
Fast Super-Resolution via Dense Local Training
and Inverse Regressor Search

Eduardo Pérez-Pellitero1,2(B), Jordi Salvador1, Iban Torres-Xirau1,
Javier Ruiz-Hidalgo3, and Bodo Rosenhahn2

1 Technicolor R&I Hannover, Hannover, Germany
eduardo.perezpellitero@technicolor.com

2 TNT Lab, Leibniz Universität Hannover, Hannover, Germany
3 Image Processing Group, Universitat Politècnica de Catalunya, Barcelona, Spain

Abstract. Regression-based Super-Resolution (SR) addresses the ups-
caling problem by learning a mapping function (i.e. regressor) from the
low-resolution to the high-resolution manifold. Under the locally linear
assumption, this complex non-linear mapping can be properly modeled
by a set of linear regressors distributed across the manifold. In such meth-
ods, most of the testing time is spent searching for the right regressor
within this trained set. In this paper we propose a novel inverse-search
approach for regression-based SR. Instead of performing a search from
the image to the dictionary of regressors, the search is done inversely
from the regressors’ dictionary to the image patches. We approximate
this framework by applying spherical hashing to both image and regres-
sors, which reduces the inverse search into computing a trained func-
tion. Additionally, we propose an improved training scheme for SR linear
regressors which improves perceived and objective quality. By merging
both contributions we improve speed and quality compared to the state-
of-the-art.

1 Introduction

Super resolution (SR) comprises any reconstruction technique capable of extend-
ing the resolution of a discrete signal beyond the limits of the corresponding
capture device. The SR problem is by nature ill-posed, so the definition of suit-
able priors is critical. Over more than two decades, many of them have been
proposed.

Originally, image SR methods were based on piecewise linear and smooth
priors (i.e. bilinear and bicubic interpolation, respectively), resulting in fast
interpolation-based algorithms. Tsai and Huang [1] showed that it was possible to
reconstruct higher-resolution images by registering and fusing multiple images,
thus pioneering a vast amount of approaches on multi-image SR, often called
reconstruction-based SR. This idea was further refined, among others, with the
introduction of iterative back-projection for improved registration by Irani and
Peleg [2], although further analysis by Baker and Kanade [3] and Lin and Shum
[4] showed fundamental limits on this type of SR, mainly conditioned by reg-
istration accuracy. Learning-based SR, also known as example-based, overcame
c© Springer International Publishing Switzerland 2015
D. Cremers et al. (Eds.): ACCV 2014, Part III, LNCS 9005, pp. 346–359, 2015.
DOI: 10.1007/978-3-319-16811-1 23

Fast Super-Resolution via Inverse Regressor Search 347

some of the aforementioned limitations by avoiding the necessity of a registration
process and by building the priors from image statistics. The original work by
Freeman et al. [5] aims to learn from patch- or feature-based examples to produce
effective magnification well beyond the practical limits of multi-image SR.

Fig. 1. Overview of the proposed inverse-search SR: (a) Previous approaches search the
1st nearest dictionary atom for each image patch. (b) Our Proposed approach searches
the k-nearest image patches for each dictionary atom.

Example-based SR approaches using dictionaries are usually divided into
two categories: internal and external dictionary-based SR. The first exploits the
strong self-similarity prior. This prior is learnt directly from the relationship
of image patches across different scales of the input image. The opening work
on this subcategory was introduced by Glasner et al. [6], presenting a power-
ful framework for fusing reconstruction-based and example-based SR. Further
research on this category by Freedman and Fattal [7] introduced a mechanism
for high-frequency transfer based on examples from a small area around each
patch, thus better localizing the cross-scale self-similarity prior to the spatial
neighborhood. The recent work of Yang et al. [8] further develops the idea of
localizing the cross-scale self-similarity prior arriving to the in-place prior, i.e.
the best match across scales is located exactly in the same position if the scale
is similar enough.

