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Abstract. Recent years have seen many complex models proposed for
salient object detection and progressing results. However, less has been
done to justify the need for such complex models as there lacks sufficient
comparison to simple baselines on more challenging datasets. In this
work, we propose a new baseline method for saliency detection. It simply
considers a large region close to the image center as salient, and defines
the saliency of a region as the product of its size and centerness. As
accurate image segmentation problem is difficult by itself, we propose
novel techniques that can estimate these attributes using superpixels in
a soft manner, without the need to perform hard image segmentation.
Our approach is based on very simple concepts and implementation,
but already achieves very competitive results, especially on challenging
datasets. It is further shown highly complementary with the state-of-
the-art. Therefore we believe our method serves as a strong baseline and
would enhance the problem understanding for future work.

1 Introduction

Salient object detection has attracted a lot of research interests in recent years [1].
The problem is inherently ambiguous since there lacks common definitions and
criteria of “what a salient object is”. Consequently, the research in this area
presents a great amount of diversity, from low level features to high level method-
ologies. While many new methods have been proposed and steady improvements
in evaluation have been shown, it is still unclear to tell how well and to what
extent this problem has been solved.

We observed two issues in the current field: complex methodologies and insuf-
ficient evaluation. First, recent works adopt more complex models. The saliency
models have evolved from the earlier simple contrast based methods [2–5] and
frequency analysis based methods [6,7], to more complex ones such as gaussian
mixture appearance models [8], low rank matrix recovery [9], multi-scale segmen-
tation and optimization [10], graph based manifold ranking [11], formulation as
a submodular optimization [12], hypergraph modelling [13], Markov Chain [14],
learning based [15], and fusion of multiple models [16]. All of these models are
well motivated and explained from their own viewpoints, and have been shown
working well. However, due to their high complexities and large differences, it is
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Fig. 1. Saliency detection results on challenging examples. (a) input images; (b) ground
truth; (c)–(e) results from the state-of-the-art methods [10,11,19]; (f) our results.

very hard to find how different methods are related and identify what is really
working for saliency detection. In other words, it is unclear whether such high
complexities are essential or not.

The second issue is that evaluation is mostly performed on the simple ASD [7]
or MSRA [2] datasets. It has been well recognized that these datasets are biased
to contain a large object near the image center with strong contrast to the
background, thus too simple. Although several other more challenging datasets
have been proposed, such as SED1 [17], SED2 [17], SOD [18], and ECSSD [10],
they are less used in evaluation. While the performance on the simple ASD
dataset nowadays is close to saturate, it is relatively unclear whether the good
models on ASD can be generalized to more challenging datasets.

This work is a try to address the above two issues by proposing a simple
baseline method and showing strong results. Our method just uses two basic
concepts: the size and location of a region for determining its saliency. Observing
that larger image regions closer to the image center are more salient, we define
the saliency of a region as the product of its size and centerness. Our definition
is intuitive and consistent with human visual perception. The problem is how to
compute such concepts reliably.

Region size is clearly informative but has been rarely used before. This is prob-
ably because accurate image segmentation problem itself is difficult and there is
no good enough segmentation algorithm. While region center has been well known
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to be useful for saliency estimation, its usage in previous work is usually overly
simple, non-adaptive (such as a gaussian centered on the image) and does not work
well for images with different spatial object/background compositions. Our app-
roach is based on a key observation that geodesic distances between image super-
pixels essentially encode the segmentation information. We therefore propose a
superpixel based and unified geodesic filtering framework to compute these con-
cepts in a simple and robust manner: (1) it computes approximate region sizes
without actually performing image segmentation; (2) it estimates relative region
locations with respect to the image center adaptively.

We treat our approach as a baseline because both its concept and imple-
mentation is simple, and it can be easily extended or combined with more
sophisticated models. Nevertheless, our results are quite strong and encourag-
ing. Extensive experimental comparisons on all above datasets show that our
method compares favorably with many recent state-of-the-art complex models.
Specifically, it is the best on SED2 [17] and SOD [18], and the second best on
SED1 [17]. The examples in Fig. 1 show different challenges for previous meth-
ods: low-contrast object (fish, boat), high-contrast but off-center background
region (green leaf), complex object/background composition (film), and multi-
ple small objects (beach). Our method works well on such difficult examples
while previous methods produce noisy results.

The second encouraging finding is that, after simply combining our results
with others, all previous methods are significantly improved and new state-of-
the-art results are achieved. Furthermore, the gaps between them before com-
bination are also reduced. This illustrates that these concepts underlying our
approach are highly effective and complementary to previous works.

