
Algorithms for Outsourcing Pairing
Computation

Aurore Guillevic2,3(B) and Damien Vergnaud1

1 Département d’Informatique, École normale supérieure, Paris, France
2 Inria, Paris, France

aurore.guillevic@ens.fr
3 École Polytechnique/LIX, Palaiseau, France

Abstract. We address the question of how a computationally limited
device may outsource pairing computation in cryptography to another,
potentially malicious, but much more computationally powerful device.
We introduce two new efficient protocols for securely outsourcing pair-
ing computations to an untrusted helper. The first generic scheme is
proven computationally secure (and can be proven statistically secure
at the expense of worse performance). It allows various communication-
efficiency trade-offs. The second specific scheme – for optimal Ate pairing
on a Barreto-Naehrig curve – is unconditionally secure, and do not rely
on any hardness assumptions. Both protocols are more efficient than the
actual computation of the pairing by the restricted device and in partic-
ular they are more efficient than all previous proposals.

1 Introduction

Pairings (or bilinear maps) were introduced in cryptography in 2000 by Joux [14]
and Boneh-Franklin [4]. A pairing is a bilinear, non-degenerate and computable
map e : G1 × G2 → GT . In practice, the first two groups G1 and G2 are prime-
order r subgroups of the group of points E(Fq) of an elliptic curve E defined
over a finite field Fq. The so-called target group GT is the order r subgroup of
a finite field extension Fqk . Bilinear pairings proved to be an amazingly flexible
and useful tool for the construction of cryptosystems with unique features (e.g.
efficient identity based cryptography or short signatures). However, the pairing
computation is more resource consuming compared to a scalar multiplication on
the elliptic curve E(Fq).

In the last decade, several papers [7,9,12] studied the question of how a com-
putationally limited device may outsource pairing computation to another, poten-
tially malicious, but much more computationally powerful device. In this setting,
one wants to efficiently delegate the computation of a pairing e(SK1,SK2) of two
secret keys, or a pairing e(SK,PP) of a secret key and some public parameter.
Obviously, one needs to ensure that this malicious device does not learn anything
about what it is actually computing (secrecy) and sometimes one also needs to,
when possible, detect any failures (verifiability, also called correctness).

c© Springer International Publishing Switzerland 2015
M. Joye and A. Moradi (Eds.): CARDIS 2014, LNCS 8968, pp. 193–211, 2015.
DOI: 10.1007/978-3-319-16763-3 12

194 A. Guillevic and D. Vergnaud

As mentioned in [7,9], a delegation protocol that does not ensure verifiabil-
ity may cause severe security problems (in particular if the pairing computation
occurs in the verification algorithm of some authentication protocol). Unfortu-
nately, the different proposals for verifiable pairing delegation are very inefficient
and it is actually better in practice to directly embed the pairing computation
inside the restricted device than using these solutions. The main interest is then
to save of area that is required to implement a pairing in the restricted device
such as smart card.

However, if verifiability is mandatory in authentication protocols, this is not
necessarily the case in scenarios where the delegated pairing value is used in an
encryption scheme as a session key. In this case, one can indeed use additional
cryptographic techniques to ensure that the values returned by the powerful
device are correct (e.g. by adding a MAC or other redundancy to the ciphertext).
One can even consider settings where the powerful device actually learns the
pairing value. For instance, in a pay-TV scenario, the set-up box (provided by the
pay-TV company) needs to know the (one-time) session key K used to decipher
the content (e.g. movie, football match) but it does not know the secret key
SK securely stored in the smartcard. If the smartcard delegates the pairing
computation to the set-up box there is no harm to let it know the session key K
since it will learn it anyway.

In 2005, Girault and Lefranc [12] introduced the first secure pairing dele-
gation protocol through the Server-Aided Verification notion which consists in
speeding up the verification step of an authentication/signature scheme. Their
pairing delegation protocol only achieves secrecy with unconditional security
(and the verifiability is achieved via a different mean). Chevallier-Mames, Coron,
McCullagh, Naccache and Scott introduced in 2005 the security notions for pair-
ing delegation [8,9] and they provided a verifiable delegation protocol for pair-
ing computation. Their protocols are much more resource consuming for the
restricted device than directly computing the pairing.

Recently, Canard, Devigne and Sanders proposed a more efficient protocol
for verifiable pairing delegation. The authors showed that their proposal is more
efficient than the computation of the pairing for optimal ate pairing on a so-
called KSS-18 curve [15]. Unfortunately, we will show in this paper that this
is not the case for state-of-the-art optimal Ate pairing on a Barreto-Naehrig
curve [3].

Contributions of the paper. We propose two new efficient protocols for secret
pairing delegation. Our protocols are not verifiable but as explained above, this
is not really an issue for encryption primitives where verifiability can be achieved
by other means. In particular, our typical usecases are Pay-TV where a smartcard
delegates a pairing computation to the set-up box and encrypted GSM commu-
nication where the sim-card delegates a pairing computation to the smartphone
processor (e.g. an ARM or Intel processor with high competitive performances).
In these scenarios, one can even assume that the set-up box or the smart-
phone actually learns the pairing value (but of course not the secret information
stored by the smartcard or the sim-card). Both methods enable to delegate the

Algorithms for Outsourcing Pairing Computation 195

computation of a pairing e(SK,PP) of a secret key SK and some public parame-
ter PP. They achieve better efficiency than actual computation of the pairing by
the restricted device and in particular they are more efficient than all previous
proposals.

We first present a (generalized) knapsack-based approach which uses different
endomorphisms on the groups G1,G2,GT to speed-up the method. Instead of
masking the secret point SK by a scalar multiplication with a random secret
exponent, it is masked by adding to it a sum of (small) multiple of random
points that are also sent to the powerful device. It computes several pairings of
these points with the public parameter PP and the restricted device combines
them to get the actual value. The method is generic and can be applied to
any pairing instantiation. The method increases the communication complexity
between the two devices but one can propose different communication-efficiency
trade-off.

In our second approach, we present a way to delegate only the non-critical
steps in the pairing algorithm, looking carefully at each instruction in Miller
algorithm. The powerful device does not learn any information on the secret
point SK except the actual value of the pairing e(SK,PP) (which is perfectly
suitable in our usecases). The technique can be applied to any instantiation of
pairings but we concentrate on the state-of-the-art optimal Ate pairing on a
Barreto-Naehrig curve [3]. We obtain a 65% improvement (for a 128-bit security
level) for the restricted device compared to the computation of the pairing.

2 Preliminaries

Timing Estimates Using the Relic Library. To illustrate the algorithms pre-
sented in this paper, we estimate the various costs of scalar multiplication, expo-
nentiations and pairings. We choose as a practical example a Barreto–Naehrig
(BN) curve [3] at the 128-bit security level with the implementation provided in
Relic library of Aranha [1].

