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Abstract. A key problem in visual tracking is how to handle the ambigu-
ity in decision to locate the object effectively using the target appearance
model with online update. We address this problem by incorporating
sequential clustering and ensemble methods into the tracking system.
In this paper, clustering is used for mining the potential historical struc-
ture in the parameter space and feature space. Then we fuse multiple
weak hypotheses to construct a strong ensemble learner for object track-
ing. Different from previous methods for updating classifier ensemble in a
fixed weak classifier pool frame-to-frame, the proposed ensemble method
is taking three weak hypotheses into consideration: spatial object-part
view, parameter space view, and feature space view. Specially, spatial
object-part view represents the object by a collection of part models
that are spatially related (e.g. tree-structure). Meanwhile, analyzing the
latent group structure in the parameter space and feature space is essen-
tial to take full advantage of the historical data in the tracking process.
Therefore, we propose a novel ensemble algorithm that fuses object-part
predictor, parameter clustered predictors and feature clustered predic-
tors together. Furthermore, the weights of different views are updated
by the relative consistency between weak predictors and final ensemble
tracker. The formulation is tested in a tracking-by-detection implemen-
tation. Extensive comparing experiments on challenging video sequences
demonstrate the robustness and effectiveness of the proposed method.

1 Introduction

Visual tracking has attracted significant attention due to its wide variety of
applications such as terrorist detection, wearable computing and self-driving
cars. Much progress has been made in the last two decades. However design-
ing robust visual tracking methods is still an open issue. Challenges in visual
tracking methods include no-rigid shape and appearance variations of the object,
occlusions, illumination changes, cluttered scenes, etc. [1,2].

To solve the above problem, a popular approach is to learn a discrimina-
tive appearance model for coping with complicated appearance changes [3].
Typically, this assumes that the object/non-object discriminative information
from different frames during long-term tracking is generated from a temporally
homogeneous source. However this assumption may not hold in practice, as
object appearance and environmental conditions vary dynamically over time.
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In face of challenging factors, only fitting one updating discriminative model
which can satisfy all cases is unlikely to optimally distinguish an object from its
background through tracking-by-detection methods [4–8]. Tracking-by-detection
requires training of a classifier for detecting the object in each frame. One com-
mon approach for detector training is to use a detector ensemble framework that
linearly combines the weak classifiers with different associated weights, e.g., [4,6].
A larger weight implies that the corresponding weak classifier is more discrimi-
native and thus more useful.

Although most previous online ensemble methods originated from offline
algorithms achieve many successes in online visual learning task, there are some
limitations in visual tracking. As noted by Bai et al. [9], the common assump-
tion was that the observed data (examples and their labels) had an unknown
but stationary joint distribution. It may not apply in tracking scenarios where
the appearance of an object can undergo significant changes. Due to the uncer-
tainty in the appearance changes that may occur over time and the difficulty of
estimating the non-stationary distribution of this observed data directly, they
used Bayesian estimation theory to estimate a Dirichlet distribution of clas-
sifier weights. Different from their pre-defined non-stationary distribution and
high computational complexity, we propose a simple and robust cumulative sum
method to model how the different view predictor weights evolve so as to repre-
sent the non-stationary distribution which doesn’t need to satisfy some specific
distribution and is efficient.

At the same time, Grabner and Bischof [6] noted that updating the weights
of online self-learning classifiers through the incoming data without annotation
is difficult. Babenko et al. [5] treated tracking as multiple instance learning prob-
lem. Bai et al. [9] estimated the ensemble weights using Bayesian interpretation
and ensures that the update of the ensemble weights is smooth. Yu et al. [10]
proposed a co-training based approach to continuously label incoming data and
online update a hybrid discriminative and generative model. We consider the
three views of the object-part view, parameter space view and object feature
space view at the same time. They are robust to different cases that object-part
view covers the occlusion, discriminative parameter space view focuses the dif-
ference between the object and the background and the generative object feature
space view handles the variants of the object appearance itself.

