
Action-Gons: Action Recognition
with a Discriminative Dictionary

of Structured Elements
with Varying Granularity

Yuwang Wang1, Baoyuan Wang2(B), Yizhou Yu3,
Qionghai Dai1, and Zhuowen Tu4

1 BBNC Lab, Department of Automation, THU, Beijing, China
yw.wang2011@gmail.com, qhdai@tsinghua.edu.cn

2 Microsoft Research, Beijing, China
baoyuanw@microsoft.com

3 Department of Compute Science, HKU, Hong Kong, China
yizhouy@acm.org

4 Department of CogSci, UCSD, San Diego, USA
ztu@ucsd.edu

Abstract. This paper presents “Action-Gons”, a middle level represen-
tation for action recognition in videos. Actions in videos exhibit a reason-
able level of regularity seen in human behavior, as well as a large degree
of variation. One key property of action, compared with image scene,
might be the amount of interaction among body parts, although scenes
also observe structured patterns in 2D images. Here, we study high-
order statistics of the interaction among regions of interest in actions
and propose a mid-level representation for action recognition, inspired
by the Julesz school of n-gon statistics. We propose a systematic learning
process to build an over-complete dictionary of “Action-Gons”. We first
extract motion clusters, named as action units, then sequentially learn a
pool of action-gons with different granularities modeling different degree
of interactions among action units. We validate the discriminative power
of our learned action-gons on three challenging video datasets and show
evident advantages over the existing methods.

1 Introduction

Human action recognition has received an increasing amount of attention in the
computer vision community as developing a practical action recognition system
is vital for many applications ranging from mobile applications, surveillance,
interactive gaming, to video annotation and retrieval. Although much progress
has been made in the past few years, existing approaches are still far from being
satisfactory and practical. Similar to the situation in other recognition problems,
finding the right representation is still the key to deal with the challenges due
to intra-class variations in viewing condition, illumination, spatial and temporal
scale, and camera motion.

This work was done when Yuwang Wang was an intern at Micrsoft Research.

c© Springer International Publishing Switzerland 2015
D. Cremers et al. (Eds.): ACCV 2014, Part V, LNCS 9007, pp. 259–274, 2015.
DOI: 10.1007/978-3-319-16814-2 17



260 Y. Wang et al.

...

    W1               W2                      W3                 W4                               W5 

Fig. 1. Action-gons with different granularities for modeling different degrees of inter-
action. Action-gons shown on real images can be found in Figs. 3 and 6.

To tackle the problem of action recognition, one often designs novel low-level
features [1] or applies learning techniques to mine discriminative mid-level or
high-level features, as in [2,3]. Recent advances [2,4–6] show that learning mid-
level action units, which are essentially spatio-temporal regions of interest, leads
to large improvement in performance.

Actions in videos observe sparse, well-structured, strong temporal coherence,
and dynamic interactions, which are different from objects and scenes in 2D
images. First, human actions consist of coordinated movements of body parts
and accessories. For example, a high jump requires precisely coordinated move-
ments of the arms, torso and legs. It is important to model the co-occurrences and
interactions among the movements of different body parts. Second, the number
of interacting parts in different actions may vary. For example, the aforemen-
tioned high jump involves all body parts while certain actions, such as drinking,
only involve the upper body and arms. A complex action, such as a gymnastic
routine, can be decomposed spatially and temporally into a number of elemen-
tary movements, each of which may involve a different number of body parts.
In addition, in the absence of 3D information, 2D videos taken from different
viewpoints typically need multiple modes. Thus, we need to study statistics
with respect to a variety of interactions for action analysis. In the past, not
much attention has been given to explicitly characterizing the statistics of the
interactions among regions of interests in actions. And there has been even lit-
tle attempt to explore the graph-based dictionary with varying granularity to
capture the intrinsic motion structures for action recognition.

