
Heap . . . Hop!
Heap Is Also Vulnerable

Guillaume Bouffard1,2(B), Michael Lackner3, Jean-Louis Lanet4,
and Johannes Loinig5

1 University of Limoges, 123 Avenue Albert Thomas, 87060 Limoges, France
guillaume.bouffard@ssi.gouv.fr

2 Agence Nationale de la Sécurité des Systèmes D’Informations,
51, Boulevard de La Tour-Maubourg, 75700 Paris 07 SP, France

3 Institute for Technical Informatics,
Graz University of Technology, Graz, Austria

michael.lackner@tugraz.at
4 INRIA LHS-PEC, 263 Avenue Général Leclerc, 35042 Rennes, France

jean-louis.lanet@inria.fr
5 NXP Semiconductors Austria GmbH, Gratkorn, Austria

johannes.loinig@nxp.com

Abstract. Several logical attacks against Java based smart card have
been published recently. Most of them are based on the hypothesis that
the type verification was not performed, thus allowing to obtain dynam-
ically a type confusion. To mitigate such attacks, typed stack have been
introduced on recent smart card. We propose here a new attack path for
performing a type confusion even in presence of a typed stack. Then we
propose using a Fault Tree Analysis a way to design efficiently counter
measure in a top down approach. These counter measures are then eval-
uated on a Java Card virtual machine

Keywords: Java Card · Logical attack · Transient persistent heap ·
Counter measures

1 Introduction

Today most of the smart cards are based on a Java Card Virtual Machine(JCVM).
Java Card is a type of smart card that implements the standard Java Card 3.0
[18] in one of the two editions “Classic Edition” or “Connected Edition”. Such
a smart card embeds a virtual machine, which interprets application byte codes
already romized with the operating system or downloaded after issuance. Due
to security reasons, the ability to download code into the card is controlled by
a protocol defined by Global Platform [9]. This protocol ensures that, the code
owner has the required credentials to perform the particular action.

A smart card can be viewed as a smart and secure container which stores
sensitive assets. Such tokens are often the target of attacks at different levels:
pure software attacks, hardware based, i.e. side channel of fault attacks but
c© Springer International Publishing Switzerland 2015
M. Joye and A. Moradi (Eds.): CARDIS 2014, LNCS 8968, pp. 18–31, 2015.
DOI: 10.1007/978-3-319-16763-3 2



Heap . . . Hop! Heap Is Also Vulnerable 19

also mixed attacks. Security issues and risks of these attacks are ever increas-
ing and continuous efforts to develop countermeasures against these attacks are
sought. This requires a clear understanding and analysis of possible attack paths
and methods to mitigate them through adequate software/hardware counter-
measures. The current smart cards are now well protected against pure logical
attacks with program counter bound checks, typed stack and so on. For such
smart cards, we propose in this paper, two new attacks that target the heap of
the JCVM. The first one is on the transient heap while the second allows a type
confusion on the permanent heap.

Often countermeasures are designed in a bottom-up approach, in such a way
that they cut efficiently the attack path but a new avatar of an attack path can
be found easily. We propose here to use a top down approach to mitigate the
attack by protecting the assets instead of blocking the attack path.

The remaining of the paper is organized as follows: the second section intro-
duces the related works on logical attacks. The third section presents our con-
tributions on the heap: the transient array and the type confusion. Then, in the
fourth section, we propose some counter measures designed with a top down app-
roach and we evaluate them in term of performance. Finally, in the last section,
we conclude.

2 State of the Art of the Logical Attacks

Logical attacks are based on the fact that the runtime relies on the Byte Code
Verifier (BCV) to avoid costly tests. Then, once someone find an absence of a
test during runtime, there is a possibility that it leads to an attack path. An
attack aims to confuse the applet’s control flow upon a corruption of the Java
Card Program Counter or perturbation of the data.

