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Abstract. In this work, we propose a novel and efficient method for
articulated human pose estimation in videos using a convolutional net-
work architecture, which incorporates both color and motion features.
We propose a new human body pose dataset, FLIC-motion (This dataset
can be downloaded from http://cs.nyu.edu/∼ajain/accv2014/.), that
extends the FLIC dataset [1] with additional motion features. We apply
our architecture to this dataset and report significantly better perfor-
mance than current state-of-the-art pose detection systems.

1 Introduction

Human body pose recognition in video is a long-standing problem in computer
vision with a wide range of applications. However, body pose recognition remains
a challenging problem due to the high dimensionality of the input data and
the high variability of possible body poses. Traditionally, computer vision-based
approaches tend to rely on appearance cues such as texture patches, edges, color
histograms, foreground silhouettes or hand-crafted local features (such as his-
togram of gradients (HoG) [2]) rather than motion-based features. Alternatively,
psychophysical experiments [3] have shown that motion is a powerful visual
cue that alone can be used to extract high-level information, including articu-
lated pose.

Previous work [4,5] has reported that using motion features to aid pose
inference has had little or no impact on performance. Simply adding high-
order temporal connectivity to traditional models would most often lead to
intractable inference. In this work we show that deep learning is able to success-
fully incorporate motion features and is able to out-perform existing state-of-the-
art techniques. Further, we show that by using motion features alone our method
outperforms [6–8] (see Fig. 9(a) and (b)), which further strengthens our claim
that information coded in motion features is valuable and should be used when
available.

This paper makes the following contributions:

– A system that successfully incorporates motion-features to enhance the per-
formance of pose-detection ‘in-the-wild’ compared to existing techniques.

– An efficient and tractable algorithm that achieves close to real-time frame
rates, making our method suitable for wide variety of applications.
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– A new dataset called FLIC-motion, which is the FLIC dataset [1] augmented
with ‘motion-features’ for each of the 5003 images collected from Hollywood
movies.

2 Prior Work

Geometric Model Based Tracking: One of the earliest works on articulated
tracking in video was Hogg [9] in 1983 using edge features and a simple cylinder
based body model. Several other model based articulated tracking systems have
been reported over the past two decades, most notably [10–16]. The models used
in these systems were explicit 2D or 3D jointed geometric models. Most systems
had to be hand-initialized (except [12]), and focused on incrementally updating
pose parameters from one frame to the next. More complex examples come from
the HumanEva dataset competitions [17] that use video or higher-resolution
shape models such as SCAPE [18] and extensions. We refer the reader to [19] for
a complete survey of this era. Most recently such techniques have been shown to
create very high-resolution animations of detailed body and cloth deformations
[20–22]. Our approach differs, since we are dealing with single view videos in
unconstrained environments.

Statistical Based Recognition: One of the earliest systems that used no
explicit geometric model was reported by Freeman et al. in 1995 [23] using ori-
ented angle histograms to recognize hand configurations. This was the precur-
sor for the bag-of-features, SIFT [24], STIP [25], HoG, and Histogram of Flow
(HoF) [26] approaches that boomed a decade later, most notably including the
work by Dalal and Triggs in 2005 [2]. Different architectures have since been pro-
posed, including “shape-context” edge-based histograms from the human body
[27,28] or just silhouette features [29]. Shakhnarovich et al. [30] learn a para-
meter sensitive hash function to perform example-based pose estimation. Many
techniques have been proposed that extract, learn, or reason over entire body
features, using a combination of local detectors and structural reasoning (see
[31] for coarse tracking and [32] for person-dependent tracking).

Though the idea of using “Pictorial Structures” by Fischler and Elschlager [33]
has been around since the 1970s, matching them efficiently to images has only
been possible since the famous work on ‘Deformable Part Models’ (DPM) by
Felzenszwalb et al. [34] in 2008. Many algorithms that use DPM for creating
the body part unary distribution [6,7,35,36] with spatial-models incorporat-
ing body-part relationship priors have since then been developed. Johnson and
Everingham [37], who also proposed the ‘Leeds Sports Database’, employ a cas-
cade of body part detectors to obtain more discriminative templates. Almost all
best performing algorithms since have solely built on HoG and DPM for local
evidence, and yet more sophisticated spatial models. Pishchulin [38] proposes
a model that augments the DPM unaries with Poselet conditioned [39] priors.
Sapp and Taskar [1] propose a model where they cluster images in the pose-
space and then find the mode which best describes the input image. The pose
of this mode then acts as a strong spatial prior, whereas the local evidence is
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again based on HoG and gradient features. Following the Poselets approach [39],
the Armlets approach by Gkioxari et al. [40] incorporates edges, contours, and
color histograms in addition to the HoG features. They employ a semi-global
classifier for part configuration and show good performance on real-world data.
However, they only show their results on arms. The major drawback of all these
approaches is that both the local evidence and the global structure is hand
crafted, whereas we jointly learn both the local features and the global structure
using a multi-resolution convolutional network.