The Julesz school of two-gon and tri-gon statistics models the intrinsic pat-
terns of textures [7], which has rarely been studied lately in computer vision for
action analysis. Our work is inspired by the n-gon statistics of Julesz. We first
perform unsupervised learning to extract a set of informative motion clusters,
called action units, from videos. Our focus is then to learn a dictionary of inter-
actions among the units, named as “Action-Gons”, which model co-occurring
and potentially interacting regions of interest, as shown in Fig. 1. To account
for varying degrees of complexity, different orders of interaction for the action
units are studied. The number of co-occurring action units within an action-gon
is defined as its granularity.

For the detailed pipeline of our work, we first partition the motion trajectories
into canonical clusters, each of which is called an action unit; then we sequentially
learn the interaction structures with varying granularities for each action class to
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form our proposed action-gons. Specifically, each action-gon is defined as a latent
graph structure with nodes representing action units and edges representing
interactions between action units. The feature vector for an action-gon includes
features for the individual nodes, as well as features for the edges. Latent graphs
with the same granularity for the same action class are learned simultaneously.
To achieve better discriminative representation power, a classifier is eventually
learned for each action-gon, which is used as an entry in the dictionary. During
the recognition stage, we apply the classifier associated with every action-gon on
the video and perform max pooling over the response maps to generate features
for final action classification.

We validate our framework for learning action-gons on three challenging video
datasets: HMDB51 [8], Youtube [9], and UCF-Sports [10]. Extensive experiments
show that our approach achieves significantly improved performance over exist-
ing state-of-the-art methods, indicating the effectiveness of having a mid-level
dictionary of part interactions.

In summary, this paper makes the following three contributions: (1) We
propose to learn action-gons with varying granularities for action recognition,
inspired by the Julesz n-gon statistics which has not been frequently studied.
Each action-gon characterizes co-occurring and interacting regions of interest.
(2) We introduce a principled learning method for building an informative yet
discriminative dictionary of action-gons. (3) Building on top of the action-gon
representation, our overall method produces significantly improved results on
benchmark datasets for action recognition.

2 Related Work

Conventional video-based action recognition methods typically extract sparse
(sometimes dense) spatio-temporal interest points (STIP) [11] and compute low-
level appearance and motion features, followed by training a classifier on top of
either the Bag-of-Words (BoW) model or the SPM feature representation. The
most popular low-level features, including HOG/HOF [12], HOG3D [13], and
MBH [1], indeed turn out to be very informative yet discriminative represen-
tations. Recently, to overcome the drawbacks of the traditional Bag-of-Words
model, researchers [14,15] have proposed to add pairwise spatial-temporal rela-
tional features between quantized base features (i.e., HOG/HOF) to express
potential interactions. A similar idea has also been employed in [16] to explore
contextual features. Although those methods have been proven to be effective
on certain datasets, they still lack the flexibility to adaptively infer and localize
the most discriminative action parts. Therefore, they do not necessarily derive
the optimal representation for characterizing natural human interactions.

Complementary to this line of effort, people have also been trying to develop
better feature learning methods or models to tackle the challenges caused by
differing scales, viewpoints, illumination or even occlusions. For example, action
recognition by learning middle level features has recently become a popular
research topic in computer vision, a variety of methods [2,4–6,17] have been
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Fig. 2. Our pipeline for building the mid-level action-gon representation and training
action classifiers.

proposed to learn the so-called “action parts”. Such work can be roughly divided
into two categories. One is based on unsupervised learning, and the other is based
on supervised or weakly supervised learning.

Action Bank [3] performs action recognition by comparing a test video against
a collection of manually designed action templates. Only low-level features are
used during such comparison. In contrast, our work learns a mid-level represen-
tation by extracting abstract information from low-level features. Inspired by
Action Bank [3], motionlets [4] adopt unsupervised learning to discover action
parts. Instead of manually designing action templates, it identifies action parts
with motion saliency detection and a greedy motionlet ranking method. The
method in [18] also adopts unsupervised learning to learn an AND-OR grammar
to build the contextual relationships for semantic video understanding, which
can be regarded as one typical way of middle level feature learning.

