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Abstract. Activity recognition in video has become increasingly impor-
tant due to its many applications ranging from in-home elder care, sur-
veillance, human computer interaction to automatic sports commentary.
To date, most approaches to video rely on fully supervised settings
that require time consuming and error prone manual labeling. More-
over, existing supervised approaches are typically tailored for classifica-
tion, not detection problems (the spatial and temporal support of the
action has to be detected). Recently, weakly-supervised learning (WSL)
approaches were able to learn discriminative classifiers while localizing
the action in space and/or time using weak labels. However, existing
approaches for WSL provide coarse localization in terms of spatial regions
or spatio-temporal volumes. Moreover, it is unclear how to extend current
approaches to the multi-label case that is common in practical applica-
tions. This paper proposes a matrix completion approach to the problem
of WSL for multi-label learning for video. Our approach localizes non-
rectangular spatio-temporal discriminative regions that are inferred by
clustering regions of common texture and motion features. We illustrate
how our approach improves existing WSL and supervised learning tech-
niques in three standard databases: Hollywood, UCF sports, and MSR-II.

1 Introduction

The idea of recognizing actions automatically from videos brims with potential.
Solving it enables many tasks, including surveillance, human-computer interac-
tion, patient monitoring, and automatic sports analysis. However, understanding
actions in a video sequence remains a challenging problem due to several reasons:
(1) there is a large variability in imaging conditions, as well as in how different
people perform an action; (2) background clutter and motion blur are common;
(3) data arising from video is of high dimensionality; (4) obtaining ground truth
labels for every individual action in every frame of a video is cumbersome. Pre-
vious works have addressed these issues by introducing different features [1,2],
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Fig. 1. Our multi-label weakly-supervised approach recognizes activities and pinpoints
their spatio-temporal location on unseen videos. This figure shows results on UCF
Sports, HOHA and MSR-II datasets. Top: A sample frame and the extracted spatio-
temporal activity parts. Bottom: Activities recognized and localized by our method.

interest region detectors such as space-time volumes [3] or trajectories [4,5], and
using different classifiers [2,6-10]. While these methods have improved recogni-
tion results, they may find correlations from background context and non-activity
related regions, which result in a lack of interpretability of what is being learned.
This motivates us to explore learning techniques that rely less on error-prone
human annotations, and learn instead from captions describing the entire video.

In this paper, we propose a multi-label WSL approach to efficiently recognize
activities and pinpoint their spatio-temporal location on unseen videos. Figure 1
shows examples of our results on different datasets. We first extract spatio-temporal
activity parts throughout the video. Then, we recognize the activity/activities
present in the video, along with selecting the activity parts associated with each
recognized activity.

Weakly-supervised learning (WSL) approaches such as multiple instance lear-
ning (MIL) ([7-10]) have eased the problems in labeling by localizing discrimina-
tive regions while learning the classifier. Instead of class labels, MIL defines labels
for positive and negative bags, each containing several instances. All instances in
negative bags are negative, but there is at least one positive instance in each pos-
itive bag, and the goal is to localize the positive instances (see Fig. 2(a)). Unfor-
tunately, the MIL paradigm has two major drawbacks: first, it is non-trivial to
extend it to multi-label settings [11]; second, it typically leads to multi-pass algo-
rithms that alternate between classification and localization. This is especially
cumbersome on videos, due to the high number of degrees of freedom in voxel/
cuboid search. The MIL problem gets even harder if several instances have to occur
together in a bag to form a positive sample. This is the case of action recogni-
tion, since activities are typically defined by a collection of spatio-temporal parts
extracted from a video [5,7,12,13]. Thus, in order to provide accurate spatio-
temporal localization, activity parts cannot be labeled individually, but rather be
selected coherently throughout the entire dataset.
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Fig. 2. (a) Multiple instance learning has positive and negative bags, and the goal is
to identify positive instances in positive bags. Instead, our approach (b) clusters the
instances and (c) forces the labels to agree with the clustering output and bag labels.

We explore the fact that instances from the same class usually organize them-
selves into clusters [14-17] and that low-rank matrix completion [18] can exploit
low-rank subspaces to find relations between labels and features. Thus, we jointly
cluster instances into subspaces (Fig.2(b)) and label unknown instances consis-
tently with the clustering, while keeping negative bag instances as negative
(Fig. 2(c)). We demonstrate the effectiveness of our joint subspace clustering and
classification in weakly-supervised multi-label learning for video activity
recognition.

