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Abstract. Matching face images across different modalities is a chal-
lenging open problem for various reasons, notably feature heterogene-
ity, and particularly in the case of sketch recognition — abstraction,
exaggeration and distortion. Existing studies have attempted to address
this task by engineering invariant features, or learning a common sub-
space between the modalities. In this paper, we take a different approach
and explore learning a mid-level representation within each domain that
allows faces in each modality to be compared in a domain invariant way.
In particular, we investigate sketch-photo face matching and go beyond
the well-studied viewed sketches to tackle forensic sketches and carica-
tures where representations are often symbolic. We approach this by
learning a facial attribute model independently in each domain that rep-
resents faces in terms of semantic properties. This representation is thus
more invariant to heterogeneity, distortions and robust to mis-alignment.
Our intermediate level attribute representation is then integrated syner-
gistically with the original low-level features using CCA. Our framework
shows impressive results on cross-modal matching tasks using forensic
sketches, and even more challenging caricature sketches. Furthermore,
we create a new dataset with =59, 000 attribute annotations for evalu-
ation and to facilitate future research.

1 Introduction

Cross-modal face recognition is an increasingly important research area that
encompasses matching face images between different modalities: sketch, photo,
infra-red, low /high resolution, 2D/3D and so on. Among all these, facial sketch
based face recognition is perhaps the most important and the most well stud-
ied, due to its crucial role in assisting law enforcement. Facial sketches can be
classified into three categories according to abstraction/deformation level com-
pared to a corresponding photo: wviewed sketch, forensic sketch and caricature,
as shown in Fig. 1. Most existing studies have considered viewed sketches, which
are drawn by artists while looking at a photo. This is the easiest (and most
impractical) cross-modal task because the images are sufficiently similar and
well aligned that extracting any grayscale descriptor from both is near sufficient
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Fig. 1. Illustration of sketch abstraction level (top) and pipeline overview (below).

to bridge the cross-modal gap. As a result cross-modal matching rates for viewed
sketch are saturated at near-perfect [1-7]. Therefore research focus has moved
onto forensic sketches [1] and beyond (caricature) [8].

Contrast to viewed sketches, matching forensic sketches or caricatures to
photos is significantly more challenging due to greater cross-modal gap. For
forensic sketches, the witness may not exactly remember the appearance of a
suspect — omitting, hallucinating or distorting individual details — or may not
be able to communicate the visual memory clearly. As a result forensic sketches
are often inaccurate and incomplete. In the case of caricatures, the sketch is a
purposely exaggerated and distorted version of the original face. In both cases,
the cross-modal gap is created by mismatch due to various factors: (i) feature
heterogeneity, (i) missing or additional facial details, (iii) distorted macro or
micro proportions — which in turn affects alignment in a way that rigid registra-
tion cannot rectify. Despite these challenges, if the sketch subject is known to a
human, they have no trouble identifying either forensic or caricature sketches.
We are therefore motivated to study both caricature and forensic sketches, as
contributions to matching caricature sketches will reflect robustness to the most
challenging forensic sketch or other cross-modal recognition tasks.

In this paper, we aim to address the highlighted challenges in cross-modality
matching of forensic sketches and caricatures to photos, by constructing a mid-
level attribute representation of each facial modality. The idea is that this rep-
resentation can be learned independently within each modality (thus completely
avoiding any cross-modality challenge); but once learned, it is largely invariant
to the cross-modal gap. That is, neither feature heterogeneity, nor non-linear
cross-modal distortion affect this representation. Specifically, we train a bank
of facial attribute detectors to produce low-dimensional semantic representation
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within each modality. Finally, although the attribute representation is invari-
ant to the cross-modal gap, it does lose some detailed information encoded by
the low-level features. We therefore develop a robust synergistic representation
that encodes the best of both attributes and low-level features by learning a
CCA subspace that correlates the two. The result outperforms feature-based
face-matching techniques, as well as state of the art cross-modal matching tech-
niques that focus on learning a mapping between low-level features without
first building an invariant mid-level representation. Moreover, a new dataset
combining common forensic [9] and caricature datasets [8] were annotated
(=59, 000 annotations in total) to learn and evaluate the proposed cross-modal
face representation.