More recently, [17] proposes to harvest middle level parts via weakly super-
vised learning. However, this method does not incorporate interactions among
body parts, which are vital for complex human action modeling. Interactions
between pairwise trajectory clusters are modeled as latent graphs in [2]. Nonethe-
less, it always adopts a single fixed graph structure (e.g. 3 nodes), which becomes
inadequate for representing complex human actions. In comparison, this paper
builds a mid-level dictionary, each word of which is defined as a graph with a
potentially distinct granularity to capture one typical interaction among action
units. Given a testing video, our method adaptively localizes potential interac-
tions via optimization.

3 Action-Gon Dictionary Learning

3.1 Overview

In this section, we present a systematic approach for learning multi-granularity
action-gons, each of which corresponds to a graph structure. The graph structure
is a mid-level representation that models the joint occurrence and interaction
among action units. In addition, to make the action-gons sufficiently diverse so
that they can handle different scales, viewpoints as well as different numbers
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of interacting units, we study graphs with different granularities. For example,
a single-node graph describes a relatively simple action unit while a two-node
graph can model a higher complexity of interaction and co-occurrence. We first
extract dense trajectories from each video, and then apply a multi-scale cluster-
ing method to obtain trajectory clusters that serve as action units. Given those
action units, we compute action-gons with multiple granularities in separate
steps through constrained optimization, and then stack these multi-granularity
action-gons together into an overcomplete dictionary. Figure 2 shows an overview
of our pipeline for action recognition based on action-gons. Before delving into
further details, let us formally define a few terms that we frequently use in the
following sections.

Terminology Definition. An action unit is defined as one trajectory cluster,
which is a basic motion or shape primitive. Let V be a set of action units (graph
nodes, see Fig. 1), and E be the set of edges connecting all pairs of action units.
An action-gon is defined as G = {(V,E);h}, where h is a latent variable that
chooses a subset of trajectory clusters to be the action-gon nodes. We define the
granularity of an action-gon to be Ggran = |V |. Let us further define Bλ as a
dictionary which contains a collection of action-gons with the same granularity
λ, and define B = B1

⋃
B2

⋃
...

⋃
Bλ, ... as a larger dictionary that contains

action-gons with all different granularities. To better localize such action-gons
in each action video ϑ, we define a linear classifier f as a filter to localize action-
gon G in ϑ, and the filter response ρ = f(G ∗ ϑ) reflects whether G exists in ϑ.
Throughout this paper, we call SPM features built on top of the descriptors
constructed along with the trajectories [1] as the low-level representation (also
called the first-layer in [17]), and the action-gon filter responses as the mid-level
representation.

3.2 Action-Gon Modeling

Action Units. For each video, we first extract dense trajectories based on [19]
(which is an improved version of [1]). Then we apply a hierarchical clustering
procedure [20] to group the trajectories into a hierarchical cluster tree solely
based on the trajectory geometry features, specifically, a trajectory is repre-
sented as a sequence of pixel locations in the spatio-temporal volume as follows,
(xt, yt; ...;xt+L, yt+L;), where t is the starting frame of the trajectory and L is the
number of frames along the trajectory. To increase the capability of describing
actions with varying scales, we consider clusters at all different levels within the
hierarchical cluster tree as potential graph nodes. A higher-level cluster occu-
pies a larger spatial and temporal volume and overlaps with lower-level clusters.
In practice, graphs built on hierarchical clusters give rise to higher recognition
performance than the single-level clusters used in [2]. We name each cluster as
one action unit.