2.1 Fooling the Control Flow Graph

Misleading the application’s control flow purposes to execute a shellcode stored
somewhere in the memory. The aim of EMAN1 attack [12], explained by Iguchi-
Cartigny et al., is to abuse the Firewall mechanism with the unchecked static
instructions (as getstatic, putstatic and invokestatic) to call malicious
byte codes, this behavior is allowed by the Java Card specification. In a mali-
cious CAP file, the parameter of an invokestatic instruction may redirect the
Control Flow Graph (CFG) of another installed applet in the targeted smart
card. The EMAN2 [6] attack was related to the return address stored in the
Java Card stack. They used the unchecked local variables to modify the return
address, while Faugeron in [8] uses an underflow on the stack to get access to
the return address.

When a BCV is embedded, installed an ill-formed applet is impossible. To
bypass an embedded BCV, new attacks exploit the idea to combine software
and physical attacks. Barbu et al. presented and performed several combined
attacks such as the attack [3] based on the Java Card 3.0 specification leading to



20 G. Bouffard et al.

the circumvention of the Firewall application. Another attack [2] consisting of
tampering the Application Protocol Data Unit (APDU) that leads to access the
APDU buffer array at any time. They also discussed in [1] about a way to disturb
the operand stack with a combined attack. It also gives the ability to alter any
method regardless of its java context or to execute any byte code sequence, even
if it is ill-formed. This attack bypasses the on-card BCV [4]. In [6], Bouffard et al.
described how to change the execution flow of an application after loading it into
a Java Card. Recently, Razafindralambo et al. [20] introduced a combined attack
based on fault enabled viruses. Such a virus is activated by hitting with a laser
beam, at a precise location in the memory, where the instruction of a program
(virus) is stored. Then, the targeted instruction mutates one instruction with
one operand to an instruction with no operand. Then, the operand is executed
by the JCVM as an instruction. They demonstrated the ability to design a code
in a such way that a given instruction can change the semantics of the program.
And then a well-typed application is loaded into the card but an ill-typed one
is executed. Hamdouche et al. [11] introduced a mutation analysis tool to check
the ability of an application to come a malicious one.

Hamadouche et al. [10] described various techniques used for designing effi-
cient viruses for smart cards. The first one is to exploit the linking process by
forcing it to link a token with an unauthorized instruction. The second step is
to characterize the whole Java card API by designing a set of CAP files which
are used to extract the addresses of the API regardless of the platform. The
authors were able to develop CAP files that embed a shellcode (virus). As they
know all the addresses of each method of the Application Programming Inter-
face (API), they could replace instructions of any method. In [20], they abuse
the on board linker in such a way that the application is only made of tokens
to be resolved by the linker. Knowing the mapping between addresses to tokens
thanks to the previous attack, they have been able to use the linker to generate
itself the shellcode to be executed.

We have presented attacks which perturb the application’s control flow.
Cheating the CFG leads to execute malicious bytecode or prevent any instruc-
tion to correctly finish. Another approach is exploiting the Java Card heap to
access to unauthorized fields.

2.2 Exploiting the Java Card Heap

Lancia [13] exploited the Java Card instance allocator of Java Card Runtime
Environment (JCRE) based on high precision fault injection. Each instance cre-
ated by the JCRE is allocated in a persistent memory. The Java Card specifi-
cation [18] provides some functions to create transient objects. The data of the
transient object are stored in the RAM memory, but the header of this object is
always stored in the persistent memory. On the modern Java Card using Mem-
ory Management Unit (MMU), references are represented by an indirect memory
address. This address is an index to a memory address pool which in turn refers
to a global instance pool managed by the virtual machine.



Heap . . . Hop! Heap Is Also Vulnerable 21

In this section, we have introduced logical attacks on Java Card from the
literature. In this paper, we focus on the heap security. In the next section,
I will present new ways to break the Java Card heap integrity.

3 Logical Attacks Against the Java Card Heap

From the state of the art, reading the memory needs to write at least 2 bytes
to read few bytes. This method stresses the memory and will need more than
65,000 writing to the same cell. So 10 or 20 executions of a shellcode will kill the
card reaching the stress threshold of the EEPROM. We need to have a smarter
shellcode. To improve this approach we purpose to use transient array.

