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Abstract. This paper proposes a novel method to generate robust con-
tour partition points and applies them to produce point context and
contour segment features for shape matching. The main idea is to match
object shapes by matching contour partition points and contour segments.
In contrast to typical shape context method, we do not consider the
topological graph structure since our approach is only considering a small
number of partition points rather than full contour points. The experi-
mental results demonstrate that our method is able to produce correct
results in the presence of articulations, stretching, and contour deforma-
tions. The most significant scientific contributions of this paper include
(i) the introduction of a novel partition point extraction technique for
point context and contour segments as well as (ii) a new fused similar-
ity measure for object matching and recognition, and (iii) the impressive
robustness of the method in an object retrieval scenario as well as in a
real application for environmental microorganism recognition.

1 Introduction

Shape is a powerful feature for recognition as psychophysical studies [1] have
shown. As an important feature carrier, shape contour is widely used in object
detection and matching methods [2,3]. This is because shape contour is invariant
to lighting conditions and variations in object colour and texture. More impor-
tantly, it can efficiently represent image structures with large spatial extents [3].

Since shape contour is sensitive to object deformation, developing robust
contour-based shape descriptors invariant to shape rotation, translation, scaling,
and transformation is still a challenge task. Although skeleton-based descrip-
tors contain both shape features and topological structures of original objects,
they require heavy calculation for skeleton pruning [4]. Moreover, the following
matching process is highly dependent on the quality of branch pruning. Recently,
researchers have tried to employ contour segment [2,5,6] for shape matching
since contour segments are invariant to shape deformation. However, in order to
generate applicable contour segments, appropriate partition points are required.
Traditionally, skeleton endpoints can be used as partition points since they are
stable and covering most visual parts of original shapes. Nevertheless, as we
discussed previously, it heavily relies on skeleton pruning.
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The main goal of this paper is to present a method that extracts the exact
contour partition points and its related robust descriptors for shape matching.
Our proposed method is easy to implement and can be computed efficiently.
To achieve this, we propose a novel method for generating contour partition
points which is robust and stable for shape deformation. Based on these points,
we generate point context and contour segments as shape descriptor. For object
matching, we apply the point context-based matching and the contour segments-
based matching independently. By fusing two matching results with an integrated
Gradient Hill Climbing [7] and Simulated Annealing [8] method, we calculate the
shape distance and apply it for a shape retrieval scenario. Finally, we employ
a modified mutual kNN graph on the distance matrix to improve the accuracy
of shape retrieval. The advantages of our proposed approach include (i) low
computational complexity as well as (ii) the inclusion of only a limited number
of sampling points instead of all contour points with point context, and (iii) the
impressive robustness of the method in an object retrieval scenario.

2 Related Work

Contour-Based Shape Matching: For contour-based approaches, many met-
hods achieve state-of-the-art performance by only utilising contour information.
For example, Shotton et al. [9] present a categorical object detection scheme
that uses only local contour-based features and is realised in a partly super-
vised learning framework. Nguyen et al. [10] propose a shape-based local binary
descriptor for object detection that has been tested in the task of detecting
humans from static images. In [11], an algorithm for partial shape matching
with mildly non-rigid deformations using Markov chains and the Monte Carlo
method is introduced. Based on contour points, Belongie et al. proposed shape
context [12] descriptor for object matching. Shape context appears to be one
of the best performing shape descriptor and definitely the most popular one.
With the same basic geometric units of shape context, Ma and Latecki [6] pro-
posed a shape descriptor that is particularly suitable for shape matching of edge
fragments in images to model contours of target objects. Inspired by the Bag
of Words model, Wang et al. [13] introduced the Bag of contour fragments as
a higher level shape descriptor. Combining it with an linear SVM the authors
were able to achieve impressive results on existing Datasets.