For each trajectory, we extract five low-level features, including trajectory
geometry, HOG, HOF, and MBH (Motion Boundary Histograms) along both x
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Fig. 3. Examples showing the inferred latent graphs. Note that, even for the same
action class, it is still much desired to use multi-granularity graphs to tackle intra-class
variations.

and y image axes [1], and build their individual dictionaries through K-means.
These low-level features will be used for training and detecting action-gons. We
apply localized soft assignment quantization (LSAQ) [21] to code all low-level
features. Given any trajectory tj within a cluster Ui, we use Ftj to denote the
concatenated codes of all low-level features along tj , and ‘max’ to denote the
element-wise maximum operation over a set of vectors. Then the node(trajectory
cluster) feature, ΓUi

, of Ui is defined as the max-pooling result over all trajec-
tories within Ui, then

ΓUi
= max

tj∈Ui

Ftj . (1)

Edges and Features. The edge feature for a pair of nodes within the graph
describes the relative motion and location between the nodes. We first define the
edge features for a pair of trajectories ti and tj . Suppose a trajectory ti spans a
time interval from T i

s to T i
e (s, e are the frame indices). Let us denote the centroid

of the trajectory as (xi
m, yi

m), the average image-space velocity along the trajec-
tory as (vi

x, vi
y). Suppose the distribution of every type of attributes (denoted

as z) follows its own Gaussian mixture model, Pz(X) =
∑N

k=1 πkN (X|μk, σk).
We define the features Pz for a type of attributes (z) using the probability values
returned by all the Gaussian components in its own Gaussian mixture model.
Let us further define (v1 ∗ v2

T )(:) as the result of unfolding the outer prod-
uct between v1 and v2 into a row vector. Then the feature vector for the edge
between two trajectories is defined as

φ(ti, tj) =[ PT (|T i
s − T j

s |)T (2)

Px(|xi
m − xj

m|) ∗ Py(|yi
m − yj

m|)T (:)

Pvx
(|vi

x − vj
x|) ∗ Pvy

(|vi
y − vj

y|)T (:) ]T .
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Finally, the edge feature vector, Φ(Ui, Uj), for clusters Ui and Uj is simply defined
as the average feature vector of all trajectory pairs across the two clusters,
namely

Φ(Ui, Uj) =
1

|Ui||Uj |
∑

tm∈Ui,tn∈Uj

φ(tm, tn). (3)

Note that PT , Px, Py, Pvx
, Pvy

can all be estimated using the EM algorithm on a
set of sampled trajectories. We empirically set N=6 to prevent overly long edge
feature vectors. And it turned out to work well in all our experiments.

Latent Graph Representation. Given N candidate graph nodes within a
video X, let H be the space of graphs defined over subsets of these candidate
nodes. In this paper, every graph is a complete graph with edges connecting all
possible pairs of nodes. Therefore, the configuration of a graph is uniquely deter-
mined by the nodes in the graph. Even under this assumption, there are an expo-
nential number of graphs that can be composed by any subset of N nodes, i.e.,
the number of graphs with M(M < N) nodes is

(
N
M

)
. However, only few of them

have real discriminative power and can serve as mid-level action-gons. Let h be
one of the graph configurations from H. Now that we have defined the node fea-
ture as well as edge features, for a graph with fixed M nodes, we define its feature
map ψ(X,h) = [ΓU0 , ΓU1 , ..., ΓUM−1 ;Φ(U0, U1), ..., Φ(Ui, Uj), ..., Φ(UM−2, UM−1)]
Once h is known, ψ(X,h) can be easily established. In reality, however, h is a
latent variable that should be inferred, and it is infeasible to perform exhaustive
search when both M and N are large. Therefore, we need a more efficient way
to infer h during both the training and classification stages, and the inference
should be based on the discriminative power of h by learning a supervised clas-
sifier. Suppose we already have such a classifier wk in the form of a linear SVM,
then latent graph h can be inferred by the following operation,

h∗ = arg max
h∈H

wT
k ψ(X,h). (4)

The above optimization is essentially the NP-hard Quadratic Integer Program-
ming problem, and exact inference could be computationally demanding. We
therefore adopt the TRW-S method [22] to obtain an approximate solution.
Figure 3 shows examples of inferred latent graphs.