2 Related Work

Many researchers have addressed the problem of activity recognition in video
sequences by using space-time interest points [1,19], dense trajectories [5] and
discriminative space-time neighborhood features [20]. Some previous works have
also targeted the problem of spatio-temporal action segmentation and recognition.
Hoai et al. [21] recognized activities using a multi-class support vector machine
(SVM) and infer the temporal segments with dynamic programming. Lan et al. [8]
trained a latent SVM with a number of labeled and fully annotated videos, but
each video is assigned a single label. In [22], the authors propose a weakly super-
vised video action classification using a similarity constrained latent SVM. Tang
et al. [23] use a variable-duration hidden Markov model to build a model for each
video. Chen et al. [24] construct a space-time video graph and find the subgraph
that maximizes an activity classifier’s score. Siva et al. [10] extract potential action
cuboids and use genetic algorithms to select the best potential cuboids to learn a
SVM for recognition. In related work, [12] introduced spatio-temporal deformable
part models for activity recognition and localization.

Action localization is usually performed in the context of action detection, sep-
arate from the recognition phase (e.g., [25-29]). Raptis et al. [7] extract spatio-
temporal structures by forming clusters of trajectories. A graphical model is used
to recognize a collection of these clusters as a particular action. We share with [7]
the use of action parts, but they use graph search to correspond action parts and
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incorporate fully supervised data, while we perform subspace clustering in a
weakly-supervised setting. Ma et al. [30] use a two level hierarchical model for
activity localization, where each body part is associated with a rectangular box.
They first perform a video frame hierarchical segmentation and prune a candidate
segment tree. Then they extract hierarchical space-time segments for activity rec-
ognition via separate codebooks for root and parts.

Multiple-instance learning was initially proposed in [31] for the WSL problem
of predicting which configurations of a pharmaceutical drug are effective. Andrews
et al. [32] formulated a maximum margin MIL based on Support Vector Machines,
where sample labels are unobserved integer variables and the margin between
these is maximized directly. These MIL methods result in non-convex optimiza-
tion processes and thus are heavily dependent on initialization. WSL in computer
vision has been extensively studied, by generating spatio-temporal masks for obj-
ects in images and videos [33] from partially tagged Internet and YouTube
videos [34]. Since labeling video by annotating every single frame is a cumber-
some task, several WSL models have been developed for activity recognition and
event detection in videos (e.g., [8,30]). Tang et al. [17] propose a spatio-temporal
transductive and inductive object segment annotation from weakly-tagged videos.
Recently, several works have formulated the MIL and WSL problems as convex
problems (e.g., [35,36]). In [35] the authors have proposed a model based on cal-
culating likelihood ratios of instances using Support Vector Regression and clas-
sifying the bags into positive and negative with a binary SVM.

Our work is most similar to [14,18]. Liu et al. [14] is a low-rank subspace seg-
mentation algorithm and [18] a low-rank matrix completion (MC) framework for
classification. We propose a method that intertwines these two to perform simul-
taneous recognition and localization in videos. In [18] each image is represented
as a single column in the matrix, localization is performed in the image plane by a
bounding-box exhaustive search. However, in our method each video is composed
of several parts and supervision is weak and only labels entire videos. Transduc-
tion and clustering alone do not suffice, but together provide a selection coherent
for all parts in the dataset. This global context means selecting parts yields space-
time locations and activity labels.

3 Video Representation

In our method, each video in the dataset is treated as a collection of motion parts
[5,7,12,13]. Following [5,7], videos are represented by features extracted from
parts with dense motion trajectories. We perform a spatio-temporal segmentation
to obtain volumetric regions that have similar visual and motion characteristics.
Then, we extract trajectories using an optical flow tracker, and discard regions
with little or no movement. Finally, we group trajectories with similar behavior
into parts. Figure 3 illustrates this process in a sample video from the HOHA data-
set. Since trajectories are asynchronous and have different lengths, we define a dis-
tance to incorporate motion similarity and spatial closeness. For two trajectories
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Fig. 3. Left to right: Points tracked on a frame, extracted trajectories, trajectory groups.

