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Abstract. In this paper, we view multiple object tracking as a graph
partitioning problem. Given any object detector, we build the graph
of all detections and aim to partition it into trajectories. To quantify
the similarity of any two detections, we consider local cues such as point
tracks and speed, global cues such as appearance, as well as intermediate
ones such as trajectory straightness. These different clues are dealt jointly
to make the approach robust to detection mistakes (missing or extra
detections). We thus define a Conditional Random Field and optimize
it using an efficient combination of message passing and move-making
algorithms. Our approach is fast on video batch sizes of hundreds of
frames. Competitive and stable results on varied videos demonstrate the
robustness and efficiency of our approach.

1 Introduction

The tracking of objects, persons or animals is required for high-level vision infer-
ence systems, from action recognition to animal behavior analysis. Other appli-
cations of tracking include video editing, e.g. inpainting, wherein a good tracking
system can help in reducing the manual effort to annotate the parts of the video
to keep or to remove.

In this paper, we address the problem of multiple person tracking in videos
obtained from a single camera. We suppose that we are already given person
detections in each frame, from any pre-trained detector. This detector is not
assumed to be perfect, but may produce false negatives (persons missed) and
false positives (extraneous detections). Our objective is to group detections into
consistent trajectories, as well as to eliminate false negatives and false positives.

Tracking algorithms can be broadly divided into two categories: online and
batch-based. Online methods infer the object state using the current frame and
the previous ones; this can be achieved for instance with particle filtering [1].
On the opposite, batch-based tracking considers the entire temporal sequence
at once, or at least a significant part of it (hundreds of frames). Such methods
are also referred to as global tracking. Our approach belongs to the latter class,
hence we focus on related work in the realm of batch-based tracking.

Global tracking should be in principle less prone to identity switches (con-
fusion of several different persons) than online approaches, and provide better
occlusion management as they have both present and future frames available
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to determine the state of objects. This extra information brought by the 2D+T
volume has led to the development of many different approaches utilizing all
kinds of color and motion clues, as well as many different optimization methods.
We discuss below some of the recent notable ones [2–11].

Reference [4] computes cliques on a graph of detection responses to find
object trajectories. False negatives and occlusions are handled using hypotheti-
cal nodes by assuming linear motion of the object. Reference [5] presents another
data association approach, based on maximum weight independent sets, to merge
tracklets of length 2 to compute full trajectories. Reference [6] uses a network
flow based approach to obtain person trajectories and incorporates an explicit
occlusion handling mechanism to provide information such as object i is occluded
by object j. The work by [9] also uses a network flow based model similar to [6].
By greedily computing shortest path problems, they reach near-linear time com-
plexity in computing the global minimum of successive sub-problems, which
however doesn’t guarantee a global optimum on the real global problem.

Most network flow models suffer from the disadvantage that possible occlu-
sions or false negatives are not handled from the start, but in a post-processing
step by introducing iteratively new nodes in the graph, which asks for re-iterating
the optimization process until convergence. Importantly all network flow approa-
ches and [5] do not incorporate acceleration information for computing trajec-
tories. Acceleration knowledge is vital for ensuring smooth velocity in trajectories,
and at least three nodes (i.e. detections) located at different time frames are req-
uired to compute acceleration. Recently a proof-of-concept work by [12] have
shown that a network flow model can only deal with pairwise factors and hence
cannot incorporate a third (or higher order) factor. Reference [13] extends a typ-
ical network flow model by adding higher order connections. However in doing
so they have to resort to a relaxation (discrete to continuous) based optimiza-
tion scheme, as the model can no longer be minimized by efficient network flow
approaches. For time critical vision applications such as tracking, a discrete to
continuous relaxation approach should be avoided, as these do not provide a
usable solution at all instants during their run times, and stopping the opti-
mizer to meet time requirements might return a non usable solution.