The remaining parts of this paper will be organised as follows: related works
will be discussed in Sect.2; the technical methodology to bridge large cross-
modal gap, that is to say, the way to matching forensic sketches and caricatures
is discussed in Sect. 3; all the experiments and analysis are shown in Sect. 4; and
Sect. 5 details our attribute dataset before conclusions in Sect. 6.

2 Related Work

2.1 Sketch-Based Face Recognition

As we have discussed, sketch-based face recognition can be classified based on
the type of sketch used as the probe: viewed, forensic and caricature-based. In
each case, strategies to bridge the cross-modal gap broadly break down into four
categories: (i) those that learn a cross-modal mapping to synthesise one modality
from the other, and then perform within-modality matching [10,11], (ii) those
that learn a common subspace where the two modalities are more comparable
[12], (iii) those that learn discriminative models to maximise matching accuracy
[1,13], and (iv) those that engineer features which are simultaneously invariant
to the details of each modality, while being variant to person identity [4,14].

Viewed Sketches. Viewed sketches are the simplest type of sketch to match
against facial photos because incorrect details and distortion are minimal. This
is the most extensively studied type of heterogeneous face recognition. Studies
taking synthesis strategies have used eigen-transform [10] and MRF [11] optimi-
sation to map photos into sketches before within-modal matching. Alternative
studies have used PLS [12] to synthesize a common subspace where the modal-
ities are more comparable. Meanwhile, others have engineered new invariant
descriptors, including histogram of averaged oriented gradients [14] and local
radon binary patterns [4]. Recognition rates on viewed sketch benchmarks has
saturated, reaching 100 % [14], thus research has moved on the more challenging
and realistic setting of forensic sketches.

Forensic Sketches. One of the earliest studies to discuss automated match-
ing forensic sketches with photos was [15]. Uhl and Lobo’s study [15] proposed
a theory, and the first simple method for matching a police artist sketch to
a set of photographs. It highlighted the complexity and difficulties in forensic
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sketch based face recognition. One of the first major studies on forensic sketches
was [1], which combined feature engineering (SIFT and LBP) with a discrimina-
tive (LFDA) method to learn a weighting that maximized identification accuracy.
Later studies such as [13] improved these results, again combining feature engi-
neering (Weber and Wavelet descriptors) plus discriminative learning (genetic
algorithms) strategy to maximize matching accuracy; while [16] followed up also
with feature engineering (LBP) and discriminative learning (RS-LDA).

All these strategies to bridge the cross-modal gap can largely address the
feature heterogeneity problem, but the more fundamental problems of miss-
ing/additional details, and non-linear heteroskedastic distortion remain out-
standing. Abstraction and distortion effects mean that any particular patch in
a facial sketch image does not necessarily correspond to the associated patch in
a facial sketch, an intrinsic problem that existing studies do not address. In this
paper we avoid this issue by transforming both sketch and photo images into a
mid-level semantic representation that does not depend on alignment or ability to
find a patch correspondence, and is highly robust to missing/additional details.

Caricatures. An even more extreme cross-domain gap than in photo-forensic
sketch is created by caricature-based matching. The extreme deformation and
abstraction of caricatures seriously challenge all existing strategies: feature engi-
neering methods as well as cross-domain mapping and synthesis methods are
hamstrung by the impossibility of establishing patch correspondence, and mis-
match of details. The main study so far addressing caricature-based matching
is by Klare et al. [8]. This study proposed a semi-automated system to match
caricatures to photographs based on manually specified facial properties for each
image. However, how to automatically extract facial attributes is unaddressed.
We address this question question here, as well as how best to synergistically
integrate the extracted attributes with low-level features.

2.2 Cross-Modal Mapping

Learning cross-modal mappings is quite widely studied, as it is of broader rel-
evance [17,18] than face recognition. Common approaches include using partial
least squares (PLS) [12], Canonical correlation analysis (CCA) [17-19], or sparse
coding [20] to map both modalities to common representation. These methods
have all also been applied to cross-modal face recognition with some success.
Nevertheless, in each case a fundamental assumption remains that a single linear
mapping should relate the two domains. Clearly in the case of forensic sketches
and caricatures with non-linear deformations, abstraction, and missing details,
the assumptions of a single mapping between all sketches and all images, and
that the mapping should be linear, are not met. In this paper we therefore focus
on learning a semantic attribute representation, which maps low-level features to
a mid-level semantic representation that is invariant to the domain gap [21] and
alignment errors. Since the low-level feature to attribute transformation can be
non-linear, overall this means that — unlike existing approaches — the learnable
sketch-photo mapping can also be non-linear.