This library is at the state of the art for pairing computation [2] and is freely
available for research purpose. We assume that scalar multiplications [a]P and
exponentiations za are performed with a binary signed representation of a. So
it requires roughly log a doublings (resp. squarings) and log a/3 additions (resp.
multiplications). A doubling on a BN curve (with a4 = 0) costs 2Mp + 5Sp

(multiplications and squarings in a finite field Fp) and a mixed addition costs
7Mp + 4Sp [1]. We assume that Mp = Sp first because it is the case for Relic
library and secondly to simplify (but the estimation Sp = 0.9Mp would also be
accurate for another implementation). We obtain a total cost of ≈ 256 DblE(Fp)+
86 AddE(Fp) ≈ 2738Mp for a scalar multiplication on G1, 2.4 times this cost:
≈ 6590Mp for a scalar multiplication in G2 and ≈ 256Sp12 + 86Mp12 ≈ 9252Mp

for an exponentiation in GT . We note that checking that an element is in GT

is much more expensive than performing an exponentiation in GT . Indeed GT

is an order-r subgroup in a large finite field Fpk . GT has particular properties
permitting very fast squaring that Fpk does not. We summarize these estimates
in Table 1 (which may be of independent interest).

196 A. Guillevic and D. Vergnaud

Table 1. Estimations for common operations in algorithms, for a BN curve with log p =
256 bits and Relic [1] implementation (Running Relic toolkit on a Intel Xeon E5-1603
at 2.80 GHz).

Operation Cost Total over Fp Relic

Fpk arithmetic

Mp 0.149µs

Mp2 3Mp 3Mp 0.427µs

Sp2 2Mp 2Mp 0.360µs

Mp6 6Mp2 18Mp 3.362µs

Sp6 2Mp2 + 3Sp2 12Mp 2.523µs

Mp12 3Mp6 54Mp 10.856µs

Sp12 2Mp6 36Mp 7.598µs

Sφ12(p) z2, z ∈ Fp12 , Norm(z) = 1 18Mp 4.731µs

za, for any z, a log a Sp12 + log a /3 Mp12 54 log a Mp 3.864 ms

za, NormF
p12/Fp(z) = 1 log a Sφ12(p) + log a /3 Mp12 36 log a Mp 2.818 ms

NormF
p12/Fp(z), for any z NormF

p12/F
p6/F

p2/Fp(z) 59 Mp –

zr, NormF
p12/Fp(z) = 1 zpz1−t = zp(zp6

)t−1 4616 Mp –

check order(z) = r in Fpk NormF
p12/Fp(z) = 1; zr = 1 4675 Mp –

E(Fp) arithmetic

Doubling (Dblp) 2Mp + 5Sp 7Mp 1.043µs

Addition (Addp) 7Mp + 4Sp 11Mp 1.639µs

Scalar mult. [a]P log a Dbl + log a /3Add 10.7 log a Mp –

[a1]P1 + [a2]P2
max(log a1, log a2)

(Dbl +2/3 Add)

max(log a1, log a2)

14.33Mp

–

E(Fp2) arithmetic

Doubling (Dblp2) 2Mp2 + 5Sp2 16Mp 3.137µs

Addition (Addp2) 7Mp2 + 4Sp2 29Mp 4.866µs

Scalar mult. [b]Q log b Dblp2 + log b /3 Addp2 25.7 log b Mp 2.017 ms

[b1]Q1 + [b2]Q2
max(log b1, log b2)

(Dblp2 +2/3 Addp2)

max(log b1, log b2)

35.33Mp

–

Pairing on a BN curve with log2 p = 256

Dbl step + �T,T (P) 3Mp2 + 7Sp2 + 4Mp 27 Mp 6.036µs

Add step + �T,Q(P) 11Mp2 + 2Sp2 + 4Mp 41 Mp 7.593µs

Miller loop see Algorithm 1 8425Mp 1.776 ms

Final powering see Algorithm 1 7911Mp 1.465 ms

Pairing see Algorithm 1 16336Mp 3.241 ms

Algorithms for Outsourcing Pairing Computation 197

Algorithm 1. Optimal Ate Pairing eOptAte(P,Q) on a BN curve

Input: E(Fp) : y2 = x3 + b, P (xP , yP) ∈ E(Fp)[r], Q(xQ, yQ) ∈ E
′
(Fp2)[r], t

trace, x curve parameter
Output: eOptAte(P, Q) ∈ GT ⊂ F

∗
p12

1 R(XR : YR : ZR) ← (xQ : yQ : 1)
2 f ← 1
3 s ← 6x + 2
4 for m ← �log2(s)� − 1, . . . , 0 do
5 R ← [2]R; � ← �R,R(P) 3Mp2 + 7Sp2 + 4Mp = 27Mp

6 f ← f2 · � Sp12 + 13Mp2 = 36 + 39 = 75Mp

7 if sm = 1 or sm = −1 then
8 R ← R ± Q; � ← �R,±Q(P) 11Mp2 + 2Sp2 + 4Mp = 41Mp

9 f ← f · � 13Mp2 = 39Mp

total Miller function:log s · 102Mp + log s/3 · 80Mp

Miller function (e.g. log2 s = 64): 6528 + 1760 = 8288Mp

10 Q1 ← πp(Q) Mp2 = 3Mp

11 R ← R + Q1; � ← �R,Q1(P) 3Mp2 + 7Sp2 + 4Mp = 27Mp

12 f ← f · � 13Mp2 = 39Mp

13 Q2 ← πp2(Q) 2Mp

14 R ← R − Q2; � ← �R,−Q2(P) 3Mp2 + 7Sp2 + 4Mp = 27Mp

15 f ← f · � 13Mp2 = 39Mp

total: 137Mp

total Miller Loop: 137 + 8288 = 8425Mp

16 f ← fp6−1 3Mp6 + 2Sp6 + 10Mp2 + 3Sp2 + 2Mp + 2Sp + Ip = 118Mp + Ip

17 f ← fp2+1 10Mp + Mp12 = 64Mp

18 if x < 0 then

19 a ← f6|x|−5

20 else (fp6
= f−1)

21 a ← (fp6
)6x+5

log p
4

SΦ6(p2) + log p
12

Mp12 = 64 · 18 + 22 · 54Mp = (1152 + 1188)Mp = 2340Mp

22 b ← ap 5Mp2 = 15Mp

23 b ← ab Mp12 = 54Mp

24 Compute fp, fp2
and fp3

5Mp2 + 10Mp + 5Mp2 = 40Mp

25 c ← b · (fp)2 · fp2
SΦ6(p2) + 2Mp12 = 126Mp

26 c ← c6x2+1

log p
2

SΦ6(p2) + log p
6

Mp12 = 128 · 18 + 43 · 54Mp = 2304 + 2322 = 4626Mp

27 f ← fp3 · c · b · (fp · f)9 · a · f4 7Mp12 + 5SΦ6(p2) = 468Mp

Exponentiation f ← f (p6−1)(p2+1)(p4−p2+1)/r: 7851Mp + Ip ≈ 7911Mp

28 return f Pairing: 16336Mp

Optimal Ate Pairing on a Barreto–Naehrig Curve. A pairing is computed
in two steps (see Algorithm 1): a Miller function f ← fr,Q(P) (Algorithm 1,