Shotton et al. [41] use an ensemble of random trees to perform per-pixel label-
ing of body parts in depth images. As a means of reducing overall system latency
and avoiding repeated false detections, their work focuses on pose inference using
only a single depth image. By contrast, we extend the single frame requirement
to at least 2 frames (which we show considerably improves pose inference), and
our input domain is unconstrained RGB images rather than depth.

Pose Detection Using Image Sequences:

Deep Learning Based Techniques: Recently, state-of-the-art performance
has been reported on many vision tasks using deep learning algorithms [42–47].
References [48–50] also apply neural networks for pose recognition, specifically
Toshev et al. [48] show better than state-of-the-art performance on the ‘FLIC’
and ‘LSP’ [51] datasets. In contrast to Toshev et al., in our work we propose a
translation invariant model which improves upon their method, especially in the
high-precision region.

3 Body-Part Detection Model

We propose a Convolutional Network (ConvNet) architecture for the task of
estimating the 2D location of human joints in video (Sect. 3.2). The input to the
network is an RGB image and a set of motion features. We investigate a wide
variety of motion feature formulations (Sect. 3.1). Finally, we will also introduce
a simple Spatial-Model to solve a specific sub-problem associated with evaluation
of our model on the FLIC-motion dataset (Sect. 3.3).

3.1 Motion Features

The aim of this section is to incorporate features that are representative of the
true motion-field (the perspective projection of the 3D velocity-field of moving
surfaces) as input to our detection network so that it can exploit motion as a
cue for body part localization. To this end, we evaluate and analyze four motion
features which fall under two broad categories: those using simple derivatives
of the RGB video frames and those using optical flow features. For each RGB
image pair fi and fi+δ, we propose the following features:

– RGB image pair - {fi, fi+δ}
– RGB image and an RGB difference image - {fi, fi+δ − fi}
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– Optical-flow1 vectors - {fi,FLOW(fi, fi+δ)}
– Optical-flow magnitude - {fi, ||FLOW(fi, fi+δ)||2}
The RGB image pair is by far the simplest way of incorporating the relative
motion information between the two frames. However, this representation clearly
suffers from a lot of redundancy (i.e. if there is no camera movement) and is
extremely high dimensional. Furthermore, it is not obvious to the deep net-
work what changes in this high dimensional input space are relevant temporal
information and what changes are due to noise or camera motion. A simple mod-
ification to this representation is to use a difference image, which reformulates
the RGB input so that the algorithm sees directly the pixel locations where high
energy corresponds to motion (alternatively the network would have to do this
implicitly on the image pair). A more sophisticated representation is optical-flow,
which is considered to be a high-quality approximation of the true motion-field.
Implicitly learning to infer optical-flow from the raw RGB input would be non-
trivial for the network to estimate, so we perform optical-flow calculation as a
pre-processing step (at the cost of greater computational complexity).

FLIC-motion Dataset: We propose a new dataset which we call FLIC-
motion2. It is comprised of the original FLIC dataset of 5003 labeled RGB
images collected from 30 Hollywood movies, of which 1016 images are held out
as a test set, augmented with the aforementioned motion features.

We experimented with different values for δ and investigated the above fea-
tures with and without camera motion compensation; we use a simple 2D projec-
tive motion model between fi and fi+δ, and warp fi+δ onto fi using the inverse
of this best fitting projection to approximately remove camera motion. A com-
parison between image pairs with and without warping can be seen in Fig 1.