A transient array is an array where the data are stored in RAM and its
descriptor is stored in EEPROM, precisely in the owner’s heap area. Thus a
transient array lost its content during power off but not the reference, there is
no natural garbage collection. Unlike the EEPROM, one can write indefinitely
in RAM area. So, using a transient array is better to dump RAM and EEPROM
parts to avoid memory stress. To understand how a transient array is stored in
the smart card, we created a simple applet which gets the transient array address
and reads data at this address.

3.1 Transient Arrays on Java Card

So, using a transient array is better to dump RAM and EEPROM parts to avoid
memory stress. To understand how a transient array is stored in the smart card,
we created a simple applet which gets the transient array address and reads data
at this address.

An implementation of the transient array’s header is the following at the
EEPROM area address:

0x8E85: 0x00 0x04 0x5B 0x30 0x6C 0x88 0x00 0x0A 0x05 0xB9

Where 0x0004 is the size of the structure without the metadata correspond-
ing to the header. In the header part the byte 0x5B corresponds to the transient
byte array type. The three next bytes are probably the security context 0x30
0x6C 0x88. It remains the four last bytes as pseudo data. After several experi-
mentation, we understood that 0x000A represents the size of the data in RAM
and 0x05B9 its address as shown in the Fig. 1.

We have disclosed how a transient array is design in a card implementa-
tion, focus on how to modify one. Confusing one purposes us to read and write
anywhere in the memory.

3.2 Type Confusion Upon the Java Card Heap

The Java Card heap contains the runtime data for all class instances and allo-
cated arrays. The instance data can be a reference to an object, an instance of



22 G. Bouffard et al.

size addresssize type context

Transient Array

DataHeader RAM memory

size

Header

type

Permanent Array

Data

context

Fig. 1. Structure of transient and permanent arrays.

a class or a numerical value. In the Java Card architecture, the heap is a per-
sistent element stores in the EEPROM area. Due to the limited resources, the
instance data are often not typed. To have access to the instance fields, the Java
Card specification [18] defines getfield <t> this and putfield <t> this as
typed instructions on a t typed element. The type t can be a reference (<t> is
replaced by a), a short value (type is s), etc. The getfield <t> this instruction
pushes the field value onto the stack. On the opposite, the putfield <t> this
instruction stores the latest pushed value. From the stack point of view, the last
element must be a t type.

Latest smart cards based on Java Card technology increasingly implement
typed stack. To succeed a type confusion on this kind of platform, I propose
to exploit the untyped instance fields. Let us assume the code shown in the
Listing 1.1. On a card which no embeds any BCV, this method aims at converting
a given reference given in parameter to a short value returned.

Listing 1.1. Receive reference of an object by type confusion over instance fields.

short getObjectAddress (object object) {

02 // flags: 0 max_stack : 2
12 // nargs: 1 max_locals: 2
/∗005f∗/ L0: aload_1 // object reference given in

parameter
/∗0060∗/ putfield_a_this 0

/∗0062∗/ getfield_s_this 0

/∗0064∗/ sreturn

}

In the Listing 1.1, the field 0 is accessed as a reference (at 0x60) and as a
short value (at 0x62). In the case of the use of a typed stack, only two types are



Heap . . . Hop! Heap Is Also Vulnerable 23

supported, the short and reference types. The putfield a this instruction (at
0x60) saved the value given in parameter into the field 0. The getfield s this
(from 0x62) pushes the value of the field 0 to stack as a short. A type confu-
sion can then be performed on the instance fields. There, the reference given as
parameter is then returned as a short value. From the Java Card stack side, the
type of each manipulated element is correct. Nonetheless, a type confusion has
been performed during the field manipulation.

In this section, we have explained a new typed confusion attack on Java
Card smart cards which embed typed stack. As the stack mechanism cannot be
confused, we focused on the instance fields which are often untyped. Thus, the
type confusion attack moves on the Java Card stack to the instance fields.