External dictionary-based SR methods use other images to build their dic-
tionaries. A representative widely used approach is the one based on sparse
decomposition. The main idea behind this approach is the decomposition of
each patch in the input image into a combination of a sparse subset of entries
in a compact dictionary. The work of Yang et al. [9] uses an external database
composed of related low and high-resolution patches to jointly learn a compact
dictionary pair. During testing, each image patch is decomposed into a sparse
linear combination of the entries in the low-resolution (LR) dictionary and the
same weights are used to generate the high-resolution (HR) patch as a linear
combination of the HR entries. Both the dictionary training and testing are
costly due to the L1 regularization term enforcing sparsity. The work of Zeyde
et al. [10] extends sparse SR by proposing several algorithmic speed-ups which

348 E. Pérez-Pellitero et al.

also improves performance. However, the bottleneck of sparsity methods still
remains in the sparse decomposition.

More recently, regression-based SR has received a great deal of attention by
the research community. In this case, the goal is to learn a certain mapping from
the manifold of the LR patches to that of HR patches, following the manifold
assumption already used in the earlier work of Chang et al. [11]. The mapping of
the manifold is assumed to be locally linear and therefore several linear regressors
are used and anchored to the manifold as a piecewise linearization. Although
these methods are among the fastest in the state-of-the-art, searching the proper
regressor takes a significant quota of the running time from within the whole SR
pipeline.

In this paper we introduce the following contributions:

1. We propose a training scheme which noticeably improves the quality of linear
regression for SR (Sect. 3.1) while keeping the same testing complexity, i.e.
not increasing testing time.

2. We formulate an inverse-search approach where for every regressor in the
dictionary its k-Nearest Neighbors (k-NN) input image features are found
(Fig. 1). Also, we provide a suitable and efficient spherical hashing framework
to exploit this scheme, which greatly improves speed at little quality cost.
(Section 3.2).

By merging the two contributions, we improve both in speed and quality to
both the fastest and the best-performing state-of-the-art methods, as shown in
the experimental results.

2 Regression-Based SR

In this section we introduce the SR problem and how example-based approaches
tackle it, followed by a review of the recent state-of-the-art regression work of
Timofte et al. [12] as it is closely related with the work presented in this paper.
The contributions of this paper follow in Sect. 3.

2.1 Problem Statement

Super-Resolution aims to upscale images which have an unsatisfactory pixel
resolution while preserving the same visual sharpness, more formally

X = ↑ (Y) s.t. X ≈ Y, (1)

where Y is the input image, X is the output upscaled image, ↑ (·) is an upsam-
pling operator and calligraphic font denotes the spectrum of an image.

In the literature this transformation has usually been modeled backwards as
the restoration of an original image that has suffered several degradations [9]

Y = ↓ (B(X)), (2)

Fast Super-Resolution via Inverse Regressor Search 349

where B(·) is a blurring filter and ↓ (·) is a downsampling operator. The problem
is usually addressed at a patch level, denoted with lower case (e.g. y, x).

The example-based SR family tackles the super-resolution problem by finding
meaningful examples from which a HR counterpart is already known, namely the
couple of dictionaries Dl and Dh:

min
β

‖y − Dlβ‖22 + λ ‖β‖p, (3)

where β selects and weights the elements in the dictionary and λ weights a
possible Lp-norm regularization term. The Lp-norm selection and the dictionary-
building process depend on the chosen priors and they further define the SR
algorithm.

2.2 Anchored Neighborhood Regression

The recent work of Timofte et al. [12] is especially remarkable for its low-
complexity nature which achieves orders of magnitude speed-ups while having
competitive quality results compared to the state-of-the-art. They proposed a
relaxation of the L1-norm regularization commonly used in most of the Neighbor
Embedding (NE) and Sparse Coding (SC) approaches, reformulating the prob-
lem as a least squares (LS) L2-norm regularized regression, also known as Ridge
Regression. While solving L1-norm constrained minimization problems is com-
putationally demanding, when relaxing it to a L2-norm, a closed-form solution
can be used. Their proposed minimization problem reads

min
β

‖yF − Nlβ‖22 + λ ‖β‖2, (4)

where Nl is the LR neighborhood chosen to solve the problem and yF is a feature
extracted from a LR patch. The algebraic solution is

β = (NT
l Nl + λI)−1NT

l yF . (5)

The coefficients of β are applied to the corresponding HR neighborhood Nh

to reconstruct the HR patch, i.e. x = Nhβ. This can also be written as the
matrix multiplication x = R yF , where the projection matrix (i.e. regressor) is
calculated as

R = Nh(NT
l Nl + λI)−1NT

l (6)

and can be computed offline, therefore moving the minimization problem from
testing to training time.