A and B with points xa [t] and xg[t], we calculate their similarity on a temporal
overlap t € |1, 72| as’

d(A,B):(max ||XA[t]_xB[t]||2)x< . ||s<A[t]—me|2>’ n

te[T1,72] (TZ - 71)0[71,72]

where x[t] = x[t] — x[t — 1] denote velocities of the trajectory points and o[, )
is the local optical flow variance in the interval [r1,72]. In (1), the first term is
a measure of spatial distance while the second estimates distance in motion and
velocity. To group trajectories, we follow [7] and calculate the affinities between all
pairs of trajectories in a video, forming an affinity matrix, calculated as w(A, B) =
exp(—nd(A, B)). A normalized-cut clustering is then used to group the trajecto-
ries, where a Cattell’s scree test is used to determine the appropriate number of
clusters.

Each trajectory group forms a part that may or may not be associated to the
activities of interest. For instance, 23 parts appear in the video frame shown in
Fig. 3. Each part is represented by a histogram of oriented gradients (HoG), opti-
cal flow (HoF) [1] and oriented edges in the motion boundaries (HoMB) [5]. These
histograms are computed on a regular grid at three different scales. Each descrip-
tor (HoG, HoF, HoMB) uses an independent dictionary, obtained by performing
K-means on all the parts, and quantizing all descriptors to its closest ¢5 distance
dictionary element. The concatenation of all three histograms forms the group
(part) descriptor, hy, € R™. A video V; is described by concatenating its activity
parts, as Vz = [hh hgi . hkz]

4 Activity Recognition and Localization

In this section, we present our weakly-supervised learning algorithm for action
recognition and localization in video sequences. In our problem, we have several
training videos, each of which is labeled with one or more activities. However, no
spatio-temporal information exists on where the activities occur. Our task is to
classify whether unknown test videos contain those activities or not, and simulta-
neously localize them throughout the video. Our approach merges the advantages

! Bold capital letters denote matrices (e.g., D). All non-bold letters denote scalar vari-
ables. d;; denotes the scalar in the row ¢ and column jof D.(d1, d2) denotes the inner
product between two vectors d; and dz.||d||3 = (d,d) = ;d? denotes the squared
Euclidean Norm ofd. ||A||. designates the nuclear norm (sum of singular values) of A.
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of two recently proposed low-rank models: subspace segmentation [14] clusters
similar activity parts from all videos in the dataset, and a matrix completion
classifier [18] determines the activity labels they belong to, such that the label-
ing is consistent throughout the entire dataset.

Let m be the number of different activity classes, n the dimensionality of the
feature space, and Ny, Nis; the number of training and testing parts, respectively.
For the classification task, we can define a matrix Dg as

Dy Yir Yot
Do = |Dx| = | Xer Xist |, (2)
D, 17

where Y € R™Nir and Yige € R™*Nest are the training and test labels and
Xip € RPVir and Xy € R™*Nest are the training and test feature vectors,
respectively. Hence, Dy, Dx and D4 denote the label, feature and last rows of D,
respectively. As noted by Cabral et al. [18], if a linear classification model holds,
Dy is rank deficient. Therefore, classification can be posed as a matrix comple-
tion problem of filling the missing entries in Y;s such that the nuclear norm of
Dy (a convex approximation of its rank) is minimized. To deal with noise and out-
liers in the data, we can incorporate an error term E™€ in the known feature and
training label entries,

Yir Yist Ey,, O
D=Dg+E™ = |X; Xgst|+| Ex (3)
1T OT

and the classification process can be posed as finding the best Yis¢ and the error
matrix E™€ such that the rank of D is minimized.

As discussed in Sect. 3, each video V; is represented by the histograms of its
activity parts. If labels were provided for each part in training, we could construct
Dy by setting each column to the features corresponding to one activity part and
its respective {0,1}™ label vector. However, in our case supervision is weak and
labels are only provided for entire videos. Thus, simply labeling parts with all class
labels present in the video they originate from is insufficient for obtaining correct
part level classifications.

Instead, to identify the parts that comprise each activity class, we can also
exploit the fact that activity parts from the same class likely cluster together. This
can be formulated as a segmentation of feature vectors into low-rank subspaces,
using a Low-Rank Representation (LRR) [14]. Since Dx contains the feature vec-
tors for all videos in the dataset, we can cluster activity parts by computing a
low-rank similarity matrix Z, as

min 1Z]] 4+ AE |21,
ZyElrr (4)
subject to Dx = DxZ + E"",

where E is the LRR [14] error matrix and ) is a balancing parameter between
low-rank and error fit. Z is indicative of the similarity between each activity part
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in Dx and thus can be used as an additional cue to weak supervision for classi-
fying which parts constitute which activities. Using the similarity matrix Z, we
can apply a clustering method such as Normalized Cuts to group similar activity
parts in all train/test videos. The output of this clustering method is a n, x N
binary matrix Q, where n. is the number of clusters. Each row of Q corresponds
to one cluster, with ¢;; = 1 if the j* activity part belongs to the i*"cluster, and 0
otherwise.