To summarize, this work tackles the saliency detection problem using a basic
principle: a large and central region is salient. Our baseline compares favorably
and is highly complementary with much more sophisticated models across var-
ious datasets. The simplicity, when equipped with strong results, convinces us
that the proposed concepts reveal more the essence of saliency detection problem
and challenge the necessity of adopting more complex models. Besides the tech-
nical contribution, we also expect this work to inspire the field and encourage
beneficial changes in mindset.

2 Geodesic Connectivity and Filtering

The geometric attributes such as size and location of an image region are impor-
tant for determining its saliency. However, extracting good image regions is a
challenging problem by itself. All off-the-shelf image segmentation algorithms
have the similar problems of how to choose appropriate parameters automati-
cally. Usually, the same parameters could produce different results over different
images and this in turn leads to unstable region attributes.

We present simple methods to estimate the size and location of an image
region, without actually performing an image segmentation, thus alleviating the
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above problems. It performs on a regular superpixel image representation. The
parameters are easy-to-set and the results are stable. It is based on a continuous
measure of how well any two superpixels are spatially connected, called geodesic
connectivity in this work. Based on the connectivity measure, we further define
a basic operation, called geodesic filtering.

An image is first decomposed into a few hundreds of superpixels (200 in
our implementation) of similar sizes and regular boundaries, using the recent
SLIC algorithm [20]. An undirected weighted graph is created by connecting
adjacent superpixels. The edge weight wi,j between superpixels i and j is the
Euclidean distance between the average colors of the superpixels in CIELab color
space. The geodesic distance, or the length of the shortest path, between any
two superpixels geo dist(i, j) is defined as

geo dist(i, j) = min
i=v1,v2,...,vn=j

n−1∑

k=1

wvk,vk+1 (1)

where v1, v2, ..., vn is a path in the graph linking nodes i and j. Without loss of
generality, geo dist(i, i) is defined as 0. We then define the geodesic connectivity
measure as

geo con(i, j) = exp(−geo dist2(i, j)
2σ2

) (2)

The geodesic distance measures the accumulated differences in appearance
between two superpixels and the geodesic connectivity characterizes how well
they are spatially connected. For the superpixels in the same homogeneous
region, the geodesic distance is close to 0 and the connectivity is close to 1. Oth-
erwise, the geodesic distance is large and the connectivity is close to 0. Thus, a
superpixel only has large connectivity values for superpixels in the same homo-
geneous region, and has near zero connectivity values for the other superpixels.
Noting this, the geodesic connectivity measure actually encodes the information
of image segmentation in an implicit and soft manner. It is intuitive, easy-to-
implement, and stable. The only important parameter is σ. We found that the
performance is stable when σ ∈ [10, 20]. It is set to 15 empirically.

We then define a geodesic filtering process to measure the properties of image
regions from superpixels. Suppose we have a primitive region property map M
in superpixel representation, that is, M(i) is the property value of superpixel
i, the geodesic filtering computes the property of the region that superpixel i
belongs to as

GF(M, i) =

∑N
j=1 geo con(i, j) × M(j)

∑N
j=1 geo con(i, j)

(3)

where N is the number of superpixels.
Equation (3) is a global filtering of the property map M using geodesic con-

nectivity as weights. It aggregates and smoothes the property values within the
same homogeneous region. After filtering, all superpixels in the same region have
similar property values of that region. By removing the normalization part (the
denominator) in Eq. (3), we obtain an un-normalized version of the filtering,
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Fig. 2. Illustration of centerness computation. (a) input images; (b) superpixel based
gaussian mapCgau; (c) geodesic filtered gaussian map SCgau in Eq. (4); (d) image bound-
ary based centerness map Cbnd in Eq. (5); (e) our final centerness map C in Eq. (6).

denote as G̃F . It performs summation instead of averaging. Compared to using
a hard image segmentation, our method usually produces smoother and more
stable results. The example results before and after geodesic filtering are shown
in Figs. 2(b) and (c).

We note that the geodesic saliency propagation approach in [21] shares cer-
tain similarity with our work because it essentially applies geodesic filtering to
refine an input coarse saliency map. It therefore can be considered as a post-
processing and a special case of ours. By contrast, our approach is motivated
and derived from a more general viewpoint: we analyze the relation of geodesic
distance and segmentation, and generalize the geodesic filtering as a framework
to compute more useful region properties (size and centerness) for saliency esti-
mation, which are novel and effective.