3.3 Setting up Transient Array Metadata to Snapshot the Memory

Based on the function shown in the Listing 1.1, we are able to update this
reference to point out a fake transient array. Stored in a Java array, we succeed
in retrieve its reference upon on the type confusion explained in the previous
section. On the targeted platform, each transient array has the same metadata’s
pattern. The transient array’s header can be so update with our properties.

Some cards prevent accessing to transient array out of a specific heap area.
On the targeted card, a typed stack is embedded but no BCV. So, using static
instruction abuse of the firewall [12] to read and write anywhere in memory, as
shown in the Listing 1.2. This code can be executed through the EMAN2 [6]
attack. Assume that the transient array size and the data address are located
from 0x8E9D.

Listing 1.2. Executing the basic shellcode

18 FF sspush 0x00FF

80 8E 9B putstatic_s 0x8E9B //size: 0x00FF
18 00 sspush 0x00FE

80 8E 9D putstatic_b 0x8E9D //address: start from 0x00FE
7A return

There, we are able to set the size and the address of our transient data to
cover from 0 for 0xFFFF bytes, i.e., the whole memory. This behavior is accepted
by the targeted card and this corrupted transient array can be used to read
the complete memory. Fooling transient array is more efficient than the attacks
presented in the state of the art: we need to write only few bytes in memory to
obtain an array which can be read normally.

Once this shellcode is executed, we have to copy the array in the APDU buffer
slicing it into slots of 255 bytes to fit the size of the APDU buffer. Unfortunately,
the ROM is always unread by this approach. The values returned at the ROM
area are filled with 0. With attack as EMAN2 [6], the dumping shellcode needs
to write around 65,000 times into a particular cell. There, we have improved the
dump with only one write into each cell for 255 read bytes. We reduced greatly
the execution time1 and minimized the memory stress.
1 Writing in EEPROM needs to erase which is time consuming.



24 G. Bouffard et al.

4 Countermeasures

The security of the Java Card sandbox model is threaten by two main types
of attacks. The first are, as used by the proposed attack of this paper, logical
attacks by uploading malicious applets. The second class are fault attacks (laser
beam) which threaten the integrity of the memory.

4.1 Counteract Fault Attack on the Java Heap

The common fault attack model, which is also used in this work, is that an
adversary can set2 bytes inside the card memory to 0x00 or 0xFF. This model is
called precise byte error and is presented in Table 1. The difficulty for an attacker
to set bits inside the card to either 0x0 or 0x1 is called precise bit error and is
currently no realistic fault model.

Table 1. Current fault models to evaluate possible countermeasures and security
threats on Java Cards [7, with modifications].

Fault Model Precision Location Timing Fault Type Difficulty

precise bit error bit precise control precise control BSRa, random ++

precise byte error byte loose control precise control BSR, random +

unknown byte error byte loose control loose control BSR, random -

random error variable no control loose control random –
a bit set or reset.

The transient array objects in the heap contain the size (2 bytes) and start
address (2 bytes) of the array fields. Due to the precise byte error fault model
an adversary is able to set the size field to 0xFFFF. This enables again a full
memory dump of the RAM even if no malicious applet is installed. Therefore, it
is a substantial need to protect the array object headers against fault attacks.

Fault attacks can either inject transient faults or permanent faults into the
memory. An industrial often used countermeasure against these transient faults
are multiple readings from the same address and the comparison if all read-out
values are equal. The change for a successful attack by circumventing the multiple
readings by additional fault attacks is a negative exponential distribution.

Unfortunately, a multiple read is no protection against an attacker which
uses a strong enough laser to permanently change the values of a memory cell.
A multiple read on a permanently changed memory cell always results in the
same read-out value. Therefore, to counteract such a permanent fault, a sta-
tically calculated checksum is needed. This checksum is re-calculated during
run-time and compared to the statically calculated one. Generally the checksum
countermeasure, compared to multiple reads, consumes more run-time perfor-
mance and requires additional non-volatile memory.
2 Memory encryption results in a logical read-out value which is random.