214 S. Ouyang et al.

2.3 Semantic Attributes

Semantic attributes [22] have gained wide popularity as an effective represen-
tation in the broader vision community with application to object recognition
[22,23], person identification [21], and action recognition [24,25]. However appli-
cation of attributes to faces [26] or face recognition [27] has been relatively
limited, and their potential for bridging the cross-modal gap is not yet explored.

Psychologists have shown that the ability of humans to perform basic-level
categorization (e.g. cats vs. dogs) develops well before their ability to perform
subordinate-level or fine-grained visual categorization (e.g., species), or in our
case, facial attribute detection [28]. Unlike basic-level recognition, even humans
have difficulty with recognition of facial attributes. This is due to attributes, such
as different types of noses and eyes being quite fine grained discrimination tasks.
Models and algorithms designed for basic-level object or image categorization
tasks are often unprepared to catch such subtle differences among different facial
attributes. In this paper, we alleviate this problem by exploiting an ensemble of
classifier regions with various shapes, sizes and locations [29].

2.4 Our Contributions

The contributions of the paper are summarized as follows: (1) we release a
dataset with ~59, 000 attribute annotations for the major caricature [8] and
forensic photo-sketch datasets [1]; (2) we show how to automatically detect
photo/sketch facial attributes as a modality-invariant semantic feature; (3) we
show how to synergistically integrate attributes and low-level features for recog-
nition; and (4) we demonstrate the efficacy of our approach on challenging foren-
sic sketch and caricature sketch based recognition.

3 Matching Faces Across Modalities

Problem Setting. In the cross-modal face recognition problem, we are given
a set of photo and sketch face images, DP = {x!'}¥ | and D® = {x$}}¥, respec-
tively. Each image is assumed to be represented by a fixed-length d-dimensional
feature vector x. The goal is to establish the correct correspondence between
the photo set and the sketch set. Feature engineering approaches [4,14] focus on
designing the representation x such that each ‘probe’ sketch x* can be matched
with its corresponding photo by simple nearest neighbour as in Eq. (1), where
|-| indicates some distance metric such as L1, L2 [1] or X2 [13,14]. Going beyond
feature engineering, studies have attempted to learn a mapping to make the
modalities more comparable, such that mappings can be learned by synthesizing
one modality from the other or discovering a new subspace. This typically results
in NN matching in the form of Eq. (2), where the matrices W* and/or W? are
learned, e.g., by CCA [19,30] or PLS [12]. Alternatively, matrices W may also
be learned by discriminative models [1,8,13] to maximize matching rate.
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iyn = argmin [x* — x7| (1)
(2

imap = argmin [Wox* — Wrx?| (2)
i

ity = argmin [a® (x") — a” (x7)| 3)
K]

In this paper, we will go beyond existing approaches by learning a mid-
level semantic attribute representation a for each modality. Since the attribute
representation a is both (1) discriminative by design! [21,22,27] and (2) modality
invariant, this means that NN matching as in Eq. (3) can be more powerful than
previous while being robust to the modality gap approaches. In the next section
we discuss how to compute a semantic attribute representation a(-) for photos
and sketches.

3.1 Attribute Detection

Training an Ensemble Classifier for Attribute Detection. We assume
an ontology of j = 1... A attributes is provided (see Sect.5 for details of the
ontology). Each training image set D now also contains attribute annotation a
as well as images, D = {x;,a;} ;. For each modality and for each attribute j
we train an ensemble classifier a;(-) as follows. Given the training data D, we
randomly sample a set of M windows around the three annotated semantically
relevant regions for each attribute. For all M regions, we then train a support
vector machine (SVM) classifier to predict the presence of the current attribute
j in the training set. The randomly sampled regions are evaluated for discrimi-
nativeness by their attribute-detection performance on a held out validation set.
The top three most discriminative regions » = 1, 2,3 are then selected for each
attribute.

