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Abstract. In this paper, we address the problem of tracking an un-
known object in 3D space. Online 2D tracking often fails for strong out-
of-plane rotation which results in considerable changes in appearance
beyond those that can be represented by online update strategies. How-
ever, by modelling and learning the 3D structure of the object explicitly,
such effects are mitigated. To address this, a novel approach is presented,
combining techniques from the fields of visual tracking, structure from
motion (SfM) and simultaneous localisation and mapping (SLAM). This
algorithm is referred to as TMAGIC (Tracking, Modelling And Gaussian-
process Inference Combined). At every frame, point and line features are
tracked in the image plane and are used, together with their 3D corre-
spondences, to estimate the camera pose. These features are also used
to model the 3D shape of the object as a Gaussian process. Tracking
determines the trajectories of the object in both the image plane and
3D space, but the approach also provides the 3D object shape. The app-
roach is validated on several video-sequences used in the tracking litera-
ture, comparing favourably to state-of-the-art trackers for simple scenes
(error reduced by 22 %) with clear advantages in the case of strong out-
of-plane rotation, where 2D approaches fail (error reduction of 58 %).

1 Introduction

Monocular, model-less, visual tracking aims to estimate the pose of an unknown
object in every frame of a video-sequence (or to report its absence), given
a bounding box containing the object in the first frame. This is a challenging
task since the object appearance often changes significantly during the sequence.
Many approaches attempt to learn changes in appearance, some of which come
from object pose that cannot be modelled by a simple planar transformation. In
this work, we directly address changes caused by a viewpoint variation. Instead
of treating it as an “appearance change problem”, we model explicitly the 3D
information.

Many approaches have been proposed to overcome variations of appearance.
Online approaches typically assume that the tracking has thus far succeeded,
using this to enrich the representation of the object over time. The object is
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Fig. 1. Out-of-plane rotation change the object appearance significantly, here is a com-
plete change in just 50 frames. First row: original images. Second row: feature cloud
and final model returned by the tracker. Notice the bottom and back side of the car,
which have not been observed yet, so the point cloud does not reach there and the
model is smoothly extrapolated.

usually represented as a 2D patch [1,2], a cloud of 2D points [3,4] or a combi-
nation of these [5]. Unfortunately, variations of viewpoint lead to rapid changes
in appearance – see Fig. 1 for an example. This causes problems for 2D track-
ers which do not have sufficient observations to confidently update their object
representation.

We take a different approach to this problem. Our proposed tracker explic-
itly models out-of-plane rotations, which proves beneficial, as they improve the
numerical conditioning (wider baseline). The 3D shape of the object is estimated
online using techniques developed in the fields of Structure-from-Motion (SfM)
and Simultaneous Localisation And Mapping (SLAM). As such, this work can be
seen as a bridge between visual tracking and SfM/SLAM, combining 2D feature
tracking and object segmentation with camera pose and 3D point/line estima-
tion, while avoiding the need for initialisation in SLAM [6]. Another difference
from SfM/SLAM is object/background segmentation, where only a small portion
of the image can be used.

In addition, we present a novel approach to modelling the object 3D shape
using a Gaussian Process (GP). The model helps us distinguish which parts of
the image belong to the projection of the object and which are background,
allowing intelligent detection of new features (Sect. 3.1). In addition, the GP
shape model (1) provides an initialisation of the 3D positions for newly detected
2D features, (2) mitigates the sparsity of features, (3) the surface normals of the
GP indicate which points on the object may be visible to a particular camera
and (4) the GP offers a model of the surface for visualisation and subsequent
tasks, such as dense reconstruction or robot navigation, etc.

The rest of this work is structured as follows. In Sect. 2 related literature is
reviewed. We then describe our tracker in Sect. 3. It is experimentally evaluated
in Sect. 4, while Sect. 5 draws conclusions.

