
Chapter 3
A Multi-agent Model of Physarum

“...but a drop or bubble may realise in an instant the whole apparatus of
curves.... bearing witness to the fact that one common law is obeyed by
every point or particle of the system. Where the underlying equations are
unknown to us, as happens in so many natural configurations, we may still
rest assured that kindred mathematical laws are being automatically followed,
and rigorously obeyed, and sometime half-revealed.”

(D’arcy Wentworth Thompson, 1917)

3.1 Introduction

This chapter describes the multi-agent model of Physarum, which is a particle
based reaction-diffusion pattern mechanism behaving as a collective virtual
material. The base model behaviour is described and its pattern formation
properties explored in an evaluation of model parameters.

3.2 Motivations for Model Choice

We wish to approximate the biological patterning behaviour and computa-
tional behaviour of the Physarum plasmodium. Furthermore we wish to re-
produce certain features of the plasmodium: simple components, distributed
behaviour (and computation), oscillatory phenomena, and morphological
adaptation. In this section we describe the motivation for a fine-grained,
spatially implemented, material-based approach.

3.2.1 Granularity

When deciding on a modelling strategy we must choose a level of detail, or
granularity, at which to simulate the desired process. We must choose a level
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which captures the desired behaviour, does not make too many experimental
assumptions, yet which does not model irrelevant details. Whilst we seek
simplicity we must bear in mind the words of caution (attributed to Einstein),
that models should be: “...as simple as possible (but no simpler)”. For spatially
implemented models the granularity choice is particularly important since it
impacts directly on factors such as the lattice representation and the base
behaviour encoded in the model. For example, for a biological organism,
we might consider the following possible grain levels for Physarum: atomic-
molecular-chemical-actomyosin-plasmalemma-plasmodium.

We wish to implement the self-organisation phenomena which result in
the distributed, de-centralised and emergent behaviour of the plasmodium.
Choosing a high-level approach would force us to make too many modelling
assumptions about the causal factors generating these phenomena. We must
therefore choose a granularity which is fine enough to show emergent proper-
ties, which is extensible and is computationally tractable. A similar difficulty
occurs at the simpler fine-grained levels; the genetic and biochemical interac-
tions which occur in Physarum, although well studied, are not yet completely
understood, nor computationally tractable. Although lower levels of grain
appear conceptually simpler to implement (since the individual behavioural
steps are smaller and simpler), it is not possible to directly specify the higher
level observed phenomena, such as the foraging and adaptation behaviour
of Physarum, in terms of lower granularity since a complex behaviour pat-
tern such as “migrate towards stimulus” is beyond the scope of such a simple
instruction set.

3.2.2 A Continuum of Material Patterning

By exploiting ‘material properties’ we mean the behaviour that a material
collectively demonstrates under certain environmental conditions, as opposed
to the behaviour of its individual constituent parts. Many materials exhibit
complex patterning in response to environmental stresses, including fracture
patterns in ceramics [153], drying materials [154], and dielectric breakdown
[155]. However this patterning is typically non-mutable. To model adaptive
patterning in Physarum the chosen mechanism must be capable of adjust-
ing its pattern over time, i.e. the patterning must be more flexible. We can
consider patterning as a continuum where, at one extreme, there is rigid ‘one
shot’ patterning to relieve stresses in the material. Moving further along the
continuum we observe greater flexibility or adaptability in the patterning, as
observed in leaf venation where Couder et al. argue that part of the mech-
anism must exhibit visco-elastic properties to form and maintain patterning
[29]. Even more flexibility results in patterning as seen in gels [156], lipid
networks [111] and soaps and froths [157, 158]. At the extreme end of this
scale there are materials which maintain cohesion but little patterning, such
as oils and water. We can use this continuum of material patterning as an
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inspiration to devise a mechanism which allows mobility, complex patterning,
adaptability, shows cohesion, and is stable over time.

3.2.3 Material-Like Properties in Collectives

In some instances, loose aggregates of materials or individuals can also
demonstrate material-like patterning, for example in agitated granular media
[145], crowd behaviour in emergencies [159], liquid-like flows in ant colonies
[160], or flocking patterns of birds ([106]). In such examples the physical forces
responsible for cohesion in real materials are replaced by indirect coupling
of individuals provided by direct contact, visual information, or chemotactic
cues. This suggests that by incorporating such a coupling method we can
gain material-like properties within loose collectives.

3.2.4 Spatial Implementation

As prototype non-classical computing devices utilise physical properties of
their substrates, the choice of a spatial representation for the Physarum
model using a non-classical approach is logical. However, this also requires
that the mechanisms used in the model must also be incorporated spatially,
as opposed to abstracted numerically. For our approach we utilise a 2D lattice
based model to represent the structure of the plasmodium and an isomorphic
diffusive lattice to represent the flux within the plasmodium as described
below.

3.3 A Multi-agent Virtual Material Approach

The model used to approximate the behaviour of Physarum is based on the
multi-agent approach. A population of very simple particle-like mobile soft-
ware agents interact within a 2D diffusive lattice comprising their environ-
ment. The approach used is in the tradition of fine-grained and ‘bottom-up’
models, where macroscopic phenomena emerge from the interactions between
simpler components at the microscopic scale.

The level of granularity chosen corresponds to the movement interactions
within the plasmodium gel/sol matrix. By choosing this level we are removing
the complexity of sub-atomic, atomic and molecular details. It is important
to note that we are also removing the ‘layer’ of chemical interactions within
the plasmodium. It is these interactions which generate the motive force for
the protoplasmic streaming within the plasmodium. We remove this layer
partially because it is not yet fully understood biologically or energetically,
and partially because it has already been demonstrated that this layer may
be approximated by conceptualising the plasmodium as a membrane bound
sub-excitable reaction diffusion system [4]. Therefore we assume that the
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Fig. 3.1 Multi-agent based approach approximates gel / sol plasmodium interac-
tions. left) single agent particle, middle) collective mass of agents, right) complex
pattern formation.

chemical transformations, over the surface of, and within the plasmodium
provide a contractile force acting upon individual hypothetical units of gel/sol
comprising the actomyosin network of the plasmodium. It is the coupling and
flux within the gel/sol matrix which we explicitly model in this report and
which, we will show, is sufficient to explain the complex behaviour of the
Physarum plasmodium. The approach is summarised in Fig. 3.1.