3 Our Approach

3.1 Adaptive Computation of Region Centerness

Many saliency methods are biased to assign image center regions with higher salie-
ncy. However, previous methods simply use a gaussian fall-off map with mean at
the image center and a fixed radius. Such a map does not consider the image con-
tent and is problematic for off-center objects or multiple objects. Some methods
re-estimate the mean and radius of the gaussian map from an initial saliency map
and then refine the saliency map accordingly. This strategy is still not suitable for
multiple objects and highly depends on the quality of the initial saliency map.

We propose a simple adaptive method to compute the centerness of image
regions that alleviates the above problems. We start with a gaussian fall-off map
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with mean at image center and standard deviation equals to 10% of the image
dimension (the shorter of image width and height). This gaussian map is then
turned into a superpixel based version: all the pixels in the same superpixel have
their values averaged. We denote the superpixel based gaussian map as Cgau.
It is exemplified in Fig. 2(b). This map is blocky and uneven in homogeneous
image regions. It is then smoothed using geodesic filtering as

SCgau = GF(Cgau) (4)

The smoothed maps are shown in Fig. 2(c). It is much better but still unsatis-
factory because the large background regions usually cover the central parts of
the gaussian map and still have large ‘centerness’ values.

To reduce such errors, we notice that the large background regions also touch
the image boundaries. However, special care should be taken because the objects
often also do. We further notice that background regions are more widely distrib-
uted and more heavily connected to image boundaries than objects: an object
seldom touches different sides of the image boundary, while background usually
does. We then define a new centerness map Cbnd with respect to the four sides of
the image boundary, where the value of a superpixel i is computed by considering
its geodesic distances to the four sides,

Cbnd(i) = 4
√

L(i) × T (i) × R(i) × B(i) (5)

where L(i), T (i),R(i), and B(i) are the geodesic distances of superpixel i to the
left, top, right, and bottom boundaries, respectively. We add a small constant
value to the four distances to avoid the degenerate case when they are equal to 0.
Example results of Cbnd are shown in Fig. 2(d). The large background regions in
Fig. 2(c) are suppressed accordingly.

Our measure in Eq. (5) differs from the work in [11,22] in tricky but important
ways. This is illustrated in Fig. 3. The method in [22] simply uses the geodesic
distance of a superpixel to the entire image boundary. This is very sensitive
for touching-boundary objects, as shown in Fig. 3(b). The method in [11] uses
the four boundaries separately in its first stage. However, it does not exploit
the concept of geodesic connectivity but uses a complex optimization based on
manifold ranking. This usually produces results that are hard to understand,
as shown in Fig. 3(c). By contrast, our measure better retains the boundary-
touching objects and removes most large backgrounds, as shown in Fig. 3(d).

The two centerness maps in Eqs. (4) and (5) are complementary. Our final
centerness map is obtained as the product of the two,

C = SCgau × Cbnd (6)

Example centerness maps are shown in Fig. 2(e). It is more reasonable than the
maps in Figs. 2(c) and (d): the objects in the image center are of higher values
and large backgrounds are removed.

Our centerness measure in Eq. (6) is highly adaptive to the image content. It
can naturally capture off-center objects and multiple objects, as exemplified in
Figs. 1, 2 and 3. This is mainly why our approach outperforms previous methods
on images with multiple objects.
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Fig. 3. Illustration of the advantage of our centerness map Cbnd. (a) input images; (b)
results in [22]; (c) first stage results in [11]; (d) our results of Cbnd in Eq. (5).

3.2 Approximate Computation of Region Size

Although the concept of region size is intuitive, it is seldom used in previous
work. One possible reason is that it is almost impossible to compute the region
size accurately, as image segmentation could be unstable and generate inaccurate
regions.

We point out that an accurate segmentation may be unnecessary. Since the
superpixels are of similar sizes and shapes, our basic idea is to count the number
of superpixels in a homogeneous region and use it as an approximate size of the
region. This is done in a soft manner using the geodesic filtering approach in
Sect. 2. Let N be the number of superpixels, we denote U as a uniform map that
has the same normalized area 1

N for all the superpixels. We compute the region
size map as

A = G̃F(U) (7)

Note that we use the un-normalized version of geodesic filtering so for each
superpixel it “sums” all superpixels in the same homogeneous region of it, which
is the region size. Compared to hard image segmentation methods, our “soft”
approach produces more stable and smoother results. This is exemplified in
Fig. 4. We tested one of the most widely used image segmentation method in [23].
It has a few parameters. We tried different values and found it is hard to find
common parameters that produce reasonable results for different images. We
also tried normalized cut and mean shift segmentation algorithms, and found the
similar problem. By contrast, our method computes stable and smooth region
size maps and does not have the difficult parameter selection problem.