3.3 Learning Multi-granularity Action-Gons

As indicated by earlier discussion and Eq. (4), we use a classifier (also called a
filter) to identify the most discriminative latent graph with a predefined granu-
larity (number of nodes) in a video or action class. However, a single classifier
has limited generalization capability while actions typically have large intra-class
variations due to different viewpoints and scales among other factors. Therefore,
we propose to harvest intrinsic mid-level actions for every action class by training
multiple latent graph configurations with a predefined granularity in that class.



266 Y. Wang et al.

The collection of classifiers for all classes are included in a mid-level dictionary,
named action-gon dictionary. To learn the classifier for each action-gon, we train
one-versus-all binary SVM classifiers by taking all the other classes as negative
examples.

Suppose we are given a set of videos with binary class labels S = {(Xi, yi)n
i=1},

where yi ∈ {1,−1}. Let Hi be the latent graph space defined over the trajec-
tory clusters in Xi. To make the filters discriminative, we require each positive
video X+

i contain at least one latent structure hi ∈ Hi that can be identified
by one of the filters wk, k ∈ I = {1, 2, ...,K}, while each negative video X−

i

should not contain any latent structure that can be identified by any of the clas-
sifiers. Based on these requirements, we learn the graph classifiers by solving the
following optimization problem,

min
wk,ξi�0,ζi�0

1
2

K∑

k=1

‖wk‖2 + C1

N∑

i=1

ξi + C2

∑

yi=+1

ζi (5)

s.t.

∀ i = 1, 2, · · · , n : yi max
h∈Hi

max
k∈I

wT
k ψ(Xi, h) � 1 − ξi,

∀ yi = +1, k ∈ I : max
h∈Hi

⎡

⎣wT
k ψ(Xi, h) − 1

K − 1

∑

k′ �=k

wT
k′ψ(Xi, h)

⎤

⎦ � 1 − ζi,

∀ k1, k2 ∈ I :

∣
∣
∣
∣
∣

∑

yi=+1

1
Ji

∑

h∈Hi

(wT
k1

ψ(Xi, h) − wT
k2

ψ(Xi, h))

∣
∣
∣
∣
∣
� η,

where Ji represents the number of potential graphs within the latent space Hi.
The first set of constraints enforce a multiple-instance-based margin for each
bag (video) Xi; the second set of constraints try to maintain diversity among
the filters, making different filters generate strong responses on different latent
structures; and the last set of constraints enforce a balance among filters to avoid
a trivial solution that assigns most latent structures to the same filter. Note that
the above formulation can be viewed as a generalization of the learning method
in [5] because we can treat a VOI (volume of interest) as a single-node graph.
For more general cases, we need to infer the hidden graphs by solving an MRF
labeling problem. Specifically, we use TRW-S [22] to identify graphs with maxi-
mum responses from the latent space Hi, as shown in Eq. (4). The entire training
process is solved by the Convex-Concave Cutting Plane (CCCP) algorithm [23],
which alternates the following two steps, inferring latent structures with Eq. (4)
and solving a structured SVM problem based on the cutting plane method.

In comparison with our simultaneous action-gon training, [2] only learns one
single filter, so its learning algorithm does not impose the second and third set
of constraints defined in our optimization Eq. 5. Another significant difference
is that our method considers all the learned filters as codewords in a mid-level
dictionary upon which a higher-level video representation is built for final clas-
sification while [2] directly takes the learned filter as the final video classifier.
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Since different actions may exhibit different levels of co-occurrence and inter-
action among regions of interest, the number of co-occurring or interacting
regions may vary. Hence, it is obviously suboptimal to use a single graph granu-
larity across all action classes. This further inspired us to adaptively use graph
configurations with different granularities during both the learning and clas-
sification stages. Ideally, our method is capable of supporting graphs with an
arbitrary number of nodes. However, in practice, we restrict the granularity of
an action-gon to be 1, 2 or 3 to achieve a better tradeoff between accuracy and
computational cost. To build a multi-granularity dictionary, we run dictionary
learning via the optimization in (5) for each supported graph granularity sep-
arately. All the filters learned from these separate runs are stacked together to
form the action-gon dictionary. To the best of our knowledge, this is the first
time to build a multi-granularity dictionary of structured elements.

