
Marc Joye
Amir Moradi (Eds.)

 123

LN
CS

 8
96

8

13th International Conference, CARDIS 2014
Paris, France, November 5–7, 2014
Revised Selected Papers

Smart Card Research
and Advanced Applications

Lecture Notes in Computer Science 8968

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7410

Marc Joye • Amir Moradi (Eds.)

Smart Card Research
and Advanced Applications
13th International Conference, CARDIS 2014
Paris, France, November 5–7, 2014
Revised Selected Papers

123

Editors
Marc Joye
Technicolor
Los Altos, CA
USA

Amir Moradi
Ruhr University
Bochum, Nordrhein-Westfalen
Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-16762-6 ISBN 978-3-319-16763-3 (eBook)
DOI 10.1007/978-3-319-16763-3

Library of Congress Control Number: 2015934897

LNCS sublibrary: SL4 – Security and Cryptology

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Preface

The 13th Smart Card Research and Advanced Application Conference was held in
Paris, France, during November 5–7, 2014. The conference was organized by and held
at Conservatoire national des arts et métiers (CNAM).

Since 1994, CARDIS is the foremost international conference dedicated to smart
card research and applications. Smart cards and secure elements are the basis for many
secure systems and play a decisive role in ID management. Established computer
science areas like hardware design, operating systems, system modeling, cryptography,
verification, and networking got adapted to this fast growing technology and investi-
gate emerging issues resulting from it. Unlike events devoted to commercial and
application aspects of smart cards, CARDIS conferences gather researchers and tech-
nologists who focus on all aspects of the design, development, deployment, validation,
and application of smart cards and secure elements in secure platforms or systems.

CARDIS 2014 received 56 submissions from 21 countries. Each paper was
reviewed by at least three independent reviewers. The selection of 15 papers to fill the
Technical Program was accomplished based on 170 written reviews. This task was
performed by the 26 members of the Program Committee with the help of 52 external
sub-reviewers. This year the Program Committee selected a paper to award. To be
eligible, the paper had to be co-authored by one full-time student who presented the
paper at the conference. This year, the Best Student Paper Award was given to
Christine van Vredendaal for the paper titled “Kangaroos in Side-Channel Attacks”
written in collaboration with Tanja Lange and Marnix Wakker. The technical program
also featured two invited talks and a panel discussion. The first invited speaker, Marc
Girault, from Orange Labs, France, presented “A Chip Card Sidelight on Lightweight
Crypto.” The second invited speaker, Stefan Mangard, from Graz University of
Technology, Austria, spoke about “Designing Secure Smart Cards.” Further, the panel
discussion with the topic of “20 years of CARDIS, 40 years of smart cards: Where do
we go from there?” was moderated by David M’Raïhi from Perzo, USA.

We would like to thank the General Chair, Prof. Pierre Paradinas, and the local
Organizing Committee for their management as well as the authors of all submitted
papers. Moreover, we are grateful to the members of the Program Committee and the
external sub-reviewers for their diligent work. We would also like to acknowledge the
Steering Committee for giving us the privilege of serving as Program Chairs of
CARDIS 2014. We especially thank Prof. Jean-Jacques Quisquater for organizing and
publicizing this event and for his help and guidance throughout the process.

November 2014 Marc Joye
Amir Moradi

Organization

CARDIS 2014 was organized by Conservatoire national des arts et métiers (CNAM).

Conference General Chair

Pierre Paradinas Conservatoire national des arts et métiers,
France

Conference Program Co-chairs

Marc Joye Technicolor, USA
Amir Moradi Ruhr University Bochum, Germany

Conference Publicity Chair

Jean-Jacques Quisquater Université catholique de Louvain, Belgium

Program Committee

Guillaume Barbu Oberthur Technologies, France
Samia Bouzefrane Conservatoire national des arts et métiers,

France
Thomas Eisenbarth Worcester Polytechnic Institute, USA
Viktor Fischer Université de Saint Etienne, France
Aurélien Francillon EURECOM, France
Benedikt Gierlichs Katholieke Universiteit Leuven, Belgium
Christophe Giraud Oberthur Technologies, France
Tim Güneysu Ruhr University Bochum, Germany
Johann Heyszl Fraunhofer-Institut AISEC, Germany
Michael Hutter Graz University of Technology, Austria
Jean-Louis Lanet Université de Limoges, France
Pierre-Yvan Liardet STMicroelectronics, France
Philippe Loubet-Moundi Gemalto, France
Stefan Mangard Graz University of Technology, Austria
Keith Mayes Royal Holloway University of London, UK
David M’Raïhi Perzo, USA
David Oswald Ruhr University Bochum, Germany
Elisabeth Oswald University of Bristol, UK
Eric Peeters Texas Instruments, USA
Emmanuel Prouff ANSSI, France
Thomas Roche ANSSI, France
Pankaj Rohatgi Cryptography Research, USA

Kasuo Sakiyama University of Electro-Communications, Japan
Akashi Satoh University of Electro-Communications, Japan
Jörn-Marc Schmidt secunet Security Networks AG, Germany
François-Xavier Standaert Université catholique de Louvain, Belgium

Sponsoring Institutions

ANSSI
Serma Technologies
ASR
CEA
Cryptosense
INVIA
Lip6
Oberthur Technologies
Orange
Technicolor

Philippe Andouard
Costin Andrei
Yoshinori Aono
Josep Balasch
Valentina Banciu
Alberto Battistello
Luk Bettale
Begül Bilgin
Claude Carlet
Guillaume Dabosville
Elke De Mulder
Fabrizio De Santis
Amine Dehbaoui
Ibrahima Diop
Sho Endo
Benoit Feix
Olivier Francis
Daniele Fronte

Hannes Gross
Vincent Grosso
Atsuo Inomata
Eliane Jaulmes
Saqib A. Kakvi
Dina Kamel
Timo Kasper
Thomas Korak
Thinh Le Vinh
Yang Li
Yanis Linge
Victor Lomne
Shugo Mikami
Oliver Mischke
Stephanie Motre
Ryo Nojima
Katsuyuki Okeya
Peter Pessl

Francesco Regazzoni
Franck Rondepierre
Falk Schellenberg
Tobias Schneider
Mostafa Taha
Yannick Teglia
Le Trieu Phong
Michael Tunstall
Lihua Wang
Erich Wenger
Carolyn Whitnall
Johannes Winter
Dai Yamamoto
Xin Ye
Christian T. Zenger
Ralf Zimmermann

Additional Reviewers

VIII Organization

Contents

Java Cards

Memory Forensics of a Java Card Dump . 3
Jean-Louis Lanet, Guillaume Bouffard, Rokia Lamrani, Ranim Chakra,
Afef Mestiri, Mohammed Monsif, and Abdellatif Fandi

Heap . . . Hop! Heap Is Also Vulnerable . 18
Guillaume Bouffard, Michael Lackner, Jean-Louis Lanet,
and Johannes Loinig

Software Countermeasures

Study of a Novel Software Constant Weight Implementation 35
Victor Servant, Nicolas Debande, Houssem Maghrebi, and Julien Bringer

Balanced Encoding to Mitigate Power Analysis: A Case Study 49
Cong Chen, Thomas Eisenbarth, Aria Shahverdi, and Xin Ye

On the Cost of Lazy Engineering for Masked Software Implementations 64
Josep Balasch, Benedikt Gierlichs, Vincent Grosso, Oscar Reparaz,
and François-Xavier Standaert

Side-Channel Analysis

Efficient Stochastic Methods: Profiled Attacks Beyond 8 Bits. 85
Marios O. Choudary and Markus G. Kuhn

Kangaroos in Side-Channel Attacks. 104
Tanja Lange, Christine van Vredendaal, and Marnix Wakker

Combining Leakage-Resilient PRFs and Shuffling: Towards Bounded
Security for Small Embedded Devices . 122

Vincent Grosso, Romain Poussier, François-Xavier Standaert,
and Lubos Gaspar

Embedded Implementations

Double Level Montgomery Cox-Rower Architecture, New Bounds 139
Jean-Claude Bajard and Nabil Merkiche

How to Use Koblitz Curves on Small Devices? . 154
Kimmo Järvinen and Ingrid Verbauwhede

Public-Key Cryptography

Caml Crush: A PKCS#11 Filtering Proxy . 173
Ryad Benadjila, Thomas Calderon, and Marion Daubignard

Algorithms for Outsourcing Pairing Computation . 193
Aurore Guillevic and Damien Vergnaud

Leakage and Fault Attacks

Bounded, yet Sufficient? How to Determine Whether Limited
Side Channel Information Enables Key Recovery . 215

Xin Ye, Thomas Eisenbarth, and William Martin

On the Security of Fresh Re-keying to Counteract Side-Channel
and Fault Attacks . 233

Christoph Dobraunig, Maria Eichlseder, Stefan Mangard,
and Florian Mendel

Evidence of a Larger EM-Induced Fault Model. 245
S. Ordas, L. Guillaume-Sage, K. Tobich, J.-M. Dutertre, and P. Maurine

Author Index . 261

X Contents

Java Cards

Memory Forensics of a Java Card Dump

Jean-Louis Lanet1(B), Guillaume Bouffard2,3, Rokia Lamrani3,
Ranim Chakra3, Afef Mestiri3, Mohammed Monsif3, and Abdellatif Fandi3

1 LHS PEC, INRIA, 263 Avenue Général Leclerc, 35042 Rennes, France
jean-louis.lanet@inria.fr

http://secinfo.msi.unilim.fr/lanet/
2 Agence Nationale de la Sécurité des Systèmes D’Informations,
51, Boulevard de La Tour-Maubourg, 75700 Paris 07 SP, France

guillaume.bouffard@ssi.gouv.fr
3 University of Limoges, 123 Avenue Albert Thomas, 87060 Limoges, France

Abstract. Nowadays several papers have shown the ability to dump
the EEPROM area of several Java Cards leading to the disclosure of
already loaded applet and data structure of the card. Such a reverse
engineering process is costly and prone to errors. Currently there are no
tools available to help the process. We propose here an approach to find
in the raw data obtained after a dump, the area containing the code
and the data. Then, once the code area has been identified, we propose
to rebuilt the original binary Cap file in order to be able to obtain the
source code of the applet stored in the card.

Keywords: Java card · Memory forensics · Reverse engineering · Dis-
assembler · Index of coincidence

1 Introduction

Several attacks have been successful in dumping the memory of the smart card
and in particular the EEPROM. Even if the cards are more protected nowadays,
it is still possible to get the memory contents. Then, to reverse the content of the
dump, one must analyze kilobytes of raw data for obtaining the expected infor-
mation. At present, there are no tools available for reversing the memory dump
for a Java based smart card. The EEPROM memory is made of data for the
system and the applications, and their metadata (data descriptors), encrypted
data (secure key container), Java Cap file and in particular Java byte code and
sometimes native code. For a reverse engineer it is a hard task to find the ade-
quate information and the tools used for reversing a Java Card memory dump
are missing. So we have developed a disassembler which is based on natural lan-
guage recognition and heuristics. Each binary language has a signature that takes
into account the probability of occurrence of the language elements. Thus each
card embeds at least two languages with two different signatures. Then, for the
Java part, a symbolic execution of the recognized program verifies the Java type

c© Springer International Publishing Switzerland 2015
M. Joye and A. Moradi (Eds.): CARDIS 2014, LNCS 8968, pp. 3–17, 2015.
DOI: 10.1007/978-3-319-16763-3 1

4 J.-L. Lanet et al.

system for increasing the confidence in the recognition probability. A pattern
recognition phase which is card dependent, is then performed to recognize the
metadata stored in the card. Having a precise knowledge of the software and in
particular the Control Flow Graph (CFG) could be helpful for new attacks or
understanding the algorithms.

The rest of the paper is organized as follows: the second section presents
the security model of the card and the state of the art concerning the attacks
in order to obtain a memory dump. The third section introduces the dump
file analyzer and its index of coincidence for recognizing different machine lan-
guages. The fourth section explains the Java Card Disassembler and Analyzer
(JCDA) implementation followed by experimentation results. Future works and
conclusion end this paper.

2 Java Card

The Java platform [12] has been downsized for fitting the smart card constraints.
The Java Card technology offers a multi-application environment where sensitive
data must be protected against illegal access from another applet. The classical
Java technology uses three security elements - type verification, class loader
and security managers to protect each applet. Embedding the Java security
elements into a smart card is not possible due to the resource constraints. These
components have been adapted to the specific requirements of Java Card.

2.1 Security in the Java Card World

To be compliant with the Java security rules, the Java Card security model is
split in two parts. One, outside the card (Fig. 1(a)) is in charge of preparing
the code to be loaded into the card. It includes a Byte Code Verifier (BCV),
a converter and a mechanism to ensure integrity and/or confidentiality of the
code to be loaded. The BCV is in charge of verifying the semantics of the Java-
program. It ensures that the checked applet file format respects the specification
(structural verification) and that all methods are well formed and verify the type
system of Java. It is a complex process involving an elaborate program analysis
using a very costly algorithm in terms of time consumption and memory usage.
Next is the Java Card converter which translates each Java Card package into
a Java Card-Cap. A Java Card-Cap is a lightweight Java Card-Class based
on the tokens. This file format is designed to be optimized for the resource-
constraint devices. The organization which provides the applet must sign1 the
application for the on-card loader that will verify the signature. This verification
ensures the loader the origin of the code, and thus that the code is compliant
with the Java security rules.

1 Due to security reasons, the ability to download code into the card is controlled by
a protocol defined by Global Platform [15]. This protocol ensures that the owner of
the code has the necessary authorization to perform the action.

Memory Forensics of a Java Card Dump 5

Fig. 1. The Java Card Security Model.

The second part of the security model is embedded into the smart card
(Fig. 1(b)). The loader verifies the signature and optionally a BCV might verify
the Java security compliance of the Java-Cap file to be installed. Currently, just
a few Java Cards embed an on-card BCV component. The applet to be installed
is linked after some potential checks. Once an applet is installed, the segregation
of different applets is enforced by the firewall which is based on the package
structure of Java Card and the notion of context.

2.2 Attacks on Java Card

Recently, the idea to inject physical fault to bypass the BCV’s checks has
emerged. A legitimate applet which complies with the Java Card security rules
is installed into a Java Card. With the help of a fault injection, an attacker can
modify some memory content which can lead to exploitable deviant behavior. So
the application mutates to execute a malicious byte code which can break the
security model. Classically, the fault attacks are used to attack cryptographic
algorithm implementations [1,8,14].

Barbu et al. [3] succeed to bypass the embedded smart card BCV. In order
to perform it, a correct applet is installed which contains an unauthorized cast
between two different objects. Statically, the applet is compliant with the Java
Card security rules. If a laser beam hits the bus in such a way that the cast type
check instruction is not executed, this applet becomes hostile and can execute
any shell code. This type of attack exploits a new method to execute illegal
instructions where the physical and logical levels are perturbed. This method
succeeds only on some cards and others seem to not be sensitive to this attack.

Bouffard et al. [4], proposed a way to perturb the applet’s CFG with a
laser beam injection into the smart card’s non-volatile memory. The authors
described the attack on a loop for, but it can be extended with other condi-
tional instructions.

6 J.-L. Lanet et al.

The Java Card specification [12] defines two instructions to branch at the
end of a loop, a goto and the goto w instructions. The first one branches with
a 1-byte offset and the second one takes 2-byte offset. Since the smart card’s
memory manager stores the array data after the memory byte code, a laser
fault on the high part of the goto w parameter can shift the backward jump to
a forward one and the authors succeeded to execute the contents of an array.
Unlike Barbu et al., Bouffard et al. described a persistent attack to execute
their shellcode. Hamadouche et al. [7], proposed a way to obtain Java Card API
addresses embedded in the card. With this attack it is possible to use the Java
Card internal references to execute a rich shellcode.

Lancia [11] explained an exploitation on Java Card instance allocation based
on high precision fault injection. Instead of the Java Virtual machine, each
instance created by the Java Card Runtime Environment (JCRE) is allocated
in a persistent memory2. On the modern Java Card Memory Management Unit
(MMU), references are represented by an indirect memory address. This address
is an index to a memory address pool which in turn refers to a global instance
pool managed by the virtual machine. Like a persistent type confusion, Lancia
presented an attack of the global instance pool mechanism in which a laser
beam shifts the index referred in the byte code. During the applets execution,
the JCRE resolves an index with the associated address in the global instance
pool table and have access to another instance of the expected object. This per-
sistent modification may offer information of the card as a part of the smart
card memory.

Each attack previously described here gives information about the targeted
Java Card. These information can contain a part or the whole Java Card memory
(essentially the EEPROM part) as raw data. Generally, this memory fragment
contains program’s code (virtual and/or native) and data (system and applica-
tion) needed to well-execute each installed applet. These raw data are called the
dump file.

Since this work is done without any knowledge of the features implemented
in the card, it’s of a prime importance to be able to recognize the different
elements, to separate code and data. Until now, carving the smart card memory
dump is done manually. It s a difficult task, prone to human errors and long.
To automate this analysis, we propose a Java Card disassembler to reverse the
Java Card memory.

2.3 State of the Art of Memory Carving

Memory analysis is an important part of effective computer forensics. There has
been significant research done in improving analysis of memory dump files [17,18].
Forensic memory analysis starts with collecting the memory from the target
machine followed by parsing the memory dump into meaningful artifacts. The

2 The Java Card specification [12] provides some functions to create transient objects.
The data of the transient object stored in the RAM memory, but the header of this
object is always stored in the persistent memory.

Memory Forensics of a Java Card Dump 7

technique consists of several steps: parsing the internal memory structures, retri-
eving the assembly code and stack from the memory, constructing the control
flow graph from the executable code and reversing it and finally identifying the
data structures. Unfortunately, these techniques rely on well-known characteris-
tics of the operating system. Furthermore, in most cases, these tools only work on
a small number of operating system versions. The absence of a general method-
ology for forensic log analysis has resulted in ad-hoc analysis techniques such as
log analysis [13] and operating system-specific analysis [5].

Schuster [17] proposes an approach to define signatures for executive object
structures in the memory and recover the hidden and lost structures by scanning
the memory looking for predefined signatures. However, defining a signature that
uniquely identifies most of the data structures is not achievable except for a small
set of kernel structures.

Walters et al. [18] present an approach for extracting in-memory crypto-
graphic keying material. They have presented an extensible framework which is
able to automatically derive object definitions from C source code and extract
the underlying objects from memory.

A particular effort has been done for retrieving information from volatile
memory that might determine if encryption is being used and extract volatile
artifacts and passwords/passphrases [10]. Their approach considers that access
to and acquisition of live encrypted data requires that these data must be in the
clear in order to be manipulated. Since the contents of an encrypted container
or volume are available to the user, then if physical access is gained to the live
machine while it is in this state, the contents will also be accessible.

A disassembler recognizes the code section by parsing the whole memory and
building the CFG. It recognizes the end of the code by a return instruction and
cancels the current analysis if a byte does not represent an instruction.

Most of works on memory carving try to extract data from the dump of
general purpose operating system. Of course with such systems, data and code
are separated and they proceed by pattern matching for retrieving the data.
In our tool, we need first to recognize the virtual and native code and then
to recognize the data. Techniques usually used in recognizing code cannot be
applied here since some instructions of the code are undocumented.

3 Memory Carving on Java Card

3.1 A Memory Dump

A dump file contains a set of binary values which represents a fragment of the
smart card memory. The program’s code and data can be found in the smart
card memory and these information are sensitive.

In the Listing 1.1, a fragment of a Java Card memory dump is presented. The
targeted smart card embeds a Java Card 2.2.1 and Global Platform 2.1.1 with
36 kB of EEPROM, 128 kB of ROM and 2 kB of RAM. This dump corresponds
to an 88-byte fragment of the EEPROM and starts from the logical address
0x13f8.

8 J.-L. Lanet et al.

Listing 1.1. A fragment of a Java Card memory dump.

0x13f0: 00 0b 81 00 0a 48 65 6c

0x1400: 6c 6f 57 6f 72 6c 64 00 00 02 80 00 00 03 04 02

0x1410: 0c 34 00 00 01 be 81 08 00 0a 00 19 00 25 00 01

0x1420: 2e 00 01 0d 48 65 6c 6c 6f 57 6f 72 6c 65 41 70

0x1430: 70 01 71 00 02 34 04 00 04 06 02 00 00 01 73 01

0x1440: 75 00 05 42 18 8d 08 97 18 01 87 06 18 01 87 07

0x1450: 18 08 91 00 07 87 08 18 01 87 09 1e 29 04 03 29

A reversed version of the dump is listed in the Listing 1.2 after intensive
work, the first part of the analyzed dump contains metadata (package and class)
information. The second part describes the byte code method of a class.

Listing 1.2. The reverse of the value listed in the Listing 1.1

0 x13f8 : 000b 81 00 // Array header: data size: 0x000b ,

// type: 0x81 , owner: 0)

0a 48 65 6c 6c 6 f 57 6 f 72 6c 64 // PACKAGE_AID

0x1408 : 00 0002 8000 0003 0402 0c34 0000 // Unknown data

0x1414 : 01be 81 08 // Array header: data size: 0x01be ,

// type: 0x81 , owner: 08)

000a 0019 0025 0001 2e00 010d // Undefined values

48 65 6c 6c 6 f 57 6 f 72 6c 64 41 70 70 // APPLET_AID

01 71 00 02 34 04 00 04 06 02 00 00 01 73 01 75 00

0x1442 : /* method 00: */

// Method ’s header

05 // flags: 0 max_stack: 5

42 // nargs: 4 max_locals: 2

// Method ’s bytecode

18 // aload_0

8d 08 97 // invokestatic 0x0897

18 // aload_0

01 // aconst_null

87 06 // putfield_a 06

// To be continued ...

In the above sample, the byte codes used are the same as that defined in the
Java Card specification [12]. Depending on the card, the program code may be
scrambled [2,16] or new and undocumented instructions used. In the previous
case, the card xors the value of each instruction to mask the code. But even with
any masking or encryption, the stored program in the memory always keep the
same semantics. In the last case, we have no information about the semantics
of the code which can be compressed. For that reason it is impossible to use a
simple execution to find the methods. The only way is to use an approximative
approach.

3.2 Index of Coincidence

In 1922, Friedman [6] invented the notion of Index of Coincidence (IC) to reverse
ciphered message. In cryptography, this technique consists of counting number

Memory Forensics of a Java Card Dump 9

of times the identical letters appear in the same position in both texts. This
count can be calculated either as a ratio of the total or normalized divided by
the expected count for a random source model. The IC is computed as defined
in the Eq. 1.

IC =

c∑

i=1

ni(ni − 1)

N(N − 1)/c
(1)

where N is the length of the analyzed text and ni is the frequencies of the c
letters of the alphabet (c = 26 for a Latin alphabet).

The IC is mainly used both in the analysis of natural-language text and in
the analysis of ciphered message (as cryptanalysis). Even when only a ciphered
message is available, the coincidences in the ciphered text can be caused by
coincidences in the plain message. For example, this cryptanalysis technique is
mainly used to attack the Vigenère cipher. The IC for a natural-language like
French language is 0.0778, English is 0.0667 and German is 0.0762.

3.3 Finding Java Card Byte Codes

In a Java Card memory dump file, it is very difficult to separate the program’s
data and code. The program’s byte code can be assimilated to a language where
each instruction has a precise location in the language’s grammar.

A Java Card byte code operation is composed by an instruction (between
the range 0x00 to 0xB8) and potentially a set of bytes as argument. The Java
Card toolchain ensures that the built Java Card byte codes are in compliance
with the rules of Java language. The Friedman’s approach is mainly based on
the analysis of a whole cyphered text. In our case, a dump file includes data,
byte codes and random values. Random values are a set of bytes which represent
old system’s values partially overridden or no longer used by the system. To find
where a method’s byte codes is located, we decided to compute the Friedman’s
equation upon a sliding window. To determine the IC value for the Java Card
byte codes, we tested a set of Java Card byte code built by the Oracle’s tool-
chain. An acceptable IC for Java Card byte codes is located between 0.020 and
0.060.

Computing the IC value upon the sliding window is equivalent to perform
the Eq. 1 with each byte inside the interval. With different sizes of the sliding
window, IC value is computed. The results are presented in the Fig. 2.

On this figure, the method’s area to discover is located between the vertical
dashed lines. We show that the optimal size for the sliding windows is between
135 and 150. This range includes false positive closed to the method’s area. It
is due to the size of the sliding window which includes a part of the method’s
byte code. False positive are detected by heuristics. We used several heuristics
to eradicate the false positives. A code should not embed the value 0x00 which
corresponds to the nop opcode except for operands. The size of the operands
cannot exceed two bytes (except the specific case of the switch). The program
decides that three consecutive bytes having the value zero cannot represent code.

10 J.-L. Lanet et al.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

0x100 0x180 0x200 0x280 0x300 0x380 0x400 0x480 0x500 0x580 0x600 0x680

In
de

x
of

 C
oi

nc
id

en
ce

 (
IC

)

Addresses in the memory snapshot

Java Card Byte Code IC
Begin of the method’s area

End of the method’s area
Sliding windows’s size = 100
Sliding windows’s size = 120
Sliding windows’s size = 135
Sliding windows’s size = 150
Sliding windows’s size = 200

Fig. 2. Searching the optimal sliding window’s size.

Another heuristic concerns the undefined byte code, above a given level of such
bytes the program cancel the current window.

