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Abstract. In this paper we propose a simple and lightweight solution
to estimate the geospatial trajectory of a moving vehicle from images
captured by a cellphone exploiting the map and the imagery provided
by Google Streetview.

Images are intelligently compared against the streetview data, and a
recursive Bayesian framework is applied to perform continuous localiza-
tion of the vehicle inside the discrete structure of the streetview graph.

Experiments run on a dataset 10.7 km long, show that the system
is able to infer its position and orientation despite the low resolution
and limited field of view offered by an off the shelf consumer device. Our
method shows to be robust with respect to significant changes in appear-
ance and structure of the environment across the images, obtaining an
average accuracy of 13 m in position, and 16◦ in orientation.

1 Introduction

Consumer navigation devices, such as Tomtom and Garmin, are common tools
that assist drivers during their journey, as they provide directions, and help in
the navigation of complicated networks of streets. These devices are nowadays
available in most of the vehicles, but they heavily rely on the Global Positioning
System (GPS), which is in general not very precise (with an accuracy that is
at best around 10 m), and its signal may be absent or perturbed, especially in
the presence of skyscrapers or inside a tunnel. Although this is not much of an
issue for humans, its impact can be catastrophic when used in the context of
autonomous or semi-autonomous driving vehicles.

To cope for this, the robotics community has explored the usage of other kinds
of sensors, like compasses and inertial sensors, which, not only help in localizing
the vehicle, but also provide its orientation. This additional information is very
important, and would enable novel types of visualizations, in the context of
navigation. Imagine the possibility of seeing an image of the street aligned with
the point of view of the driver before a turn at a complicated intersection, or
near an exit on a highway: directions can be superimposed on this image to
avoid making the wrong turn (see Fig. 1). Such augmented visualizations are
only possible if both the location and the orientation are estimated correctly.
This is not possible using conventional sensors, since their measurements are
highly affected by the environment. For instance, artificial magnetic fields, like
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Fig. 1. A device capturing images at low frame rate is mounted on a car driving around
an urban environment. Our approach exploits the captured images and the streetview
graph to track the movement of the vehicle on the map.

those created by power lines or tram lines, lead to noisy compass measurements
with errors as high as 150◦ at times.

On the other hand, the vision community has developed several algorithms
to infer the location of an image exploiting either large collections of geo-tagged
images [1–3], or 3D models of urban environments [4–9]. While the availabilty
of these 3D models is still restricted to a few cities in the world, large collection
of images are becoming increasingly available thanks to services like Flickr and
Panoramio. However, even for these collections, majority of the images are actu-
ally covering only popular/touristic locations around the world, and the number
of images covering residential streets or highways for instance, is still very low.

Recently [10] proposed a method exploiting OpenStreetMaps (OSM) to per-
form continuous localization on a vehicle driving around a city. The key idea is
to use the geometry of this map to align and localize the trajectories obtained
from visual odometry [11–13].

Inspired by this work, we propose a method to use a similar map of the envi-
ronment, in particular Google Streetview. Similarly to OSM, Google Streetview
offers a graphical representation of the streets of the world as a network of nodes,
each of which represents a specific location, and edges between these nodes rep-
resent their relative connectivity via streets. The level of detail of this map is
however coarser compared to OSM. In fact, the streets are represented as piece-
wise linear segments sampled every 10 to 20 m, making it difficult to apply a
curve matching based technique. To compensate for this lack of detail, we go
one step further, and leverage also the image information available with this
graph, i.e., the Google Streetview images.

Unlike the image collections provided by Flickr and Panoramio, Google
Streetview offers a much broader and uniform coverage of the streets of the
world, although at a relatively sparse sampling rate. This sparsity prohibits the
usage of most of the 3D reconstruction techniques used by the large-scale local-
ization approaches based on 3D models.

In this paper we propose a simple and lightweight solution to estimate the
geospatial trajectory of a moving vehicle from images captured at 1 fps by an off
the shelf consumer mobile device, such as a cellphone, mounted on the windshield
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of the vehicle. We formulate the problem as a recursive Bayesian estimation of
the position and the orientation of the vehicle using as observation the monocular
images captured by the device, and the related compass measurements.