Works by [2,3] use a discrete-continuous optimization model to optimize
detections and trajectories. They incorporate statistical data analysis to compute
the parameters of the energy along with adding exclusion constraints at both
trajectory and detection levels. However for this they use an already-performed
tracking (from [9]) as input to their approach. Hence these works should rather
be seen as trajectory-refinement process.

All of the above approaches including our proposed approach is categorized
as tracking using detections in the literature. Instead of using detections, [8] uses
probabilistic occupancy maps obtained from a background subtraction process.
Subsequently the scene space is discretized into grid cells, and targets are forced
to move along the grid. A global optimum for this model is computed using
K-Shortest Paths. This scene discretization is possible only for situations wherein
the camera calibration parameters are known, and hence cannot be applied to
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moving camera scenarios. This approach is computationally fast but is prone
to identity switches. Global appearance constraints are added by [7] to provide
robustness to identity switches.

Another relevant aspect of tracking algorithms is their computational cost
in practice. Most approaches performing well [2–4,7] mention speeds of several
seconds per frame. In contrast we will show an appreciable gain of speed (factor
10), with near real time performance in complicated videos. Also, [4,7] require a
lot of memory and consequently cannot handle batches of many frames (typically
50), while we do not suffer from memory consumption and will consider blocks
of several hundreds of frames.

With respect to the literature, our approach has the following advantages:

– A principled way of unifying natural constraints that arise in tracking.
– Thanks to an apt combination of optimizers (Sect. 3.1), a novel triplet search for

trajectory-curvature penalization (Sect. 2.5), and graph reduction (Sect. 3.2),
the proposed approach is computationally efficient (in terms of both memory
and time), and can operate on hundreds of frames of HD videos on a simple
machine.

– Last, but not least, the proposed tracker is self contained and unlike [2,3], we
do not require beforehand trajectories from an external tracker.

Following sections introduce our proposed model and the optimizers used.
Subsequently Sect. 4 elaborates on experimental results and processing times.

2 Model

A reliable tracking model should have the following criteria:

(C1) Uniqueness: An object label (identity) should never appear more than
once inside any frame over the whole sequence (cf. Sect. 2.2).

(C2) Smooth Trajectories: The trajectory of each object should be as smooth
as possible in time. In particular, there should not be jumps in an object
location in consecutive frames (cf. Sects. 2.2 & 2.5).

(C3) Robustness to Occlusions and False Negatives: The trajectories
should not be lost or confused during occlusions or when several detec-
tions are missed (cf. Sects. 2.3 & 2.4).

(C3) No Ghost Objects: False Positives from the detector should be removed
and not form output trajectories (cf. Sect. 3.4).

The incorporation of these traits into our model will be discussed in the
following sections.

2.1 Approach and Formalization

A person detector is used to obtain detection responses for all frames of a
batch. We then build a graph G = (V,E) whose nodes correspond to detec-
tion responses. Our aim is to find an optimal partition of G such that each part
corresponds to the trajectory of one person. The notations used in the paper are
presented below:
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L: Number of possible labels (i.e. of graph parts).
X : Set of all possible partitions ⊂ L|V |.
i: A node of the graph, i.e. a person detection.

xi: Label of the node i, to be found.
wij : Edge weight between nodes i and j (benefit for them to have same label).

For a set of L labels, each of the |V | nodes can then take any of L states.
A labeling x = (xi)i∈V ∈ X then defines a partition of V into subsets Tl assigned
to each class l ∈ L. The quality of such a labeling, to be maximized, is the sum
of weighted edges connecting vertices with the same label:

argmax
x∈X

∑

ij

wij δxi=xj
= argmin

x∈X

∑

ij

wij δxi �=xj

In the following sections, we will define the quantities relevant to the problem
of tracking, and show how to set the interaction terms wij to express them.

