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Abstract. We propose visual tracking over multiple temporal scales to
handle occlusion and non-constant target motion. This is achieved by
learning motion models from the target history at different temporal sca-
les and applying those over multiple temporal scales in the future. These
motion models are learned online in a computationally inexpensive man-
ner. Reliable recovery of tracking after occlusions is achieved by extending
the bootstrap particle filter to propagate particles at multiple temporal
scales, possibly many frames ahead, guided by these motion models. In
terms of the Bayesian tracking, the prior distribution at the current time-
step is approximated by a mixture of the most probable modes of several
previous posteriors propagated using their respective motion models. This
improved and rich prior distribution, formed by the models learned and
applied over multiple temporal scales, further makes the proposed method
robust to complex target motion through covering relatively large search
space with reduced sampling effort. Extensive experiments have been car-
ried out on both publicly available benchmarks and new video sequences.
Results reveal that the proposed method successfully handles occlusions
and a variety of rapid changes in target motion.

1 Introduction

Visual tracking is one of the most important unsolved problems in computer
vision. Though it has received much attention, no framework has yet emerged
which can robustly track across a broad spectrum of real world settings. Two
major challenges for trackers are abrupt variations in target motion and occlu-
sions. In some applications, e.g. video surveillance and sports analysis, a target
may undergo abrupt motion changes and be occluded at the same time.

While many solutions to the occlusion problem have been proposed, it remains
unsolved. Some methods [1–3] propose an explicit occlusion detection and han-
dling mechanism. Reliable detection of occlusion is difficult in practice, and often
produces false alarms. Other methods, e.g. those based on adaptive appearance
models [4,5], use statistical reasoning to handle occlusions indirectly, by learn-
ing how appearance changes over time. Occlusions can, however, contaminate the
appearance models, as such methods use blind update strategies.
c© Springer International Publishing Switzerland 2015
D. Cremers et al. (Eds.): ACCV 2014, Part V, LNCS 9007, pp. 476–492, 2015.
DOI: 10.1007/978-3-319-16814-2 31



MTS: A Multiple Temporal Scale Tracker Handling Occlusion 477

(a) Multiple motion models are learned
from the recent history of estimated states
at different temporal scales, and each
model is applied to multiple temporal
scales in the future.

(b) This means that, when determining target state,
multiple sets of motion models are available to make
predictions. Each set includes models learnt at mul-
tiple model-scales. In the proposed framework one
model per set is selected to propagate particles.

Fig. 1. Visual tracking over multiple temporal scales.

Abruptly varying motion can be addressed using a single motion model with
a large process noise. This approach requires large numbers of particles and
is sensitive to background distractors. Alternative approaches include efficient
proposals [6], or hybrid techniques with hill climbing methods [7] to allocate
particles close to the modes of the posterior. These approaches can, however, be
computationally expensive.

We propose a new tracking method that is capable of implicitly coping with
partial and full target occlusion and non-constant motion. To recover from occlu-
sion we employ a flexible prediction method, which estimates target state at
temporal scales similar to the expected maximum duration of likely occlusions.
To achieve this, motion models are learnt at multiple model-scales and used to
predict possible target states at multiple prediction-scales ahead in time. The
model-scale is the duration of a sequence of recently estimated target states
over which a motion model is learnt. The prediction-scale is the temporal dis-
tance, measured in frames of the input image sequence, over which a prediction
is made. Reliable recovery of tracking after occlusions is achieved by extending
the bootstrap particle filter to propagate particles to multiple prediction-scales,
using models learnt at multiple model-scales. Figure 1 summarises the approach.

The proposed framework can handle variable motion well due to the follow-
ing: In predictive tracking, learnt motion models describe the recent history of
target state —the most recent section of the target’s path across the image plane.
Trackers using, for example, a single linear motion model effectively represent
target path as a straight line. By building multiple motion models at multiple
model scales, the proposed framework maintains a much richer description of
target path. The diverse set of models produced captures at least some of the
complexity of that path and, when used to make predictions, the model set
represents variation in target motion better than any single model.