Heap . . . Hop! Heap Is Also Vulnerable 25

Transient Fault 
Attack 

Permanent Fault 
Attack

Partially RAM Memory Dump

Transient Change in the 
Transient Array Header

Permanent Change in the 
Transient Array Header

Countermeasure

Fault AttackMultiple 
Readings

Checksum

AND

AND

OR

OR

Fig. 2. Fault tree overview of the different possible attack paths to fulfill a partial
memory dump of the RAM by a fault attack. Furthermore, effective countermeasures
against the two general types of fault attacks are listed.

In summary to counteract transient fault attacks we propose to perform mul-
tiple readings on the accessed object header elements. To counteract permanent
and transient faults on the object header we propose as countermeasure a check-
sum. An overview of the attack paths and countermeasures against these fault
attacks is shown in Fig. 2. Multiple readings on the object header counteract
transient fault attacks. Checksums counteract transient faults and permanent
faults on the object header.

4.2 Logical Attack on the Java Heap

Unfortunately, the proposed checksums and multiple reads over the object head-
ers in the Java heap, to counteract fault attacks, is not an effective countermea-
sure against logical attacks. By a logical attack it is quite easily possible to
study the algorithm of the checksum creation and create valid checksums for
manipulated object headers. Therefore, other countermeasures must be found to
counteract logical attacks.

To find an appropriate countermeasure an attack tree for the proposed attack
of this work is shown in Fig. 3. Starting from the lower left it is shown that the
causes of the execution of illegal bytecodes can be either a logical attack with the
absence of an on-card BCV or a fault attack. The presence of illegal bytecodes is
a cause to successfully perform a type confusion attack between integral data or
reference. The type confusion can be either performed on the operand stack or,
as proposed in this work, on instance fields of objects. This type confusion is the
first main requirement for the full RAM memory dump attack of this work. The
second requirement is the manipulation of the integrity of the transient array
object header. This integrity violation can be reached by various kind of the
proposed attacks EMAN1 [12], EMAN2 [6], and EMAN4 [6].



26 G. Bouffard et al.

Fig. 3. Fault tree overview of the different possible attack paths and needed attack
preconditions to fulfill the memory dump attack of this work.

EMAN1 relies on the fact that illegal static variables are not checked during
run-time by the Java Card firewall. EMAN2 relies on the fact that it is possible
to overwrite the Java frame return address by a bytecode with an illegally index
of bytecode accessing the local variables. The return address is overwritten with
the address of a Java array which is previously received by a type confusion
attack. EMAN4 relies on a fault attack during run-time which illegally changes
the operands of a goto w bytecode. This attack results in a jump and execution
of a Java array filled with malicious bytecodes.

To install applets on Java cards a secret key must be known which is only
available for authorized authorities. Nohl [16] presented in 2013 an attack to
crack this key (DES encryption) which enables the installation of malicious
applets. Based on Nohls presented information the industry created guidelines
to counteract this attack. Therefore, we assume that the installation of malicious
applets on currently available credit cards or bank cards is again a very unlikely
security threat.

Therefore, half of the starting points of the attacks of this work, previously
presented in Fig. 3, are not available on industrially used Java Cards. Further-
more, Java Cards are becoming more and more powerful which will most proba-
bly result in an available on-card verification process which only accepts applets
which only contain harmless operations. Resource optimized on-card verification
algorithms are presented in different works [5,14].

Nevertheless, the attack preconditions of this work (type confusion and access
to the object header) can be also reached by uploading a valid applet and turning
them into a malicious one. This transformation is done by performing fault
attacks into the bytecode area. Therefore, additional security mechanisms must



Heap . . . Hop! Heap Is Also Vulnerable 27

be integrated when operands or opcodes are fetched from the bytecode area.
Various countermeasures [15,21–23] are proposed to protect the integrity of the
bytecode area.