2 Related Work

There is a large body of literature in 2D tracking, SfM and SLAM. Here we
summarise the most relevant work in each field, as well as recent state of the art
approaches.
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Visual Tracking: One of the most influential works in the field of visual track-
ing is undoubtedly the Lucas-Kanade tracker (LK) [7]. This technique iteratively
matches image patches by linearising the local image gradients and minimising
the sum of squared pixel errors. Many current trackers follow and extend this
idea by adding an upper layer managing a cloud of LK tracklets [4,8]. One recent
example is the Local-Global Tracker (LGT) [3] by Cehovin et al., using a coupled-
layer visual model. The local layer consists of a set of visual patches, while the
global layer maintains a probabilistic model of object features such as colour,
shape or motion. The global model is learned from the local patches and in
turn it constrains the addition of new patches. FLOTrack (Featureless Objects
Tracker) [9] uses a similar two layer approach, however edge features are used
instead of conventional points to increase robustness to lack of texture.

Another approach to 2D tracking is tracking by detection where tracking is
defined as a classification task. Grabner et al. [10] employed an online boosting
method to update the appearance model while minimising error accumulation
(drift). Babenko et al. [11] use multiple instance learning, instead of traditional
supervised learning, for a more robust tracker. �1-norm tracker [12] learns a dic-
tionary from local patches to handle occlusions. Kalal et al. combined tracking
with detection in their Tracking-Learning-Detection (TLD) [5] framework, where
(in)consistency of tracker and detector helps to indicate tracking failure. There
are also many successful approaches using particle filtering for tracking. One of
the most notable is CONDENSATION (Conditional Density Propagation) [13],
which brought into the field of visual tracking the use of particles for non-
parametric modelling of a pose probability distribution. Ross et al. [2] extended
particle filtering by introducing incremental learning of an object appearance
subspace that allowed the model to adapt to changes.

3D monocular tracking typically employs 3D models of the object. These
approaches work with a user-supplied or previously learned model of a known
object, which is then tracked in the sequence, examples of which are the track-
ing of the pose of human bodies, or vehicles in traffic scenes [14–17] or general
boxes [18]. Another body of literature deals with 3D reconstruction of deformable
surfaces [19]. However, we will not address these areas further as our focus is on
model-less tracking. There have been relatively few attempts at learning 3D
tracking models on the fly, but such approaches are fundamental to SfM. An
example of a recent model-less 3D tracker is the work of Feng et al. [20], who
employ SLAM techniques similar to TMAGIC, together with object segmenta-
tion. However, they do not attempt to estimate the surface shape beyond just
a cloud of points, which allows the more advanced visibility reasoning used in
TMAGIC. Another similar approach is the work of Prisacariu et al. [21] who uses
level-set techniques for object segmentation. Our approach uses both point and
line features to increase robustness to lack of texture.

Structure from Motion: Structure from motion (SfM) is an area of great
interest for the computer vision community. Here, the task is to simultaneously
estimate the structure of a scene observed by multiple cameras, and the poses of
these cameras. Pictures of the scene can be either ordered in a sequence [22–24]
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or unordered [25,26]. Great advances have been recently achieved in the size and
automation of the SfM process by Snavely et al. in their Bundler system [26,27]
(based on Bundle Adjustment, BA). Their approach is sequential, i.e. starting
reconstruction with a smaller number of cameras and then adding progressively
more. A different approach has been taken by Gherardi et al. [25], who merge
smaller reconstructions hierarchically. Pan et al. [22] reached real-time speed of
SfM in their ProFORMA system for guided scanning of an object. This work
is also very related to ours, however the object/background separation allows
us to avoid the assumption that the object occupies the majority of the image.
A sparse reconstruction can be upgraded to dense as a post-processing step,
or alternatively a dense reconstruction can be performed directly [28]. Recently,
the approach of Garg et al. [29] used variational optimisation from dense point-
trajectories to directly estimate dense non-rigid SfM.

Visual SLAM: Simultaneous localisation and mapping is an area commonly
associated with robotics, with similarities to SfM. The main difference is that
SLAM, originally used for navigation of robots, is an online process. Therefore
the images are always ordered in a sequence. It further differs in that the recon-
structed cloud of features is usually sparse and the reconstructed area larger.

The first monocular vision-based SLAM technique was MonoSLAM by
Davison et al. [30]. It was later extended to work with straight lines [31,32]. These
algorithms (based on the Extended Kalman Filter, EKF) were able to run in real
time and typically managed a very low number of features in the point cloud.
Recently, there has been a shift from EKF to BA [33,34] and from sparse to
dense features [35], ultimately leading to whole-image-alignment works [36,37].