Our final saliency map is simply defined as the product of region size and
centerness, as

S(i) = C(i) ×
√

A(i) (8)

Note that we use the square root of region size to make the product less sensitive
to the region size, which is found useful heuristically.
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Fig. 4. (Better viewed in color) Example results of computing regions’ size using a
segmentation method and our method. (a) input images; (b) – (d) region size maps
using the segmentation method in [23] with different parameters; (e) region size map
of our method. The region size values are normalized to [0, 1] and visualized in color
(Color figure online).

4 Experiments

In the experiments, we use six standard benchmark datasets, ASD [7], MSRA [2],
SED1 [17], SED2 [17], SOD [18] and ECSSD [10]. ASD [7] and MSRA [2] are rel-
atively simple as there is only one large object near the image center. Note that
we obtain the pixel-wise labeling of the MSRA dataset from [15]. The remain-
ing four datasets are more challenging. SED1 [17] and SED2 [17] each contain
100 images with great diversity in object sizes and locations. SOD [18] includes
300 images of complex scenes and multiple objects. It is considered as the most
difficult dataset in [1]. ECSSD [10] is a recent dataset extended from CSSD [10].
It includes 1000 images of complex scenes.

We use the standard precision-recall curves (PR curves) and F-measures as
evaluation metrics. Given a saliency map, a PR curve is obtained by generating
binary masks with a threshold varying from 0 to 255 and comparing these masks
against the ground truth. The PR curves are then averaged on each dataset. We
follow [7] to compute F measure. For each saliency map, an adaptive thresh-
old (1.5 times of the average saliency) is used to generate a binary mask and
precision/recall value. F-measure is then computed as

Fβ =

(
1 + β2

)
× Precision × Recall

β2 × Precision + Recall
(9)

We set β2 = 0.3 as in [7] to highlight precision.
We compare with eight recent state-of-the-art methods: saliency filter (SF) [5],

geodesic saliency (GS SP, short for GS) [22], soft image abstraction (SIA) [8], low
rank saliency (LRS) [9], hierarchical saliency (HS) [10], dense and sparse recon-
struction (DSR) [19], salient region detection by UFO (UFO) [16] and manifold
ranking (MR) [11]. There are many other methods in the literature. They are
worse than the above methods and not compared for conciseness.
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4.1 Comparison with State-of-the-art

Our baseline method is compared with the eight methods. Those methods are
also combined with ours, by simply multiplying the two saliency maps. Figure 5
reports the PR curves and F-measures of all methods on all datasets, before and
after combining our method.

We can make several interesting observations. Firstly, our method compares
favorably with previous works. Besides ASD dataset, our method is always at
the top for the other five datasets. Specifically, it is the best on SED2 [17]
and SOD [18], and the second best on SED1 [17] in terms of F-measures. We
conjecture that this is because other complex methods are more or less over
fitted to the simple ASD dataset and do not generalize as well to others. Secondly,
after combination all previous methods are significantly improved. The improved
results are new state-of-the-art on all datasets. This indicates that our method
is highly complementary to previous methods. Especially, SF, GS, SIA and LRS
are all improved to a large extent. Lastly, the performance gaps between previous
methods are much smaller after combination. For example, while GS and LRS
are much worse before combination, they are mostly comparable to the best
methods after being improved. Example results of previous methods before and
after combining our approach are shown in Fig. 6.

Table 1. The F-measure improvements on different datasets and overall, caused by
combining one method to all the other methods, averaged on all other methods. The
top two most complementary methods on each dataset are highlighted in bold and
underlined bold, respectively.