Protect Integrity of the Bytecode Area: The replacement of the typically
not used bytecode NOP (0x00) is proposed in [23] to counteract the threat of
skipping bytecodes. The authors of [15] create a fingerprint of an applet which
is based on the position of critical bytecodes/values (0x00, 0xFF, branch, jump,
subroutine call, return) inside a method. This fingerprint is than checked during
run-time. Another countermeasure against the illegal execution of arbitrary byte-
codes is the encryption of the bytecode based on a secret key and the memory
address where the bytecode is stored [21]. The authors in [22] propose to divide
the bytecodes of a method into basic blocks. During an off-card preprocessing
step checksums are calculated over these basic blocks and stored into the applet
as an additional component. During run-time the checksums are re-calculated
and compared to the off-card calculated checksums.

Based on the required level of security all of these countermeasures are a
possible solution to counteract integrity attacks into the bytecode area. These
attacks are needed as a starting point of an attacker to reach the goal of turning
valid applets into malicious one. These malicious applets are the starting point
to create the proposed memory dump attack of this work on industrially used
Java Cards.

5 Experimental Results

The measurements of this work are based on a Java Card prototype implemen-
tation which is based on the Java Card specification [17,18]. We integrated our
countermeasures into this prototype to counteract fault attacks which manipu-
late the array headers in the Java heap.

The JCVM is compiled with µVision3 which is a development tool espe-
cially for low cost processors based on the 8-bit 8051 platform. The performance
results are based on the supplied memory-accurate 8051 instruction set simula-
tor of the µVision IDE. The tested Java Card applets HelloWorld and Wallet
are obtained from the official Java Card software development kit (SDK). The
Calculator applet is self programmed. Note that the performance overhead mea-
surements are normalized to a JCVM implementation which do not perform the
additionally proposed countermeasures during run-time.

5.1 Fault Attack Countermeasures on the Object Header

Checksum: A checksum is statically calculated over the size and pointer ele-
ment of each Java array header in the heap. The checksum is based on a XOR
operation and has a length of one byte. Each array object header of our pro-
totype, even the permanent arrays, contain a size and address field shown in



28 G. Bouffard et al.

size context size address

Header Data
Permanent Array

Transient Array

size context size address

Header RAM memory

checksum

checksum

Data

type

type

Fig. 4. Structure of transient and permanent arrays in the prototype implementation.

Fig. 4. For permanent arrays the address field points into the non-volatile mem-
ory (EEPROM). Therefore, the object header must be secured for permanent
and transient arrays.

The checksum calculation and writing is performed during the execution
of the <t>newarray bytecodes and the creation of a transient array by calling
the Java Card API method JCSystem.makeTransientByteArray(). During run-
time this checksum is re-calculated at each security-critical access to the array
object header (e.g., aaload, sstore, arraylength).

Double Read: The double read is done when the size or pointer elements of
the array object header are accessed by security-critical bytecodes. During the
creation of the array header the write operation of the size and pointer element
is checked by an immediate reading and comparison of the written values.

Execution Time Overhead: The run-time overhead of the checksum and
double reads is shown in Fig. 5. The execution time of the newarray bytecode
is quite long even if no additional security checks are performed which results
in a low percentage overhead increase. Compared to this the saload bytecode,
which loads a short value from an array, has an additional overhead of +9 % for
double reads and +22 % for the checksum re-calculation.

The creation of a new Java array is in generally performed one time during
the installation process of an applet. The overall applet execution time for dif-
ferent applets and bytecodes are presented in Table 2. The overall applet time
measurements does include the sending of APDU commands for the selection
of the applet, sending of commands to communicate with the applet, and the
reception of results. Overall the additional checks do not significantly increase
the overall execution time of the measured applets. The highest overall measured



Heap . . . Hop! Heap Is Also Vulnerable 29

0%
20%
40%
60%
80%

100%
120%
140%

newarray saload sastore arraylength applets overall

ohne
No Additonal Checks
Double Reads
Checksum

E
xe

cu
tio

n 
T

im
e 

[n
or

m
al

iz
ed

]

Fig. 5. Graphical representation of the performance impact of the additional double
read and checksum calculations for selected bytecodes and the overall time of the
measured applets.

time increase is only around +1 % for the self written Calculator applet and the
checksum countermeasure. The double reads increase the Calculator applet by
only around +0.5 %. Therefore, the higher security of the checksums, with regard
to permanent memory faults, is paid with the price of one additional byte per
array header and a doubling of the execution time overhead.