Below, we show that these matrix completion classification and subspace clus-
tering steps can be done jointly, so that labels are consistent within clusters and
vice-versa.

4.1 Joint Classification and Clustering

With the matrix completion and subspace segmentation defined as above, we can
simultaneously obtain a low-rank representation of the feature vector matrix Dx,
and correct and complete the labels in Dy = [Yy,, Yist]. Our activity classifica-
tion problem can be defined as minimizing the rank of D for determining the part
labels, while at the same time ensuring the labels are consistent with the cluster-
ing Q obtained from the low-rank representation Z of the parts Dx. If we define
Qv as the set of known label entries in Dy, this objective can be written as

min D[« + [ Z]l + A[Ex|2,1
+o1 Y eyldijian) +p2 Y ey(dig,doij) (5)

i,JEDvy 1,JE€EQy
subject to D =Dg + E™,D; =1",Dx = DxZ + Ex,

where ¢y (a,b) = log (1 +exp(—(2b —1)(a —b))) is a logistic loss function that
penalizes entries of different classes. 7, A, p1, p2 are positive trade-off parameters.
k is the most similar cluster to label 4, calculated as k = argminj’ ; Cy (dij, qrj)-

With the objective in (5), the first term seeks a low-rank D matrix so that
labels can be expressed as a linear combination of features. The second establishes
a low-rank representation Z for subspace clustering. The third term controls the
level of noise in the clustering. The fourth term nudges the labels in Dy the direc-
tion suggested by the clustering Q and the fifth term regularizes changes on known
training labels Y, in the matrix completion. Therefore, we are seeking to achieve
a consensus between the clustering and classification outputs. The intersection of
these two tasks is incorporated by the fourth term, where inconsistent clustering
outputs and labels are penalized. The minimization process will aim towards una-
nimity between the two and the least label changing in Y¢,. Also, notice that in
the process of joint minimization, both classification and clustering tasks share the
feature error matrix, resulting in less variables than used when optimizing both
objectives separately.

The objective in (5) can be optimized using an Alternating Direction Method
of multipliers (ADMM) [37]. When it converges, the labels in Yist corresponding
to each activity part indicate its action label(s) and the columns with that label are
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the parts associated to that specific activity. The highest computational complex-
ity step in solving (5) with an ADMM is a SVD of D, but scalable SVD/ADMM
methods are currently being researched heavily [38].

Asin Dy, each instance is assigned a set of labels, each of which belongs to an
independent activity class. This enables us to model multi-label MIL problems.
Many previous works have exploring the dependence among the labels [39,40].
But when the labels are incomplete (weakly-supervised) the task is harder. As
also explored in previous works [18,41], the low rank assumption of the matrix
D resembles a linear dependence among the labels and the feature vectors. We
evaluate our multi-label setting in a weakly-supervised video activity recognition
and localization.

5 Experiments

To evaluate the proposed technique, we set up several experiments on various syn-
thetic and real datasets. Since our approach performs clustering and classification
simultaneously, one might conceive that we could first run clustering and then
use matrix completion for obtaining the labels. Thus, as a baseline, we derive a
low-rank representation [14] of matrix Dx and then run matrix completion while
incorporating the feature error term in the matrix completion formulation
(LRRMC). We also compare the performance of our method to using just matrix
completion (MC) of [18] for classification as described in Sect. 4 to show that solely
relying on a weakly supervised labeling for part classification does not work, and
the well-known MI-SVM [32], with RBF kernel.

In each iteration of (5), we obtain the clustering Q using n. = 2m clusters
to account for intra-class variability, and use as parameters v = 0.9, p; = 1.5,
P2 € {10_37 1072,1071, 1}. For experiments on activity recognition datasets, to
ensure direct comparability with state of the art methods, we follow the setup of
[7] for obtaining and describing activity parts, as described in Sect. 3. Each part

100 ®
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5 60 N
Q —@—  Proposed
< —%— LRRMC ”\¥

40 MI-SVM [33]
— MC

0 0.2 0.4 0.6 0.8 1
Probability of corruption (p)

Fig. 4. Accuracy comparison according to corruption probability p on synthetic data.
This figure shows the means and standard deviations for three different runs.
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is represented by histogram of oriented gradients (HoG), histogram of optical flow
(HoF) [1] and histogram of the oriented edges in the motion boundaries (HoMB) [5]
descriptors, with 500, 500, 300 dimensions respectively.