3.3.1 Model Overview

The model specifically addresses the generation of network formation and
adaptation, oscillatory phenomena and transport phenomena exhibited by
Physarum . We divide the model into three parts, beginning with the base
‘material’ behaviour of network formation and adaptation. The material prop-
erties of the model must be emergent, distributed within the material and
utilise a mechanism of self-organised dynamical pattern formation. The base
behaviour of the model is then expanded to reproduce growth and adaptation
of the Physarum plasmodium. This allows the exploration of how foraging
and adaptation is influenced by nutrients within the environment. The third
part of the model is the addition of oscillatory behaviour. As with the base
model behaviour, oscillatory phenomena in the model must be an emergent
property and thus arise from the interactions within the material. The addi-
tion of subsequent behaviours to the base model behaviour must not impinge
upon previous behaviours, which are subsumed within the new additions.
Results pertaining to each are included in separate chapters for clarity.

Firstly we must reproduce the basic material properties of the plasmod-
ium, i.e. a virtual material which is capable of complex dynamical pattern
formation and adaptation from the particle collective. The material properties
must be distributed within the collective and emerge from the interactions
between the simple components, requiring no special component parts. In
this chapter we summarise the behaviour and parametric evaluation of the
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base material and its response to simple analogues of environmental stimuli
by the formation of transport networks between the stimuli.

3.3.2 The Building-Block of a Virtual Plasmodium

The model framework is a particle representation of reaction-diffusion (RD)
processes. Unlike classical RD models, which are composed of the interactions
of at least two simulated activator/inhibitor reactants in a diffusive environ-
ment, there is only a single representative reactant: a mobile particle which
senses and deposits simulated chemoattractant as it moves within a diffusive
environment. The combined sensing and deposition of chemoattractant rep-
resent an active mode of RD computation — the particle both senses and
modifies the diffusion field. This is an alternative to a passive mode where
the computation is achieved purely by wavefront propagation and in which
the particles only follow the diffusion field [73]. In general terms the frame-
work belongs to the LALI (Local Activation and Long range Inhibition) ap-
proaches which encompasses RD methods [141], and specifically agent based
approaches into LALI patterning [144].

The virtual plasmodium is comprised of a population of agent particles,
whose population size is given by p (or, as a percentage of lattice area, %p).
The diffusive lattice is represented by a discrete two-dimensional floating
point array. Agent particle positions are stored on a coupled discrete lattice
(isomorphic to the diffusive lattice) but, in an attempt to overcome the limi-
tations of movement of the discrete representation, the particles also store an
internal floating point positional and angular representation which is rounded
to a discrete value to compute movement updates and sensory inputs. A single
particle, and an aggregation of particles, is related to the Physarum plasmod-
ium in the following way: The plasmodium syncytium is conceptualised as
an aggregate of identical components. Each particle represents a hypothetical
unit of gel/sol interaction. Gel refers to the relatively stiff sponge-like matrix
composed of actin-myosin fibres and sol refers to the protoplasmic solution
which flows within the matrix.

The structure of the protoplasmic network is indicated by the collective
pattern of particle positions and the flow of sol is represented by the collective
movement of the particles. The resistance of the gel matrix to protoplasmic
flux of sol is generated by particle-particle movement collisions. As an analogy
one can imagine a tightly crowded population within a room, the confined
space generating collisions and thus resistance to movement. Local amplifica-
tion of flux is provided by particle – particle sensory coupling. An analogical
description of the coupling can be understood if the population in the room
were coupled by linking hands with close neighbours, thus when one neigh-
bour moves it creates a local increase in flow (and a temporary vacant space)
which attracts nearby particles.
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3.3.3 Agent Particle Sensory Behaviour

A single agent represents a hypothetical particle of Physarum plasmodium
gel/sol structure. When a particle moves, the movement can be said to rep-
resent the protoplasmic flux of sol. When a particle is not able to move it can
be said to represent the immobile gel matrix. The general morphology of an
agent and its basic underlying algorithm is illustrated in Fig. 3.2. Each agent
is typically initialised at a randomly chosen unoccupied and habitable loca-
tion and with a random orientation (from zero to 360◦, freeing the agent from
the restrictive rectangular architecture of the underlying lattice). The agent
receives chemotactic sensory stimuli from its environment (chemoattractant
levels stored in the diffusive lattice) via three forward sensors (Fig. 3.2a) and
the agent responds to differences in the local environment chemoattractant
levels by altering its orientation angle to face the locally strongest concentra-
tion by rotating left or right about its current position (Fig. 3.2b). The sensor
offset distance (in pixels) is represented by the SO parameter and it can be
considered as a scaling parameter. The agent is forward biased, i.e. only the
sensors directly in front of the agent’s current position are used to influence
its behaviour, thus ensuring a continuous movement-based dynamic.

(a) (b)

Fig. 3.2 Base agent particle morphology and sensory stage algorithm. (a) Illustra-
tion of single agent, showing location ‘C’, offset sensors ‘FL’,‘F’,‘FR’, Sensor Angle
‘SA’ and Sensor Offset ‘SO’, (b) simplified sensory algorithm.