3 Algorithm Description

We seek to track a 3D object throughout a sequence learning a model of appear-
ance on the fly. However, our model differs from most online tracking approaches
in that we employ ideas from both SfM and SLAM to form a 3D representation
of the model that can cope with out-of-plane rotation. The program and data
flow of the TMAGIC tracker is as follows (illustrated in Fig. 2, see the subse-
quent sections for full descriptions of the individual elements). The tracking loop
is performed on every frame. 2D features (points and line segments in the image)
are tracked in the new frame (Sect. 3.1), yielding the sets of features currently
visible. Using these, the new camera pose can then be estimated (Sect. 3.2),
while keeping the corresponding 3D features (points and lines in the real world)
fixed. The world coordinate system is not fixed, so we can safely assume that
the camera is moving around a stationary object. The tracking loop is repeated
until a change in viewpoint necessitates an update of the 3D features, using the
modelling subsystem.

The first step of modelling is a Bundle Adjustment (BA, Sect. 3.3). This
refines the positions of 3D features and the camera, using the 2D observa-
tions. The updated features are subsequently used to retrain the shape model
(Sect. 3.4), which can be exploited in two ways. The model defines regions
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Fig. 2. Overview of the TMAGIC tracker. Symbols on the right side of each element
indicate inputs and outputs, as labelled for 2D tracking. While the tracking loop is
repeated in every frame, modelling only runs when necessary (according to Eq. (3)).

of the image which are eligible to detect new 2D features. Secondly, it pro-
vides an initialisation of the corresponding backprojected 3D features (Sect. 3.5).
Features, successfully extracted using the current frame, camera pose and the
shape model, enrich the 2D and 3D sets for use in future tracking.

3.1 2D Features and Tracking

The TMAGIC algorithm uses two types of features: points and line segments.
The main advantages of point features are that they form readily available unique
descriptors (patches), are localised precisely and have intuitive and simple pro-
jective properties. On the other hand, line features, which provide complemen-
tary information about the image, have different virtues. Lines encode a higher
level of structural information [38], e.g. constraining the orientation of the sur-
face. They can be not only texture-based, but also stemming from the shape of
the object [9]. Therefore in man-made environments they appear in situations
where point features are scarce [31].

The 2D point features ut
i ∈ U t are extracted using two techniques: Difference

of Gaussians and Hessian Laplace [39]. These features are tracked independently
by an LK tracker from frame It−1 to It (It represents the current frame and
derived measurements, such as an intensity gradient). Features, which do not
converge are removed from the 2D feature cloud. The tracked features generate
a set of correspondences {(ut−1

i ,ut
i)}, which are subsequently verified by LO-

RANSAC [40,41]. Outliers to RANSAC, i.e. correspondences inconsistent with
a global epipolar geometry model, are removed, as well as their respective 3D
features, as these are likely to lie on the background.

The 2D line features vt
i ∈ Vt are extracted using the LSD [42] approach,

a line segment detector with false-positive detection control. Lines are tracked
as follows. Firstly, the LSD is executed on It to obtain a set of candidate segments
v′ t

j ∈ V ′t. Along each of the previous line segments vt−1
i a number of edge points

are then sampled. Each of these is tracked independently, using the guided edge
search of [9], leading to a new edge point in the current frame. If this new
point belongs to a line segment in V ′t, it votes for it. The segment v′ t

j with
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the most votes becomes the new feature vt
i . As there is no way to validate line

correspondences w.r.t. an epipolar geometry [43], the features are validated using
a threshold on the minimum number of votes (3 out of 5).

3.2 Camera Estimation

The camera with a projection matrix Pt is defined by the rotation Rt and position
Ct of the projection centre in the world coordinate frame, given by the decom-
position P = KR [I3×3| − C], where K is a calibration matrix of intrinsic camera
parameters [43]. For simplicity, we define a general projection function FP, such
that 3D lines are projected as vt

i = FPt(Li) and 3D points as ut
i = FPt(Xi).