In contrast to classic image retrieval based techniques, we exploit the fact that
our query images can be aligned almost perfectly with images in the database
using a similar concept as proposed in Video Compass [14]. This allows us to
maintain low computational requirements, and hence our solution can be easily
ported as a client-server application on a mobile device. Therefore, for a person
driving from one point to another, even if the GPS loses reception at some point,
our system will help the driver localize and orient himself in the environment,
by comparing images taken from the phone with those on the database.

In contrast to [10], which showed impressive results on stereo odometry we
do not perform structure from motion and use only monocular videos, which was
shown to be a challenging scenario even with their approach. Moreover, since
we use the additional information provided by streetview images, our approach
would in principle also work in a Manhattan world with a monotonous grid like
structure.

2 Related Work

Most of the vision based localization approaches formulate the problem as an
image retrieval task, typically using bag-of-words representations [15] or vocab-
ulary trees [16] to efficiently search through large datasets of geo-tagged images.
These methods rely on pure occurrence-based statistics to retrieve the geo-
location of a query image [3,17–20]. In particular, [17] localizes videos taken
from the web using Google streetview imagery. However, such methods in gen-
eral fail in cases where the relative locations of the features on the image are also
important. To cope for this, methods like [20–24] perform geometric consistency
between the query image and the top ranked matching images from the database.
This however becomes quite inefficient in case of repetitive urban structures or
high fractions of mismatches, increasing the computationally complexity. More-
over, since these methods rely on RANSAC, their parameters need to be tuned
precisely for each scene, as also observed in [25]. In our approach, we also take
into account the relative location of the features on the images, but at the same
time we aim at a simple lightweight solution, such that the computational load
on both the client and the server side is minimal, and not much information has
to be stored on the client side.

Methods like [6,8,26,27] instead, first recover the 3D structure of the images
in the database and then perform a 2D-to-3D matching with the query image. If
the number of inliers is higher than a certain threshold, the image is considered
to be localized. 3D reconstruction however, is in itself an extremely difficult
problem to solve, and it is even more challenging in a sparse dataset like Google
Streetview.

In contrast, [10] performs continuous localization by aligning the trajectory
of the vehicle obtained from visual odometry with a map of the environment.
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Not only does this method require a highly detailed and accurate map of the
environment, but it is also constrained by the fact that the images need to
be captured with a sufficient density such that structure from motion can be
applied, i.e., enough features can be matched across images.

Our approach instead, performs continuous localization on a coarser graphical
representation of the environment using images captured on an average every
7 m by a phone camera with a limited field of view. Hence we cannot rely on
visual odometry or curve matching techniques.

3 Algorithm

We model the map of the environment as a streetview graph (V,E), where each
node v ∈ V represents a specific location in the environment (stored as latitude
and longitude coordinates), and each edge e ∈ E between two nodes, indicates
that the corresponding locations are connected by a street (see Fig. 1(right)). At
each location v, a spherical panoramic image is available, representing the scene
at that location. Let Pv denote this image. All of these panoramas are assumed
to be aligned with respect to the north direction, and to have fixed roll and pitch
angles relative to the tangent plane of the street.

We model the state of the car at time t using two random variables, st ∈ V
and ρt ∈ S1, indicating respectively the position and the orientation of the car
on the map. While the position is represented discretely as a node index on
the streetview graph (V,E), the direction of motion ρt is represented as a unit
vector in the x-y coordinates of the map. ρt is therefore a continuous quantity
not necessarily indicating a valid traveling direction on the streetview graph as
one might initially assume, i.e., ρt does not in general belong to E. This choice
is made to account for changes of lane, U-turns, intersections, or in general any
motion which is not modeled by the streetview graph.

Our algorithm tracks the state of the car at each time instance on the basis
of the images captured by the device and their related compass measurements.
Tracking is initialized with s0 being the starting point of the car journey or
being the last position measured by the GPS when the signal was available.
The orientation ρ0 is initialized as being equiprobable over all S1. In all the
subsequent time instances, our algorithm computes a probability map over all
the possible car positions and orientations on the map. Precisely, it computes
P (st, ρt | It, ct), i.e., the probability of each pair (st, ρt) given, as observations,
the image It captured by the mobile device, and the corresponding compass
measurement ct, both measured at time t. Every time a new image is acquired,
this probability map is updated on the basis of the new observations and a motion
model. The best estimate for the car position is then obtained by selecting the
state with maximum probability (maximum a posteriori).