They propose to use sparse dictionaries of ds atoms size, trained with the
K-SVD algorithm [13]. A regressor Rj is anchored to each atom dj in Dl, and
the neighborhood Nl in Eq. (6) is selected from a k-NN subset of Dl:

Nlj = kNN(dj , Dl). (7)

350 E. Pérez-Pellitero et al.

The SR problem can be addressed by finding the NN atom dj of every input
patch feature yiF and applying the associated Rj to it. In the specific case
of a neighborhood size k = ds, only one general regressor is obtained whose
neighborhood comprises all the atoms of the dictionary and consequently does
not require a NN search. This case is referred in the original paper as Global
Regression (GR).

2.3 Linear Regression Framework

Once the closest anchor point is found, the regression is usually applied to certain
input features and aims to recover certain components of the patch. We model
the linear regression framework in a general way as

x = x̃ + R yF , (8)

where x̃ is a coarse first approximation of the HR patch x. The choice of how to
obtain x̃ requires selecting a prior on how to better approximate x. In the work of
Yang et al. [8] they use the in-place prior as this first-approximation and Timofte
et al. [12] use the bicubic interpolation assuming a smooth prior. The regressors
are trained to improve the reconstruction whenever the coarse prior is not suffi-
cient. Intuitively, for an optimal performance, the selected feature representation
has to be related with the chosen first approximation x̃. Supporting this, [8] uses
as input feature the subtraction of the low-pass filtered in-place example to the
bicubic interpolation, intuitively modeling the errors of the in-place prior for
the low-frequency band; and [12] uses gradient-based features, representing the
high-frequency components which are likely not going to be well-reconstructed
with bicubic interpolation.

3 Fast Hashing-Based Super-Resolution

In this section we present our super-resolution algorithm based on an inverse-
search scheme. The section is divided into two parts representing the contributions
of the paper: We first discuss the optimal training stage for linear super-resolution
regressors and then introduce our hashing-based regressor selection scheme.

3.1 Training

In regression-based SR the objective of training a given regressor R is to obtain a
certain mapping function from LR to HR patches. From a more general perspec-
tive, LR patches form an input manifold M of dimension m and HR patches form
a target manifold N of dimension n. Formally, for training pairs (yFi, xi) with
yF ∈ M and xi ∈ N , we would like to infer a mapping Ψ : M ⊆ R

m → N ⊆ R
n.

As we have previously seen, recent regression-based SR use linear regressors
because they can be easily computed in closed form and applied as a matrix

Fast Super-Resolution via Inverse Regressor Search 351

0 200 400 600 800 1000 1200
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Neighborhood size

M
ea

n
Eu

cl
id

ea
n

di
st

an
ce

Training patches
Sparse dictionary

0 200 400 600 800 1000 1200 1400 1600 1800
29.5

30

30.5

31

31.5

32

32.5

Neighborhood size

P
S

N
R

 (
dB

)

Proposed training
Timofte training

(a) (b)

Fig. 2. (a) Mean euclidean distance between atoms and its neighborhood for different
neighborhood sizes. (b) Quality improvement measured in PSNR (dB) for a reconstruc-
tion using ANR [12] together with our proposed training. 1024 anchor points were used
for this experiment.

multiplication. However, the mapping Ψ is highly complex and non-linear [14]. To
model the non-linearity nature of the mapping, an ensemble of regressors {Ri} is
trained, representing a locally linear parametrization of Ψ , under the assumption
that both manifolds M and N have a similar local geometry. We analyze the
effect on the distribution of those regressors in the manifold (i.e. the anchor
points) and the importance of properly choosing the Nl in Eq. (6), concluding
on a new training approach.

In the work of Timofte et al. [12], an overcomplete sparse representation
is obtained from the initial LR training patches using K-SVD [13]. This new
reduced dictionary Dl is used both as anchor points to the manifold and data-
points for the regression training. In their GR, a unique regressor RG is trained
with all elements of the dictionary, therefore accepting higher regression errors
due to the single linearization of the manifold. For a more fine-tuned regression
reconstruction they also propose the Anchored Neighborhood Regression (ANR),
they use as anchor points {A1, . . . , Ads

} the dictionary points {D1, . . . , Dds
} and

they build for each one of those atoms a neighborhood of k-NN within the same
sparse dictionary Dl.

