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Abstract. Despite the recent advances in smoke detection from video,
detection of smoke from single images is still a challenging problem with
both practical and theoretical implications. However, there is hardly any
reported research on this topic in the literature. This paper addresses this
problem by proposing a novel feature to detect smoke in a single image.
An image formation model that expresses an image as a linear combina-
tion of smoke and non-smoke (background) components is derived based
on the atmospheric scattering models. The separation of the smoke and
non-smoke components is formulated as convex optimization that solves
a sparse representation problem. Using the separated quasi-smoke and
quasi-background components, the feature is constructed as a concate-
nation of the respective sparse coefficients. Extensive experiments were
conducted and the results have shown that the proposed feature signifi-
cantly outperforms the existing features for smoke detection.

1 Introduction

Vision-based smoke detection has many advantages over the traditional photo-
electric or ionization-based smoke detectors, including being suitable for both
closed and open spaces and providing early detection with information on the
location and intensity [1–5]. Despite the recent advances [4,5], almost all existing
detection algorithms are video-based and the video is assumed to be captured
by stationary cameras in order to facilitate the motion detection and feature
extraction involved in these algorithms. However, such requirement can be hardly
met in an open space where cameras are inevitably jittering under severe and
dynamic environment, such as wind. Our experiments (see Sect. 5.7) have shown
that camera jittering can significantly degrade the performance of video-based
smoke detection. If the surveillance is based on battery-powered sensor network,
the available power supply, computing resource, or bandwidth is hardly sufficient
for video processing and smoke detection. In this case, surveillance images rather
than videos are available. Furthermore, when a pan-tilt-zoom (PTZ) camera is
used in video-based smoke detection, the unreliable background modeling will
cause the failure of most systems. In such circumstances, detection of smoke from
single images becomes highly desirable. This desirability comes at a price because
image-based detection is much more challenging than video-based systems as it
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is no longer possible to estimate the background required for the separation of
the smoke component in the state-of-the-art methods recently proposed in [4,5].
To the best of our knowledge, there is little study reported on single image-based
smoke detection. This paper presents a novel method to address this problem.

The main contributions of the paper are three-fold: (i) Based on the atmosph-
eric scattering (attenuation and airlight) models [6], an image formation model
for smoke is derived. This model explains how smoke scatters the light reflected
from the background of the scene and also serves as a source of light through
scattering. The model suggests that an image patch covered by smoke can be
approximated as a linear combination of two components; one component is con-
tributed by smoke while the other is contributed by the background. The weight
of the composition is a function of the thickness and the scattering coefficient of
the smoke. (ii) Guided by the image model, dictionary-based sparse representa-
tion for the two components is used to separate an image into quasi-smoke and
quasi-background components through a convex optimization process. The coef-
ficients of both components are concatenated as a novel feature for detection.
The experimental results verified that the proposed feature is reliable and highly
discriminative. (iii) A method to differentiate light smoke and heavy smoke and
a method to differentiate smoke and fog/haze are presented. Preliminary results
on these are reported in the paper.

The remainder of the paper is organized as follows: a brief review of exist-
ing video-based smoke detection methods is provided in Sect. 2. Based on the
atmospheric scattering models, an image formation model for smoke is derived in
Sect. 3. The proposed method based on the image formation model is presented in
Sect. 4. Experimental results are shown in Sect. 5 along with discussions. Finally,
the paper is concluded with some perspectives on future work in Sect. 6.

2 Related Work

The success of existing video-based smoke detection methods lies in identifying
robust visual features to characterize smoke. To motivate the rationale for the
proposed feature some representative video-based smoke detection methods are
reviewed with respect to the features they used. The features have been based
on the characteristics of smoke including motion, color, edge and texture.

From motion point of view, an accumulative motion model has been proposed
to capture the motion characteristics of smoke in [7]. Other research efforts have
extracted motion features of smoke using optical flow [8,9]. However, no motion
information is available from a single image. The fact that the color of smoke is
usually grayish provides a clue for the extraction of color features [1–3,10–13].
However, this paper focuses on detection of smoke from single gray-scale images.