198 A. Guillevic and D. Vergnaud

lines 1–15) followed by a final powering f
pk−1

r (Algorithm 1, lines 16–27) to
obtain a unique value in GT , the subgroup of order r of F∗

pk .
There are several papers on pairing computation on BN curves. We present in

Algorithm 1 all the steps for an optimal ate pairing computation on a BN curve.
Our global estimate is 16 336 Mp (multiplications in Fp) for one pairing. The
Miller loop takes 8425 Mp (52 %) and the exponentation 7911 Mp (48 %). From
Relic benchmarks on an Intel Xeon CPU E5-1603 0 at 2.8 GHz, we obtain one
pairing in 3.241 ms, the Miller loop in 1.776 ms (55 %) and the exponentiation
in 1.465 ms (45 %).

Security Model for Pairing Delegation. In this subsection, we provide an
informal description of the security model for pairing delegation protocol and
refer the reader to the papers [7,9] for more details. We consider only proto-
cols for delegation of a pairing e(SK,PP) of a secret key SK and some public
parameter PP. The security notions defined in [7,9] are the following:

Secrecy requires that the powerful device cannot learn any information on SK.
Verifiability requires that the restricted device, even interacting with a dishon-

est powerful device, will not output a wrong value for e(SK,PP).

The formal security game for secrecy is similar to the indistinguishability security
notion for encryption schemes. The adversary chooses two secret points SK0 and
SK1 and runs the delegation protocol with the restricted device for the secret
point SKb for some bit b. The scheme achieves secrecy if the probability that
a (polynomial-time) adversary guesses the bit b is negligibly close to 1/2. The
formal security game for verifiability ensures that at the end of the delegation
protocol, the restricted device obtains the actual value e(SK,PP) or knows that
the powerful device cheated in the protocol.

As mentioned above, in some cases, the secrecy property is too strong if
the powerful device is allowed to learn the value e(SK,PP) afterwards. Indeed
this value reveals some information on SK and the complete protocol does not
achieve the secrecy property. Therefore, we propose the following notion which
is weaker than the secrecy notion but well-suited for our usecases of Pay-TV and
encrypted GSM communication:

Weak Secrecy requires that the powerful device cannot learn any information
about SK except what can be deduced from the value e(SK,PP).

Let us assume that we use a pairing delegation protocol for the decryption in
a pairing-based scheme (such as the well-known Boneh-Franklin identity-based
encryption [4]). If the delegation protocol achieves only Weak Secrecy, a mali-
cious powerful device can mount a lunch-time attack (or CCA1) against the
encryption scheme (using the restricted device in the delegation protocol as a
decryption oracle). However, since it does not learn any information about SK
(except from the one-time session keys e(SK,PPi) for several public parame-
ters PPi’s), it is not able to decrypt any ciphertext if the restricted device is
no longer active (e.g. after revocation of the decryption rights in the Pay-TV
scenario).

Algorithms for Outsourcing Pairing Computation 199

3 Review of Previous Proposals

3.1 Girault-Lefranc Pairing Delegation Protocol

In this subsection, we present Girault-Lefranc protocol for server-aided signature
verification [12, Sect. 4.1] in Algorithm 2 with a performance estimation on a
BN curve at a 128-bit security level (log r = log p = 256) using the Relic library
described above.

Our cost estimation concludes that the delegation of e(SK,SP) with secret
SK,SP costs ≈ 18640Mp which is more than a pairing computation at the state
of the art (we estimate this for 16336Mp in Relic library).

Note that if pre-computation is possible, then the computation of [a]SK in the
first step of Algorithm 2 can actually be done off-line. If moreover, the point SP
is public, then the complexity of the delegation protocol falls down to 9252 Mp

(i.e. 0.6 pairing). This basic scheme (with pre-computation) is the most efficient
pairing delegation protocol (without verifiability) of a pairing e(SK,PP) of a
secret key SK and some public parameter PP.

In Girault-Lefranc delegation, as f is a pairing output, we can use the opti-
mized squaring formula of Granger and Scott [13] when computing f (ab)−1

, hence
Sp12 = 18Mp instead of 36Mp. The computations over the group G1 might be
available on the restricted device such as a smartcard. More precisely, we need
multiplication (Mp), addition - subtraction (Ap) and inversion Ip in Fp. Finite
field operations are implemented on a smartcard e.g. for ECDSA but the arith-
metic operations are not available for the user. We can use the RSA primitives
to simulate Fp arithmetic. We set no padding, the exponent to 2 and the “RSA
modulus” to p to get squares mod p, then simulate multiplications through
2xy = (x + y)2 − x2 − y2. Computations in the group GT are not available and
must be implemented. If a BN curve [3] is used, GT ⊂ F

∗
p12 hence a complicated

arithmetic must be implemented.

Remark 1 (Lightening the Girault-Lefranc scheme). If the session key K can
be known by the untrusted helper (i.e. if one only needs weak secrecy), we

Algorithm 2. Girault-Lefranc Secure pairing delegation [12].
Input: secret points SK ∈ G1 and SP ∈ G2 of prime order r, elliptic curve parameters
Output: corresponding session key K = e(SK, SP)

1 Sample random a, b ∈ Zr and compute I = [a]SK, J = [b]SP.
[a]SK on E(Fp): ≈ 256 DblE(Fp) + 86 AddE(Fp) ≈ 256 · (2Mp + 5Sp) + 86 · (7Mp + 4Sp)

≈ 2738Mp

[b]SP on E
′
(Fp2): ≈ 256Dbl

E
′ (F

p2)
+ 86 Add

E
′ (F

p2)
≈ 6590Mp

If SP is public we can set b = 1
2 Send I, J to the server.

3 Compute (ab)−1 mod r. ≈ 60Mp

4 Receive f = e(I, J). delegated: ≈ 16336Mp

5 Compute f(ab)−1
to retrieve K = e(SK, SP). ≈ 9252Mp

6 return K. Total cost (b = 1): ≈ 9252 + 60 + 2738 ≈ 12050Mp = 0.74 pairing
Total cost a, b �= 1: ≈ 12050 + 6590 ≈ 18640Mp = 1.14 pairing

200 A. Guillevic and D. Vergnaud

note that a variant of the protocol may be used in some cases. We propose to ask
the external resource to compute e([α]SK, [α−1]SP) = e(SK,SP) = K with α
taken at random. The output will be exactly K. This solution is not very efficient
as it costs 9388/16336 = 0.6 pairing. To improve it slightly in practice, we can
swap SK and PP, i.e. put SK in E

′
(Fp2) and PP ∈ E(Fp). In this way, [α]SK is

the costly part and can be computed offline. Note that this delegation procedure
reveals some information on the secret key SK and it is necessary to reprove the
security of the underlying scheme if it is used to improve its efficiency.