3.4 Finding Data in a Java Card Memory Dump

Carving raw data requires to characterize the objects manipulated by the system.
Any data stored in the smart card belonging to the Java Card world contains a
header (or metadata) which describes the data type, data owner and, sometimes,
the size of the data. Inside a Java Card, the data can be:

– a package information. The package AID and all the classes in the card should
be saved to verify the ownership context during the execution of an applet.

– a class information. A class contains the initialization value of each field, the
method’s byte code and an AID. A fragment is presented with its package
information, in the Listing 1.2.

– the instance of a class which refers to each field sets to the current value
(regarding to the life cycle of the instance). The instance of the class is linked
with an instance AID which can be different from that of the class AID.

– an array is the last element which contains a header. We discovered empirically
that an array header includes the size of the array data, the data type and the
owner’s context. An example of Java Card array found in a memory dump is
shown in the Listing 1.3.

Memory Forensics of a Java Card Dump 11

Listing 1.3. A Java Card array found in the memory dump

0010 // Data size

81 // type of the data , there it is a byte array

08 // applet ’s owner context

/* Data */

CA FE CA FE CA FE CA FE CA FE CA FE CA FE CA FE

4 JCDA: Java Card Disassembler and Analyzer

To implement the memory carving approach for Java Card, we have developed
a tool, named Java Card Disassembler and Analyzer (JCDA) written in Java
which aims to reverse a Java Card memory dump. It has been designed to be
adapted for the architecture of each Java Card.

To reverse a Java Card memory dump, the JCDA (Fig. 3) requires a card
model and a dump file. The first one defines the structure of the data contained
in the smart card memory dump. This model is a high level abstraction of how
the smart card stores objects and associated instances, array, etc. in the memory.
This file should be filled by the attacker. This step has not yet been automated,
it needs to create in the card objects of different nature (arrays, instances,...)
and to compare the state of the memory before and after the creation of the
object. The second parameter is a dump file of an attacked Java Card.

In our tool, reversing a Java Card memory dump is split in two steps. In
the first step, the Java Card Analyzer searches in the Java Card memory dump
file to locate the Java code or native code. As described previously, to find the
Java Card instruction, an automatic process based on the index of coincidence
is performed. The card memory model is used to search information about the
classes, arrays and other data by using pattern matching.

The second step in the JCDA starts with the disassembling of the Java code
recognized in the previous step. Its aim is to reverse each applet installed in the
memory dump. The idea is to rebuild a partially stored Cap file in the dump
file. Once rebuilt, Oracle provides a tool to convert a Cap file to a Class file.
Then, it becomes obvious to convert the Class to Java file, many tools exist for
that purpose. In this whole process, the main difficulty consists in regenerating
Cap file from an applet installed into the memory. It implies some constraints:

1. Due to software and hardware limitations, information not needed to execute
the applet are deleted during the installation file. To restore the complete Cap
file, the dependencies between each component are used. For instance, the
Directory and the Descriptor components, often not kept after the installa-
tion step, are generated using the information contained in the Class, Method,
and Static Field components. Regarding to the smart card’s installer imple-
mentation, our prototype needs to know how the card stores each Cap file
component in memory;

12 J.-L. Lanet et al.

Fig. 3. JCDA Architecture.

2. In a Cap file, the Import component refers each class, method, and field
imported by the application. Generating this component from a linked and
installed applet rises some problems. In fact, each tokens is linked by the
smart card internal references during the loading step. To reverse it, a learning
step, based on the Hamadouche et al.’s attack [7], which maps the smart card
Application Programming Interface (API) is needed. This map links smart
card’s internal references and the function’s name. With the function’s name,
we are able to rebuild the Import component upon the Export files.

3. Finally, the generated Cap file shall be validated by the BCV. This step is
mandatory to translate the Cap to Class file.

Moreover, the constraints defined by the Cap file dependencies imply to
respect a precise order to generate the Cap file components, as illustrated in the
Fig. 4. Introduced by this figure, the method component is the keystone of our
approach. Indeed, each Method contains references to its own class, its class’s
fields, etc.

For the analyzer, the methods area is a byte stream. To process the Cap file
dependencies, the disassembler should find each method present in the dumped

Fig. 4. Order of generation of CAP file components.

Memory Forensics of a Java Card Dump 13

area before starting the reverse. This step aims to split the byte stream into a set
of method. From the first byte of the method’s area, an in-depth analysis is done
to detect the end of each method. This analysis is based on the abstract execution
of each instruction. In the case of an unknown instruction, the analyzer warns
the user for this occurrence. This instruction has be added to the set of specific
instructions for this card model. For example, one smart card manufacturer has
replaced the invokestatic byte code by an undocumented one.

5 Experimental Results

On a smart card snapshot memory, we succeed in detecting the applets byte codes
with the IC approach. The analyzer gave information shown in the Listing 1.4
to the disassembler.

Listing 1.4. Linked applet from a memory snapshot.

4868 6666 6666 6666 6666 4868 6666 6666 6666 6666 4170 7000

2c00 5480 0102 3400 ff00 0408 0002 0056 ffff 004e 0069 0057

0059 005c 005e 0049 004a 0223 0408 090a 0b04 0062 0019 007e

0009 0062 8019 0085 0000 0083 8007 007d 0000 0092 8002 0075

0000 0110 188d 0897 188b 0101 7a02 308f ffac 3dcc ffee 3b7a

0110 0478 0010 7a00 107a 0010 7a01 4004 7801 1010 4278 0110

0478 0010 7a03 2319 8b01 012d 188b 0103 6003 7a10 0681 181a

1007 8118 1c10 0881 181c 1a03 10ca 381a 0410 fe38 1199 998d

08c6 701c 2e11 6789 8d08 c611 9999 8d08 c670 0d28 0411 9999

8d08 c615 0493 7a00 04c1 06ff ffff ff00 08c2 06aa aaaa aaaa

aaaa aa00 04c3 0601 0001

Regarding to the card model, this snapshotted area is parsed as presented in
the Annex A, Listing 1.8. First, we filled, from the dump, some fields inside the
Method, Class, Header, Applet and the Static Field component. Due to the
limited size, the initial vector of the static fields is not kept in the card memory.
This information is also lost for us. To regenerate the static fields initialization
vector, we decided to use the current values another option would be the Java
default value. This is one of the limits of the approach.

The next step aims to build the Constant Pool component. From the Cap
file, this component have purposed to describe the type of each token used
by the application. Tokens are used in the Method, Class, Static Field and
Descriptor components.

In the Method component, each instruction with a reference as argument
was linked by an internal reference during the Cap file installation. Convert-
ing each internal reference creates the set of token used by the application and
aims to regenerate the Import component. There, the API mapping is used to
describe the token to the correct Export file. Once Import component is regen-
erated, we have enough information to create the Descriptor and Constant
Pool components. The Listing 1.5 exhibits a fragment of entries in Constant
Pool component restored from the dump.

14 J.-L. Lanet et al.

Listing 1.5. Rebuilt Constant Pool component: internal tokens

/*0000, 0*/ CONSTANT_ClassRef : 0x0001 // first class

/* offset class constructor 0x0 => method_info [10] (@21) */

/*0004, 1*/ CONSTANT_StaticMethodRef : 0x0021

/*0008, 2*/ CONSTANT_StaticFieldRef : 0x0006

/*000c, 3*/ CONSTANT_StaticFieldRef : 0x0008

To find the external tokens description, we need to link the references in the
dump file with the card API to obtain information of each token in the Constant
Pool. Then we replace them with an index incremented at each occurrence,
Listing 1.6.

Listing 1.6. Rebuilt Constant Pool component: external tokens

// applet ’s constructor

/*0010, 4*/ CONSTANT_StaticMethodRef : 0x81 ,0x3 ,0x1

// register function ’s token

/*0014, 5*/ CONSTANT_VirtualMethodRef: 0x81 ,0x3 ,0x1

// APDU.getbuffer function ’s token

/*0018, 6*/ CONSTANT_VirtualMethodRef: 0x81 ,0xa ,0x1

// selectingApplet function ’s token

/*001c, 7*/ CONSTANT_VirtualMethodRef: 0x81 ,0x3 ,0x3

// ISOException.throwIt method ’s token

/*0020, 8*/ CONSTANT_StaticMethodRef : 0x81 ,0x7 ,0x1

// Exception class ’ token

/*0024, 9*/ CONSTANT_ClassRef : 0x80 ,0x2

Finally, when each other components have been regenerated, the Directory
component is built.

To validate globally the approach, we checked the regenerated Cap file with
the BCV. As shown in the Listing 1.7, our generated file as the correct structure
and it contains coherent values regarding the Java Card specification. For this
proof of concept we did not regenerate the Java source file but this is not an issue.

Listing 1.7. Analyzing of regenerated Cap file by the Oracle BCV.

[INFO :] V e r i f i e r [v3 . 0 . 4]
[INFO :] Copyright (c) 2011 , Oracle and/ or i t s a f f i l i a t e s .

A l l r i g h t s r e s e rved .
[INFO :] Ve r i f y ing CAP f i l e dumpedCapFile . cap
[INFO :] V e r i f i c a t i o n completed with 0 warnings and 0 e r r o r s .

6 Future Works and Conclusions

We have developed a proof of concept of a tool-chain that allows to recover from
raw data application code and objects. In order to find Java code we used the
index of coincidence to detect any byte code area. With a pattern matching
algorithm, we are able to recover instances in the memory. The JCDA is still

Memory Forensics of a Java Card Dump 15

an ongoing academic development and currently only few card memory models
can be recognized. We only focus for the moment to the byte code language and
we need further development for the native language. This will be very useful
for the improvement of JCDA development. A second improvement concerns the
ability to automate the pattern learning phase for the card model, which is cur-
rently a manual process. We only recognize basic objects (array, AID,...) another
improvement should be to recognize specific instances like secure containers for
key storage. A last improvement for our work is integrating our tool into the IDA
Disassembler [9]. IDA is a software which implements all the features required to
reverse a computer application. This software is mainly used by security labora-
tories. One intrinsic limit concerns the initialization vector of the fields for which
the information is lost after the applet installation. For example, if the value of a
PIN code is stored into a static array its value will never be recoverable which is
a good point from the security point of view. As soon as we have a stable version
we expect to provide it as open source project for the academic community.

A Content of a Dumped Area

Listing 1.8. The content of the dump file used for test.

48 68 66 66 66 66 66 66 66 66 // PACKAGE AID

/* APPLET Component */

48 68 66 66 66 66 66 66 66 66 41 70 70 // Applet AID

002c //

0054 // @Method Install

// Class Component

// interface_info

80 // -> flag

01 // -> interface_count

// Class_info

0234 // -> super_class_ref

00 // -> declared_instance_size

ff // -> first_reference_index

00 // -> reference_count

04 // -> public_method_table_base

08 // -> public_method_table_count

00 // -> package_method_table_base

02 // -> package_method_table_count

0056 ffff 004e 0069 0057 0059 005c 005e // public_methods

0049 004a // package_methods

// Implemented interface info

0223 // class_ref interface

04 // -> count

[08 09 0a 0b] // index

16 J.-L. Lanet et al.

/* Method component */

0400 6200 1900 7e00 0900 6280 1900 8500

0000 8380 0700 7d00 0000 9280 0200 7500

0001 1018 8d08 9718 8b01 017a 0230 8fff

ac3d ccff ee3b 7a01 1004 7800 107a 0010

7a00 107a 0140 0478 0110 1042 7801 1004

7800 107a 0323 198b 0101 2d18 8b01 0360

037a 1006 8118 1a10 0781 181c 1008 8118

1c1a 0310 ca38 1a04 10fe 3811 9999 8d08

c670 1c2e 1167 898d 08c6 1199 998d 08c6

700d 2804 1199 998d 08c6 1504 937a

/* Static Field Component */

0004 c1 06 ff ff ff ff // byte array

0008 c2 06 aaaa aaaa aaaa aaaa // short array

0004 c3 06 01 00 01 00 // Boolean array

References

1. Aumüller, C., Bier, P., Hofreiter, P., Fischer, W., Seifert, J.P.: Fault attacks on
RSA with CRT: concrete results and practical countermeasures. IACR Cryptol.
ePrint Arch. 2002, 73 (2002)

2. Barbu, G.: On the security of Java Card platforms against hardware attacks. Ph.D.
thesis, TÉLÉCOM ParisTech (2012)

3. Barbu, G., Thiebeauld, H., Guerin, V.: Attacks on java card 3.0 combining fault
and logical attacks. In: Gollmann, D., Lanet, J.-L., Iguchi-Cartigny, J. (eds.)
CARDIS 2010. LNCS, vol. 6035, pp. 148–163. Springer, Heidelberg (2010)

4. Bouffard, G., Iguchi-Cartigny, J., Lanet, J.-L.: Combined software and hardware
attacks on the java card control flow. In: Prouff, E. (ed.) CARDIS 2011. LNCS,
vol. 7079, pp. 283–296. Springer, Heidelberg (2011)

5. Dolan-Gavitt, B.: Forensic analysis of the windows registry in memory. Digit.
Invest. 5, 26–32 (2008)

6. Friedman, W.F.: The Index of Coincidence and Its Applications in Cryptography.
Aegean Park Press, Laguna Hills (1922)

7. Hamadouche, S., Bouffard, G., Lanet, J.L., Dorsemaine, B., Nouhant, B., Magloire,
A., Reygnaud, A.: Subverting byte code linker service to characterize java card API.
In: Seventh Conference on Network and Information Systems Security (SAR-SSI),
pp. 75–81, 22–25 May 2012. https://sarssi2012.greyc.fr/

8. Hemme, L.: A differential fault attack against early rounds of (Triple-)DES. In:
Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 254–267.
Springer, Heidelberg (2004)

9. Hex Rays: IDA Pro Disassembler and Debugger
10. Klein, T.: All your private keys are belong to us. Technical report, trapkit (Feb

2006)
11. Lancia, J.: Java card combined attacks with localization-agnostic fault injection. In:

Mangard, S. (ed.) CARDIS 2012. LNCS, vol. 7771, pp. 31–45. Springer, Heidelberg
(2013)

Memory Forensics of a Java Card Dump 17

12. Oracle: Java Card 3 Platform, Virtual Machine Specification, Classic Edition 3.0.0.
Oracle (September 2011)

13. Peikari, C., Chuvakin, A.: Security Warrior - Know Your Enemy. O’Reilly,
Sebastopol (2004)

14. Piret, G., Quisquater, J.-J.: A differential fault attack technique against spn struc-
tures, with application to the AES and KHAZAD. In: Walter, C.D., Koç, Ç.K.,
Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 77–88. Springer, Heidelberg
(2003)

15. Platform: Card Specification v2.2. (March 2006)
16. Razafindralambo, T., Bouffard, G., Thampi, B.N., Lanet, J.-L.: A dynamic syntax

interpretation for java based smart card to mitigate logical attacks. In: Thampi,
S.M., Zomaya, A.Y., Strufe, T., Alcaraz Calero, J.M., Thomas, T. (eds.) SNDS
2012. CCIS, vol. 335, pp. 185–194. Springer, Heidelberg (2012)

17. Schuster, A.: Searching for processes and threads in microsoft windows memory
dumps. Digit. Invest. 3(Supplement–1), 10–16 (2006)

18. Walters, A., Petroni, N.: Integrating volatile memory forensics into the digital
investigation process. In: Blackhat Hat DC (2007)

Heap . . . Hop!
Heap Is Also Vulnerable

Guillaume Bouffard1,2(B), Michael Lackner3, Jean-Louis Lanet4,
and Johannes Loinig5

1 University of Limoges, 123 Avenue Albert Thomas, 87060 Limoges, France
guillaume.bouffard@ssi.gouv.fr

2 Agence Nationale de la Sécurité des Systèmes D’Informations,
51, Boulevard de La Tour-Maubourg, 75700 Paris 07 SP, France

3 Institute for Technical Informatics,
Graz University of Technology, Graz, Austria

michael.lackner@tugraz.at
4 INRIA LHS-PEC, 263 Avenue Général Leclerc, 35042 Rennes, France

jean-louis.lanet@inria.fr
5 NXP Semiconductors Austria GmbH, Gratkorn, Austria

johannes.loinig@nxp.com

Abstract. Several logical attacks against Java based smart card have
been published recently. Most of them are based on the hypothesis that
the type verification was not performed, thus allowing to obtain dynam-
ically a type confusion. To mitigate such attacks, typed stack have been
introduced on recent smart card. We propose here a new attack path for
performing a type confusion even in presence of a typed stack. Then we
propose using a Fault Tree Analysis a way to design efficiently counter
measure in a top down approach. These counter measures are then eval-
uated on a Java Card virtual machine

Keywords: Java Card · Logical attack · Transient persistent heap ·
Counter measures

1 Introduction

Today most of the smart cards are based on a Java Card Virtual Machine(JCVM).
Java Card is a type of smart card that implements the standard Java Card 3.0
[18] in one of the two editions “Classic Edition” or “Connected Edition”. Such
a smart card embeds a virtual machine, which interprets application byte codes
already romized with the operating system or downloaded after issuance. Due
to security reasons, the ability to download code into the card is controlled by
a protocol defined by Global Platform [9]. This protocol ensures that, the code
owner has the required credentials to perform the particular action.

A smart card can be viewed as a smart and secure container which stores
sensitive assets. Such tokens are often the target of attacks at different levels:
pure software attacks, hardware based, i.e. side channel of fault attacks but
c© Springer International Publishing Switzerland 2015
M. Joye and A. Moradi (Eds.): CARDIS 2014, LNCS 8968, pp. 18–31, 2015.
DOI: 10.1007/978-3-319-16763-3 2

Heap . . . Hop! Heap Is Also Vulnerable 19

also mixed attacks. Security issues and risks of these attacks are ever increas-
ing and continuous efforts to develop countermeasures against these attacks are
sought. This requires a clear understanding and analysis of possible attack paths
and methods to mitigate them through adequate software/hardware counter-
measures. The current smart cards are now well protected against pure logical
attacks with program counter bound checks, typed stack and so on. For such
smart cards, we propose in this paper, two new attacks that target the heap of
the JCVM. The first one is on the transient heap while the second allows a type
confusion on the permanent heap.

Often countermeasures are designed in a bottom-up approach, in such a way
that they cut efficiently the attack path but a new avatar of an attack path can
be found easily. We propose here to use a top down approach to mitigate the
attack by protecting the assets instead of blocking the attack path.

The remaining of the paper is organized as follows: the second section intro-
duces the related works on logical attacks. The third section presents our con-
tributions on the heap: the transient array and the type confusion. Then, in the
fourth section, we propose some counter measures designed with a top down app-
roach and we evaluate them in term of performance. Finally, in the last section,
we conclude.

2 State of the Art of the Logical Attacks

Logical attacks are based on the fact that the runtime relies on the Byte Code
Verifier (BCV) to avoid costly tests. Then, once someone find an absence of a
test during runtime, there is a possibility that it leads to an attack path. An
attack aims to confuse the applet’s control flow upon a corruption of the Java
Card Program Counter or perturbation of the data.

2.1 Fooling the Control Flow Graph

Misleading the application’s control flow purposes to execute a shellcode stored
somewhere in the memory. The aim of EMAN1 attack [12], explained by Iguchi-
Cartigny et al., is to abuse the Firewall mechanism with the unchecked static
instructions (as getstatic, putstatic and invokestatic) to call malicious
byte codes, this behavior is allowed by the Java Card specification. In a mali-
cious CAP file, the parameter of an invokestatic instruction may redirect the
Control Flow Graph (CFG) of another installed applet in the targeted smart
card. The EMAN2 [6] attack was related to the return address stored in the
Java Card stack. They used the unchecked local variables to modify the return
address, while Faugeron in [8] uses an underflow on the stack to get access to
the return address.

When a BCV is embedded, installed an ill-formed applet is impossible. To
bypass an embedded BCV, new attacks exploit the idea to combine software
and physical attacks. Barbu et al. presented and performed several combined
attacks such as the attack [3] based on the Java Card 3.0 specification leading to

20 G. Bouffard et al.

the circumvention of the Firewall application. Another attack [2] consisting of
tampering the Application Protocol Data Unit (APDU) that leads to access the
APDU buffer array at any time. They also discussed in [1] about a way to disturb
the operand stack with a combined attack. It also gives the ability to alter any
method regardless of its java context or to execute any byte code sequence, even
if it is ill-formed. This attack bypasses the on-card BCV [4]. In [6], Bouffard et al.
described how to change the execution flow of an application after loading it into
a Java Card. Recently, Razafindralambo et al. [20] introduced a combined attack
based on fault enabled viruses. Such a virus is activated by hitting with a laser
beam, at a precise location in the memory, where the instruction of a program
(virus) is stored. Then, the targeted instruction mutates one instruction with
one operand to an instruction with no operand. Then, the operand is executed
by the JCVM as an instruction. They demonstrated the ability to design a code
in a such way that a given instruction can change the semantics of the program.
And then a well-typed application is loaded into the card but an ill-typed one
is executed. Hamdouche et al. [11] introduced a mutation analysis tool to check
the ability of an application to come a malicious one.

Hamadouche et al. [10] described various techniques used for designing effi-
cient viruses for smart cards. The first one is to exploit the linking process by
forcing it to link a token with an unauthorized instruction. The second step is
to characterize the whole Java card API by designing a set of CAP files which
are used to extract the addresses of the API regardless of the platform. The
authors were able to develop CAP files that embed a shellcode (virus). As they
know all the addresses of each method of the Application Programming Inter-
face (API), they could replace instructions of any method. In [20], they abuse
the on board linker in such a way that the application is only made of tokens
to be resolved by the linker. Knowing the mapping between addresses to tokens
thanks to the previous attack, they have been able to use the linker to generate
itself the shellcode to be executed.

We have presented attacks which perturb the application’s control flow.
Cheating the CFG leads to execute malicious bytecode or prevent any instruc-
tion to correctly finish. Another approach is exploiting the Java Card heap to
access to unauthorized fields.

2.2 Exploiting the Java Card Heap

Lancia [13] exploited the Java Card instance allocator of Java Card Runtime
Environment (JCRE) based on high precision fault injection. Each instance cre-
ated by the JCRE is allocated in a persistent memory. The Java Card specifi-
cation [18] provides some functions to create transient objects. The data of the
transient object are stored in the RAM memory, but the header of this object is
always stored in the persistent memory. On the modern Java Card using Mem-
ory Management Unit (MMU), references are represented by an indirect memory
address. This address is an index to a memory address pool which in turn refers
to a global instance pool managed by the virtual machine.

Heap . . . Hop! Heap Is Also Vulnerable 21

In this section, we have introduced logical attacks on Java Card from the
literature. In this paper, we focus on the heap security. In the next section,
I will present new ways to break the Java Card heap integrity.

3 Logical Attacks Against the Java Card Heap

From the state of the art, reading the memory needs to write at least 2 bytes
to read few bytes. This method stresses the memory and will need more than
65,000 writing to the same cell. So 10 or 20 executions of a shellcode will kill the
card reaching the stress threshold of the EEPROM. We need to have a smarter
shellcode. To improve this approach we purpose to use transient array.

A transient array is an array where the data are stored in RAM and its
descriptor is stored in EEPROM, precisely in the owner’s heap area. Thus a
transient array lost its content during power off but not the reference, there is
no natural garbage collection. Unlike the EEPROM, one can write indefinitely
in RAM area. So, using a transient array is better to dump RAM and EEPROM
parts to avoid memory stress. To understand how a transient array is stored in
the smart card, we created a simple applet which gets the transient array address
and reads data at this address.

3.1 Transient Arrays on Java Card

So, using a transient array is better to dump RAM and EEPROM parts to avoid
memory stress. To understand how a transient array is stored in the smart card,
we created a simple applet which gets the transient array address and reads data
at this address.

An implementation of the transient array’s header is the following at the
EEPROM area address:

0x8E85: 0x00 0x04 0x5B 0x30 0x6C 0x88 0x00 0x0A 0x05 0xB9

Where 0x0004 is the size of the structure without the metadata correspond-
ing to the header. In the header part the byte 0x5B corresponds to the transient
byte array type. The three next bytes are probably the security context 0x30
0x6C 0x88. It remains the four last bytes as pseudo data. After several experi-
mentation, we understood that 0x000A represents the size of the data in RAM
and 0x05B9 its address as shown in the Fig. 1.

We have disclosed how a transient array is design in a card implementa-
tion, focus on how to modify one. Confusing one purposes us to read and write
anywhere in the memory.

3.2 Type Confusion Upon the Java Card Heap

The Java Card heap contains the runtime data for all class instances and allo-
cated arrays. The instance data can be a reference to an object, an instance of

22 G. Bouffard et al.

size addresssize type context

Transient Array

DataHeader RAM memory

size

Header

type

Permanent Array

Data

context

Fig. 1. Structure of transient and permanent arrays.

a class or a numerical value. In the Java Card architecture, the heap is a per-
sistent element stores in the EEPROM area. Due to the limited resources, the
instance data are often not typed. To have access to the instance fields, the Java
Card specification [18] defines getfield <t> this and putfield <t> this as
typed instructions on a t typed element. The type t can be a reference (<t> is
replaced by a), a short value (type is s), etc. The getfield <t> this instruction
pushes the field value onto the stack. On the opposite, the putfield <t> this
instruction stores the latest pushed value. From the stack point of view, the last
element must be a t type.

Latest smart cards based on Java Card technology increasingly implement
typed stack. To succeed a type confusion on this kind of platform, I propose
to exploit the untyped instance fields. Let us assume the code shown in the
Listing 1.1. On a card which no embeds any BCV, this method aims at converting
a given reference given in parameter to a short value returned.