While our approach broadly resembles the particle filtering algorithm, it is
not the same, since no approximation on the posterior probability is made and no
re-sampling is used. In fact, we exploit the already discrete nature of our model
(see Sect. 3.3) to perform an exhaustive inference over all the possible states of
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the car. At each time instance, all pairs (st, ρt) with probability different than
0, are stored as an array, and evaluated at the next time instance.

This makes our approach more robust and capable of recovering from tracking
failures since it stores all the possible states of the car, even the least probable
ones, helping in scenarios where, after some observations, these states turn out
to be the correct ones.

3.1 Motion Model

The motion model provides us with a speculation on the position of the car
at time t given the position and orientation probabilities P (st−1, ρt−1) at time
t − 1. It also provides time continuity on our inference, allowing us to cope with
situations where the observations (It, ct) are missing or not informative. This is
the case when there are strong occlusions in the image, or when there are similar
buildings in a row creating ambiguity on the correct location along the street.

We chose to use a constant speed motion model on the streetview graph. The
constant speed motion model is defined in literature for continuous spaces, like
R

2 or R
3, therefore some adjustments need to be made to make it work on the

discrete space of a graph. Precisely, we first assume st to be a Markov chain of
order one. Therefore,

P (st) =
∑

P (st | st−1, ρt−1) P (st−1, ρt−1) (1)

where the sum is intended to be over all V × S1, i.e., over all the possible
positions and orientations (st−1, ρt−1), for which the probability P (st−1, ρt−1)
is greater than 0. The probability map P (st−1, ρt−1) is the one provided by the
algorithm at time step t − 1, while P (st | st−1, ρt−1) defines the motion model
and is described in the following paragraphs.

Precisely, if the car at time t − 1 is observed to be at position st−1 with
an orientation ρt−1, it is likely that it is moving on the edge e ∈ E of the
streetview graph that is most parallel to the direction ρt−1. Therefore, at time
t, the car must be on one of the nodes reachable from st−1 through the edge e
(see Fig. 2(left)). Note that this is independent from the orientation of the other
edges along the path connecting st and st−1, since the car orientation ρ might
have changed significantly from time t − 1 to time t. We define the probability
of reaching a specific node st on this path as

P (st | st−1, e) = NT (de (st, st−1), σm) (2)

where de (st, st−1) is the length of shortest path connecting the nodes st and st−1

that passes through the edge e. In the formula, NT (·, σm) denotes the truncated
Gaussian distribution centered at zero and truncated for values less than 0. In
our implementation, we set the standard deviation σm to 12 m, corresponding
to the assumption that, in 68% of the cases, the car is within 12 m of st−1.

All these probabilities are combined as follows

P (st | st−1, ρt−1) =
∑

e∈inc(st−1)
P (st | st−1, e) P (e | ρt−1) (3)
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Fig. 2. Motion model on the streetview graph: (left) at position st−1, the car is likely to
move on the edge e since it is the one most parallel to the heading direction ρt−1; (right)
the actual path taken by the vehicle along the physical street might differ significantly
from the path on the streetview graph (edge e).

where inc (st−1) represents the set of all edges e ∈ E incident to node st−1.
Using the Bayes’ rule, we define P (e | ρt−1) as

P (e | ρt−1) =
P (ρt−1 | e) P (e)

P (ρt−1)
=

1
N

ek cos(γ) (4)

where N is a normalization term ensuring that
∑

P (e | ρt−1) = 1, γ is the angle
between the edge e and the direction ρt−1, and where the concentration parame-
ter k is set to 2.8 corresponding to a circular standard deviation of 40◦. Precisely,
here we implicitly assume that P (e) is uniform, and P (ρt−1 | e) is distributed
accordingly to a von-Mises distribution centered at the direction corresponding
to the edge e. This is equivalent to assuming that the angle between the actual
path taken by the vehicle, and the straight line connecting the two end points
of that path, can vary along that path with a standard deviation of 40◦ (see
Fig. 2(right)).