3.3.4 Agent Particle Motor Behaviour

The motor behaviour of the particles represents the flux of material within
the plasmodium. The motor behaviour operates in either non-oscillatory or
oscillatory modes (Fig. 3.3). The non-oscillatory mode represents an ide-
alised movement with no build up of forces within the plasmodium due to
obstruction. As will be demonstrated, this mode generates smooth evolution
of network structure with no obstruction and hence no emergence of oscil-
latory phenomena. This mode is used to assess the network evolution under
ideal conditions and is described below.
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Fig. 3.3 Agent particle motor behaviour under non-oscillatory and oscillatory con-
ditions. (Top) movement to vacant site, (Middle) behaviour if site is occupied (non-
oscillatory), (Bottom) behaviour if site is occupied (oscillatory).

At each execution step of the scheduler every agent attempts to move
forward in the lattice by the value SS (default value of 1) in the current
direction. After every agent has attempted its move, the entire population
executes its sensory behaviour. If the movement is successful (i.e. if the next
site is not occupied) the agent moves to the new site and deposits a constant
chemoattractant value into the diffusive lattice, given by the value Dept, with
a default value of 5 units (Fig. 3.3a). In the default, non-oscillatory condition,
if the movement is not successful the agent remains in its current position,
no chemoattractant is deposited, and a new orientation is randomly selected
(Fig. 3.3b). The selection of a new direction if the agent is blocked prevents
deadlock in the lattice and clustering of agents.

In the oscillatory motor condition, however, we wish to approximate the
build up of resistance within the plasmodium. If a chosen site is occupied
the agent remains in the current cell and increments an internal coordinate
counter facing the same direction. When a site becomes free the agent occu-
pies the new site, moving past the blocked site (Fig. 3.3c). This simple mech-
anism results in temporary blockages until the particles are able to ‘push
past’ each other and results in the emergence of surging movement which is
described in more detail in chapter 15.
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3.4 Growth and Adaptation of the Virtual Plasmodium

Growth and adaptation of the particle model population is implemented using
a simple method based upon local measures of space availability (growth) and
overcrowding (adaptation by population reduction). This is undoubtedly a
gross simplification of the complex factors involved in growth and adaptation
of the real organism (such as metabolic influences, nutrient concentration,
waste concentration, slime capsule coverage, bacterial contamination etc.).
However the simplification renders the population growth and adaptation
more computationally tractable and the specific parameters governing growth
and shrinkage are at least loosely based upon real environmental constraints.
Growth and shrinkage states are iterated separately for each particle and
the results for each particle are indicated by tagging Boolean values to the
particles. Any particles tagged for growth/shrinkage are considered by the
framework scheduler at regular intervals of periods given by Gf and Sf ,
the growth/shrinkage frequency (default value, every 3 scheduler steps). The
growth and shrinkage rules for each particle are given below, with default
values indicated in brackets:

Let n be the number of particles within local window radius Gw (9) centred
around the current particle position (x, y). Let rand be the random number
generated between 0 and 1 with uniform distribution. Gmin (0) and Gmax
(10) are the local crowding size, outside which growth cannot occur. pDiv
(1) is a probability that a particle will multiply if the conditions are suitable.

if (n > Gmin AND n ≤ Gmax) AND (rand < pDiv)
divideparticle = True
Else
divideparticle = False

At each scheduler division step any particles tagged with the divideparticle
flag attempt to multiply by executing the following pseudocode:

If (divideparticle)
Choose random cell in window radius 1 around current particle position,

if available.
Create new particle in this cell.

The shrinkage rules for each particle are given as:

Let n be the number of particles within local window radius Sw (5) centred
around current particle position (x, y). Let Smin (0) and Smax (24) be the
local crowding size outside which the particle will be removed.
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if (n > Smin AND n ≤ Smax)
shrinkparticle = False
Else
shrinkparticle = True

At each scheduled shrinkage step, any particles tagged with ‘shrink’ are
removed.

3.5 Representing the Agent Population Environment
Habitat

The environment is implemented spatially using a discrete 2D lattice. Each
addressable site (x, y) on the lattice refers to a unique location which may
store a single agent particle. Each (x, y) address may also address values in
isomorphic lattices representing flux within the plasmodium and the locations
of nutrients, hazards and toxins. The flux of sol within the plasmodium is
represented by a floating point value in a diffusive lattice and referred to as
generic ‘chemoattractant’.

3.5.1 Habitat Configuration

To represent the experimental environment the lattice is configured by sup-
plying the scheduler with a 2D greyscale image. The image represents a
configuration map for the experiment. A coding system is used to denote
particular environmental features with particular greyscale levels, including
habitable background regions, experimental borders, inhabitable regions, haz-
ardous regions, nutrient stimuli locations, and specific inoculation sites. An
initial population of agent particles, representing a small fragment of plas-
modium, is created (size p, where p is the initial number of particles) and
initialised with random orientations at either background regions or specific
inoculation sites.

3.5.2 Representation of Nutrient Chemoattractants

Simulated chemoattractant nutrient source stimuli whose position and con-
centration are stored in the configuration map are projected to the diffusive
lattice at every step of the scheduler. The concentration of the chemoat-
tractant stimuli (in arbitrary units) is given by the greyscale intensity at the
lattice site. The concentration can be adjusted by multiplication with a global
weighting parameter Projd.



42 3 A Multi-agent Model of Physarum

3.5.3 Representation of Nutrient Chemorepellents

Physarum is known to migrate away from certain compounds [161, 82]. To
reproduce the effect of chemorepellent stimuli at specific sites, negatively
weighted values, Repd, are used to project features in the environment at
these locations. Because the agent particle behaviour is to orient towards
stronger concentration regions, particles will move away from the chemore-
pellent regions. Under growth and adaptation conditions, an agent particle
is not able to divide if it is within a repellent region.