ASD [7] MSRA [2] SED1 [17] SED2 [17] SOD [18] ECSSD [10] All

SF [5] 0.0295 −0.0184 −0.1026 0.0537 −0.0582 −0.0686 −0.0274

GS [22] 0.0510 0.0450 0.0237 0.0505 0.0415 0.0356 0.0412

MR [11] 0.0783 0.0693 0.0618 0.0378 0.0528 0.0675 0.0613

DSR [19] 0.0632 0.0659 0.0538 0.0594 0.0653 0.0753 0.0638

LRS [9] 0.0377 0.0361 0.0059 0.0307 0.0237 0.0298 0.0273

UFO [16] 0.0675 0.0594 0.0298 0.0347 0.0301 0.0465 0.0447

SIA [8] 0.0422 0.0314 0.0342 0.0153 −0.0054 0.0135 0.0219

HS [10] 0.0654 0.0586 0.0505 0.0508 0.0430 0.0565 0.0541

Ours 0.0682 0.0699 0.0697 0.0882 0.0647 0.0742 0.0725

Table 2. Average running time (seconds per image) of different methods, tested on an
Intel 3.39GHz Quad-core CPU. For previous methods, we obtained the implementation
from the original authors. SIA and HS are in C++ and others are in Matlab.

Ours SF [5] GS [22] MR [11] DSR [19] LRS [9] UFO [16] SIA [8] HS [10]

0.260 0.248 0.323 0.825 4.686 12.147 19.209 0.022 0.217
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Fig. 5. (Better viewed in color) Precision-recall curves (left, middle) and F-measures
(right) of various methods. In the PR curves, results of dotted lines and (*) are obtained
by combining our results. In the F-measure, the circle and cross markers are the results
before and after combining ours, respectively (Color figure online).
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Fig. 6. Example results of eight state-of-the-art methods. For each image, the first row
shows the input image and their original results. The second row shows the ground
truth and their improved results after combining our approach.
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Fig. 7. The relative improvement of F-measure of eight methods caused by our method,
our method without using boundary based centerness Cbnd, our method without using
smoothed gaussian centerness SCgau, and our method without using region size.

We note that it is possible that combining any two good models could produce
improvement, as pointed out in [1]. To truly and fairly evaluate how complemen-
tary one method is, we report the F-measure improvements by combining it to
other methods on the six datasets, averaged on all other methods. Results are
shown in Table 1. Indeed, these state-of-the-art methods can improve each other
(besides SF), and our method is the most complementary (among the top two
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Fig. 8. Evaluation of our region centerness and size by replacing them with other
options. See text for details. Graph-based 1 & 2 are computed by [23] with parameters
(sigma = 0.5, K = 500, min = 50) and (sigma = 0.5, K = 1000, min = 100), while Normal-
ized Cuts 1 & 2 are computed by [24] with parameters (n = 10) and (n = 20) respectively.

on all datasets, and the best overall), showing that region size and centerness
are indeed not well exploited in other methods.

All above results show that our method is highly effective. The running time
of all methods are reported in Table 2. Our method is among the fastest ones.
Note that our run time includes the superpixel segmentation and shortest path
computation in Eq. (1).

4.2 Evaluation of Our Approach

Our result is the product of three components: size map in Eq. (7), the smoothed
gaussian centerness map in Eq. (4), and the image boundary based centerness
map in Eq. (5). We firstly evaluate their effects by removing each one from the
product and checking how much the performance decreases. For conciseness, we
only show the relative improvement of F-measure of all the previous methods
in Fig. 7. The results demonstrate that the three components all contribute to
the improvement and removing any of them would cause performance drop. The
results on PR curves are similar.

Evaluation of Geodesic Filtering for Gaussian Centerness Map. To evaluate the
effectiveness of applying geodesic filtering in Eq. (4), we remove the filtering and
use Cgau instead of SCgau, while fixing the other components the same. The
results in Fig. 8 show that not using the geodesic filtering clearly decreases the
performance.

Evaluation of Region Size. To compare with our ‘soft’ computation of region
size A in Eq. (7), we also compute another region size map A′ using hard image
segmentation. We segment an image using [23,24], compute the exact size of each
region (number of pixels in it), assign each pixel the size of the region enclosing
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it, and normalize A′ so that its summed value is equal to ours to remove any
affection due to magnitude. We then replace A with A′ while fixing the other
components the same. We test four versions of A′: two methods [23,24] and each
with two sets of parameters. Results in Fig. 8 show that our soft region size
is better and more stable than hard computation of region size, because it is
difficult to find good image segmentation parameters for different images.

5 Conclusions

We present a new baseline saliency method. It uses basic principle and concepts
of region size and location. We demonstrated how to estimate these attributes
with simple techniques, without requiring performing image segmentation. Our
method works well across different datasets, including the most challenging ones.
It compares favorably with the state-of-the-art and can be easily combined
for further improvement. We hope this work can enhance the understanding
of salient object detection problem and encourage more works of using simple
models that generalize well.

