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Abstract. Successful multi-object tracking requires consistently main-
taining object identities and real-time performance. This task becomes
more challenging when objects are indistinguishable from one another.
This paper presents a Bayesian framework for maintaining the identities
of multiple objects. Our semi-independent joint motion model (SIMM)
solves the coalescence and identity switching problem in real time. This
joint motion model is a non-parametric mixture model that simultane-
ously captures linear motion and repulsive motion. Linear motion is a
constant velocity model, while repulsive motion is described by a repul-
sive potential in MRF. By maintaining multimodality from multiple
motion models, we can infer the appropriate motion model using image
evidence and consequently avoid many identity switching errors. More-
over, we develop a new sampling method that does not suffer from the
curse of dimensionality because of the availability of high-quality sam-
ples. Experimental results show that our approach can track numerous
objects in real time and maintain identities under difficult situations.

1 Introduction

Multi-object tracking is important for many applications, such as video surveil-
lance, robotics, radar-based tracking of aircraft, and sports video analysis. It is
a relatively easy task when objects are distinguished from one another. In prac-
tical tracking applications, however, some objects are indistinguishable, such as
similar looking people in surveillance videos [29], players of the same team in
broadcast sport videos [15], and unlabelled measurements in radar tracking [26].
This paper aims to maintain the identities of multiple indistinguishable objects
in real time.

The ambiguity caused by indistinguishable objects is one of the main diffi-
culties encountered in multi-object tracking [6]. When objects present nonlin-
ear motion, tracking becomes even more difficult, involving two subproblems:
the coalescence problem (trackers associate more than one trajectory with some
objects while losing track of others) and the identity switching problem (two
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intersecting trajectories exchange identities). The coalescence problem can be
solved by exclusion constraints: (C1) detection response (measurement) should
be assigned to at most one trajectory, or (C2) two objects cannot occupy the
same space. Constraint (C1) is known as data association [16,17,27]. Constraint
(C2) is known as Markov random field (MRF) motion [10,30] in image plane
or physical exclusion [13] in 3D world space. Once the coalescence problem is
resolved, the identity switching problem becomes crucial, as discussed in the
following paragraphs.

Fig. 1. We assign two identities to the two indistinguishable objects in frame 1. The
correct identity of the object indicated by question mark depends on the motion model
we selected, as shown in Fig. 2.

A linear motion model is commonly used in multi-object tracking, i.e., a
constant velocity model or motion affinity using the assumption of linear motion.
As shown in [6,20,29], however, the linear motion model is often plagued by
nonlinear motion patterns in real scenes. This problem can be shown by a simple
example: sequence S1 in Fig. 1, where two indistinguishable objects are marked
�1 and �2 in frame 1. After frames 2, 3, and 4, what is the correct identity of
the object indicated by the arrow in frame 5 ? Linear motion indicates that the
identity is �1 (see H1 in Fig. 2), but the image evidence points to the identity as
�2 because full occlusion does not occur in frame 3. The absence of full occlusion
implies that no intersection happens, making the nonlinear motion model the
preferred tool for disambiguating the object identities shown in S1.

The nonlinear motion model is also used in multi-object tracking. The MRF
motion model is a typical representative and is often used to describe the repul-
sive force of objects (hereinafter called repulsive motion). It can better explain
the directional changes in S1, but repulsive motion also presents the identity
switching problem. Consider sequence S2 in Fig. 1. S2 also has 5 consecutive
frames showing the continuous motions of two objects marked �3 and �4 in frame
1. After frames 2, 3, and 4, what is the correct identity of the object indicated
by the arrow in frame 5? The repulsive motion model indicates that the correct
identity is �4. The full occlusion in frame 3 may mean that intersection (H3
in Fig. 2) and departure (H4 in Fig. 2) are equally possible, but H3 can better
explain the sequence in accordance with the inertia law of physics. Therefore,
the linear motion model is the preferred tool for maintaining the identities of
objects presented in S2.
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Fig. 2. Tracking results of linear motion and repulsive motion models. Our method can
naturally evolve a correct motion model from multiple models (color figure online).