Skeleton-Based Shape Matching: Though skeleton (or medial axis) can be
generated by shape contour with maximal disk model [14], comparing to contour
matching methods, skeleton matching approaches feature lower sensitivity to
occlusion, limb growth and articulation [15]. However, they are computationally
more complex [16] and still have not yet been fully successfully applied to real
images. Baseski et al. [17] present a tree-edit-based shape matching method that
uses a recent coarse skeleton representation. Their dissimilarity measure gives
a better understanding within group versus between group separation which
mimics the asymmetric nature of human similarity judgements. To the best of
our knowledge, the best performing skeleton-based object matching algorithm
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has been proposed by Bai et al. [18]. Their main idea is to match skeleton graphs
by comparing the geodesic paths between skeleton endpoints.

Shape Matching by Skeletons and Contours: Besides the utilisation of
only contour or skeleton features for shape matching, some fused shape descrip-
tors with contours and skeletons have been proposed. Bai et al. [5] combine
the object contour and skeleton properties for shape classification. They extract
contour segments using the Discrete Curve Evolution [4]. However, their app-
roach works in a supervised pattern recognition mode and multiple training
examples of an object class are necessary for modelling. Zeng et al. [19] combine
properties of skeletons and boundaries for general shape decomposition. Unfortu-
nately, this method is rotation variant and highly sensitive to shape deformation.
Yang et al. [2] proposed an approach for object retrieval that uses contour seg-
ment and skeleton matching for shape similarity computation. They employ
skeleton endpoints for contour partition. For contour segment, they proposed
a new feature extraction technique for contour segments. Though this method
achieved excellent results, however, it still highly relies on skeleton pruning.

3 Shape Representation

Partition Point: Here we describe the contour partitioning approach employed
for separating the shape of an arbitrary object Ω into a set of sub-parts. This
subset as well as the partition points pi are required to perform the match-
ing described below. The general idea is to detect contour regions with a high
curvature toward the overall shape trend. Therefore, either a single or multiple
reference points (xi) inside the shape are selected to compute distances between
all contour points ∂Ω and their closest xi. By sampling the contour clockwise
and arranging these values linearly, a signal s is generated that can be used
to detect peaks in its second-order derivative. By backtracking these peaks, the
desired partition points are obtained.

Therefore, first the contour is extracted and subsequently converted to a
polygon P. For the purpose of polygonisation the well-known Douglas-Peucker
technique is recursively applied to ∂Ω. Here, only a small tolerance value ε(DP )

is taken which drastically reduces the noise-to-signal ratio without removing
significant characteristics of the shape. Figure 1 illustrates this on the example
image of the bird by using two different tolerance values.

Next, the reference points xi have to be located inside the shape in order to
sample the contour. They are detected by utilising a high accurate fast marching

Fig. 1. The original image and two versions created by different tolerance values.
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method proposed by the authors Hassouna et al. in [20]. The result is a distance
map whose values are generated based on a given initialisation (seed point(s)).
In this context, P is taken as initialisation with the result of a distance or rather
a time-crossing map T . The values in T can also be interpreted as contour
contraction or expansion, respectively. This is illustrated in Fig. 2.
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(a) T t=0 of a bone.
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(b) T t=0 of a person.
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(c) T t=0 of a bird.

Fig. 2. The figures shows the time-crossing maps of a bone, a person and a bird. They
can also be interpreted as distance maps initialised with the objects’ contours.

The actual reference points are then discovered at maximum value locations
in T . Therefore, a detection procedure is localising iteratively candidate regions
and validates them in terms of being a new reference point. This is done based
on a dynamically adapting threshold μ(BG), that is applied to T in order to
remove background values to emphasise these candidate regions:

μ(BG) = φ(T (Ω)) − 2 · ψ(T (Ω)), (1)

where φ(·) is a function returning the maximum value with {v� | v� ∈ T,∀v ∈
T : v� > v} inside Ω. In contrast to this, ψ(·) indicates the standard derivation.
Once the background pixels are removed, the remaining ones are clustered to
disjoint regions Ai which are subsequently used to determine weighted centroids,
respectively. The first iteration (t = 0) is then completed with storing all At=0

i

inside a binary mask B having the same size as the input image I and the
weighted centroids are collected in a set, depicted by Ct=0. The next iterations
are processing the same way, but differ as follows: In each further iteration t, the
algorithm loops only over the reference points found previously (Ct−1), where
each of them is used as seed point for the fast marching method. The resulting
T t

i (where i = [1, 2, . . . ,⊗(Ct−1)] with ⊗(·) being a function that returns the
number of elements) is then applied (here multiplied) to T t=0. The effect of
T t ◦ T t=0 is illustrated in Fig. 3 based on the example of a glass. As shown, the
method would not return a reference point for the lower part by only using T t=0.