3.2 Chevallier-Mames et al. Pairing Delegation Protocol

Another pairing delegation protocol was introduced by Chevallier-Mames,
Coron, McCullagh, Naccache and Scott in 2005 [8,9]. Contrary to Girault-
Lefranc’s protocol, the protocol proposed by Chevallier-Mames et al. achieves
secrecy (unconditionnally) and verifiability. Unfortunately, the protocol is very
inefficient since the overall cost for the restricted device is 3.5 times the cost for
computing the pairing (3.3 if pre-computation is possible). The main advantage

Algorithm 3. Pairing delegation with public right-side point [7, Sect. 4.1].
Input: secret point SK ∈ G1 and public point PP ∈ G2 of prime order r, G1

generator of G1, G2 of G2, elliptic curve parameters
Output: Pairing value e(SK, PP)

1 Sample a random a ∈ Zr and compute I1 = [a]G1. [a]G1 on E(Fp): ≈ 2738Mp

2 Sample a random b ∈ Zr and compute I2 = [b]G2. [b]G1 on E(Fp): ≈ 2738Mp

3 Compute χ = e(G1, G2)
ab 1 exp. in GT ≈ 9216Mp

4 Compute (a)−1 mod r and (b)−1 mod r Ip + 3Mp ≈ 63Mp

5 Sample c random c ∈ Zr and compute J0 = [c]SK. [c]SK on E(Fp): ≈ 2738Mp

6 Compute J1 = [b−1]J0 + I1. [b−1]J0 on E(Fp): ≈ 2738Mp

7 Compute J2 = [a−1]PP + I2. [a−1]PP on E(Fp): ≈ 2738Mp

8 Send J1, J2, PP to the server.
9 Ask for α1 = e(J1, J2)(e(G1, PP)e(J0, G2))

−1, α2 = e(J0, PP) delegated:

≈ 4 · 16336Mp = 65344Mp

10 Receive α1, α2

11 Check that α2 ∈ GT : compute αr
2 4675Mp

12 if αr
2 �= 1 then

13 outputs ⊥ and halt.

14 Compute χ′ = χ · α
(ab)−1

2 1 exp. in GT ≈ 9216Mp

15 if χ′ = α1 then
16 compute (c)−1 mod r Ip ≈ 60Mp

17 outputs α
(c)−1

2 and halt. 1 exp. in GT ≈ 9216Mp

18 else
19 outputs ⊥ and halt.

Total cost: 46136Mp = 2.8 pairings

Cost w/o pre-computation: 25905Mp = 1.6 pairings

Algorithms for Outsourcing Pairing Computation 201

of the scheme is to save of area that is required to implement a pairing in the
restricted device such a smart card. However, as mentioned above, even if we
can use tricks, computations in the group GT are usually not available and must
be implemented (i.e. complex arithmetic in GT ⊂ F

∗
p12 for a BN curve).

3.3 Canard-Devigne-Sanders Pairing Delegation Protocol

We present in Algorithm 3 the pairing delegation protocol proposed recently by
Canard, Devigne and Sanders [7]. The protocol is more efficient than the pre-
vious one. It also achieves secrecy (unconditionnally) and verifiability. Canard
et al. actually showed that their proposal is in fact more efficient than the com-
putation of the pairing for optimal ate pairing on a so-called KSS-18 curve [15].
Unfortunately, as shown by the precise complexity of Algorithm 3, this is not the
case for state-of-the-art optimal Ate pairing on a BN curve [3]. More precisely,
we show that the overall cost for the restricted device is 2.8 times the cost for
computing the pairing (1.6 if pre-computation is possible).

4 Pairing Delegation with Knapsack

We present in this section a new approach to perform pairing delegation (without
verifiability) of a pairing e(SK,PP) of a secret key SK and some public para-
meter PP. The restricted device (e.g. a smartcard) generates random points
and sends them to the powerful device to compute several pairings. The smart-
card receives the pairings and combines some of them to get the actual value
e(SK,PP). The basic idea is to mask the secret value SK by a linear combi-
nation of those random points with “small” coefficients to improve efficiency.
A similar approach has been used successfully in the setting of server-aided
exponentiation [6,16].

4.1 Security Analysis

Let G be a cyclic group of order p denoted additively. We consider the two
following distributions:

Un = {(P1, P2, . . . , Pn, Q) R←− G
n+1}

and

Kn,A =

⎧
⎪⎨

⎪⎩
(P1, P2, . . . , Pn, Q), s.t.

(P1, P2, . . . , Pn) R←− G
n

Q ← [a1]P1 + · · · + [an]Pn

where (a1, . . . , an) R←− [[0, A − 1]]n

⎫
⎪⎬

⎪⎭
.

Un is the uniform distribution on G
n+1 and Kn,A outputs (n+1)-tuples where the

first n components are picked uniformly at random in G while the last component
is a linear combination of those elements with exponents picked uniformly at

202 A. Guillevic and D. Vergnaud

random in the interval [[0, A − 1]]. In a basic version of our delegation protocol,
the restricted device sends the elements (P1, . . . , Pn) and Pn+1 = (SK − Q)
to the powerful device. It replies by sending back the pairings e(Pi,PP) for
i ∈ {1, . . . , n + 1}. The restricted device finally gets e(SK,PP) as e(Pn+1,PP) ·∏n

i=1 e(gi,PP)ai . If the two distributions Un and Kn,A are indistinguishable, the
protocol will readily achieve the secrecy property.

– Perfect indistinguishability. It is straightforward to see that if A = p, then the
two distributions are identical (even if n = 1) and the delegation scheme as
outlined above achieves unconditional secrecy. Unfortunately, as we will see
in the next paragraph, the efficiency of our schemes depends crucially on the
size of A and one wants to use smaller A in practice.

– Statistical indistinguishability. By using classical results on the distribution of
modular sums [16], one can prove that if An = Ω(p2), then the two distribu-
tions Un and Kn,A are statistically indistinguishable (see [10,16] for details).
For these parameters, the delegation protocol achieves statistical (and there-
fore computational) secrecy. For cryptographic purposes, the order p of G

needs to be of 2k-bit size to achieve a k-bit security level. Therefore, to achieve
statistical indistinguishability, we need to have An = Ω(24k) and the resulting
delegation protocol is not really efficient.

– Computational indistinguishability. For smaller parameters (i.e. An = o(p2)),
we cannot prove that the Un and Kn,A are statistically indistinguishable. How-
ever, it may be possible to prove that they are computationally indistinguish-
able. Using a variant of Shanks “baby-step giant-step” algorithm, one can see
easily that it is possible to find the scalars (a1, . . . , an) (if they exist) such
that Q = [a1]P1 + · · ·+ [an]Pn in O(An/2) group operations in G (i.e. to solve
the generalized knapsack problem in G). Therefore, to achieve computational
indistinguishability for a k-bit security parameter, one needs to have at least
An = Ω(22k) = Ω(p).