(a) (b) (c) (d)

Fig. 1. Results of optical-flow computation: (a) average of frame pair, (b) optical
flow on (a), (c) average of frame pair after camera compensation, and (d) optical-
flow on (c)

To obtain fi+δ, we must know where the frames fi occur in each movie.
Unfortunately, this was non-trivial as the authors Sapp et al. [1] could not provide
1 We use the algorithm proposed by Weinzaepfel et al. [47] to compute optical-flow.
2 This dataset can be downloaded from http://cs.nyu.edu/∼ajain/accv2014/.

http://cs.nyu.edu/~ajain/accv2014/
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us with the exact version of the movie that was used for creating the original
dataset. Corresponding frames can be very different in multiple versions of the
same movie (4:3 vs wide-screen, director’s cut, special editions, etc.). We estimate
the best similarity transform S between fi and each frame fm

j from the movie m,
and if the distance |fi−Sfm

j | is below a certain threshold (10 pixels), we conclude
that we found the correct frame. We visually confirm the resulting matches
and manually pick frames for which the automatic matching was unsuccessful
(e.g. when enough feature points were not found).

3.2 Convolutional Network

Recent work [48,49] has shown ConvNet architectures are well suited for the task
of human body pose detection, and due to the availability of modern Graphics
Processing Units (GPUs), we can perform Forward Propagation (FPROP) of
deep ConvNet architectures at interactive frame-rates. Similarly, we realize our
detection model as a deep ConvNet architecture. The input is a 3D tensor con-
taining an RGB image and its corresponding motion features, and the output
is a 3D tensor containing response-maps, with one response-map for each joint.
Each response-map describes the per-pixel energy for the presence of the corre-
sponding joint at that pixel location.

Fig. 2. Sliding-window with image and flow patches

Our ConvNet is based on a sliding-window architecture. A simplified version
of this architecture is shown in Fig. 2. The input patches are first normalized
using Local Contrast Normalization (LCN [52]) for the RGB channels and a new
normalization method for the motion features we call Local Motion Normaliza-
tion (LMN). We formulate LMN as the local subtraction with the response from
a Gaussian kernel with large standard deviation followed by a divisive normaliza-
tion. The result is that it removes some unwanted background camera motion as
well as normalizing the local intensity of motion (which helps improve network
generalization for motions of varying velocity but with similar pose). Prior to
processing through the convolution stages, the normalized motion channels are
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concatenated along the feature dimension with the normalized RGB channels,
and the resulting tensor is processed though 3 stages of convolution.

The first two convolution stages use rectified linear units (ReLU) and Max-
pooling, and the last stage incorporates a single ReLU layer. The output of the last
convolution stage is then passed to a three stage fully-connected neural-network.
The network is then applied to all 64×64 sub-windows of the image, stepped every
4 pixels horizontally and vertically. This produces a dense response-map output,
one for each joint. The major advantage of this model is that the learned detector
is translation invariant by construction.

Fig. 3. Efficient sliding window model

Because the layers are convolutional, applying two instances of the network
in Fig. 2 to two overlapping input windows leads to a considerable amount of
redundant computation. Recent work [53,54] eliminates this redundancy and
thus yields a dramatic speed up. This is achieved by applying each layer of
the convolutional network to the entire input image. The fully connected lay-
ers for each window are also replicated for all sub-windows of the input. This
formulation allows us to back-propagate though this network for all windows
simultaneously. Due to the two 2 × 2 subsampling layers, we obtain one output
vector every 4 × 4 input pixels. An equivalent efficient version of the sliding
window model is shown in Fig. 3.

Note that an alternative model (such as in Tompson et al. [50]) would replace
the last 3 convolutional layers with a fully-connected neural network whose input
context is the feature activations for the entire input image. Such a model would
be appropriate if we knew a priori that there existed a strong correlation between
skeletal pose and the position of the person in the input frame since this alterna-
tive model is not invariant with respect to the translation of the person within
the image. However, the FLIC dataset has no such strong pose-location bias
(i.e. a subject’s torso is not always in the same location in the image), and
therefore a sliding-window based architecture is more appropriate for our task.

We extend the single resolution ConvNet architecture of Fig. 3 by incorporat-
ing a multi-resolution input. We do so by down-sampling the input (using appro-
priate anti-aliasing), and then each resolution image is processed through either
a LCN or LMN layer using the same normalization kernels for each bank pro-
ducing an approximate Laplacian pyramid. The role of the Laplacian Pyramid
is to provide each bank with non-overlapping spectral content which minimizes
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Fig. 4. Multi-resolution efficient sliding window model

network redundancy. Our final, multi-resolution network is shown in Fig. 4. The
outputs of the convolution banks are concatenated (along the feature dimen-
sion) by point-wise up-scaling of the lower resolution bank to bring the feature
maps into canonical resolution. Note that in our final implementation we use 3
resolution banks.