How to select the correct motion model (i.e. repulsive motion model in S1
and linear motion model in S2)? We use a Bayesian framework that adaptively
selects an appropriate motion model. We generate multiple hypotheses according
to multiple motion models, evaluate the likelihood of these hypotheses giving rise
to observed data, maintain the multiple hypotheses, and infer the correct identity
using the motion model that is consistently supported by the observed data.

The first contribution of this paper is a semi-independent joint motion model
(Sect. 3.1). It is a non-parametric mixture model, which takes into account the
repulsive force between objects, as well as their inertial force. This mixed motion
model removes the ambiguity caused by indistinguishable objects. Moreover, it
maintains multimodality (or multiple hypotheses), thereby evolving an correct
motion model and avoiding identity switching errors (Sect. 3.2).

The second contribution of this paper is an efficient sampling method that
does not suffer from the curse of dimensionality. The advantage of Monte Carlo
simulation is that the accuracy of the Monte Carlo estimator does not depend
on the dimensionality of a problem. High accuracy may be achieved with a rela-
tively small number of high-quality samples. We design a tractable importance
distribution to generate high-quality samples (Sect. 3.3). Therefore, our method
scales well even under difficult situations (e.g. severe occlusion).

2 Related Works

Multi-object tracking methods can be divided into two categories. The first uses
only current and past information to estimate the current state [3,4,10,12,17,19,
22,23,25,26,30]. It is well suited for real-time applications, but cannot recover
from failure, because data association decisions are based only on past informa-
tion. These decisions, once made, are fixed and may later be revealed as subopti-
mal. Maintaining multiple hypotheses can delay data association decision making
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until enough information has been obtained to derive the optimal solution. The
capability of maintaining multiple distributions (pL and pR in this paper) is the
key difference between our method and others. We use a non-parametric mixture
model [25] to facilitating identity maintenance where the standard particle filter
fails. Besides, we propose a novel importance distribution to avoid the curse of
dimensionality.

The second category of multi-object tracking also uses future information to
estimate the current state within a given time window [2,6,13,15,16,21,27–29].
It more effectively overcomes the ambiguities caused by long-time occlusions
and false or missed detections. Initialization and termination are fully auto-
matic [24]. The accuracy of object detectors, however, remains far from perfect.
Detectors may generate unreliable detection responses if an object is fully or
partially occluded by others. These detection errors propagate to the tracking
(or data association) module and consequently cause identity switching error.
For example, the comparison of S1 and S2 shows that the key difference is frame
3 (highlighted in red in Fig. 2). The missed or inaccurate detection response at
frame 3 damages this key evidence and introduce identity ambiguity. Tracking-
by-detection approaches suffers from this ambiguity. To avoid this problem, we
use image patch, instead of detection response in the observation model, because
image-patch based observation model capture the difference between S1 and S2.

The nonlinear motion model has been used in multi-object tracking applica-
tions, such as social behavior of people (path planning [20], moving groups [3],
game context features [15]) and knowledge about scenes (motion patterns [29],
entry/exit points [27]). By contrast, MRF motion model does not require the
knowledge of scenes or targets. Khan et al. [10] modeled the interaction between
objects by MRF motion model, and Yu et al. [30] proposed a set of collabo-
rative trackers to solve the coalescence problem. Lanz [12] proposed a hybrid
joint-separable filter, which is similar to our approach. Qu et al. [23] proposed
a distributed architecture. Khan et al. demonstrated the failure mode of MRF
motion when basic assumption (C2) is violated. High-order motion models can
avoid this failure [23]. In Sect. 3.2, we discuss why (C2) causes failure and how
to improve it using our SIMM approach.

Data association is naturally a discrete problem and trajectory estimation is
a continuous problem [2]. The inference in discrete-continuous (hybrid) model is
NP-hard [14]. The MRF motion model is described in a continuous state space
and its repulsive potential is also a continuous function [10,30]. This continuous
nature makes designing a tractable importance distribution possible. Our impor-
tance distribution Qsimm drastically reduces computational effort (Sect. 3.3).