To conclude this paragraph, we will prove that the two distributions Un and
Kn,A are computationally indistinguishable in the generic group model when
An = Ω(22k) = Ω(p). Our delegation protocol therefore achieves secrecy in the
generic group model when An = Ω(22k) = Ω(p). This model was introduced
by Shoup [17] for measuring the exact difficulty of solving discrete logarithm
problems. Algorithms in generic groups do not exploit any properties of the
encodings of group elements. They can access group elements only via a random
encoding algorithm that encodes group elements as random bit-strings.

Let A be a generic group adversary. As usual, the generic group model is
implemented by choosing a random encoding σ : G −→ {0, 1}m. Instead of work-
ing directly with group elements, A takes as input their image under σ. This
way, all A can test is string equality. A is also given access to an oracle com-
puting group addition and subtraction: taking σ(R1) and σ(R2) and returning
σ(R1 + R2), similarly for subtraction. Finally, we can assume that A submits to
the oracle only encodings of elements it had previously received. This is because
we can choose m large enough so that the probability of choosing a string that
is also in the image of σ is negligible.

Algorithms for Outsourcing Pairing Computation 203

Theorem 1. Let A be a generic algorithm that distinguishes the two distribu-
tions Un and Kn,A that makes at most τ group oracle queries, then A’s advantage
in distinguishing the two distributions is upper-bounded by O(τ2/An).

To prove this theorem, we consider the following distributions in a product group
G1 ×· · ·×Gn where each Gi is cyclic group of prime order p (for i ∈ {1, . . . , n}).

U ′
n = {(P1, P2, . . . , Pn, Q) R←− G1 × G2 × · · · × Gn × (G1 × G2 × · · · × Gn)}

and

K′
n,A =

⎧
⎪⎨

⎪⎩
(P1, P2, . . . , Pn, Q), s.t.

(P1, P2, . . . , Pn) R←− G1 × G2 × · · · × Gn

Q ← [a1]P1 + · · · + [an]Pn

where (a1, . . . , an) R←− [[0, A − 1]]n

⎫
⎪⎬

⎪⎭

It is worth mentioning that the use of these product groups in cryptography is
not interesting since even if their order is pn, the complexity of discrete loga-
rithm computation in them is not much harder than in cyclic groups of order p.
We will only use them as a tool in order to prove our Theorem 1.

Following Shoup’s technique [17], it is easy to prove that a generic algorithm
in the product group G1 × · · · × Gn (or equivalently in Z

n
p) has a negligible

advantage in distinguishing the two distributions U ′
n and K′

n,A if it makes a
polynomial number of group oracle queries. More precisely, we can prove the
following proposition:

Proposition 1. Let A be a generic algorithm that distinguishes the two dis-
tributions U ′

n and K′
n,A and makes at most τ group oracle queries, then A’s

advantage in distinguishing the two distributions is upper-bounded by O(τ2/An).

Proof. We consider an algorithm B playing the following game with A. Algo-
rithm B chooses n+1 bit strings σ1, . . . , σn, σn+1 uniformly in {0, 1}m. Internally,
B keeps track of the encoded elements using elements in the ring Zp[X1] × · · · ×
Zp[Xn]. To maintain consistency with the bit strings given to A, B creates a lists
L of pairs (F, σ) where F is a polynomial vector in the ring Zp[X1]×· · ·×Zp[Xn]
and σ ∈ {0, 1}m is the encoding of a group element. The polynomial vector F
represents the exponent of the encoded element in the group G1 × · · · × Gn.
Initially, L is set to

{((1, 0, . . . , 0), σ1), ((0, 1, . . . , 0), σ2), . . . , ((0, 0, . . . , 1), σn), ((X1, . . . , Xn), σn+1)}
Algorithm B starts the game providing A with σ1, . . . , σn, σn+1. The simulation
of the group operations oracle goes as follows:

Group Operation: Given two encodings σi and σj in L, B recovers the cor-
responding vectors Fi and Fj and computes Fi + Fj (or Fi − Fj) termwise.
If Fi + Fj (or Fi − Fj) is already in L, B returns to A the corresponding

bit string; otherwise it returns a uniform element σ
R←− {0, 1}m and stores

(Fi + Fj , σ) (or (Fi − Fj , σ)) in L.

204 A. Guillevic and D. Vergnaud

After A queried the oracles, it outputs a bit b. At this point, B chooses a
random bit b∗ ∈ {0, 1} and uniform values x1, . . . , xn ∈ Zp if b∗ = 0 or uniform
values x1, . . . , xn ∈ [[0, A − 1]] if b∗ = 1. The algorithm B sets Xi = xi for
i ∈ {1, . . . , n}.

If the simulation provided by B is consistent, it reveals nothing about b.
This means that the probability of A guessing the correct value for b∗ is 1/2.
The only way in which the simulation could be inconsistent is if, after we
choose value for x1, . . . , xn, two different polynomial vectors in L happen to
produce the same value. First, note that A is unable to cause such a collision on
its own. Indeed, notice that L is initially populated with polynomials of degree
at most one in each coordinate and that both the group addition and subtraction
oracle do not increase the degree of the polynomial. Thus, all polynomials con-
tained in L have degree at most one. This is enough to conclude that A cannot
purposely produce a collision.

It remains to prove that the probability of a collision happening due to a
unlucky choice of values is negligible. In other words, we have to bound the
probability that two distinct Fi, Fj in L evaluate to the same value after the
substitution, namely Fi(x1, . . . , xn)−Fj(x1, . . . , xn) = 0. This reduces to bound
the probability of hitting a zero of Fi −Fj . By the simulation, this happens only
if Fi − Fj is a non-constant polynomial vector and in this case, each coordinate
is a degree one polynomial in one Xi’s.

Recall that the Schwartz-Zippel lemma says that, if F is a degree d polyno-
mial in Zp[X1, . . . , Xn] and S ⊆ Zp then

Pr[F (x1, . . . , xn) = 0] ≤ d

|S|
where x1, . . . , xn are chosen uniformly from S. Going back to our case, we obtain
by applying the Schwartz-Zippel lemma to each coordinate:

Pr[(Fi − Fj)(x1, . . . , xn) = 0 ∈ Z
n
p] ≤

{
1/pn if b∗ = 0
1/An if b∗ = 1

Therefore, the probability that the simulation provided by B is inconsistent is
upper-bounded by τ(τ − 1)/An. 	

We will now prove that, provided m is large enough, a generic algorithm is not
able to decide whether it is given as inputs n generators (P1, . . . , Pn) in a cyclic
group G of prime order p or n order-p elements

(P1, 1G2 , . . . , 1Gn
), (1G1 , P2, . . . , 1Gn

), . . . , (1G1 , 1G2 , . . . , Pn)

in a product group G1 × · · · × Gn where each Gi is cyclic group of prime order
p. Note that the groups G and G1 × · · · × Gn are not of the same order and in
practice, it will probably be easy to distinguish them. We only claim that this
is difficult for a generic algorithm.