Moreover, the tracking problem has a temporal dimension which is not pre-
sent in the classification methods [11] or subspace learning methods [12] by the
previous works. We get temporal interval predictors through sequential clus-
tering so as to better utilize the temporal learned structural information in
parameter space and object appearance space directly.

Our method models three views of predictors whose weights ensemble with a
non-stationary distribution, where their information geometry can be explored
by sequential clustering methods. Our method focus on estimating the state of
the object with three diverse view predictors in temporal dimension, not the
independent and identically distributed variable in a fixed weak classifier pool.
In summary, our contributions are as follows:
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1. We first propose a clustering ensemble tracker with three diverse views of
weak predictors: object-part predictor, parameter space predictor, and feature
space predictor. The different views have specific properties for tracking.

2. The sequential clustering is utilized to estimate the temporal non-stationary
distributions of weak structure predictor in parameter space and appearance
predictor in feature space. Based on sequential clustering theory, it provides
a probabilistic interpretation of which interval structured predictor of the
object are more discriminative.

3. We propose a simple weighting strategy to ensemble different weak predic-
tors based on the prediction consistency between weak predictors and final
ensemble tracker.

2 Related Work

A tracking-by-detection method usually has two major components: object rep-
resentation and model update. Previous methods employ various object repre-
sentations [5–8,13–15]. Our approach is most related to the methods that use
structured prediction [7,8].

From the perspective of that the tracked objects are treated as labeled pos-
itive samples and the other as training samples with some structure loss, the
tracking problem can be considered as supervised learning problem in each frame.
Supervised learning algorithms are commonly described as performing the task
of searching through a hypothesis space to find a suitable hypothesis that makes
good prediction for one particular problem. Even if the hypothesis space contains
hypotheses that are very well-suited for object tracking, it may be very difficult
to find a good one to locate the object precisely.

“Ensemble methods” is a machine learning paradigm where multiple (homo-
genous/heterogenous) individual learners are trained for the same problem, e.g.,
neural network ensemble [16], bootstrap aggregating (bagging) [17], boosting
[18], Bayesian model averaging [19,20], etc. Avidan [4], who was the first to
explicitly apply ensemble methods to tracking-by-detection, extended the work of
[21] by adopting the Adaboost algorithm [18] to combine a set of weak classifiers
maintained with an online update strategy. Along this thread, Grabner et al. [6]
inspired from the online boosting algorithm [22] by introducing feature selection
from a pool of features for weak classifiers. Several other extensions to online
boosting also existed, including the work by Banbenko et al. [5] who adopted
Multiple Instance Learning in designing weak classifiers. In a different approach
[23], Random Forests undergoed online update to grow or discard decision trees
during tracking. Bai et al. [9] treated weight vector as a random variable and
estimate a Dirichlet distribution for ensemble’s weight vector. They all are a
binary classifier realized by an ensemble method and don’t exploit the structured
data properties which can improve the tracking performance significantly, like
as [7,24]. At the same time, online boosting based trackers [5,6] only considered
the parameter state in current time period. Different from them, we explore the
structure of parameter state in parameter space over different time periods in
tracking process.
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Zhong et al. [25] considered visual tracking in a weakly supervised learning
scenario where (possibly noisy) labels but no ground truth are provided by mul-
tiple imperfect oracles (i.e., trackers). Kwon and Lee [26] proposed visual tracker
sampler to track a target by searching for the appropriate trackers in each frame.
They are all ensemble methods applied in visual tracking. Unlike these methods,
our method is not a heterogenous method which focuses on the tracker space but
an homogenous approach which there is just one tracker. Due to the trained weak
trackers in historical sequences, our method is more efficient than heterogenous
methods.