Given the video of a scene, blurred edges could be observed in smoke-covered
areas and the consequent decrease in high frequency has been used as cue to per-
form smoke detection [1,2,11]. However, this decrease in high frequency is not
unique to smoke coverage and is hard to measure its extent from a single image
due to the lack of background information. Owing to the dispersive distribution
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Fig. 1. Smoke usually appears at a certain distance from the observer with limited
thickness along the line of sight.

of smoke, texture features have been extracted for smoke detection [3,10,13,14].
Additionally, it is also noted that the transmission [15], fractal [16] and histograms
of oriented gradient (HOG) [9] have been employed to detect smoke.

Recently, to reduce the level of noise introduced into the extracted features
by the background, an image separation approach has been proposed for smoke
detection [4,5]. It actively separates the smoke component, if any, from the back-
ground. Texture features are then extracted from the separated smoke compo-
nent for detection.

In summary these methods require a video sequence captured by a station-
ary camera and in the case of color feature, a color camera. Hence in general,
they cannot deal with smoke detection from a single gray-scale image. The pro-
posed feature for single image smoke detection is based on the physics of smoke
formation and is able to encode reliable information for detection.

3 Physics-Based Image Formation Model

To develop computer vision systems that are able to operate in adverse weather
conditions (e.g. fog/haze), the dichromatic atmospheric scattering model was
proposed in [6]. The model accounts for the presence of scattering medium
(e.g. fog/haze) in the entire space and expresses the final spectral irradiance
F(z, λ) received by the observer (e.g. camera) as the sum of the irradiance T(z, λ)
of directly transmitted light and the irradiance A(z, λ) of airlight:

F(z, λ) = T(z, λ) + A(z, λ), (1)

where z is the distance between the scene and observer, and λ refers to the
wavelength of light. Specifically, T(z, λ) is related to the attenuation of a beam
of light as it travels through the scattering medium. A(z, λ) is related to the
phenomenon whereby the medium behaves like a source of light, which is caused
by the scattering of environmental illumination by particles of the medium.

In the case of smoke, the smoke will act as the scattering medium like
fog/haze. However, unlike fog/haze, smoke usually does not occupy the entire
space of the scene. Assume that smoke appears at distance zs from a camera
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and its thickness along the line of sight is Δz, as shown in Fig. 1. There are
no point sources of light, that the irradiance at each background scene point
is dominated by the ambient radiance, and the irradiance due to other scene
points is not significant. By ignoring the multiple scattering, a formation model
for smoke can be derived using the reasoning similar to that in [6] as follows:

T(z, λ) = g
e−β(λ)Δz

z2
L∞(λ)ρ(λ); (2)

A(z, λ) = g

∫ zs+Δz

zs

L∞(λ)β(λ)e−β(λ)zdz

= ge−β(λ)zs(1 − e−β(λ)Δz)L∞(λ), (3)

where g is a constant that accounts for the optical settings of the imaging system,
β(λ) is the scattering coefficient, L∞(λ) is the radiance of the horizon (z = ∞)
at wavelength λ, and ρ(λ) represents the reflectance properties and aperture of
the scene point. Substituting Eqs. (2) and (3) into Eq. (1) yields

F(z, λ) = (1 − Ω(Δz, λ))B(z, λ) + Ω(Δz, λ)S(zs, λ), (4)

where

Ω(Δz, λ) = 1 − e−β(λ)Δz;

B(z, λ) =
g

z2
L∞(λ)ρ(λ); (5)

S(zs, λ) = ge−β(λ)zsL∞(λ).

Equation (4) is the image formation model for smoke. B(z, λ) accounts for the
background under clear air when there is no smoke. In the rest of the paper, it is
referred to as the background component or non-smoke component interchange-
ably. S(zs, λ) represents the pure smoke at distance zs from the observer, which
is referred to as the smoke component. The parameter Ω(Δz, λ) ∈ [0, 1] depends
on the thickness Δz of the smoke. It can be assumed constant within a small
area where Δz would not vary much. In the rest of the paper it is referred to
as the blending parameter. Note the derived model Eq. (4) indicates an additive
relationship between smoke and non-smoke components.

4 Proposed Method

This paper adopts block-based detection scheme in order to achieve early detec-
tion (smoke will usually cover a very small area at the early stage) and localiza-
tion of the smoke.