Assuming we have a cloud of 3D features (points Xi ∈ X and line segments
Li ∈ L, which are defined by their end-points, specified in Sect. 3.3) and their
projections (U t,Vt), it is possible to estimate a pose (R,C) of the camera Pt.
We do not attempt to compute the calibration matrix K of the camera exactly,
instead we use an estimate based on image dimensions [23]:

K =

⎡
⎣

w + h 0 w/2
w + h h/2

1

⎤
⎦ (1)

where w and h are the width and height of the image respectively. This formula
would not suffice for cases of strong zoom, wide-angle cameras, or cropped videos
(shift of the principal point and narrowed viewing angle). However, Pollefeys
et al. [23] show that images obtained by standard cameras are generally well
approximated by this formula.

Estimation of calibrated camera pose given 2D to 3D point correspondences
is a standard textbook problem, e.g. solved by a P3P (Perspective-3-Points [43])
RANSAC. However, there is no simple generalisation of the P3P problem for
lines. Therefore we use an optimisation approach to solve for camera pose:

Pt = arg min
P̄t

⎛
⎝

|Ut|∑
i=1

||ut
i − FP̄t(Xi)||2 +

|Vt|∑
i=1

(
(μ̃�

vt
i
l̃ti)

2 + (ν̃�
vt
i
l̃ti)

2
)
⎞
⎠ , (2)

using both point and line features in a unified framework and exploiting the
sequential nature of tracking. The error function consists of an error term for
each point and line feature (in the first and second summation, respectively).
For points, this is just a norm of the projection error. For line features, we
define the error terms as orthogonal distances of the end-points of the seg-
ment vt

i (μ̃vt
i
, ν̃vt

i
, in homogeneous coordinates), to the projection of the 3D

line l̃ti = FP̄t(Li) (homogeneous, normalised to the unit length of the normal
vector). Note that since the line may not be fully visible (and is theoretically
infinite), we use only perpendicular distances to cope with the aperture problem
[9,31]. This minimisation is initialised at the pose in the previous frame (Pt−1).
During our experiments, it was found that due to the smooth nature of the deriv-
atives of (2), the basin of convergence for this optimisation is several orders of
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Fig. 3. Examples of 3D feature clouds and GP-learned smooth models. See the supple-
mentary material for more visualisations. Notice the unseen parts of the objects, which
are without features and where the model is extrapolated (i.e. the rear side of the car
and the “pole” on the left side of the cube).

magnitude larger than typical inter-frame difference. See supplementary material
for derivation of the error function Jacobian used.

In the first frame, we choose the world coordinate frame (which is defined
only up to a similarity) as follows. The object, initialised as a sphere (see Sect. 3.4
for more details), is centred at the origin and camera centre C1 is at (0, 0, 1)�.
The rotation R1 is set such that the origin is projected to the centre of the user-
given bounding box and the y axis of the camera coordinate system is parallel
to the y-z plane of the world coordinate system (see Fig. 4).

3.3 Bundle Adjustment

After initialisation, 2D tracking is performed until the distance between camera
centres exceeds a specified threshold θC [22]:

||Ct − Ct′ || > θC , (3)

where t′ is the time of the last BA. When this condition is satisfied, the modelling
part of the algorithm is performed. Firstly, the bundle adjustment refines the
positions of 3D features X ,L and cameras P (for the purposes of BA, we define
P as the set of previous cameras P1, . . . , Pt). If speed is an issue, one may limit
the BA to take only the last k cameras into account, i.e. to use P ′ = {Pi|i ∈
[max(1, t−k); t]}, however, in our experiments this did not prove necessary (thus
we set k = ∞). The BA [44] minimises a similar error to (2):

arg min
X ,L,P

t∑
u=1

⎛
⎝

|Uu|∑
i=1

||ut
i − FP̄t(Xi)||2 +

|Vu|∑
i=1

(
(μ̃�

vt
i
l̃ti)

2 + (ν̃�
vt
i
l̃ti)

2 + ρ2i

)
⎞
⎠ , (4)

where the added term ρi is a regularisation term, which ensures that the lengths
of 3D line segments are close to those observed. Note also that every point from
U t and Vt has a correspondence in X and L for every t, but not necessarily
vice-versa, due to points which are not currently visible.
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3.4 Gaussian Process Modelling

As discussed previously, the object shape is modelled as a Gaussian Process
[45,46]. This allows us to infer a fully dense 3D model from the finite collection
of discrete observations X and L. Using the GP in this manner can be seen as
estimating a distribution over an infinite number of possible shapes. The expec-
tation of such a distribution (the most probable shape) can be used to model
the object, while the variance at any point represents confidence.