Khan et al. [9] use multiple nearly independent trackers (a real-time version
of [10]). Hess et al. [7] devised a pseudo-independent log-linear filter. They used
previous states x̂t−1 of other objects to compute interaction features between
objects. This simplification requires less computation but leads to identity switch-
ing error when severe occlusion presents because of the sample impoverishment.
Our importance distribution Qsimm generate high-quality samples and conse-
quently avoid sample impoverishment.
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The mixture of multiple motion models is not a new idea. Isard et al. used a
manual transition matrix in mixed-state CONDENSATION [8]. Yu et al. used
a binary performance indicator to switch between motion models [31]. Oh et al.
used a semi-Markov transition matrix learned from data [18]. Kwon et al. decom-
posed the motion of an object into two kinds of motions [11]. We do not man-
ually set a transition matrix [8], nor empirically set a threshold of performance
indicator [31], nor learn model parameters from data [6,7,15,18,20]. Our model
parameters (m0 and m1) are fixed all the time. The particle sets can naturally
evolve a correct motion model from multiple motion models according to image
evidence.

3 Semi-Independent Multi-object Tracking

3.1 Problem Formulation

Multi-object tracking can be formalized as a sequential Bayesian estimation
problem. We denote the state of the ith object at time t by xi,t, the joint state
by Xt = {x1,t, x2,t, ..., xM,t}, the local observation of xi,t by yi,t, and the joint
observation by Yt = {y1,t, y2,t, ..., yM,t}, with M number of objects.

For computational efficiency, we assume that joint observation model p(Yt|Xt)
can be factorized with respect to each individual object.

p(Yt|Xt) =
∏

i

p(yi,t|xi,t) (1)

To maintain multiple distributions of multiple motion models, we formulate
joint motion model p(Xt|Xt−1) as a mixture model, i.e.,

p(Xt|Xt−1) =

⎛

⎝m0 + m1cG
∏

j>i

ϕ(xi,t, xj,t)

⎞

⎠
∏

i

p(xi,t|xi,t−1) (2)

where m0 and m1 are the mixture weights with m0+m1 = 1. cG is a normaliza-
tion factor. p(xi,t|xi,t−1) is a constant velocity model. ϕ(xi,t, xj,t) denotes the
repulsive potential that solves the coalescence problem. With the use of different
parameter values, the motions of multiple objects may be completely indepen-
dent (m0 = 1, m1 = 0), dependent (m0 = 0, m1 = 1) [10,30], or semi-independent
(m0 = m1 = 0.5 in this paper). The intuition behind this model is that a target
xi,t behaves in accordance not only with its own past state xi,t−1 with weight
m0, but also with the behaviors of other targets xj,t with weight m1.

This semi-independent joint motion model is the key novelty of this paper.
The component (m0 + m1cG

∏
j>i ϕ(xi,t, xj,t)) is designed to disambiguating

object identities (Sect. 3.2). The component
∏

i p(xi,t|xi,t−1) outside the bracket
is the key to real-time performance and scalability (Sect. 3.3). After using the
assumption [12] that the joint distributions are approximated via the outer prod-
uct of their marginal components p(Xt−1|Yt−1) =

∏
i p(xi,t−1|Yt−1), Eqs. (1) and

(2) lead to an multi-object tracking framework as follows.
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Prediction:

p(xi,t|Yt−1) =
∫

p(xi,t|xi,t−1)p(xi,t−1|Yt−1)dxi,t−1 (3)

where p(xi,t|xi,t−1) is a constant velocity model.

Updating:

pL(xi,t|yi,t) = cip(yi,t|xi,t)p(xi,t|Yt−1) (4)

where ci represents normalization factors and pL denotes the posterior of linear
motion.

Joint updating:

pMRF (Xt|Yt) = cG
∏

j>i

ϕ(xi,t, xj,t)
∏

i

pL(xi,t|yi,t) (5)

where pMRF denotes the joint distribution of MRF.

Marginalization:

pR(xi,t|Yt) =
∫

pMRF (Xt|Yt)dx¬i,t (6)

where x¬i,t represents vector Xt with the ith component removed and pR denotes
the posterior of repulsive motion.

Mixture of distributions:

p(xi,t|Yt) = m0pL(xi,t|yi,t) + m1pR(xi,t|Yt) (7)

Please see our supplementary material (*.pdf) for complete mathematical
derivations.

3.2 Mixture Model

We discuss how posterior distributions pL and pR collaboratively maintain object
identities.