4.1 Smoke Detection on Block Level

Let f ∈ R
N be a given image block with N pixels, b ∈ R

N and s ∈ R
N be the

corresponding background and smoke components. Then the image formation
model described by Eq. (4) can be written as

f = (1 − ω)b + ωs + n, (6)
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where n ∈ R
N represents modeling noise. From Eq. (5), it is apparent that

the blending parameter Ω(Δz, λ) depends on the scattering coefficient β(λ) of
smoke and the thickness Δz of the smoke along the line of sight. Assuming that
the scattering coefficient of smoke does not change appreciably within the visible
wavelength and the thickness of smoke is constant within a small image block,
Ω(Δz, λ) is a constant within the image block, and the quantity is referred to
as the blending parameter, ω, on block level. Guided by the image formation
model and in order to extract reliable features for smoke detection from a single
image block f , the background component b should be separated from the smoke
component s. Intuitively, the problem can be formulated as the minimization of
the power of the residual noise:

min
ω,b,s

‖f − ωs − (1 − ω)b‖22 s.t. ω ∈ [0, 1]. (7)

Given only a single input image block f , further constraints are required to obtain
an unique and reliable solution to Eq. (7). A good estimation of b, s, and ω is
expected if both b and s could be well modeled according to the visual property
of non-smoke and pure smoke. If each image block is considered as a point in an N -
dimensional space, pure smoke images are likely to lie in multiple low-dimensional
subspaces. Driven by the progress of sparse representation [17] in recent years, if
sample smoke images can be collected or generated to capture the distribution of
pure smoke in the space, it is expected that any specific pure smoke image would
have a sparse representation with respect to the samples. Similar argument can
be made for samples of non-smoke images. Such a collection of samples represents
a dictionary and each sample in the dictionary is typically referred to as a basis.
Both dictionaries, one for pure smoke and the other for non-smoke, are designed
such that they lead to sparse representations over only one type of image content
(either pure smoke or non-smoke). To fix these ideas let Ds ∈ R

N×J (N � J) be
a dictionary for pure smoke and each column of Ds be a basis. Then a pure smoke
image s is expected to be sparse in Ds:

s = Dsxs s.t. ‖xs‖0 ≤ Ms, (8)

where ‖xs‖0 counts the number of non-zero entries in xs. Similarly a non-smoke
image b is expected to be sparse in a dictionary Db ∈ R

N×L(N � L) for
non-smoke:

b = Dbxb s.t. ‖xb‖0 ≤ Mb. (9)

Here Ms and Mb are the upper bounds for the number of non-zero entries in
the sparse coefficients xs and xb respectively. Considering Eqs. (8) and (9) as the
models for pure smoke and non-smoke respectively, Eq. (7) can be rewritten as
follows:

min
ω,xb,xs

{‖f − ωDsxs − (1 − ω)Dbxb‖22 + η‖xb‖0 + γ‖xs‖0} s.t. ω ∈ [0, 1],

(10)
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where η and γ are regularization parameters. Due to the non-convexity of the

0-norm, it is replaced with the 
1-norm, which is the common practice in the
literature:

min
ω,xb,xs

{‖f − ωDsxs − (1 − ω)Dbxb‖22 + η‖xb‖1 + γ‖xs‖1} s.t. ω ∈ [0, 1].

(11)

The optimization problem expressed by Eq. (11) is convex with respect to one
of xb, xs, and ω when fixing the other two. One may propose to optimize the
three terms alternately. However, ω and (1 − ω) are coupled with xs and xb

respectively by multiplication, which indicates that xb, xs, and ω may not be
well estimated to reflect their true values, if no other constraints are imposed.
Noting that the optimal ω is a scalar, we can always absorb ω into xs and (1−ω)
into xb in Eq. (11), and solve for ωxs and (1 − ω)xb. The only changes are to
scale down γ and η by ω and (1 − ω) respectively. This does not significantly
change the essence of optimization, but helps to reduce one unknown ω. Based
on this consideration, the following variables are defined

yb = (1 − ω)xb; ys = ωxs. (12)

Then Eq. (11) can be written as

min
yb,ys

‖f − Dsys − Dbyb‖22 + η′‖yb‖1 + γ′‖ys‖1. (13)