Listing 1.1. Receive reference of an object by type confusion over instance fields.

short getObjectAddress (object object) {

02 // flags: 0 max_stack : 2
12 // nargs: 1 max_locals: 2
/∗005f∗/ L0: aload_1 // object reference given in

parameter
/∗0060∗/ putfield_a_this 0

/∗0062∗/ getfield_s_this 0

/∗0064∗/ sreturn

}

In the Listing 1.1, the field 0 is accessed as a reference (at 0x60) and as a
short value (at 0x62). In the case of the use of a typed stack, only two types are

Heap . . . Hop! Heap Is Also Vulnerable 23

supported, the short and reference types. The putfield a this instruction (at
0x60) saved the value given in parameter into the field 0. The getfield s this
(from 0x62) pushes the value of the field 0 to stack as a short. A type confu-
sion can then be performed on the instance fields. There, the reference given as
parameter is then returned as a short value. From the Java Card stack side, the
type of each manipulated element is correct. Nonetheless, a type confusion has
been performed during the field manipulation.

In this section, we have explained a new typed confusion attack on Java
Card smart cards which embed typed stack. As the stack mechanism cannot be
confused, we focused on the instance fields which are often untyped. Thus, the
type confusion attack moves on the Java Card stack to the instance fields.

3.3 Setting up Transient Array Metadata to Snapshot the Memory

Based on the function shown in the Listing 1.1, we are able to update this
reference to point out a fake transient array. Stored in a Java array, we succeed
in retrieve its reference upon on the type confusion explained in the previous
section. On the targeted platform, each transient array has the same metadata’s
pattern. The transient array’s header can be so update with our properties.

Some cards prevent accessing to transient array out of a specific heap area.
On the targeted card, a typed stack is embedded but no BCV. So, using static
instruction abuse of the firewall [12] to read and write anywhere in memory, as
shown in the Listing 1.2. This code can be executed through the EMAN2 [6]
attack. Assume that the transient array size and the data address are located
from 0x8E9D.

Listing 1.2. Executing the basic shellcode

18 FF sspush 0x00FF

80 8E 9B putstatic_s 0x8E9B //size: 0x00FF
18 00 sspush 0x00FE

80 8E 9D putstatic_b 0x8E9D //address: start from 0x00FE
7A return

There, we are able to set the size and the address of our transient data to
cover from 0 for 0xFFFF bytes, i.e., the whole memory. This behavior is accepted
by the targeted card and this corrupted transient array can be used to read
the complete memory. Fooling transient array is more efficient than the attacks
presented in the state of the art: we need to write only few bytes in memory to
obtain an array which can be read normally.

Once this shellcode is executed, we have to copy the array in the APDU buffer
slicing it into slots of 255 bytes to fit the size of the APDU buffer. Unfortunately,
the ROM is always unread by this approach. The values returned at the ROM
area are filled with 0. With attack as EMAN2 [6], the dumping shellcode needs
to write around 65,000 times into a particular cell. There, we have improved the
dump with only one write into each cell for 255 read bytes. We reduced greatly
the execution time1 and minimized the memory stress.
1 Writing in EEPROM needs to erase which is time consuming.

24 G. Bouffard et al.

4 Countermeasures

The security of the Java Card sandbox model is threaten by two main types
of attacks. The first are, as used by the proposed attack of this paper, logical
attacks by uploading malicious applets. The second class are fault attacks (laser
beam) which threaten the integrity of the memory.

4.1 Counteract Fault Attack on the Java Heap

The common fault attack model, which is also used in this work, is that an
adversary can set2 bytes inside the card memory to 0x00 or 0xFF. This model is
called precise byte error and is presented in Table 1. The difficulty for an attacker
to set bits inside the card to either 0x0 or 0x1 is called precise bit error and is
currently no realistic fault model.

Table 1. Current fault models to evaluate possible countermeasures and security
threats on Java Cards [7, with modifications].

Fault Model Precision Location Timing Fault Type Difficulty

precise bit error bit precise control precise control BSRa, random ++

precise byte error byte loose control precise control BSR, random +

unknown byte error byte loose control loose control BSR, random -

random error variable no control loose control random –
a bit set or reset.

The transient array objects in the heap contain the size (2 bytes) and start
address (2 bytes) of the array fields. Due to the precise byte error fault model
an adversary is able to set the size field to 0xFFFF. This enables again a full
memory dump of the RAM even if no malicious applet is installed. Therefore, it
is a substantial need to protect the array object headers against fault attacks.

Fault attacks can either inject transient faults or permanent faults into the
memory. An industrial often used countermeasure against these transient faults
are multiple readings from the same address and the comparison if all read-out
values are equal. The change for a successful attack by circumventing the multiple
readings by additional fault attacks is a negative exponential distribution.

Unfortunately, a multiple read is no protection against an attacker which
uses a strong enough laser to permanently change the values of a memory cell.
A multiple read on a permanently changed memory cell always results in the
same read-out value. Therefore, to counteract such a permanent fault, a sta-
tically calculated checksum is needed. This checksum is re-calculated during
run-time and compared to the statically calculated one. Generally the checksum
countermeasure, compared to multiple reads, consumes more run-time perfor-
mance and requires additional non-volatile memory.
2 Memory encryption results in a logical read-out value which is random.

Heap . . . Hop! Heap Is Also Vulnerable 25

Transient Fault
Attack

Permanent Fault
Attack

Partially RAM Memory Dump

Transient Change in the
Transient Array Header

Permanent Change in the
Transient Array Header

Countermeasure

Fault AttackMultiple
Readings

Checksum

AND

AND

OR

OR

Fig. 2. Fault tree overview of the different possible attack paths to fulfill a partial
memory dump of the RAM by a fault attack. Furthermore, effective countermeasures
against the two general types of fault attacks are listed.

In summary to counteract transient fault attacks we propose to perform mul-
tiple readings on the accessed object header elements. To counteract permanent
and transient faults on the object header we propose as countermeasure a check-
sum. An overview of the attack paths and countermeasures against these fault
attacks is shown in Fig. 2. Multiple readings on the object header counteract
transient fault attacks. Checksums counteract transient faults and permanent
faults on the object header.

4.2 Logical Attack on the Java Heap

Unfortunately, the proposed checksums and multiple reads over the object head-
ers in the Java heap, to counteract fault attacks, is not an effective countermea-
sure against logical attacks. By a logical attack it is quite easily possible to
study the algorithm of the checksum creation and create valid checksums for
manipulated object headers. Therefore, other countermeasures must be found to
counteract logical attacks.

To find an appropriate countermeasure an attack tree for the proposed attack
of this work is shown in Fig. 3. Starting from the lower left it is shown that the
causes of the execution of illegal bytecodes can be either a logical attack with the
absence of an on-card BCV or a fault attack. The presence of illegal bytecodes is
a cause to successfully perform a type confusion attack between integral data or
reference. The type confusion can be either performed on the operand stack or,
as proposed in this work, on instance fields of objects. This type confusion is the
first main requirement for the full RAM memory dump attack of this work. The
second requirement is the manipulation of the integrity of the transient array
object header. This integrity violation can be reached by various kind of the
proposed attacks EMAN1 [12], EMAN2 [6], and EMAN4 [6].

26 G. Bouffard et al.

Fig. 3. Fault tree overview of the different possible attack paths and needed attack
preconditions to fulfill the memory dump attack of this work.

EMAN1 relies on the fact that illegal static variables are not checked during
run-time by the Java Card firewall. EMAN2 relies on the fact that it is possible
to overwrite the Java frame return address by a bytecode with an illegally index
of bytecode accessing the local variables. The return address is overwritten with
the address of a Java array which is previously received by a type confusion
attack. EMAN4 relies on a fault attack during run-time which illegally changes
the operands of a goto w bytecode. This attack results in a jump and execution
of a Java array filled with malicious bytecodes.

To install applets on Java cards a secret key must be known which is only
available for authorized authorities. Nohl [16] presented in 2013 an attack to
crack this key (DES encryption) which enables the installation of malicious
applets. Based on Nohls presented information the industry created guidelines
to counteract this attack. Therefore, we assume that the installation of malicious
applets on currently available credit cards or bank cards is again a very unlikely
security threat.

Therefore, half of the starting points of the attacks of this work, previously
presented in Fig. 3, are not available on industrially used Java Cards. Further-
more, Java Cards are becoming more and more powerful which will most proba-
bly result in an available on-card verification process which only accepts applets
which only contain harmless operations. Resource optimized on-card verification
algorithms are presented in different works [5,14].

Nevertheless, the attack preconditions of this work (type confusion and access
to the object header) can be also reached by uploading a valid applet and turning
them into a malicious one. This transformation is done by performing fault
attacks into the bytecode area. Therefore, additional security mechanisms must

Heap . . . Hop! Heap Is Also Vulnerable 27

be integrated when operands or opcodes are fetched from the bytecode area.
Various countermeasures [15,21–23] are proposed to protect the integrity of the
bytecode area.

Protect Integrity of the Bytecode Area: The replacement of the typically
not used bytecode NOP (0x00) is proposed in [23] to counteract the threat of
skipping bytecodes. The authors of [15] create a fingerprint of an applet which
is based on the position of critical bytecodes/values (0x00, 0xFF, branch, jump,
subroutine call, return) inside a method. This fingerprint is than checked during
run-time. Another countermeasure against the illegal execution of arbitrary byte-
codes is the encryption of the bytecode based on a secret key and the memory
address where the bytecode is stored [21]. The authors in [22] propose to divide
the bytecodes of a method into basic blocks. During an off-card preprocessing
step checksums are calculated over these basic blocks and stored into the applet
as an additional component. During run-time the checksums are re-calculated
and compared to the off-card calculated checksums.

Based on the required level of security all of these countermeasures are a
possible solution to counteract integrity attacks into the bytecode area. These
attacks are needed as a starting point of an attacker to reach the goal of turning
valid applets into malicious one. These malicious applets are the starting point
to create the proposed memory dump attack of this work on industrially used
Java Cards.

5 Experimental Results

The measurements of this work are based on a Java Card prototype implemen-
tation which is based on the Java Card specification [17,18]. We integrated our
countermeasures into this prototype to counteract fault attacks which manipu-
late the array headers in the Java heap.

The JCVM is compiled with µVision3 which is a development tool espe-
cially for low cost processors based on the 8-bit 8051 platform. The performance
results are based on the supplied memory-accurate 8051 instruction set simula-
tor of the µVision IDE. The tested Java Card applets HelloWorld and Wallet
are obtained from the official Java Card software development kit (SDK). The
Calculator applet is self programmed. Note that the performance overhead mea-
surements are normalized to a JCVM implementation which do not perform the
additionally proposed countermeasures during run-time.

5.1 Fault Attack Countermeasures on the Object Header

Checksum: A checksum is statically calculated over the size and pointer ele-
ment of each Java array header in the heap. The checksum is based on a XOR
operation and has a length of one byte. Each array object header of our pro-
totype, even the permanent arrays, contain a size and address field shown in

28 G. Bouffard et al.

size context size address

Header Data
Permanent Array

Transient Array

size context size address

Header RAM memory

checksum

checksum

Data

type

type

Fig. 4. Structure of transient and permanent arrays in the prototype implementation.

Fig. 4. For permanent arrays the address field points into the non-volatile mem-
ory (EEPROM). Therefore, the object header must be secured for permanent
and transient arrays.

The checksum calculation and writing is performed during the execution
of the <t>newarray bytecodes and the creation of a transient array by calling
the Java Card API method JCSystem.makeTransientByteArray(). During run-
time this checksum is re-calculated at each security-critical access to the array
object header (e.g., aaload, sstore, arraylength).

Double Read: The double read is done when the size or pointer elements of
the array object header are accessed by security-critical bytecodes. During the
creation of the array header the write operation of the size and pointer element
is checked by an immediate reading and comparison of the written values.

Execution Time Overhead: The run-time overhead of the checksum and
double reads is shown in Fig. 5. The execution time of the newarray bytecode
is quite long even if no additional security checks are performed which results
in a low percentage overhead increase. Compared to this the saload bytecode,
which loads a short value from an array, has an additional overhead of +9 % for
double reads and +22 % for the checksum re-calculation.

The creation of a new Java array is in generally performed one time during
the installation process of an applet. The overall applet execution time for dif-
ferent applets and bytecodes are presented in Table 2. The overall applet time
measurements does include the sending of APDU commands for the selection
of the applet, sending of commands to communicate with the applet, and the
reception of results. Overall the additional checks do not significantly increase
the overall execution time of the measured applets. The highest overall measured

Heap . . . Hop! Heap Is Also Vulnerable 29

0%
20%
40%
60%
80%

100%
120%
140%

newarray saload sastore arraylength applets overall

ohne
No Additonal Checks
Double Reads
Checksum

E
xe

cu
tio

n
T

im
e

[n
or

m
al

iz
ed

]

Fig. 5. Graphical representation of the performance impact of the additional double
read and checksum calculations for selected bytecodes and the overall time of the
measured applets.

time increase is only around +1 % for the self written Calculator applet and the
checksum countermeasure. The double reads increase the Calculator applet by
only around +0.5 %. Therefore, the higher security of the checksums, with regard
to permanent memory faults, is paid with the price of one additional byte per
array header and a doubling of the execution time overhead.

Table 2. Performance overhead overview of the double read and checksum counter-
measures.

Java Bytecodes Java Card Applet Double Read Checksum

<t>newarray +1 % +2 %

<t>aload +9 % +22 %

<t>astore +9 % +22 %

arraylength +6 % +22 %

HelloWorld +0.2 % +0.5 %

Wallet +0.3 % +0.9 %

Calculator +0.5 % +1 %

6 Conclusion

Smart card designers now take into account the possibility to execute ill typed
application even if the loaded applet is well typed. The combined attacks allow
to use laser based attack to execute hostile applets. For this reason, designers
protect dynamically the execution. Unfortunately, the attack paths can be subtle
and the counter measures must protect the assets and not the attack paths. We
presented two new attack paths that target the heap. The attack on the transient

30 G. Bouffard et al.

array can be obtained via a laser on the size field. The exploitation allows to
parse completely the memory without stressing the EEPROM. The second one
exploits a type confusion even in presence of a typed stack.

We proposed, through the fault tree paradigm to perform a top down analysis
to design the counter measures in order to improve their coverage. This approach
avoid to mitigate different attack with several ad-hoc counter measures. We pro-
posed different solutions implemented currently at the software level, but we
plan to integrate them into hardware. We evaluated the cost in term of perfor-
mances, the memory footprint being less important. The evaluation brought to
the fore that such counter measures are affordable for the smart card domain.

References

1. Barbu, G., Duc, G., Hoogvorst, P.: Java card operand stack: fault attacks, combined
attacks and countermeasures. In: Prouff [19], pp. 297–313

2. Barbu, G., Giraud, C., Guerin, V.: Embedded eavesdropping on java card. In:
Gritzalis, D., Furnell, S., Theoharidou, M. (eds.) SEC 2012. IFIP AICT, vol. 376,
pp. 37–48. Springer, Heidelberg (2012)

3. Barbu, G., Hoogvorst, P., Duc, G.: Application-replay attack on java cards: when
the garbage collector gets confused. In: Barthe, G., Livshits, B., Scandariato, R.
(eds.) ESSoS 2012. LNCS, vol. 7159, pp. 1–13. Springer, Heidelberg (2012)

4. Barbu, G., Thiebeauld, H., Guerin, V.: Attacks on java card 3.0 combining fault
and logical attacks. In: Gollmann, D., Lanet, J.-L., Iguchi-Cartigny, J. (eds.)
CARDIS 2010. LNCS, vol. 6035, pp. 148–163. Springer, Heidelberg (2010)

5. Berlach, R., Lackner, M., Steger, C., Loinig, J., Haselsteiner, E.: Memory-efficient
On-card Byte Code Verification for Java Cards. In: Proceedings of the First Work-
shop on Cryptography and Security in Computing Systems. CS2 2014, pp. 37–40.
ACM, New York (2014)

6. Bouffard, G., Iguchi-Cartigny, J., Lanet, J.L.: Combined software and hardware
attacks on the java card control flow. In: Prouff [19], pp. 283–296

7. Dubreuil, J., Bouffard, G., Thampi, B.N., Lanet, J.L.: Mitigating Type Confusion
on Java Card. IJSSE 4(2), 19–39 (2013)

8. Faugeron, E.: Manipulating the frame information with an underflow attack. In:
Francillon, A., Rohatgi, P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 140–151.
Springer, Heidelberg (2014)

9. GlobalPlatform: Card Specification. GlobalPlatform Inc., 2.2.1 edn., January 2011
10. Hamadouche, S., Bouffard, G., Lanet, J.L., Dorsemaine, B., Nouhant, B., Magloire,

A., Reygnaud, A.: Subverting byte code linker service to characterize java card api.
In: Seventh Conference on Network and Information Systems Security (SAR-SSI),
pp. 75–81 (22–25 May 2012)

11. Hamadouche, S., Lanet, J.L.: Virus in a smart card: Myth or reality? J. Inf. Secur.
Appl. 18(2–3), 130–137 (2013)

12. Iguchi-Cartigny, J., Lanet, J.L.: Developing a Trojan applets in a smart card. J.
Comput. Virol. 6(4), 343–351 (2010)

13. Lancia, J.: Java card combined attacks with localization-agnostic fault injection. In:
Mangard, S. (ed.) CARDIS 2012. LNCS, vol. 7771, pp. 31–45. Springer, Heidelberg
(2013)

14. Leroy, X.: Bytecode verification on Java smart cards. Softw. Pract. Exper. 32(4),
319–340 (2002)

Heap . . . Hop! Heap Is Also Vulnerable 31

15. Morana, G., Tramontana, E., Zito, D.: Detecting Attacks on Java Cards by Fin-
gerprinting Applets. In: Reddy, S., Jmaiel, M. (eds.) WETICE, pp. 359–364. IEEE
(2013)

16. Nohl, K.: Rooting SIM Cards. Speak at the Black Hat USA 2013 (2013)
17. Oracle: Java Card 3 Platform, Runtime Environment Specification, Classic Edition.

No. Version 3.0.4, Oracle. Oracle America Inc., Redwood City, September 2011
18. Oracle: Java Card 3 Platform, Virtual Machine Specification, Classic Edition. No.

Version 3.0.4, Oracle. Oracle America Inc., Redwood City (2011)
19. Prouff, E. (ed.): CARDIS 2011, vol. 7079. Springer, Heidelberg (2011)
20. Razafindralambo, T., Bouffard, G., Lanet, J.-L.: A friendly framework for hidding

fault enabled virus for java based smartcard. In: Cuppens-Boulahia, N., Cuppens,
F., Garcia-Alfaro, J. (eds.) DBSec 2012. LNCS, vol. 7371, pp. 122–128. Springer,
Heidelberg (2012)

21. Razafindralambo, T., Bouffard, G., Thampi, B.N., Lanet, J.-L.: A dynamic syntax
interpretation for java based smart card to mitigate logical attacks. In: Thampi,
S.M., Zomaya, A.Y., Strufe, T., Alcaraz Calero, J.M., Thomas, T. (eds.) SNDS
2012. CCIS, vol. 335, pp. 185–194. Springer, Heidelberg (2012)

22. Sere, A., Iguchi-Cartigny, J., Lanet, J.L.: Evaluation of Countermeasures Against
Fault Attacks on Smart Cards. Int. J. Secur. Appl. 5(2), 49–61 (2011)

23. Séré, A.A.K., Iguchi-Cartigny, J., Lanet, J.L.: Automatic detection of fault attack
and countermeasures. In: Serpanos, D.N., Wolf, W. (eds.) WESS. ACM (2009)

Software Countermeasures

Study of a Novel Software Constant Weight
Implementation

Victor Servant1(B), Nicolas Debande2, Houssem Maghrebi1,
and Julien Bringer1

1 SAFRAN Morpho, 18, Chaussée Jules César, 95520 Osny, France
{victor.servant,houssem.maghrebi,julien.bringer}@morpho.com

2 SERMA Technologies (ITSEF), 3, Avenue Gustave Eiffel, 33608 Pessac, France
n.debande@serma.com

Abstract. While in the early 2000’s lots of research was focused on
Differential Power Analysis of first and second-order, it seems the recent
trend is of even higher-order. As this order grows, countermeasures such
as masking need to be designed in a more generic way. In this paper, we
introduce a new constant weight implementation of the AES extending
the idea of the software dual-rail countermeasure proposed by Hoogvorst
et al. at COSADE 2011. Notably, we illustrate its practicality on 16-bit
microcontroller in terms of speed and complexity. This countermeasure
applies to all devices that leak a function of the Hamming weight of the
internal variables. Under this assumption, our constant weight implemen-
tation is theoretically inherently resistant to side-channel attacks of any
order. A security evaluation is conducted to analyze its resistance when
the leakage slightly deviates from the Hamming weight assumption. It
reveals that the countermeasure remains as good as several well-known
masking countermeasures. Moreover, the proposed countermeasure offers
the possibility to detect some classes of faults.

Keywords: Constant weight · Information theoretic analysis · Side-
channel analysis · AES · Software implementation

1 Introduction

Since the introduction of Differential Power Analysis (DPA) by Kocher [12],
Side-Channel Analyses (SCA) have become important issues for the security of
cryptographic devices. During the two last decades, a lot of efforts have been
dedicated towards the research about SCA and the development of corresponding
countermeasures.

A very common countermeasure to protect implementations of block ciphers
against SCA is to randomize the sensitive variables by masking techniques. The
core principle of masking is to ensure that every sensitive variable is randomly

Nicolas Debande — Work done when the author was at SAFRAN Morpho.

c© Springer International Publishing Switzerland 2015
M. Joye and A. Moradi (Eds.): CARDIS 2014, LNCS 8968, pp. 35–48, 2015.
DOI: 10.1007/978-3-319-16763-3 3

36 V. Servant et al.

split into at least two shares so that the knowledge of a strict sub-part of the
shares does not give information on the shared variable itself. Masking can be
characterized by the number of random masks used per sensitive variable. So,
it is possible to give a general definition for a dth-order masking scheme: every
sensitive variable Z is randomly split into d + 1 shares M0, · · · ,Md in such a
way that the relation M0 ⊥ · · · ⊥ Md = Z is satisfied for a group operation ⊥
(e.g. the XOR operation in Boolean masking) and no tuple of strictly less than
d + 1 shares depends on Z. Obviously, a dth-order masking can be theoretically
defeated by a (d+1)th-order SCA attack that jointly involves all the d+1 shares.

In the literature, several provably secure higher-order masking schemes have
been proposed, see for instance [3,23] and [5]. But, due to their large penalty
factors (complexity and speed), these countermeasures are unpractical for an
everyday use of a smartcard.

In this paper, we perform an in-depth analysis of an alternative to masking
countermeasure which consists in coding the data with a fixed Hamming weight
value, and perform all operations following this fashion. It is often assumed
that a device leaks information based on the Hamming weight of the data being
operated on, or the Hamming distance between the processed data and its initial
state. This assumption is quite realistic and many security analyses in the lit-
erature have been conducted following this model [2,17]. This paper introduces
a new variety of constant weight codes which can be used to secure software
implementations of block ciphers. Typically, we show that assuming a Hamming
weight leakage function (or even some small variations of it), it is possible to
prevent side-channel attacks.

The rest of the paper is structured as follows. We first recall the two published
constant weight (dual-rail) implementations of a block-cipher in software and
look into their advantages and drawbacks in Sect. 2. Then, we describe a new
solution for a constant weight implementation in Sect. 3, and apply it to the AES
in Sect. 4. Finally, we conduct an information theoretic analysis in Sect. 5, and
a security analysis in Sect. 6 to evaluate our proposed scheme. The conclusion
and some perspectives are in Sect. 7.

2 Previous Works

Hoogvorst et al. [10] presented a dual-rail implementation of PRESENT [1]
in 2011. The paper aimed at proving that one could rather easily protect a
block cipher in software using constant weight coding style rather than using
masking. The idea was straightforwardly taken from existing dual-rail hardware,
and consists in encoding one bit s.t. 0 → 01 and 1 → 10 (or the inverse).

The adaptation of this solution to software implementation required comput-
ing tables performing all basic operations such as XOR, AND, etc. In the end,
the execution is 9 times slower than their original unsecured implementation.
The memory cost is minimal: only very little non-volatile memory is required to
store the tables (256 for the Sbox and 16 bytes for the XOR operation) and an
unchanged RAM cost. Given the theoretical protection offered by such an imple-
mentation, it seems a very attractive choice cost-wise. Note that the complexity

Study of a Novel Software Constant Weight Implementation 37

to achieve such a protection was minimal thanks to the very lightweight structure
of PRESENT (only two types of operations used) and to the assumption that the
expanded keys were already in dual-rail representation. No side-channel analysis
was conducted and it is argued that this coding style seems limited to lightweight
ciphers, or AES in a different field representation.

The authors in [8] introduce an improvement on the previous idea which
drastically simplifies the XOR operation. Moreover, a side-channel and perfor-
mance analysis of PRESENT and Lightweight Block cipher under this form are
presented. No vulnerability appears when targeting the S-box output. The over-
head in execution time is almost negligible.