On the basis T t ◦ T t=0 the threshold μ(BG) is adapted and new candidate
regions At

i are located. Subsequently, the centroids (xt
i) are calculated for all At

i.
If one of these xt

i is residing in an already processed area, which means B(xt
i) =

1, the point is rejected, otherwise xt
i ∈ Ct and B is updated. It terminates if the

current iteration returns an empty set of newly detected reference points (Ct =
∅). The final set, in turn, is generated by P =

⋃t
j=0 Ct=j . Finally, all reference

points have to pass two further constraints. First, none of the reference points
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(c) T t=1 ◦ T t=0

(d) At=0 (e) At=1 (f) B after t = 1

Fig. 3. The figure illustrates the working principle to detect reference points iteratively.
As shown, the lower point inside the glass would not be found by only using T t=0.

are allowed to be too close to the centroid of the shape, which is ensured with the
threshold μ(cog). If only one xi is violating this constraint, all reference points are
discarded except of the responsible one. Second, in presence of multiple reference
points, the contour has to be split into sub-parts. During that separation the
algorithm monitors that each xi has only one assignment. If two contour parts get
assigned to one xi, the point will be removed. Once the validation is completed,
the fast marching approach has to be invoked a last time initialised by the final
set of reference points. From the resulting time-crossing map T (final) only the
values corresponding to the object’s contour are extracted. Afterwards, they
are arranged in a vector s where the number of elements equals the number of
pixels belonging to ∂Ω. Actually, this data is responsible for the final contour
partitioning. For this purpose, s is regarded as 1D signal in the following content.
The goal is now to derive the second-order derivative of s to determine maximum
and minimum points. By backtracking these turning points, contour pixel can be
selected as partition points pi for the object’s contour. Figure 4 shows both, the
T (final) values corresponding to the contour as well as their signal plots. Since
the bone structure yields two reference points, the contour has to be separated
into two parts, which are shown in the first and the second column.

It is obvious that the noise-to-signal ratio exacerbates the peak detection with
the result of an imprecise and noisy contour partitioning set. Thus, all subsequent
matching methods are faced with unnecessarily challenging input data. In order
to alleviate artifacts and to increase the robustness of the proposed approach,
the signal is smoothed at first. Therefore, the Fast Fourier Transform (FFT) is
employed with the intention to implement a low pass filter (LPF). The FFT is
applied, since it is capable to transform a periodic signal that is defined in the
time or spatial domain toward its frequency spectrum as vice-versa. Therefore,
the signal is approximated as a sum of sine and cosine functions, where the
coefficients describe the power of the corresponding frequency in the input signal.
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Fig. 4. The figure shows the 1D signal that has been derived from the contour depicted
on the image above. The colours on the contour line encode the distance from a pixel
to its closest reference point.

Since noise (and only detail information) usually manifests in high frequencies,
thus, one can easily suppress noisy information without losing characteristic
properties of the signal. This is shown in Fig. 5, where the signals of Fig. 4 are
plotted once again, but this time after applying a LPF to them. Here, the LPF
is established by a Gaussian filter that is directly applied to the zero-shifted
frequency domain.
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Fig. 5. From left to right, one can observe the smoothed signal of the lower left, upper
right part of the bone as well as of the person. These smoothed versions are achieved
by applying all LPF established in the frequency domain of the signals. It has to be
noted, that the signals have been padded at start and end to alleviate border artifacts.