4 Video Representation via Action-Gons

Suppose we have obtained an action-gon dictionary, which contains g classifiers
for multi-granularity graphs. Given an input video X, we divide it into P spa-
tiotemporal pyramid volumes as defined in [1]. We perform latent structure infer-
ence for every volume in the pyramid by taking all the trajectory clusters in the
volume as input and estimating Eq. (4). This results in a confidence map, where
each entry is the estimated confidence that there exists a corresponding action-
gon inside the considered volume. Specifically, for the l-th volume, we obtain such
a vector Fl ∈ Rg, and Fl = [αl

1, ..., α
l
k, ..., αl

g], where αl
k = maxh∈Hl

wT
k ψ(X,h),

wk is the k-th filter within the dictionary, and Hl is the latent graph space
defined over the trajectory clusters in the l-th volume. The final video represen-
tation Θi is obtained by simply concatenating the confidence maps for all the
spatio-temporal pyramid volumes. That means Θi = [F1, F2, . . . , FP ]. As most
of the previous methods, i.e. [17], a linear SVM classifier built on Θi performs
the final video category classification.

5 Experiments

In this section, we perform detailed evaluation of the discriminative power of
our proposed action-gon representation on three popular and challenging action
datasets: HMDB51 [8], Youtube [9] and UCF Sports [10].

5.1 Experimental Setup

For all the datasets used in our experiments, we extract refined dense trajectories
as in [19] and compute low-level feature descriptors (i.e. Trajectory, HOG, HOF
and MBH) with exactly the same parameters given in [1]. As we use bags of words
built on top of these low-level features, we train a codebook with K-means for
each type of low-level descriptors using 100,000 randomly sampled features, and
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set the codebook size to 4000. The parameter setting of our LSAQ coding is
identical to that defined in [21] (i.e., β = 10, n = 5). We adaptively select the
threshold for pruning background trajectories to make sure we can collect at
least 100 clusters from each video.

For each dataset, we learn a relatively large pool of action-gons using Eq. (5).
Instead of learning one set of action-gons using five concatenated low-level descri-
ptors [1], we learn five sets of action-gons. Each set is based on one of the five
descriptors. As most of previous low-level dictionary learning, at present we
empirically determine the size of the action-gon dictionary. Specifically, we learn
action-gons with K = 3 (used in Eq. (5)) different granularities (i.e., one-gon,
two-gon, three-gon). This results in a large dictionary with 5 ∗ 51 ∗ (3 + 3 + 3) =
2295 action-gons for the HMDB51 dataset. Likewise, we learn 1000 action-gons
respectively for the Youtube and UCF Sports datasets. The problem of learning
an action-gon dictionary with an optimal size requires much further investigation
and, therefore, is left as future work.

Most of the other parameters in our method can take values from a relatively
large range without affecting the final performance significantly. We empirically
set each of them to a constant value within its working range. For example, we
set C1 = 256 and C2 = 32 in Eq. (5) in all our experiments. We follow the same
parameter settings proposed in [17] when learning final action classifiers.

Our method has been implemented primarily using Matlab except TRW-S
[22]1. We use the SVMstruct package2 to perform the optimization in Eq. (5).
On a modern PC, the training stage of our method spends about 24 h on the
HMDB51 dataset (6776 video clips). Nevertheless, it only takes less than 5 s for
our trained model to classify a test video clip.