However, the trick used to accelerate a XOR operation induces a leakage. The
authors noticed that for any pair of variables (A,B), we have C(A)⊕C(B)⊕01 =
C(A ⊕ B), where C denotes the chosen dual-rail code. Performing a constant
weight XOR does not require an access to a precomputed table this way. They
argue that performed in some precise order, these operations do not leak a
potential secret value. This works if one assumes there is only a single secret
value XORed with a non-secret. Unfortunately, this assumption cannot be made
for the second round of PRESENT and for the AES, as the XORs performed
during the first MixColumns operation contain information on the secret key in
both operands, making a side-channel attack possible.

In [22], Rausy et al. present a balancing strategy based on the execution of
binary operators only. This balancing protection uses dual-rail with two bits
in the registers, selected to be as similar as possible in terms of leakage, and
S-Boxes are computed using a bit-slice representation.

All the aforementioned works tried to enforce the dual-rail representation. In
this paper, we turn our attention to other classes of constant weight strategy.

3 A Constant Weight AES

3.1 The AES Algorithm

The AES [15], formerly known as Rijndael has been the international standard
for symmetric ciphers and much research has focused on securing it against side-
channel attacks since its adoption in 2000. It can be described as having four
layers: a Substitution (SubBytes), a permutation (ShiftRows), a mixing phase
(MixColumns) and a Key Addition (AddRoundKey).

The SubBytes phase is a nonlinear transformation in GF (28) and is often
implemented as a table lookup in software. ShiftRows is simply a sequence of
byte swaps. MixColumns is a matrix multiplication of all 16 bytes of the AES
state with a constant matrix, it can be implemented as several bitwise XORs
and field multiplications. Those multiplications are based on an operation called
Xtimes, which is the multiplication of a polynomial (represented as a byte) by
X over GF (28). This procedure is a simple bit test and a shift, plus a conditional
XOR with a constant. It could also be implemented as a table look-up to avoid
timing attacks. The last operation, AddRoundKey, is a simple XOR between the
state values and a round key.

38 V. Servant et al.

3.2 Constant Weight Codes

Constant weight codes have a simple definition: it is any code that has all its
words of a given weight, say ω. In the following, we denote (x,y)-code the set
of values of weight x over y bits, which contains

(
y
x

)
elements. The dual-rail

representation is a specific case of these codes, but it is not the only option one
should consider in a software setting. It is adapted to the hardware environment
as one has to deal with pair-wise balancing of wires. In software, one could simply
use the code with the smallest cardinal available to encode the input set of data.
A 4-bit data set contains 16 elements. The (3, 6)-code presented in Table 1 (the
set of 6-bit words of Hamming Weight 3) contains 20 elements, and is therefore
large enough to encode the previous 4-bit set. Encoding (non-linearly) in this
way could simply be a random assignment. For the rest of this paper, we will
refer to the (3, 6)-code simply by C.

Table 1. (3, 6)-code

0 → 000111 4 → 010011 8 → 011010 12 → 100110

1 → 001011 5 → 010101 9 → 011100 13 → 101001

2 → 001101 6 → 010110 10 → 100011 14 → 101010

3 → 001110 7 → 011001 11 → 100101 15 → 101100

3.3 Encoded Operations

Let us denote by C(A) (respectively C(B)) the encoded form of the variable A
(respectively B) in a constant weight representation. Then, the operation A ⊥ B
(where ⊥ is any operation like XOR, AND etc.) can be performed in a non-
leaking manner using a precomputed table T such that: T [(C(A) � n) || C(B)] =
C(A ⊥ B), where n is either the size of the codewords (e.g. n = 6 for the (3, 6)-
code) or the size of a processor word (i.e. n = 8) That is, if we prepare an index
in this table by appending one encoded value to the other and then fetch the
result from T , we get the encoded result of A ⊥ B.

For AES, we have to encode 8-bit values. Straightforwardly done, it would
take up to 16 bits per state byte in dual-rail. The table for the S-box precomputed
to fit this code would span 128 Kbytes of data, which is not a reasonable option
for a conventional smartcard. Instead, in [10] authors propose to use the GF (24)
representation of AES. The S-box is then performed as a sequence of inverses
and multiplications in that same field. This variant is expected to perform slowly
due to these operations, see [16] for example. We aim to provide an alternative
that performs fast and occupies an acceptable memory space.

For AES block cipher, the smallest code that can encode all of the 256 possible
elements of the state is the (5, 11)-code (462 elements). The table for performing
the S-box would be indexed by 11 bits, thereby spanning 2048 elements of 11
bits each, which would amount to 4 KBytes in a realistic implementation. This is

Study of a Novel Software Constant Weight Implementation 39

acceptable, but the problem arises from the XOR operation. In dual-rail, it could
be done 2 bits by 2 bits, but with the (5, 11)-code it is not possible anymore, as
this encoding is non-linear. To perform a XOR, a 22 bits index is needed under
this form. Of course, this exceeds by far the capacity of any smartcard, so this
code is a bad choice. Instead of coding a whole 8-bit variable W into a constant
weight word, we split it into two 4 bits words (a high word HB and a low word
LB) and encode each of them separately, but using the same C:

W = 0011︸︷︷︸
HB

1011︸︷︷︸
LB

, C(W) = 001110︸ ︷︷ ︸
C(HB)

100101︸ ︷︷ ︸
C(LB)

This way, linear operations can be performed on the two halves separately at
a much lower memory cost. The table for the S-box is now indexed by 6+6 = 12
bits, which is 4096 elements, and it is the same cost for the XOR. The operations
cannot be made at once in this case though. As the Arithmetic Logic Unit (ALU)
can only retrieve a byte from memory, we need two accesses to obtain both the
HB and the LB of the S-box result. We end up with three tables of 4 KBytes
each: one for the S-box’s high bytes, one for the low bytes, and one for the XOR.
The instruction sequence performing a XOR between two (3, 6)-codewords A and
B, equal respectively to (aaaaaa) and (bbbbbb) in binary, is shown in Listing 1.1.
Displayed on the right is the state of the 16-bit registers used. We stress the fact
that line 5 is here to prevent any leakage in the Hamming distance model.

1 mov ax, #0 // ax = 00000000 00000000

2 mov Rh, A // ax = 00aaaaaa 00000000

3 mov Rl, B // ax = 00aaaaaa 00bbbbbb

4 xor ax, &table // ax = ddaaaaaa ddbbbbbb

5 mov bx, #0 // bx = 00000000 00000000

6 mov bx, [ax] // bx = 00000000 00cccccc = C(A xor B)

Listing 1.1. Table accesses in constant weight (x86 assembly style)

All performed operations meet the constant Hamming weight specifications.
The constraints on the address format (2 bits set in the middle (dd)) is easily
treated by modern compilers, which usually allow declaring tables at a specific
address (e.g. the IAR compiler with the @ keyword).

4 Encoding the AES

In this section, we show how the various operations of the AES could be imple-
mented in a constant weight fashion. There are mainly three different types of
operations:

(i) Non-linear transformations of one word, i.e. SubBytes;
(ii) Two-operand operations, i.e. XOR;
(iii) Linear transformations of one word, i.e. Xtimes.

In the sequel, we denote by Ah (respectively Al) the most significant (respectively
the least significant) 4 bits of a byte A (A = Ah || Al).

40 V. Servant et al.

Computation of type (i). The SubBytes operation will be performed in two
accesses: one for the MSB of the result which will be put in register Rh, and
another for the LSB which will be stored in register Rl such that:

Rh ← high subbytes[(C(Ah) � 8) || C(Al)] = C(SubBytes(Ah)),
Rl ← low subbytes[(C(Ah) � 8) || C(Al)] = C(SubBytes(Al)).

Computation of type (ii). It is a similar case for the XOR operation, but it needs
two operands A and B:

Rh ← xor table[(C(Ah) � 8) || C(Bh)] = C(Ah ⊕ Bh),
Rl ← xor table[(C(Al) � 8) || C(Bl)] = C(Al ⊕ Bl).

Computation of type (iii). At first, one could implement Xtimes just like the
S-box as a one-operand full-length table access. This would add 8 more KBytes
to the implementation and disregard the linearity of the operation. Instead, one
can write the matrix M of Xtimes as:

M =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 1
0 0 1 0 0 0 0 1
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Mh︸︷︷︸ Ml︸︷︷︸
where Mh and Ml are two (8 × 4) matrices such that M = [Mh||Ml]. Then, this
linear operation consists in a XOR of two products of an (8 × 4) matrix by a
4-bit vector:

M · A = (Mh · Ah
T) ⊕ (Ml · Al

T).
The necessary tables for Mh and Ml only use 256 bytes of non-volatile mem-

ory in total, which is almost negligible compared to the S-box.

4.1 Implementation Performance and Comparison

The whole implementation had to be done in assembly and using several macros.
The code could be smaller as loops had to be fully unrolled - our macros could
not easily allow use of variable indexes. The execution time is also reduced for the
same reason. The Key Expansion phase was on-the-fly and in constant weight
coding as well.

Encoded bytes were always written on registers previously set to 0, thereby
preventing any Hamming distance leakage of the form C(A)⊕C(B), which is not
constant weight. We compared our (3, 6)-code version to a C version of the AES
on the same platform. For a fair comparison, it was checked that the compiler did
optimize the unprotected version as much as possible. The results are enclosed
in Table 2.

Study of a Novel Software Constant Weight Implementation 41

Table 2. Implementation results

Version Speed (Cycles) Code size (Ko)

AES unprotected 3.490 2,8

AES using (3, 6)-code 14.625 24,0

From Table 2, one can conclude that the protected version of the AES using
(3, 6)-code is about 4, 2 times slower, and 8, 5 times bigger in code size.

In the following, we compare this implementation to existing higher-order
masking schemes applied to block ciphers. As the targeted platforms are dif-
ferent we can only evaluate the performance in terms of loss compared to an
unprotected version on the same platform, hence the scores in Table 3 are given
as factors (e.g. ×2 means the secured implementation is twice as slow as the
unprotected one on the same microcontroller).

From Table 3, one can see that the Rivain-Prouff masking scheme of order 3
applied to AES takes 271.000 cycles according to [19], whereas the unprotected
AES takes only 2.000 cycles. The performance loss would be ×135 in this case.

4.2 Fault Detection Capability and Memory Consumption

Only 256 bytes of each 4 KBytes table will be used by the cipher during normal
operation. This seems like a waste of space but actually yields a very interesting
feature of this countermeasure which is fault detection.

We filled all unused values of our tables with 0’s, a value which is not in
the (3, 6)-code. If a random byte fault occurs on the state of the AES, then the
0 value will be returned with probability (4096 − 256)/4096 = 93, 75%. This
makes a variant of an infective computation method [6], as the 0 will propagate
to all future operations within the cipher and the ciphertext will have 0 values in
place of key-dependent values for the affected bytes. Testing whether a fault was
injected or not incurs no overhead (simple zero-test of ciphertext bytes). Also,

Table 3. Theoretical resistance of higher-order masking and constant weight schemes
against attacks in the Hamming Weight or Distance model.

Method and cipher Resistance Order Speed loss Fault Detection

Higher-order masking schemes

Masking (AES) [9] 1 ×1,7

Rivain-Prouff (AES) [19] 1 ×64,0

Kim-Hong-Lim (AES) [11] 3 ×41,0

Genelle-Prouff (AES) [5] 3 ×90,0

Rivain-Prouff (PICARO) [19] 2 ×6,1

Constant weight Schemes

Dual-rail (PRESENT) [10] Any ×9,0 93,75 %

(3,6)-code (AES) Any ×4,2 93,75%

42 V. Servant et al.

any one-bit fault can be detected. This fault detection rate provides a strong
advantage over all classical masking schemes, which do not inherently provide
this detection capability.

Another advantage worth mentioning is that the RAM cost of this constant
weight implementation is limited to 64 bytes (instead of 32 for the unprotected
variant). Although RAM costs increases with the order of the masking schemes,
in our case it is constant for any order.

5 Information Theoretic Analysis

As argued on the evaluation framework introduced in [24], the robustness of a
countermeasure encompasses two dimensions: its amount of leakage irrespective
of any attack strategy and its resistance to specific attacks. So, the evaluation
of protected implementations should hold in two steps. First, an information
theoretic analysis determines the actual information leakage. Second, a security
analysis determines the efficiency of various attacks in exploiting this leakage.

Following this evaluation framework, we start with an information theoretic
analysis. Under the Hamming weight assumption, it is obvious that the constant
weight countermeasure is leakage-free. In fact, the mutual information is null
since all manipulated variable have a constant Hamming weight. Therefore we
investigate the consequences of a leakage function deviating from the Hamming
Weight assumption on our proposed countermeasure. For instance, we assume
that the leakage function is a polynomial of higher degree. Actually, the assump-
tion that all the bits leak identically and without interfering does not hold in
real hardware [25]. Also, it has been shown that with specific side channel cap-
turing systems the attacker can distort the measurement. For instance, in [18],
the authors show that with a home-made magnetic coil probing the circuit at a
crucial location, the rising edges can be forced to dissipate 17 % more than the
falling edges.

Thus, we study how the the constant weight countermeasure is resilient to
imperfections of the leakage model. To do so, we consider the leakage function
used in [7], i.e. which is a polynomial one of the form:

L(Z) =
∑

i

ai · zi +
∑

i,j

bi,j · (zi · zj) +
∑

i,j,k

ci,j,k · (zi · zj · zk), (1)

where zi denotes the ith bit of the sensitive value Z and ai, bi,j and ci,j,k are
some weighting coefficients.

To evaluate the information revealed by the constant weight countermea-
sure, we compute the Mutual Information Metric (MIM) between the sensitive
variable and the leakage function under two conditions:

1. First case: All bits of a sensitive variable leak identically, but interfere
with each other (i.e. in Eq. (1) ∀i ai = a ∈ {0, 1}, ∀i, j bi,j = b ∈ {0, 1},
∀i, j, k ci,j,k = c ∈ {0, 1}).

2. Second case: The bits of a sensitive variable leak randomly and interfere with
each other (i.e. in Eq. (1) ∀i ai ∈ {0, 1}, ∀i, j bi,j ∈ {0, 1}, ∀i, j, k ci,j,k ∈
{0, 1}).

Study of a Novel Software Constant Weight Implementation 43

Table 4. MIM for polynomial leakage functions with perfect bits transition.

a = 1, b = 0, c = 0 in Eqn. (1) a = 0, b = 1, c = 0 in Eqn. (1)

−24

−16

−8

 0

 0.5 1 2 4 8 16 32

lo
g 2

(M
IM

)

Noise standard deviation (σ)

Countermeasure:
Unprotected

1st−order masking
RSM

Leakage Squeezing

−24

−16

−8

 0

 0.5 1 2 4 8 16 32

lo
g 2

(M
IM

)

Noise standard deviation (σ)

Countermeasure:
Unprotected

1st−order masking
RSM

Leakage Squeezing

a = 0, b = 0, c = 1 in Eqn. (1) a = 1, b = 1, c = 1 in Eqn. (1)

−24

−16

−8

 0

 0.5 1 2 4 8 16 32

lo
g 2

(M
IM

)

Noise standard deviation (σ)

Countermeasure:
Unprotected

1st−order masking
RSM

Leakage Squeezing
−24

−16

−8

 0

 0.5 1 2 4 8 16 32

lo
g 2

(M
IM

)

Noise standard deviation (σ)

Countermeasure:
Unprotected

1st−order masking
RSM

Leakage Squeezing

For the sake of comparison, we proceed similarly for several well-known coun-
termeasures. We list hereafter the considered implementations with their corre-
sponding leakage functions:

– Unprotected implementation: O = L(Z) + N , where N is a normally distrib-
uted noise variable of standard deviation σ (i.e. N ∼ N (0, σ2)).

– Rotating S-box Masking (RSM) [14]: O = L(Z ⊕ M ′) + N , where M ′ is a low
entropy mask chosen within a code.

– Classical first-order Boolean masking1: O = L(Z ⊕M) ∗L(M)+N , where M
is a full entropy mask.

– Leakage Squeezing2 [13]: O = L(Z⊕M)+L(B(M))+N , where B is a bijection
chosen within a binary code as well.

– Dual-rail [10]: O = L(D(Z)) + N , where D is the dual-rail encoding.
– (3, 6)-code: O = L(C(Z)) + N .

1 For this implementation, the leakage corresponds to a bivariate attack, when the
product combination is used by the adversary.

2 This leakage function corresponds to a hardware implementation. To the best of
our knowledge, the leakage squeezing countermeasure has never been adapted into
a software implementation, therefore we only consider an univariate leakage in our
simulation.

44 V. Servant et al.

5.1 First Case: Perfect Bits Transition

The results are shown in Table 4. It is noteworthy that the mutual information for
our constant weight countermeasure, as well as for the dual-rail countermeasure,
is null whatever σ is. In fact, if all bits leak identically, the leakage function is
always constant independently of the values of (a,b,c) and its degree has no
influence on the quantity of information leaked. However, the results of our
investigation show that for all other countermeasures, the higher the degree of the
leakage function, the higher the leaked information. For instance, if the leakage
function is a cubic one (i.e. c = 1), the RSM and the first-order masking lead
to a first-order security against bivariate side-channel attacks since the slope of
their corresponding MIM curves is equal to 2. Furthermore, these curves are
parallel to the one of the unprotected implementation. Concerning the leakage
squeezing countermeasure, it ensures a second-order security against univariate
side-channel attacks (i.e. the slope is equal to 3).

5.2 Second Case: Random Bits Transition

In this case, we consider that the bits leak differently. From the results plotted
in Table 5, the following observations can be emphasized:

Table 5. MIM for polynomial leakage functions with random bits transition.

Study of a Novel Software Constant Weight Implementation 45

– Our proposed countermeasure offers a first-order resistance against univari-
ate side-channel attacks and remains all the same as good as the first-order
Boolean masking and the RSM countermeasure. In fact, their corresponding
MIM curves have a slope equal to 2.

– When considering high noise values, the quantity of mutual information leaked
by the constant weight countermeasure is lower than a first-order masking,
for instance. Hence, a first-order attack will succeed, but the adversary will
need more traces when dealing with the constant weight countermeasure.

6 Security Analysis

As a complement to the information theoretic analysis carried out in Sect. 5,
we conduct in this section a security analysis to evaluate the resistance of our
proposed countermeasure.

6.1 Higher-Order Side-Channel Resistance in the Hamming
Weight Model

To prove the resistance of our countermeasure against higher-order SCA attacks
in the perfect Hamming model, we have computed the optimal correlation coef-
ficient defined in [21] by fopt(z) = E[(O(Z) − E[O(Z)])d | Z = z], where
O(Z) denotes the leakage function on the sensitive variable Z and satisfies
O(Z) = HW (C(Z)) + N . The noise is denoted by N ∼ N (0, σ2). Then, the
optimal correlation coefficient rewrites:

fopt(z) = E[(HW (C(Z)) + N − E[HW (C(Z)) + N])d | Z = z]
= E[(HW (C(Z)) + N − HW (C(Z)) − E[N])d | Z = z]
= E[Nd].

The last equality is only dependent on the noise, not on the sensitive variable
Z = f(X,K), where f denotes any operation using the input variable X and
the key K. In that case this means the attack does not work, independently
of the order d. Note that switching from Hamming weight leakage protection
to Hamming distance protection only requires setting destination registers to
0 before storing the result of a sensitive operation into them. Therefore, this
security analysis applies for both leakage models, given a proper implementation.

6.2 Side-Channel Resistance in the Imperfect Model

In this section, we evaluate the soundness of the proposed constant weight imple-
mentation when the leakage slightly deviates from the rules involved to design
this countermeasure. First, we analyse if our implementation shows some vul-
nerabilities against first-order CPA attack, and then we examine how robust it
is against a stochastic online attack [4]. The purpose of this stochastic approach
is to deduce the global activity associated to arbitrary chosen events occurring
during the encryption (typically a bit-flipping). Although the Hamming weight

46 V. Servant et al.

of each manipulated word remains constant at any time, we expect that the
stochastic online approach can exploit differences from a bit register to another,
especially if the leakage function deviates from the Hamming weight model as
highlighted in the previous information theoretic analysis.

For comparison purpose, we computed the success rate of CPA and stochas-
tic online attack on an unsecured software implementation of AES over 1.000
independent experiments. Concerning the constant weight AES implementation,
we performed these distinguishers over 20.000 independent experiments. In our
practical attack scenario, we considered the following simulated leakage model:

O =
8∑

i=1

ai · zi + N, (2)

where ai are some weighting coefficients following a Gaussian law N (1, σe), zi is
the ith bit of the sensitive value Z (equals S-box[X ⊕K] for the unprotected AES,
and equals C(S-box[X ⊕ K]) for the (3, 6)-code constant weight implementation)
and N is an environmental noise s.t. N ∼ N (0, σ). This model allows us to sim-
ulate the leakages by taking into account a slight deviation from the Hamming
weight leakage model. The results of these attacks are shown on Fig. 1 for σe = 0.1
and σ = 2.

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

traces

S
uc

ce
ss

 R
at

e CPA
Stochastic Online

0 0.5 1 1.5 2

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

traces

S
uc

ce
ss

 R
at

e

CPA
Stochastic Online

Fig. 1. CPA and stochastic online attacks on unsecured AES implementation (left)
and constant weight implementation (right)

From Fig. 1 the following observations can be emphasized:

– As expected, the CPA attack is no longer efficient on the secured implementa-
tion even if the leakage model deviates from the Hamming weight assumption.

– Considering the stochastic online attack results, one can see that the unpro-
tected implementation is easily broken. In fact, about 400 traces suffices to
achieve a success rate of 100%. As expected and revealed by the information
theoretic analysis, the (3, 6)-code implementation performs worse when the
bit-flipping is random. Indeed, the success rate of the stochastic online attack
reaches 100% with 140 K traces, although this represents a gain of robustness
of about a factor 350.

Study of a Novel Software Constant Weight Implementation 47

7 Conclusion

An investigation on whether the AES could be implemented in a constant weight
fashion on a 16-bit smartcard was conducted. Instead of using a dual-rail code, we
chose an “m out of n” code that enables fast operations at an acceptable memory
cost. We have argued that our proposal is a leak-free countermeasure under some
realistic assumptions about the leakage model. The solution has been evaluated
within an information-theoretic study, proving its security against SCA under the
Hamming weight assumption. When the leakage function deviates slightly from
this assumption, our solution still achieves good results. On the performance side,
it was shown our (3, 6)-code AES is faster at execution than most generic higher-
order masking schemes, and also comes with some fault detection capability at
no cost; a feature which masking schemes lack.

Acknowledgments. This work has been partially funded by the ANR projects
E-MATA HARI and SPACES.

References

1. Bogdanov, A.A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher. In:
Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007)

2. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004)

3. Coron, J.-S.: Higher order masking of look-up tables. In: Nguyen, P.Q., Oswald,
E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 441–458. Springer, Heidelberg
(2014)

4. Doget, J., Prouff, E., Rivain, M., Standaert, F.-X.: Univariate side channel attacks
and leakage modeling. J. Crypt. Eng. 1(2), 123–144 (2011)

5. Genelle, L., Prouff, E., Quisquater, M.: Thwarting higher-order side channel analy-
sis with additive and multiplicative maskings. In: Preneel, B., Takagi, T. (eds.)
CHES 2011. LNCS, vol. 6917, pp. 240–255. Springer, Heidelberg (2011)

6. Gierlichs, B., Schmidt, J.-M., Tunstall, M.: Infective computation and dummy
rounds: fault protection for block ciphers without check-before-output. Cryptology
ePrint Archive, Report 2012678 (2012). http://eprint.iacr.org

7. Grosso, V., Standaert, F.-X., Prouff, E.: Low entropy masking schemes, revisited.
In: Francillon, A., Rohatgi, P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 33–43.
Springer, Heidelberg (2014)

8. Han, Y., Zhou, Y., Liu, J.: Securing lightweight block cipher against power analysis
attacks. In: Zhang, Y. (ed.) Future Wireless Networks and Information Systems.
LNEE, vol. 143, pp. 379–390. Springer, Heidelberg (2012)

9. Herbst, C., Oswald, E., Mangard, S.: An AES smart card implementation resistant
to power analysis attacks. In: Zhou, J., Yung, M., Bao, F. (eds.) ACNS 2006. LNCS,
vol. 3989, pp. 239–252. Springer, Heidelberg (2006)

10. Hoogvorst, P., Duc, G., Danger, J.-L.: Software implementation of dual-rail repre-
sentation. In: COSADE (2011)

48 V. Servant et al.

11. Kim, H., Hong, S., Lim, J.: A fast and provably secure higher-order masking of
AES S-box. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp.
95–107. Springer, Heidelberg (2011)

12. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

13. Maghrebi, H., Carlet, C., Guilley, S., Danger, J.-L.: Optimal first-order mask-
ing with linear and non-linear bijections. In: Mitrokotsa, A., Vaudenay, S. (eds.)
AFRICACRYPT 2012. LNCS, vol. 7374, pp. 360–377. Springer, Heidelberg (2012)

14. Nassar, M., Souissi, Y., Guilley, S., Danger, J.-L.: RSM: a small and fast coun-
termeasure for AES, secure against first- and second-order zero-offset SCAs. In:
DATE (TRACK A: “Application Design”, TOPIC A5: “Secure Systems”), pp.
1173–1178. IEEE Computer Society, Dresden, Germany, 12–16 March 2012

15. NIST/ITL/CSD. Advanced Encryption Standard (AES). FIPS PUB 197, Novem-
ber 2001. http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

16. Oswald, E., Schramm, K.: An efficient masking scheme for AES software imple-
mentations. In: Song, J.-S., Kwon, T., Yung, M. (eds.) WISA 2005. LNCS, vol.
3786, pp. 292–305. Springer, Heidelberg (2006)

17. Peeters, E., Standaert, F.-X., Donckers, N., Quisquater, J.-J.: Improved higher-
order side-channel attacks with FPGA experiments. In: Rao, J.R., Sunar, B. (eds.)
CHES 2005. LNCS, vol. 3659, pp. 309–323. Springer, Heidelberg (2005)

18. Peeters, É., Standaert, F.-X., Quisquater, J.-J.: Power and electromagnetic analy-
sis: Improved model, consequences and comparisons. Integ. VLSI J. 40, 52–60
(2007). doi:10.1016/j.vlsi.2005.12.013. Embedded Cryptographic Hardware

19. Piret, G., Roche, T., Carlet, C.: PICARO – a block cipher allowing efficient higher-
order side-channel resistance. In: Bao, F., Samarati, P., Zhou, J. (eds.) ACNS 2012.
LNCS, vol. 7341, pp. 311–328. Springer, Heidelberg (2012)

20. Preneel, B., Takagi, T. (eds.): CHES 2011. LNCS, vol. 6917. Springer, Heidelberg
(2011)

21. Prouff, E., Rivain, M., Bévan, R.: Statistical analysis of second order differential
power analysis. Cryptology ePrint Archive, Report 2010/646 (2010). http://eprint.
iacr.org/

22. Rauzy, P., Guilley, S., Najm, Z.: Formally proved security of assembly code against
leakage. IACR Cryptol. ePrint Arch. 2013, 554 (2013)

23. Rivain, M., Prouff, E.: Provably secure higher-order masking of AES. In: Mangard,
S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 413–427. Springer,
Heidelberg (2010)

24. Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analysis of
side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 443–461. Springer, Heidelberg (2009)

25. Veyrat-Charvillon, N., Standaert, F.-X.: Mutual information analysis: how, when
and why? In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 429–443.
Springer, Heidelberg (2009)

Balanced Encoding to Mitigate Power Analysis:
A Case Study

Cong Chen(B), Thomas Eisenbarth, Aria Shahverdi, and Xin Ye

Worcester Polytechnic Institute, Worcester, MA, USA
{cchen3,teisenbarth,ashahverdi,xye}@wpi.edu

Abstract. Most side channel countermeasures for software implementa-
tions of cryptography either rely on masking or randomize the execution
order of the cryptographic implementation. This work proposes a coun-
termeasure that has constant leakage in common linear leakage models.
Constant leakage is achieved not only for internal state values, but also
for their transitions. The proposed countermeasure provides perfect pro-
tection in the theoretical leakage model. To study the practical relevance
of the proposed countermeasure, it is applied to a software implementa-
tion of the block cipher Prince. This case study allows us to give realistic
values for resulting implementation overheads as well as for the resulting
side channel protection levels that can be achieved in realistic implemen-
tation scenarios.