Performing a sparse decomposition of a high number of patches efficiently
compresses data in a much smaller dictionary, yielding atoms which are repre-
sentative of the whole training dataset, i.e. the whole manifold. For this reason
they are suitable to be used as anchor points, but also sub-optimal for the neigh-
borhood embedding. They are sub-optimal since the necessary local condition
for the linearity assumption is likely to be violated. Due to the L1-norm recon-
struction minimization imposed in sparse dictionaries, atoms in the dictionary
are not close in the Euclidean space, as shown in Fig. 2(a).

This observation leads us to propose a different approach when training lin-
ear regressors for SR: Using sparse representations as anchor points to the man-
ifold, but forming the neighborhoods with raw manifold samples (e.g. features,
patches). In Fig. 2(a) we show how, by doing so, we find closer nearest neighbors

352 E. Pérez-Pellitero et al.

−1 0 1

−1

0

1

−1 0 1

−1

0

1

−1 0 1

−1

0

1

−1 0 1

−1

0

1

(a) (b) (c) (d)

Fig. 3. A normalized degree 3 polynomial manifold illustrating the proposed approach
compared to the one in [12]. (a) Bidimensional manifold samples. (b) The manifold
(blue) and the sparse representation obtained with K-SVD algorithm (green) of 8
atoms. (c) Linear regressors (red) trained with the neighborhoods (k = 1) obtained
within the sparse dictionary, as in [12]. (d) Linear regressors (red) obtained using
our proposed approach: The neighborhoods are obtained within the samples from the
manifold (k = 10) (Color figure online).

and, therefore, fulfill better the local condition. Additionally, a higher number of
local independent measurements is available (e.g. mean distance for 1000 neigh-
bors in the raw-patch approach is comparable to a 40 atom neighborhood in the
sparse approach) and we can control the number of k-NN selected, i.e. it is not
upper-bounded by the dictionary size. We show a low-dimensional example of
our proposed training scheme in Fig. 3.

102 103 104 105 106

0

0.05

0.1

0.15

0.2

0.25

Number of queries

R
un

ni
ng

 ti
m

es
 (s

)

Parallel (GPU)
Parallel (CPU)
Single thread

Fig. 4. Running times measured when computing 6-bit hash codes (6 hyperspheres) for
increasing number of queries (in logarithmic axis and without re-ranking) for single-
threaded (CPU) and parallel (CPU and GPU) implementations.

In Fig. 2(b) we show the comparison of ANR [12] with both training approa-
ches in terms of resulting image PSNR. We use the same training dataset of the
original paper, and for our neighbor embedding we use the L2-normalized raw
features which are introduced in the K-SVD algorithm. We fix the dictionary
size (only used as anchor points in our scheme) to 1024. By applying our train-
ing scheme we achieve substantial quality improvements, both qualitatively and
quantitatively.

Fast Super-Resolution via Inverse Regressor Search 353

3.2 Inverse Search via Spherical Hashing

When aiming at a fine modeling of the mapping between LR and HR manifolds,
several linear regressors have to be trained to better represent the non-linear
problem. Although state-of-the art regression-based SR has already pushed for-
ward the computational speed with regard to other dictionary-based SR [9,10],
finding the right regressor for each patch is still consuming most of the execution
time. In the work of [12], most of the encoding time (i.e. time left after subtract-
ing shared processing time, including bicubic interpolations, patch extractions,
etc.) is spent in this task (i.e. ∼96% of the time).

Fig. 5. Spherical hashing applied for the inverse search super-resolution problem.
Certain hashing functions are optimized on feature patch statistics creating a set of
hyperspheres intersections that are directly labeled with a hash code. In training time,
regressors fill this intersections (i.e. bins) and in testing time the hashing function is
applied to each patch, which will directly map it to a regressor.

The second contribution of this paper is a novel search strategy designed to
benefit from the training outcome presented in Sect. 3.1, i.e. anchor points of the
dictionary and their neighborhoods are obtained independently and ahead from
the search structure.