The contributions of this work are three-fold. (1) We propose and evaluate
the idea of tracking over multiple temporal scales to implicitly handle occlusions
of variable lengths and achieve robustness to non-constant target motion. This
is accomplished by learning motion models at multiple model-scales and apply-
ing them over multiple prediction-scales. Consequently, the proposed framework
does not require an explicit occlusion detection, which could be difficult to
achieve reliably in practice. (2) We propose a simple but generic extension of



478 M.H. Khan et al.

the bootstrap particle filter to search around the predictions generated by the
motion models. (3) Current trackers typically adopt a first-order Markov Chain
assumption, and predict a target’s state at time t using only its state at time
t−1. That is, they all work on a single temporal scale i.e. [t−1, t]. We propagate
important part of some recently estimated posteriors to approximate prior dis-
tribution at the current time-step through combining the above two proposals
in a principled way. The resulting formulation is a tracker operating at multiple
temporal scales that has not been proposed before to the best of our knowledge.

2 Related Work

Occlusion handling may be explicit or implicit. Implicit approaches can be
divided into two categories. The first is based on adaptive appearance models
which use statistical analysis [4,5,8] to reason about occlusion. The appearance
models can, however, become corrupt during longer occlusions due to the lack of
an intelligent update mechanism. Approaches in the second category divide the
target into patches and either use a voting scheme [9] or robust fusion mecha-
nism [10] to produce a tracking result. These can, however, fail when the num-
ber of occluded patches increases. The proposed approach also handles occlusion
implicitly, but using a fixed and very simple appearance model.

Explicit occlusion handling requires robust occlusion detection. Collins et al.
[1] presented a combination of local and global mode seeking techniques.
Occlusion detection was achieved with a naive threshold based on the value
of the objective function used in local mode seeking. Lerdsudwichai et al. [2]
detected occlusions by using an occlusion grid with a drop in similarity value.
This approach can produce false alarms because the required drop in similarity
could occur due to natural appearance variation. To explicitly tackle occlusions,
Kwak et al. [3] trained a classifier on the patterns of observation likelihoods in
a completely offline manner. In [11,12], an occlusion map is generated by exam-
ining trivial coefficients, this is then used to determine the occlusion state of a
target candidate. Both these methods are prone to false positives where it is hard
to separate the intensity of the occluding object from small random noise. The
proposed approach here does not detect occlusions explicitly, as it is difficult to
achieve reliably.

Some approaches address domain-specific occlusion of known target types. Lim
et al. [13] propose a human tracking system based on learning dynamic appearance
and motion models. A three-dimensional geometric hand model was proposed by
Sudderth et al. [14] to reason about occlusion in a non-parametric belief propaga-
tion tracking framework. Others [15,16] attempt to overcome occlusion using mul-
tiple cameras. As most videos are shot with a single camera, and multiple cameras
bring additional costs; this is not a generally applicable solution. Furthermore, a
domain-agnostic approach is more widely applicable.

Recently, some methods exploited context along with target description [17–
19], and a few exploited detectors [20,21] to overcome occlusions. Context-based
methods can tackle occlusions, but rely on the tracking of auxiliary objects.



MTS: A Multiple Temporal Scale Tracker Handling Occlusion 479

Approaches based on detector could report false positives in the presence of
distractors, causing the tracker to fail. Our approach does not search the whole
image space, instead multiple motion models define relatively limited search
spaces of variable size where there is high target probability. This results in
reduced sampling effort and lower vulnerability to distractors.

When target motion is difficult to model, a common solution is to use a single
motion model with a large process noise. Examples of such models are random-
walk (RW) [7,22] and nearly constant velocity (NCV) [23,24]. Increased process
noise demands larger numbers of particles to maintain accurate tracking, which
increases computational expense.