We train the Part-Detector network using supervised learning via Back Prop-
agation and Stochastic Gradient Descent. We minimize a mean squared error
criterion for the distance between the inferred response-map activation and a
ground truth response-map, which is a 2D Gaussian distribution centered at
the target joint location and with small standard deviation (1px). We use Nes-
terov momentum to reduce training time [55] and we randomly perturb the
input images each epoch by randomly flipping and scaling the images to prevent
network overtraining and improve generalization performance.

3.3 Simple Spatial Model

Our model is evaluated on our new FLIC-motion dataset (Sect. 3.1). As per the
original FLIC dataset, the test images in FLIC-motion may contain multiple
people, however, only a single actor per frame is labeled in the test set. As such,
a rough torso location of the labeled person is provided at test time to help locate
the “correct” person. We incorporate this information by means of a simple and
efficient Spatial-Model.

The inclusion of this stage has two major advantages. Firstly, the correct
feature activation from the Part-Detector output is selected for the person for
whom a ground-truth label was annotated. An example of this is shown in Fig. 5.
Secondly, since the joint locations of each part are constrained in proximity to
the single ground-truth torso location, then (indirectly) the connectivity between
joints is also constrained, enforcing that inferred poses are anatomically viable
(i.e. the elbow joint and the shoulder joint cannot be to far away from the torso,
which in turn enforces spatial locality between the elbow and shoulder joints).

The core of our Spatial-Model is an empirically calculated joint-mask, shown
in Fig. 5(b). The joint-mask layer describes the possible joint locations, given
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Fig. 5. Simple spatial model used to mask-out the incorrect shoulder activations given
a 2D torso position

that the supplied torso position is in the center of the mask. To create a mask
layer for body part A, we first calculate the empirical histogram of the part A
location, xA, relative to the torso position xT for the training set examples; i.e.
xhist = xA−xT . We then turn this histogram into a Boolean mask by setting the
mask amplitude to 1 for pixels for which p (xhist) > 0. Finally, we blur the mask
using a wide Gaussian low-pass filter which accounts for body part locations not
represented in the training set (but which might be present in the test set).

During test time, this joint-mask is shifted to the ground-truth torso location
and the per-pixel energy from the Part-Model (Sect. 3.2) is then multiplied with
the mask to produce a filtered output. This process is carried out for each body
part independently.

It should be noted that while this Spatial-Model does enforce some anatomic
consistency, it does have limitations. Notably, we expect it to fail for datasets
where the range of poses is not as constrained as the FLIC dataset (which is
primarily front facing and standing up poses).

4 Results

Training time for our model on the FLIC-motion dataset (3957 training set
images, 1016 test set images) is approximately 12 hours, and FPROP of a single
image takes approximately 50 ms3. For our models that use optical flow as a
motion feature input, the most expensive part of our pipeline is the optical
flow calculation, which takes approximately 1.89 s per image pair. (We plan to
investigate real-time flow estimations in the future).

Section 4.1 compares the performance of the motion features from Sect. 3.1.
Section 4.2 compares our architecture with other techniques and shows that our
system significantly outperforms existing state-of-the-art techniques. Note that
for all experiments in Sect. 4.1 we use a smaller model with 16 convolutional
features in the first 3 layers. A model with 128 instead of 16 features for the first
3 convolutional layers is used for results in Sect. 4.2.

3 Analysis of our system was on a 12 core workstation with an NVIDIA Titan GPU.
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4.1 Comparison and Analysis of Proposed Motion Features

Figure 6 shows a selection of example images from the FLIC test set which
highlights the importance of using motion features for body pose detection.
In Fig. 6(a), the elbow position is occluded by the actor’s sling, and no such
examples exist in the training set; however, the presence of body motion provides
a strong cue for elbow location. Figure 6(b) and (d) have extremely cluttered
backgrounds and the correct joint location is locally similar to the surrounding
region (especially for the camouflaged clothing in Fig. 6(d)). For these images,
motion features are essential in correct joint localization. Finally, Fig. 6(c) is an
example where motion blur (due to fast joint motion) reduces the fidelity of
RGB edge features, which results in incorrect localization when motion features
are not used.