In order to improve the search efficiency, search structures of sublinear com-
plexity are often built, usually in the form of binary splits, e.g. trees, hashing
schemes [15–18]. One might consider determining the search partitions with the
set of anchor points, since those are the elements to retrieve. However, the small
cardinality of this set leads to an imprecise partitioning due to a shortage of
sampling density. We propose an inverse search scheme which consists in finding
the k-ANN (Approximate Nearest Neighbor) patches within the image for every
anchor point, as shown in Fig. 1. By doing so, we have a dense sampling (i.e. all
training patches) at our disposal, which results in meaningful partitions.

We choose hashing techniques over tree-based methods. Hashing schemes
provide low memory usage (the number of splitting functions in hashing-based
structures is O(log2(n)) while in tree-based structures is O(n), where n repre-
sents the number of clusters) and are highly parallelizable.

Binary hashing techniques aim to embed high-dimensional points in binary
codes, providing a compact representation of high-dimensional data. Among
their vast range of applications, they can be used for efficient similarity search,

354 E. Pérez-Pellitero et al.

including approximate nearest neighbor retrieval, since hashing codes preserve
relative distances. There has recently been active research in data-dependent
hashing functions opposed to hashing methods such as [17] which are data-
independent. Data-dependent methods intend to better fit the hashing function
to the data distribution [18,19] through an off-line training stage.

Among the data-dependent state-of-the-arts methods, we select the Spherical
Hashing algorithm of Heo et al. [16], which is able to define closed regions in
R

m with as few as one splitting function. This hashing framework is useful to
model the inverse search scheme and enables to benefit from substantial speed-
ups by reducing the NN search into applying a precomputed function, which
conveniently scales with parallel implementations, as shown in Fig. 4.

Spherical hashing differs from previous approaches by setting hyperspheres
to define hashing functions on behalf of the previously used hyperplanes. A given
hashing function H(yF) = (h1(yF), . . . , hc(yF)) maps points from R

m to a base
2 N

c, i.e. {0, 1}c. Every hashing function hk(yF) indicates whether the point yF

is inside kth hypersphere, modeled for this purpose as a pivot pk ∈ R
m and a

distance threshold (i.e. radius of the hypersphere) tk ∈ R
+ as:

hk(yF) =

{
0 when d(pk, yF) > tk

1 when d(dk, yF) ≤ tk
, (9)

where d(pk, yF) denotes a distance metric (e.g. Euclidean distance) between two
points in R

m. The advantages of using hyperspheres instead of hyperplanes is the
ability to define closed tighter sub-spaces in R

m as intersection of hyperspheres.
An iterative optimization training process is proposed in [16] to obtain the set
{pk, tk}, aiming a balanced partitioning of the training data and independence
between hashing functions.

We perform this mentioned iterative hashing-function optimization in a set of
input patch features from training images, so that H(yF) adapts to the natural
image distribution in the feature space. Our proposed spherical hashing search
scheme becomes symmetrical as we can see in Fig. 5, i.e. both image and anchor
points have to be labeled with binary codes. This can be intuitively understood
as creating NN subspace groups (we refer them as bins), which we label with a
regressor by applying the same hashing functions to the anchor points. Relating
a hash code with a regressor can be done during training time.

The inverse search approach returns k-NN for each anchor point, thus not
ensuring that all the input image patches have a related regressor (i.e. whenever
the patch is not within the k-NN of any of the anchor points). Two solutions are
proposed: (a) use a general regressor for the patches which are not in the k-NN of
any anchor point or (b) use the regressor of the closest labeled hash code calcu-
lated with the spherical Hamming distance, defined by [16] as dSH(a, b) =

∑
(a⊕b)∑
(a∧b) ,

where ⊕ is the XOR bit operation and ∧ is the AND bit operation. Note that
although not being guaranteed, it rarely happens that a patch is not within any
of the k-NN regressors (e.g. for the selected parameter of 6 hyperspheres it never
occurs). Since we have not observed significant differences in performance, we
select (a) as the lowest complexity solution, although more testing on (b) is due.