Likelihood ambiguity occurs if multiple interacting objects are identical in
appearance (e.g., the tennis balls in Fig. 3). The observation model is useless
in inferring the object identities. This ambiguity causes multiple modes in dis-
tribution pL(x2) at t = 70 and consequently leads to the coalescence problem.
By contrast, pR(x2) has a single peak from t = 56 to t = 80 even when pL(x2)
has multiple modes. Therefore, repulsive potential ϕ(·) eliminates the likelihood
ambiguity that originates from the observation model. As a result, x2 maintains
the correct identity throughout the interaction. Note that no complete occlusion
occurs in S1 and the nearest distance between two true trajectories is 4 pixels
(overlap ratio 74.8 %) at t = 67.
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Fig. 3. The source image and tracking result of S1 are shown in the 1st row. The
posterior of linear motion pL and repulsive motion pR are shown in the 2nd and 3rd
row. Please see the text and our supplementary material for more details.

Identity ambiguity occurs if assumption (C2) is violated [10]. Complete occlu-
sion leads to the identity ambiguity in S2, subsequently causing the multimodal-
ity of pR(x4) at t = 70 (Fig. 3). In other words, two hypotheses exist: x4 is
associated with left-hand side peak H3 and right-hand side peak H4. This multi-
modality is maintained from t = 67 to t = 78 by mixture model (2). Finally, H3
is consistently supported by the observations in this time interval. Meanwhile,
H4 is pruned away by ϕ(·). As a result, x4 derives the correct identity at t =
78. By contrast, the traditional MRF motion model votes only H4, resulting in
identity switching error. In this situation, linear motion helps solve the identity
ambiguity that stems from MRF motion.

In summary, both linear motion and repulsive motion are indispensable to
identity maintenance. Maintaining multimodality delays data association deci-
sion making until enough observations are collected.

3.3 Monte Carlo Implementation

We present a novel Monte Carlo implementation of the tracking framework in
Sect. 3.1.

Curse of dimensionality. Computer vision systems are confronted with de-
mands to track numerous objects in dense scenarios. In Eq. (5), the dimension
of joint state Xt is high. Exploring a high-dimensional joint state space is gener-
ally computationally intensive. Fortunately, high-dimensional problems can be
efficiently solved by Monte Carlo simulation if high-quality samples are avail-
able. The factorization property of Eq. (1) and the continuous nature of ϕ(·)
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enable the convenient use of importance sampling. In particle filter literature,
the optimal importance distribution is Qopt(Xt|Yt,Xt−1). Transition prior (or
joint proposal distribution in [10])

Qtransition−prior =
∏

i

∫
p(xi,t|xi,t−1)p(xi,t−1|Yt−1)dxi,t−1 (8)

is inefficient. We propose a novel importance distribution

Qsimm =
∏

i

pL =
∏

i

p(yi,t|xi,t)
∫

p(xi,t|xi,t−1)p(xi,t−1|Yt−1)dxi,t−1 (9)

to approximate optimal importance distribution Qopt. Qsimm provides us high-
quality joint state samples because it incorporates current observations yi,t.

Suppose that p(xi,t−1|Yt−1) at the previous time step is approximated by a
set of N weighted particles:

p(xi,t−1|Yt−1) ≈ {
xn
i,t−1, π

n
i,t−1

}N

n=1
(10)

where N is the number of particles, n is the index of samples, and πn
i,t−1 is the

weight of the nth particle.

Prediction. The prediction is generated by a proposal density that incorporates
current detection responses Dt and transition prior p(xi,t|xi,t−1) [19].

qi = (1 − λ)p(xi,t|xi,t−1) + λg(xi,t,Dt) (11)

where p(xi,t|xi,t−1) is a constant velocity model, g(xi,t,Dt) ∼ N(xi,t − Dt;σ2)
denotes the normal distribution evaluated for the distance between Dt and xi,t.
qi improves tracker robustness and reduces model drift. A lower value of λ implies
a suppression of false positive detection.

Updating. We derive the posterior of linear motion according to observation
model p(yi,t|xi,t):

pL(xi,t|yi,t) ≈ {
xn
i,t, L

n
i,t = p(yi,t|xn

i,t)
}N

n=1
(12)

where Ln
i,t is the linear motion weight of the nth particle.