3.5.4 Representation of Response to Illumination

Physarum plasmodium tends to avoid areas under illumination [162]. This
phenomenon has been used to affect the structure of the plasmodium trans-
port network and the directional migration of plasmodia [163, 84]. To im-
plement this phenomenon in the model we include a specific hazard value in
the lattice. Illuminated areas in the environment are tagged with the haz-
ard value. If an agent is located within an illuminated region, denoted by a
window Lw centred about the agent (default value 5), the value of sensed
chemoattractant in the sensor is reduced by multiplying it by a weighting
factor Ld, whose value may be between zero and 1. Lower values of Ld re-
duce the value of sensed chemoattractant in the illuminated region and the
collective is thus less attracted to the illuminated region. Under growth and
adaptation conditions, an agent particle is not able to divide if it is within
an illuminated region.

3.5.5 Diffusion Mechanism

The chemoattractant stimuli are diffused by means of a simple mean filter
kernel of size Dw, (typically 3×3). The diffusion operator is applied to all
cells simultaneously via pseudo-parallelism methods. The diffusing chemoat-
tractant values may be damped by the value Dd (typically 0.1) to adjust the
concentration of the diffusion gradient away from the nutrient source. (mean
of Dw, multiplied by (1 −Dd), smaller values of Dd resulting in less damp-
ing of diffusion). The persistence of the diffusion gradient corresponds to the
quality of the nutrient substrate of the plasmodium’s environment (for exam-
ple the different growth patterns seen in damp filter paper and nutrient-rich
agar substrates). Differences in the stimulus concentration (greyscale value in
the configuration map) and stimulus area (the size of nutrient source), affect
both the steepness, and propagation distance of the diffusion gradient and
affect the growth patterns of the synthetic plasmodium.

If the movement of agent particles represents the flux within the tube
network, the frequency of diffusion, given by the parameter Df , represents
the persistence of the tube network itself. Typically the value is 1, i.e. diffusion
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is carried out after every scheduler step, and results in faster adaptation of
the tube network. A larger value of Df will result in less frequent diffusion
and greater persistence of the tube network.

3.5.6 Gradient Suppression and Nutrient Consumption

Suppression of the production of nutrient gradients when nutrients are en-
gulfed by the model plasmodium is achieved by a simple method. At each
iteration of the scheduler the local neighbourhood Ew (default value 5), cen-
tred around every position in the lattice, is checked to see if it is occupied by
a particle and, if so, the projection of nutrient to the diffusive map is reduced
by multiplying by a damping factor Ed, between 0 and 1.

Fig. 3.4 Spontaneous formation and evolution of transport networks. Lattice
200×200, %p15, SA 22.5◦, RA 45◦, SO 9, Images taken at: 2, 22, 99, 175, 367,
512, 1740 and 4151 scheduler steps.

Consumption of nutrients is achieved in a similar way: At each iteration of
the scheduler the local neighbourhood Cw (default value 5), centred around
every position in the lattice, is checked to see if it is occupied by a parti-
cle. If any consumable nutrients are within this area the nutrient level is
decremented by a value Cd (larger values of Cd result in faster consumption).
Decrementing the nutrient level reduces the concentration of chemoattractant
projected onto the diffusive lattice. When the nutrient level at a particular
part of the lattice reaches zero no further projection occurs at this point. For
experiments on simulated nutrient-rich substrates which simulate an agar
substrate rich in nutrients (for example cornmeal agar), it is also possible
to specify higher concentrations of nutrients (relating to oat flake positions)
which are not consumed as quickly as the background substrate.
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3.6 Self-Assembly of Emergent Transport Networks

We begin the examination of the behaviour of the particle population by
studying fixed population sizes and the initiation of network formation. This
allows us to explore and evaluate the base behaviour of the model and explore
its parameters. After initialisation at random locations and orientations, the
randomly distributed agent population spontaneously forms network trails
(see Fig. 3.4, and supplementary video recordings for this chapter).

The spatial patterns are formed by, and composed of, the bi-directional
flow of agents (see supplementary recording of ‘naked’ particles with visible
sensors). The network forms because agents are attracted to the strongest
local source of chemoattractant. Individual agents secrete chemoattractant
when they move forwards successfully. The chemoattractant diffuses into the
lattice, ensuring that nearby agents are attracted to the area and a positive
feedback (Local Activation) loop is formed. Lateral inhibition is not explicitly
encoded and is generated by the local depletion of the substrate: Particles
within low concentration regions are attracted to nearby regions of high con-
centration and the number of agents in the low concentration regions further
diminishes, thus further reducing attraction of such regions to the particles.
Because the agent particles only deposit chemoattractant after successful
movement, and because the agents have a forward biased sensory apparatus,
static clustering of agents is avoided and a dynamic network is formed.

3.6.1 Network Motifs

The dynamical nature of the network exhibits complex emergent properties.
Smaller cyclic areas of the network gradually contract and disappear. As the
smaller cyclic areas disappear, larger lacunae predominate and grow as the
smaller regions shrink. Occasionally, however, a bifurcation will appear in
one of the network edges and a new path ‘sprout’ will branch out across the
dividing space of a single lacuna. When the gap is breached there is a surge
of movement as the two moving flows are connected. This surge includes an
outflow from the far edge to the moving sprout as agents within the trail at
the far edge are attracted to the chemoattractant flow of the sprout.

The result is a dynamical network whose shape is constantly changing
but whose composite parts remain the same in number. For the default sen-
sor parameters (SA 22.5◦, RA 45◦) the network never stabilises completely
(although temporarily stable regimes have been observed, see supplemen-
tary recordings). The complexity of the network evolution is also affected
by changes in network structure. For example, the collapse of a cyclic struc-
ture by contraction, redistributes agents into different parts of the network.
This affects network flow in local areas, further changing the configuration.
A simple relationship is thus formed: The change in network structure (e.g.
branching, closing) affects local agent flux which, in turn, affects the network
structure . . . and so on. The dynamical evolution of the network with the
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Fig. 3.5 Stable minimising network approximates hexagonal tiling. Final image
shows approximate hexagonal tiling of stable state image 7 (dashed).

default parameters is because the rotation angle is significantly greater than
the sensor angle. The wide rotation angle places the sensors away from the
main gradient stream after a rotation. If this is coupled with random changes
in direction (due to agent-agent collisions) a new bifurcation can become
stabilised and reinforced by agent flow.