Proposition 2. Let A be a generic algorithm that distinguishes these two set-
tings and makes at most τ group oracle queries, then A’s advantage in distin-
guishing the two distributions is upper-bounded by O(τ2/p).

Algorithms for Outsourcing Pairing Computation 205

Proof. We consider an algorithm B playing the following game with A. Algo-
rithm B chooses a random bit b∗ and runs one of the following simulation depend-
ing on the bit b∗

– If b∗ = 0, B chooses n bit strings σ1, . . . , σn uniformly in {0, 1}m. Internally, B
keeps track of the encoded elements using elements in the ring Zp[X1, . . . , Xn].
To maintain consistency with the bit strings given to A, B creates a list
L of pairs (F, σ) where F is a polynomial in the ring Zp[X1, . . . , Xn] and
σ ∈ {0, 1}m is the encoding of a group element. The polynomial F represents
the exponent of the encoded element in the group G. Initially, L is set to

{(X1, σ1), (X2, σ2), . . . , (Xn, σn)}

– If b∗ = 1, B chooses also n bit strings σ1, . . . , σn uniformly in {0, 1}m. Inter-
nally, B keeps track of the encoded elements using elements in the ring Zp[X1]×
· · · × Zp[Xn]. To maintain consistency with the bit strings given to A, B
creates a list L of pairs (F, σ) where F is a polynomial vector in the ring
Zp[X1] × · · · × Zp[Xn] and σ ∈ {0, 1}m is the encoding of a group element.
The polynomial vector F represents the exponent of the encoded element in
the group G1 × · · · × Gn. Initially, L is set to

{((X1, 0, 0, . . . , 0), σ1), ((0,X2, 0, . . . , 0), σ2), . . . , ((0, 0, . . . , 0,Xn), σn)}

In each cases, algorithm B starts the game providing A with σ1, . . . , σn. The
simulation of the group operations oracle goes as follows:

Group operation: Given two encodings σi and σj in L, B recovers the corre-
sponding polynomials (or polynomial vectors, depending on b∗) Fi and Fj

and computes Fi +Fj (or Fi −Fj) termwise. If Fi +Fj (or Fi −Fj) is already
in L, B returns to A the corresponding bit string; otherwise it returns a
uniform element σ

R←− {0, 1}m and stores (Fi + Fj , σ) (or (Fi − Fj , σ)) in L.

After A queried the oracles, it outputs a bit b. At this point, B chooses
uniform values x1, . . . , xn ∈ Zp. The algorithm B sets Xi = xi for i ∈ {1, . . . , n}.

If the simulation provided by B is consistent, it reveals nothing about b. This
means that the probability of A guessing the correct value for b∗ is 1/2. The
only way in which the simulation could be inconsistent is if, after we choose
value for x1, . . . , xn, two different polynomial vectors in L happen to produce
the same value. First, note that A is unable to cause such a collision on its own.
Indeed, notice that L is initially populated with polynomials of degree at most
one in each coordinate and that both the group addition and subtraction oracle
do not increase the degree of the polynomial. Thus, all polynomials contained in
L have degree at most one. This is enough to conclude that A cannot purposely
produce a collision.

It remains to prove that the probability of a collision happening due to a
unlucky choice of values is negligible. If b∗ = 1, the probability of a collision
happening is equal to 0. If b∗ = 0, we have to bound the probability that two

206 A. Guillevic and D. Vergnaud

distinct Fi, Fj in L evaluate to the same value after the substitution, namely
Fi(x1, . . . , xn) − Fj(x1, . . . , xn) = 0. This reduces to bound the probability of
hitting a zero of Fi − Fj .

Applying the Schwartz-Zippel lemma, we obtain

Pr[(Fi − Fj)(x1, . . . , xn) = 0 ∈ Zp] ≤ 1/p

Therefore, the probability that the simulation provided by B is inconsistent is
upper-bounded by τ(τ − 1)/p. 	

To prove Theorem 1, it is then enough to prove that if there exists a generic
algorithm that distinguishes the two distributions Un and Kn,A that makes at
most τ group oracle queries with an advantage larger than Ω(τ2/An), it gives
an adversary able to distinguish the cyclic group setting from the product group
setting making at most τ group oracle queries and with advantage Ω(τ2/An)
(due to Proposition 1) and this result contradicts Proposition 2.

4.2 Description of Our Protocol

In the previous subsection, we provided a description of a basic version of our
protocol. In this subsection, we consider an improved version of it on elliptic
curves equipped with efficient endomorphisms. In this improved scheme, instead
of masking SK with [a1]P1 + · · · + [an−1]Pn−1 with (a1, . . . , an−1)

R←− [[0, A −
1]]n−1, we will mask it with [a1]Q1 + · · · + [an−1]Qn−1 with (a1, . . . , an−1)

R←−
[[0, A − 1]]n−1 where the Qi’s are images of the Pi under one of the efficient
endomorphisms defined on the curve. If we denote S the set of efficient endo-
morphisms on the curve (that can also be efficiently evaluated in the group GT),
we obtained a scheme with generic security Ω(#Sn−1 · An−1/2).

Setup (could be offline). In the following, the smartcard has to generate several
random points on an elliptic curve E(Fp). Fouque and Tibouchi [11] proposed
an efficient method to do it on a BN curve.

1. Let I a set of small integers, I = {0, 1, 2, 3, 4, 5, . . . , 2�−1} with #I = 2� = A.
2. The smartcard generates n−1 random points P1, P2, . . . , Pn−1 on the elliptic

curve E(Fp).
3. The smartcard chooses an endomorphism σi ∈ S to apply to Pi and sets

Qi = σi(Pi).
4. For each point Qi, the smartcard takes at random αi ∈ I and sets

Pn = SK − ([α1]Q1 + [α2]Q2 + . . . + [αn−1]Qn−1 = SK −
n−1∑

i=1

[αi]Qi .

Delegation

5. The smartcard sends P1, P2, . . . , Pn to the server.
6. The server computes the n pairings fi = e(Qi,PP) and sends them back to

the smartcard.

Algorithms for Outsourcing Pairing Computation 207

Session key computation

7. The smartcard computes (fσ1
1)α1 · (fσ2

2)α2 · · · (fσn−1
n−1)αn−1 · fn = K. The σi

are also almost free. Thanks to the bilinearity property,

e(SK,PP) = e(α1Q1 + α2Q2 . . . + αn−1Qn−1 + Pn,PP)
= e(α1Q1,PP)e(α2Q2,PP) · · · e(αn−1Qn−1,PP)e(Pn,PP)
= (e(P1,PP)σ1)α1 · · · (e(Pn−1,PP)σn−1)αn−1(e(Pn,PP))

with σi a cheap endomorphism in F
∗
pk such that e(σi(Pi),PP) = e(Pi,PP)σi .