Two things have to be noted here: First, before the signal is passed to the
LPF, it has to be padded at the start and at the end to alleviate border artifacts.
Second, the padding process reacts in different ways depending on the number
of reference points. This means, in the case of only a single reference, the signal
is doubled at its start and its end, since the contour was not separated and thus
forms a circle. If there are more than one xi (with i > 1), the contour parts
should not be repeated in the signal, since it would lead to a fake peak. Hence,
the start and the end are only extended by flipping s. Finally, the first (ŝ′)
and the second-order (ŝ′′) derivative of the smoothed (and discretised) signal
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ŝ is calculated to determine all zero locations in ŝ′ with positive or negative
curvature in ŝ′′. Figure 6 shows the second-order derivatives for the signal plots
in Fig. 5. Please note, that the computation of the second-order derivative only
considers a signed binary version of the first-order derivative (sign(ŝ′), where
sign(·) returns 0 if ŝ′

i = 0, the value 1 if ŝ′
i > 0 and −1 otherwise).
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Fig. 6. Second-order derivatives that correspond to the smoothed versions of the signals
shown in Fig. 4. Please note, that for the computation of the second-order derivative
only a signed binary version of the first-order derivative is taken.

Theoretically, the desired partition points pi can now be easily detected by
localising all positions in ŝ′′ which are not equal to zero. Practically, this naive
approach might still encompass limited amount of false-positives generated by
noise. The problem is, that it is not possible to find one Gaussian filter that is
fitting for all object instances caused by the varying degree of deformation. In
order to tackle this problem, the second-order derivative is analysed in terms of
neighbours whose distance is too close to each other. Figure 7 demonstrates such
a situation, where the red circle indicates the problem. To detect such cases in
ŝ′′, a threshold, μ(sdiff), is applied, defined as the half of the standard derivation
of all distances between adjacent peaks in ŝ′′.

If the distance between adjacent peaks is below μ(sdiff), the difference of
their heights (taken from ŝ) is compared to a threshold μ(hdiff) which has to be
chosen close to zero. If this threshold is also greater than the height difference,
the sigma of the Gaussian filter is decreased by 0.1 and the smoothing procedure
is repeated with the original s. Experiments showed, that it only requires one to

0 100 200 300 400 500 600 700 800 900
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

0 20 40 60 80 100 120 140 160 180 200
−250

−200

−150

−100

−50

0

Fig. 7. The figure illustrates a situation, where the sigma of the Gaussian filter has not
been chosen appropriately. It is obvious, that these artifacts can be easily determined
by analysing the second-order derivative. The red circles indicate the problem.
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two iterations if the algorithm starts with a sigma = 1. Finally, based on this val-
idated set of peaks, the corresponding contour partition points are determined.
Figure 8 shows the final results of the bone, the person and the bird.
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Fig. 8. Final contour partitioning set of the bone, bird and the person.

Point Context: For each partition point pi, i = 1, 2, ..., N , we propose a point
descriptor, Point Context, which has the same basic geometric unit as shape
context [12]. Considering the set of vectors originating from a partition point
to all other points on a shape, these vectors express the configuration of the
entire shape relative to the reference point. However, different from the proposed
matching method from [12], we only consider the feature vectors from partition
points instead of roughly uniform spacing for selecting sample points. Moreover,
during object shape matching, we calculate the shape distance by corresponding
matrix between pairs of partition points without any modelling transformation
process. We employ a diagram of log-polar histogram bins used in computing
the point context. More specifically, as has been defined in [12], for a partition
point pi on the shape contour, we compute a coarse histogram pi of the relative
coordinates of the remaining contour points,

pi,m = #{q �= pi : (q − pi) ∈ bin(m)}, (2)

where #{·} is the function that extracts feature values for log-polar histogram
and q = ∂Ω \ {pi}. We use five bins for log r and 12 bins for θ. This histogram
is defined to be the point context of pi. To achieve scale invariance we normalise
all radial distances by the mean distance between the contour point pairs in
the shape. Thereafter, for each partition point pi, it can be represented as a 60
dimension feature vector:

pi = (pi,1, pi,2, . . . , pi,60)
T. (3)

The whole partition points can be represented as a set of feature vectors
describing its points context:

P = {p1,p2, . . . ,pi . . . ,pN}. (4)

Contour Segment: Based on partition points, the object contour is divided
into N Contour Segments (CS). For each CS a 10-dimensional meaningful feature
vector c′

n is extracted, whereas its first element is equal to Euclidean distance
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of contour segment two partition points c′
n,1. The total number of pixels in a

CS determines c′
n,2. These two features are able to express how much a CS

differs from a straight line. In order to distinguish contour segments of the type
presented in [2], the area between the straight line connecting the CS endpoints
and the contour segment itself is used as the third feature (c′

n,3). Moreover, the
ratio between c′

n,1 and c′
n,2 is applied as c′

n,4 to evaluate the path variation.
Before computing remaining features, each CS is transformed into a nor-

malised vertical orientation (i.e., so that its endpoints are vertically aligned)
to ensure rotation invariance of the object contour representation (see Fig. 9).
From the two possible results of such a normalising transformation, the CS with
the majority of points lying on the right side of the straight line connecting
its endpoints is selected for further processing. For computing further features
c′
n,5, c

′
n,6, . . . , c

′
n,10, we use the bounding box of the whole CS as well as the three

equally high sub-boxes shown in Fig. 9:

c′
n,5 = hn

wn
c′
n,6 = hn,1

wn,1
c′
n,7 = hn,2

wn,2

c′
n,8 = hn,3

wn,3
c′
n,9 = wn,3hn,3

wn,1hn,1
c′
n,10 = wn,2hn,2

wn,1hn,1

. (5)

Fig. 9. CS bounding box
and equally high sub-boxes
(hn,1 = hn,2 = hn,3) used
for feature extraction.

Finally, we divide the elements of the feature vec-
tor by a half of the bounding box perimeter for scale
invariance:

cn =
c′
n

wn + hn
= (cn,1, . . . , cn,10)

T (6)

The object contour can now be represented as a set
of feature vectors describing its contour segments:

C = {c1, c2, . . . , cn . . . , cN}. (7)

Finally, we fuse the partition point vectors and the
contour segment vectors as the descriptor for the
whole object shape contour ∂Ω:

∂Ω = {P ,C}. (8)

4 Shape Matching

The matching of two objects including the computation of their similarity is
performed separately for their partition points and contour segments represen-
tations. After matching, we estimated shape distances as the weighted sum of two
terms: partition points dissimilarity, contour segments dissimilarity. For query-
by-example shape retrieval, we built our approach by considering the underlying
structure of the shape manifold, which is estimated from the shape distance
scores between all the shapes within a database.
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Point Context-Based Matching: Let ∂Ω and ∂Ω′ denote two shape con-
tours to be matched, and let pn and p′

k be some partition points in P and P ′,
respectively. Let the numbers of the partition points in ∂Ω and ∂Ω′ be N and
K, respectively, and N ≤ K. As point contexts are distributions represented as
histograms, the dissimilarity d(pn,p′

k) between pn and p′
k is estimated based on

the χ2 test statistic:

d(pn,p′
k) = 1

2

M∑

m=1

[pn,m−pk,m]2

pn,m+pk,m
. (9)

where M = 60 is the dimensionality of the feature space. hn(m) and hk(m)
denote the M -bin normalised histogram at pn and p′

k, respectively. For two
shapes contour, ∂Ω and ∂Ω′, we use the lists of feature vectors for the clockwise
ordered partition points. We compute all the dissimilarity between partition
points and obtain a matrix:

D(P ,P ′) =

⎛

⎜
⎜
⎜
⎝

d(p1,p
′
1) d(p1,p

′
2) . . . d(p1,p

′
K)

d(p2,p
′
1) d(p2,p

′
2) . . . d(p2,p

′
K)

...
...