Fig. 6. Predicted joint positions on the FLIC test-set. Top row: detection with motion
features (L2 motion flow). Bottom row: without motion features (baseline).

Figure 7(a) and (b) show the performance of the motion features of Sect. 3.1
on the FLIC-motion dataset for the Elbow and Wrist joints respectively. For eval-
uating our test-set performance, we use the criterion proposed by Sapp et al. [1].
We count the percentage of the test-set images where joint predictions are within
a given radius that is normalized to a 100 pixel torso size. Surprisingly, even
the simple frame-difference temporal feature improves upon the baseline result
(which we define as a single RGB frame input) and even outperforms the 2D
optical flow input (see Fig. 6(b) inset).

Note that stable and accurate calculation of optical-flow from arbitrary RGB
videos is a very challenging problem. Therefore, incorporating motion flow fea-
tures as input to the network adds non-trivial localization cues that would be
very difficult for the network to learn internally with limited learning capacity.
Therefore, it is expected that the best performing networks in Fig. 7 are those
that incorporate motion flow features. However, it is surprising that using the
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magnitude of the flow vectors performs as well as - and in some cases outper-
forms - the full 2D motion flow. Even though the input data is richer, we hypoth-
esize that when using 2D flow vectors the network must learn invariance to the
direction of joint movement; for instance, the network should predict the same
head position whether a person is turning his/her head to the left or right on
the next frame. On the other hand, when the L2 magnitude of the flow vector
is used, the network sees the high velocity motion cue but cannot over-train to
the direction of the movement.

Fig. 7. Model performance for various motion features

Figure 8(a) shows that the performance of our network is relatively agnostic
to the frame separation (δ) between the samples for which we calculate motion
flow; the average precision between 0 and 20 pixel radii degrades 3.9 % from -10
pixels offset to -1 pixel offset. A frame difference of 10 corresponds to approx-
imately 0.42 s (at 24fps), and so we expect that large motions over this time
period would result in complex non-linear trajectories in input space for which
a single finite difference approximation of the pixel velocity would be inaccu-
rate. Accordingly, our results show that performance indeed degrades as a larger
frame step is used.

Similarly, we were surprised that our camera motion compensation tech-
nique (described in Sect. 3.1) does not help to the extent that we expected,
as shown in Fig. 8(b). Likely this is because either LMN removes a lot of con-
stant background motion or the network is able to learn to ignore the remaining
foreground-background parallax motion due to camera movement.

4.2 Comparison with Other Techniques

Figure 9(a) and (b) compares the performance of our system with other state-of-
the-art models on the FLIC dataset for the elbow and wrist joints respectively.
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Fig. 8. Model performance for (a) varying motion feature frame offsets (b) with and
without camera motion compensation

Fig. 9. Our model performance compared with our model using only flow magnitude
features (no RGB image), Toshev et al. [48], Jain et al. [49], MODEC [1], Eichner
et al. [6], Yang et al. [7] and Sapp et al. [8].

Our detector is able to significantly outperform all prior techniques on this chal-
lenging dataset. Note that using only motion features already outperforms [6–8].
Also note that using only motion features is less accurate than using a com-
bination of motion features and RGB images, especially in the high accuracy
region. This is because fine details such as eyes and noses are missing in motion
features. Toshev et al. [48] suffers from inaccuracy in the high-precision region,
which we attribute to inefficient direct regression of pose vectors from images.
MODEC [1], Eichner et al. [6] and Sapp et al. [8] build on hand crafted HoG
features. They all suffer from the limitations of HoG (i.e. they all discard color
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information, etc.). Jain et al. [49] do not use multi-scale information and evaluate
their model in a sliding window fashion, whereas we use the ‘one-shot’ approach.
Finally, we believe that increasing the complexity of our simple spatial model
will improve performance of our model, specifically for large radii.

5 Conclusion

We have shown that when incorporating both RGB and motion features in our
deep ConvNet architecture, our network is able to outperform existing state-of-
the-art techniques for the task of human body pose detection in video. We have
also shown that using motion features alone can outperform some traditional
algorithms [6–8]. Our findings suggest that even very simple temporal cues can
greatly improve performance with a very minor increase in model complexity. As
such, we suggest that future work should place more emphasis on the correct use
of motion features. We would also like to further explore higher level temporal
features, potentially via learned spatiotemporal convolution stages and we hope
that using a more expressive temporal-spatial model (using motion constraints)
will help improve performance significantly.
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