Example on a Barreto–Naehrig curve. For optimal Ate pairing on a BN
curve with 128-bit security level (i.e. 256-bit prime number p), the endomor-
phism set S can be defined as {Id,−Id, φ, φ2,−φ,−φ2} where φ is computed
from the complex multiplication endomorphism available on the curve. These
endomorphisms are almost free on E(Fp) if D = 1 or D = 3. They cost at most
one multiplication and one subtraction in Fp and the resulting point Qi is still
in affine coordinates [5].

In the Setup procedure, the smartcard has to obtain Pn in affine coordinates,
this costs one inversion in Fp plus four multiplications, resulting in an additional
cost of (say) 64Mp. The cost of computing Pn is (n−1)·(�·7+�/2·11+16)+64Mp.
Indeed, in Jacobian coordinates, one addition on E(Fp) with one of the two points
in affine coordinates costs 11Mp, if none of the points are in affine coordinates,
this costs 16Mp, and one doubling costs 8Mp. If moreover we use a BN curve
(a4 = 0), a doubling costs 7Mp.

The computation cost for the powerful device is 16336(0.84(n − 1) + 1) Mp.
Indeed, the first pairing costs ≈ 16336Mp and the (n − 1) other ones cost 0.84
of one pairing (since the second argument is the fixed point PP, the tangents
and lines can be computed from PP one single time for all the pairings).

Finally, the smartcard computes1 n−1 exponentiations and multiplies n ele-
ments in GT to obtain the session key K = e(SK,PP). An exponentiation costs
in average � squaring plus �/2 multiplications in Fp12 . The n−1 exponentiations
cost (n − 1)(18� + 54�/3)Mp. It remains to compute n − 1 multiplications.

Overall, we obtain the global cost for the restricted device is: (n−1)(73Mp +
46, 7�Mp) (and (n−1)(73Mp +36�Mp) is pre-computation is possible). We sum-
marize our proposition in Algorithm 4. By choosing appropriate values for n
and �, one can achieve various communication-efficiency trade-off as shown in
Table 2. To achieve statistical security (instead of generic computational secu-
rity), one basically needs to double the value of �. One can find parameters for
which the delegation procedure is more efficient than the pairing computation
(0.5 pairing for practical parameters).

1 It is worth mentioning that this computational cost can be further decreased by
using classical multi-exponentiation techniques (in particular for small values of n
(e.g. n = 5).

208 A. Guillevic and D. Vergnaud

Algorithm 4. Pairing delegation with knapsack.
Input: secret key SK, public value PP, set I of small integers with #I = 2�

Output: Session key K = e(SK, PP)
1 Offline:
2 Generate n − 1 random points P1, P2, . . . , Pn ∈ E(Fp).
3 foreach Pi do
4 Choose at random an endomorphism σi ∈ {Id, −Id, φ, −φ, φ2, −φ2} σi on

E(Fp): at most 1Mp

5 Choose at random an integer αi ∈ I
6 Compute Qi = [αi]σ(Pi) [αi]: log2 αi(DblE(Fp) + 1

3
AddE(Fp)) � 10.7�Mp

7 Online:
8 Compute Pn = SK − ([α1]σi(P1) + [α2]σ2(P2) + . . . + [αn−1]σn−1(Pn−1) =

SK −∑n−1
i=1 [αi]σi(Pi)

n − 1 AddE(Fp) = (n − 1)11Mp

9 Send PP and all the P1, . . . , Pn to the server. communication: log(p) · (n + 1)
bits

10 Ask for all the fi = e(Pi, PP), 1 � i � n Delegated: ≈ 16336n Mp

11 Compute K = (fσ1
1)α1 · (fσ2

2)α2 · · · (fσn−1
n−1)αn−1 · fn (n − 1)(σi + αi + Mult.) =

(n − 1)(8Mp + �(SΦ12(p) + 1
3
Mp12) + Mp12) = (n − 1)(62Mp + 36�Mp)

12 return K. Total cost: (n − 1)(73Mp + 46, 7�Mp)
Cost w/o pre-computation: (n − 1)(73Mp + 36�Mp)

for n = 20 and � = 8: 6859Mp = 0.4 pairing

5 Partial Pairing Computation Delegation

In this final section, we propose a completely different approach based on the
arithmetic of the pairing computation (without verifiability) of a pairing e(SK,
PP) of a secret key SK and some public parameter PP. More precisely, we
delegate only the non-critical steps in the pairing algorithm, looking carefully at
each instruction in Miller algorithm. The protocol only achieves weak secrecy :
the helper will learn the session key K (but still not the secret key SK).

Final Powering Delegation. We can blind the output f ′ ← u · f of the Miller
function by an element u ∈ F

∗
pk which is an r-th power (there exists a u

′ ∈ F
∗
pk

such that u
′r = u), see Algorithm 5. Hence u will disappear after the final

powering f
pk−1

r (Algorithm 1, lines 16–27) since u
pk−1

r = u′pk−1 = 1. So we can
delegate the final powering thanks to the equality f ′(pk−1)/r = (uf)(p

k−1)/r =
K the session key. The helper learns the session key K but has no additional
information on f (in particular pairing inversion is not possible).

Tangent and line Delegation. The two points P,Q play two different roles in a
Tate-like pairing computation. In an ate pairing, the point P is used to evaluate
the intermediate line functions �(P). The line functions � are computed through
a scalar multiplication [s]Q (with s a public parameter of the curve). The coef-
ficients arising in the lines and tangent computation are re-used to update the

Algorithms for Outsourcing Pairing Computation 209

Table 2. Communication/Efficiency Trade-off of our knapsack delegation protocol

� n Generic security Computational cost Communication

59 5 128 8788Mp = 0.53 pairing 15360 bits

23 10 126 8109Mp = 0.49 pairing 30720 bits

13 15 127 7574Mp = 0.46 pairing 46080 bits

8 20 125 6859Mp = 0.41 pairing 61440 bits

8 20 125 6859Mp = 0.41 pairing 61440 bits

5 25 122 6072Mp = 0.37 pairing 76800 bits

3 30 118 5249Mp = 0.32 pairing 92160 bits

0 51 128 3650Mp = 0.22 pairing 156672 bits

Algorithm 5. Partial reduced Tate pairing delegation
Input: Elliptic curve E(Fp) of embedding degree k and prime order r subgroup,

with degree d twist available, points P ∈ E(Fp),
Q ∈ E(Fpk) ∩ Ker(πpk/d − [pk/d])

Output: Reduced Tate pairing er(P, Q)
pk−1

r

1 f = fr,P (Q) Miller function

2 Compute a random r-th power u ∈ F
∗
pk i.e. such that ∃v ∈ F

∗
pk , u = vr

3 f
′
= f · u

4 Send f
′

to the external resource

5 Receive h = (f
′
)
pk−1

r = upk−1f
pk−1

r = f
pk−1

r = K
6 Return K

Miller function fs,PP(SK). If Q is actually a public parameter PP, then the line
computation �PP can be delegated. The restricted device (such as a smartcard)
will ask for the successive intermediate values � then evaluate them at the secret
point P = SK.