Table 2. Performance overhead overview of the double read and checksum counter-
measures.

Java Bytecodes Java Card Applet Double Read Checksum

<t>newarray +1 % +2 %

<t>aload +9 % +22 %

<t>astore +9 % +22 %

arraylength +6 % +22 %

HelloWorld +0.2 % +0.5 %

Wallet +0.3 % +0.9 %

Calculator +0.5 % +1 %

6 Conclusion

Smart card designers now take into account the possibility to execute ill typed
application even if the loaded applet is well typed. The combined attacks allow
to use laser based attack to execute hostile applets. For this reason, designers
protect dynamically the execution. Unfortunately, the attack paths can be subtle
and the counter measures must protect the assets and not the attack paths. We
presented two new attack paths that target the heap. The attack on the transient



30 G. Bouffard et al.

array can be obtained via a laser on the size field. The exploitation allows to
parse completely the memory without stressing the EEPROM. The second one
exploits a type confusion even in presence of a typed stack.

We proposed, through the fault tree paradigm to perform a top down analysis
to design the counter measures in order to improve their coverage. This approach
avoid to mitigate different attack with several ad-hoc counter measures. We pro-
posed different solutions implemented currently at the software level, but we
plan to integrate them into hardware. We evaluated the cost in term of perfor-
mances, the memory footprint being less important. The evaluation brought to
the fore that such counter measures are affordable for the smart card domain.

References

1. Barbu, G., Duc, G., Hoogvorst, P.: Java card operand stack: fault attacks, combined
attacks and countermeasures. In: Prouff [19], pp. 297–313

2. Barbu, G., Giraud, C., Guerin, V.: Embedded eavesdropping on java card. In:
Gritzalis, D., Furnell, S., Theoharidou, M. (eds.) SEC 2012. IFIP AICT, vol. 376,
pp. 37–48. Springer, Heidelberg (2012)

3. Barbu, G., Hoogvorst, P., Duc, G.: Application-replay attack on java cards: when
the garbage collector gets confused. In: Barthe, G., Livshits, B., Scandariato, R.
(eds.) ESSoS 2012. LNCS, vol. 7159, pp. 1–13. Springer, Heidelberg (2012)

4. Barbu, G., Thiebeauld, H., Guerin, V.: Attacks on java card 3.0 combining fault
and logical attacks. In: Gollmann, D., Lanet, J.-L., Iguchi-Cartigny, J. (eds.)
CARDIS 2010. LNCS, vol. 6035, pp. 148–163. Springer, Heidelberg (2010)

5. Berlach, R., Lackner, M., Steger, C., Loinig, J., Haselsteiner, E.: Memory-efficient
On-card Byte Code Verification for Java Cards. In: Proceedings of the First Work-
shop on Cryptography and Security in Computing Systems. CS2 2014, pp. 37–40.
ACM, New York (2014)

6. Bouffard, G., Iguchi-Cartigny, J., Lanet, J.L.: Combined software and hardware
attacks on the java card control flow. In: Prouff [19], pp. 283–296

7. Dubreuil, J., Bouffard, G., Thampi, B.N., Lanet, J.L.: Mitigating Type Confusion
on Java Card. IJSSE 4(2), 19–39 (2013)

8. Faugeron, E.: Manipulating the frame information with an underflow attack. In:
Francillon, A., Rohatgi, P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 140–151.
Springer, Heidelberg (2014)