3.2 Observations

Given an image It, captured by the device at time t, we aim at inferring how
likely is it, that the image was captured in the proximity of a streetview node v.
This is performed by comparing the image It with the streetview panorama Pv

corresponding to the node v.
In contrast to other image based localization techniques, we exploit the

fact that, in our scenario, the image It and the panorama Pv are already well
aligned, or at most they are aligned up to one degree of freedom. This is due to
the fact that, in a setup where the device is assumed to be firmly attached to the
windshield of the car or to its dashboard, the angle between the camera of the
device and the driving direction is fixed over time. Since the driving direction
is always parallel to the street, both the tilt and the roll angles of the camera
are fixed with respect to the plane tangent to the street, and hence they need
to be estimated only once, at the beginning of the journey. This is performed by
capturing a few images from the device and by computing the pitch and the roll
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Fig. 3. Street-level vanishing points at an intersection on a panoramic image Pv, and
on an image It captured by the device. A perspective image P α

v is extracted for each
of the admissible angles, and compared with It.

angles which force the vertical vanishing point in It to lie on the image y-axis at
infinity [28].

The yaw angle of the device instead, measured with respect to the north
direction, changes over time and hence has to be estimated every time an image
is captured. One might assume that, an initial guess for this orientation can be
obtained from the compass. However, this sensor is very sensitive to any artifi-
cial magnetic fields present in the environment causing errors as high as 150◦.
Therefore an exhaustive search for the correct yaw angle needs to be performed.

Fortunately, in a practical scenario, this search can be limited to only those
angles which make the forward street-level vanishing point on image It match
one of the street-level vanishing points on the panoramic image Pv [14]. As an
example, the image It in Fig. 3, can only have been captured at a yaw angle that
makes its forward vanishing point match one of the three possible vanishing
points in Pv, each of which correspond to a driving direction. We therefore
extract a perspective image from Pv at each of these admissible yaw angles, and
compare it to It. To be robust to changes in illumination, weather conditions
and different camera settings across the images, this comparison is performed
on a feature space. Precisely, let Pα

v be the perspective image extracted from
panorama Pv at yaw angle α using the same intrinsic parameters as those of
image It (these are assumed to be known a priori). We subdivide both It and Pα

v

into blocks of size 30 by 30 pixels, and compute color and gradient descriptors for
each of these blocks. We then compare corresponding blocks in each image, and
sum up the results of these comparisons to obtain a score indicating how similar
It and Pα

v are. Precisely, let dz (i, It) denote the descriptor of type z computed
for the block i in image It, and let dz (i, Pα

v ) denote the corresponding descriptor
computed on Pα

v . The similarity measure ov,α
t between image It and image Pα

v ,
is then defined as

ov,α
t =

∑

i,z

wz
i ‖dz (i, It) − dz (i, Pα

v )‖2 (5)
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Fig. 4. Distribution of the scores ov,α
t before (left), and after training (right) (Color

figure online).

where wz
i are constants weighing the contribution of each block and the relative

influence between the color and the different gradient descriptors.
In our implementation, the color descriptor is simply computed as the average

color among all the pixels in block i, hence it is a single triplet in the HSL
space. Concerning the gradient descriptor instead, we used HOG [29] descriptors,
and computed them as defined in the UoCTTI model [30] which includes the
histogram of directed gradients, undirected gradients and a texture information.
In addition, for each block we evaluate the entropy of the histogram of directed
gradients, indicating how uniform is this distribution. We observed that this
provides a sort of contextual information indicating whether the block depicts
sky, buildings or road.

To compensate for small misalignments between It and Pα
v caused by the

fact that, even though the images are aligned with the same orientation, they
may have been captured on slightly different positions on the street (lat-long on
the map), a window based comparison of the blocks is performed by comparing
each block to the 8-neighbouring blocks and returning the minimum score.

Weights: Ideally the score ov,α
t should be close to zero in case of similar images,

however, in a first analysis (see Fig. 4(left)), assuming all weights wz
i equal to

1, the distributions of the scores ov,α
t , in case of similar images (blue), and in

case of not similar images (red), show a considerable overlap. This is due to the
fact that, some feature types and some blocks contribute incoherently to the
score, degrading its discriminative property. This happens, for instance, in areas
of the image which are often occluded by cars and pedestrians, and in the areas
that often contain objects close to the camera, and hence prone to registration
artifacts. To cope with this, we learn the weights wz

i minimizing the overlap
between the two distributions. Precisely, we trained a linear Support Vector
Machine [31] on a dataset of about 30k images, using 10-fold cross-validation.
We then set our weights according to the resulting separating hyperplane.