For an ate pairing on a BN curve, the line is of the form � = �0 + �1ω +
�3ω

3, with Fp12 = Fp2 [ω] = Fp2 [ω]/(ω6 − ξ). The smartcard can delegate the
computation of the three coefficients then compute the line equation evaluated
at SK.

Tangent and line computation. One can found Relic [1] formulas for tangent and
line computation in src/pp/relic pp dbl.c (function pp dbl k12 projc basic)
and src/pp/relic pp add.c (function pp add k12 projc basic).

We recall the formula from [2, Eq. (10)]:

�2T (P) = −2Y Z yP + 3X2 xP ω + (3b
′
Z2 − Y 2)ω3 (1)

with ω such that Fp12 = Fp2 [ω]/(ω6 − ξ), X,Y,Z ∈ Fp2 and xP , yP ∈ Fp.

210 A. Guillevic and D. Vergnaud

The second formula is the following [2, Eq. (13)], with L = X − xQZ and
M = Y − yQZ:

�T+Q(P) = −LyP − MxP ω + (MX − LY)ω3 (2)

In both cases the coefficients of � are computed from a public parameter
Q = PP hence can be delegated. The smart card saves 2Sp2 + 7Mp2 = 25Mp.
It remains for the smart card to evaluate the line � at SK = P = (xP , yP). This
costs 4Mp in both cases.

Efficiency improvement. To sum up, the smartcard sends the point PP to the
external computer and computes the intermediate values of the Miller function
on the fly, when receiving the coefficients of the intermediate values. No infor-
mation on SK is provided to the external helper (except f ′ which does not
reveal more information than the session key K). For an optimal Ate pairing
on a Barreto-Naehrig curve, this saves 31 % of the Miller loop, then we dele-
gate 100 % of the final powering, saving at the end 65 % of the pairing cost. Note
that the idea can be adapted to achieve (strong) secrecy by further masking the
final powering but the efficiency improvement is smaller if pre-computation is
not possible. Note also that the same idea can be applied to any instantiation
of pairings (but requires a specific analysis).

Acknowledgements. The authors thank Olivier Blazy, Renaud Dubois and Fabien
Laguillaumie for their fruitful comments. This work was supported in part by the
French ANR-12-INSE-0014 SIMPATIC Project.

References

1. Aranha, D.F., Gouvêa, C.P.L.: RELIC is an Efficient LIbrary for Cryptography,
September 2013. http://code.google.com/p/relic-toolkit/

2. Aranha, D.F., Barreto, P.S.L.M., Longa, P., Ricardini, J.E.: The realm of the
pairings. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC 2013. LNCS, vol. 8282,
pp. 3–25. Springer, Heidelberg (2014)

3. Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In:
Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer,
Heidelberg (2006)

4. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001)

5. Bos, J.W., Costello, C., Naehrig, M.: Exponentiating in pairing groups. Cryptology
ePrint Archive, Report 2013/458 (2013)

6. Boyko, V., Peinado, M., Venkatesan, R.: Speeding up discrete log and factoring
based schemes via precomputations. In: Nyberg, K. (ed.) EUROCRYPT 1998.
LNCS, vol. 1403, pp. 221–235. Springer, Heidelberg (1998)

7. Canard, S., Devigne, J., Sanders, O.: Delegating a pairing can be both secure and
efficient. In: Boureanu, I., Owesarski, P., Vaudenay, S. (eds.) ACNS 2014. LNCS,
vol. 8479, pp. 549–565. Springer, Heidelberg (2014)

http://code.google.com/p/relic-toolkit/

Algorithms for Outsourcing Pairing Computation 211

8. Chevallier-Mames, B., Coron, J.-S., McCullagh, N., Naccache, D., Scott, M.: Secure
delegation of elliptic-curve pairing. Cryptology ePrint Archive, Report 2005/150
(2005)

9. Chevallier-Mames, B., Coron, J.-S., McCullagh, N., Naccache, D., Scott, M.: Secure
delegation of elliptic-curve pairing. In: Gollmann, D., Lanet, J.-L., Iguchi-Cartigny,
J. (eds.) CARDIS 2010. LNCS, vol. 6035, pp. 24–35. Springer, Heidelberg (2010)

10. Coron, J.-S., M’Räıhi, D., Tymen, C.: Fast generation of pairs (k,[k]P) for Koblitz
elliptic curves. In: Vaudenay, S., Youssef, A.M. (eds.) SAC 2001. LNCS, vol. 2259,
pp. 151–164. Springer, Heidelberg (2001)

11. Fouque, P.-A., Tibouchi, M.: Indifferentiable hashing to Barreto–Naehrig curves.
In: Hevia, A., Neven, G. (eds.) LatinCrypt 2012. LNCS, vol. 7533, pp. 1–17.
Springer, Heidelberg (2012)

12. Girault, M., Lefranc, D.: Server-aided verification: theory and practice. In: Roy,
B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 605–623. Springer, Heidelberg
(2005)

13. Granger, R., Scott, M.: Faster squaring in the cyclotomic subgroup of sixth degree
extensions. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056,
pp. 209–223. Springer, Heidelberg (2010)

14. Joux, A.: A one round protocol for tripartite Diffie-Hellman. In: Bosma, W. (ed.)
ANTS 2000. LNCS, vol. 1838, pp. 385–394. Springer, Heidelberg (2000)

15. Kachisa, E.J., Schaefer, E.F., Scott, M.: Constructing Brezing-Weng pairing-
friendly elliptic curves using elements in the cyclotomic field. In: Galbraith, S.D.,
Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 126–135. Springer,
Heidelberg (2008)

16. Nguyen, P.Q., Shparlinski, I.E., Stern, J.: Distribution of modular sums and the
security of the server aided exponentiation. In: Lam, K.-Y., Shparlinski, I., Wang,
H., Xing, C. (eds.) Cryptography and Computational Number Theory. Progress
in Computer Science and Applied Logic, vol. 20, pp. 331–342. Birkhäuser, Basel
(2001)

17. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997)

	Algorithms for Outsourcing Pairing Computation
	1 Introduction
	2 Preliminaries
	3 Review of Previous Proposals
	3.1 Girault-Lefranc Pairing Delegation Protocol
	3.2 Chevallier-Mames et al. Pairing Delegation Protocol
	3.3 Canard-Devigne-Sanders Pairing Delegation Protocol

	4 Pairing Delegation with Knapsack
	4.1 Security Analysis
	4.2 Description of Our Protocol

	5 Partial Pairing Computation Delegation
	References