One approach to the increased variance in estimation caused by high process
noise is to make an efficient and informed proposal distribution. Okuma et al.
[6] designed a proposal distribution that mixed hypotheses generated by an
AdaBoost detector and a standard autoregressive motion model to guide a par-
ticle filter based tracker. Reference [25] formulated a two-stage dynamic model
to improve the accuracy and efficiency of the bootstrap PF, but their method
fails during frequent spells of non-constant motion. Kwon and Lee [8] sampled
motion models generated from the recent sampling history to enhance the accu-
racy and efficiency of MCMC based sampling process. We also learn multiple
motion models, but at different model-scales instead of a single scale and use
recently estimated states history in comparison to sampling history.

Several attempts have been made to learn motion models offline. Isard and
Blake [26] use a hardcoded finite state machine (FSM) to manage transitions
between a small set of learned models. Madrigal et al. [27] guide a particle fil-
ter based target tracker with a motion model learned offline. Pavlovic et al. [28]
switch between motion models learned from motion capture data. Their approach
is application specific, in that it learns only human motion. Reference [29] clas-
sifies videos into categories of camera motion and predicts the right specialist
motion model for each video to improve tracking accuracy, while we learn motion
models over multiple temporal scales in an online manner to generate better pre-
dictions. An obvious limitation of offline learning is that models can only be used
to track the specific class of targets for which they are trained.

To capture abrupt target motion, which is difficult for any motion model, [30]
combined an efficient sampling method with an annealing procedure, [31] selects
easy-to-track frames first and propagates density from all the tracked frames
to a new frame through a patch matching technique, and [32] introduced a
new sampling method into the Bayesian tracking. Our proposed method tries to
capture reasonable variation in the target’s path.

Two approaches that at first glance appear similar to ours are [33,34]. Mikami
et al. [33] use the entire history of estimated states to generate a prior distribu-
tion over the target state at immediate and some future time-steps, though the
accuracy of these prior distributions relies on strict assumptions. In [34], offline
training is required prior to tracking and thus it cannot be readily applied to
track any object. Our approach learns multiple simple motion models at rel-
atively short temporal scales in a completely online setting, and each model
predicts the target state at multiple temporal scales in the future.
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In contrast to previous work, we learn motion models over multiple model-
scales, whose predictions are pooled over multiple prediction-scales to define the
search space of a single particle filter. Hence, this is an online learning approach
not restricted to any specific target class, and a novel selection criterion selects
suitable motion models without the need for a hardcoded FSM.

3 Bayesian Tracking Formulation

Our aim is to find the best state of the target at time t given observations
up to t. State at time t is given by Xt = {Xx

t ,Xy
t ,Xs

t },where Xx
t , Xy

t , and Xs
t

represent the x, y location and scale of the target, respectively. In a Bayesian
formulation, our solution to tracking problem comprises two steps: update(1),
and prediction (2).

p(Xt|Y1:t) ∝ p(Yt|Xt)p(Xt|Y1:t−1). (1)

where p(Xt|Y1:t) is the posterior probability given the state Xt at time t, and
observations Y1:t up to t. p(Yt|Xt) denotes the observation model.

p(Xt|Y1:t−1) =
∫
Xt−1

p(Xt|Xt−1)p(Xt−1|Y1:t−1)dXt−1. (2)

where p(Xt|Y1:t−1) is the prior distribution at time t, and p(Xt|Xt−1) is a
motion model.

In this work, we improve the accuracy of the posterior distribution at a
given time t by improving the prior distribution. Here, the prior distribution is
approximated by a mixture of the most probable modes of T previous posteriors
propagated by the T selected motion models, which are generated using infor-
mation from up to T frames ago. The Eq. 2 in the standard Bayesian formulation
can now be written as:

p(Xt|Y1:t−1) =
∫ k=T

k=1

∫
Xt−k

p(Xt|Xt−k)p(X̃t−k)dXt−kdk. (3)

where p(Xt|Xt−k) is the motion model selected at time t from a set of motion
models learned at time t−k, and p(X̃t−k) ⊂ p(Xt−k|Y1:t−k) is the most probable
mode (approximated via particles) of the posterior at time t−k. A relatively rich
and improved prior distribution in Eq. 3 allows handling occlusions and abrupt
motion variation in a simple manner without resorting to complex appearance
models and exhaustive search methods.