...
d(pN ,p′

1) d(pN ,p′
2) . . . d(pN ,p′

K)

⎞

⎟
⎟
⎟
⎠

. (10)

Based on (10), we find the best matched points from P to P ′ by Hungarian
algorithm [12]. For each partition point pi in P , the Hungarian algorithm can
find its corresponding partition point p′

j in P ′. Since ∂Ω and ∂Ω′ may have
different numbers of partition points, the total dissimilarity value should include
the penalty for end nodes that didn’t find any partner. To achieve this, we
simply add additional rows with a constant value const to (10) so that D(P ,P ′)
becomes a square matrix. The constant value const is the average of all the other
values in D(P ,P ′).

The resulting dissimilarity values of the matched partition points can be
denoted as d1, d2, . . . , dN and the global partition point-based dissimilarity
between P and P ′ is calculated as follows:

dpoints(P ,P ′) =
1

N

N∑

n=1

dn. (11)

Contour Segment-Based Matching: Similar to point context-based match-
ing, Let ∂Ω and ∂Ω′ denote two shape contours to be matched, and let cn and
c′

k be some contour segments in C and C′, respectively. The numbers of contour
segments is equal to the number of partition points in ∂Ω and ∂Ω′, be N and
K, respectively, and N ≤ K.

We introduce a matching cost measure for contour segments cn and c′
k

belonging to different shape contour ∂Ω and ∂Ω′:

d(cn, c′
k) =

1

M

M∑

m=1

σm|cn,m − c′
k,m|

K∑

j=1

|cn,m − c′
k,m|

, (12)
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where M = 10 is the dimensionality of the feature space and σm is the weight
for each feature achieved in an optimisation process explained in [2]. As one can
see, the dissimilarity value between cn and c′

k does not only depend on these
two contour segments. All CS of C are taken into consideration, whereby (12)
does not fulfil the symmetry property d(cn, c′

k) �= d(c′
k, cn). However, it behaves

in accordance to human perception. If the matching cost of cn to the neighbours
of c′

k in C′ decreases, d(cn, c′
k) increases.

We arrange the contour segments of both objects in a clockwise way so that
the objects can be represented by ordered lists of feature vectors:

C = (c1, c2, . . . , cn, . . . , cN )
C ′ = (c′

1, c
′
2, . . . , c

′
k, . . . , c′

K)
. (13)

Using (12) we generate a matrix of matching cost between all CS in C and in C′:

D(C ,C ′) =

⎛

⎜
⎜
⎜
⎝

d(c1, c
′
1) d(c1, c

′
2) . . . d(c1, c

′
K)

d(c2, c
′
1) d(c2, c

′
2) . . . d(c2, c

′
K)

...
...

...
d(cN , c′

1) d(cN , c′
2) . . . d(cN , c′

K)

⎞

⎟
⎟
⎟
⎠

. (14)

The next steps are the same as partition points. In order to find an optimum
match of contour segments from C to CS from C′, we apply the Hungarian
algorithm for the matrix expressed in (14). Then we can find the resulting dis-
similarity values of the matched contour segments denoted as d1, d2, . . . , dN and
the global dissimilarity dcontours(C,C ′) is calculated by the same method in (11).

Shape Distance and Retrieval: In this paper, we defined the distance between
two shapes with a fused scheme between partition points and contour segments:

d(Ω, Ω′) = αdpoints(P ,P ′) + (1 − α)dcontours(C ,C ′). (15)

The weight α in (15) has been optimised by an integrated Gradient Hill
Climbing [7] and Simulated Annealing [8] method on the Kimia216 dataset. By
experiment, the optimised weight is α = 0.7 and we employ it for all experiments
in Sect. 5.

For the task of shape retrieval, given a set of H shapes, a shape matching
algorithm (15) can be applied to obtain a H × H distance matrix to describe
the pairwise relations between all shapes in terms of a dissimilarity measure.
Such an approach ignores the fact that also distances to all other shapes con-
tain important information about the overall shape manifold. Therefore, in this
paper, we employ a method proposed by [21] that allows to improve retrieval
results by analysing the underlying structure of the shape manifold. This method
captures the manifold structure of the data by defining a neighbourhood for each
data point in terms of a modified version of a mutual kNN graph which yields
improved performance on all experiment databases in Sect. 5.
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Fig. 10. Example shapes from the experimental datasets: Kimia-99 (first row), MPEG-
400 (second row), Kimia-216 (third row) and EM-200 (fourth row with original, fifth
row with manually- and the sixth row with semi-automatically segmented images).