When both SA and RA are 45◦ the same initial complex network evolution
is observed but the bifurcation and sprouting of new trails does not persist. In
this case the lacunae gradually become larger as the smaller cycles are closed.
Eventually a simple network is formed which, when tiled, approximates a
regular hexagonal tiling (Fig. 3.5).

The networks evolve without any pre-patterning of the environment and
different configurations appear at each run. The shape of the network is in-
fluenced by the random initial distribution of agents and the random initial
orientation of the agents. The chemoattractant trails that emerge when the
agents move quickly break symmetry when, for example, one area by chance
accrues more chemoattractant than another. Once agents aggregate in trails,
unoccupied areas become more devoid of chemoattractant (as the trails dif-
fuse away), further amplifying the disparity (and attraction for) the areas.
Like classical approaches to reaction-diffusion pattern formation, there is a
reaction component (the deposition of chemoattractant by agents and the ori-
entation towards stronger concentration). There is also a diffusion component
(the diffusion of the chemoattractant from the deposition sites). However,
unlike classical morphogen based models of Turing-type pattern formation,
there is no explicit inhibition mechanism present. Note that without the pres-
ence of a diffusion mechanism, the patterning would be dependent to a large
extent on the initial distribution and orientation of the agents.
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3.6.2 Bi-directional Transport — Shuttle Streaming

The mass behaviour of the agent population shows collective network for-
mation. When observing a single agent’s movement, however, the movement
does not follow the smooth flow that might be expected. The movement is
hesitant and moves backwards and forwards as it progresses along a partic-
ular path. To investigate the characteristics of single agent movement the
movement of a single particle was recorded. The network was a single path
with periodic boundary conditions and the particle position was recorded
over the course of 4000 scheduler steps and the result is shown in Fig. 3.6.
The movement trend to the right side is punctuated by direction changes,
indicative of shuttle-streaming. Example of such movement can be seen in
the supplementary recordings. Due to the lack of resistance in particle flow
under the non-oscillatory motor behaviour condition of the model, to-and-
fro oscillations in particle flow tend not to accumulate. Under oscillatory
conditions, however, interruption in particle flow can aggregate, resulting in
stronger shuttle-streaming phenomena (see chapter 16, section 16.2.2).

Fig. 3.6 Tracking of single particle shows characteristic shuttle streaming move-
ment pattern. (Left) Particles confined in single path with periodic boundary,
(Right) Plot of single particle X coordinate position over 4000 scheduler steps.
P=300, SA 45◦, RA 45◦, SO 9.
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3.6.3 Formation of Planar Sheet-Like Structures

It is also possible for the emergent agent networks to form uniform sheet-like
structures. Fig. 3.7 shows the evolution of the stable SA 45◦, RA 45◦ net-
work without periodic boundary conditions. The agents again coalesce into
network trails and the contraction behaviour condenses the network until all
interior space is removed and a sheet-like mass remains. This sheet configura-
tion also exhibits unusual properties: the sheet itself forms a minimal surface
shape and ripple-like activity can be seen to propagate through the sheet (see
supplementary recordings). The sheet also shows relatively stable dissipative
‘islands’ of greater trail flow. The islands reflect areas where a temporary
vacancy of agents exists. The number and size of the islands is related to the
sensor offset distance (SO) of the agents. When the SO parameter increases,
the number of vacancy islands decreases and the spacing between them in-
creases (Fig. 3.7). This suggests that the vacancy islands self-assemble based
upon SO, agent positions and orientation and represent transient regions of
free movement. The SA 22.5◦, RA 45◦ networks also condense when bound-
ary conditions are fixed, but no solid sheet-like mass is formed: the branching
activity preventing network condensation into a complete sheet structure.

Fig. 3.7 Formation of sheet-like structures and the emergence of dissipative va-
cancy ‘islands’. Top row (left to right) Network evolution over time: %p =20 agent
trails, SA 45◦, RA 45◦. Bottom row (left to right) Dissipative vacancy island pat-
terns at SO: 9, 13, 19, 23, 28, 38.

3.7 Factors Affecting Network Dynamics

There are a number of factors which affect the patterning and evolution of
the emergent transport networks, which are discussed below.

3.7.1 Sensory Scale and Pattern Formation

The SO parameter (the distance in pixels between the agent position on the
lattice and its three forward sensors) acts as a scaling factor. An example of
how the SO parameter affects network formation can be seen in Fig. 3.8 for



48 3 A Multi-agent Model of Physarum

SO distances of 3, 9, 15 and 25 pixels. The SO parameter affects the scaling
of the patterns because the distance from the agent location to the position of
the sensors reflects an indirect coupling between separate agents. When SO is
small the agent receives sensory input from the chemical cues of only nearby
agents and the coupling is weak. With large SO values the increased distance
represents a strong coupling between distant agents. The stronger coupling
results in coarser patterns with correspondingly large network structures and
path thickness. In general terms very small sensor offset distances (SO 3 –
7) result in fine-grained network formation and evolution whilst larger offsets
result in coarse-grained networks. As the network scale increases, so does
the speed of network evolution. As the network paths are composed of agent
particles, network paths formed by agents with larger SO have greater flux
than those with smaller SO.