Our online ensemble method is most related with online bagging scheme,
in the sense that we adopt random combination of weak classifiers. However,
we characterize the temporal ensemble weight vector as a clustering center and
evolve its distribution with sequential clustering manner. As a result, the final
strong classifier is an expectation of the ensemble with respect to the weight
vector, which is approximated by an average of the ensemble clustering centers.
To the best of our knowledge, in the context of tracking-by-detection, we are
the first to present such an online learning scheme that adopt clustering in
parameter space and object appearance space to characterizes the uncertainty
of a self-learning algorithm.

3 Clustering Ensemble Tracking

In this section, we introduce our tracking algorithm, clustering ensemble tracking
(CET), which is a clustering ensemble based appearance model. We begin with
an overview of our tracking system which includes a description of structure
learning-based part models predictor. We then briefly review the concepts of
sequential clustering and ensemble with temporal weak structure predictors.
Finally, we give our clustering ensemble based tracking algorithm.

3.1 Overview

We illustrate the framework of our tracking system (diagram shown in Fig. 1).
At each frame, our method starts with a structure predictor h(x), several clus-
tering centers based on historical weight vectors W = {w1, w2, ..wN , ...} of
h(x) and input data x. Our method obtains the incremental parameter clus-
ter centers Cp = {Cp,1, ..., Cp,M} and object appearance cluster centers Co =
{Co,1, ..., Co,M} through sequential clustering method, where there is only one
cluster, and then the number of clusters increases as the change of the input
parameter vectors W or object feature vectors O = {o1, ...oN ...}. Every para-
meter cluster center Cp,i and the latest parameter vector wN are treated as
the parameters of weak structure predictors h(x). Meanwhile, each appearance
cluster center Co,i evaluates the object candidates through similarity measure-
ment. Then the output of these weak structure predictors h(x) and the degree
of similarity with respective weights l = {l1, l2, l3} are combined to yield the
final decision where the object is. For reducing the computing complexity, the
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Fig. 1. Framework of the proposed clustering ensemble algorithm. Wi represents the
parameter of part models in ith frame. Ci,j denotes clustering center. di,j expresses the
decisions related to Ci,j .

cascade method are adopted in experiments. The cascade is that using the most
stable weak classifier or the latest classifier rejects most of object candidates
and retains a small number of object candidates which are difficult to predict
precisely by one weak classifier so that multiple weak predictors give a combined
solution of higher quality than any individual solution (empirically proved by
[25,26]).

3.2 Sequential Clustering

In online visual object tracking, the tracked object appearance usually changes
gradually. While there are some various factors such as noise or occlusion or fast
and abrupt object motion or illumination changes or variations in pose and scale,
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the object appearance got from the object location will changes much. Mean-
while, the weight vector trained through the changed object training samples
varies with the changes of object appearance. Through updating object appear-
ance model, the classifier can adapt the variation of the object appearance.
However, model update itself is not absolutely correct without effective super-
vised information. For alleviating the drift problem resulted by degraded clas-
sifier update which comes from incorrectly labeled training samples, we exploit
the structure of the parameter space of the trained weak trackers and the pre-
dicted object appearance space in historical temporal dimension to guarantee
the accuracy of current decision by the final ensemble tracker through sequen-
tial clustering. We will introduce the sequential clustering algorithm as follows.

In basic form, parameter or weight vectors W = {w1, ..., wn} are presented
only once and the number of clusters C = {C1, ..., Cm} is not known a priori. The
common approach is to define the dissimilarity d(xi, Cj) and set the threshold
of dissimilarity Θ and the number of maximum clusters allowed q. The idea is to
assign every newly presented vector to an existing cluster or create a new cluster
for this sample, depending on the distance to the already defined clusters. In the
application of online tracking, the parameter vector changes gradually so that
the threshold Θ and the number q are difficult to set. Here, to avoid the setting
problem above, we create a new cluster using a simple heuristic. As pseudo, the
algorithm works like the following:

Algorithm 1. Sequential clustering
1: Init the first sample as the first cluster Cm = {w1},m = 1;
2: for each wi ∈ {w2, ..., wn} do
3: find the cluster Ck such that min d(wi, Ck);
4: if i mod D == 0 then
5: Create a new cluster Cm = {wi},m = m + 1;
6: Using K-means clustering algorithm to re-clustering the space of samples w,

K = m + 1
7: else
8: Add the sample wi to the nearest cluster Ck = {Ck, wi}, while the predicted

object satisfied some update condition.
9: end if

10: end for

As can be seen the algorithm is simple but still quite efficient. Different
choices for the distance function d(wi, Ck) lead to different results. We define:

d(wi, Ck) = 1 − < wi, Ck,c >

||wi||||Ck,c|| (1)

where < A,B >=
∑n

i=1 Ai × Bi is the dot product of two vectors, ||A|| =√∑n
i=1(Ai)2, and Ck,c is the average of all vectors in the set Ck. Due to struc-

tured time series property of online tracking, our method creates one new cluster
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after each D interval frames and uses K-means [27] to re-clustering. The sequen-
tial clustering is used in Sect. 3.3.

3.3 Clustering Ensemble Tracker

We adopt the bagging-like method to get the final ensemble results. Bagging
predictors is a method for generating multiple versions of a predictor and using
these to get an aggregated predictor. The aggregation averages over the versions
when predicting a numerical outcome and does a plurality vote when predicting
a class. The multiple versions are formed by making bootstrap replicates of
the learning set and using these as new learning sets. Here, we use the trained
structure predictor in every frame as the basic version of a predictor.

Object-Part Predictor. In our paper, similar to [24], a structured part models
predictor is trained by an online manner based on the tracked object locations
in previous frames. We represent the object bounding box Bi = {xi, wi, hi}
with center location xi = (xi, yi), width wi and height hi. The HOG features
extracted from image I that correspond to locations inside the object bounding
box Bi are extracted to obtain feature vector Φ(I;Bi). The part indicators i ∈ V
where V = {V0, V1, ..., Vn} represents the set of object and object parts. Here,
V0 denotes the object itself. Subsequently, we define a graph G = (V,E) over
all objects m ∈ V that we want to track with edges (m,n) ∈ E between the
objects. The edges in the graph model can be viewed as springs that represent
spatial constraints between the tracked objects. Next, we define the score of
a configuration S = {P1, ..., P|V |} of multiple tracked parts as the sum of two
terms: (1) an appearance score that sums the similarities between the observed
image features and the classifier weights for all objects and (2) a deformation
score that measures how much a configuration compresses or stretches the springs
between the tracked objects. Different from [8], the weak base predictor is not our
focus, but just part of our method. Mathematically, the score of a configuration
Sb is defined as:

Sb =
∑

i∈V

wT
i Φ(I;Bi) + λ

∑

(m,n)∈E

||(xm − xn) − emn||2. (2)

Where the parameters wi represent linear weights on the HOG features
for object i, eij is the vector that represents the length and direction of the
spring between objects i and j, the set of all parameters is denoted by Θ =
{w1, ...,w|V|, e1, ..., e|E|}. We treat the parameter λ as a hyper-parameter that
determines the trade-off between the appearance and deformation scores. For
reducing the computing complexity, we set m = 0, which means only to com-
pute the distance between the parts Vi and the root V0 in D(x). We use a
passive-aggressive algorithm to perform the parameter update [24,28].