2.2 Repulsive Constraints

Adhering to the criterion C1, it is imperative to have repulsive constraints in
the model. The goal of these constraints is to prevent nodes in a same frame
from being allocated the same label. To this end we set repulsive constraints by
assigning huge negative weights wij between all pairs of detections (i, j) from
the same frames. We refer to this as intra-frame repulsive constraint.

In regard to C2, the tracker should also prevent objects from jumping from one
location in a frame to a complete different location in the next frame. Otherwisely
said, two nodes far apart in consecutive frames should not have the same label.
To this end, we define a maximum object speed (4 m/s) and set highly negative
weights wij between detections (i, j) in consecutive frames if the speed required for
such a displacement is higher. The speed between two such detections is converted
from pixels/frame into m/s by multiplying them with the factor 2f/min(Hi,Hj),
where f is the frame rate and where Hi is the height (in pixels) of the bounding
box of detection i. Indeed, Hi/2 is a simple yet practical and sufficient approxi-
mation of the number of pixels per meter, and it has the advantage of adapting
automatically to the depth in the video. We denote these no-jump constraints as
inter-frame constraints (cf. Middle Inset in Fig. 1).

2.3 Temporal Neighborhoods and Point Tracks

Motion estimates for each detection provide vital information regarding its possi-
ble temporal neighbors. Without such estimates, temporal neighborhoods could
become significantly big, which in turn would restrict the amount of frames
processed in one batch due to a larger number of variables. Moreover, detec-
tions may be infrequent (false negatives) and may contain false positives, which
prevents obtaining good motion estimates.

Owing to these reasons we do not rely only on the location of the detec-
tions, but instead we use point tracks, which provide motion estimates on a pixel
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Fig. 1. Left: Point Tracks and detections. Middle: High repulsive exclusion con-
straints, shown for the central green bounding box in frame t, with red edges. Intra-
frame repulsive constraints prevent this detection from having the same label as any
other detection in the same frame t, while inter-frame repulsive constraints prevent it
from having the same label as detections in previous and next frames t−1, t+1 that are
too far. The maximum radius r is detection-dependent, in that it corresponds to the
maximum physically-plausible displacement within a duration of one frame, and that
speed estimation depends on object depth. Right: Computing the trajectory straight-
ness for a triplet of detections j, i, k at the temporal scale δt (cf. sec 2.5) (Color figure
online).

(or sub-pixellic) level. The proportion F (i, j) of common point tracks between
two nodes i and j, i.e. of points tracks which go through two given bounding
boxes Bi and Bj from different times, defines a first similarity measure between
these nodes. This similarity measure has the advantage of being robust to false
detections (positive as negative) that occur between the two nodes. Also, in
the case of partial occlusions, point tracks on the non-occluded part will still
manage to follow the object and define a meaningful similarity, while overlapping
detections make appearance-based affinities noisy in such partial occlusion cases.

2.4 Appearance Connections

In the previous sections, apart from defining repulsive constraints, we have added
connections between the nodes which share common point tracks, as an incentive
for them to choose the same label and consequently be part of the trajectory
of the same object. But point tracks most often do not cover the full temporal
span of the video and tracks may get lost or confused (aperture problem) after
some time due to occlusion or pose changes. This calls for the need of long tem-
poral range connections in the graph. To define such a similarity between detec-
tions from any frames, possibly far apart in time, we consider the appearance
of objects. To cater this, we compute an appearance feature for each bounding
box, and cluster these appearances into L groups using K-means. The appear-
ance cluster of node i is denoted by Ai. The appearance similarity between any
nodes belonging to a same cluster is then defined as a constant weight β > 0,
while the one between nodes from different cluster is 0, which will lead to the
quantity β δAi=Aj

in Eq. 3. For appearance clustering we do not need to know
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Fig. 2. Sample appearance clusters for PETS09 S2L1: Each box encloses a few samples
belonging to the same cluster. Notice that the clustering is robust to scale changes.

the exact number of objects in the scene, as over-clustering is not an issue with
our approach. In our experiments we set L to twice the maximum number of
detections observed in a single frame of the current video batch.