3.7.2 Population Density

The sensor scale may also affect the type of pattern formed, due to interplay
with population density. At high population densities, there is less possibil-
ity of free agent movement (recall that agents only deposit chemoattractant
when a move forwards is successful) and, as the sensor offset scale increases,
there is a shift from network / lacunae pattern formation towards striped
and spotted pattern formation (Fig. 3.9). The shift in pattern type at high
population densities and large sensor scales is due to the fact that the agents
free movement is restricted. The pattern of spots seen below (for example, at
%p 90 and SO 27) is actually produced by the formation of vacancy domains
— small regions of vacant space surrounded by areas solidly packed with im-
mobile agent particles. At low %p the patterning is associated with areas of
high agent occupancy (and movement) whereas at high %p the patterning is
actually associated with areas of relatively low occupancy (but relatively free
movement).

Fig. 3.8 Effect of Sensor Offset distance on pattern scale and granularity. Left to
Right: Patterning produced with SO of 3, 9, 15, 25 pixels, Lattice 200×200. For all
experiments: %p=15, SA 45◦, RA 45◦, Evolution stopped at 500 steps.
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Fig. 3.9 Interaction between population size and sensory scale. Columns: %p,
Rows: SO distance, Lattice 300×300, SA 45◦, RA 45◦, Each experiment run for
500 steps.

3.7.3 Diffusion Properties

The pattern formation and evolution is also affected by the parameters which
affect the diffusion of chemoattractant within the diffusion map, in terms of
concentration, diffusion distance and gradient. Decreasing the damping fac-
tor Dd increases the concentration of chemoattractant in the diffusion map,
as shown in Fig. 3.10. The increased concentration results in greater attrac-
tion of particles over a larger distance (bottom row). At low concentration
the particle networks (top row) are more uniform in thickness, at high con-
centration the networks differ in thickness as clumps of particles aggregate
together.

A decrease in Dd results in an increase in overall chemoattractant concen-
tration and chemoattractant path width (Fig. 3.11a). The width of the diffu-
sion kernel Dw also affected the peak height and width of the chemoattractant
gradient. Larger kernels distributed the chemoattractant over a wider area,
with a lower peak in concentration (Fig. 3.11b).

The diffusion damping parameter Dd affects the cohesion of the particle
population. When a plasmodial sheet (a large mass of particles) is formed, the
sheet is held together by the mutual attraction of particles to the chemoat-
tractant flux produced by their own movement. The cohesion force minimises
the approximate shape of the sheet to a circular form. This cohesion is
also affected by the coupling provided by the SO parameter. The results
in Fig. 3.12 demonstrate the effect of the damping parameter on the be-
haviour of a plasmodial sheet. Initially the sheet of particles has a Dd value
of 0.05 (i) which results in strong cohesion. When Dd is increased to 0.1
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Fig. 3.10 Effect of chemoattractant concentration on network evolution. Top row:
Transport networks composed of particle positions, Bottom row: Chemoattractant
gradient concentration profile, %p 10, SA 45◦, RA 45◦, SO 9, Dd 0.1, 0.01 and
0.001. All experiments run for 500 steps.

(ii) the level of chemoattractant flux falls (see cross-section), as does the co-
hesion between the particles (visualised by the larger number of gaps between
particles) but the cohesion is still strong enough to hold the sheet together.
When Dd is increased to 0.5 (iii) the cross-section indicates that there are
transient regions within the sheet where no flux is present. The breakdown
in flux also occurs at the periphery of the sheet. Because there are regions
where no cohesive force exists between the particles, and thus no difference
in concentration between unoccupied regions of the environment and some
parts of the plasmodial sheet, the approximately circular periphery of the
sheet deforms and small pseudopodium-like filaments emerge (iv). These fila-
ments extend and grow outwards from the main mass of particles. Decreasing
the Dd parameter back to 0.1 restores the flux density above the zero level
and restores cohesion to the mass of particles (v). The pseudopodium fil-
aments begin to retract back into the mass of particles. Decreasing Dd to
0.05 increases the cohesion further (vi) until the plasmodial sheet regains its
previous morphology.

The adaptation of the particle population to changing diffusion parameters
mirrors the response of the Physarum plasmodium to changing environmen-
tal conditions. When nutrient conditions are poor the plasmodium extends
pseudopodia into the nearby environment in an attempt to locate nutrients
[124]. Conversely, when a plasmodium already occupies a rich source of nu-
trients, energy is conserved by remaining at that site until the nutrients are
depleted [12]. The change in dynamical pattern formation by the model pop-
ulation suggests how the changes in the environment may play a direct role
in the behaviour of an organism. This suggestion will be further explored in
chapter 4.
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(a)

(b)

Fig. 3.11 Effect of diffusion damping and kernel size on chemoattractant distribu-
tion. (a) Decreased diffusion damping results in increased peak value and chemoat-
tractant path width, (b) Decreased kernel size results in increased peak value and
decreasing path width. p=500, SA 45◦, RA 45◦, SO 9, Dept 5, single vertical line
of particles with periodic boundary.
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Fig. 3.12 Changes in cohesion result in pseudopodium extension and retraction.
(Top row) Plot indicates chemoattractant concentration across arrowed line, (Bot-
tom row) Extension and retraction of pseudopodia due to changes in cohesion
(above).

Fig. 3.13 Parametric mapping of SA and RA sensory parameters. %p=20, SO 5,
after 400 scheduler steps, SS 0.25 per step.



3.8 From Pattern Formation to Network Adaptation 53

3.7.4 Sensor Angle and Rotation Angle

By adjusting the RA/SA parameters characteristic Turing-type patterns are
generated. Fig. 3.13 illustrates the range of patterning when both RA and SA
vary from zero to 180◦ on a fixed population size. A wide range of reaction-
diffusion patterning including reticular, labyrinthine and spotted can be ob-
served. The parameter ranges, particularly the sensor angle (SA), affects
the cohesiveness of the population. At low SA (e.g. 22.5◦) values there are
dynamical branching reticular patterns. Increasing SA to 45◦ results in min-
imising reticular patterns. Further increases in SA result in labyrinthine and
island patterns.