In this case, Dbyb and Dsys can be regarded as the scaled version of the back-
ground and smoke component respectively; and they will be referred to as quasi-
background and quasi-smoke component respectively in the rest of the paper.
Given f , Db, and Ds, Eq. (13) can be solved through alternate optimization
with regard to yb and ys respectively by using sparse coding algorithms such as
the feature-sign search algorithm [18]. Each is a convex problem and the con-
vergence of the optimization is guaranteed [19]. Once the difference between the
objective function (Eq. (13)) values in two consecutive iterations is less than a
predefined threshold, the optimal yb and ys can be obtained. For any input
image block f and irrespective of whether it contains smoke, yb and ys are esti-
mated to model the quasi-background and quasi-smoke component respectively.
Both yb and ys are expected to encode useful information of the input image
block f . As a result, they are concatenated as a novel feature to characterize f .
The extracted feature is input to a support vector machine (SVM) classifier.
A decision is made on whether there is smoke or not in f .

4.2 Discussions

It is noted that an image formation model similar to Eq. (6) was also used for
video-based smoke detection in [4,5], image matting in [20,21], and single image
haze removal in [22]. In [4,5], background modeling based on the information of
previous video frames is a strict prerequisite for image separation. In this paper
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a different separation method is proposed for single image smoke detection. User
interactions are usually required for image matting. Our image model was derived
from the atmospheric scattering models and the proposed method for smoke
detection is fully automatic. A dark channel prior was assumed for outdoor haze-
free images for restoring high quality haze-free images in [22]. The removal of
haze does not require a good separation of haze and the input image in [22] must
be a color image to employ the dark channel prior. In this paper, given a single
gray-scale image, quasi-smoke is separated from quasi-background to extract
reliable features for smoke detection. A somewhat related work was reported in
[23] but our work differs from it in two key aspects. First, the separation problem
in [23] was for a mixture of texture and piece-wise smooth components. Second,
the dictionaries used in that work were restricted from well known transforms
such as the curvelet and discrete cosine transforms. As shown later in the paper,
the dictionaries Db and Ds are learned from real samples so as to adapt to the
smoke and non-smoke classes.

5 Experimental Results

In this section, some preparations for the experiments including the data sets
used are described in Sect. 5.1. Some separated quasi-smoke and quasi-background
components are shown in Sect. 5.2. To explore the separability between smoke
and general non-smoke classes based on the proposed feature, experiments with
a binary classification task are performed in Sect. 5.3. To explore the separabil-
ity among the classes of heavy smoke, light smoke, and general non-smoke based
on the proposed feature, results of a ternary classification task are reported in
Sect. 5.4. As fog/haze share similar visual appearance with smoke, they may
pose a challenge for single image smoke detection. Thus, it is instructive to test
whether smoke and fog/haze could be differentiated using the proposed feature;
and this is studied in Sect. 5.5. The effectiveness of the proposed feature for
smoke detection in real applications is validated in Sect. 5.5 as well. Further-
more, the computational complexity of the proposed algorithm is analyzed in
Sect. 5.6. Finally, to make a comparison between video-based smoke detection
and image-based smoke detection under the situation that cameras are jittering,
experiments are conducted in Sect. 5.7.

5.1 Data Sets and Experimental Setup

Smoke and non-smoke images with the size of 16×16 pixels were collected. These
block images were then divided into two parts, one for training the smoke and
non-smoke dictionaries and the other for training and testing the classifiers for
smoke detection. Notice that the images for learning dictionaries were strictly
excluded for classifier training/testing.

Given an input image block f , two over-complete dictionaries Db and Ds

are required to solve Eq. (13). To adapt smoke and non-smoke classes, K-SVD
[24] was adopted to train Db and Ds from the training samples. Specifically,
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Fig. 2. Examples of the bases from the learnt dictionary Ds for smoke.

Fig. 3. Examples of the bases from the learnt dictionary Db for non-smoke.

1000 pure smoke images with the size of 16 × 16 pixels were used to learn Ds.
To make Db have good generalization ability, 60000 non-smoke images with the
size of 16×16 pixels that were randomly cropped from the images in the CIFAR-
100 data set [25], were used to learn Db. In the experiments, both Db and Ds

have the size of 256 × 500. Some basis samples from Ds and Db are shown in
Figs. 2 and 3 respectively.