The best state of the target X̂t is obtained using Maximum a Posteriori
(MAP) estimate over the Nt weighted particles which approximate p(Xt|Y1:t),

X̂t = arg max
X

(i)
t

p(X(i)
t |Y1:t) for i = 1, ..., Nt, (4)

where X(i)
t is the ith particle.
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4 Proposed Method

4.1 A Multiple Temporal Scale Framework

To reliably recover the target after occlusion and achieve robustness to non-
constant motion, we introduce the concept of learning motion models at a range
of model-scales, and applying those over multiple prediction-scales. Furthermore,
we contribute a simple but powerful extension of the bootstrap particle filter to
search around the predictions generated by the motion models.

The core idea is to construct an improved and rich prior distribution at each
time-point by combining sufficient particle sets that at least one set will be
valid and allow recovery from occlusion and robustness to non-constant motion.
A valid particle set is the most probable mode of an accurate estimation of the
posterior probability from some previous time-point, propagated by a motion
model generated over an appropriate model-scale and unaffected by occlusion.

Learning and Predicting Motion Over Multiple Temporal Scales. Sim-
ple motion models are learned over multiple model-scales and are used to make
state predictions over multiple prediction-scales. A simple motion model is char-
acterized by a polynomial function of order d, and represented by M. M is
learned at a given model-scale separately for the x-location, y-location, and
scale s of the target’s state.1 This learning also considers how well each state is
estimated in a given sequence and how far it is from the most recently estimated
state [25]. For instance, an M of order 1, learned at model-scale m, predicts a
target’s x-location at time t as:

x̃t = βm
o + βm

1 t, (5)

where β1 is the slope, and βo the intercept. Model parameters can be learned
inexpensively via weighted least squares.

A set of learned motion models at time t is represented by Mj=1,...,|Mt|
t , where

|.| is the cardinality of the set. Each model predicts target state l(x̃, ỹ, s̃) at T
prediction-scales. See Figs. 2a and b for an illustration of learning and prediction.

Model Set Reduction. The aim of model set reduction is to establish search
regions for the particle filter in which there is a high probability of target being
present. This in turn will reduce the sampling effort as search regions corre-
sponding to all the predictions no longer need to be searched.

Suppose there are T sets of motion models available at time t, one from
each of T previous time-steps. Each set of models at time t is represented by its
corresponding set of predictions. The most suitable motion model from each set
is selected as follows.

Let us denote G = |Mt|, and let lkt = {lj,kt |j = 1, ..., G} represent a set of
states predicted by G motion models learned at time t − k, where lj,kt denotes
1 To demonstrate the basic idea of the proposed approach and for the sake of sim-

plicity, x, y, and s part of the target state are considered uncorrelated. They may
be correlated, and taking this into account while learning might produce improved
models. We would pursue this avenue in future work.
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(a) During learning, multiple motion models
are constituted at multiple model-scales us-
ing the recent history of estimated states at
time t. In this figure, four linear motion mod-
els are learned over four different model-scales
at time t. The four model-scales are 2,3,4, and
5.

(b) During prediction, a set of learned mo-
tion models are used to predict possible target
states at T prediction-scales. In this figure, a
set comprising four learned motion models is
shown at time t. Each motion model predicts
possible target state at T prediction-scales.