1 Introduction

Embedded implementations of cryptography are a popular target for side channel
attacks. With the advent of the Internet of Things, an ever-increasing num-
ber of embedded devices enters our lives and homes. These devices handle and
exchange possibly sensitive information, raising the need for data security and
privacy. High-end security solutions such as the processors found in passports
and security smart cards come with an abundance of hardware protection to mit-
igate all kinds of physical and side channel attacks. However, most embedded
devices are consumer-grade products that usually have to rely on unprotected
off-the-shelf microprocessors. Only a limited number of methods are available to
protect cryptographic software against side channel attacks on such a platform.
A popular countermeasure is masking, such as random precharge for registers or
full masking schemes [10]. One of the biggest problems for getting a high level
of protection of microprocessors is that masking is only effective if the processor
has a low signal-to-noise ratio [3,13]. On modern embedded processors, this is
usually not the case, requiring the combination of masking with other counter-
measures that decrease the signal-to-noise ratio. Due to the fixed architecture of
processors, real hiding countermeasures that achieve leakage reduction are hard
to achieve. Proposed countermeasures for embedded software cryptosystems are
mostly randomization countermeasures, i.e. leakage is not reduced, but rather
randomized in time. Examples include shuffling [17,19] or random delays [6].

This work explores a true hiding countermeasure in software. The idea is
to ensure a constant leakage for all intermediate states. There is some limited
c© Springer International Publishing Switzerland 2015
M. Joye and A. Moradi (Eds.): CARDIS 2014, LNCS 8968, pp. 49–63, 2015.
DOI: 10.1007/978-3-319-16763-3 4

50 C. Chen et al.

prior work proposing constant Hamming weight (HW) encodings of intermediate
states. In [9], a secure assembly coding style based on the concept of Dual-Rail
Precharge Logic (DPL) was proposed. The authors claim that a constant activ-
ity can be achieved using their specific data representation and programming
rules. Their work is purely theoretic, no experimental results to support their
idea were presented. Furthermore, the computation protocol did not completely
prevent Hamming distance (HD) leakage. In [14], the authors present the meth-
ods and tools to generate DPL style code automatically. In [8], a similar data
representation called Bitwise Balanced enCoding scheme was proposed. This
scheme appears to be flawed: the XOR operation will leak information of one
of the two inputs, as we explain later. They also just present simulation results
that assume an idealized leakage. Hence, that work also lacks any analysis of
real-world applicability.

In this work, we present new constant-leakage encodings. As prior works,
we require intermediate states to be represented by constant Hamming weight
encodings. We go beyond prior studies by showing that requiring constant Ham-
ming distance transitions between states is also feasible. Unlike prior work, we
actually implement the counteremeasure, allowing us to realistically judge result-
ing implementation overheads. More importantly, we evaluate the achieved leak-
age reduction on a modern 8-bit microcontroller. We show how the constant
leakage can be implemented not only for state representations, but also for state
transitions, This allows us to apply the encodings to create a protected imple-
mentation of the Prince block cipher.

As most countermeasures, this countermeasure cannot provide perfect pro-
tection by itself. The leakage of real-world microprocessors deviates from linear
and balanced models like the Hamming weight or Hamming distance model.
However, forcing the side channel adversary to exploit the non-linear and imbal-
anced components of the leakage requires more sophisticated attacks and an
increasing number of leakage observations. In other words, the countermeasure
can effectively decrease the signal-to-noise ratio. The proposed countermeasure
is orthogonal to masking or randomization countermeasures. Hence it can easily
be combined with those to achieve an even higher overall resistance.

The remainder of the contribution is structured as follows: Related work
is discussed in Sect. 2. The new encoding scheme is introduced in Sect. 3 and
applied to Prince in Sect. 4. Section 5 explains our leakage evaluation and Sect. 6
presents implementation results and the outcome of the leakage evaluation.

2 Background

This section introduces the related work on balanced encodings to counteract
SCA in both hardware and software implementations, as well as a short intro-
duction to the Prince block cipher to which the countermeasure will be applied.

2.1 Balanced Logic for Hardware Implementation

Dual-Rail Precharge Logic (DPL) aims to achieve constant activity at the gate
level. In a DPL style circuit, any gate that generates logic bit A is accompanied

Balanced Encoding to Mitigate Power Analysis: A Case Study 51

with a complementary gate that generates logic bit Ā. That is, the logic bit
pair (A, Ā) is used to represent A. Note that the Hamming weight of the pair
is always constant as 1. Besides, in order to obtain constant Hamming distance,
the bit pair is precharged to (0, 0) before evaluation. Hence, the gate transitions
from (0, 0) to either (0, 1) or (1, 0) leaks data independent power consumption
or EM emissions. Based on this idea, many DPL style have been proposed such
as WDDL [18], MDPL [12] and DRSL [5]. All these DPL variants aim to protect
the hardware crypto systems against SCA.

2.2 Balanced Logic for Software Implementation

Solutions to reproduce DPL in software have been proposed in the past few
years. The basic idea of these solutions is the same in that the data in the
register or RAM is represented using balanced encoding. Each bit of an interme-
diate state is converted to two complementary bits. For example, logical bit 1 is
encoded as 01 and logical bit 0 is encoded as 10. 11 and 00 are taken as invalid
values.

In [9], Hoogvorst et al. showed a generic assembly coding methodology using
DPL style. They redefined the instructions of the standard microprocessor using
DPL macros which combines a series of normal instructions to achieve precharge
(by moving 0s to the data register) and evaluation (by concatenating operands
and indexing in a lookup table). The activity of precharge phase is constant
since overwriting the balanced data register with all ′0′ causes constant bit flips.
During the evaluation phase, the activity of each normal instruction is either
constant or irrelevant with the sensitive data. Given the new instructions, the
normal assembly code can be transformed to the DPL style code. In [4], Chen
et al. also proposed a software programming style to generate a Virtual Secure
Circuit (VSC). The basic idea of VSC is to use complementary instructions in a
balanced processor to emulate the DPL circuits’ behavior.

Han et al. proposed in [8] a balanced encoding scheme for block ciphers.
Instead of proposing protection for individual instructions, they propose specific
protections for the operations of the cipher, such as KeyAddition and S-box
lookups. For example in their KeyAddition layer one balanced encoded key bit
(01 or 10) is XORed with one plaintext bit. The plaintext bit is encoded by rep-
etition code (00 for 0 or 11 for 1) so that the result is 01 or 10, i.e. an internal
state bit correctly encoded with a balanced encoding. Obviously, the operation
may leak information of the plaintext input, even in the Hamming weight leak-
age model, but this information is not useful for differential side channel attacks.
However, this method can only be applied to the initial KeyAddition where the
plaintext is known. For the following rounds, the intermediate data may still leak
useful information. Since no alternative XOR is introduced, we do not think this
scheme can be applied in an appropriate way to protect cryptographic imple-
mentations. Furthermore, the S-box operation also cannot prevent Hamming
distance leakage.

52 C. Chen et al.

2.3 The Prince Block Cipher

The Prince block cipher is a lightweight cipher, featuring a 64-bit block size and
a 128-bit key size [1]. Prince has been optimized for low latency and a small
hardware footprint. Its round function has several similarities to the AES: it
features KeyAddition, S-box, ShiftRows and MixColumns operations. However,
these operations are performed on a 4-by-4 array of 4-bit nibbles. This 4-bit
oriented design makes Prince—unlike AES—a suitable candidate for a constant
Hamming weight encoding on 8-bit microcontrollers. Prince has 12 rounds, and
the last six apply the inverse operations of the first six. The 64-bit round key
remains constant in all rounds, but is augmented with a 64-bit round constant
to ensure variation between rounds. The remaining 64 key bits are used for
pre- and post-whitening of the state. A feature of Prince is that encryption and
decryption only differ in the round key. A detailed description of an unprotected
microcontroller implementation of the Prince can be found in [15].

3 General Balanced Encoding Countermeasure

The non-balanced encoding of the algorithmic inputs and internal states usually
causes side channel leakage during the execution of crypto primitives. The leak-
age can be exploited from classical side channel attacks such as DPA, CPA or
MIA. The proposed countermeasure aims at encoding the internal states with
longer bit length but resulting in constant Hamming weight of state and constant
Hamming distance between two consecutive states. This trade-off sacrifices some
memory and efficiency but achieves a balanced representation internal data and
therefore mitigates the impact of side channel threats.

Formally, the balanced encoding requires the uniform distribution of Ham-
ming weight for all codewords. Namely, every codeword should have the same
Hamming weight, like the idea of constant-weight code or (m of n code). Clearly,
the natural binary encoding is not such a candidate (e.g. HW (0) �= HW (1)) since
the resulting distribution of Hamming weight is binomial rather than uniform.
The idea of balancing encoding can be realized only if using more than necessary
bit length. A balanced encoding uses an embedding mapping τ from the natural
binary encoded space C = F

m
2 for all c ∈ C into an extension ext(C) = F

n
2 with

n > m. In order to satisfy the constant Hamming weight of the new codeword,
a necessary condition is that C

n/2
n ≥ 2m, where the image τ(C) sits entirely in

the subset Sn/2 = {u ∈ F
n
2 | HW (u) = n/2}.

Secondly, the newer encoding should preserve the basic bivariate operations
f(·, ·) like xor and more complicated univariate operation g(·) such as the non-
linear S-box mapping. More precisely, for any v1, v2 ∈ C, it should hold that
τ(f(v1, v2)) = f̃(τ(v1), τ(v2)), where f̃ is the n-bit adjustment of the m-bit
operation f . Similarly, for any v ∈ C, it should hold that τ(g(v)) = g̃(τ(v)).
Preserving such operations ensures the validity of the algorithmic evolution.

Thirdly, we also want such balanced encoding that achieves constant Ham-
ming distance between any two consecutive states. This may not be easily real-
ized with the choice of the codeword by requiring HW (τ(v) ⊕ g̃(τ(v))) being

Balanced Encoding to Mitigate Power Analysis: A Case Study 53

constant for any v ∈ C. But it can be easily achieved with implementation tricks
such as flushing registers before overwriting them with new values. That is, in
order to mitigate the leakage generated from overwriting values, say for example,
the state representation τ(v) which is stored in register R1 needs to be replaced
by the univariate functional output g̃(τ(v)), the procedure is first to store the
output g̃(τ(v)) at a different pre-cleared register R2, then clear register R1 and
finally copy the register value from R2 back to R1 and free the temporary regis-
ter R2. This approach sacrifices the efficiency of the code, but prevents Hamming
distance leakage from overwriting the state. Another solution is to apply different
balanced encodings to the two consecutive states to achieve not only constant
Hamming weight but constant Hamming distance as well. More details of this
solution will be given in the following section.

4 A Case Study Based on the Prince Cipher

In this section, we use Prince as an example to present the balanced encod-
ing scheme. Prince is a nibble-based block cipher, as detailed in Sect. 2.3. Since
our target platform is an 8-bit processor, a simple balanced encoding can be
achieved by simply adding complementary bits, as done for dual-rail logic styles.
That way, each state nibble is encoded as a 8-bit balanced encoding by inserting
the complementary bits. For any nibble b3b2b1b0 where bi is one bit data, the
complementary nibble is b̄3b̄2b̄1b̄0, where b̄i is the inverse of bi. Concatenating
these two nibbles forms a balanced encoding b̄3b̄2b̄1b̄0b3b2b1b0. An alternative is
the encoding b̄3b3b̄2b2b̄1b1b̄0b0. Theoretically, under the Hamming weight leak-
age assumption, any sequence of those bits can be used as a balanced encoding
because the Hamming weight is always 4. In the following we will use two differ-
ent such encodings, i.e. encI = b̄3b3b̄2b2b̄1b1b̄0b0, which we refer to as encoding
I, and encII = b0b̄2b1b3b̄1b2b̄0b̄3, which we refer to as encoding II. Both of the
encodings ensure the constant Hamming weight of states. The encoding II is
used to guarantee the constant Hamming distance between state transitions and
the way this specific encoding is determined will be explained in the following
section.

KeyAddition with Constant HW/HD. In the unprotected Prince imple-
mentation, the KeyAddition operation is denoted as r3r2r1r0 = b3b2b1b0 ⊕
k3k2k1k0 where k is the subkey, b is a state nibble before the KeyAddition
and r is the result of KeyAddition. For the protected Prince, we want an XOR-
addition where secret inputs and outputs have a balanced encoding. However,
for the initial key whitening at the input of the cipher, the plaintext input can
be assumed not critical. Hence, only the output r and the key k are mapped to
encoding I, i.e. r̄3r3r̄2r2r̄1r1r̄0r0 and k̄3k3k̄2k2k̄1k1k̄0k0. As in [8], we can sim-
ply XOR-add k in encoding I to b encoded as b3b3b2b2b1b1b0b0 to realize the
partially-protected XOR. This way, the Hamming weight of r is constant as
well as the Hamming distance between r and b. The encoding for b does not
satisfy the balanced encoding requirement, but has instead double Hamming

54 C. Chen et al.

weight leakage. Therefore, this only works for the initial KeyAddition where the
plaintext is known.

After the first KeyAddition, the state becomes sensitive and need the bal-
anced encoding. Hence, for the KeyAddition inside each round, b uses encoding
I. Instead, we map k to the encoding k3k3k2k2k1k1k0k0, resulting in a remain-
ing constant leakage for the round keys. Since the leakage is constant, it is not
exploitable by CPA or DPA. Note that this leakage can also be avoided by using
the XOR addition described in the following MixColumns section. It is more
costly than the above described XOR variant, but all inputs and outputs have
a balanced encoding and all transitions a constant Hamming distance.

Table Lookup with Constant HW/HD. The S-box operation can be descri-
bed as s3s2s1s0 = S(r3r2r1r0) where S(·) denotes the S-box, r denotes an input
nibble, and s denotes the output. To protect it, a new lookup table based on
the balanced encoding is designed in order to minimize the leakage. The S-box
operation is denoted as s̄3s3s̄2s2s̄1s1s̄0s0 = S′(r̄3r3r̄2r2r̄1r1r̄0r0) where the S′(·)
represents the new S-box. Therefore the Hamming weight of S-box output bits
is constant. Note that, unlike the regular S-box of size of 1 × 16, the new S-box
is a 16 × 16 table where the only 16 positions contain the output value and
all other positions are unused. The new S-box prevents the Hamming weight
leakage but cannot prevent the Hamming distance leakage. One solution is to
precharge the target register with zero before writing s into it. An alternative is
applying encoding II to s, which is found by exhaustive search in all the possible
encodings. For the Prince cipher, the S-box output in encoding II can be denoted
as s0s̄2s1s3s̄1s2s̄0s̄3. In this way, the Hamming weight of S-box output is still
constant as 4 and the Hamming distance between input in encoding I and output
in encoding II becomes constant as HD(encI(r), encII(s)) = 4.

The cost of using two different encodings is an additional reordering layer
which coverts encoding II back to encoding I. This is because the following oper-
ations such as MixColumns and ShiftRows are based on encoding I. A straight-
forward idea for reordering is the bit rotation which can be implemented using
AND, LSL, LSR and OR instructions. AND instruction is used to pick out each
single bit in encoding II by zeroing the other bits. Then we shift it to its posi-
tion in encoding I. Finally, we combine all bits together to form encoding I.
The disadvantage is that it is time consuming and it still causes side channel
leakage. Instead, we can implement the reordering layer as a 16x16 lookup table
R. The reordering table take the encoding II as input and output encoding
s̄3s3s̄2s2s̄1s1s0s̄0 = R(encII(s)). Note that, the output of R is a variant of
encoding I by swapping the two LSBs. This is because HD(encI(s), encII(s))
is either 2 or 4 but HD(s̄3s3s̄2s2s̄1s1s0s̄0, encII(s)) is constant as 4. Then, the
output of R is XORed with 0x03 which swaps the two LSBs back to encoding I.

MixColumns with Constant HW/HD. The MixColumns operation can be
implemented as XOR operations between the intermediate data. Unlike the XOR
operation in KeyAddition, all the data involved in the MixColumns operation are

Balanced Encoding to Mitigate Power Analysis: A Case Study 55

sensitive and must hence be encoded in balanced encoding scheme to avoid the
information leakage. Thus we need to design a new constant XOR operation
instead of reusing the XOR from the KeyAddition. After the S-box substitution,
the data in MixColumns operation are represented in encoding I. Denote the
two operands of the constant XOR are as follows: x : x̄3x3x̄2x2x̄1x1x̄0x0 and
y : ȳ3y3ȳ2y2ȳ1y1ȳ0y0. The XOR result is z : z̄3z3z̄2z2z̄1z1z̄0z0. The constant
XOR can be implemented using the following steps:

Step 1: Divide the operand x into two parts and construct two new bytes as
xL : x̄3x3x̄2x2x̄3x3x̄2x2 and xR : x̄1x1x̄0x0x̄1x1x̄0x0. In AVR microcon-
troller, this step can be easily done by AND, SWAP and OR instructions.
For operand y, we construct yL and yR in the same way. The following code
to the generate xL can also be applied to the generation of xR, yL and yR.

Input: r1 = x
Output: xL

1 ldi r16, 0xF0
2 ldi r17, 0xF0
3 and r16, r1 ; Cut off the right nibble of x
4 and r17, r1 ; Cut off the right nibble of x
5 swap r17 ; Swap the left nibble to the right
6 or r16, r17 ; Generate x L

Step 2: Do the regular XOR operation between xL and 0xA5 to generate x′
L :

x3x3x2x2x̄3x̄3x̄2x̄2 = xL ⊕ (10100101)b. Then zL = x′
L ⊕ yL = z̄3z3z̄2z2z3

z̄3z2z̄2. We also can generate zR with the similar operations.

Input: r16 = xL, r18 = yL
Output: zL

1 ldi r17, 0xA5
2 eor r16, r17 ; Convert x L to x L’
3 eor r16, r18 ; Generate z L

Step 3: Combine the most significant nibble of zL and the least significant
nibble of zR to construct z : z̄3z3z̄2z2z̄1z1z̄0z0.

Input: r1 = zL, r2 = zR
Output: z

1 ldi r16, 0xF0
2 ldi r17, 0x0F
3 and r16, r1 ; Cut off the least significant nibble of z L
4 and r17, r2 ; Cut off the most significant nibble of z R
5 or r16, r17 ; Generate z

Note that all above instructions operate on constant Hamming weight repre-
sentations. Furthermore, there are no transitions that feature a non-constant
Hamming distance in any operands. Hence, while costly, this XOR operation is
free of Hamming weight or Hamming distance leakages in the operands.

56 C. Chen et al.

5 Evaluation Methodology

The analyzed countermeasure is secure if each bit of the secret state s leaks in
the same way, i.e. linearly and with the same weight. However, practical devices
never have such a perfect leakage. To evaluate the leakage properties on the
constant weight encoding on a real device, we analyze the leakage behavior of
different evaluation approaches. Besides correlation-based DPA, we also perform
a mutual information-based evaluation.

5.1 Correlation-Based DPA

Correlation-based DPA was originally proposed by Brier et al. [2]. The typical
leakage model is the Hamming weight of the S-box output. The studied coun-
termeasure is designed to not feature such a leakage at all. However, since real
devices will never feature a perfect Hamming-weight leakage, it is still interesting
to analyze whether the remaining leakage of a protected implementation is still
exploitable by a CPA. The predicted secret state for our CPA is the Hamming
weight of a single S-box output. Another popular analysis is single-bit DPA. As
before we apply correlation, but this time using a single bit of the S-box output
as leakage model. As the Hamming-weight based CPA, this attack does not work
in an idealized environment where each bit leaks in the same way: One of the
two bits used to represent the value of a certain bit will always be one, the other
zero. However, in practice no two lines leak alike. Hence, bit leakages should be
recoverable, but be impeded by the countermeasure.

0 5 10 15
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

key difference

co
rre

la
tio

n

2nd bit DPA
Hamming weight

Fig. 1. CPA results on output bit 2 of the unprotected Prince S-box and on the Ham-
ming weight of the unprotected Prince S-box for the correct key (or correctly predicted
S-box input, index 0) and incorrect keys (or incorrectly predicted inputs, all other
indices). The vertical axis shows the resulting correlation while the horizontal axis
indicates the offset from the correct key (or S-box input value). Basically all indices
besides 0 that exhibit a significant correlation are considered Ghost peaks, showing that
Hamming weight based CPA might not be the wisest choice to attack Prince.

Note that both CPA and bit-wise DPA do not behave very well for the
Prince block cipher: even in a perfect (Hamming weight) leakage environment,

Balanced Encoding to Mitigate Power Analysis: A Case Study 57

an unprotected implementation features strong “ghost peaks”, as depicted in
Fig. 1. These ghost peaks make the distinction of the correct key more difficult.
However, since the behavior is predictable, they can also be used to improve the
attack, as discussed e.g. in [11].

5.2 Mutual Information Based Evaluation

A popular method for evaluating the side channel resistance of an implemen-
tation is mutual information. It was proposed as a side channel leakage metric
for evaluation in [16] and refined for practical experiments in [7]. The goal is to
evaluate the leakage L of a critical intermediate state s. The evaluated inter-
mediate state for the Prince cipher is one nibble. The initial state is a nibble
of the plaintext p, which is known. KeyAddition and round constant addition
are mere permutations of the state, as are S-box and ShiftRows operations.
Since mutual information is computed over all states, the changing labeling does
not change the mutual information, i.e. it can be precisely computed through
the aforementioned operations even without knowing the key. The MixColumns
operation, however, mixes information from different state nibbles, i.e. output
nibbles no longer depend on a single input nibble. This means that, during and
after the MixColumns operation the meaning of the mutual information that is
computed on one nibble finally drops off. However, since the typical target—the
S-box output—is fully covered, the leakage typically exploited by any univariate
attacks targeting only the first round will be identified by mutual information
computed on individual state nibbles. The mutual information I(S;L) between
the leakage L and the states S is computed as I(S;L) = H(S) − H(S|L) where
H(S|L) is the conditional entropy of S, knowing the leakage L. It is given as

H(S|L) = −
∑

l∈L

(
Pr(l)

∑

s∈S
Pr(s|l) log Pr(s|l)

)
, (1)

where l and s are specific observations of the leakage and state, respectively.
Given univariate templates N (μs, σs) for each state value s and each point of
the leakage, we have the probability density for observing a leakage l at that point
given as p(l|s) = N (μs, σs). Following Bayes’ Theorem, we get p(s|l) = p(l|s)Pr(s)

Pr(l)

and, since all observations and states are equiprobable, we can derive

Pr(s|l) =
p(l|s)∑

s∗∈S p(l|s∗)
,

as typically done for templates. Plugging this back into Eq. (1), we can solve
Eq. (1) by computing and summing over all Pr(s|l∗) for each l∗ ∈ LT , where LT

is the test (or evaluation) set.