To construct a data set of smoke for training and testing the classifier, 5000
images with the size of 16 × 16 pixels were manually cropped based on visual
observation from 25 publicly available video clips of smoke. These video clips
[1–3], cover indoor and outdoor, short and long distance surveillance scenes with
different illuminations. Furthermore, half of the 5000 block images are heavy
smoke and the rest are light smoke.

To construct a data set of general non-smoke for training and testing the
classifier, which cover a large variety of real life image patches, 5000 images with
the size of 16×16 pixels were randomly cropped from the images in the 15-scene
data set [26].

To construct a data set of fog/haze image patches for training and testing
the classifier, 10 fog/haze images were collected from [22,27–29]. 2500 images
with the size of 16 × 16 pixels were cropped from the fog/haze regions in those
images; there are 250 block images in each collected image.

In addition, four video clips that were captured by unstable cameras were
chosen. 1000 images with the size of 16 × 16 pixels were manually cropped from
the videos. Half of these block images are smoke (either heavy or light) and the
rest are non-smoke foreground objects. Notice the 1000 cropped block images
are associated with 1000 background block images that were estimated through
video-based background modeling [30].

5.2 Separation of Quasi-smoke and Quasi-background

Given a test image block f and the trained dictionaries Db and Ds, the corre-
sponding sparse coefficients yb and ys are estimated by solving Eq. (13). Then
quasi-background component Dbyb and quasi-smoke component Dsys are cal-
culated. For an image which includes many blocks, the separation can be per-
formed on every block in a sliding window manner. To validate the separation
performance, the collage in Fig. 4 shows some separated quasi-smoke and quasi-
background components.
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Fig. 4. Quasi-smoke and quasi-background separation (column 1: the test images,
column 2: the separated quasi-smoke components, column 3: the separated quasi-
background components).

5.3 Binary Classification with the Proposed Feature

Given 5000 smoke image blocks and 5000 general non-smoke image blocks, the
separability between them based on the proposed feature was studied. Specif-
ically, each of the 10000 block images was considered as f . Given the trained
dictionaries Db and Ds, the corresponding sparse coefficients yb and ys were
estimated by solving Eq. (13). The concatenated yb and ys was considered as a
novel feature to characterize the test image block and as input to SVM classifier
to determine whether it contains smoke. In the rest of the paper, the proposed
feature will be referred to as SC.

The visual features based on motion, color, and edge are not suitable for
smoke detection from a single gray-scale image. Thus texture feature was adopted
in this paper. As local binary pattern (LBP) [31] has been successfully used in
texture classification tasks and was applied to video-based smoke detection in
[3–5], it was adopted for comparison in our experiments. As shown in [4,5], the
texture feature extracted from the separated smoke component is more reliable
than that extracted from the original video frame. In our experiments LBP was
extracted from the separated components as well. After yb and ys were obtained,
quasi-background component Dbyb and quasi-smoke component Dsys could be
estimated. Similar to the trick used in [4,5], LBP simply extracted from Dsys was
considered as a feature for smoke detection, and will be referred to as LBPS in
the rest of the paper. Additionally, the concatenated LBP extracted respectively
from Dbyb and Dsys may encode discriminative information and was tested
as well; and this will be referred to as LBPC in the rest of the paper. For
completeness, LBP that was extracted from the original image block f without
performing separation was also tested; and this will be referred to as LBP in
the rest of the paper.

Both linear and radial basis function (RBF) kernel SVM were tested and 5-
fold cross validation was performed in our experiments in the rest of the paper,
unless otherwise specified. The classification accuracies are reported in Table 1.
As shown in the table, among the four features tested, the proposed feature SC
achieves the highest accuracy in the binary classification of smoke and general
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Table 1. Accuracies for binary classification of smoke and general non-smoke (LBP :
extracted from the original image block f ; LBPS : extracted from the quasi-smoke
component Dsys only; LBPC : extracted from both the quasi-smoke component Dsys

and the quasi-background component Dbyb and then concatenated).

Feature LBP LBPS LBPC SC (Proposed)

Accuracy (%) 68.96 80.49 85.58 94.9

Fig. 5. ROC curves for binary classification of smoke and general non-smoke (LBP :
extracted from the original image block f ; LBPS : extracted from the quasi-smoke
component Dsys only; LBPC : extracted from both the quasi-smoke component Dsys

and the quasi-background component Dbyb and then concatenated).

non-smoke. As expected, the texture feature LBP extracted without compo-
nent separation has the worst performance. With the texture information of
both quasi-background and quasi-smoke components considered, LBPC is more
discriminative than LBPS , which only represents the texture feature of quasi-
smoke component. Furthermore, the receiver operating characteristics (ROC)
curves are adopted as performance measurement. They are shown in Fig. 5 along
with area under the curve (AUC) values. It is evident that the proposed feature
SC outperforms all the other three features.

