middle of a narrow portion of
the blob. Two potential tours are possible, shown in i) and ii) with their respective
tours as dotted lines. If this case occurs, the node is added to the tour the first time
it is encountered, as in i).
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Fig. 9.5 Results of shrinking blob method over 10 runs on each of 20 randomly
generated datasets of 20 points compared to exact results from the Concorde TSP
solver. Mean tour length indicated by dark circles, standard deviation indicated by
error bars, minimal TSP tour by TSP solver indicated by lighter diamonds.

method of construction can be elucidated. Fig. 9.8 shows the visual deforma-
tion of the Convex Hull structure as the blob shrinks and new city nodes are
added to the list. Note that the blob shrinks simultaneously from all direc-
tions and the order of insertion is related to both the proximity of the point
from the periphery of the blob and the distance between two outer stimuli at
the current periphery of the blob where a concavity forms (discussed further
in Section 9.4.3). The actual order of insertion of cities in this example is
given in Fig. 9.9.

As the blob shrinks, concavities form in the periphery of the blob which
move inwards to the centre of the blob shape. The concave deformation is
a transformation of the Convex Hull (CH) into a Concave Hull (OH). The
Concave Hull, the area occupied by — or the ‘shape’ of — a set of points
is not as simple to define as its convex hull. It is commonly used in Geo-
graphical Information Systems (GIS) as the minimum region (or footprint
[218]) occupied by a set of points, which cannot, in some cases, be repre-
sented correctly by the convex hull [219]. The Concave Hull is related to the
structures known as a-shapes [220]. The a-shape of a set of points, P, is an
intersection of the complement of all closed discs of radius 1/« that includes
no points of P. An a-shape is a convex hull when o — co. When decreasing
«, the shapes may shrink, develop holes and become disconnected, collapsing
to P when a — 0. A concave hull is non-convex polygon representing area
occupied by P and the concave hull is a connected a-shape without holes.
In contrast to a-shapes, the blob (more specifically, the set of points which
it covers) does not become disconnected as it shrinks. As the blob adapts its
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(g) Blob 683 (1.19%) (h) Concorde 675

Fig. 9.6 Examples of good performance by the shrinking blob method. (a,c,e,g) Final
blob shape with TSP tour overlaid, tour length and percentage greater than exact tour
in parentheses, (b,d,f,h) Minimum exact tour found by the Concorde TSP solver.
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(e) Blob 761 (12.57%) (f) Concorde 676

(g) Blob 713 (14.45%) (h) Concorde 623

Fig. 9.7 Examples of relatively poor performance by the shrinking blob method.
(a,c,e,g) Final blob shape with TSP tour overlaid, tour length and percentage
greater than exact tour in parentheses, (b,d,f,h) Minimum exact tour found by
the Concorde TSP solver.
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(k)

Fig. 9.8 Construction of TSP tour by shrinking blob includes the transformation
between Convex Hull and Concave Hull. (a) Initial Convex Hull of dataset 16 (shown
by points connected by path) is deformed to a concave shape by the shrinking blob.
The stepwise construction of the tour is indicated by adding a circled point as each
new city is discovered, (b-k) As the blob continues to shrink new points are included
(circled) further reducing the area of the Concave Hull, (1) when shrinkage stops
the set of encompassed points is a tour of the TSP.

morphology from Convex Hull to TSP is demonstrates increased concavity
with decreased area. Although the shrinkage process is automatically stopped
when a TSP tour is formed, the process could indeed continue past the TSP.
If shrinkage continues then the blob (now adopting a network shape) will
approximate the Steiner minimum tree (SMT), the minimum path between
all nodes. As demonstrated in [221] the additional Steiner nodes in the SMT
may be removed by increasing the attractant projection from the data nodes.
The material adapts to the increased attractant concentration by removing
the Steiner nodes to approximate the Minimum Spanning Tree (MST).
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Fig. 9.9 Gradual construction of tour by city insertion during shrinkage process
in dataset 16, as visualised in Fig. 9.8. Top row shows initial configuration of blob
as convex hull. Each row inserts a new city (bold) into the tour as indicated in
Fig. 9.8.

9.4.2 Blob TSP Tour is a Waypoint from Convexr Hull
to Spanning Tree

The insertion process of adding nodes to the Convex Hull reveals an orderly
transition to the TSP which continues after further shrinkage, leading to the
following finding.

The evolution of the blob shape by morphological adaptation is a transition
from CH to OH to TSP to MST to SMT.

We do not explicitly include a-shapes in this transition since a-shapes can
include holes and disconnected structures, which do not form in a defect-free
shrinking blob. This transition is based on increasing concavity and decreas-
ing area, and encompasses the a blob TSP tour bT'SP as part of the hierarchy.
Note that the blob tour bTSP is only one instance of the set of possible TSP
tours TSP and is not guaranteed to be the minimal tour. The blob TSP tour
is only a transient structure — a waypoint — in the natural shrinkage process
(we halt the computation at this point merely because we are interested for
the purposes of this report).