5 Experiments and Results

Correspondence Matching: In Fig. 11 (left), we match a dog to another dog
with legs and backside deformation. Since the articulations of the query dog is
similar to the deformed one, our matching process finds the correct correspon-
dences between partition points as well as contour segments. Figure 11 (right)
shows the correspondence between two tools. Based on human perception there
are two mismatched partition points. This is due to their symmetric silhouette
and there are many similar contour segments and partition points in one object
which could affect the performance of matching approach. However, in terms of
the geometry, the correspondences are correct since the matched partition points
and contour segments have the same geometrical location among their objects.
Therefore, the final similarity between two objects is not affected. Figure 12 are
taken from Kimia-99’s person dataset, whereas the silhouette on the right side is
manually modified. It demonstrates that the proposed method is able to estab-
lish a correct correspondence if parts are substantially deformed. The obtained
correspondence in Kimia-99 [22] illustrates that our matching process has strong
performance in the presence of occlusion.

Application Independent Experiments: We tested our algorithm on two
shape databases provided by Kimia-216 [18] (the fourth row in Fig. 10) and
MPEG-400 [2] (the third row in Fig. 10). We compare our method to the Path
Similarity Skeleton Graph Matching (PSSGM) [18] and the Contour Segments-
based Matching [2] in which contour segments are generated by the endpoints of
skeletons. To compare our partition point extraction technique against existing
methods, we also tested our algorithm with partition points gained from Discrete
Curve Evolution [23]. To get the best results we set the stop parameter at 4.
For each of the shapes used as a query, we have checked whether the retrieved
results are correct, i.e., belong to the same class as the query. In order to enable
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Fig. 11. The corresponding partition points (linked with lines) and contour segments
(linked with colours) between two dogs (left) and tools (right) from Kimia99 dataset.

Fig. 12. Example correspondence between articulating persons.

quantitative comparison, we have kept the experimental convention proposed
in [18] and considered the 10 best matches for each query. Results achieved for
the Kimia-216 and the MPEG-400 datasets can be found in Table 1, whereas
in [24] the PSSGM algorithm had been re-evaluated without any preliminary
assumptions regarding the object skeletonisation. For these two databases, it
is important to observe that the fused point context and contour segment out-
performs skeleton-based methods [18] and contour segments-based methods [2]
while the complexity of feature generation and matching has been reduced.

Environmental Microorganism Retrieval: EMs and their species are very
important indicators to evaluate environmental quality, but their manual recog-
nition is very time-consuming [25]. Thus, automatic analysis techniques for
microscopic images of EMs would be very appreciated by environmental sci-
entists. We have tested our methodology for this application using a real dataset
acquired in environmental laboratories of the University of Science and Technol-
ogy Beijing. We segmented the images manually and semi-automatically with the
method introduced in [26]. Examples of EM original images as well as manually
segmented and semi-automatically segmented EM images can be seen in Fig. 10.
The impressive results for the EM-200 [27] dataset (see Table 1) confirm the high
descriptive power of our new feature extraction technique for contours and prove
the applicability of our shape retrieval algorithm to real-world applications.
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Table 1. Experimental comparison of our methodology to the most related algorithm
using the MPEG-400, Kimia216 datasets as well as the proof of applicability of our
approach to real world problems using the EM-200 dataset. Results are summarised as
the number of shapes from the same class among the first top 1–10 shapes.

6 Conclusion and Future Work

In this paper, we proposed a method for 2D shape similarity measure based on
contour segment matching and, after fusion with a partition point matching,
use it for object retrieval. The most innovative part of our approach is the
robust and stable partition point generation and the comparison and matching of
contour segments. The algorithm can be easily implemented to real applications.
In the future, we will investigate possibilities of weighting properties on contour
segment feature, which could be applied for dataset adopting with a supervised
optimisation scheme.
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