The optimum SVM parameters obtained after tuning (5-fold cross validation
on 10000 image blocks) were used to train a SVM classifier using the proposed
feature. Some classification results based on the SVM are shown in Fig. 6. In
each scene shown in Fig. 6, one smoke region and one non-smoke region were
selected manually for illustration purpose; these are indicated using blue rectan-
gle. Then some block images were randomly selected from the two regions as
test samples. The smoke and non-smoke blocks classified by using the proposed
feature are indicated by red block and green block respectively. Although there
are a few classification errors on block level, the selected regions indicated by
blue rectangle will not be misclassified if simple majority voting is employed.

5.4 Ternary Classification with the Proposed Feature

Generally at the onset, smoke starts out lightly colored in a video surveillance
scene. In order to be useful for early smoke detection, the algorithm should be able
to differentiate amongst heavy smoke, light smoke, and non-smoke. Furthermore,
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Fig. 6. Illustrative classification results (blue rectangle: the selected region; red block:
classified as smoke; green block: classified as non-smoke) (Color figure online).

the algorithm should not be sensitive to false alarm caused by some objects
with high homogeneous appearance such as clothes and vehicle body. This con-
sideration motivates us to explore the separability among the classes of heavy
smoke, light smoke, and general non-smoke based on the proposed feature. For
this, a ternary classification task was conducted, which has not been reported in
the literature.

Specifically, 2500 block images were randomly selected from the data set
of general non-smoke. Given these 2500 general non-smoke, 2500 heavy smoke,
and 2500 light smoke image blocks, separation experiments were performed and
the proposed feature SC was extracted. For our comparative evaluation, LBP ,
LBPS and LBPC were also extracted as texture feature. The classification accu-
racies are reported in Table 2. Similar to the binary classification case, among
all the four features the highest accuracy is observed when using the proposed
feature SC. It is also noted that, for ternary classification of heavy smoke, light
smoke, and general non-smoke, the features LBPS , LBPC and SC extracted
based on the separated components still outperform LBP . For clarity, the con-
fusion matrix for ternary classification based on SC is shown in Table 3. As can
be noticed, most non-smoke can be differentiated from heavy smoke and light
smoke. The main misclassification occurs between heavy smoke and light smoke.

5.5 Smoke Detection: Real Application Considerations

The separability between smoke and general non-smoke classes based on the
proposed feature has been validated in Sect. 5.3 and 5.4. As mentioned before,
fog/haze may pose a challenge for single image smoke detection. To better under-
stand this challenging case, the separability between smoke and fog/haze classes
was explored. Note this is the first time it is being reported in the literature.
This consideration is also useful when specifying the classifiers to be used in a
real smoke detection application.

Table 2. Accuracies for ternary classification of heavy smoke, light smoke, and general
non-smoke (LBP : extracted from the original image block f ; LBPS : extracted from
the quasi-smoke component Dsys only; LBPC : extracted from both the quasi-smoke
component Dsys and the quasi-background component Dbyb and then concatenated).

Feature LBP LBPS LBPC SC (Proposed)

Accuracy (%) 51.92 62.77 73.61 84.47
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Table 3. Confusion matrix for ternary classification of heavy smoke, light smoke, and
general non-smoke based on the proposed feature SC.

Detected

Heavy Light Non-smoke

Truth Heavy 81.4 % 18.2 % 0.4 %

Light 13.6 % 76.2 % 10.2 %

Non-smoke 1.2 % 3 % 95.8 %

2500 block images were randomly selected from the smoke data set. Given
these 2500 smoke (including both heavy and light) and 2500 fog/haze block
images, separation experiments were conducted and the proposed feature SC
was extracted. To make a comparison, LBPC which has been proved to be the
best among LBP features was extracted from quasi-smoke and quasi-background
components as texture feature.