5.1 Synthetic Data

First, in order to validate the proposed algorithm, we construct 10 independent
subspaces of dimensionality 100 (as described in [14]). The first five subspaces form
our desired positive classes and the second five, negative. We create 100 positive
and 100 negative bags, with size 10, and sample instances from the above sub-
spaces. Positive bags, as in MIL, are composed of uniformly distributed positive
and negative instances. We corrupt each sampled instance x with probability p,
by adding Gaussian noise with zero mean and variance 0.3||x||. The performance
of the proposed method is compared with LRRMC, MI-SVM and matrix com-
pletion (MC) [18], as illustrated in Fig. 4 for different probabilities of corruption
and noise. The performance of our method is much better when the noise level
increases in the data. As mentioned in Sect. 4, MC yields worse results since it
fully relies on the initial labeling, which is not accurate enough due to its weakly
supervised nature. Our method performs a joint clustering and classification of
the data and detects noise and outliers in both tasks collaboratively. In LRRMC
these are done separately. Thus, our method deals better with noise in the data.

5.2 Action Recognition and Localization

Three popular activity recognition datasets are used: MSR-II [6], HOHA [1] and
UCF sports [3] action datasets. MSR-II action dataset 2 contains 54 videos with
three action categories: boxing, clapping and hand-waving. In this dataset, some
of the videos contain multiple actions and some with actions even occurring at the
same time. The HOHA (Hollywoodl Human Action) dataset contains 430 videos.
Each video contains significant camera motion, rapid scene changes and occasion-
ally significant clutter. Furthermore, actions in this dataset are performed in dif-
ferent conditions, and many actions are defined by the interactions between the
subjects and /or objects. These factors make this dataset particularly challenging.
The UCF sports dataset consists of 150 videos extracted from sports broadcasts.
Video in this dataset contain camera motions and many different lighting and cap-
turing conditions, as well as large displacements of most of the actions, cluttered
backgrounds, and large intra-class variability.

100

80 B o

60 B MI-SsVM[10]
40 Sivaeral. [10]
20 B Tioneral. (2]
0

Yuan et al. [43]

Accuracy

Boxing Clapping Hand-waving

Fig. 5. Per-class recognition accuracy for MSR-II dataset.
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Table 1. Recognition results on MSR-II dataset. Cross dataset methods are trained on
KTH dataset, which only contains actions with little background motion.

Method Supervision Accuracy
Siva et al. [10] | Weak 71.2%
MI-SVM [10] | Weak 55.8%
Tian et al. [42] | Full (Cross dataset) | 78.8 %
MC Weak 411%
LRRMC Weak 54.9 %
Our Method | Weak 83.1%

Recognition: Tests on each of the datasets have separate experimental settings
to facilitate comparisons with reference methods. We compare our recognition
model with state-of-the-art models reported in the literature and with the same
baselines described in the synthetic tests of Sect. 5.1. The final classification step
in our model is performed via a thresholding procedure, where labels above a com-
mon threshold are selected.

MSR-II dataset- For the experiments on this dataset, a two-to-one random divi-
sion of all videos in the dataset creates the training and testing sets. This dataset
contains videos with multiple actions happening in the video and, in some cases,
being performed at the same time, which can challenge our multi-label classifica-
tion framework. Some of the videos in this dataset contain several instances of all
activities. Since we expect a single instance of each activity class in the video, the
videos are split such that each video contains only one instance of each activity
class, but allowing for several activities from different classes. Figure 5 shows our
per-class accuracy results compared to the MI-SVM model [32]. Table 1 shows the
recognition accuracy results compared to state-of-the-art methods on this dataset.
The supervision column shows the level of supervision used in the training phase:
fully supervised methods know spatio-temporal bounding boxes of activity loca-
tions, whereas weakly-supervised methods use only the label(s).