Fig. 2. Graphical illustration of what happens during learning and prediction.

the predicted state by jth motion model learned at kth previous time-step. As
k = 1, ..., T , there are T sets of predicted states at time t (Fig. 3(a)). Now the
most suitable motion model Rk

t is selected from each set using the following
criterion:

l̂kt = arg max
lj,kt

p(Yt|lj,kt ) (6)

where l̂kt is the most suitable state prediction from the set lkt , and p(Yt|lj,kt )
measures the visual likelihood at the predicted state lj,kt . In other words, l̂kt
is the most suitable state prediction of the most suitable motion model Rk

t .
For example, Fig. 3(b) shows the predicted state l̂1t of the most suitable motion
model R1

t chosen from 4 motion models learned at time t−1. After this selection
process, the T sets of motion models are reduced to T individual models.

Propagation of Particles. In the bootstrap particle filter [35], the posterior
probability at time t−1 is estimated by a set of particles X(i)

t−1 and their weights
ω

(i)
t−1,{X(i)

t−1, ω
(i)
t−1}Ni=1, such that all the weights in the particle set sum to one.

The particles are resampled to form an unweighted representation of the pos-
terior {X(i)

t−1, 1/N}Ni=1. At time t, they are propagated using the motion model
p(Xt|Xt−1) to approximate a prior distribution p(Xt|Yt−1). Finally, they are
weighted according to the observation model p(Yt|Xt), approximating the pos-
terior probability at time t.

Here, particle sets not just from one previous time-step (t − 1), but from T
previous time-steps are propagated to time t using the T selected motion models.
When using first-order polynomial (linear) motion models the most suitable
motion model Rk

t selected from those learnt at the kth previous time-step will
propagate a particle set from the kth previous time-step as follows

Xx
t,k = Xx

t−k + g(Rk
t )k + N (0, σ2

xk), (7)

where Xx is the horizontal part of the target state, g() indicates the slope of
the model, and N (0, σx) is a Gaussian distribution with zero-mean and σ2

x

variance. For instance, in Fig. 3(c), the most suitable motion model R1
t , is used

to propagate a particle set from time t − 1 to time t.
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Fig. 3. (a) Before model set reduction, there exist T different sets of predicted states
at time t, where each set lkt comprises G states predicted by G motion models learned
at kth previous time-step. In Fig. 3(a), l1t is a set composed of 4 states predicted by 4
motion models learned at time t − 1. (b) Model Set Reduction. T sets of motion
models available at time t, represented by the corresponding T sets of predicted states,
are reduced to T individual models. Figure 3(b) shows the predicted state l̂1t of the
most suitable motion model R1

t selected from 4 motion models learned at time t − 1.
(c) Propagation of Particles. T selected motion models, one from each of the T
preceding time-steps, are used to propagate particle sets from T preceding time-steps
to time t. In Fig. 3(c), the most suitable motion model R1

t , is used to propagate particle
set from time t − 1 to time t.

Propagation from the last T time-steps, generates T particle sets at time t.
All particles are weighted using the observation model p(Yt|Xt) to approximate
the posterior probability p(Xt|Y1:t). If the target was occluded for less than or
equal to T −1 frames, it may be recovered by a set of particles unaffected by the
occlusion. To focus on particles with large weights, and reduce computational
cost, we retain the first N particles after the resampling step. The proposed
framework is summarised in Algorithm 1.

5 Experimental Results

In the proposed method, the appearance model used in all experiments was the
colour histogram used in [36].2 The Bhattacharyya coefficient was used as the
distance measure. As simple motion model the first-order polynomial (linear)
model with model-scales of 2, 3, 4, and 5 frames was used (four models in total).

MTS-L denotes the proposed method applied over a first-order polynomial
(linear) motion model (Algorithm 1). We also apply our proposed framework to
the two-stage model of [25], which is denoted by MTS-TS, to show its generality3.

2 We investigate the power of using multiple temporal scales of motion model genera-
tion and application to deal with visual tracking problems related to occlusion and
abrupt motion variation. To evaluate this hypothesis independently of the appear-
ance model, a simple appearance model is used on purpose.