6 Evaluation Results

To verify the balanced encoding scheme, we performed side channel evaluation
on three implementations and compared the results between them.

58 C. Chen et al.

2Prince. The first implementation is the unprotected nibble-parallel Prince
implementation from [15], in which the 16-nibble states are stored in 8 regis-
ters. All round operations process two nibbles in parallel in order to achieve
better performance. This implementation feature should result in slightly
increased noise if the adversary only predicts a single nibble.

Balanced Prince. The second implementation is the protected Prince using
encoding I only. In this case, the precharge phase is added to the S-box
lookup to achieve not only constant HW but constant HD as well.

Double-Balanced Prince. The third one is also the protected Prince but
using both encoding I and encoding II. This implementation differs from
the second one in that the constant HD is obtained by using encoding II at
the S-box output followed by a reordering layer.

We used an 8-bit AVR microcontroller to run the implementations. The per-
formance and memory usage of the implementations are presented below. An
automatic power measurement platform was established using a PC, a differ-
ential probe and an Tektronix DPO5000 series oscilloscope. A total of 100,000
power traces with random plaintext inputs were obtained for each implementa-
tion. Each implementation was analyzed using Hamming weight based CPA as
a reference attack. Next, Mutual Information is used as a metric to quantify the
leakage and compare the implementations. To make our numbers more reliable,
we use 10-fold cross-validation on the computation of the mutual information.

6.1 Implementation Results

First we compare the performance of the three analyzed implementations. Table 1
compares the computation time per encrypted block and resource consumption
in terms of code size and RAM usage. The code size increases significantly for
the protected implementations, i.e. by a factor of 3. At the same time the per-
formance decreases by a factor of 7. This is because each round operation costs
more resources in order to obtain constant activity.

Table 2 shows the contribution of specific operations to the overall resource
consumption. In particular, the code size and performance are broken down into
the KeyAddition (KA), byte substitution (SB), and the mixing (M) operations
of the Prince cipher. For example, the S-box of the protected implementations
and the unprotected one are of the same size (256 byte, not included in the table
code size calculation), but the unprotected one performs two S-box lookups in
parallel. Similarly, either a precharge phase (for the Balanced implementation)
or a reordering layer (for the Double-Balanced implementation) had to be added
in order to gain constant Hamming distance transitions, also resulting in a signif-
icant increase in memory and clock cycles. Additionally, the conversion between
normal data and balanced encoded data for the plaintext and ciphertext also
adds overhead. The worst overhead is due to the M-Layer, or more precisely
the constant leakage XOR, which uses 58 more clock cycles than regular XOR
instruction.

Balanced Encoding to Mitigate Power Analysis: A Case Study 59

Table 1. Performance comparison of the three analyzed implementations.

Implementation Encryption Time Code Size RAM Usage

in clock cycles in Bytes in Bytes

2Prince [15] 3253 1574 24

Balanced 28214 3700 472

Double-Balanced 29498 4100 472

Table 2. Performance and cost comparison for the KeyAddition (KA), byte substitu-
tion (SB), and the mixing (M) layers for the three analyzed implementations.

Implementation Operation Performance in clock cycles Code Size in Bytes

2Prince [15] KA 72 80

SB 41 36

M 162 286

Balanced K 57 68

SB 90 62

M 2156 1193

Double-Balanced KA 57 68

SB &RO 180 129

M 2156 1193

6.2 CPA Results

We first performed CPA on all of the three implementations. Each CPA predicts
the Hamming weight of the output of a single S-box. To compare the leakage
of the implementations—rather than distinguishing the correct key—we use the
Hamming weight of the all 16 S-box outputs under a known key as the power
model. The results are presented in Fig. 2. The correlation between the measure-
ments and power model is greatly reduced in the protected scenarios. For the
unprotected implementation, the correlation coefficients range from 0.6 to 0.8
which is only about 0.1 to 0.3 in the protected implementations. Note that a few
of the 16 nibbles feature a much stronger leakage than the others in the protected
cases (cf. Fig. 2(b) and (c)). This might be an implementation artifact and not
due to the countermeasure itself. Similarly, the double-balanced implementation
features its strongest leakage in the reordering layer. The results show that the
balanced encoding scheme is effective in reducing the Hamming weight leakage.
However, due to differences in the leakage of individual bits, the leakage does
not completely disappear.

Figure 3 compares the trend of the correlation coefficients of the implemen-
tations (vertical axis) over the number of power traces (horizontal axis). We
can observe that the correct subkey hypothesis can be easily distinguished from
the wrong key guesses with as little as one hundred traces for the unprotected
Prince in Fig. 3(a). However, for both Balanced Prince and Double-Balanced

60 C. Chen et al.

0 25 50 75 100 125 150 175 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time us

C
or

re
la

tio
n

C
oe

ffi
ci

en
t

SB MKA

(a) 2Prince

0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time us

C
or

re
la

tio
n

C
oe

ffi
ci

en
t

(b) Balanced

0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time us

C
or

re
la

tio
n

C
oe

ffi
ci

en
t

(c) Double-Balanced

Fig. 2. Result of CPA of three Prince implementations on the S-box output. The
unprotected implementation (a) leaks significantly stronger than the two protected
implementations (b) and (c). (KA: KeyAddition; SB: S-box Lookup; RO: reordering
M: Mixing Layer)

10
1

10
2

10
3

10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Trace Number

C
or

re
la

tio
n

C
oe

ffi
ci

en
t

(a) 2Prince

10
1

10
2

10
3

10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Trace Number

C
or

re
la

tio
n

C
oe

ffi
ci

en
t

(b) Balanced

10
1

10
2

10
3

10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Trace Number

C
or

re
la

tio
n

C
oe

ffi
ci

en
t

(c) Double-Balanced

Fig. 3. CPA results for the Hamming weight of the S-box output for the unprotected
implementation (a) and the two protected implementations (b) and (c). The vertical
axis indicates the absolute value of the correlation coefficient; The horizontal axis
indicates the number of traces used. The comparison of the three plots shows the
significant improvement resulting from the balanced encodings, if applied correctly.
Plot (a) clearly shows the effect of the ghost peaks mentioned in Sect. 5.

Prince in Fig. 3(b) and (c), the correlation coefficient is significantly smaller and
it is hard to distinguish the correct key hypothesis, even for as many as 50,000
observations. Note that this problem is not obvious in Fig. 2, since that figure
only contains correlations for the correct subkey hypotheses.

6.3 Mutual Information Based Leakage Analysis

To compare the implementations in a leakage-model independent setting, we
apply the mutual information based methodology introduced in Sect. 5.2 during
the first round of the Prince implementation. We apply it in two different ways:
First, by using classical univariate templates with an individual mean and vari-
ance for each possible nibble state; Next, by using reduced univariate templates
with an individual mean for each nibble state, but a common variance for all
templates. The latter approach allows to only evaluate first-order leakages.

Figure 4 shows the mutual information for all 16 state nibbles for the
first round, as derived from full univariate templates. Figure 5 shows the mutual

Balanced Encoding to Mitigate Power Analysis: A Case Study 61

0 25 50 75 100 125 150 175 200
0

0.1

0.2

0.3

0.4

0.5

0.6

Time us

M
ut

ua
l I

nf
or

m
at

io
n

MKA SB

(a) 2Prince

0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

Time us

M
ut

ua
l I

nf
or

m
at

io
n MKA SB

(b) Balanced

0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

Time us

M
ut

ua
l I

nf
or

m
at

io
n

MKA SB RO

(c) Double-Balanced

Fig. 4. Mutual information between the state and the leakage for the unprotected (a),
Balanced (b), and Double-Balanced (c) implementations during the first round.

0 25 50 75 100 125 150 175 200
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Time us

M
ut

ua
l I

nf
or

m
at

io
n

MKA SB

(a) 2Prince

0 50 100 150 200 250 300 350 400
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Time us

M
ut

ua
l I

nf
or

m
at

io
n

SB MKA

(b) Balanced

0 50 100 150 200 250 300 350 400
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Time us

M
ut

ua
l I

nf
or

m
at

io
n

SB RO MKA

(c) Double-Balanced

Fig. 5. First order mutual information between the state and the leakage for the
unprotected (a), Balanced (b), and Double-Balanced (c) implementations during the
first round.

information for all 16 state nibbles only for the first order leakage, as derived
from the reduced univariate templates. Both plot families behave very similar,
with the first-order MI being slightly lower in all cases. This indicated that the
implementations on the AVR feature significant non-linear components in the
leakage function. The first-order MI is more appropriate to predict the resistance
against first-order attacks such as DPA and CPA. More interestingly, the leak-
age drops significantly for the protected implementations. In fact, the mutual
information goes down by as much as 50 %. Especially the leakage of the S-box
operation drops even more strongly, from .5 for the unprotected implementa-
tion to as low as .1 for the protected ones. That is, there is a single nibble that
exhibits a huge leakage for the protected implementations. This is always the
first nibble. To remove the leakage, we reordered the nibbles for the computa-
tion of the S-box. Surprisingly, whichever nibble is computed first, it exhibits
this strong leakage. We claim this to be an implementation artifact. Similarly,
there is a leakage right before the KeyAddition starts. Again, we do not have a
good explanation for this leakage. However, unlike the S-box leakage, this one is
not problematic, as information before the KeyAddition is plaintext, i.e. known
to the attacker. As hinted at by the CPA results, both Figs. 4(c) and 5(c) show
that the Reordering layer still leaks a significant amount of information.

As a result, the Balanced implementation has a weaker leakage than the one
of the Double-Balanced implementation. The stronger leakage for the second

62 C. Chen et al.

implementation occurs in the reordering layer. This was not expected, since it
is implemented to have a constant Hamming weight and Hamming distance.

In summary, the balanced implementation is a better choice for devices that
have a strong Hamming weight leakage and is a valuable new addition to the
family of countermeasures in software. The Double-Balanced implementation
is slightly less efficient, but suffers from the strong leakage of the reordering
layer. A more careful implementation of the reordering layer could reduce the
maximum leakage of the Double-Balanced implementation. One should be able
to avoid the reordering layer completely by customizing operations in the Mix-
Columns layer, but we did not further explore this route.

7 Conclusion

This work performs the first practical evaluation of the balanced encoding coun-
termeasure in software. While promising in theory, its standalone effectiveness
on the modern microcontroller platform used for this study is significant, espe-
cially for CPA, but far from perfect. The countermeasure is of high relevance, as
it is orthogonal to other software countermeasures such as shuffling and masking,
i.e. it can be applied in addition to those. This is of high relevance for platforms
that feature high signal-to-noise ratios, such as modern microcontrollers. It is also
noteworthy that implementation costs are higher than conjectured, e.g. in [9].
Overall, we believe that this countermeasure technique is useful for lightweight
ciphers in cases where additional hiding countermeasure are desirable.

Acknowledgments. This material is based upon work supported by the National
Science Foundation under Grant No. #1261399 and Grant No. #1314770. We would
like to thank the anonymous reviewers for their helpful comments.

References

1. Borghoff, J., Canteaut, A., Güneysu, T., Kavun, E.B., Knezevic, M., Knudsen,
L.R., Leander, G., Nikov, V., Paar, C., Rechberger, C., Rombouts, P., Thomsen,
S.S., Yalçın, T.: PRINCE – a low-latency block cipher for pervasive computing
applications. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658,
pp. 208–225. Springer, Heidelberg (2012)

2. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004)

3. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to coun-
teract power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol.
1666, p. 398. Springer, Heidelberg (1999)

4. Chen, Z., Sinha, A., Schaumont, P.: Implementing virtual secure circuit using a
custom-instruction approach. In: Proceedings of the 2010 International Confer-
ence on Compilers, Architectures and Synthesis for Embedded Systems, pp. 57–66
(2010)

Balanced Encoding to Mitigate Power Analysis: A Case Study 63

5. Chen, Z., Zhou, Y.: Dual-rail random switching logic: a countermeasure to reduce
side channel leakage. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol.
4249, pp. 242–254. Springer, Heidelberg (2006)

6. Coron, J.-S., Kizhvatov, I.: Analysis and improvement of the random delay coun-
termeasure of CHES 2009. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010.
LNCS, vol. 6225, pp. 95–109. Springer, Heidelberg (2010)

7. Durvaux, F., Standaert, F.-X., Veyrat-Charvillon, N.: How to certify the leakage
of a chip? In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol.
8441, pp. 459–476. Springer, Heidelberg (2014)

8. Han, Y., Zhou, Y., Liu, J.: Securing lightweight block cipher against power analy-
sis attacks. In: Zhang, Y. (ed.) Future Computing, Communication, Control and
Management. LNEE, vol. 143, pp. 379–390. Springer, Heidelberg (2012)

9. Hoogvorst, P., Duc, G., Danger, J.-L.: Software implementation of dual-rail repre-
sentation. In: 2nd International Workshop on Constructive Side-Channel Analysis
and e Secure Design – COSADE 2011, 24–25 February 2014

10. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets
of Smartcards. Springer, Heidelberg (2007)

11. Pan, J., van Woudenberg, J.G.J., den Hartog, J.I., Witteman, M.F.: Improving
DPA by peak distribution analysis. In: Biryukov, A., Gong, G., Stinson, D.R.
(eds.) SAC 2010. LNCS, vol. 6544, pp. 241–261. Springer, Heidelberg (2011)

12. Popp, T., Mangard, S.: Masked dual-rail pre-charge logic: DPA-resistance without
routing constraints. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659,
pp. 172–186. Springer, Heidelberg (2005)

13. Prouff, E., Rivain, M.: Masking against side-channel attacks: a formal security
proof. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol.
7881, pp. 142–159. Springer, Heidelberg (2013)

14. Rauzy, P., Guilley, S., Najm, Z.: Formally proved security of assembly code against
power analysis: a case study on balanced logic (2013). https://eprint.iacr.org/2013/
554.pdf

15. Shahverdi, A., Chen, C., Eisenbarth, T.: AVRprince - An Efficient Implementation
of PRINCE for 8-bit Microprocessors. Technical report, Worcester Polytechnic
Institute (2014). http://users.wpi.edu/∼teisenbarth/pdf/avrPRINCEv01.pdf

16. Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analysis of
side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 443–461. Springer, Heidelberg (2009)

17. Tillich, S., Herbst, C.: Attacking state-of-the-art software countermeasures—a case
study for AES. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154,
pp. 228–243. Springer, Heidelberg (2008)

18. Tiri, K., Verbauwhede, I.: A logic level design methodology for a secure DPA
resistant ASIC or FPGA implementation. In: Proceedings of the conference on
Design, automation and test in Europe, pp. 10246. IEEE Computer Society (2004)

19. Veyrat-Charvillon, N., Medwed, M., Kerckhof, S., Standaert, F.-X.: Shuffling
against side-channel attacks: a comprehensive study with cautionary note. In:
Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 740–757.
Springer, Heidelberg (2012)

On the Cost of Lazy Engineering
for Masked Software Implementations

Josep Balasch1, Benedikt Gierlichs1, Vincent Grosso2,
Oscar Reparaz1(B), and François-Xavier Standaert2

1 Department of Electrical Engineering-ESAT/COSIC and iMinds, KU Leuven,
Kasteelpark Arenberg 10, 3001 Leuven-Heverlee, Belgium

oscar.reparaz@esat.kuleuven.be
2 ICTEAM/ELEN/Crypto Group, Université catholique de Louvain,

Louvain-la-Neuve, Belgium

Abstract. Masking is one of the most popular countermeasures to mit-
igate side-channel analysis. Yet, its deployment in actual cryptographic
devices is well known to be challenging, since designers have to ensure
that the leakage corresponding to different shares is independent. Several
works have shown that such an independent leakage assumption may be
contradicted in practice, because of physical effects such as “glitches” or
“transition-based” leakages. As a result, implementing masking securely
can be a time-consuming engineering problem. This is in strong con-
trast with recent and promising approaches for the automatic insertion
of countermeasures exploiting compilers, that aim to limit the develop-
ment time of side-channel resistant software. Motivated by this contrast,
we question what can be hoped for these approaches – or more gen-
erally for masked software implementations based on careless assembly
generation. For this purpose, our first contribution is a simple reduc-
tion from security proofs obtained in a (usual but not always realistic)
model where leakages depend on the intermediate variables manipulated
by the target device, to security proofs in a (more realistic) model where
the transitions between these intermediate variables are leaked. We show
that the cost of moving from one context to the other implies a division
of the security order by two for masking schemes. Next, our second and
main contribution is to provide a comprehensive empirical validation of
this reduction, based on two microcontrollers, several (handwritten and
compiler-based) ways of generating assembly codes, with and without
“recycling” the randomness used for sharing. These experiments confirm
the relevance of our analysis, and therefore quantify the cost of lazy
engineering for masking.

1 Introduction

Masking is a widely deployed countermeasure to protect block cipher imple-
mentations against side-channel attacks. It works by splitting all the sensi-
tive variables occurring during the computations into d + 1 shares. Its security
proofs (such as given, e.g. for the CHES 2010 scheme of Rivain and Prouff [24])
c© Springer International Publishing Switzerland 2015
M. Joye and A. Moradi (Eds.): CARDIS 2014, LNCS 8968, pp. 64–81, 2015.
DOI: 10.1007/978-3-319-16763-3 5

On the Cost of Lazy Engineering for Masked Software Implementations 65

ensure the so-called dth-order property, which requires that every tuple of at
most d intermediate variables in the implementation is independent of any sen-
sitive variable. Ensuring this property (ideally) guarantees that the smallest
key-dependent statistical moment in the leakage distribution is d + 1. It has
been shown (in different, more or less specialized settings [6,10,21,27]) that the
data complexity of side-channel attacks against such implementations increases
exponentially with the number of shares. More precisely, in the usual context of
(close to) Gaussian noise, this data complexity is proportional to (σ2

n)d, with σ2
n

the noise variance. In practice though, security proofs for masking heavily rely
on an independence assumption. Namely, the (ideal) hope is that the leakage
function manipulates the shared intermediate variables independently. When-
ever this assumption is not fulfilled, all bets are off regarding the security of the
implementation. For example, a leakage function that would re-combine the dif-
ferent shares would directly lead to an implementation that is as easy to attack as
an unprotected one. As a result, the main question for the proofs in [6,10,21] to
provide concrete security improvements is whether this assumption is respected
in practice.

Unfortunately, experiments have shown that the independent leakage assump-
tion does not always hold in actual hardware and software. Many physical effects
can be the cause of this issue. For hardware implementations, glitches are a
well-identified candidate [15]. For software implementations, the problem more
frequently comes from memory transitions (e.g. captured by a Hamming dis-
tance model) [8]. From this empirical observation, different strategies could be
followed. One can naturally try to enforce independent leakages at the hard-
ware or software level, but current research rather concludes negatively in both
cases [8,17]. A more promising approach is to deal with the problem at the algo-
rithmic level. For example, threshold implementations and solutions based on
multi-party computations can provide “glitch-resistance” [20,25]. But the first
solution is rather specialized to hardware devices (see, e.g. [5,18] for applications
to the AES), while the second one implies strong performance overheads [12]. In
the following, we pursue a third direction for the software case, and investigate
the security guarantees that can be obtained if we simply ignore the problem.

For this purpose, we start by formalizing the types of leakage functions that
can be encountered in practice (namely value-based vs. transition based, generic
vs. specific). As any formalization effort, we do not claim that it perfectly corre-
sponds to actual measurements. Yet, we will show that it captures some impor-
tant physical effects to a sufficient extent for our conclusions to be supported by
practical experiments. Next, our first contribution is to provide a couple of reduc-
tions from security claims obtained for one type of leakage functions to security
claims for another type. Our most interesting result shows that a dth-order secu-
rity proof obtained against value-based leakages leads to a �d

2�th-order security
proof against transition-based ones. As the main question for such reductions
to be relevant is whether they can be confirmed by actual implementations,
our second and main contribution is to provide a comprehensive analysis of two
case-studies of masked software (namely, in an Atmel AVR and an 8051 micro-
controller). More precisely, we show empirical evidence that implementations

66 J. Balasch et al.

masked with one mask (two shares) and proved first-order secure against value-
based leakages are insecure in our devices with transition-based leakages, while
two-mask (three-share) ones are indeed first-order secure in the same context.
Furthermore, we show that our conclusions hold both for handwritten assembly
codes and for C code compiled with various flags. We also study the impact
of recycled randomness in these case studies. We finally combine these security
analyses with an evaluation of the performance overheads due to the increased
number of shares needed to reach a given masking order, and sub-optimally
compiled codes.

Besides their theoretical interest, we believe these conclusions are important
for security engineers, since they answer a long standing open question regarding
the automated insertion of countermeasures against side-channel attacks. Our
proofs and experiments suggest that a single C code of a masked block cipher can
indeed provide concrete security on two different devices, at the cost of an artifi-
cially increased number of shares. The overheads caused by this increased order
correspond to the “cost of lazy engineering” suggested by our title, which is to
balance with the significant gains in terms of development time that automation
allows. As a result and maybe most importantly, these results validate an impor-
tant line of research trying to exploit compilers to replace the manual insertion
of countermeasures by expert developers [4,19,23]. Our findings suggest that
such an approach can be feasible for masking.

2 Definitions

Following previous works on masking, we denote any key-dependent intermedi-
ate variable appearing in an unprotected implementation as a sensitive variable.
Taking the example of the secure multiplication of two shared secrets in Algo-
rithm 1 in [24], a and b are sensitive variables.

We further denote as intermediate variables the set of all the variables appear-
ing in a masked implementation, bar loop counters. These intermediate variables
should not be sensitive if masking is well implemented, since each share should
be independent of the key in this case. For example, the set of intermediate
variables in Algorithm 1 in [24] is given by:

V = {ai} ∪ {bi} ∪ {ri,j} ∪ {ai × bj} ∪ {ri,j ⊕ ai × bj}
∪ {aj × bi} ∪ {(ri,j ⊕ ai × bj) ⊕ aj × bi} ∪ {ai × bi}
∪ {ai × bi ⊕i−1

j=0 [(ri,j ⊕ ai × bj) ⊕ aj × bi] ⊕d
j=i+1 ri,j}. (1)

The security proof of the masking scheme in [24] (and following works) was
typically obtained for value-based leakage functions that we define as follows:

Definition 1 (Value-Based Leakage Functions). Let V be a set of interme-
diate variables and L(.) = Ld(.)+N be a leakage function made of a deterministic
part Ld(.) and an (additive) random noise N . This leakage function is value-based
if its deterministic part can only take values v ∈ V as argument.

On the Cost of Lazy Engineering for Masked Software Implementations 67

By contrast, the flaws in [8] come from the fact that the software implementation
considered by the authors was leaking according to a Hamming-distance model.
The following transition-based leakage functions aim at formalizing this issue:

Definition 2 (Transition-Based Leakage Functions). Let V be a set of
intermediate variables and T := {v⊕v′ | v, v′ ∈ V}∪V be the set of all the transi-
tions between these intermediate variables. A leakage function L(.) is transition-
based if its deterministic part Ld(.) can only take values t ∈ T as argument.

Note that this type of transitions, based on the bitwise XOR between the val-
ues v and v′, is motivated by practical considerations (since it generalizes the
Hamming distance model). Yet, even more general types of transitions, e.g. the
concatenation v||v′, would not change our following conclusions – it would only
make the bound of Theorem 1 more tight in certain cases (see next).
We further define generic vs. specific leakage functions as follows:

Definition 3 (Generic Leakage Functions). A value-based (resp. transition-
based) leakage function associated with an intermediate variable v ∈ V (resp.
transition t ∈ T) is generic if its deterministic part is a nominal mapping from
this variable to a leakage variable ld ∈ Ld, such that the set of deterministic
leakages Ld has the same cardinality as the set of values V (resp. transitions T).

The identity mapping is a typical example of generic leakage function1.

Definition 4 (Specific Leakage Functions). A value-based (resp. transition-
based) leakage function associated with an intermediate variable v ∈ V (resp.
transition t ∈ T) is specific if its deterministic part is a mapping from this
variable to a leakage variable ld ∈ Ld, such that the set of deterministic leakages
Ld has smaller cardinality than the set of values V (resp. transitions T).

The frequently considered Hamming weight and distance functions are typical
examples of specific (value-based and transition-based) leakage functions.

3 Reductions

From these definitions, a natural question is whether a proof of security obtained
within one model translates into a proof in another model. As we now detail,
three out of the four possible propositions are trivial (we recall them for com-
pleteness). The last one is more intriguing and practically relevant.

Lemma 1. A proof of dth-order side-channel security obtained within a generic
model implies a proof of dth-order security in a specific model.

Proof. This directly derives from Definitions 3 and 4. By moving from one to
the other, we only reduce the amount of information provided to the adversary
(since we reduce the cardinality of the set of possible deterministic leakages).

1 This definition differs from the one of “generic power model” in [3] since it relates
to the leakage function, while the latter one relates to the adversary’s model.

68 J. Balasch et al.

Lemma 2. A proof of dth-order security obtained within a specific model does
not imply a proof of dth-order security in a generic model.

Proof. A counterexample can be found in [13] for low-entropy masking schemes.

Lemma 3. A proof of dth-order side-channel security obtained within a
transition-based model implies a proof of dth-order security in a value-based model.

Proof. Similarly to Lemma 1, this directly derives from Definitions 1 and 2. By
moving from one to the other, we only reduce the amount of information provided
to the adversary (since we reduce the input range of the leakage function).