Figure 4(right) shows the score distribution after the training. It is noticeable
that, the score ov,α

t is now sufficiently discriminative to tell us whether the
image It is similar to Pα

v . To integrate this information into our probabilistic
framework, we fit two standard distributions on these two histograms, precisely,
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a Gaussian distribution for the non matching images, and a generalized extreme
value distribution for the matching ones.

3.3 Posterior Probability and Tracking

Given the observed matching scores ot and the compass measurement ct, the
posterior probability of the car state at time t can be written as

P (st, ρt | ot, ct) =
1
N

P (ot, ct | st, ρt) P (st, ρt) (6)

=
1
N

P (ot, ct | st, ρt) P (ρt | st)P (st) (7)

where the normalization term N = P (ot, ct) is computed by ensuring that the
sum

∑
P (st, ρt | ot, ct) over all pairs of nodes st and available directions ρt is

equal to one. P (st) is provided by the motion model, as described in Eq. 1. The
probability P (ρt | st) instead is assumed to be uniform over all the yaw angles
admissible at node st, as described in Sect. 3.2. Precisely, let α1, . . . , αn be the
set of all these admissible yaw angles, the probability density of ρt given st is
therefore defined as,

P (ρt | st) =
1
n

n∑

j=1

δ (ρt − (αj − Δ)) (8)

where δ denotes the Dirac delta function, and Δ denotes the angle between the
car heading direction and the device yaw direction. Note that Δ is fixed over
time, and therefore it needs to be estimated only once, at the beginning of the
journey. Equation 8 tells us that, P (ρt | st) is different from zero if and only if
ρt coincides with one of the admissible α in st, minus the correction Δ.

Concerning the likelihood P (ot, ct | st, ρt), we assume independence between
the compass measurements and the matching scores, therefore

P (ot, ct | st, ρt) = P (ct | st, ρt)
∏

v,αj

P
(
o

v,αj

t | st, ρt

)
. (9)

The compass measurements P (ct | st, ρt) are assumed to be affected by a
circular Gaussian noise on S1, that we approximate using a von-Mises distrib-
ution centered at the direction of motion ρt plus the correction Δ. Due to the
high level of noise affecting this measurement, the standard deviation for this
distribution was set to σc = 60◦ in our experiments.

Concerning the generative model for the matching scores P
(
o

v,αj

t | st, ρt

)

instead, we define it as

P
(
o

v,αj

t | st, ρt

)
=

{
Gev(ov,αj

t , μ+, σ+, ξ+) st = v ∧ ρt = αj − Δ
N (ov,αj

t , μ−, σ−) else
(10)

where Gev(·, μ+, σ+, ξ+) and N (·, μ−, σ−) indicate the generalized extreme value
distribution and the Gaussian distribution estimated in Sect. 3.2, for the match-
ing images and the non matching ones, respectively.
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Client-Server Framework: All previous operations (feature extraction, color
conversion, color averaging and window based comparison) can be quickly per-
formed on the GPU using shaders. Street-level vanishing points for each panorama
in the database can be precomputed, and stored on the server side [32]. On the
client side instead, only the streetview graph (V,E) is needed, not the panora-
mas Pv.

Every time a new image It is captured by the device, the forward vanish-
ing point at the street level is estimated. We approximate this, by determining
amongst all the vanishing points in the image, the one which is closest to the
center of the image. Alternatively, this point can be easily tracked along the
journey, as it always lies in the same region on the image, except when the car
is turning. The descriptors for image It are then computed, and this informa-
tion, along with the coordinates of the forward vanishing point, and the list of
probable locations where the motion model is expecting the car to be, are sent
to the server for evaluation. The required bandwidth for this communication is
around 70 KB.

The server computes the scores o
v,αj

t for each of the requested panoramas
and each of the corresponding admissible yaw angles. During our experiments,
the number of requested locations per image It was on an average 14. The server
then sends back the results to the client which performs the inference updating
the list of possible states as described above.