Fast Super-Resolution via Inverse Regressor Search 355

In a similar way, an inverse search might also assign two or more regressors
to a single patch. It is common in the literature to do a re-ranking strategy to
deal with this issue [20].

Table 1. Performance of ×3 and ×4 magnification in terms of averaged PSNR (dB)
and averaged execution time (s) on datasets Set14, Kodak and 2k.

Bicubic Sparse [10] GR [12] ANR [12] NE+LS NE+NNLS NE+LLE Proposed

MF PSNR Time PSNR Time PSNR Time PSNR Time PSNR Time PSNR Time PSNR Time PSNR Time

Set14 3 27.54 0.002 28.67 2.981 28.31 0.528 28.65 0.771 28.59 2.854 28.44 25.372 28.60 4.356 28.93 0.188

4 26.00 0.003 26.88 1.862 26.60 0.458 26.85 0.584 26.81 1.716 26.72 14.146 26.81 2.623 27.04 0.184

Kodak 3 28.43 0.003 29.22 5.126 28.98 0.921 29.21 1.335 29.17 4.829 29.04 44.102 29.17 7.353 29.42 0.314

4 27.23 0.003 27.83 3.194 27.64 0.757 27.80 1.022 27.77 3.003 27.71 24.428 27.77 4.678 27.92 0.309

2k 3 31.73 0.007 32.63 27.622 32.45 4.860 32.68 7.123 32.62 26.194 32.51 242.875 32.65 40.389 32.88 1.652

4 30.28 0.006 30.97 17.225 30.81 3.968 30.99 5.344 30.94 16.363 30.87 136.058 30.96 25.967 31.04 1.578

4 Results

In this section we show experimental results of our proposed method and we
compare its performance in terms of quality and execution time to other state-
of-the-art recent methods. We perform extensive experiments with image resolu-
tions ranging from 2.5 Kpixels to 2 Mpixels, showing the performance for classic
literature testing images but additionally demonstrating how these algorithms
would perform in current upscaling scenarios. We further extend the benchmark
in [12] by adding to Set5 and Set14 two more datasets: the 24 image kodak
dataset and 2k, which is a image set of 9 sharp images obtained from the inter-
net with a pixel resolution of 1920 × 1080.

Table 2. Performance of ×3 and ×4 magnification in terms of PSNR (dB) and execu-
tion time (s) on the Set5 dataset.

Set5 Bicubic Sparse [10] GR [12] ANR [12] NE+LS NE+NNLS NE+LLE Proposed

images MF PSNR Time PSNR Time PSNR Time PSNR Time PSNR Time PSNR Time PSNR Time PSNR Time

baby 3 33.9 0.000 35.1 3.490 34.9 0.662 35.1 0.905 35.0 3.179 34.8 29.377 35.1 5.042 35.1 0.214

bird 3 32.6 0.000 34.6 1.087 33.9 0.242 34.6 0.293 34.4 1.011 34.3 9.449 34.6 1.533 34.9 0.070

butterfly 3 24.0 0.000 25.9 0.839 25.0 0.152 25.9 0.201 25.8 0.766 25.6 6.947 25.8 1.200 26.6 0.058

head 3 32.9 0.000 33.6 1.011 33.5 0.218 33.6 0.270 33.5 0.908 33.5 8.411 33.6 1.395 33.7 0.068

woman 3 28.6 0.000 30.4 0.972 29.7 0.187 30.3 0.249 30.2 0.909 29.9 8.437 30.2 1.390 30.06 0.067

average 3 30.39 0.000 31.90 1.480 31.41 0.292 31.92 0.384 31.78 1.354 31.60 12.524 31.84 2.112 32.22 0.095

baby 4 31.8 0.000 33.1 2.136 32.8 0.525 33.0 0.652 32.9 2.033 32.8 15.535 33.0 3.128 32.9 0.256

bird 4 30.2 0.000 31.7 0.660 31.3 0.184 31.8 0.226 31.6 0.611 31.5 4.995 31.7 0.955 31.7 0.066

butterfly 4 22.1 0.000 23.6 0.536 23.1 0.138 23.5 0.165 23.4 0.456 23.3 3.882 23.4 0.730 23.7 0.052

head 4 31.6 0.000 32.2 0.582 32.1 0.135 32.3 0.212 32.2 0.567 32.1 4.587 32.2 0.882 32.3 0.061

woman 4 26.5 0.000 27.9 0.576 27.4 0.174 27.8 0.191 27.6 0.583 27.6 4.455 27.7 0.894 28.0 0.063

average 4 28.42 0.000 29.69 0.898 29.34 0.231 29.69 0.289 29.55 0.850 29.47 6,691 29,61 1.318 29.73 0.100