Detecting Attributes. The final evaluation of the classifier ensemble for at-
tribute j on a test image x* is a;(x*) = >, f.;(x*) > 0, where f,;(-) is the
binary SVM classifier for attribute j trained on region r. That is, if any classifier
in the ensemble predicts the attribute is present, then it is assumed to be present.
This strategy has two key advantages: (i) by selecting relevant regions for each
attribute it performs feature selection to focus on relevant sub windows thus
increasing detection accuracy, (ii) by exploiting an ensemble of regions it is
less sensitive to alignment or deformation, typical variations of these types will
trigger at least one of the classifiers in the ensemble. Given the trained classifiers
for each attribute, the A dimensional attribute representation for an sketch or
photo x is represented by stacking them as a(x) = [a1(X),...,aa(x)].

! Attributes are chosen to be properties that differentiate groups of the population,
such as male/female, asian/white, young/old — thus an A-length attribute code can
potentially differentiate 24 people, providing a highly discriminative representation.
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3.2 Learning a Synergistic Low+Mid Level Representation

The attribute representation derived in the previous section is robust and dis-
criminative, but the original low-level features still retain some complementary
information. A simple method to exploit both could be early fusion (concate-
nation [x,a(x)]), or score level fusion of the similarities obtained by each rep-
resentation. As a significantly better alternative, we use canonical correlation
analysis (CCA) to learn an embedding space that synergistically exploits both
representations.

CCA For Representation Learning . Specifically, assuming that we have N
images in total. Let X, is be the N x d dimensional matrix stacking the low-
level feature representations x for all images and X, is a N x A dimensional
matrix stacking the attribute representations a(x) for all images, then we find
the projection matrices W, and W, such that:

. 2
min ||XaWa — XmeHF
Wz ,Wa
subject to WCLTEMWL =1, wngwwwl =0, (4)
kil=1,...,c

where Y., is the covariance between X, and X, and wgy is the kth column
of W,, and c¢ is the dimensionality of the desired CCA subspace. To solve this
optimization, we use the efficient generalized eigenvalue method of [18].

Note that this is a somewhat different use of CCA to some previous studies
that used it to map across facial image domains [19,20,30]. Instead we use CCA
to construct an embedding [18] to constructively fuse attribute and low-level
feature representations.

Using the Representation. In order to obtain the semantic embedding for
a test image x*, we first obtain its estimated attributes a(x). Then we project
both the original and semantic views of the image into the embedding space:
xW, and a(x)W,. Finally, we concatenate both views to give the final 2¢ dimen-
sional representation: R(x) = [xW,, a(x)W,]. Once our new robust and domain
invariant representation is obtained for sketch and photo images, matching a
sketch x* against a photo dataset D = {x!'}¥ =1 is then performed by nearest
neighbor with L2 distance,

i* = argmin |R*(x*) — RP(x})] (5)

K3

Note that the representation R in Eq. (5) is indexed by (s)ketch or (p)hoto
because the semantic attribute model a(-) is independently trained for each
modality, although the CCA mapping is shared.

4 Experimental Results

4.1 Datasets and Settings

Datasets: We evaluate our algorithm on two challenging datasets for photo-
sketch face matching forensic [9] and caricature dataset [8]. For the forensic
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dataset we have 196 pairs of 200*160 pixel resolution face and photo images. For
the caricature dataset, we have 207 pairs of caricatures and photographs of highly
variable size. To obtain matching results, we perform 3-fold cross-validation,
splitting the data into 2/3s training, and test on the held out 1/3. Within the
training set we use 4-fold cross-validation to both train the attribute represen-
tation (Sect.3.1) and optimize dimensionality (¢ = 250 for both datasets) of the
CCA subspace (Sect. 3.2).

Low-Level Features: For low-level feature representation, we densely extract
histogram of gradients (HOG) and local binary patterns (LBP) on each image on
a 16 x 16 grid, resulting in 4030 and 6960 dimensional descriptors respectively.
We then use PCA to reduce the dimension of each to 350 and concatenate the
result, producing a d = 700 dimensional descriptor for each image.