It is known from Toussaint that there is a hierarchy of proximity graphs
(graphs where edges between points are linked depending on measures of
neighbourhood and closeness) [188]. Each member of the hierarchy adds edges
and subsumes the edges of lower stages in the hierarchy, and some common
graphs (see Fig. 9.10a-¢) include the Delaunay triangulation DTN to Gabriel
Graph GG to Relative Neighbourhood Graph RNG to Minimum Spanning
Tree MIST. Also shown is the shortest possible tree between all nodes formed
by adding extra Steiner nodes (Fig. 9.10f). It was found in [80] that Physarum
approximates the Toussaint hierarchy of proximity graphs as it constructs
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transport networks during its foraging and it was demonstrated in [221] that
multi-agent transport networks mimicking the behaviour of Physarum also
minimise these proximity graphs by following this hierarchy in its downwards
direction. From a biological perspective traversing the Toussaint hierarchy
suggests a mechanism by which Physarum can exploit the trade-off between
foraging efficiency (many network links) and transport efficiency (fewer but
fault tolerant transport links). This mechanism, may also be present in terms
of maximising foraging area searched (exploration) and minimising area for
efficient transport (exploitation), as suggested in [123]. We suggest that the
hierarchy we observed in the shrinking blob from CH to OH to TSP to
MST to SMT may encompass such an area-based exploration-exploitation
mechanism (Fig. 9.10g-1). It is notable that there is some overlap between
the Toussaint hierarchy and the shrinking blob hierarchy where deepening
concavities in the blob hierarchy appear to correspond to the deletion of
outer edges in the Toussaint hierarchy, suggesting that there may be some
formal relationship between the two. This possible relationship may suggest

further studies.

(d) RNG () MST

(a) Nodes (b) DTN

() OH  (j) bTSP (k) MST () SMT

Fig. 9.10 Comparison of the Toussaint Hierarchy (top row) and Shrinking Blob Hi-
erarchy (bottom row). (a) Initial source nodes, (b) Delaunay Triangulation (DTN),
(c) Gabriel Graph (GG), (d) Relative Neighbourhood Graph (RNG), (e) Minimum
Spanning Tree (MST), (f) Steiner Minimum Tree (SMT), (g) Initial blob is pat-
terned as a Convex Hull (CH), (h-i) as the blob shrinks it adopts the Concave Hull,
(j) after uncovering the last node a TSP tour is formed, (k) blob can be forced to
adopt MST by increasing node concentration, (1) the ‘natural’ end point of blob
shrinkage is the SMT.

9.4.3 Variations in Performance
The results of the shrinking blob method show variations in performance

from very good approximations of close-to-minimum tours (Fig. 9.6) to less
successful tours (Fig. 9.7). What is the reason for the disparity in performance
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on these datasets? If we examine the tour paths we can glean some clues as
to the difference in performance. In the ‘good’ results examples the major
concave regions of the tour formed by the blob closely match the concavities
in the exact computed TSP tour (e.g. Fig. 9.6a and b). However in the ‘poor’
approximation results we can see that the major concave regions of the blob
tour do not match the major concavities in the respective exact computed
tours (e.g. Fig. 9.7a and b). Given that these concave regions are formed from
the deformation of the initial Convex Hull we can see that the concavities
in the blob tour appear to be formed, and deepened where there are larger
distances between the cities on the initial Convex Hull.

) t=100 ) t=3000
..

) t=100 ) t=500 (h) t=1000 (i) t=2000 (j) t=3000
..

) t=100 ) t=500 (m) t=1000  (n) t=2000 (o) t=3000
..

) =100 ) t=500 (r) t=1000 (s) t=2000 (t) t=3000

Fig. 9.11 Distance between nodes affects position and speed of concavity forma-
tion in shrinking blob. Nodes arranged in the border of square (indicated by crosses
on leftmost images). (a-e) all nodes have identical distance of 20 pixels, (f-j) right
side has node gap of 30 pixels, (k-0) right side node gap 60 pixels, (p-t) left side
node gap 40 pixels, right side node gap 60 pixels.
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To explore the role of distance on concavity formation we patterned a
blob into a square shape by placing regularly placed stimuli around the bor-
der of a square (Fig. 9.11a, stimuli positions, 20 pixels apart, indicated by
crosses). When shrinkage of the blob was initiated there is no difference be-
tween the stimuli distances. All regions between stimuli initially show small
concavities (the ‘perforations’ in Fig. 9.11b) until one gradually predomi-
nates and extends inwards. Also of note is the fact that when one concave
region predominates, the other concavities shrink (Fig. 9.11c-e). The position
of the initial dominating concavity is different in each run (presumably due
to stochastic influences on the collective material properties of the blob) and
this may explain the small differences in performance on separate runs using
the same dataset.