Parameter and Feature Clustered Predictor. In this paper, we redefine the
goal of tracking problem as to find the best state that not only using the current
trained classifier in the case where the object is easy to identify (see Fig. 2(a)),
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Fig. 2. Two confidence maps to decide where object is. The lighter, the more likely
the object is.

but also exploiting the historical trained classifier through clustering ensemble
methods in the case where the object is difficult to identify (see Fig. 2(b)). In
Fig. 2(a)), the object is easy to decide because other regions’ confidences are
much lower than the lighter region so that the object is discriminated easier
from the background. In Fig. 2(b), the background has many regions in which
there are similar confidences as the object so that if the current trained classi-
fier’s decision is wrong, the tracker will drift to the background. After drift, the
classifier’s update will be wrong. For reducing the decision ambiguities of the
object, we adopt the clustering ensemble method (see Sec. 3.2) in the historical
parameter space and object appearance space and use the clustering centers to
make a decision where the object is. To improve the computational efficiency
and robustness, we get the extremal points in the confidence map as the object
candidates. After getting the object candidates, we use the clustering centers as
weak classifiers to vote the best state.

Each cluster center is treated as a sub-weak clustered predictor in ether
discriminative parameter space or generative object appearance space. The score
of one object candidate Bc based on the predictor in parameter space can be
computed:

Sp(Bc) =
Np∑

i=1

CT
p,iΦ(I;Bc) (3)

where Np is the total number of clusters in parameter space by the end of
the current frame, and Cp,i is the representation of the ith cluster center in
parameter space. The score of one object candidate using the jth predictor in
object parameter space can be mathematically expressed:

Sj
o(Bc) = ρ(Q(BC), Co,j)), (4)

where ρ is euclidean metric function, Q(BC) is object representation directly
extracted from the object candidate bounding box, Co,j is the jth clustering
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center in object feature space. In our experiment, Q(BC) is a vectorization after
resizing the BC to its quarter. The same is to extract feature in object space.

According to the Eq. (2–4), then the final object candidate’s score is:

S = λ1Sb + λ2Sp + λ3So, λ1 + λ2 + λ3 = 1, (5)

where {Sb, Sp, So} are the scores of weak part models predictor, weak parame-
ter predictor and weak object appearance predictor and {λ1, λ2, λ3} are their
weights respectively. How to learn the λ is introduced in next section. The final
object location is inferred based on Eq. (5):

B∗ = arg max
Bc

S(Bc), (6)

where the Bc is object bounding box candidates sampled from the search region
near the previous object location.

3.4 Weight Update

Our model updates the weights of three different predictors after the decision
stage in each step, not each frame which doesn’t satisfy the update condition (e.g.
heavily occluded), so that the model can evolve. For each step, after performing
the decision, our method obtains the labels of data predicted by our strong
predictor and the observation of performance of weak view predictors, that is,
the prediction consistency of weak classifiers with respect to the strong classifier,
likely to [9,29].

The weight distribution is dependent on the accumulative normalized central-
pixel error probability. The accumulative property reflects on the cumulative sum
of observation of relative reliability of each predictor. The normalized central-
pixel error probability is incarnated by normalized probability directly related
to the distance between the object’s center and weak predictor observations’
centers. Mathematically, we have

p(oti|xt) =
1
Zt

exp(−(oti − xt)2/σ2), (7)

Zt =
n∑

i

p(oti|xt) (8)

where oti is the observation state center location of the ith weak predictor in step
t, xt is the predicted object’s center location, Zt is a normalization factor in each
step t, and σ = 25. Each part weight is defined as:

λi =
∑T

t=2 p(oti|xt)
∑T

t=2 Zt

(9)

which computes relative reliability of each part predictor.
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4 Experiments

For the experiments, publicly available video sequences obtained from [5,11,30,31]
were utilized. Using the sequences, the proposed method (CET) was analyzed and
compared with 7 state-of-the-art tracking methods: Multiple Instance Learning
(MIL) [5], Visual tracking decomposition [30], Struck [7], Tracking-Learning-
Detection (TLD) [32], PartTracker (PT) [33], Structure preserving object track-
ing (SPOT) [24], Randomized Ensemble Tracking (RET) [9]. All algorithms are
compared in terms of the same initial positions in first frame in [31].