Time: For each phone image, vanishing point extraction takes 46ms while com-
puting the descriptor takes 72 ms. Comparing this descriptor with an average of
14 locations and updating the tracked states takes under 0.001 ms.

4 Results

The proposed algorithm was evaluated on three different sequences captured
by driving around an urban environment, covering a total distance of 10.7 km.
Precisely, we mounted a Samsung Galaxy S4 on the windshield of a car at an
estimated angle Δ = 20◦ with respect to the driving direction, as shown in
Fig. 1. The phone captured images at 1 frame/sec, at a resolution of 960 by
540 pixels, and with a horizontal field of view of 60.3◦. We drove at different
times of the day and with moderate traffic conditions, at an average speed of
25 km/h with occasional peaks up to 65 km/h. Each image It was therefore
captured at an average distance of 7 m, with peaks that went up to 18 m. Such
a scenario would be quite challenging for a monocular structure from motion
based method. Since we are using a low end consumer camera, the captured
images suffered from rolling shutter distortion and motion blur. For comparison
purposes, GPS information was also recorded.

The streetview graph (V,E) and the corresponding panoramic images were
obtained using the Google StreetView API [33]. The error on this data is on an
average around 3.7 m in the position, and 1.9◦ degrees in the orientation [34]. For
the explored locations, the streetview data had an average sampling density of
14 m, and it was a few years old, showing structural and appearance changes in
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Table 1. (Top) Statistics on the errors obtained in each of the evaluated sequences.
(Bottom) Comparison with alternative approaches evaluated on sequence #1: (Geom)
geometric verification based approach, (Feat) feature matching based comparison.

the environment like new buildings, new paints/signs on buildings. Also different
lighting conditions and seasonal changes (like changes in vegetation) were clearly
visible compared to the phone images.

To quantitatively evaluate the performance of our method, we compared the
obtained results against the GPS and the streetview graph. Table 1 reports the
statistics of this comparison. In particular, we computed the Euclidean dis-
tance between our prediction and the GPS measurement, denoted as ε|·|2 in the
table. Since our estimate is constrained to be on the streetview graph, this error is
biased by the discretization of the graph. Therefore, we also compute the length
of the shortest path on the graph connecting our estimate and the node closest to
the GPS position, εgraph in the table. While the Euclidean distance is measured
in meters, the distance on the graph is measured in number of nodes. Please note
that, although ε|·|2 might look high, one needs to account also for the sampling
rate of the streetview data (14 m on average).

The performance on the orientation was evaluated in a similar way, by com-
paring our prediction with respect to the bearing direction measured by the GPS
when the car was moving, θgps in the table, and also with the direction of the
corresponding edge in the streetview graph, θgraph. Again, this error has to be
considered in light of the coarse representation of the streets in the map.

In general the algorithm performs well in all the three sequences. However, the
third sequence was quite challenging, because the car drove through some regions
which were not covered by the streetview graph. Therefore our estimate, due to
this lack of connectivity, hovered around these regions until there were valid obser-
vations again, then the correct track was recovered gradually. This happened for
10% of the frames, increasing the localization error.

Figure 5 shows some of the locations tested during our experiments. For each
location, the figure provides the image captured by the phone It, the streetview
image Pα

v corresponding to the location and the orientation estimated by our
algorithm, and the streetview map zoomed in at the corresponding location.
The green spheres on the map denote the possible car positions, with their size
being proportional to their probabilities. The yellow sphere is the maximum a
posteriori estimate with the related orientation shown as a red arrow. The cyan
sphere represents the groundtruth GPS position with the related orientation
measured by the compass (in blue), and measured by the GPS (in green).
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Fig. 5. Some of the evaluated locations: The map indicates the groundtruth GPS
position (cyan sphere) displayed together with the bearing direction (green arrow),
and the compass direction (blue arrow). Our prediction is displayed as a yellow sphere
together with the estimated direction of motion (red arrow) (Color figure online).