The obtained model is non parametric, i.e. it can fit to any type of object
without needing reparameterisation. The probabilistic nature of the model pre-
vents overfitting through an implicit “Occam’s-razor” effect, that favours models
which are both simple and which explain the observations well.

In TMAGIC, we use a parameterisation of the shape as follows. The observed
3D points (point features X and end-points1 of line features L) are first re-
expressed as a vector from the centre of mass of the object (Yi ∈ Y). We then use
these as training points, where the unit-length normalised vectors Ŷi = Yi/||Yi||
represent the independent variable and the radii rŶi

= ||Yi|| the dependent
variable. As it does not suffer from a singularity in any direction, we found
this parameterisation superior to alternatives such as spherical coordinates (pre-
dicting a radius from azimuth and elevation), despite the higher dimensionality.
This representation prevents us from modelling complicated shapes (e.g. extreme
concavities), however it proves sufficient in our experiments.

Without loss of generality, we can assume that the centre of mass of the
training points coincides with the origin of the world coordinate system. In this
case, for a query direction Q̂ (where ||Q̂|| = 1), the resulting 3D point Q is
predicted as [45]:

Q = Q̂
[
K(Ŷ, Q̂)� K(Ŷ, Ŷ)−1 rŶ

±K(Ŷ, Q̂)� K(Ŷ , Ŷ)−1 K(Ŷ , Q̂)
]

,
(5)

or more succinctly as Q = Q̂
(
rQ̂ ± σQ̂

)
, where rQ̂ is the predicted radius

and σQ̂ is the confidence. K is the kernel function of the GP, relating to the
surface properties of the modelled object, and may be any positive definite two-
parameter function. This function is learned during tracking, such that the like-
lihood of the training data is maximised. The notation rŶ represents a vector of
norms of all vectors in the training set Y, i.e. rŶ;i = rŶi

= ||Yi||.
Intuitively, Eq. (5) shows that the predicted radius at any point is defined

by the training radii while accounting for the spatial relationships between the
data points. The variance relates to these spatial relationships. The influence
of any particular element of the training data is quantified by K(Ŷ, Q̂), while
K(Ŷ, Ŷ)−1 removes any correlation within the training data.

We tried several alternative approaches for the surface shape modelling, such
as mesh-based or modelling as a parametric probability distribution. However,

1 It is possible to sample more points along line features which have high confidence.
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Fig. 4. State of the proposed TMAGIC tracker after the first frame. Left: a bounding
box, U1 and V1. Right: X ,L, initial model M (the blue sphere) and P1 (magenta). For
the camera, the visualisation shows the projection centre C, principal direction and
image plane. The upper left corner of the image plane is indicated by the dashed line
(Colour figure online).

none had the properties required. The benefits of the GP include the ability
to model a wide range of shapes without prior knowledge (non-parametric),
no overfitting, good theoretical foundation and its probabilistic nature, giving
confidence estimates across the object.

3.5 Feature Generation

For camera pose estimation (Sect. 3.2), we assumed that the 3D feature clouds
X and L are known. In this section, we address the issue of feature generation
and localisation. The assumption is made that a shape model of the object is
given.