3 MTS-TS is identical to MTS-L except that the propagation of particles takes place
through a different model instead of the model proposed in Eq. 7 and the variance
of the best state (estimated through particles) is reduced by combining it with the
highest likelihood motion prediction. See the supplementary material for the details
of this application.
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Algorithm 1. A Multiple Temporal Scale Tracker
Input: Let W = {Wt−1, ..., Wt−T } represent the resampled sets of particles after

estimation of the posterior from T previous time-steps, where Wt−1 = {X(i)
t−1,

1
N
}Ni=1.

Output: Best state X̂t at time t.
for k = 1 to T

for j = 1 to G
- Measure visual likelihood p(Yt|lj,kt ), where lj,kt denotes the predicted state
at time t by jth motion model from kth previous time-step.

end
- Select the most suitable motion model Rk

t at time t using Eq. 6.
- Propagate the particle set from kth previous time-step Wt−k = {X(i)

t−k, 1
N
}Ni=1

using Eq. 7 by taking the slope of selected motion model Rk
t to time t.

end
- Assign weights to all the particles to approximate the posterior {X(i)

t , ω
(i)
t }N×T

i=1 .
- Calculate the best state X̂t using Eq. 4.
- Retain first N particles after the resampling step.
- Learn simple motion models using the recent history of estimated states.

In MTS-TS, the β parameter of the two-stage model was fixed at 10, giving high
weight to the rigid velocity v̂, estimated by the simple motion model, and very
low weight to the internal velocity v. As a result, it becomes strongly biased
towards the predicted location, but still allows some deviation.

We compared the proposed method to three baseline and seven state-of-
the-art trackers. The first two baseline trackers, TRW and TNCV , were colour
based particle filters from [36], but use different motion models. TRW used a
random-walk model while TNCV used a nearly constant velocity model. The
third baseline tracker TTS was the two-stage dynamic model proposed by [25].
The parameters, K and β, in [25] were set to 5 and 10, respectively. The state-
of-the-art trackers are SCM [37], ASLA [38], L1-APG [12], VTD [5], FragT [9],
SemiBoost [21], and WLMCMC [30]. The minimum and maximum number of
samples used for WLMCMC, VTD, SCM, ASLA, and L1-APG was 600 and
640, respectively. Our proposed tracker is implemented in MATLAB and runs at
about 3 frames/sec with 640 particles. The source code and datasets (along with
ground truth annotations) will be made available on the authors’ webpages.

We chose state-of-the-art trackers keeping in view two important properties:
their performance according to the CVPR’13 benchmark [39], and their ability
to handle occlusions (partial and full) and abrupt motion variations. SCM and
ASLA both have top ranked performance on the CVPR’13 benchmark. SCM
combines a sparsity based classifier with a sparsity based generative model and
has a occlusion handling mechanism, while ASLA is based on a local sparse
appearance model and is robust to partial occlusions. In L1-APG, the coupling
of L1 norm minimization and an explicit occlusion detection mechanism makes it
robust to partial as well as full occlusions. The integration of two motion models
having different variances with a mixture of template-based object models lets
VTD explore a relatively large search space, while remaining robust to a wide
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(a) TU-Cr�46 (b) TU-Cr�46 (c) TU-Cr�124 (d) TU-Cr�124 (e) car�169 (f) car�169

Fig. 4. Tracking through multiple partial occlusions. MTS-TS(magenta), MTS-L
(cyan), SCM(green) FragT(white), Semi(yellow), L1-APG(blue), VTD(red),WLMCMC
(black), and ASLA(purple) (Color figure online).

range of appearance variations. FragT was chosen because its rich, patch-based
representation makes it robust to partial occlusion. SemiBoost was picked as it
searches the whole image space once its tracker loses target, and thus, it can
re-locate the target after full occlusions. WLMCMC searches the whole image
space by combining an efficient sampling strategy with an annealing procedure
that allows it to capture abrupt motion variations quite accurately and re-locate
the target after full occlusions.