HOHA dataset- In this experiment the test set has 211 videos with 217 labels and
the training set has 219 videos with 231 labels, all manually annotated [7]. Figure 6
shows the per-class accuracy results for this dataset. This dataset is very challeng-
ing for activity recognition, due to the large amount of clutter and motion in the
camera. Our approach is comparable with results from state-of-the-art methods
designed specifically for this dataset, improving them by a slight margin. Table 2
gives the overall accuracy results compared to some other methods on this dataset.

UCF Sports dataset - We split this dataset into 103 training and 47 test samples,
follwing the setup described in [7,8]. This separation minimizes the strong corre-
lation of background cues between the testing and training set [7]. Some results on
this dataset report leave-one-out-cross-validation (LOOCYV) performance, which
may take into account the similarity of the background instead of the activity
itself. In this dataset the background is very similar for sports of the same kind,
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Fig. 6. Per-class recognition for HOHA dataset.

Table 2. Recognition results on HOHA dataset.

Method Supervision | Accuracy
Klaeser et al. [45] Full 27.3%
Laptev et al. [1] Full 38.4%
Matikainen et al. [44] | Full 22.8%
Raptis et al. [7] Full 40.1%
Wu et al. [46] Full 47.6 %
MC Weak 22.3%
LRRMC Weak 29.8%
Our Method Weak 48.5%

which affects the activity recognition rates. Figure 7 depicts the per-class classifi-
cation accuracy for this dataset. As shown, our method outperforms the BoW-+
SVM model in almost all classes. As shown in Table 3, the overall recognition rate
of our method is also competitive with the state-of-the-art. The upper part of
the table compares our results with state-of-the-art methods’ reported results for
the same training and testing dataset split. Our method outperforms all of these
works. The lower part of the table shows results from works that use LOOCV,
which generally achieve better results. Our split is much harder and the difference
between the results is expected. Notwithstanding a more difficult test scenario, our
results are still comparable to these works.

Spatio-Temporal Localization: The second function of our method is the
spatio-temporal localization of the activity in the video sequence. In order to
assess spatio-temporal localization directly against reported state-of-the-art met-
hods, we employ three metrics for assessing localization performance: (1) inter-
section-over-union using the selected positive parts (IOU), (2) average precision
(AP) of part classification based on ground truth spatio-temporal annotations,
and (3) the localization score, defined as in [7]. The latter is defined as the aver-
age ratio of the sets of points inside the annotated ground truth bounding box and
the set of points of the selected trajectory group for each frame. If the detected
activity part(s) throughout the video have at least a § overlap with the annotated
ground truth bounding box (score > #), the recognition/localization is consid-
ered as correct. The results are compared to the state-of-the-art methods in the
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Fig. 7. Per-class recognition results for UCF Sports dataset.

Table 3. Recognition results on UCF Sports. Upper part: Results with 103:47 dataset
split. Lower part: Results with LOOCV.

Method Supervision | Accuracy
Lan et al. [8] Full 73.1%
Raptis et al. [7] Full 79.4%
Tian et al. [12] Full 75.2%
Ma et al. [30] Weak 81.7%
MC Weak 59.8%
LRRMC Weak 71.2%
Our Method Weak 86.9%
Le et al. [47] Full 86.5 %
Wang et al. [19] Full 85.6 %
Wang et al. [5] Full 88.2%
Wang et al. [48] Full 89.1%
Kovashka and Grauman [20] | Full 87.3%

Table 4. Action localization AP on the MSR-II dataset. Cross dataset methods are
trained on KTH dataset, which only contains actions with little background motion.

Method Supervision Clapping | Boxing | Handwaving
Siva et al. [10] | Full 0.602 0.694 | 0.700
Siva et al. [10] | Weak 0.326 0.658 |0.799
Cao et al. [6] | Full (Cross Dataset) | 0.125 0.144 | 0.242
Tian et al. [12] | Full (Cross Dataset) | 0.239 0.389 |0.447
Our Method | Weak 0.569 0.724 0.811

literature, using IOU, AP or localization score, where available. Tables4, 5 and 6
show results on MSR-IT, HOHA and UCF Sports datasets, respectively. Since [§]
only provides localization results on a subset of frames, we also include results on
this subset for comparison. The average recognition /localization accuracies for the
experiments on the datasets as a function of § are illustrated in Fig. 8. Some results
are shown in Fig. 9.
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Table 5. Localization comparisons for HOHA dataset.