We will need the following lemma to prove our last result.

Lemma 4. The information obtained from any subset of at most �d
2� elements

in a set T can be obtained from a subset of d elements in a set V.
Proof. Let ST ⊂ T such that #(ST) < �d

2�. We show that ∃ SV ⊂ V such that
#(SV) < d, and ST can be built from SV as follows (with #(.) the cardinality of
a set). ∀t ∈ ST , if t ∈ V, then SV = SV ∪{t}, else ∃ v, v′ ∈ V such that t = v ⊕v′

and SV = SV ∪ {v, v′}. Since #(ST) < �d
2�, and we add at most 2 elements in

SV per element in ST , we directly have that #(SV) < d.

It directly leads to the following theorem:

Theorem 1. A proof of dth-order side-channel security obtained within a value-
based model implies a proof of �d

2�th-order security in a transition-based model.

Proof. If there existed a subset of transitions ST with less than �d
2� elements

which can be used to mount a successful side-channel attack, then there would
exist a subset SV with less than d elements that can be used to mount a successful
side-channel attack as well. As this second attack is impossible by hypothesis,
such a set ST cannot exist and the implementation is at least �d

2�th-order secure.

This bound is tight for Boolean masking. If x = v0⊕v1⊕ . . . vd−1⊕vd, we can see
that x = t0 ⊕ · · · ⊕ t� d

2 �, with ti = v2i ⊕ v2i+1 for 0 ≤ i < �d
2� and t� d

2 � = vd if d

even, and t� d
2 � = vd−1⊕vd if d is odd. By contrast, it is not tight for other types of

masking schemes such as inner product or polynomial [1,22]. However, it would
be tight even for those masking schemes in the context of concatenation-based
transitions (i.e. if using v||v′ rather than v ⊕ v′ in Definition 2).

4 Experiments

In view of the simplicity of Theorem 1, one can naturally wonder whether it
captures real-world situations. That is, is it sufficient for a careless designer
to double the security order to obtain some guarantees for his masked imple-
mentations? In the rest of the paper, we investigate this question in various
practically-relevant scenarios. For this purpose, we will focus on secure S-box

On the Cost of Lazy Engineering for Masked Software Implementations 69

Algorithm 1. Masked key addition and inversion.
Require: Shares (p0i)i, (p

1
i)i, (k

0
i)i, (k

1
i)i satisfying ⊕ip

0
i = p0,⊕ip

1
i = p1,⊕ik

0
i =

k0,⊕ik
1
i = k1; with k0 fixed and k1 �= k0 fixed

Ensure: Shares (c0i), (c
1
i) satisfying ⊕ic

0
i = (p0 ⊕ k0)−1,⊕ic

1
i = (p1 ⊕ k1)−1

1: for i from 0 to 1 do
2: for j from 0 to d do
3: xj ← pij ⊕ ki

j

4: end for
5: (ci0, . . . , c

i
d) ← SecInv(x0, . . . , xd)

6: end for

computations. As explained in [24], this is usually the most challenging part
of a masked block cipher. In the case of AES that we will consider next, the
method exploits a representation of the S-box with power functions in GF(28) ≡
GF(2)[x]/x8 +x4 +x3 +x+1 (see Algorithm 3 in [24]). We will implement it for
two key additions followed by two inversions (see Algorithm 1). Note that we are
aware that the masked inversion scheme proposed by Rivain and Prouff exhibits
a small bias as presented by Coron et al. in [9], however, this does not affect our
results and conclusions, as explained in the full version of this paper [2].

Concretely, we made several implementations of Algorithm 1, which is com-
plex enough to exercise registers, ALU, RAM and ROM. Note that we provide
input plaintext and key bytes to the implementations in d + 1 shares each. This
ensures that the device does not process unmasked variables, unless the shares
are explicitly combined by the implementation, which is highly relevant for our
testing procedure. We investigate the impact of the following parameters:

– Programming language: we contrast handwritten assembly (ASM) and com-
piled C code. For both ASM and C we implemented straightforwardly with
little attention to secure the implementations.

– Device architecture: we provide results for an Atmel AVR and for an 8051
compatible microcontroller.

– Compiler flags: we assess the impact of compiler flags. We compiled the C code
with default options and with several combinations of flags that influence the
degree of optimization as well as the order in which registers are assigned.

– Masking order: we implemented everything for d = 1 (2 shares) and for d = 2
(3 shares).

– Mask re-use: since randomness is expensive on low cost microcontrollers an
implementer might decide to re-use random masks. We contrast implementa-
tions that use fresh randomness for the processing of each input byte (initial
masking, SecMult, RefreshMasks) and implementations that recycle the ran-
domness from the processing of the first byte for the processing of the second
byte. Since our microcontrollers do not have an internal source of randomness,
we provide uniformly distributed random numbers from the measurement PC.

70 J. Balasch et al.

4.1 Implementation Details

Our main target platform is an AVR ATmega163 microcontroller in a smart
card body. It internally provides 16 kBytes of flash memory and 1 kByte of
data memory. Implementations are processed by avr-gcc (ver. 4.3.3) from the
WinAVR tools (ver. 20100110).

The implementation of the secure inversion requires support for arithmetic in
the finite field GF(28). Multiplication over GF(28) is implemented using log and
alog tables [28]. This method requires two read-only tables of 256 bytes each and
allows to compute the product of two non-zero field elements in 3 table lookups.
Since a straightforward implementation of this technique may exhibit SPA leak-
age when handling 0 inputs, we implemented an SPA-resistant version of Kim
et al. as in [14]. This version, illustrated in Algorithm 2, avoids if/else state-
ments and expresses the logical conditions in the form of elementary arithmetic
operations.

Algorithm 2. SPA-resistant multiplication over GF(28) [14].
Require: Field elements a, b ∈ GF(28), log and alog tables
Ensure: Field element a × b ∈ GF(28)
1: (c, s) = log[a] + log[b] /* c holds carry bit, s the lower 8 bits */
2: r = alog[c + s]
3: return (a&&b) · r /* && indicates logical AND condition */

Assembly. Our assembly implementations are tailored to the target AVR archi-
tecture and optimized for speed. We have developed codes for each of the tested
masking orders, i.e. one for d = 1 and one for d = 2. Our routine for field mul-
tiplication takes 22 cycles. More than a third of this time is devoted to achieve
a constant flow of operations to securely implement line 3 in Algorithm 2. Both
log and alog tables are stored in program memory. All raisings to the power of
two are implemented as lookup tables in program memory. While this requires
the storage of 3×256 = 768 bytes, it results in a significant performance increase.
Further speed-ups are achieved by aligning all tables on a 256 byte boundary
(0× 100). This ensures all addresses of the cells differ only in the lower byte and
allows for more efficient handling of pointers.

C language. One of the goals of our experiments is to devise and evaluate
platform-independent C code. Declaring and accessing program memory arrays
in AVR requires the use of special attributes in avr-gcc2. Consequently, we
cannot take advantage of storing lookup tables in program memory and the
implementation becomes more restricted in terms of storage than its ASM coun-
terpart. Our C routine for multiplication over GF(28) follows the code given in
Algorithm 2. The two log and alog tables take half of the available space in
RAM. Because of this we opt to perform field squarings as field multiplications,
2 See http://www.nongnu.org/avr-libc/user-manual/pgmspace.html.

On the Cost of Lazy Engineering for Masked Software Implementations 71

i.e. without using lookup tables. This saves 768 bytes of memory arrays with
respect to the assembly implementations, but results in larger execution times
and more randomness requirements.

4.2 Testing Procedure

The security evaluation of cryptographic implementations with respect to side-
channel attacks is a topic of ongoing discussions and an open problem. Since long,
implementations are evaluated (in academia) by testing their resistance to state-
of-the-art attacks. However, it is well known that this is a time-consuming task
with potentially high data and computational complexity. In addition, an imple-
mentation that resists known attacks may still have vulnerabilities that can be
exploited by new attacks. Hence, this style of evaluation can lead to a false sense
of security, but it also stimulates improvements of the state-of-the-art. In 2009,
Standaert et al. [26] proposed a framework for the evaluation of cryptographic
implementations w.r.t. side-channel attacks. For univariate analysis (i.e. analysis
of each time sample separately), their information-theoretic metric shows how
much information is available to an attacker in a worst-case scenario. It directly
corresponds to the success rate of a (univariate) template attack adversary and
captures information present in any statistical moment of the leakage distribu-
tions. For multivariate analysis (i.e. joint analysis of time samples) the technique
relies on heuristics regarding the selection of time samples, just as well as all
state-of-the-art attacks. The technique has strong requirements w.r.t. data and
computational complexity. For our evaluations, computing the metric is beyond
feasible, but it would also be inappropriate as we are interested in testing specific
statistical moments of the measured distributions for evidence of leakage (while
a worst-case evaluation typically exploits all the statistical moments jointly).
We therefore adopt the relatively novel approach to evaluation called leakage
detection. Contrary to the classical approach of testing whether a given attack is
successful, this approach decouples the detection of leakage from its exploitation.
And contrary to the IT metric, this approach can be tuned in order to evaluate
specific statistical moments of the measured distributions.

For our purpose we use the non-specific t-test based fixed versus random
leakage detection methodology of [7,11]. It has two main ingredients: first, chosen
inputs allow to generate two sets of measurements for which intermediate values
in the implementation have a certain difference. Without making an assumption
about how the implementation leaks, a safe choice is to keep the intermediate
values fixed for one set of measurements, while they take random values for the
second set. The test is specific, if particular intermediate values or transitions
in the implementation are targeted (e.g. S-box input, S-box output, Hamming
distance in a round register, etc.). This type of testing requires knowledge of
the device key and carefully chosen inputs. On the other hand, the test is non-
specific if all intermediate values and transitions are targeted at the same time.
This type of testing only requires to keep all inputs to the implementation fixed
for one set of measurements, and to choose them randomly for the second set.
Obviously, the non-specific test is extremely powerful. The second ingredient is

72 J. Balasch et al.

a simple, robust and efficiently computable statistical test to determine if the
two sets of measurements are significantly different (to be made precise below).

In our experiments, all implementations receive as input 4(d + 1) shares
(p0i)i, (p1i)i, (k0

i)i, (k1
i)i of the plaintext and key bytes. The (unshared) key bytes

(k0, k1) are fixed with k0 �= k1. We obtain two sets of measurements from each
implementation. For the first set, we fix the values p0 = k0 and p1 = k1 such
that, without masking, the input of the inversion function would be zero, which
is likely to be a “special” case. Indeed, all the intermediate results through the
exponentation to the power of 254 would be zero. We denote this set Sfixed.
For the second set, the values of p0 and p1 are drawn at random from uniform.
We denote this set Srandom. Note that we obtain the measurements for both
sets interleaved (one fixed, one random, one fixed, one random, etc.) to avoid
time-dependent external and internal influences on the test result. A power trace
covers the execution of steps 1 to 6 in Algorithm 1.

We then compute Welch’s (two-tailed) t-test:

t =
μ(Sfixed) − μ(Srandom)√

σ2(Sfixed)
#Sfixed

+ σ2(Srandom)
#Srandom

, (2)

(where μ is the sample mean, σ2 is the sample variance and # denotes the
sample size) to determine if the samples in both sets were drawn from the same
population (or from populations with the same mean). The null hypothesis is that
the samples in both sets were drawn from populations with the same mean. In
our context, this means that the masking is effective. The alternative hypothesis
is that the samples in both sets were drawn from populations with different
means. In our context, this means that the masking is not effective.

At each point in time, the test statistic t together with the degrees of freedom
ν, computed with the Welch-Satterthwaite equation allow to compute a p value
to determine if there is sufficient evidence to reject the null hypothesis at a
particular significance level (1 − α). The p value expresses the probability of
observing the measured difference (or a greater difference) by chance if the null
hypothesis was true. In other words, small p values give evidence to reject the
null hypothesis.

As in any evaluation, one is left with choosing a threshold to decide if an
observed difference is significant or not. Typical significance levels in statistics
are 0.05 and 0.00001 [16]. However, here we aim at choosing the threshold in a
less arbitrary, data-driven way. To this end, we run a test “random-vs-random”.
In this test, measurements in both groups come from the same population (pop-
ulation of traces with random plaintext) so we know that the null hypothesis
is true. We compute the test statistic t based on a random partition into two
groups, keep its largest absolute value and repeat the experiment 200 times,
each iteration with a fresh random partition into two sets. The highest absolute
t-value we observed was 5.6088. For orientation, note that for large sample sizes
the probability to observe a single t-value with absolute value ≥ 4.5 by chance
is approximately 0.001 % [11]. The fact that we observe several t-values with
absolute value ≥ 5 by chance can be attributed to the length of the traces we

On the Cost of Lazy Engineering for Masked Software Implementations 73

used for this test (5 million time samples). In light of this result, we select a
conservative threshold of ±5 for the statistic t in all experiments to determine
if an observed difference in means of the two sets is significant or not.

Further, also this type of evaluation is limited by the number of measurements
at hand. In case the test does not show sufficient evidence of leakage, repeating
the same evaluation with more measurements might do.

4.3 Security Results

We measure the power consumption of the AVR platform as the voltage drop
over a 50 Ohm shunt resistor placed in the GND path. For all code evaluations
we set the device’s clock at 3.57 MHz and the oscilloscope’s sampling rate at
250 MS/s. Results are presented in form of plots of t-values on the y-axis and time
on the x-axis. Recall that the t-test is applied to each time sample individually.
Superposed, we plot a threshold of ±5 for the statistic t. For clarity, we include an
auxiliary trigger signal in the upper part of the figure to indicate the beginning
and the end of each byte’s processing, i.e. masked key addition followed by
masked field inversion.

Assembly. We begin by evaluating the AVR assembly implementation corre-
sponding to the masking order d = 1 (two shares). The results are shown in Fig. 1.
The first input byte is processed until time sample ≈ 3×104, while processing of
the second byte starts at time sample ≈ 4×104. The left plot corresponds to the
implementation with fresh randomness. The right plot is the result for recycled
randomness. Both experiments are performed using a set of 1 000 measurements:
500 corresponding to Sfixed and 500 corresponding to Srandom.

1 2 3 4 5 6

x 10
4

−50

0

50

Time samples
1 2 3 4 5 6

x 10
4

−50

0

50

Time samples

Fig. 1. T-test evaluation. Assembly, d = 1. Left: fresh randomness, 1 k traces. Right:
recycled randomness, 1 k traces. Clear evidence of first-order leakage.

Figure 1 shows clear excursions of the t-test statistic beyond the defined
thresholds, rejecting the null hypothesis. This indicates the existence of obvi-
ous univariate first-order leakage, in the form of identical patterns in each byte
processing. There is no appreciable difference between using fresh versus recy-
cled randomness. The outcome of this first experiment is however not surprising:
as our platform is known to leak transitions, a (straightforward) implementa-
tion with masking order d = 1 is likely to be vulnerable to univariate attacks

74 J. Balasch et al.

(see, e.g. [8] for similar findings). Perhaps more important, the results of the
evaluation serve to validate the soundness of our testing methodology.

The situation changes when we evaluate the case d = 2 (three shares), as
illustrated in Fig. 2. Even by increasing the number of measurements to 10 000,
the t-test does not reject the null hypothesis for both scenarios. This indicates
that any attack exploiting univariate first-order information (i.e., mean traces
for each unshared value) is expected to fail, since there is no information about
intermediate values in the first statistical moment. Interestingly, this result shows
a first constructive application of Theorem 1. Starting with an implementation
with second-order security in a value-based leakage model, we are able to achieve
first-order security on a device with a transition-based leakage behavior. Finally,
note that all our claims regarding the evaluation for d = 2 are restricted to first-
order scenarios. In fact, attacks exploiting second or higher statistical moments
are expected to succeed in breaking the implementation. We addressed this point
in more detail in page 16 (together with the previously mentioned flaw exhibited
at FSE 2013). Besides, and as already mentioned, all evaluations are inherently
limited to the number of measurements at hand. In this respect, one may imagine
that more measurements would allow detecting a first-order leakage. Yet, we
note that in all our following experiments, whenever we claim no evidence of
first-order leakages, second-order leakages were identified with confidence. This
suggests that even if first-order leakages could be detected, their informativeness
would be limited compared to second-order ones.

2 4 6 8 10 12

x 10
4

−6

−4

−2

0

2

4

6

Time samples
2 4 6 8 10 12

x 10
4

−6

−4

−2

0

2

4

6

Time samples

Fig. 2. T-test evaluation. Assembly, d = 2. Left: fresh randomness, 10 k traces. Right:
recycled randomness, 10 k traces. No evidence of first-order leakage.

C language. A natural follow-up question is whether the results obtained so far
hold for the case of C implementations. In the following we evaluate the results
of our platform-independent C code. For the first set of tests we initially switch
off the avr-gcc compiler flags for optimization, i.e. we use the option -O0.

Figure 3 shows the results obtained for the case d = 1 (two shares). As
expected, the evaluation of the d = 1 implementation on our AVR platform
indicates univariate first-order leakage. This result is consistent with its assembly
counterpart. The main difference is that the absolute value of the statistic t at
time samples beyond the ±5 threshold is smaller, probably due to the leakage
being more scattered. After all, code resulting from compiling C is expected

On the Cost of Lazy Engineering for Masked Software Implementations 75

to be more sparse code than concise, hand-crafted assembly. Illustrative of this
effect is also the considerable increase in length of our measurements, from 70 000
samples to 1 200 000 samples.

2 4 6 8 10

x 10
5

−20

−10

0

10

20

Time samples
2 4 6 8 10

x 10
5

−20

−10

0

10

20

Time samples

Fig. 3. T-test evaluation. C, no flags, d = 1. Left: fresh randomness, 1 k traces. Right:
recycled randomness, 1 k traces. Clear evidence of first-order leakage.

The results obtained for d = 2 (three shares) are given in Fig. 4. Here we
observe a substantial difference between the fresh randomness and recycled ran-
domness scenarios. While the left plot does not exhibit excursions beyond the
threshold, the right plot does unexpectedly suggest clear univariate leakage. In
fact, the statistic t shows a particular pattern not bound to a few time samples.
Rather differently, it gradually increases over time and it only appears during
the second half of the trace, i.e. during the processing of the second input byte
with recycled randomness.

0.5 1 1.5 2

x 10
6

−6

−4

−2

0

2

4

6

Time samples
0.5 1 1.5 2

x 10
6

−6

−4

−2

0

2

4

6

Time samples

Fig. 4. T-test evaluation. C, no flags, d = 2. Left: fresh randomness, 10 k traces. Right:
recycled randomness, 10 k traces. Evidence of first order leakage.

We have verified that these results are caused by a non-constant time behav-
ior of our compiled code. Although our C routines are written following seemingly
constant-time and SPA-resistant algorithms [14], the avr-gcc compiler gener-
ates code with conditional execution paths. More specifically, the compiler trans-
forms the Boolean evaluation a&&b into a series of TST (test for zero and minus)
and BREQ (branch if equal) commands in assembly, regardless of the choice of
compiler flags. This results in variable execution time (and flow) depending on

76 J. Balasch et al.

the value(s) of the input(s). From this, we conclude that the pseudo-code given
in Algorithm 2 is equivalent to the original use of if / else statements, and
therefore fails in providing resistance against SPA.

Note that it is unclear whether this leakage due to time variations can be
exploited by univariate first-order attacks. While any practically exploitable first-
order leakage will show up in the statistic t, the contrary is not true, i.e. not
all leakage identified by the t-test may be practically exploitable. In order to
confirm the identified origin of the leakage, we implement a new C routine for
multiplication in GF (28) that does not directly evaluate the Boolean condition
a&&b. Instead, our code follows a series of time-constant operations which are
equivalent to the Boolean statement. The results obtained from evaluating this
code are depicted in Fig. 5. No obvious leakage is observed in either of the two
scenarios, verifying that the shapes in Fig. 4 are indeed caused by misalignments
due to timing differences. As a downside, note that the performance of our
platform-independent SPA-resistant code degrades significantly. The number of
samples per measurement increases from 2 500 000 to 8 500 000, which in turn
makes our analyses more difficult to carry out.

2 4 6 8

x 10
6

−6

−4

−2

0

2

4

6

Time samples
2 4 6 8

x 10Time samples

−6

−4

−2

0

2

4

6

Fig. 5. T-test evaluation. C, no flags, d = 2, secure routine for multiplication in GF (28).
Left: fresh randomness, 10 k traces. Right: recycled randomness, 10 k traces. No evi-
dence of first-order leakage.

These results are interesting since they moderate the applicability of Theo-
rem 1 for compiled codes. That is, while this theorem nicely predicts the impact
of transition-based leakages on the security order of our implementations, it
does not prevent the existence of other flaws due to a careless implementation
leading to data-dependent execution times. That is, whenever taking advantage
of compilers, designers should still pay attention to avoid such SPA flaws, e.g.
by ensuring constant-time implementations. Note that this remains an arguably
easier task than ensuring DPA security, which therefore maintains the interest
of our theorem even in this case.

Compiler options. A relevant scenario for the security evaluation of C code is
to determine the impact of compiler flags. To this end, we provide the security
evaluation for different compilation processes with avr-gcc. In particular, we
analyze the effects for different degrees of optimization (flag -O) and for different

On the Cost of Lazy Engineering for Masked Software Implementations 77

1 2 3 4

x 10
6

−6

−4

−2

0

2

4

6

Time samples
1 2 3 4

x 10
6

−6

−4

−2

0

2

4

6

Time samples

Fig. 6. T-test evaluation. C, -O1, d = 2. Left: fresh, right: recycled randomness.

1 2 3 4

x 10
6

−6

−4

−2

0

2

4

6

Time samples
1 2 3 4

x 10
6

−6

−4

−2

0

2

4

6

Time samples

Fig. 7. T-test evaluation. C, -O2, d = 2. Left: fresh, right: recycled randomness.

2 4 6 8 10 12 14

x 10
5

−6

−4

−2

0

2

4

6

Time samples
2 4 6 8 10 12 14

x 10
5

−6

−4

−2

0

2

4

6

Time samples

Fig. 8. T-test evaluation. C, -O3, d = 2. Left: fresh, right: recycled randomness.

assignment of registers (flag -morder). As can be seen in Figs. 6, 7 and 8, these
changes do not significantly affect our security conclusions.

They do have however quite strong impact on the performance, in terms of
both code size and cycle count. A detailed summary of the performance figures
for each of the 30 combinations of compiler flags and masking orders is provided
in Table 1. As one may expect, the implementations leading to a better speed vs.
memory trade-off are programmed in assembly. The fastest C implementations
(with flag -O3) are ten times slower than their assembly counterpart. Recall that
due to data memory constraints, C implementations perform field squaring as
field multiplication. In addition, achieving a time and flow constant implemen-
tation of Algorithm 1 in [24] in C is more complex than in assembly. In fact,
while a multiplication over GF (28) in assembly takes 22 cycles, the fastest one
achieved in C (again with flag -O3) requires 150 cycles. This explains the great
difference in performance numbers.

78 J. Balasch et al.

Table 1. Implementation results for masking order d = 1 (left) and d = 2 (right).

Other platforms. A final question of interest is whether the previous results
hold for devices other than AVR. To this end, we perform a second set of exper-
iments with the C implementations on an 8051 processor. Our results confirm
that this is indeed the case, albeit with certain differences regarding the shape
of the statistic t and the number of traces required to achieve clear results.

In this setup, both program and data memory are provided as external com-
ponents. We process our C implementations using the Keil C51 toolchain (v9.02)
and setting the compiler flags to speed optimization. The ASIC core is clocked
at 7 MHz and the sampling rate of the oscilloscope is set at 250 MS/s. Power
measurements are obtained by capturing the voltage drop over a 50 Ohm resistor
in the Vdd path.

The evaluation results are illustrated in Fig. 9 for the case of fresh random-
ness. The left plot depicts the outcome of the t-test for d = 1 (2 shares). The
existence of univariate first-order leakage is confirmed by clear peaks appearing
symmetrically along the processing of each byte. The shape of the excursions
beyond the ±5 threshold is different than the one obtained for the AVR. Also,
we need to evaluate the t-test with a larger number of measurements in order to
clearly detect first-order leakage. As usual in the context of empirical evaluations,
such a situation is hard to explain formally. Nevertheless, we believe two main
reasons are the cause for this. First, the more noisy nature of the measurement
setup. And second, the less leaky behavior of the targeted 8051 core. For the sake
of completeness, we present the results for d = 2 (3 shares) in the right plot of
Fig. 9. Similar to AVR, there is no evidence of univariate first-order leakage after
processing 10 000 traces. Although we expect bivariate second-order leakage to
be present in these measurements, we have not attempted to detect it. The rea-
son for this is the expensive computation and storage required to jointly process
all possible sample pairs within such long traces (of millions of time samples).

On the Cost of Lazy Engineering for Masked Software Implementations 79

0.5 1 1.5 2

x 10
6

−10

−5

0

5

10

−10

−5

0

5

10

Time samples x 10
6Time samples

1 2 3 4

Fig. 9. T-test evaluation. C, no flags, 8051 platform, fresh randomness. Left: d = 1,
10 k traces. Right: d = 2, 10 k traces. First-order leakage visible only in the left plot.

Bivariate leakage. The bivariate second-order analysis can be found in the
extended version of this paper [2] which can be found online here: http://
eprint.iacr.org/2014/413. We successfully identified bivariate second-order leak-
age using a t-test based methodology. This is an expected result, and it serves to
confirm that we indeed used enough traces for the previous univariate first-order
analysis. For details, we refer the reader to the extended version of this paper.