The appearance feature for a detection is based on the histogram of col-
ors inside the detection The distance between two appearances is computed by
the L2 norm between features. Figure 2 shows a few clusters from a PETS09
[14] video.

2.5 Favoring Smooth Trajectories

When the trajectories of people with a similar appearance cross each other, and
that, in plus, full occlusion or detection mistakes (false positives or negatives)
occur at this crossing, then the tracking based on the previous quantities may fail
and induce small jumps in location or identity switches. This can be mitigated by
penalizing high curvature of the trajectories. To this end we define an energy term
which favors smooth trajectories, involving three detections j, i, k from different
frames regularly spaced in time (t − δt, t, t + δt), as shown in Right-most inset
of Fig. 1. Given such detections, we compute a triplet factor R(i, j, k) expressing
the regularity of the associated trajectory. It is based on the Laplacian of the
centroids pi of the three bounding boxes:

Δijk =
f

Hi δt
‖pj + pk − 2pi‖ (1)

and is expressed as:

R(i, j, k) =
1√
δt

max(τ − Δijk, 0) (2)

Note that the Laplacian was normalized in order to be invariant to the video
resolution and to the time interval, using the frame rate f , the frame interval δt
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and the bounding box height Hi used as previously as a depth/resolution indi-
cator. R denotes the benefit for the triplet j, i, k to belong to a same trajectory.
The threshold τ indicates the maximum speed difference, or curvature, above
which there is no gain. Note that τ = 1m/s2 is video-invariant.

Considering all triplets in the graph is computationally prohibitive as there
are |V |3 possible triplets (|V |2 symmetrical triplets). Furthermore searching only
temporally successive triplets (δt = 1) would be sensitive to missed detections.
Thus we compute R(i, j, k) on various temporal scales, with δt ∈ {1, 2, 3, 4, 5, 10}.
As object trajectory is more predictable at shorter temporal ranges, we decrease
the importance of the smoothness assumption for longer time spans with the
factor 1/

√
δt.

Unlike [3], which requires the knowledge of trajectory proposals for curvature
penalization, we model curvature penalization using an apt triplet search, thus
making our model as unified and self contained as possible.

3 Optimization

Summing up all quantities defined in the previous section, we obtain the following
similarity criterion to maximize over possible labellings x:

S(x) = α
∑

ij

F (i, j) δxi=xj
+ β

∑

ij

δAi=Aj
δxi=xj

+ γ
∑

ijk

R(i, j, k) δTxi,xj ,xk
− Ω

∑

(i,j)∈C
δxi=xj

(3)

where δtrue = 1 and δfalse = 0, where δTxi,xj ,xk
= 1

3

(
δxi=xj

+ δxi=xk
+ δxj=xk

)

is a good 2nd-order approximation of δxi=xj=xk
. C denotes the set of all pair-

wise inter-frame or intra-frame constraints, and Ω > 0 is sufficiently high to be
dissuasive. Maximizing S(x) in (3) is equivalent to minimizing E(x) = −S(x).
Note that if one denotes by X the set of feasible labellings, i.e. satisfying all
constraints, then solving argminx∈LV E(x) with high Ω is equivalent to solv-
ing argminx∈X E(x) with Ω = 0, and that E(x) in this latter formulation is
submodular on X , but to our knowledge there is no optimizer dedicated to the
minimization of submodular functions over arbitrary sets.

3.1 Optimizers

The criterion (3) is a non-submodular Conditional Random Field, and a host of
available optimization techniques can be employed. This section aims at provid-
ing a concise overview on selecting optimizers for E(x).