Joint updating. We draw K un-weighted samples

pL(xi,t|yi,t) ≈ {
xk∗
i,t, Bk(i)

}K

k=1
(13)

by resampling from Eq. (12) for i = 1, ...,M . Bk(i) refers to the index of the
particle in (12) at the kth sampling [22]. Storing the index of its parent is unnec-
essary in the standard particle filter, but it is useful in later procedures. We
approximate Qsimm by combining M independent un-weighted samples to one
joint state sample:

Qsimm ≈ {
Xk∗

t , Bk

}K

k=1
(14)
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where Xk∗
t =

(
xk∗
1,t, ..., x

k∗
M,t

)
, Bk = (Bk(1), ..., Bk(M)), and K is the number of

joint state samples. Then, p(Xt|Yt) is approximated by

pMRF (Xt|Yt) ≈
⎧
⎨

⎩Xk∗
t , Bk, w

k
t =

∏

j>i

ϕ(xk∗
i,t, x

k∗
j,t)

⎫
⎬

⎭

K

k=1

(15)

where wk
t is the weight of the kth joint state sample and the repulsive potential

function is defined as

ϕ(xi, xj) = exp

(
−α ×

(
overlap(xi, xj)2

area(xi)area(xj)

)2
)

(16)

where overlap(xi, xj) is the number of pixels that overlap between xi and xj , and
area(xi) is the number of pixels of xi. Note that (16) is currently implemented in
the image-plane, but it can be easily used in 2D-ground-plane, 3D-world-space
or pose-space after replacing (16) with a new function.

In visual tracking, the most computationally expensive operation is likelihood
evaluation (12). The computational cost of resampling (13) is much lower than
likelihood evaluation (12). For example, the computational time is 0.15 ms per
sample in Eq. (12) and 0.004 ms per sample in Eq. (13). To generate 4000 joint
state samples, traditional importance sampling needs 600 ms (=4000*0.15). Our
joint updating needs only 46 ms (=200*0.15+4000*0.004) if K = 200. Moreover,
the resampling preserves the support of distribution, and therefore avoids sample
impoverishment.

Marginalization. An advantage of Monte Carlo simulation is that some compu-
tations are particularly easy. Marginalization is a good example. We can obtain
marginal samples xi by sampling (xi, ui) from augmented distribution p(x, u),
and disregard the ui component [1]. In Eq. (6), x¬i,t is an auxiliary variable.
Given (15), PR(xi,t|Yt) can be easily obtained by ignoring x¬i,t

pR(xi,t|Yt) ≈ {
xk∗
i,t, Bk(i), wk

t

}K

k=1
(17)

Mixture of distributions. The posterior of linear motion (12) and repulsive
motion (17) cannot be directly mixed because N, the number of particles, is not
equal to K, the number of joint state samples. We accumulate and normalize the
weights according to Bk(i):

pR(xi,t|Yt) ≈
⎧
⎨

⎩xn
i,t, R

n
i,t =

∑

Bk(i)=n

wk
t

/
K∑

k=1

wk
t

⎫
⎬

⎭

N

n=1

(18)

where Rn
i,t is the repulsive motion weight of the nth particle.

Equation (18) is a normalized histogram representation of Eq. (17). Once his-
togram (18) has been computed, dataset (17) can be discarded, which can be
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advantageous if K >> N . Second, the transfer from Eqs. (17) to (18) does not
change the expectation of Monte Carlo estimation. Third, computing mixture
model (7) is easy.

p(xi,t|Yt) ≈ {
xn
i,t, π

n
i,t = m0 × Ln

i,t + m1 × Rn
i,t

}N

n=1
(19)

Note that Eqs. (9), (14), (15), (18), (19) are new ideas of this paper. Normal-
ization (ci and cG) is very important in our algorithm, which help us to improve
the inference of data association decision-making. We explicitly implemented
them (line 19 and 20 in Algorithm 1).