Eleven video sequences were used. Seven are publicly available (PETS 2001
Dataset 1 4, TUD-Campus [40], TUD-Crossing [40], Person [41], car5 [39], jog-
ging [39], and PETS 2009 Dataset S2 6) and four are our own (squash, ball1,ball2,
and toy1 ). All involve frequent short and long term occlusions (partial and full)
and/or variations in target motion. We used three metrics for evaluation: cen-
tre location error, Pascal score [42], and precision at a fixed threshold of 20
pixels [43].

5.1 Comparison with Competing Methods

Quantitative Evaluation: Table 1 summarises tracking accuracy obtained
from sequences in which the target is occluded. MTS-L outperformed compet-
ing methods in most sequences, because it efficiently allocated particles to over-
come occlusions. VTD performed badly because inappropriate appearance model
updates during longer occlusions causes drift from which it cannot recover. Alth-
ough SemiBoost uses explicit re-detection once the target is lost, its accuracy
was low due to false positive detections. With the ability to search the whole
image space using an efficient sampling scheme, WLMCMC produced the lowest
error in the TUD-Campus and jogging sequences. In sequences containing par-
tial occlusions (Fig. 4), SCM produced the lowest error in the car sequence,
while both SCM and L1-APG had the best performance in the TUD-Crossing
sequence. SCM uses a sparse based generative model that considers spatial rela-
tionship among local patches with an occlusion handling scheme, and L1-APG

4 PETS 2001 Dataset 1 is available from http://ftp.pets.rdg.ac.uk/.
5 We downsampled original car sequence by a factor of 3 to have partially low frame rate.
6 PETS 2009 Dataset S2 is available from http://www.cvg.rdg.ac.uk/PETS2009/.

http://ftp.pets.rdg.ac.uk/
http://www.cvg.rdg.ac.uk/PETS2009/
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employs a robust minimization model influenced by an explicit occlusion detec-
tion mechanism. Thus, both these approaches are quite effective in overcoming
partial occlusions. In contrast, MTS-L and MTS-TS use a very simple, generic
appearance model, and no explicit occlusion handling mechanism7.

Table 1. Tracking accuracy in the presence of occlusion

Tracking accuracy was also measured when the target was occluded and
underwent motion variation at the same time (Tables 2a and b). MTS-L pro-
duced higher accuracy than the other methods. The allocation of particle sets
with different spreads from multiple prediction scales in regions having probable
local maxima lets MTS-L capture increased search space with relatively smaller
sampling effort. VTD performed well in squash sequence because it combines
two motion models of different variances to form multiple basic trackers which
search a large state space efficiently. WLMCMC produced the second best accu-
racy on ball1 as it searches the whole image space using an efficient sampling
mechanism to capture abrupt target motion.

7 We admit that a more complex system complete with more advanced appearance
models would obtain a higher overall tracking accuracy, but we believe that for
the sake of scientific evidence finding employing such a system would obfuscate
attribution of our experimental results to the original hypothesis.
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Table 2. Accuracy through simultaneous motion variation and occlusion

Qualitative Evaluation: Tracking is particularly difficult when the time bet-
ween consecutive occlusions is small. In TUD-Campus, the tracked person suffers
two occlusions only 17 frames apart (Fig. 5a). MTS-L and WLMCMC recover
the target after each occlusion, while other methods fail due to incorrect appear-
ance model updates, or being distracted by the surrounding clutter. Video sur-
veillance data often requires tracking through partial and/or full occlusions. In
the PETS 2001 Dataset 1 sequence (Fig. 5b) the target (car) first stays par-
tially occluded for a considerable time, and is then completely occluded by a
tree. MTS-L successfully re-acquires the target. Occlusions of varying lengths
are common in real-world tracking scenarios. In the person sequence, a person
moves behind several trees and is shot with a moving camera. As shown in Fig. 6,
competing methods lose the target after first occlusion(Frame # 238) or second
occlusion(Frame # 329), while MTS-L shows robustness in coping with varying
lengths of occlusions.