Training Attribute Detectors: Using the 73 attribute methodology defined
in Sect. 5, and the training procedure in Sect. 3.1, we produce a 71 dimensional
binary attribute vector for each image in the caricature dataset, and a 53 dimen-
sional binary attribute vector for each image in the forensic dataset?.

Baselines: We compare our method with the following four variants of our
method: (i) use only HOG and LBP (LLF); (ii) use only the attribute represen-
tation in nearest neighbor matching (Attribute); (iii) use low-level features and
attributes together with simple early (feature) level fusion (Attribute+LLF);
(iv) our full method, using low-level features and attributes together through
synergistic CCA space (Cross-modal Matching by Facial Attributes, CMMFA).

Additionally, we compare the following two previous state of the art approa-
ches: (i) low-level features engineered for photo-caricature recognition followed
by NN matching [8] (Klare); (ii) state of the art learned cross-modal mapping,
learned based on our LLFs, followed by NN matching [19] (CFS).

Table 1. Attribute recognition results for caricature and forensic datasets, comparing
our ensemble attribute classifier with flat-model ones (acc. is for average accuracy).

Dataset Classifier | Acc. (sketch) | Acc. (photo)
Caricature | Flat-model | 53.95 % 55.15 %
Forensic Flat-model | 56.23 % 54.43 %
Caricature | Ensemble |69.15% 70.24 %
Forensic |Ensemble |65.19% 65.28 %

2 Both datasets (especially forensic) exhibits some degrees of lower diversity of
attributes, so some attributes are always on or off rendering them meaningless for
representation, so these are excluded for convenience.
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Fig. 2. Breakdown of per-attribute detection performance.

4.2 Attribute Detection

In this section, we first evaluate the performance of our automated attribute
detection procedure (Sect.3.1). In Table 1, we offer the average attribute detec-
tion accuracy for each of our datasets, and performance comparison between the
proposed ensemble attribute detector and a flat-model variant where SVM clas-
sifiers are trained on whole images instead. Although many attributes are quite
subtle (Sect. 5), the average accuracies in the range 65-70% clearly demonstrate
that many of them can be reasonably reliably detected, especially when com-
pared with flat-model performance (53-56% ). Table 2 reports the top 5 most
accurate attributes for each modality and dataset. The top 4 rows of Fig. 3 illus-
trate attribute detection results for the 1st ranked attributes (shown schemat-
ically) in each dataset/modality, the bottom 2 rows show failure examples of
attribute detection (denoted by red cross), i.e., when automatic attribute detec-
tion disagrees with human annotated ground-truth.

To further investigate how these averages break down, we plot the per-
attribute accuracy in Fig.2 sorted by photo set accuracy. Clearly while there
are some attributes which are too subtle to be reliably detected (some attributes
at 50 % accuracy, e.g., slanted and sleepy eyes), others can be detected with near
perfect accuracy (plots peak at around 100 % accuracy). Interestingly, while there
is a general correlation of attribute reliability between datasets, it is relatively
weak, so some of the best photo attributes don’t work on sketch and vice-versa.

4.3 Matching Across Modalities

Given the attribute encoding as evaluated in the previous section, we next
address the final goal of cross-modal face matching.

Caricature Dataset. The results for cross-modal face matching on the carica-
ture dataset are shown in Fig.4(a) and Table 3. For the caricature dataset our
attribute encoding is significantly better than any of the LLF based approaches
(Table 3, Attribute versus HOG/LBP). This because the cross-modal gap for the
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Fig. 3. Illustration of detections for the best performing attributes in Table2 (top
4 rows) and 2 other average performing attributes (bottom 2 rows), Left: Schematic
illustration of query attribute, middle and right: pairs of sketch/caricature (middle) and
photograph (right) of the same identity (green tick for successful attribute detection,
red cross otherwise) (Colour figure online).

caricature dataset is the most extreme, so low-level features cannot be effectively
compared. CFS improves the results somewhat compared to LLF's, but due to the
extreme gap between the domains, it offers limited improvement (Table3, CFS
versus HOG/LBP). For context, we also show the matching results obtained
using the ground-truth attributes in the bottom row. Interestingly this is only a
few percent above that obtained by using our inferred attributes, suggesting that
we are already capturing most of the value in the current attribute methodology
(Table 3, Ground-truth attribute versus Attribute).