Algorithm 1. semi-independent joint motion model (SIMM) particle filter

1: Input:
{
xn
i,t−1, π

n
i,t−1

}N
n=1

2: for i = 1 to M do
3: Resample {xn

i,t−1}Nn=1 from
{
xn
i,t−1, π

n
i,t−1

}N
n=1

4: Sample {xn
i,t}Nn=1 from qi, by Eq. (11)

5: Ln
i,t = p(yi,t|xn

i,t), for n = 1, ..., N , by Eq. (12)
6: Rn

i,t = 0, for n = 1, ..., N
7: end for
8: for k = 1 to K do
9: w = 1.0

10: Sample index B(i) from the discrete distribution given by
{
xn
i,t, L

n
i,t

}N
n=1

, for i =
1, ..., M , by Eq. (9) or (14)

11: for i = 1 to M do
12: for j = i + 1 to M do
13: w = w × ϕ(x

B(i)
i,t , x

B(j)
j,t ), by Eq. (15)

14: end for
15: end for
16: R

B(i)
i,t = R

B(i)
i,t + w, for i = 1, ..., M , by Eq. (18)

17: end for
18: for i = 1 to M do
19: Normalize weights Ln

i,t, for n = 1, ..., N
20: Normalize weights Rn

i,t, for n = 1, ..., N
21: πn

i,t = m0 × Ln
i,t + m1 × Rn

i,t , for n = 1, ..., N , by Eq. (19)
22: end for

4 Experiments

We evaluate our approach on six sequences: four synthetic video sequences
(S1, S2, S3, and S4) and two public video sequences (PETS2009 S2L1 and
UBC Hockey). We compare our method with one data association method
(MC-JPDAF [26]) and four MRF motion methods: MCMC-based particle fil-
ter (MCMC) [10], Mean Field Monte Carlo (MFMC) [30], Distributed Multi-
ple Object Tracking (DMOT) [23] and Psuedo-Independent Log-Linear Filters
(PILLFs) [7]).
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Experimental setup. We use 6000 particles, propagate 10 samples to the next
time step, and discard 25 % to burn-in in MCMC; N = 400 and 5 iterations are
run in MFMC; N = 400 and 6 iterations are run in DMOT. We use K = 4000,
N = 400 and λ = 0.05 in our method.

The observation model of MC-JPDAF is the distance between the parti-
cle and the associated detection using Gaussian distribution. MCMC, MFMC,
DMOT, and our method use the same observation model, where p(yi,t|xi,t) is the
Bhattacharyya distance between HSV color histograms, and the same potential
(16) with α = 16.

In PILLFs, we use a constant velocity model and use two feature functions.
The appearance feature f1 is the Bhattacharyya distance between HSV color
histograms and the interaction feature f2 is (16). For fair comparisons, we do
not use the error-driven discriminative training in [7]. Hence, the feature weights
are fixed and equal w1 = w2 = 0.5.

In the PETS2009 dataset, we use a publicly available pedestrian detector [5].
In the UBC Hockey sequence, the detector is taken from [19]. In the synthetic
sequences, the tracker is manually initialized in the first frame and an image
background subtraction is used to detect BLOB-like objects.

4.1 Identity Switching Error

Identity switching is one of many important metrics in multi-object tracking [27].
This metric quantitatively evaluates the intrinsic ability of a tracking algorithm.
It can be easily recognized if the “ID of target” does not equal the “ID of tracker”
in Fig. 4.

Severe occlusion (S3). The most serious occlusion of 9 objects is that they
merge into a single measurement (Fig. 4). This sequence challenges many existing
methods, because 8 objects are fully occluded at t = 53. MC-JPDAF has no
identity switching error bacause objects move with the linear motions. MCMC,
MFMC, and DMOT fail because their basic assumption (C2) is violated. PILLFs
fail because it uses previous states x̂t−1 to compute interaction features, not all
the particles.

As shown in Table 1, MCMC, MFMC, DMOT and PILLFs all effectively work
for S1, which fits their basic assumption (C2). MC-JPDAF effectively works for
S2 and S3, which fit the linear motion assumption that underlies this algorithm.
Table 1 shows that our tracking framework produces better results than Linear
model (MC-JPDAF), MRF model (MFMC, MCMC, DMOT) and Log-Linear
model (PILLFs), because our motion model (2) is less dependent on a single
assumption than are the other models.

VAR1 is a variant of our method with λ = 0.2. The high value of λ makes it
suffers from the unreliable detection responses. VAR2 is a variant of our method
with m0 = 0, which blocks the contribution of linear motion model and suffers
from identity switching problem in S2.
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Fig. 4. Source images and tracking results for S3 (severe occlusion). Refer to text and
supplementary material for more details.

Table 1. Counting of identity switching errors on 4 sequences.