5.2 Performance Evaluation

We first evaluate the overall performance of the action-gon representation thro-
ugh extensive comparisons against existing methods in the action recognition lit-
erature. For the HMDB51 dataset, we follow the default splitting rule to perform
three rounds of training and testing, and report the average per-class classifica-
tion accuracy. When only the mid-level action-gon representation is used, our
results in the three rounds are 57.8%, 57.8%, and 58.4%, respectively, resulting
in an average performance of 58.0%. As shown in Table 1, compared with other
mid-level representations, action-gons have achieved significantly better results,
i.e., its result is respectively 7.3% and 15.9% higher than those in [17] (50.7%,
the second layer performance) and [4] (42.1%). The low-level representation in
our current implementation is based on the descriptors in [19] but with one
major difference, which is the replacement of fisher vectors with bag of words
in LSAQ coding. Hence the average per-class classification accuracy achieved
with our low-level representation is 57.0%, which is slightly lower than the best

1 Code is available from: http://research.microsoft.com/en-us/downloads/dad6c31e-
2c04-471f-b724-ded18bf70fe3.

2 Code is based on http://www.cs.cornell.edu/people/tj/svm light/svm struct.html.

http://research.microsoft.com/en-us/downloads/dad6c31e-2c04-471f-b724-ded18bf70fe3
http://research.microsoft.com/en-us/downloads/dad6c31e-2c04-471f-b724-ded18bf70fe3
http://www.cs.cornell.edu/people/tj/svm_light/svm_struct.html


Action-Gons: Action Recognition with a Discriminative Dictionary 269

Table 1. Performance of the proposed action-gon representation and comparisons with
state-of-the-art methods. We report average per-class classification accuracy on the
datasets. ‘mid’ represents action-gons alone, ‘mid+ low’ represents the combination of
action-gons and low-level features.

HMDB51 [8] (.%) Youtube [9] (.%)

Oneata et al. [24] 54.8 Le et al. [12] 75.8

Motionlet [4] 42.1 MIL-Bof [25] 80.4

Shi et al. [26] 47.6 Dense Traj. [1] 85.4

Jian et al. [27] 52.1 Brendel et al. [28] 77.8

Zhu et al. [17] 54.0 Zhu et al. [17] 89.4

Dense Traj. [19] 57.2 Oneata et al. [24] 89.0

Action-Gons 58.0 Action-Gons 89.7

Action-Gons+Low 58.9 Action-Gons+Low 92.1

Table 2. Performance comparison on the UCF-Sports dataset based on two common
dataset splitting rules. Note that the middle level features facilitated by Action-Gon
generates the state-of-the-art performance under both data splitting rules.

Methods Splitting rule in [10] Leave-one-out in [1]

Lan et al. [10] 73.1 % n/a

Raptis et al. [2] 79.4 % n/a

Kovashka et al. [29] n/a 87.3 %

DenseTraj. [1] n/a 89.1 %

Wu et al. [30] n/a 92.5 %

ActionBank [3] n/a 95.0 %

Action-Gons 83.0% 100%

performance (57.2%) reported in [19]. Nevertheless, our proposed middle-level
representation alone outperforms the high-dimensional low-level features used in
[19]. In addition, when combined with our low-level features, the average per-
formance of our method can be further elevated to 58.9%, which indicates that
our action-gon representation has a strong discrimination power complementary
to low-level features, as shown in Fig. 5.

In the experiments on the UCF-Sports dataset, we apply the same setting
recently proposed in [10]. As shown in Table 2, the average per-class classification
accuracy achieved with our mid-level action-gon representation is 83%, which is
significantly higher than the state-of-the-art result (79.4%) [2] among all existing
work that adopts the same data splitting rule as in [10]. To fully validate the
performance of action-gons, we further apply “leave-one-out” data splitting as
in [1], and see that action-gons achieve a 100% classification accuracy, which
is a significant improvement over the best “leave-one-out” result reported in [1]
(89.1%). Such a large performance gain is primarily achieved with the adaptive
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Fig. 4. Per-class classification accuracy on the UCF-Sports dataset according to the
dataset splitting rule proposed in Lan et al. [10]

action unit localization ability enabled by action-gons. Refer to [10] for reasons
why “leave-one-out” splitting generates better classification accuracy. Figure 4
shows the per-class classification accuracy obtained with the action-gons alone.