All the experiments were run on a Intel Xeon W3690@3.47 GHz and the
code of the compared methods was obtained from [12] and used with their rec-
ommended parameters. The methods compared are the sparse coding SR of

356 E. Pérez-Pellitero et al.

Fig. 6. Visual qualitative assessment of×3 magnification factor for images from different
datasets. From left to right and top to bottom: Original, bicubic interpolation, Global
Regressor [12], Zeyde et al. [10], ANR [12] and Proposed SR. Better viewed zoomed in.

Fast Super-Resolution via Inverse Regressor Search 357

Zeyde et al. [10], an implementation of the LS regressions used by Chang et al.
[11] (NE + LLE), and the Non-Negative Least Squares (NE + NNLS) method of
Bevilaqcua et al. [21].

The proposed algorithm is written in MATLAB with the most time-consuming
stages implemented in OpenCL without further emphasis in optimization, and
runs in the same CPU platform used for all methods. Our experiments use the
same K-SVD sparse dictionary of 1024 used for the compared methods.

We selected bicubic as our coarse approximation x̃ since it does not limit the
upscaling steps for super-resolution (e.g. in-place examples are only meaningful
for very small magnification factors) and also the features used by Zeyde et al.
[10,12] composed by 1st and 2nd order derivative filters compressed with PCA
and truncating when the feature still conserves 99.9% of its energy. We also use
a L2-norm regularized linear regressor illustrated in Eq. (4). We build therefore
on top of the regressor scheme proposed by Timofte et al. [12]. We used 6-bit
spherical hashing (6 hyperspheres) and the chosen neighborhood is of 1300 k-NN.
The selection of number of spheres is a trade-off between quality and speed, since
when we decrease the number of hyperspheres we have more collision of regressors
(i.e. more than one regressor arrives to the same bin) and due to the re-ranking
process we get closer to an exact nearest neighbor search. This can be seen in
Fig. 7.

In Tables 1 and 2 we show objective results of the performance in terms
of PSNR (dB) and execution time (s). For both measures, our proposed algo-
rithm is the best performing. The improvement in PSNR is more noticeable for
magnification factors of 3, where we reach improvements of up to 0.3 dB when
compared to the second best-performer. In terms of running time, our algorithm
has consistent speed-ups in all datasets and all scales. When compared to GR
(which is the fastest of the compared methods), the speed-ups are ranging from
×2 to ×3, additionally with a gap in quality reconstruction. The speed-ups for
ANR range from ×3 to ×4 and for the rest of the methods, the running times
are several orders of magnitudes slower. Note that the theoretical complexity

2 3 4 5 6 7 8
32.82

32.84

32.86

32.88

32.9

32.92

32.94

spheres

P
S

N
R

 (
dB

)

2 3 4 5 6 7 8
1.6

1.65

1.7

1.75

1.8

1.85

1.9

1.95

2

spheres

tim
e

(s
)

(a) (b)

Fig. 7. Effect of the number of spheres selected in terms of PSNR (a) and time (b).

358 E. Pérez-Pellitero et al.

of GR is lower than that of our method since it does not perform a NN search
(i.e. for similar implementations, GR should be slightly faster). Nevertheless, our
parallel implementation is more efficient than the one provided by their authors
[12], which mostly relies on optimized MATLAB matrix multiplication.

In Fig. 6 a visual qualitative assessment can be performed. Our method
obtains more natural and sharp edges, and strongly reduces ringing. A good
example of that is shown in the butterfly image.