9. GlobalPlatform: Card Specification. GlobalPlatform Inc., 2.2.1 edn., January 2011
10. Hamadouche, S., Bouffard, G., Lanet, J.L., Dorsemaine, B., Nouhant, B., Magloire,

A., Reygnaud, A.: Subverting byte code linker service to characterize java card api.
In: Seventh Conference on Network and Information Systems Security (SAR-SSI),
pp. 75–81 (22–25 May 2012)

11. Hamadouche, S., Lanet, J.L.: Virus in a smart card: Myth or reality? J. Inf. Secur.
Appl. 18(2–3), 130–137 (2013)

12. Iguchi-Cartigny, J., Lanet, J.L.: Developing a Trojan applets in a smart card. J.
Comput. Virol. 6(4), 343–351 (2010)

13. Lancia, J.: Java card combined attacks with localization-agnostic fault injection. In:
Mangard, S. (ed.) CARDIS 2012. LNCS, vol. 7771, pp. 31–45. Springer, Heidelberg
(2013)

14. Leroy, X.: Bytecode verification on Java smart cards. Softw. Pract. Exper. 32(4),
319–340 (2002)



Heap . . . Hop! Heap Is Also Vulnerable 31

15. Morana, G., Tramontana, E., Zito, D.: Detecting Attacks on Java Cards by Fin-
gerprinting Applets. In: Reddy, S., Jmaiel, M. (eds.) WETICE, pp. 359–364. IEEE
(2013)

16. Nohl, K.: Rooting SIM Cards. Speak at the Black Hat USA 2013 (2013)
17. Oracle: Java Card 3 Platform, Runtime Environment Specification, Classic Edition.

No. Version 3.0.4, Oracle. Oracle America Inc., Redwood City, September 2011
18. Oracle: Java Card 3 Platform, Virtual Machine Specification, Classic Edition. No.

Version 3.0.4, Oracle. Oracle America Inc., Redwood City (2011)
19. Prouff, E. (ed.): CARDIS 2011, vol. 7079. Springer, Heidelberg (2011)
20. Razafindralambo, T., Bouffard, G., Lanet, J.-L.: A friendly framework for hidding

fault enabled virus for java based smartcard. In: Cuppens-Boulahia, N., Cuppens,
F., Garcia-Alfaro, J. (eds.) DBSec 2012. LNCS, vol. 7371, pp. 122–128. Springer,
Heidelberg (2012)

21. Razafindralambo, T., Bouffard, G., Thampi, B.N., Lanet, J.-L.: A dynamic syntax
interpretation for java based smart card to mitigate logical attacks. In: Thampi,
S.M., Zomaya, A.Y., Strufe, T., Alcaraz Calero, J.M., Thomas, T. (eds.) SNDS
2012. CCIS, vol. 335, pp. 185–194. Springer, Heidelberg (2012)

22. Sere, A., Iguchi-Cartigny, J., Lanet, J.L.: Evaluation of Countermeasures Against
Fault Attacks on Smart Cards. Int. J. Secur. Appl. 5(2), 49–61 (2011)

23. Séré, A.A.K., Iguchi-Cartigny, J., Lanet, J.L.: Automatic detection of fault attack
and countermeasures. In: Serpanos, D.N., Wolf, W. (eds.) WESS. ACM (2009)


	Heap . . . Hop!Heap Is Also Vulnerable
	1 Introduction
	2 State of the Art of the Logical Attacks
	2.1 Fooling the Control Flow Graph
	2.2 Exploiting the Java Card Heap

	3 Logical Attacks Against the Java Card Heap
	3.1 Transient Arrays on Java Card
	3.2 Type Confusion Upon the Java Card Heap
	3.3 Setting up Transient Array Metadata to Snapshot the Memory

	4 Countermeasures
	4.1 Counteract Fault Attack on the Java Heap
	4.2 Logical Attack on the Java Heap

	5 Experimental Results
	5.1 Fault Attack Countermeasures on the Object Header

	6 Conclusion
	References