Heuristic approaches such as Tabu Search (used by [4]) or Simulated Anneal-
ing can be used to optimize (3). However these suffer from at least two notable
problems to applied to a tracking model. Firstly, they do not provide any indica-
tion certifying the vicinity of a solution from optimal. Secondly, in time critical
applications it is often desirable to use techniques which can provide a usable
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solution (i.e. a solution satisfying all constraints) whenever required. These
heuristic approaches along with relaxation techniques (e.g. Lagrangian relax-
ation), Polyhedral methods, do not provide a usable solution at all time instants
of their operation. In a recent work by [15], the authors show that combinator-
ial methods (such as Integer Linear Programming, Max Cut using Reweighted
Perfect Matching) based on branch-and-bound and cutting plane techniques do
not scale well with the problem size.

Therefore we employ a fast message passing variant: Tree Re-Weighted Mes-
sage Passing (TRW-S) [16]. TRW-S considers the full graph for labeling and
provides good optima (along with the optimality bound). To make further imp-
rovements, we design local moves based on an Iterated Conditional Modes (ICM)
that will satisfy the constraints and are likely to be useful.

ICM [17] is an iterative procedure, wherein an optimum labeling for a vari-
able is chosen conditioned on all other variables. The process is repeated for all
variables until convergence. Owing to this local nature of moves it is practically
difficult for ICM to find a usable solution from scratch. However with a good
initialization, ICM can find more meaningful solutions quickly. [18] proposed a
variant of ICM: Lazy Flipper (LF). As opposed to ICM, a LF takes into account
a large connected subset of variables up to a prescribed size. Upon convergence,
the LF’s labeling is guaranteed to be optimal within a Hamming distance equal
to the subgraph size.

Inspired from LF, we search for flips of variables which reduce the energy, by
considering a single variable or a subset of variables at a time. For a given subset
size we repeat the above process until the energy cannot be reduced further.
We also limit our search to only those subsets of variables which have a joint
temporal distance of less than 20 frames, i.e. the maximum time scale in triplets.
This structural information incorporation brings significant computational speed
up on this part of the optimization process.

Notice that this flipper is different from the Block-ICM proposed by [12].
The authors in [12] sweep in a temporally forward manner, and check for flips
locally in two frames. The flipper in our approach is more general as the nodes
considered for flips have no time ordering restrictions. Furthermore as an ICM
is susceptible to initialization [12], we provide a good usable solution satisfying
all constraints to our flipper, obtained from TRW-S.

We experimented with recently proposed optimizers based on dual decompo-
sition [19] and linear programming relaxations [20]. Both these techniques were
excruciatingly slow on finding one usable solution.

3.2 Graph Reduction

Point tracks can be used to reduce the initial graph, and consequently speed up
the optimization, by fusing nodes for which there is no tracking ambiguity. More
precisely, two nodes are fused if all point tracks inside both bounding boxes
move into one another. When fusing nodes i and j, their edge weights (towards
any other node k) are accumulated, as in Fig. 3 : w{ij},k = wik + wjk. Thus the
criterion optimized does not change.
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Fig. 3. Graph reduction by fusing nodes u,v and w,x.

The ratio of the fused graph size to the original size translates directly to the
optimization speed, as we observe a reduction in the computational cost by the
same ratio. Figure 4 shows a simple illustration for the speed gain due to this
graph reduction step (cf. Fig. 4 caption for details).

Fig. 4. Graph reduction and flipper speed gain. Leftmost drawing shows the labeling of
12 nodes. Node colors indicate a labeling (stuck at a local minima) and the colored lines
(green and yellow) correspond to the groundtruth trajectories. Middle inset drawing
shows the reduced graph by fusing nodes inside the dotted ellipse in the Leftmost
drawing (cf. Sect. 3.2). Since the graph is reduced, we only need to search for flips of
subgraphs of size = 2 (i.e. O(|V |2)), instead of enumerating over all possible subgraphs
of size = 6 (i.e. O(|V |6)). The subgraph-flip required to correct the initial labeling is
shown by magenta colored rectangular box in the middle inset. The Rightmost drawing
correspond to the final correct output in the original graph (Color figure online).