5 Conclusions

In this paper we have presented two main contributions: An improved training
stage and an efficient inverse-search approach for regression-based and, more
generally, dictionary-based SR. Spherical hashing techniques have been applied
in order to exploit the benefits of the inverse-search scheme. We obtain both
quality improvements due to the optimal training stage and also substantial
speed-ups from the low-complexity spherical hashing similarity algorithm used in
the regressor selection. An exhaustive testing has been performed comparing our
method with four datasets of several pixel resolutions, with different upscaling
factors and with several state-of-the-art methods. Our experimental results show
consistent improvements in PSNR and running times over the state-of-the-art
methods included in the benchmark, positioning as the first in both measures.

References

1. Tsai, R., Huang, T.: Multiple frame image restoration and registration. In: Pro-
ceedings of the Advances in Computer Vision and Image Processing, vol. 1, pp.
317–339 (1984)

2. Irani, M., Peleg, S.: Improving resolution by image registration. CVGIP Graph.
Models Image Process. 53, 231–239 (1991)

3. Baker, S., Kanade, T.: Limits on super-resolution and how to break them. IEEE
Trans. Pattern Anal. Mach. Intell. 24, 1167–1183 (2002)

4. Lin, Z., Shum, H.Y.: Fundamental limits of reconstruction-based superresolution
algorithms under local translation. IEEE Trans. Pattern Anal. Mach. Intell. 26,
83–97 (2004)

5. Freeman, W., Jones, T., Pasztor, E.: Example-based super-resolution. IEEE Trans.
Comput. Graph. Appl. 22, 56–65 (2002)

6. Glasner, D., Bagon, S., Irani, M.: Super-resolution from a single image. In: Pro-
ceedings of the IEEE International Conference on Computer Vision (2009)

7. Freedman, G., Fattal, R.: Image and video upscaling from local self-examples. ACM
Trans. Graph. 30, 12:1–12:11 (2011)

8. Yang, J., Lin, Z., Cohen, S.: Fast image super-resolution based on in-place exam-
ple regression. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (2013)

9. Yang, J., Wright, J., Huang, T.S., Ma, Y.: Image super-resolution via sparse rep-
resentation. IEEE Trans. Image Process. 19, 2861–2873 (2010)

Fast Super-Resolution via Inverse Regressor Search 359

10. Zeyde, R., Elad, M., Protter, M.: On single image scale-up using sparserepresen-
tations. In: Proceedings of the International Conference on Curves and Surfaces
(2012)

11. Chang, H., Yeung, D.Y., Xiong, Y.: Super-resolution through neighbor embedding.
(2004)

12. Timofte, R., Smet, V.D., Goool, L.V.: Anchored neighborhood regression for fast
example-based super-resolution. In: Proceedings of the IEEE International Con-
ference on Computer Vision (2013)

13. Aharon, M., Elad, M., Bruckstein, A.: K-SVD: an algorithm for designing overcom-
plete dictionaries for sparse representation. IEEE Trans. Sig. Process. 54, 4311–
4322 (2006)

14. Peyré, G.: Manifold models for signals and images. Comput. Vis. Image Underst.
113, 249–260 (2009)

15. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)
16. Heo, J.P., Lee, Y., He, J., Chang, S.F., Yoon, S.E.: Spherical hashing. In: Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(2012)

17. Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the
curse of dimensionality. In: Proceedings of the Thirtieth Annual ACM Symposium
on Theory of Computing, STOC 1998, pp. 604–613 (1998)

18. Wang, J., Kumar, S., Chang, S.F.: Semi-supervised hashing for scalable image
retrieval (2010)

19. Weiss, Y., Torralba, A., Fergus, R.: Spectral hashing (2008)
20. He, K., Sun, J.: Computing nearest-neighbor fields via propagation-assisted kd-

trees. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (2012)

21. Bevilacqua, M., Roumy, A., Guillemot, C., Alberi-Morel, M.L.: Low-complexity
single-image super-resolution based on nonnegative neighbor embedding. In: Pro-
ceedings of the British Machine Vision Conference, pp. 1–10 (2012)

	Fast Super-Resolution via Dense Local Training and Inverse Regressor Search
	1 Introduction
	2 Regression-Based SR
	2.1 Problem Statement
	2.2 Anchored Neighborhood Regression
	2.3 Linear Regression Framework

	3 Fast Hashing-Based Super-Resolution
	3.1 Training
	3.2 Inverse Search via Spherical Hashing

	4 Results
	5 Conclusions
	References