With regards to strategies for combining attributes and LLFs, vanilla con-
catenation actually worsens the results somewhat compared to attributes alone
(Table 3, Attribute versus Attribute+LLF'). This is understandable, because the
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Table 2. Top 5 attributes for caricature and forensic datasets

Caricature dataset

Forensic dataset

Domain Attribute Accuracy | Domain | Attribute Accuracy
Photo Teeth 97.98% | Photo | Cheeks(5) 100.00 %
Cheeks(3) 96.96 % No beard 98.68 %
Glasses 96.43 % Small forehead | 92.86 %
Small beard 94.87 % Eyebrow(2) 92.50 %
Big chin 93.12% No moustache | 91.67 %
Caricature | Small mustache | 100.00 % | Forensic | Face(3) 98.84 %
Forehead(1) 100.00 % No beard 96.97 %
Square face 99.45 % No moustache | 96.67 %
Big moustache | 97.46 % Thick eyebrow | 94.57 %
Big mouth 95.83 % Small mouth 91.94%

attributes are much stronger than the LLF's. In contrast, combining them in our
CCA framework achieves the best result of all, 27.54 % at Rank 1. Finally, we
compare with the results based on engineered image features reported in [8].
The features from [8] slightly outperform our LLFs alone. However our entire

framework outperforms [8] by a noticeable margin.

We note that using everything together, [8]’s final result only slightly out-
performs our CMMFA. However, this is using the critical but unrealistic cue
of manually annotated ground-truth attributes at test time, which makes this
approach not meaningful for a practical scenario that should be fully automated
(Table 3, Klare versus CMMFA). In contrast, our CMMFA is computed based

on image features alone without manual intervention.
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Fig. 4. CMC curves for cross-modality matching. Ranks = 1:10.
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Table 3. Caricature dataset: comparison of all methods.

Methods Rankl | Rank5
Dense HOG 7.25%  14.49%
Dense LBP 8.60% | 15.94%
CFS [19] HOG+LBP 13.45%
Attribute 20.29% | 46.38 %
Attribute+LLF 18.84 % | 46.38 %
CMMFA (Attribute+LLF+CCA) 27.54% | 43.48%
Klare et al. (image only) [8] 12.10% | 52.10%
Klare et al. (method fusion and manual attributes) [8]* | 32.30 % | —
Ground-truth attribute ‘ 23.19% ‘ 52.17%

# Not directly comparable due to use of manual intervention.

Forensic Dataset. The results for the forensic dataset are shown in Fig.4(b)
and Table4. In this case our attribute encoding still outperforms LLF based
approaches (Table 4, Attribute versus HOG/LBP), despite the fewer and weaker
attributes in this case. CF'S now improves the LLF results more significantly as
expected since the cross-modal gap is more straightforward to model (Table4,
CFS wversus HOG/LBP). However our full method still outperforms CFS
(Table4, CMMFA versus CFS).

Our CMMFA performance is slightly weaker on the forensic than the carica-
ture dataset. This is somewhat surprising, because the caricature dataset might
be considered ‘harder’ due to the bigger cross-modal gap. However, it is under-
standable because there are about 20 facial attributes which do not occur (or
occur infrequently) in the forensic set, thus resulting in fewer working attribute
detectors (Fig.2); and because the process of caricature sketching often actually
involves exaggerating facial attributes, thus making them easier to detect.

4.4 Attribute Description Search

As a final application of potential relevance to forensic search, we consider
querying a mugshot database solely by attribute description. This is interest-
ing and potentially useful for law enforcement, especially in situations where
a trained forensic sketch expert is unavailable. In this application scenario, a
witness would select all the attributes they recall from the full attribute list.
A mugshot-database can then be queried directly by the attribute representation.
We simulate this experiment by querying each person j’s ground-truth attribute
N

a]gt against the database of estimated attributes for the mugshots {a(x?)}:\,,

1" = argmin |a?t —a(x?) | With this setting, we achieve average of 10.3 % rank 1
i

accuracy for the forensic dataset, and 20.7 % rank 1 accuracy for the caricature
dataset. Full CMC curves are shown in Fig. 5.