Method Supervision | Localization score | Mean IOU
0=01/60=1

Raptis et al. [7] | Full 54.3% |28.6% |-

Our Method Weak 56.2% 1 21.0% 42.9%

Table 6. Average localization IOU on the UCF Sports dataset. Note that [25] and [8]
use the bounding box annotations during the training,while ours is weakly-supervised.

Action | Subset of frames All frames

[25] |[8] |[30] |Ours|[25] |[8]|[30] |Ours
Diving |36.5 [43.4|46.744.8 |37.0 |— |44.343.7
Golf - 37.1151.3 | 53.1 |- - |50.5 | 52.3
Kicking | — 36.850.6 | 54.3 |- - |48.3 | 52.9
Lifting |- 68.8155.0 169.0 |- - |51.4 1 63.5

H-Ride [68.1/21.9/29.5 |34.5 64.0|— |30.6 325
Running | 61.4|20.1|34.3 |31.2 |{61.9 — |33.1 |30.1

Skating |- 13.0140.0 |45.5 |- - |38.5 |43.2
Swing-B | - 32.754.8 | 57.1 |~ - 1543 |57.5
Swing-S |- 16.4119.3 | 48.7 | - - 120.6 44.1
Walking | - 28.3139.5 |47.5 | — - 139.0 |47.1
Avg. - 31.8/42.1 | 51.3 | — — [41.0 | 46.7

Experimental Results Discussion: Our experiments show that the proposed
joint process in (5) significantly improves results, when compared to the baselines
of MC and performing clustering and classification steps separately (LRRMC).
We note that the multi-label nature of our method allows us to provide results for
simultaneous actions on the MSR-II dataset, as seen on Fig. 9. An important note
on the recognition results, is that our method performed competitively even with
those specifically focused for recognition (i.e., that do not perform any localiza-
tion of the activity) and methods that train with fully annotated datasets. This is
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i W“ ¢
(a) HOHA Dataset

(c) MSR-II Action Dataset

Fig. 9. Recognition and localization results on action recognition datasets. Each result
from a test video is illustrated in a pair of images, first of which is a sample frame
of the video containing the action of the interest. The trajectory groups are shown on
this image, each with a different color. The second image shows the selected trajectory
group(s) by our algorithm. (a) results from the HOHA dataset, (b) results from the UCF
Sports dataset, and (c) results from MSR-II action datset.
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despite the fact that when using the whole frame or video features for recognition,
we are dealing with many outliers and significant noise. Furthermore, our model
extracts the exact spatio-temporal segmentation of the activity, rather than a sim-
ple bounding box, cuboid or voxel representation, as opposed to many previous
works. We improve the recognition results on all datasets, and also achieve good
localization scores. We believe these could be improved further if more accurate
spatio-temporal annotations in the datasets were used as ground truth instead of
bounding boxes.

As could be seen, our method achieved much better results compared to many
state-of-the-art methods. This is basically due to two important properties of our
method. Our method deals with errors and outliers in the feature vectors and the
labels. As could be seen in (5) we extract the erroneous elements as well in the
process of minimizing the matrix ranks. The error for both LRR and MC are incor-
porated simultaneously, which tend to correct one another in the process. On the
other hand, our method labels the actions via transduction, which alone improves
the results compared to inductive approaches. There are no separate train and
test phases and our approach incorporates activity parts and information from
the whole dataset when minimizing the nuclear norm and deciding on the instance
classes.

6 Conclusions

In this paper, we have proposed a low-rank formulation for weakly supervised
learning and have applied it to the challenging problem of activity recognition.
Our approach uses a simultaneous convex matrix completion and LRR subspace
clustering framework to recover the labels for the test videos and localize the
spatio-temporal extent of activities throughout each video. Interactions between
the activity parts are globally modeled throughout the entire dataset using the
subspace clustering procedure, while the matrix completion framework labels the
activities ensuring that labeling is consistent within clusters and vice-versa. Our
experiments show this joint process significantly improves results, when compared
to performing clustering and classification steps separately. Moreover, it attains
performances comparable to state-of-the-art methods for classification and local-
ization in all three datasets tested.

Unlike typical MIL approaches, our method to be naturally multi-label and is
able to handle video sequences where several activity parts have to occur together
in a bag to define an action, and actions occur simultaneously in different spatial
locations.

As a direction for future work, we intend to apply and develop incremental
procedures for the training and testing and exploit parallel algorithms for the SVD
operations needed to optimize (5), such as in [38], in order to decrease processing
time.
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