4.1 Implement Details

In all of the experiments, the parameters of our trackers are fixed. The experi-
mental results of MIL, VTD, Struck, TLD are dependent on the public dataset
where the sequences’ ground truth are re-annotated by Wu et al. [31] and some
trackers’ results through the third party appraisal are attached. For fairness,
we adopt the other tracker codes provided by the respective authors in their
homepages. The binary code of PT is public. We just need to prepare a config
file and then can get their results. The source code of SPOT is published in the
website of zhang and van der Maaten [24]. There is one limitation in SPOT is
that the parts’ initialization for single object tracking is missing in their source
code because it is mainly designed for multiple object tracking. We want to use
it as our base tracker so that it is necessary to initialize the parts. For han-
dleability and robustness, we divide the object into four parts equally and then
complete the part initialization. The source code of RET is also provided by its
authors. MIL and TLD use the haar-like feature [34] or LBP-like feature which
is sensitive to large illumination, while Struck, VTD, PT, SPOT, RET and CET
are based on edge information or HOG feature [35] that is robust to illumina-
tion and mirror misalignment. We use the given parameter in their code and get
the sequences’ results. In our method, one cluster is initialized newly in every
D = 100 frames. The time complexity is mainly determined by the number of
parts, the clustering computation complexity, feature extraction and the search
region for deciding where object is.

4.2 Quantitative Analysis

The quantitative comparison results with several state-of-the-art trackers and
our tracker (CET) are shown in Fig. 3 and Table 1. We follow the same evalua-
tion protocol proposed in [31]. Overall, our method outperforms them consist-
ently in the view of overall performance (see Fig. 3). In addition, Fig. 4 shows
the comparison on different subsets such as occlusion and illumination subsets.
The quantitative results are shown in Table 1. From the table, CET achieves the
competitive performances well against the other state-of-the-art algorithms on
all tested sequences. As summarized in Table 1, our method (CET) most accu-
rately tracked the targets in terms of the center location error and the success
rate, even though there are several types of appearance changes.
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Fig. 3. Plots of overall performance comparison for the 22 videos in the benchmark
[31]. The proposed method (“CET”) obtain better performance in terms of precision
(left) and success (right) plot

Fig. 4. Several comparisons in different subsets divided based on main variation of the
object to be tracked. The details of the subsets refer to [31]. The proposed method
(“CET”) obtains better or comparable performance in all the subsets
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Fig. 5. Center location errors comparing CET with SPOT and RET. (a) represents
the comparison between CET and its base tracker SPOT; (b) denotes the comparison
between CET and the latest state-of-the-art ensemble tracker RET

Fig. 6. Success rate based on overlap rate comparing CET with SPOT and RET. (a)
represents the comparison between CET and its base tracker SPOT; (b) denotes the
comparison between CET and the latest state-of-the-art ensemble tracker RET
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Table 1. Comparison of tracking results. The numbers indicate the average center
location errors in pixels. The bold, underlined, and italic represent the best, the second,
and the third best, respectively. Other numbers in () indicate the percent of successfully
tracked frames, where tracking is success when the overlap ratio between the predicted
bounding box Ap and ground truth bounding box Ag is over than 0.5:

Ap∩Ag

Ap∪Ag
> 0.5

TLD [32] MIL [5] VTD [30] Struck [7] PT [33] SPOT [24] RET [9] CET

Boy 5(94) 13(39) 8(79) 4(98) 8(78) 238(0.3) 6 (88 ) 8(91 )

Car4 13(79) 51(28) 37(35) 9 (40 ) 8(40 ) 12(38) 6(99) 12(38)

David 5(97) 24(16) 12(68) 10(57) 47(71) 7 (62 ) 29(7) 5(80)

Sylv 7(93) 12(74) 20(80) 6(93) 6(95) 9(88) 39(14) 8 (90)

Fish 31(47) 72(24) 32(50) 7(78) 8 (80) 4(83) 35(26) 4(83)

Trellis 7 (96 ) 27(23) 17(64) 3(100) 6(100) 7 (100) 33(23) 7 (100)