In the first frame I1, initial sets of 2D features U1 and V1 are generated inside
a user-supplied bounding box. When generating a 3D feature Xi for a new 2D
point ut

i (in the case of line features, both end-points must lie on the surface),
the process is as follows. Firstly, the corresponding ray Z (parameterised by ᾱ)
from the camera centre is generated:

Z(ᾱ) = C + ᾱ(KR)−1ũt
i (ᾱ > 0) , (6)

where ũt
i is a homogeneous representation of ut

i. Then a search for an intersection
between the ray and the shape is performed:

Xi = Z(α) , (7)

α = arg min
ᾱ>0

ᾱ s.t.||Z(ᾱ)|| = rẐ(ᾱ) . (8)

If the minimisation of (8) has no solution, it means that the ray does not intersect
the mean surface given by the GP (from the distribution of possible surfaces).
The use of the mean surface corresponds to a threshold such that there is an
equal probability of false positives (a detection on the background was added to
the feature set) and false negatives (a point on the object surface was rejected).
If there is prior knowledge about the respective robustness of other components
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available, this can be exploited by adding the appropriate factor (multiple of
σẐ(ᾱ)) to rẐ(ᾱ) in (8).

Thus far, the process has been the same both for initialisation in the first
frame and for adding new features after model retraining in the subsequent
frames. However, there are several differences. Firstly, if a ray does not intersect
the surface during the generation of new features in frame f > 1, it is not used
(features are detected over the whole image). However, in the first frame, all
the 2D features will lie inside the user-specified bounding box. In this case, we
reconstruct them such that they minimise the distance to the surface (even when
they do not intersect), leading to the fringe seen in Fig. 4:

α = arg min
ᾱ>0

(||Z(ᾱ)|| − rẐ(ᾱ))
2 . (9)

Generation of new features in f > 1 has one further condition. Since adding new
features increases the time complexity of all other computations, new features
are added only into uncertain regions of the object (with variance greater than
a specified threshold, σẐ(α) > θσ).

As previously mentioned, some of the 3D features may be temporarily
occluded, i.e. without 2D correspondences. Surface normals, given by the shape
model, provide us with one tool to determine which parts of the object are (not)
visible from a particular direction. TMAGIC uses this information in two com-
plementary ways. Firstly, if a 3D feature is deemed not visible, but it has 2D
correspondence (e.g. adheres to an object contour), it can be removed. On the
other hand, if a 3D feature has no 2D correspondence, but is on a surface which
is seen by Pt under an angle close to normal, the 2D feature can be redetected.
This is performed by projecting it into It by Pt and then tracking it in 2D using
a stored appearance patch. Loop closures (as termed in the SLAM literature)
are thus possible when a number of previously seen features are redetected.

4 Experimental Evaluation

In all experiments, the parameters were fixed as follows: θC = 10%, θσ = 0.5%,
relative to the scene size. Our proof-of-concept implementation currently runs in
seconds per frame. However, there are possibilities for trivial technical improve-
ments and for parallelisation, allowing real-time application.

Synthetic Data: Firstly, we show results on a synthetic sequence Cube1
(Fig. 5). This has been rendered to have the following properties. It contains a
cube, rotating with speed 1◦/frame. Some of the sides are rich in texture, some
are weakly textured. From the point of view of our tracker, the camera circles
around the fixed cube with a perfect circular trajectory (see Fig. 6). However,
since the world coordinate frame is defined only up to a similarity transform
and can be moved freely during the BA, it is not possible to measure quality
of a tracker directly w.r.t. this expected position (i.e. no absolute ground truth
is possible). Therefore we fit a 3D circle to the points and measure the error as
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Fig. 5. Selected frames from the Cube1 sequence. Notice, how TMAGIC learns the
new face of the cube. #194: unknown shape, the surface is smoothed over. #213:
first features detected, shape roughly estimated. #239: more features identified, shape
refined. #272: Final state, model in agreement with the object.

Fig. 6. The 3D scene in t = 180 and 360. The camera and features are shown in the
same way as in Fig. 4, the camera trajectory (centres and principal directions for each
previous frame) is shown in black. Ground-truth trajectory is in yellow. The details of
the model can be seen in Fig. 3 (Colour figure online).
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Fig. 7. Deviation of the trajectory from a perfect circle (least-squares fitted). Errors
are relative to the radius of the circle. The trajectories at the beginning and end of
the sequence did not meet (due to accumulated error prior to loop closure), thus the
deviation from the fitted ground truth is distributed between the two.The peak around
frame #100 is due to a temporary inaccuracy during the transition between sides of the
cube, when the continuously visible side is lacking visual features. However, TMAGIC
recovers once sufficient visual evidence has been accumulated.
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Fig. 8. First frames from the test sequences. From top and left: Dog, Fish, Sylvester,
Twinings, Rally-Lancer, Rally-VW, TopGear1 and TopGear2. The initial
bounding boxes are overlaid.

an orthogonal distance from this circle. Figure 7 shows and explains the results.
If we assume the camera orbits at a distance of 1 m, the mean camera pose
error is 1.3 cm. This indicates a very close approximation to the circular trajec-
tory. Despite being based on sparse data, the learned shape model represents
the cubic shape (of side equal to approximately 17 cm) accurately, having mean
reconstruction error 3.4 mm. See supplementary material for the input video and
results.