The emergent patterns invoked by the SA parameter are similar, at least
superficially, to different pattern types observed in Physarum (reticulated
networks, pseudopod-like extensions, sclerotium formation) under differing
environmental conditions, such as those seen in [124]. This suggests that
environmental variations such as substrate hardness, humidity and desicca-
tion may affect the patterning mechanism within Physarum in a similar way
Fig. 3.14.

Fig. 3.14 SA parameter reproduces environmental conditions on plasmodium pat-
terning. SA: 0-180◦, RA 45◦.

3.8 From Pattern Formation to Network Adaptation

The default behaviour of the emergent transport networks is a complex and
dynamical pattern formation and evolution. Since it is possible to generate
complex patterns without pre-existing cues, the presence of externally pre-
sented stimuli (pre-existing patterning cues) may be expected to guide, or
modulate in some way, the underlying pattern formation process. Results of
the particle population response to external (simulated nutrient) stimuli are
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presented below. The nutrient stimuli are represented by sources of chemoat-
tractant. The exact location of the source is represented by pixel locations in
the agent environment lattice. The concentration of the stimulus is related to
the pixel intensity of the stimulus, multiplied by the projection weight Projd.
At each scheduler step locations that are marked by stimulus pixels were pro-
jected to the diffusive lattice. The projected stimuli are thus subject to the
same diffusion process that applies to the agent produced chemoattractant.
The weighting of the pre-pattern stimuli affects both the steepness and the
area of the local concentration gradient (Fig. 3.15).

Fig. 3.15 Visualising external nutrient stimuli and the effect of stimuli weighting.
(Left to right) Chemoattractant levels of a circular ‘sheet’ of agents with pre-pattern
stimuli cues arranged as the four corners of a square, cross-section plot (indicated by
arrow), 3D visualisation of chemoattractant concentration Pre-pattern projection
weighting Projd: Top row = 0.06, bottom row = 0.01.

Because the projection stimuli are projected to the chemoattractant flux
map, the stimuli act as sources of attractant to the agent population. An
example of the effect of simple pre-pattern stimuli is shown in Fig. 3.16.
When initialised with a small population size, the network initially emerges
in the same way as previous examples. The network soon condenses around
the strong chemotaxis stimuli presented by the two stimuli points in a sim-
ilar effect to that seen by pins constraining soap film evolution [158], and
the phenomenon of Zener pinning where dispersed particles affect the evolu-
tion of grain growth boundaries [164]. Using these points as an anchor, the
network evolves until redundant paths are removed and the shortest path is
left. When the number of stimulus sources is increased, the network evolu-
tion exhibits minimisation behaviour characteristic of minimum Steiner tree
formation (for a given set of points, the Steiner tree represents the shortest
amount of connecting material when all points are connected). The tree is
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formed when redundant network paths are shortened and closed by the emer-
gent minimisation effects (Fig. 3.17). The supplementary recordings illustrate
that the network converges on the final tree shape, despite often following
very different dynamic graph trajectories.

3.9 Factors Affecting Network Adaptation

To examine the factors affecting evolution we assessed the simplest case of a
three node network where a central node is surrounded by two outer nodes
at equal distance and equal angles. A small population (100) was initialised
on a horizontal line spanning the three nodes (see scheme in Fig 3.18a).

Initially the angle between the two outer nodes was 180◦ and this angle was
systematically decreased at regular intervals (one degree every 200 scheduler
steps), pivoting the outer nodes around the central nodes. When a critical
angle was reached the two outer network paths touched near the vicinity of
the central node and merged. The mutual attraction of the flows pulled the
network away from the central node and the direct connection to the central
node was broken by the characteristic ‘zipping’ motif. The zipping behaviour
continued until the three competing network flows stabilised at a Steiner
point. The critical angle was measured at different nutrient Projd of 0.005,
0.05, 0.5 and 5, and at different SO scales of 5, 9 and 13 pixels. A summary
of the results is shown in Fig 3.18b.

Fig. 3.16 Pattern formation and evolution under the influence of nutrient stimuli.
200×200 lattice, %p 2, SA 45◦, RA 45◦, SO 9, (Top Left) Environment shows: pre-
pattern cues (dark spots), initial agent positions (small grey flecks) and boundary
of the environment (uniform grey), Remaining images (left to right): Evolution of
network formation as the network becomes ‘snagged’. Minimisation of the network
continues until the shortest path between the stimuli remains.



56 3 A Multi-agent Model of Physarum

Fig. 3.17 Approximation of Steiner minimum trees in simple nutrient stimuli ar-
rangements. Lattice 200×200, SA 45◦, RA 45◦, SO 9, %p=2 (except bottom row,
%p=1.25).

The results summarised in the chart indicate that both Projd and SO
affect the size of the critical angle. Increasing SO distance resulted in the
critical angle occurring at larger angles than with smaller SO. This is be-
cause a larger sensor offset distance results in thicker network paths and
these paths come into proximity with each other at relatively larger network
angles. The effect of nutrient concentration, via Projd is more pronounced.
Smaller weights do not exert as great an influence on the network paths as do
larger weights (indeed at SO 5 and Projd 0.005 the attraction of the nodes
was not strong enough to constrain the paths reliably, resulting in serpentine
foraging network paths, and no information on the critical angle could be
obtained). At high projection weights the influence of the nodes resulted in a
much smaller critical angle and also a wider region of influence on nearby net-
work paths. Very high concentration could even ‘unzip’ nearby Steiner points,
returning the connections to the node itself. The wide region of influence at
high concentration is analogous to the influence of different peg diameters
in soap film minimisation schemes [165]. High concentration stimuli take the
form of a circular area of relatively large diameter which separates the two
outer paths connecting to the circle, thus the critical angle can be reduced
to a smaller value before the paths contact and merge. Low concentration
stimuli result in a smaller stimulus area which is not able to separate the two
outer paths to the node, resulting in a larger critical angle before the paths
merge.