Acknowledgement. This research work was supported by the National Science Foun-
dation of China (No.61272276, No.61305091), the National Twelfth Five-Year Plan
Major Science and Technology Project of China (No.2012BAC11B01-04-03), Special
Research Fund of Higher Colleges Doctorate (No.20130072110035), the Fundamental
Research Funds for the Central Universities (No.2100219038), and Shanghai Pujiang
Program (No.13PJ1408200).

References

1. Borji, A., Sihite, D.N., Itti, L.: Salient object detection: a benchmark. In: Fitzgibbon,
A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part II. LNCS,
vol. 7573, pp. 414–429. Springer, Heidelberg (2012)

2. Liu, T., Sun, J., Tang, X., Shum, H.Y.: Learning to detect a salient object. In:
CVPR (2007)

3. Goferman, S., Manor, L., Tal, A.: Context-aware saliency detection. In: CVPR
(2010)

4. Cheng, M., Zhang, G., Mitra, N., Huang, X., Hu, S.: Global contrast based salient
region detection. In: CVPR (2011)

5. Perazzi, F., Krahenbuhl, P., Pritch, Y., Hornung, A.: Saliency filters: contrast based
filtering for salient region detection. In: CVPR (2012)

6. Hou, X., Zhang, L.: Saliency detection: a spectral residual approach. In: CVPR
(2007)

7. Achanta, R., Hemami, S., Estrada, F., Susstrunk, S.: Frequency-tuned salient
region detection. In: CVPR (2009)

8. Cheng, M.M., Warrell, J., Lin, W.Y., Zheng, S., Vineet, V., Crook, N.: Efficient
salient region detection with soft image abstraction. In: ICCV (2013)

9. Shen, X., Wu, Y.: A unified approach to salient object detection via low rank
matrix recovery. In: CVPR (2012)



592 L. Zhao et al.

10. Yan, Q., Xu, L., Shi, J., Jia, J.: Hierarchical saliency detection. In: CVPR (2013)
11. Yang, C., Zhang, L., Lu, H., Ruan, X., Yang, M.H.: Saliency detection via graph-

based manifold ranking. In: CVPR (2013)
12. Jiang, Z., Davis, L.S.: Submodular salient region detection. In: CVPR (2013)
13. Li, X., Li, Y., Shen, C., Dick, A., van den Hengel, A.: Contextual hypergraph

modelling for salient object detection. In: ICCV (2013)
14. Jiang, B., Zhang, L., Lu, H., Yang, C., Yang, M.H.: Saliency detection via absorbing

markov chain. In: ICCV (2013)
15. Jiang, H., Wang, J., Yuan, Z., Wu, Y., Zheng, N., Li, S.: Salient object detection:

a discriminative regional feature integration approach. In: CVPR (2013)
16. Jiang, P., Ling, H., Yu, J., Peng, J.: Salient region detection by UFO: uniqueness,

focusness and objectness. In: ICCV (2013)
17. Alpert, S., Galun, M., Basri, R., Brandt, A.: Image segmentation by probabilistic

bottom-up aggregation and cue integration. In: CVPR (2007)
18. Movahedi, V., Elder, J.H.: Design and perceptual validation of performance mea-

sures for salient object segmentation. In: 2010 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 49–56.
IEEE (2010)

19. Li, X., Lu, H., Zhang, L., Ruan, X., Yang, M.H.: Saliency detection via dense and
sparse reconstruction. In: ICCV (2013)

20. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Susstrunk, S.: Slic superpix-
els compared to state-of-the-art superpixel methods. PAMI 34, 2274–2281 (2012)

21. Fu, K., Gong, C., Gu, I., Yang, J.: Geodesic saliency propagation for image salient
region detection. In: ICIP (2013)

22. Wei, Y., Wen, F., Zhu, W., Sun, J.: Geodesic saliency using background priors. In:
Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012,
Part III. LNCS, vol. 7574, pp. 29–42. Springer, Heidelberg (2012)

23. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation.
IJCV 59, 167–181 (2004)

24. Shi, J., Malik, J.: Normalized cuts and image segmentation. PAMI 22, 888–905
(2000)


	Size and Location Matter: A New Baseline for Salient Object Detection
	1 Introduction
	2 Geodesic Connectivity and Filtering
	3 Our Approach
	3.1 Adaptive Computation of Region Centerness
	3.2 Approximate Computation of Region Size

	4 Experiments
	4.1 Comparison with State-of-the-art
	4.2 Evaluation of Our Approach

	5 Conclusions
	References