3.3 Parameter Setting

We have three constant factors in CRF, namely α, β and γ (cf. Eq. (3)). These
have to be set considering the relative importance of each term, and this setting
should be as invariant to videos as possible. We set Ω = 1000000, sufficiently
high to enforce repulsive constraints. The rationale in setting these parameters
is outlined below.

– The main contribution of point tracks is to obtain motion estimates which
help in fusing the graph. On the fused graph, the nodes are either close to
occlusion vicinity or false negatives. In both these situations, we need to look
at appearance and trajectory curvature in time to decide about the labeling.
Hence we set more weight on triplets and appearance clusters.

– Near occlusion vicinity, it is important to consider both motion difference and
appearance. However trajectory curvature in short temporal scale should have
higher weight than appearance due to following reasons: Firstly, trajectories
are not supposed to change their path substantially in course of a few frames,
and secondly, the appearance of persons can be similar either due to the
presence of noise or persons having the same appearance. Hence β = 0.5 is
set lower than γ = 50, with α = 0.01. A small perturbation of these values
while respecting the relative order does not change the results.
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3.4 Graph Cleaning

After solving the optimization on a batch, any temporal gap along a trajectory
due to false negatives is filled by assuming linear motion between the closest
detected bounding boxes on either side of the temporal axis. False positives
from detections usually form short trajectories and with long temporal gaps,
and these tracks are removed.

Streaming Trajectory Computation is performed using a sliding window app-
roach, with an overlap of 15 frames from the previous batch.

4 Experimental Results and Evaluation

Comparative quantitative evaluation is challenging due to the lack of benchmark
datasets, such as [21] for optical flow evaluation purpose. For our evaluation pur-
poses, we use the metrics proposed by [6]1. Recently, [22] has thrown light on
the ambiguities in evaluation due to dissimilarities in groundtruth annotations
and evaluation codes used by different tracking approaches. Taking these ambi-
guities into account we provide other relevant information, e.g. type of detector,
groundtruth and the code used for computing the metrics.

4.1 Evaluation Metrics

– Recall: % of correct detections w.r.t. total detections in groundtruth.
– Precision: % of correct detections w.r.t. total detections in tracking.
– FAF: False alarms per frame. GT: Number of trajectories in groundtruth.
– MT: Number of trajectories successfully tracked for >80 % of their ground-

truth time span. ML: Number of trajectories successfully tracked for <20 %
of their groundtruth time span.

– IDS: Number of times a tracked trajectory changes its matched id.

Other widely adopted metrics are Multiple Object Tracking Accuracy/Precision
(MOTA and MOTP) [23]. MOTA takes into account the number of false posi-
tives, false negatives and IDS. MOTP quantifies the average distance between the
groundtruth and the estimated target locations. MOTA is the preferred metric
for us as we do not change the locations of input detections.

4.2 Results and Discussion

We consider videos from public datasets for evaluation. TRW-S is run for a fixed
number of iterations (50), and the output is then optimized by the flipper. All
our results are obtained with the same unique set of parameters.

PETS Dataset: We use the S2L1 view. This video is challenging due to non lin-
ear motion, and persons of similar appearances occluding each other2. With global
1 We use the code provided by [2] to compute these metrics.
2 Detections from http://iris.usc.edu/people/yangbo/downloads.html.

http://iris.usc.edu/people/yangbo/downloads.html
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Table 1. Comparison with the recent proposed approaches on PETS S2L1 Video. The
metrics on the first and last row are obtained using the same code, while middle ones
are taken from the respective papers as their result files are unavailable.