We have also observed advantages of using action-gons on the Youtube
dataset. As shown in Table 1, by using the action-gon representation alone,
we can achieve an average per-class accuracy of 89.7%, which is superior to
any existing methods that rely on low-level features alone according to [19,24].
When action-gons are combined with low-level features, the performance can be
further improved to 92.1%, indicating the two types of feature representations
are complementary.

5.3 Analysis and Discussion

Analysis of Multi-granularity Action-Gons. To validate the effectiveness
of multi-granularity action-gons, we compare classification performance achieved
using various combinations of the action-gon dictionaries B1, B2 and B3. Such
combinations include any individual dictionary of the three or any group formed
by two or more of these individual dictionaries, such as B1+B2 and B1+B2+B3.
The testing results are shown in Fig. 5, where we can see that with increasing
levels of granularity, we achieve increasing classification accuracy on HMDB51.
This indicates that different action-gon granularity can capture different com-
plexity of interactions (see Fig. 3), and therefore provide complementary feature
representations. Interestingly, we notice that one-gon dictionary (B1) achieve
slightly worse performance than two-gon dictionary (B2) and three-gon dictio-
nary (B3) on HMDB51. However, when combined together, they can increase
representation diversity and boost the overall performance.

Analysis of the Action-Gons Size. The size of Action-Gon Dictionary is
actually controlled by the parameter K (used in Eq. (5)). If K = 3, we would have
2295 action gons. We evaluated the performances with respect to different K,
take HMDB51 as an example, when K = 1, 2, 3, 4, their corresponding accuracy
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Fig. 5. Average per-class classification accuracy on HMDB51 using action-gons with
increasing levels of granularity.

Table 3. Performance correlation between mid-level and low-level representations.
Performance is measured on HMDB51. As ITF [19] improves over DTF [1], we found
the performance of their corresponding action-gons improves as well.

B1 B2 B3 B1, B2 B1, B2, B3

ITF [19] 54.9 55.5 55.5 57.4 58.0

DTF [1] 52.5 52.1 52.3 53.6 54.1

are 55.3%, 57.6%, 57.8% and 55.8% respectively. When K is larger, the Action-
Gon based video representation would be very high dimensional, which increases
the risk of over fitting. So empirically we set K = 3.

Performance Correlation with Low-Level Features. The process of learn-
ing an action-gon dictionary represents a general pipeline for building a mid-level
action representation. Similar to deep learning, an action-gon learns the com-
positions and abstractions of low-level features. Because of this, although being
complementary to low-level features, the discrimination power of action-gons
is also expected to be correlated with that of the low-level features. That is,
the better the low-level features, the stronger discrimination power the learned
action-gons would be equipped. To demonstrate this performance correlation,
we have compared the effect of the refined trajectories [19] against that of the
baseline trajectories [1] on the quality of the action-gons using the HMDB51
dataset. Given the results in Table 3, we can observe that using more powerful
low-level features also boosts the classification performance of the action-gons.

6 Conclusions

In this paper, we have presented a novel approach for middle level action rep-
resentation and use graphs with varying granularity to serve as the mid-level
dictionary which we call action-gon dictionary. Action-gons have been proven
to have strong discrimination power in action classification on several popu-
lar yet challenging datasets. Extensive experiments and comparisons show that
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Fig. 6. Inferred action-gons for typical videos. Note that, for simple actions, we may
only need a one-gon model while, for relatively complex actions, we need higher-order
action-gons.

action-gons are complementary to low-level features, indicating that using more
powerful low-level feature descriptors would boost the performance of action-
gons at the same time. Although we have observed connections between our
mid-level action-gons and other high-level representations [3], a thorough inves-
tigation on questions like “what are the optimal granularities of action-gons” and
“how many action-gons should be chosen” are very much desired. In addition, it
is worthwhile to explore layered representations to further improve performance
correlation between action-gons and low-level features.
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