Method Sequences

S1 S2 S3 PETS2009 S2L1

MFMC [30] 0 1 >1 >1

MCMC [10] 0 1 >1 >1

MC-JPDAF [26] 1 0 0 >1

DMOT [23] 0 1 >1 >1

PILLFs [7] 0 1 >1 >1

Andriyenko et al. [2] - - - 10

Yang et al. [29] - - - 0

Segal et al. [24] - - - 4

VAR1 (λ = 0.2) 1 0 >1 0

VAR2 (m0 = 0) 0 1 >1 >1

Ours (λ = 0.05, m0 = 0.5) 0 0 0 0

S2L2 sequence from PETS2009. It has 795 frames with a resolution of
768×576 and contains various occlusions, such as a long-time partial occlusion
(t = 36 to 368, ID = 4,5), abrupt changes in direction (or repulsive motion) (e.g.,
t = 21 to 44, ID = 3), linear motion (e.g., t = 77 to 134, ID = 3), full occlusion



380 L. Shen et al.

Fig. 5. Tracking results for PETS2009 S2L1 (1st, 2nd and 3rd rows), hockey [19] (4th
row), and soccer game (5th row) sequences. Identity switching error is indicated by
arrows. Refer to text and supplementary material for more details.

between objects, and occlusion with a road sign. We use λ = 0.05 to avoid model
drift. The higher λ (VAR1) works well because objects are distinguishable.

In the soccer game sequence (Fig. 5), severe occlusion presents from t = 233
to 300 between two identical players. Our method has identity switching errors,
which will be discussed in the Sect. 5.

4.2 Computation Speed

All the experiments are implemented in C++ and run on an Intel Core2 Duo
1.66 GHz PC.

Severe occlusion (S3). In Table 2, R is the quotient of Max. divided by Min.
The large value of R indicates poor scalability. The minimal computation time of
MC-JPDAF occurs at frame 10 with 512 data association hypotheses. The max-
imal computation time occurs at frame 54 with 17,572,114 hypotheses, because
the gating procedure is disabled. Thus, MC-JPDAF suffers from the curse of
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Table 2. Minimal, maximal, and average computation time (millisecond per frame) in
S3 with R = Max./Min.

Method Min. Max. Avg. R

MFMC [30] 5.6 7910.5 2506.7 1412.5

MCMC [10] 49.5 62.8 53.1 1.2

MC-JPDAF [26] 1.7 2878.6 168.8 1693.3

DMOT [23] 5.6 25.3 9.5 4.5

PILLFs [7] 6.8 15.2 7.8 2.2

Ours 7.0 22.1 10.5 3.2

dimensionality. Moreover, the computational time of MFMC is high, because
MFMC uses message passing and the MRF is a fully connected graph at frame
53 in S3. DMOT and FILLPs scales well.

Long-time random sequence (S4). A total of M = 36 objects (20 × 20 pixels)
randomly walk in this video. It is a challenge because the dimension of the joint
state is very high. Many complex interactions occur, including nonlinear motion
before/within/after occlusion, and long-time occlusion. Our method (N = 300,
K = 4000) can track 36 objects at 8.6 fps.

In our method, K is an empirically small constant and fixed all the time.
Thus, our method scales well as the state space dimension M increases. Given
the detector output, the speed of our method is 12 fps for PETS2009 S2L1
and 18.2 fps for UBC Hockey. Our executable program can be found in the
supplementary material.

5 Conclusion

We have described and demonstrated a scalable real-time tracking framework
for maintaining the identities of multiple indistinguishable objects. The motion
model that is consistently supported by the observed data facilitates the inference
of the correct object identities. Repulsive motion eliminates the ambiguity from
observation models, but exhibits identity switching problems when complete
occlusion occurs. Linear motion helps solve this problem. We use a mixture model
to simultaneously capture these two motions and maintain multimodality. The
proposed joint motion model is less dependent on a single assumption than are
the other methods. Moreover, the factorization property and continuous nature
of MRF motion enables the design of a tractable importance distribution, which
generates high-quality samples and ensures the scalability of the algorithm.

The limitation of our method is that the identity ambiguity, caused by both
complete and long-term occlusion between indistinguishable objects, cannot be
reliably resolved because neither the observation model nor the motion model
can provide sufficient evidence for inferring identities (Fig. 5).
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