To compare our method with currently used reconstruction approaches, we
processed this sequence (with no background to account for) with VisualSfM
[47,48] and Bundler [27,49]. While Bundler surprisingly failed, reconstructing
2 separate cubes, VisualSFM performs worse than TMAGIC with a comparable
reconstruction error of 2.8 mm, but 72 % larger camera trajectory error of 2.3 cm.

Real Data: The performance of TMAGIC was further analysed on several
sequences, used in previous 2D visual tracking publications. These sequences
contain visible out-of-plane rotation in all cases. Additionally, we use several
new sequences of drifting cars, which have, besides strong motion blur, significant
out-of-plane rotation as a challenge. The first frames are shown in Fig. 8.

We compared our tracker with several state of the art tracking algorithms in
Table 1: LGT [3], TLD [5] and FoT [8]. The FoT (Flock of Trackers) tracker is sim-
ilar to our approach, in that it employs a group of independently tracked features
with a higher management layer, however in 2D only. The next columns show
the effect of the different stages of TMAGIC on performance. 3D tracking (T)
assumes a fixed 3D model (sphere) and feature locations, added reconstruction
(TMIC) allows updating of the feature clouds and a primitive object inference
(a rigid sphere fit). Finally, TMAGIC gives performance for the full system. The
performance metric was localisation error, i.e. the distance of the centre of the
bounding box to the ground-truth centre. The results are visualised in Fig. 9 and
the mean values tabulated in Table 1. Additionally, we show mean overlap of the
tracked and ground-truth bounding boxes.
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Table 1. Tracking results: mean localisation error/mean overlap. Bold numbers indi-
cate the best result, underlined numbers the second best. See the text for discussion.

LGT TLD FoT T T-MIC TMAGIC

Dog [50] 19.3/20 12.3/56 4.7/63 13.9/65 9.3/71 12.1/46

Fish [2] 15.6/20 8.8/72 9.2/75 8.0/68 10.4/65 5.6/69

Sylvester [2] 13.1/16 18.0/58 18.0/58 37.3/42 35.3/9 17.8/48

Twinings [11] 22.5/18 13.2/38 15.5/44 42.9/31 16.2/29 9.1/53

Rally-Lancer 145.8/19 333.5/13 734.5/13 127.8/43 121.3/42 94.3/53

Rally-VW 91.3/21 152.5/48 196.9/39 149.4/39 148.3/39 47.6/62

TopGear1 16.3/49 65.1/34 80.4/41 39.0/49 44.5/43 40.0/56

TopGear2 84.3/37 104.3/21 117.9/29 48.4/51 84.1/31 34.7/59
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Fig. 9. Visualisation of results of the quantitative performance analysis. From top and
left: Dog, Fish, Sylvester, Twinings, Rally-Lancer, Rally-VW, TopGear1
and TopGear2.

On the Dog sequence, the TMAGIC and TLD trackers perform similarly,
and LGT slightly worse. All these trackers experience difficulties at about frame
#1000, where the dog is partially occluded by the image border. This is how-
ever not a problem for FoT, which estimates the position accurately even under
such strong occlusion. The Fish sequence is relatively easy, with all the trackers
reaching low errors and TMAGIC being the best one. On the Sylvester scene,
TMAGIC as well as FoT track consistently well until the end. Both LGT and
TLD have similar momentary failures (frames #450 and #1100, respectively)
but both are able to recover. For LGT, the duration of the problematic part of
the sequence is shorter and the error is smaller, rendering it the best tracker for
this sequence. The Twinings sequence contains full rotation and was originally
created to measure trackers’ robustness to out-of-plane rotation [11]. Unsurpris-
ingly, TMAGIC significantly outperforms the state of the art on this sequence.
The average localisation error reduction for all these scenes is 22 %.