Singer1 8 (99) 16(28) 4(43 ) 15(30) 31(22) 12(28) 5(89) 10(28)

Coke 25(29) 70(3) 69(14) 12(94) 15 (71 ) 49(17) 40(35) 14(72)

Dudek 18(84) 18(86) 10(100) 12(98) 15(94) 13 (97 ) 140(14) 14(98)

Couple 3(100) 35(67) 104(8) 11(54) 21(36) 9(81) 4(57) 6 (58 )

Jogging 7(97) 95(23) 83(22) 62(23) 7(88) 75(16) 23(26) 7(75 )

F.Face 41(57) 63(54) 46(71 ) 23(67) 22(86) 31 (61) 75(57) 35(60)

David3 208(10) 30(68) 67(48) 107(34) 7(89) 8 (98) 13(80 ) 6(62)

Suv 13(84 ) 82(13) 57(55) 50(58) 35(53) 10 (95) 8(7) 8(96)

M.Bike 216(26) 73(58) 10 (100) 9(86) 9(100) 198(1) 18(54) 10(93)

Lem 16 (59) 171(17) 79(49) 38(64 ) 136(45) 8(87) 20(79) 7(87)

Liquor 38(58) 142(20) 60(58) 91(41) 95(34) 8(97) 9 (93 ) 7(98)

F.Occ1 27(83) 37(62) 20(93) 19 (100) 17(100) 17(100) 12(100) 17(100)

F.Occ2 12(83) 20(68) 8(99) 6(100) 6(100) 10(92) 11(79) 9(96 )

Tiger1 50(46) 37(37) 107(12) 129(18) 33(49) 16(93) 9(97) 16(89 )

Tiger2 37(18) 30(36) 41(17) 22 (65 ) 48(29) 33(73) 12(92) 18(76)

Deer 31(73 ) 101(13) 135(4) 5(100) 24(38) 10 (99) 97(3) 7(100)

Comparison of Competing Tracking Algorithms. Although SPOT is our
base tracker, we can get better performance in most video sequences through
introducing the hidden clustering information by sequential clustering method
(see Figs. 5(a) and 6(a)). RET exploits the non-stationary distribution of weight
vector in parameter space to ensemble and get good performance. Our tracker
CET adopts the sequential clustering method to utilize the hidden non-stationary
distribution of parameter and object appearance. Through Figs. 5(b) and 6(b),
we also get the better performance comparing with RET. We compare the pro-
posed tracking algorithm with nine state-of-the-art tracking algorithms, Table 1
summarises the average center location error performance and success rate of
the compared tracking algorithms over the 22 sequences. From the experimen-
tal results, we see that our tracking algorithm obtains the best performance on
ten sequences in the terms of the center location error or the success rate, seven
sequences the second best, four sequences the third best. Figure 4 shows that our
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method can handle occlusion, illumination and out-of-view well. The robustness
of our CET tracker lies in the object-part structure which are discriminatively
trained online to account for the variations, the historical hidden structure infor-
mation in parameter space of base tracker and in the object appearance space
of the historical predicted object.

5 Conclusion

In this paper, we deal with the tracking problem about decision ambiguities by
fusing object-part predictor, parameter clustered predictor and feature clustered
predictor together. Object-part predictor exploits the structure between object
and its parts which is effective to object deformative appearance changes. Para-
meter clustered predictor utilizes temporal hidden group structure in object
parameter space in some extent. Feature clustered predictor guarantees the
object from the distracters in parameter space and get the better performance.
Then we propose a tracker, clustering ensemble tracking (CET), based on struc-
ture learning and sequential clustering framework to avoid the drifting problem.
Extensive experiments show that our algorithm is robust to occlusion, illumina-
tion and out-of-view because different predictors have different properties. The
accuracy of CET is superior or competitive to several state-of-the-art tracking
algorithms in a more effective way.
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