When there is a larger gap between stimulus points the predominating
concavity forms more quickly and is larger. This is shown in Fig. 9.11f
which has a gap of only 30 pixels between neighbouring stimulus points on
the right side of the square and in Fig. 9.11k-o which has a gap of 60 pixels
between neighbouring stimulus points. The shorter distance between points
in (f-j) generates more tension in the sheet, prevent its deformation. The
larger distance between stimuli in (k-0) results in less tension in the sheet at
this region and the sheet deforms to generate the concavity.

(a) t=44 (b) t=2020 (c) t=6710  (d) t=13580 () t=22590

(f) Blob 1045 (6.42%) (g) Concorde 982

Fig. 9.12 The performance of the shrinking blob method on a larger dataset. (a-e)
evolution of the shrinking blob on 50 node dataset, (f) tour formed by shrinking blob
and percentage longer than optimal tour shown in parentheses, (g) exact minimum
tour by Concorde solver.
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When there are multiple instances of large distances between stimuli there
is competition between the concave regions and the larger region predomi-
nates. This is demonstrated in Fig. 9.11p-t which has a distance gap of 40
pixels on the left side of the square and 60 pixels on the right side. Although
two concave regions are formed, the larger deepens whilst the smaller concave
region actually shrinks as the blob adapts its shape.

The synthetic examples illustrate the influence of city distance on concavity
formation and evolution and these effects are more complex when irregular
arrangements of city nodes are used. This is because arrangements of cities
present stimuli to the blob sheet when partially uncovered, acting to anchor
the blob at these regions, and the morphological adaptation of the blob is
thus dynamically affected by the changing spatial configuration of uncovered
city nodes. In the examples of relatively poor approximation of the minimum
tour (Fig. 9.7) the initial incorrect selection of concavities are subsequently
deepened by the shrinking process, resulting in tours which differ significantly
in both their visual shape and in the city order from the optimum tour. In
the examples of good comparative performance with the exact solver the blob
tours differ only in a small number of nodes.

Although outright performance is not the focus of this report, we tested
the blob method on a randomly generated dataset of 50 nodes in a prelimi-
nary assessment of scalability. We found that over 10 runs the blob method’s
best result was 6.42% longer than the exact minimum tour computed by the
TSP solver. The worst result was 9.88% longer than optimal and the mean
result was 7.57% longer than optimal (see Fig. 9.12 for an example). These
preliminary results suggest that the method may scale well, however the scal-
ability of the approach requires further investigation. It is worth noting that,
in comparison to the shrinking blob approach, previous results using mate-
rial computation with Physarum have been limited to 4 and 8 cities so, even
at this early stage, the results obtained by the shrinking blob method —
although not optimal — are promising, and may prove amenable to further
improvement.

9.5 Summary

We have presented a simple material-based approach to the computation of
the Travelling Salesman Problem using a shrinking blob. The method utilises
the emergent morphological adaptation properties of a virtual material aris-
ing from local interactions within a multi-agent particle system. We shrink
this material over time and its deformation and adaptation to the projected
data points yields a tour of the TSP. We should again emphasise that the
method is notable for its simplicity and novelty rather than its performance.
Indeed the performance, when compared to exact TSP solvers or leading
heuristic methods, compares relatively unfavourably in terms of absolute tour
distance. The method does, however, contain a number of properties that are
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intriguing. Firstly, unlike many other nature inspired approaches, the method
is not population based and the blob only computes a single instance of a
TSP tour. In addition, no attempt is made to modify or optimise the tour.
The benefits of population based approaches are that very large search spaces
in combinatorial optimisation problems can be traversed and candidate solu-
tions can be compared in some way. This allows the efficient pooling of good
solutions, generation of new candidate solutions and avoids local minima.
The blob method does not contain any of these beneficial features.

How then, can a shrinking blob naturally generate a good quality (albeit
non optimal) TSP tour? The intrinsic performance of the blob is based on its
(virtual) material properties which exhibit innate minimisation behaviour.
Previous research has demonstrated the network minimisation properties of
the material approach, reproducing phenomena seen in soap film evolution
[221] and lipid nanotube networks [111]. The maintenance of uniform shape
during blob shrinkage also allows no crossing over of paths and it is known
from [222] that crossing paths produce non-optimal tours. More specifically,
the tour is constructed by insertion of cities into the list as concave regions are
formed in the initial Convex Hull pattern and subsequently deepened. This
is similar to algorithmic heuristics which, beginning with a Convex Hull, add
cities to the list based on certain cost criteria [223], [224]. In the case of the
blob, however, there is no explicit consideration of cost when adding cities
to the tour. The mechanism of insertion selection in the blob (by deepening
concavities) is intrinsic to its quasi-mechanical properties of the ‘material’
which are influenced by the depth of the city to the Convex Hull boundary
and the span distance between boundary stimuli.