The cars sequences are chosen because they contain rigid 3D objects under
strong out-of-plane rotation (around 180◦) with significant camera motion.
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Therefore the TLD and FoT trackers, which are trying to track a plane only (one
side of the car) instead of the 3D object, fail. As the cars rotate, the tracked
parts are no longer usable and TLD reports this (the horizontal sections in
Fig. 9). FoT is incapable of reporting object disappearance and it attempts to
continue tracking, exacerbating the situation. The LGT tracker, which has a less
rigid model of the object, is sometimes capable of tracking after the cars start
to rotate, if the rotation is slow enough for the 2D shape model to adapt. The
TMAGIC tracker is also able to adapt as the object rotates, and explicitly mod-
elling the car in 3D improves robustness by allowing us to intelligently detect
new features. While 2D trackers attempt to mitigate the effects of out-of-plane
rotation, TMAGIC actively exploits it. This gives it a significant edge, resulting
in the localisation error being reduced by 58 % on average. Notice that the errors
in the Rally sequences are generally higher, due to the higher resolution. The
resulting model for the Rally-VW sequence is visualised in Figs. 1 and 3. The
car is modelled accurately, except for missing elements at the rear of the vehicle,
which have not been observed during the sequence.

The last three columns of Table 1 show the effect of the different stages of
TMAGIC on performance. Firstly, we compare FoT with T (2D and 3D trackers
based on the same principle). FoT performs better on sequences without rotation
(higher accuracy of the solution) and the advantage of 3D tracking becomes
apparent with stronger out-of-plane rotations (decreasing the error up to five-
fold). The next step is performing refinement of the 3D features and fitting a
näıve spherical model (T→TMIC). However, the effect of this procedure on the
performance of tracking in the image plane is imperceptible, despite the improved
plausibility of the feature cloud. The final stage is training a more complex
shape model using the feature cloud (TMIC→TMAGIC). This yields the most
significant improvement (average error reduction of 50 %), rendering TMAGIC
by far the best of the evaluated trackers in cases of out-of-plane rotations. In the
case of TopGear1, mostly the front part of the car is being modelled, shifting
the centre of the bounding box forward and therefore adversely affecting the
final results.2

5 Conclusion

The experiments show that the TMAGIC (Tracking, Modelling And Gaussian-
Process Inference Combined) tracker is able to track standard sequences, used
in many previous publications, with a comparable performance to the state of
the art. However, by explicitly modelling the 3D object, it handles out-of-plane
rotations significantly better and can also track in cases of full rotation. TMAGIC
consistently outperforms simpler variants (TMIC etc.), especially in scenarios
when the object/background segmentation is vital. This shows the benefit of the
shape model, used for filtering features and initialisation of their 3D positions.

2 See http://cvssp.org/Personal/KarelLebeda/TMAGIC/ for the sequences and more
results.

http://cvssp.org/Personal/KarelLebeda/TMAGIC/
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TMAGIC works under the assumption that the object is rigid. TMAGIC
is robust to small shape variations (e.g. a face), but is not capable of tracking
articulated objects, e.g. a walking person, and extension to non-rigid object
tracking is the subject of future work. One possible approach would be storing
multiple models to span the area of possible shapes. This can also help with
redetection to recover from drift. Another limitation would be full occlusions in
long-term tracking. An additional redetection stage (as in TLD and other long-
term trackers) could fix this, but is beyond the scope of this paper. Fast motion
may also cause failure in the underlying 2D tracking. However, the algorithm
is robust to low textured objects through the use of line features (taken from
texture-less tracking literature).

TMAGIC tracks a single object. A naive multi-object extension, running it
multiple times in parallel, would be trivial since TMAGIC doesn’t require any
pre-learning and the object properties are estimated online. Advanced correlation
or occlusion reasoning would be an interesting field for future research.

Acknowledgement. This work was supported by the EPSRC grant “Learning to
Recognise Dynamic Visual Content from Broadcast Footage” (EP/I011811/1).
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