Although the findings illustrate the critical angle for evolution around a
single node of the network it should be emphasised that changes to a single
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(a)

(b)

Fig. 3.18 Node detachment angle influenced by sensor scale and nutrient node
concentration. (a) Schematic illustration of experimental evolution (top), and ex-
perimental snapshots (bottom). Rightmost image shows example just after critical
angle has been exceeded and unzipping starts. (b) Plot of critical sensor angle
thresholds at different node concentration and sensor offset distances.

node position can have a significant impact on the evolution of the entire net-
work. This is because when the network configuration changes (by zipping
away from a node when a critical angle between two outer nodes is reached)
this reconfiguration subsequently affects the node angles at other locations in
the network. The effects are compounded when one takes into consideration
that the network evolution is continuing at all parts of the network simulta-
neously. The final configuration (if indeed the word final can be used, since
the configuration consists of dynamical network flows) only occurs when the
flows in the entire network are balanced.
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3.10 Observation of von Neumann’s Law and Plateau
Angles

The evolution of contractile networks shows characteristic evolution dynamics
which approximate those observed in soap films, froths and grain growth
[157], and lipid nanotube networks [111]. The global dynamics are composed
of individual transformations between cells (of lacunae) in the network. A
topological reconfiguration known as a T 2 relaxation process is observed when
a lacuna surrounded by three paths shrinks (Fig. 3.19, top row). When the
lacuna has completely closed the resulting Steiner point stabilises between the
three nodes at a typical angle of 120◦, demonstrating Plateau angles (a more
complete analysis of angle distributions is given in chapter 4). T 1 topological
processes are observed when the four or more paths merge (Fig. 3.19, second
row). The four way junction is not stable and the paths separate, forming
a new edge whose extension continues until the network approximates the
Steiner minimum tree.

Fig. 3.19 T2 and T1 relaxation processes, Plateau phenomena, and von Neu-
mann’s law. n represents number of nodes and edges (For explanation of T2 and
T1 evolution see text).
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When the number of nodes increases, network evolution is a complex com-
bination of T 2 and T 1 processes (for example in Fig. 3.19, third row there
is a T 2 process relaxation which results in the expansion of two separate
T 1 processes). For regular configurations the network evolution observes von
Neumann’s law where cells with sides n < 6 shrink, cells with n > 6 six sides
grow in size, and cells where n = 6 maintain the same shape.

3.11 Summary — A Virtual Plasmodium

WeapproximatePhysarum using afine-grainedbottom-upapproachas the cou-
pled interaction of components within the actomyosin matrix. We do not con-
sider the complex chemical and energetic transformations responsible for the
individual contractile forceswithin theplasmodium.Howeverwedoconsider the
local coupling mechanisms by which the individual contractile forces interact.
We thus assume that the complex and dynamical patterning of the Physarum
plasmodium is an emergent property caused by the gel/sol interactions.

We use a multi-agent method in which we couple a population of simple
mobile agents to a diffusive chemoattractant lattice. Individual hypothetical
units of gel and sol interaction are represented by a single agent particle.
Collectively, the combined position and pattern of the population represents
the entire plasmodium. The position of the particle represents the presence
of plasmodium at a location and the movement of a particle represents proto-
plasmic flux at a location. The concentration of chemoattractant at individual
lattice sites represent the level of protoplasmic flux at each site in the lattice.

The particle population collectively exhibits complex, emergent and dy-
namical pattern formation by self-organised interactions. The pattern for-
mation behaviour corresponds to the spontaneous pattern formation seen in
the Physarum plasmodium and, from a broader perspective, approximates a
wide range of Turing-like patterning. We found that the emergent transport
networks formed by the model exhibited quasi-physical second order prop-
erties during their complex evolution, showing complex network adaptation
and minimisation and specific motifs within the complex evolution of the
networks. These motifs included network branching, network path anasto-
moses, zipping/unzipping of paths and bi-directional movement approximat-
ing shuttle streaming. A comprehensive parametric evaluation characterised
the behaviour of the model under a variety of sensory parameter combina-
tions, demonstrating different pattern types and changes in pattern scale.
The effect of environmental conditions was explored, including crowding ef-
fects in large populations and the effect of diffusion parameters on popula-
tion cohesion. We examined the effect of nutrient placement, critical angles
between nutrients, and nutrient concentration on network adaptation. The
quasi-physical behaviours were found to observe Plateau’s phenomena of 120◦
angles at Steiner junctions and the emergence of network relaxation processes
adhered to von Neumann’s law.
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The base collective behaviour of the model is that of a virtual material
which, by virtue of its complex Physarum-like patterning and network adap-
tation, we may term a ‘Virtual Plasmodium’. In the next chapter we show
how the base model behaviour may be used to reproduce the complex biolog-
ical behaviour seen in Physarum under a range of environmental conditions.


	A Multi-agent Model of Physarum 
	3.1
Introduction
	3.2
Motivations for Model Choice
	3.3
A Multi-agent Virtual Material Approach
	3.4
Growth and Adaptation of the Virtual Plasmodium
	3.5
Representing the Agent Population Environment Habitat
	3.6
Self-Assembly of Emergent Transport Networks
	3.7
Factors Affecting Network Dynamics
	3.8
From Pattern Formation to Network Adaptation
	3.9
Factors Affecting Network Adaptation
	3.10
Observation of von Neumann's Law and Plateau Angles
	3.11
Summary — A Virtual Plasmodium