Although the blob approach differs from population based nature-inspired
heuristics it is reminiscent, in character if not in direct operation, with other
analogue based methods. In the Elastic Net algorithm, introduced by Durbin
and Willshaw, a circular band is initialised at the approximate centre of a
pattern of source TSP nodes. The band is expanded iteratively whilst two
forces are applied to points on the band which attempt to minimise distances
between cities on the band and the overall length of the band itself [209].
In the conceptually opposite approach of [225] the band is initialised on the
Convex Hull and the two forces attempt to constrict the band whilst attract-
ing the band towards a city. The tour formed by the band is then subject to
a second ‘non-deterministic improvement’ algorithm to escape local minima.
The main difference between the blob method and these ‘band’ approaches
is that the material properties of the blob method are an emergent prop-
erty of, and are distributed within, local interactions between components of
the material. The computation is thus an embodied property of the material
itself.

Can the mechanism underlying the simple material approximation of the
TSP in the blob approach contribute to the question of human performance
on the TSP? MacGregor and Ormerod noted that humans produced efficient
results on the TSP [226] and this finding stimulated further research into
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human performance on the problem and possible perceptual and cognitive
mechanisms. In their analysis of experimental findings using human subjects
Ormerod and Chronicle noted that global perceptual influences appear to
play a role in human approximation of the TSP [227]. MacGregor et al. sug-
gested a model based on insertion of cities into the Convex Hull [214]. This
model is similar to the shrinking blob mechanism except that in the blob
approach the addition of cities occurs in parallel whereas in the MacGregor
et al. model it is a sequential process. The blob method also exhibits an-
other property found in optimal tours, that boundary points in the original
convex hull are connected in sequence (the sequence may, of course, be inter-
rupted by interior points). Other competing models to explain human TSP
performance exist, including variants of hierarchical pyramid models [212],
[215] and the global-local model proposed by Best [228]. Merits, problems,
biological plausibility and the role of local vs. global perceptual processes of
the competing models have been the subject of lively debate and an assess-
ment is beyond the scope of this chapter, but see the review in [211] for an
overview. In this review MacGregor states that, despite the growing interest
in research into the human performance on the TSP, and combinatorial opti-
misation problems in general: “As yet, no algorithms have been put forward
to explain performance on the MSTP [Minimum Spanning Tree Problem)]
and the GSTP [Generalised Steiner Tree Problem]...”. It is notable that the
shrinking blob method incorporates approximations of all three problems and
executes a natural transition from global to local ‘perception’ using material
properties which emerge from very simple low-level and bottom-up interac-
tions. Whether this natural computation employed by the blob is of interest,
or utility, to human combinatorial optimisation problems is, however, an open
question.

Limitations of the approach, as it stands, include its noted relatively mod-
est performance and the reliance of a manual method to interpret the result
of the blob computation. Manual interpretation of the blob tour is, of course,
open to experimenter bias and for this reason a methodical process must be
followed, as described in section 9.3.3. An automated method of tracking the
perimeter and ‘reading’ the result of the blob tour would, nevertheless, be of
benefit. The shrinkage process is an innate and emergent phenomenon gen-
erated by the particle interactions and is not itself affected by the number of
data points in the lattice. However, the performance of the underlying system
generating the material behaviour is slowed by increases in area and in par-
ticle population size. Although the shrinkage process does indeed innately
approximate TSP tours the manual reading of the tour path incurs some
(human) computational demands. It is difficult to quantify these demands in
terms of classical computational complexity metrics. Providing that the result
reading procedure is followed correctly any increase in problem scale should
— in theory — show a linear increase in readout time. However this may be
hampered by the increasing likelihood of mistakes caused by increasing path
tortuosity, fatigue and even the repetitive and somewhat tedious nature of
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the procedure. Again, the development of a suitably accurate automated of
reading the result would aid the assessment of scalability and performance
in future research.

Further work, including a comprehensive evaluation of model parameters
affecting the material properties of the blob may suggest methods by which
the basic features of the shrinking blob approach may be adapted, or im-
proved, to improve the performance in comparison with leading heuristic
methods. The material properties and computation of the blob emerge from
a population of simple multi-agent particles and it would be satisfying if this
virtual material could be implemented and embodied in a real physical sub-
strate with the desired physical (for example visco-elastic, free energy minimi-
sation) properties. Alternately it may be possible to translate the material
operation of the unconventional computation blob method into a classical
algorithmic method.
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