Never Get Lost Again: Vision Based Navigation Using StreetView Images 111

Location #1 shows a typical inter ion, with streetside repair in progress in
the panoramic image, while locations #2, #3, and #4 show examples of resi-
dential streets. In all these cases the alignment was quite accurate. In particular,
the algorithm performs well in case #4, despite the strong change in vegeta-
tion causing a major occlusion. For both locations #3 and #4, the illumination
between It and Pv was also quite different, since the latter was captured at a dif-
ferent time of the day. In cases #5, #6, and #7 instead, the scene had changed
over time. Particulary, in location #5 the color of the front building and the
signs on the building on the right had changed. Similarly in location #6, the
building on the right had been repainted, and a new bus stop had been placed.
Location #7 shows an example where an old building had been replaced com-
pletely with a new construction. Changes like this are quite challenging, despite
this, the images were localized correctly. However, this may not happen when
there are major changes on both sides of the street for instance. Location #8
shows an example where the GPS location was quite erroneous, whereas our
algorithm was able to correctly localize the image on the graph. Such situations
occur frequently, as the GPS is generally imprecise. Locations #9 and #10 show
two scenarios where the images captured by the phone have significant motion
blur. Despite this the algorithm was able to localize them accurately.

Failure Cases: All the above cases demonstrate the robustness of our method
with respect to partial appearance and structural changes in the environment.
However, failures occurred when the streetview data was extremely incoherent
with respect to the current state. This is the case of locations #11 and #12
where in the first case, an entire street was missing, and in the second case,
construction work in progress changed the layout of the intersection. Hence the
algorithm lost track and recovered only after a while.

Computing the forward vanishing point on the phone image is only possible
when enough structure is visible, i.e., when there are no strong occlusions and
when the car is not facing only fronto-parallel buildings. However, in our exper-
iments, this succeeded in 89% of the cases. In the remaining cases, the motion
model helps maintain the track.

Comparison with Prior Work: To compare our method with a geometric ver-
ification based technique, like the one proposed in [20], we extracted perspective
images for each requested panorama at angles corresponding to the street direc-
tions in the graph. We then matched SURF [35] features between these images
and the phone image It. Geometric verification was then performed by estimat-
ing the essential matrix relating each pair of images using RANSAC. Non-linear
refinement was applied on the resulting matrix in order to minimize the repro-
jection error. The number of inliers was then recomputed on the basis of the
new pose, and used as a feature to discriminate between similar and dissimilar
images. We fit two Gaussian distributions on the basis of the statistics of these
features. These were then used as generative model for the score P

(
o

v,αj

t | st, ρt

)

in our framework. The fourth row in Table 1 reports the errors obtained with
this method on sequence #1. The errors in the position are much higher, and
since most of the matched features correspond to objects localized in a small
region of the image, it increases the error in orientation as well.
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To evaluate our approach with respect to a image retrieval based method, such
as [2], we extracted perspective images from each of the requested panoramas at
each of the admissible yaw angles, as in our approach. We then performed SURF
matching by keeping only those correspondences satisfying the distance-ratio rule
of [36]. This number was then used as a feature for our inference, as described
before. Such a technique is in principle similar to a standard feature voting based
retrieval technique, but deployed in conjunction with our motion model. The fifth
row in Table 1, shows the results obtained for sequence #1. As expected, the error
on orientation is low, since we used, as input, the already aligned images. The
error on position instead, is higher, since this method neglects the geometric dis-
position of the features in the image. One should also consider that, in this case,
the computational time was 7 times higher than in our approach.

5 Conclusions

We presented a method to perform continuous localization of a vehicle from
images captured by a cellphone exploiting the map and the imagery provided by
Google Streetview.

We formulated the problem as a recursive Bayesian estimation of the position
and the orientation of the vehicle on the streetview graph. Differently from classic
image retrieval based techniques, we exploit the fact that our query images
can be aligned almost perfectly with the images in the database, keeping the
computational requirements low.

Unlike sophisticated acquisition systems, we addressed a practical situation
and perform continuous localization with a consumer mobile device with a lim-
ited field of view, low resolution and low frame rate. Despite the coarse repre-
sentation of the streetview graph and its possible incoherence with the current
structure and appearance of the environment, our algorithm achieved a good
accuracy.

In principle, our method can be used on any datasets with street side imagery,
such as those of Navteq, Microsoft etc., but we chose to use Google Streetview
due to its universal coverage and free availability.
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