Method Rec Prec FAF GT MT ML IDS MOTA(3D) MOTA(2D)

Milan et al. [3] 96.9 94.1 0.36 19 18 0 22 90 83.6

Shitrit et al. [7] - - - - - - 19 - 82

Berclaz et al. [8] - - - - - - 28 - 80

Zamir et al. [4] - 69.4 - - - - 8 - 90.3

Ours 95.8 90.8 0.28 19 18 0 13 90 81.8

appearance features, we are able to keep the same ID for persons exiting and
re-entering the scene (cf. Fig. 5).

We observe (Table 1) that our approach performs well and is on par or better
with the best in the metrics. At the same time our approach is much faster
(cf. Sect. 4.3) and do not rely on external tracker as [3] or camera calibration
as [3,7,8]. Also the model of [3] has 11 parameters and requires an explicit
parameter estimation step for a video. [4] uses Tabu Search on their model and
hence guarantees of a stable output on multiple runs are minimal. Moreover [4]
do not cater to a proper video streaming, as merging trajectories from batches
is based on solving a clique problem by considering multiple batches. Typically
better cliques can be found if more batches are considered for merging, which in
turn adds to the latency time.

Usefulness of Triplets: Triplets are necessary to maintain consistent identities
in time. Indeed without using triplets, our results for MOTA (3D) would decrease
to 84.4 and the identity switches would increase to 35.

Towncenter Dataset: For the evaluation on HD videos with higher person den-
sity, we consider Towncenter video [11]. The groundtruth, result and detection
files can be obtained from the webpage of [11]. We achieve competitive MOTA3

(cf. Table 3, Fig. 7). [11] uses a head detector along with motion estimates to
make precise the location of body and head bounding boxes, hence achieves
higher MOTP. Also [11] requires camera calibration and a parameter estimation
step which takes several hours.

Although [24] is a frame-by-frame method, we compare to this approach as
the output files are available, and as it outperforms other previous approaches.
While being competitive, we are 6 times faster on a single core implementation
than the dual core implementation of [24].

Optimizer Scaling w.r.t. Problem Size: With this proposed combination of
optimizers on a batch of 400 frames (with a high density of 15 persons/frame),
we achieve competitive MOTA as shown in Table 2. The maximum memory
consumed by our algorithm is under 6 GB, demonstrating the memory efficiency.

3 MOTA code from https://github.com/glisanti/CLEAR-MOT.

https://github.com/glisanti/CLEAR-MOT
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Fig. 5. Consistent tracks before and after occlusion: Frame numbers are shown
on Top-Left of each image. The dotted points show the trajectories of bounding boxes in
previous and successive frames. To reduce clutter in display, we show 3 trajectories and
their few previous and future locations. Owing to the global appearance incorporation,
ID 4 is kept intact for the person as he leaves and comes back in the view. This
immaculate consistency in identities during crossing is obtained due to triplet factors.

Table 2. Results on a crowded batch of 400
frames. There are 6000 detections in this
batch starting at the 450th frame.

Towncenter
Method MOTA MOTP Detector

Benfold et al. [11] 55.8 84.4 [11]

Zhang et al. [24] 66.4 75.2 [11]

Ours 66.5 75.8 [11]

Table 3. Results for first 1000
frames (50 frame batches). Com-
petitive accuracy is obtained at 6x
faster speed.

Towncenter
Method MOTA MOTP Detector

[11] 55.9 84.7 [11]

[24] 64.9 76.4 [11]

Ours 64.6 75.0 [11]

Stable Output on Multiple Runs: We performed 5 trials on 50 frame batches
for the first 1000 frames, and obtain a stable MOTA with a standard deviation of
0.7. In these trials we stop the optimizer to meet a requirement of 5–10 fps (by
stopping the flipper). Such stability guarantees can not be provided by heuristic
(or stochastic) optimization approaches e.g. Tabu Search.
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Fig. 6. Processing time improvement using graph reduction (similar MOTA in both
cases), for the first 15 batches. High processing times from batch 8 to 12 are due to high
detection rate/frame. In the above cases we let the optimizer run until convergence.