(a) TUD-Campus�12�39 (b) PETS’01�38�92

Fig. 5. Tracking results in a crowded (a) and a surveillance environment (b).

(a) Person�238 (b) Person�238 (c) Person�329 (d) Person�329 (e) Person�457 (f) Person�457

Fig. 6. Tracking results with occlusions of different lengths.
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(a) Squash�74 (b) Squash�74 (c) Squash�274 (d) Squash�274 (e) ball1�792 (f) ball1�792

Fig. 7. Tracking results in case of motion variations and frequent occlusions.

The ability of MTS-L to cope with simultaneous occlusion and non-constant
target motion was tested by making two challenging sequences: squash and ball1.
In these sequences, the target accelerates, decelerates, changes direction sud-
denly, and is completely occluded multiple times. Figure 7 illustrates tracking
results. MTS-L provided more accurate tracking than the other methods on
both sequences. This is because the efficient allocation of particles at multiple
prediction-scales allows a wider range of target motion to be handled. WLM-
CMC shows good accuracy in the ball1 sequence as it is aimed at handling
abrupt target motion.

5.2 Analysis of the Proposed Framework

Without Multiple Prediction-Scales. The proposed framework was tested
without employing multiple prediction-scales. We designed MTSWPS-L in which
the target state is predicted only 1 frame ahead i.e. T = 1. For evaluation, at
first, the number of particles in MTSWPS-L was kept equal to Nt and the process
noise σxy was same as used for MTS-L between two consecutive time-steps. To
analyze further, later, both the number of particles Nt and the process noise σxy

were doubled and tripled. Figure 8(left) reveals the performance of the proposed
framework with and without multiple prediction-scales in five video sequences
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Fig. 8. (left)Performance of the proposed framework with and without multiple
prediction-scales. (right)Performance of the proposed framework with and without mul-
tiple model-scales.
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involving occlusions. As can be seen, MTSWPS-L has poor performance com-
pared to MTS-L in all 5 sequences even after increasing the sampling effort
and the process noise by three times of the original. Therefore, we can say that
operation over multiple prediction-scales allows the proposed method to reliably
handle occlusions in a principled way.

Without Multiple Model-Scales. The proposed framework was also analyzed
without learning over multiple model-scales. MTSWMS-L denotes the proposed
framework in which a linear motion model is learned over model-scale 2 only. As
a result, there is no need to select models from each of the previous time-steps at
the current time-step since only 1 model is learned over a single model-scale. As
can be seen in Fig. 8(right), MTS-L has superior performance over MTSWMS-L
in all 5 sequences. This shows that by constructing motion models over multiple
model-scales MTS-L maintains a richer description of the target’s path, which
is not possible with a single scale model. Furthermore, this diverse set of models
produces temporal priors that ultimately develops into a rich prior distribution
required for reliably recovery of tracking after occlusions.

Experimental results show the robust performance of the proposed framework
during occlusions, but it can fail when faced with very long duration occlusions.
In addition, it can be distracted by visually similar objects after occlusion, if the
state estimations during the period of occlusion are poor.

6 Conclusion

We propose a tracking framework that combines motion models learned over
multiple model-scales and applied over multiple prediction-scales to handle occlu-
sion and variation in target motion. The core idea is to combine sufficient particle
sets at each time-point that at least one set will be valid, and allow recovery from
occlusion and/or motion variation. These particle sets are not, however, simply
spread widely across the image: each represents an estimation of the posterior
probability from some previous time-point, predicted by a motion model gener-
ated over an appropriate model-scale.

The proposed method has shown superior performance over competing track-
ers in challenging tracking environments. That there is little difference between
results obtained using linear and two-stage motion models suggests that this
high level of performance is due to the framework, rather than its components.
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