222 S. Ouyang et al.

Accuracy
Accuracy

0.1

icature
10 20 30 40 50 60 5 10 15 20 25 30 35 40 45 50 55

Rank Rank
(a) Caricature dataset (b) Forensic dataset

Fig.5. CMC curves for attribute description search.

Table 4. Forensic dataset: comparison of all methods.

Methods Rankl |Rank5
Dense HOG 8.60% | 34.48 %
Dense LBP 6.90% | 27.59 %
CFS [19] HOG+LBP 19.12%
Attribute 10.34% | 22.41%
Attributet LLF 18.97% | 36.21%
CMMFA (Attribute+LLF+CCA) |20.69% |41.38%
Ground-truth attribute ‘ 15.52 % ‘ 44.83 %

5 Attribute Dataset

In this section we describe the dataset that was created in this study. Future
studies comparing accuracies on this dataset should follow the protocol detailed
in Sect. 4. We build our attribute dataset by annotating the caricature dataset?
[8] and forensic dataset [9].

Caricature Dataset: The dataset consists of pairs of a caricature sketch and
a corresponding facial photograph from 207 subjects. Two sources were used to
collect these images. The first was through contacts with various artists who drew
the caricatures. And the second source of caricature images was from Goolge
Image searches. When selecting face photographs, care was taken to find images
that had minimal variations in pose, illumination and expression, however, those
images are hard to find. So, many of the factors still persist [8].

Forensic Dataset: The dataset consists of pairs of a forensic sketch and a
corresponding mugshot from 196 subjects. Forensic sketches are drawn by a

3 Reference [8] did not release their attributes. Our attributes and corresponding anno-
tations are available at http://www.eecs.qmul.ac.uk/~yzs/heteroface/.
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sketch artist from the description of an eyewitness based on his/her recollection
of the crime scene. Two sources were used to collect these images. The first was
through contact with various artists who drew the forensic sketches: Lois Gibson
and Karen Taylor. The second was from Google Image searches [9].

Attribute Annotation. In our attribute dataset, each of the images (carica-
ture, forensic sketch and photograph) is labeled with a set of facial attributes
(categorical facial features). We start with the 63 facial attributes proposed by
Klare et al [8], and add 10 additional attributes for a total of 73 attributes.
Those 10 additional attributes include: wrinkles, glasses, ties, teeth, cheeks,
black /while/asian, blonde hair and gender.

Each image (caricature, forensic sketch and photograph) was annotated for
these 73 attributes. Each annotator labeled the entire set of image pairs with
3—4 facial attributes, being asked to label a single image with a single attribute
at a time. Thus the annotator was shown an image of a caricature, a forensic
sketch or a photograph, and the current attribute being labeled. If the attribute
is present, then they label the image with ‘1’, otherwise ‘0’. In total, we provided
58,838 labels on the 806 images. For each attribute (not each image), annotators
are also asked to provide an estimate of three salient regions for that attribute,
which were used to guide random sampling for attribute detection (Sect.3.1).

6 Summary

In this work, going beyond viewed sketches, we address the challenging task of
cross-modal face recognition for forensic and caricature sketches. To deal with
the cross-modal gap due to heterogeneity, abstraction and distortion, we con-
structed an intermediate level attribute representation within each modality. To
address the challenge of automated attribute detection within each image we
introduce an ensemble of attribute detectors. Crucially, our semantic attribute
representation is invariant to the details of the modality, and thus can be more
directly compared across modalities than pixels or low-level features. Finally,
we created a synergistic representation to integrate the semantic and low-level
feature representations by learning an embedding subspace using CCA. As a
result we are able to outperform several state of the art cross-domain mapping
methods for both challenging datasets. We believe this is the first use of fully
automated facial attribute analysis to improve cross-modal recognition.
Promising avenues for future research include integrating features at an
abstraction level between pixels and attributes (e.g., facial interest points) along
with our current framework of attributes and low-level image features. We also
plan to investigate reasoning about attribute correlation; and extending our
framework to apply to other modalities such as infra-red as well as sketch.
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