Usefulness of Point Tracks: Point tracks are an integral part of many vision
systems. For our tracking system, point tracks help in reducing the graph and
in-turn aid in swift convergence of our optimizer. On standard GPUs, optical
flow based point-tracker such as [25] and the KLT based point-tracker from [26]
provide dense point tracks at 25 fps and 200 fps, respectively for high resolu-
tion videos. Moreover as ours is a batch based tracker, a simple dual-threaded
implementation with a dedicated thread for computation of point tracks for the
successive batch can remove any probable latency. In order to demonstrate the
advantage of graph reduction, we consider the complete batch of 794 frames of
the PETS S2L1 video, with or without the graph reduction step (cf. Table 4).
We observe a 4x increase in efficiency with the graph reduction step. Similar
comparative details on Towncenter video can be seen in Fig. 6.

Table 4. Usefulness of graph reduction: PETS S2L1 computation times (in sec-
onds) for the cases when the graph reduction step is either chosen (Row 1 ) or discarded
(Row 2 ). The column App + k-means, shows cumulative times for both appearance
feature computation and clustering. The quantitative results for both rows are similar.

Batch Size (Number of Frames) App+k-means TRW-S Flipper Total Memory

794 (With Graph Reduction) 35 95 370 500 2.5 GB

794 (Without Graph Reduction) 35 350 1500 1885 5 GB

4.3 Processing Time

Computational times are one of the major factors in choosing a tracking algo-
rithm. Comparing exact running times is challenging, as peers often do not
provide them (nor the code) or quote only average times over a set of var-
ied videos. Our optimizer takes 0.01 s/frame on average for 50 frames batches
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Fig. 7. Consistent people crossing over a span of 134 frames. The above images are
cropped to show the crossing.

(8 persons/frame, PETS S2L1) on a single 2.4GHz core, which is 100x faster
than the best case of [3] in 2013. The run time of optimizer from [3] is 1–2 s/frame.
The average run time for [4] optimizer is 4.4 s/frame on four 2.4 GHz cores.
On videos similar to PETS S2L1, [7] takes 4s /frame on 3 GHz CPU. Table 5
shows computational efficiency of our approach w.r.t. recent approaches.

We perform optimization at a speed of 5–11 fps (on 50 frames batches the
Towncenter with 10–17 persons/frame), which is 20x–40x faster than the
4-core implementation of [4], and 6x–10x faster than the 2-core implementation
of [24]. [11] achieves a real time performance on Towncenter using parallel CPU
implementation, however the tracking accuracy is significantly lower than us.

Table 5. Approximate comparison of
computation times for PETS S2L1,
showing a significant positive gap bet-
ween ours and state-of-the-art appr-
oaches in terms of speed vs. accuracy.

Table 6. State-of-the-art approaches and
their incorporation of local and global clues.
TOF stands for 3rd order factor (triplet).
GAF denotes global appearance factor.

Method Optimization TOF GAF

[9] K-Shortest Paths × ×
[4] Tabu Search × �
[3] α-Expansion, TRW-S � ×
[11] Markov Monte-Carlo × ×
[7] Integer Programming × �
[13] Lagrange Relaxation � ×
Ours TRW-S, Flipper � �
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5 Conclusion

We proposed a novel tracking algorithm which exploits local and global cues
in the most unified manner as compared to the state-of-the-art (cf. Table 6).
Furthermore an apt combination of optimizers and suitable graph reduction
lends robustness, stability and efficiency (5–10 fps on HD video of busy town
street, on a single core CPU) to the model. The results obtained are competitive
or better than the state-of-the-art at this speed. The proposed model has two
degrees of freedom, and hence would be highly amenable to parameter learning
using scene context and other relevant inputs. Also the algorithm is easy to
implement and reproduce. Future prospects include tracking object parts and
providing feedback to the point-trackers about incorrect tracks.

Supplementary materials can be found at the project webpage.4
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