A binary classification task on these image blocks yielded classification accu-
racies of 76.6% and 77.5% when using LBPC and SC respectively. Note that
the study on the differentiation of smoke from fog/haze is preliminary. It can
be expected from the above experiments that the proposed feature SC will
outperform LBP-based features in a realistic case where smoke, fog/haze and
non-smoke (excluding fog/haze) coexist.

Based on the results so far obtained, the proposed feature SC, has been
validated to effectively separate between the classes of smoke and general non-
smoke; and the classes of smoke and fog/haze. In a smoke detection system
application it will be preferable to filter out general non-smoke at a first stage
of smoke detection. Then smoke and fog/haze are further differentiated at a
second stage. Based on this consideration, a tree-structured classifier may have
good generalization ability in terms of classification between smoke and non-
smoke. To validate this hypothesis, such a classifier was constructed and tested
for its effectiveness in detecting smoke. Using the data sets described in Sect. 5.1,
two partitions (training and test data) were created. In the training set, there
are 1500 block images including either heavy or light smoke, 1500 general non-
smoke block images selected randomly, and 1500 fog/haze block images. The test
set comprises 3500 smoke block images, 3500 general non-smoke block images,
and 1000 fog/haze block images. A SVM was trained using SC on the 1500
smoke block images and 1500 general non-smoke block images; and this classifier
is referred to as Classifier1. Another SVM was trained using SC on the 1500
smoke block images and 1500 fog/haze block images; and this is referred to
as Classifier2. For comparison, a SVM was also trained using SC on the 1500
smoke block images and 3000 non-smoke (including both general and fog/haze)
block images; and this is referred to as Classifier3. Classifier1 and Classifier2
were simply concatenated as a tree-structured classifier; and this is referred to as
Classifier4. Given the 3500 smoke block images and 4500 non-smoke (including
3500 general and 1000 fog/haze) block images in the test set, image separation
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Fig. 7. ROC curves for single image smoke detection based on the four classifiers.

was performed and SC was extracted. The ROC curves for smoke detection based
on the four classifiers are shown in Fig. 7, where AUC values are also provided.
Overall Classifier4 outperforms all the other three classifiers. Trained on smoke
and fog/haze images only, Classifier2 gives the worst performance among all the
classifiers. The ROC curve based on Classifier4 also indicates the effectiveness
of the proposed feature SC for single image smoke detection.

5.6 Computational Complexity

In the proposed method, most computation time is spent in the step of fea-
ture extraction, that is, obtaining the sparse coefficients to represent the quasi-
smoke and quasi-background components by solving Eq. (13). In this step, the
sparse coefficients yb and ys are alternately calculated using the feature-sign
search algorithm. The complexity of this step is O(K1K2(K3

3 + K3
4 )), where K1

is the number of iterations within the feature-sign search algorithm, K2 is the
number of alternations, K3 is the number of non-zero entries in yb, and K4 is
the number of non-zero entries in ys. Typical values of K1, K2, K3 and K4 for
our experiments are 5, 15, 30 and 20 respectively.

5.7 Smoke Detection with Jittering Cameras

When cameras jitter, video-based smoke detection algorithms could lead to poor
performance due to the unreliable background modeling and feature extraction.
However, single image smoke detection, which does not rely on the information
of previous video frames, should perform well. To validate this, experiments
using real video data were conducted. Given 1000 block images cropped from
the video clips captured by jittering cameras, the proposed single image smoke
detection method yielded a classification accuracy of 95.5 %. The state-of-the-art
video-based smoke detection algorithm presented in [5] achieved only 54.5 %.

6 Conclusion and Future Work

In this paper, a novel feature, namely the sparse coefficients associated with an
over-complete dictionary representation, has been proposed to detect smoke from
a single image. The proposed feature arises from two parts; one representing the
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smoke component of the input image and the other representing the non-smoke
component. We derived a component-based image formation model for smoke
using the atmospheric scattering models and formulated an optimization scheme
that allowed the separation of quasi-smoke and quasi-background components.
The effectiveness of the proposed feature for single image smoke detection was
validated by the experimental results. Furthermore, practical consideration for
the design of a smoke detection system that could be useful in specifying required
classifiers was presented. As an indicator for successful smoke separation, a good
estimation of ω is meaningful from the perspective of both theoretical and prac-
tical consideration and this will be pursued in our continuing work.
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