5 Concluding Remarks

Confirmed by numerous experiments, the results in this paper first suggest a
simple and natural way to convert security proofs obtained against value-based
leakage models into security guarantees of lower order against transition-based
ones. As a result, they bring a theoretical foundation to recent approaches to
side-channel security, trying to automatically insert countermeasures such as
masking in software codes. From a pragmatic point of view though, this positive
conclusion should be moderated. On the one hand, just looking at the security
order, we see that compiled codes can bring similar guarantees as handwritten
assembly. On the other hand, reaching such a positive result still requires paying
attention to SPA leakages (e.g. data-dependent execution times). Furthermore,
compiled codes generally imply significant performance overheads. Yet, we hope
that our results can stimulate more research in the direction of design automa-
tion for side-channel resistance, combining low development time and limited
implementation overheads.

Acknowledgements. F.-X. Standaert is a research associate of the Belgian Fund for
Scientific Research (FNRS-F.R.S.). Oscar Reparaz is funded by a PhD fellowship of the
Fund for Scientific Research - Flanders (FWO). Benedikt Gierlichs is a Postdoctoral
Fellow of the Fund for Scientific Research - Flanders (FWO). This work has been funded
in parts by the European Commission through the ERC project 280141 (CRASH), by
the Hercules foundation (AKUL/11/19) and by the Research Council KU Leuven: GOA
TENSE (GOA/11/007).

80 J. Balasch et al.

References

1. Balasch, J., Faust, S., Gierlichs, B., Verbauwhede, I.: Theory and practice of a
leakage resilient masking scheme. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012.
LNCS, vol. 7658, pp. 758–775. Springer, Heidelberg (2012)

2. Balasch, J., Gierlichs, B., Grosso, V., Reparaz, O., Standaert, F.-X.: On the cost of
lazy engineering for masked software implementations. Cryptology ePrint Archive,
Report 2014/413 (2014). http://eprint.iacr.org/

3. Batina, L., Gierlichs, B., Prouff, E., Rivain, M., Standaert, F.-X.,
Veyrat-Charvillon, N.: Mutual information analysis: a comprehensive study.
J. Cryptology 24(2), 269–291 (2011)

4. Bayrak, A.G., Regazzoni, F., Bruna, D.N., Brisk, P., Standaert, F.-X., Lenne, P.:
Automatic application of power analysis countermeasures. IEEE Trans. Comput.
99(PrePrints), 1 (2013)

5. Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: A more effi-
cient AES threshold implementation. In: Pointcheval, D., Vergnaud, D. (eds.)
AFRICACRYPT. LNCS, vol. 8469, pp. 267–284. Springer, Heidelberg (2014)

6. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to coun-
teract power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol.
1666, pp. 398–412. Springer, Heidelberg (1999)

7. Cooper, J., DeMulder, E., Goodwill, G., Jaffe, J., Kenworthy, G., Rohatgi, P.: Test
Vector Leakage Assessment (TVLA) methodology in practice. In: International
Cryptographic Module Conference (2013). http://icmc-2013.org/wp/wp-content/
uploads/2013/09/goodwillkenworthtestvector.pdf

8. Coron, J.-S., Giraud, C., Prouff, E., Renner, S., Rivain, M., Vadnala, P.K.: Conver-
sion of security proofs from one leakage model to another: a new issue. In: Schindler,
W., Huss, S.A. (eds.) COSADE 2012. LNCS, vol. 7275, pp. 69–81. Springer,
Heidelberg (2012)

9. Coron, J.-S., Prouff, E., Rivain, M., Roche, T.: Higher-order side channel security
and mask refreshing. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp. 410–424.
Springer, Heidelberg (2014)

10. Duc, A., Dziembowski, S., Faust, S.: Unifying leakage models: from probing attacks
to noisy leakage. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS,
vol. 8441, pp. 423–440. Springer, Heidelberg (2014)

11. Goodwill, G., Jun, B., Jaffe, J., Rohatgi, P.: A testing methodology for side
channel resistance validation. NIST non-invasive attack testing workshop (2011).
http://csrc.nist.gov/news events/non-invasive-attack-testing-workshop/papers/
08 Goodwill.pdf

12. Grosso, V., Standaert, F.-X., Faust, S.: Masking vs. multiparty computation: how
large is the gap for AES? In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS,
vol. 8086, pp. 400–416. Springer, Heidelberg (2013)

13. Grosso, V., Standaert, F.-X., Prouff, E.: Low entropy masking schemes, revisited.
In: Francillon, A., Rohatgi, P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 33–43.
Springer, Heidelberg (2014)

14. Kim, H., Hong, S., Lim, J.: A fast and provably secure higher-order masking of
AES S-Box. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp.
95–107. Springer, Heidelberg (2011)

15. Mangard, S., Popp, T., Gammel, B.M.: Side-channel leakage of masked CMOS
gates. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 351–365. Springer,
Heidelberg (2005)

On the Cost of Lazy Engineering for Masked Software Implementations 81

16. Mather, L., Oswald, E., Bandenburg, J., Wójcik, M.: Does my device leak infor-
mation? an a priori statistical power analysis of leakage detection tests. In: Sako,
K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 486–505.
Springer, Heidelberg (2013)

17. Moradi, A., Mischke, O.: Glitch-free implementation of masking in modern FPGAs.
In: HOST, pp. 89–95. IEEE (2012)

18. Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the limits: a
very compact and a threshold implementation of AES. In: Paterson, K.G. (ed.)
EUROCRYPT 2011. LNCS, vol. 6632, pp. 69–88. Springer, Heidelberg (2011)

19. Moss, A., Oswald, E., Page, D., Tunstall, M.: Compiler assisted masking. In:
Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 58–75. Springer,
Heidelberg (2012)

20. Nikova, S., Rijmen, V., Schläffer, M.: Secure hardware implementation of nonlinear
functions in the presence of glitches. J. Cryptology 24(2), 292–321 (2011)

21. Prouff, E., Rivain, M.: Masking against side-channel attacks: a formal security
proof. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol.
7881, pp. 142–159. Springer, Heidelberg (2013)

22. Prouff, E., Roche, T.: Higher-order glitches free implementation of the AES using
secure multi-party computation protocols. In: Preneel, B., Takagi, T. (eds.) CHES
2011. LNCS, vol. 6917, pp. 63–78. Springer, Heidelberg (2011)

23. Regazzoni, F., Cevrero, A., Standaert, F.-X., Badel, S., Kluter, T., Brisk, P.,
Leblebici, Y., Ienne, P.: A design flow and evaluation framework for DPA-resistant
instruction set extensions. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol.
5747, pp. 205–219. Springer, Heidelberg (2009)

24. Rivain, M., Prouff, E.: Provably secure higher-order masking of AES. In: Mangard,
S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 413–427. Springer,
Heidelberg (2010)

25. Roche, T., Prouff, E.: Higher-order glitch free implementation of the AES using
secure multi-party computation protocols - extended version. J. Cryptographic
Eng. 2(2), 111–127 (2012)

26. Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analysis of
side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 443–461. Springer, Heidelberg (2009)

27. Standaert, F.-X., Veyrat-Charvillon, N., Oswald, E., Gierlichs, B., Medwed, M.,
Kasper, M., Mangard, S.: The world is not enough: another look on second-order
DPA. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 112–129. Springer,
Heidelberg (2010)

28. De Win, E., Bosselaers, A., Vandenberghe, S., De Gersem, P., Vandewalle, J.: A
fast software implementation for arithmetic operations in GF(2n). In: Kim, K.-C.,
Matsumoto, T. (eds.) ASIACRYPT 1996. LNCS, vol. 1163. Springer, Heidelberg
(1996)

Side-Channel Analysis

Efficient Stochastic Methods:
Profiled Attacks Beyond 8 Bits

Marios O. Choudary and Markus G. Kuhn(B)

Computer Laboratory, University of Cambridge, Cambridge, UK
{osc22,mgk25}@cl.cam.ac.uk

Abstract. Template attacks and stochastic models are among the most
powerful side-channel attacks. However, they can be computationally
expensive when processing a large number of samples. Various com-
pression techniques have been used very successfully to reduce the data
dimensionality prior to applying template attacks, most notably Princi-
pal Component Analysis (PCA) and Fisher’s Linear Discriminant Analy-
sis (LDA). These make the attacks more efficient computationally and
help the profiling phase to converge faster. We show how these ideas can
also be applied to implement stochastic models more efficiently, and we
also show that they can be applied and evaluated even for more than
eight unknown data bits at once.

Keywords: Side-channel attacks · Template attack · Stochastic model ·
PCA · LDA

1 Introduction

The most powerful side-channel attacks for inferring secret data (passwords,
cryptographic keys, etc.) processed inside tamper-resistant hardware use pro-
filing. An attacker first characterizes the signals leaking out of a device while
it processes known data values, thereby measuring their probabilistic relation-
ship with the resulting unintended power-supply or electromagnetic emissions
(profiling phase). The attacker can then use this leakage model to determine
the maximum-likelihood data values from the signals leaking out of an identical
device that processes unknown data (attack phase).

Two such profiling techniques have been described in the literature: the “tem-
plate attack” [1] and the “stochastic model” [2]. Template attacks are very gen-
eral in that they use all available information from the side-channel traces to
form a probabilistic model for each possible data value (Sect. 2.1). In contrast,
the stochastic method models the leakage through a small number of functions of
a data word (e.g. the value of each bit), resulting in fewer parameters to estimate,
thereby trading generality of the model for efficiency of profiling (Sect. 2.2).

One of the main difficulties with implementing these attacks is dealing with
a large number of leakage variables, such as oscilloscope traces with thousands
of samples. Several compression techniques have been proposed to reduce the
c© Springer International Publishing Switzerland 2015
M. Joye and A. Moradi (Eds.): CARDIS 2014, LNCS 8968, pp. 85–103, 2015.
DOI: 10.1007/978-3-319-16763-3 6

86 M.O. Choudary and M.G. Kuhn

dimensionality of leakage traces, while preserving most of the side-channel infor-
mation (Sect. 3). Particularly successful were the application of Principal Com-
ponent Analysis (PCA) [3] and Fisher’s Linear Discriminant Analysis (LDA) [7]
to this end. Last year [12], we presented very efficient ways of implementing tem-
plate attacks with both, and demonstrated in a detailed comparison that those
are the most efficient techniques proposed so far.

The question arises, whether similar benefits can be achieved with the stoch-
astic methods [7]. In this paper, we show how to do so, in particular how to
adapt the PCA and LDA methods to stochastic models (Sect. 4). We propose
four efficient ways for estimating the PCA and LDA parameters, to preserve the
overall efficiency of the stochastic method.

We then use the Grizzly dataset [12], which provides real data from an unpro-
tected 8-bit microcontroller, to evaluate all our methods for implementing sto-
chastic models, and we also compare them with template attacks (Sect. 5). The
results show that our methods provide indeed very efficient implementations of
stochastic models, while preserving their profiling efficiency.

Finally, we demonstrate how to profile and evaluate stochastic models simul-
taneously for more than eight bits (Sect. 6), and we show that our applications
of LDA and PCA are particularly helpful in this context.

2 Profiled Attacks

In a profiled attack (template or stochastic model), we need physical access to
a pair of identical devices, which we refer to as the profiling and the attacked
device. We wish to infer some secret value k� ∈ S, processed by the attacked
device at some point. For an 8-bit microcontroller, S = {0, . . . , 255} might be
the set of possible byte values manipulated by a particular machine instruction.

We assume that we determined the approximate moments of time when the
secret value k� is manipulated and we are able to record signal traces (e.g.
supply current or electro-magnetic waveforms) around these moments. We refer
to these traces as “raw” leakage vectors, which we write as xr′ = [x1, . . . , xmr],
where xj ∈ R (1 ≤ j ≤ mr) is a sample at time index j.1

2.1 Template Attacks

During the profiling phase we record np leakage vectors xr
ki ∈ R

mr
(1 ≤ i ≤ np)

from the profiling device for each possible value k ∈ S, and combine these as
row vectors xr

ki
′ in the leakage matrix Xr

k ∈ R
np×mr

.
Typically, the raw leakage vectors xr

ki provided by the data acquisition device
contain a large number mr of samples (random variables), due to high sampling
rates used. Therefore, we might compress them before further processing, as
explained in Sect. 3. We refer to such compressed leakage vectors as xki ∈ R

m and
combine all of these as rows into the compressed leakage matrix Xk ∈ R

np×m .
(Without a compression step, we would have Xk = Xr

k and m = mr.)
1 Throughout this paper x′ is the transpose of x.

Efficient Stochastic Methods: Profiled Attacks Beyond 8 Bits 87

Using Xk we can compute the template parameters x̄k ∈ R
m and Sk ∈

R
m×m for each possible value k ∈ S as

x̄k =
1
np

np∑

i=1

xki, Sk =
1

np − 1

np∑

i=1

(xki − x̄k)(xki − x̄k)′ =
1

np − 1
X̃k

′
X̃k,

(1)
x̄k is the sample mean, Sk is the sample covariance matrix and X̃k is the leakage
matrix Xk with x̄k subtracted from each row.

In the attack phase, we try to infer the secret value k� ∈ S processed by
the attacked device. We obtain na leakage vectors xi ∈ R

m from the attacked
device, using the same recording technique and compression method as in the
profiling phase, resulting in the leakage matrix Xk� ∈ R

na×m . Then, for each
k ∈ S, we compute a discriminant score d(k | Xk�), and try all k ∈ S on the
attacked device, in order of decreasing score (optimised brute-force search, e.g.
for a password or cryptographic key), until we find the correct k�. If the leakage
vectors xi can be modeled well by a multivariate normal distribution, which is
generally the case and what we also observed in our experiments, then the classic
approach is to use a discriminant based on the probability density function (pdf)
of this distribution:

djoint
PDF(k | Xk�) =

∏

xi∈Xk�

1√
(2π)m |Sk| exp

(
−1

2
(xi − x̄k)′S−1

k (xi − x̄k)
)

. (2)

However, if the actual covariance Σ is independent of k, we can use a pooled
sample covariance matrix [10,12]

Spooled =
1

|S|(np − 1)

∑

k∈S

np∑

i=1

(xki − x̄k)(xki − x̄k)′
, (3)

to better estimate Σ, and then use the discriminant score [6,12]

djoint
LINEAR(k | Xk�) = x̄′

kS
−1
pooled

(∑

xi∈Xk�

xi

)
− na

2
x̄′

kS
−1
pooledx̄k, (4)

which avoids numerical pitfalls and is very efficient, being linear in xi. Through-
out our experiments, described in the following sections, we observed that the
covariances Sk are indeed similar. Particular implementations that cause the
covariances Sk to be significantly different are outside the scope of this paper.

2.2 Stochastic Models

Stochastic models were introduced by Schindler et al. [2] as another kind of
profiled attack, where the profiling phase can be more efficient than for template
attacks. Here, we assume that each sample xj (1 ≤ j ≤ m) of a leakage trace xi

88 M.O. Choudary and M.G. Kuhn

is modeled as a combination of a deterministic part δj(k), which takes as input
a value k, and a random part ρj , which models the noise:2

xj = δj(k) + ρj . (5)

This model can be used to attack any target k, similarly to the template attacks
in the previous section.

The deterministic function δj(k) is modeled as a linear combination of base
functions gjb : S → R, with

δj(k) =
u−1∑

b=0

βjb · gjb(k), (6)

where βjb ∈ R. The essential idea behind stochastic models is to find a good
set of base functions that matches well the leakage of the values k. A common
and generally good option for 8-bit architectures is to use the set of u = 9 base
functions known as F9, for which gj0(k) = 1 and gjb(k) = bitb(k). We used
F9 successfully in our 8-bit experiments (Sect. 5), but in some cases, including
XORs between bits [2,4], can improve results (Sect. 6).

During profiling, instead of acquiring np leakage traces xr
ki for each candidate

k and then use (1, 3) to compute the mean vectors x̄k and covariance Spooled

needed for template attacks, we only use a total of N leakage traces xr
i ∈ R

mr

from a uniform distribution of the values k ∈ S. As with template attacks, we
generally compress these leakage traces to obtain the compressed traces xi ∈ R

m

(m � mr, see Sect. 4). Then, we combine all these leakage traces into the leakage
matrix X ∈ R

N×m and let ki represent the value of k corresponding to the trace
xi. Next, for each sample index j ∈ {1, . . . , m} we build the matrix

Fj =

⎡

⎢⎢⎢⎣

gj0(k1) gj1(k1) . . . gju−1(k1)
gj0(k2) gj1(k2) . . . gju−1(k2)

...
...

. . .
...

gj0(kN) gj1(kN) . . . gju−1(kN)

⎤

⎥⎥⎥⎦ (7)

and use the stochastic model

colj(X) = dj + rj = Fjvj + rj , (8)

2 The original description [2] used a deterministic function δj(di, k) with two para-
meters, to capture any combination of a plaintext value di and key value k in an
encryption algorithm, and then used a mapping function that reduced this combi-
nation into a value to be modeled by the set of base functions gjb. However, the
most common mapping is the XOR between di and k [2,8] or the XOR between
these and a mask value [5]. Therefore, in most cases, a single value (e.g. the XOR
result) is modeled by the base functions. If we want to target several values (e.g. for
masking [2,5] one might use base functions that depend on both a mask y and the
XOR between this mask, a plaintext and a key), we simply concatenate the bits of
these values (e.g. k = [bits mask|bits XOR]).

Efficient Stochastic Methods: Profiled Attacks Beyond 8 Bits 89

where colj(X) contains the leakage samples xj of all traces xi ∈ X, vj
′ =

[βj0, . . . , βju−1], rj
′ = [ρ1j , . . . , ρ

N
j], and dj

′ = [δj(k1), . . . , δj(kN)]. To find the
vector of coefficients vj , we try to minimize the distance ‖colj(X) − Fjvj‖2,
leading to the solution

vj = (Fj
′Fj)

−1Fj
′colj(X). (9)

Note that the matrix inversion in (9) requires rank(Fj) = u [12], that is Fj must
have u independent rows and columns.

In practice, we may use the same set of base functions (e.g. F9) for all samples
j (or at least for a subset of all samples). In this case, we can drop the subscript
j from (7) and use the same F for all samples j, turning (8) into X = FV + R,
allowing us to compute all the coefficients at once as

V = [v1, . . . ,vm] = (F′F)−1F′X, (10)

which is computationally more efficient. The coefficient vectors vj , computed
with either (9) or (10), can be used with (6) to compute the deterministic part
δj(k) of a sample xj for any value k. Note that this deterministic part is assumed
to be noise-free, since the noise is captured by the term ρj . Therefore, as men-
tioned also by Gierlichs et al. [4], we can use the values δj(k) to compute the
stochastic mean vectors x̂k ∈ R

m as

x̂′
k = [δ1(k), . . . , δm(k)]. (11)

While these correspond to the template mean vectors x̄k from (1), they depend
very much on the choice of base functions.

In order to also use the noise information, we need to compute a covariance
matrix Ŝ ∈ R

m×m , similar to the pooled covariance Spooled from (3). The avail-
able N traces that were used to estimate the coefficients vj are good for this
purpose3, since in (5) the deterministic part δj(k) approximates the noise-free
part, common to all the N traces. Therefore, the noise vector z ∈ R

m specific
to each trace xi can be computed as

zi
′ = [ρi

1, . . . , ρ
i
m], ρi

j = xi
j − δj(ki). (12)

These vectors can then be used to compute the noise matrix

Z =

⎡

⎢⎣
z1′
...

zN
′

⎤

⎥⎦ =

⎡

⎢⎣
ρ11 . . . ρ1m
...

. . .
...

ρN
1 . . . ρN

m

⎤

⎥⎦ , (13)

and finally, we can estimate the covariance matrix as
3 Schindler et al. [2], as well as following publications [5,8], suggest to use an additional

disjoint training set of N2 traces to compute the covariance matrix Ŝ. However, this
requirement was never clearly motivated. In the appendix of an extended version of
this paper [14] we show results that sustain our claim.

90 M.O. Choudary and M.G. Kuhn

Ŝ =
1

N − 1

N∑

i=1

zizi
′ =

1
N − 1

Z′Z. (14)

In the attack step, we proceed as in template attacks, using the linear dis-
criminant from (4), but replacing the template mean vectors x̄k with the vectors
x̂k from (11), and the pooled covariance Spooled with the covariance Ŝ from (14).

3 Compression Methods for Template Attacks

As mentioned earlier, during a profiled attack we should first compress the leak-
age traces xr

i ∈ R
mr

into xi ∈ R
m (m � mr), in order to reduce the number

of variables involved while at the same time keeping as much information as
possible. It turns out that the choice of compression method is an essential
step for the success of profiled attacks. The first proposed methods [1] relied on
selecting some samples that maximise the data-dependent signal, but this can be
error-prone. Later, Principal Component Analysis (PCA) [3] and Fisher’s Linear
Discriminant Analysis (LDA) [7] helped to maximise the information used in the
attack step with a very small number m of samples. Last year [12], we provided
a detailed analysis of these compression methods in the context of template
attacks, and showed that LDA can provide a significantly better attack than
the sample selection methods. Below we briefly describe these methods in the
context of template attacks, and in Sect. 4 we show how to adapt them efficiently
for use with stochastic models.

3.1 Sample Selection

For the sample selection method we first compute a signal strength estimate sj

for each sample j (1 ≤ j ≤ mr), and then select some of the samples having
the largest sj . We used either one sample per clock (1ppc) or 20 samples per
clock (20ppc) among the 5 % samples having the highest sj . Common estimates
sj are the difference of means (DOM) [1] (which can also be computed using
the absolute difference [12], as we do in this paper), the Signal to Noise Ratio
(SNR) [9] and the sum of squared pairwise t-differences (SOST) [4].

3.2 PCA

For PCA, we define the sample between groups matrix

B =
∑

k∈S
(x̄r

k − x̄r)(x̄r
k − x̄r)′ ∈ R

mr×mr
, (15)

where x̄r
k = 1

np

∑np
i=1 xr

ki are the mean vectors over the raw traces xr
ki and

x̄r = 1
|S|

∑
k∈S x̄r

k. Then, we obtain the first m eigenvectors [u1, . . . ,um] =
Um ∈ R

mr×m of B, which contain most of the information about the means,
i.e. that can be used to separate well the mean vectors x̄r

k. For this purpose,

Efficient Stochastic Methods: Profiled Attacks Beyond 8 Bits 91

we can use the Singular Value Decomposition (SVD) B = UDU′, where D is
a diagonal matrix having the eigenvalues (corresponding to U) on its diagonal,
and retain only the first m columns of U.4 We can use visual inspection of
the eigenvalues [3], the cumulative percentage of variance [12], or we can also
consider the DC contribution of each of the eigenvectors uj [13], to select the
best value m. Finally, we can compute the projected leakage matrix

Xk = Xr
kU

m (16)

and obtain the PCA-based template parameters (x̄k, Spooled) using (1, 3).

3.3 LDA

For LDA, we use the between groups matrix B and the pooled covariance
Spooled from (3), computed from the raw traces xr

i, and combine the eigen-
vectors aj ∈ R

mr
of S−1

pooledB into the matrix A = [a1, . . . ,am]. Then, we use
the diagonal matrix Q ∈ R

m×m , with Qjj = (1
aj

′Spooledaj
)

1
2 , to scale the matrix

of eigenvectors A and obtain Um = AQ. Finally, we use Um to project the raw
leakage matrices as Xk = Xr

kU
m. Using this approach, the resulting covariance

matrix of the projected traces becomes the identity matrix, so we only need to
use the template mean vectors x̄k obtained from (1).

4 Compression Methods for Stochastic Models

4.1 Sample Selection

All the sample selection methods from Sect. 3 can be adapted for stochastic
models by using (11) and (14) to compute the stochastic mean vectors x̂k and
covariance matrix Ŝ, and then using these to obtain the desired signal-strength
estimate sj . In addition, Schindler et al. [2] proposed to use sj =

∑u−1
b=1 β2

jb, i.e.
the norm of the data-dependent coefficients, which we refer to as bnorm in this
paper. We used this sample selection method with stochastic models.

4.2 PCA and LDA

Using PCA, and in particular LDA, significantly improved the application of
template attacks, and Standaert et al. [7] mentioned that “Combining data
dimensionality reduction techniques with stochastic models is a scope for fur-
ther research.” However, until now, the sole published attempt to apply PCA
to stochastic models, by Heuser et al. [11], is inefficient. As we have shown
earlier, for template attacks, the goal of PCA is to find the eigenvectors uj

such that the projection in (16) maximises the distance between the compressed
4 Archambeau et al. [3] show an alternative method for obtaining the matrix U, that

can be more efficient when mr > |S|. This is generally the case, when attacking an
8-bit target, but may not hold when k is a 16-bit target, as in Sect. 6.

92 M.O. Choudary and M.G. Kuhn

traces corresponding to different values k. Instead of using the eigenvectors of
B (“supervised approach”), Heuser et al. [11] used those of the raw covariance
matrix Ŝr, computed as in (14), to project the leakage traces. While this removes
the correlation between leakage samples, it does not maximise the discrimination
between means, since the matrix Ŝr contains no information about the different
raw mean vectors x̂r

k, obtained from (11), thereby forming an “unsupervised
approach”. We suspect that the lack of ‘mean’ information in Ŝr is also the rea-
son why only the first eigenvalue was significant in the results of Heuser et al.,
which lead them to use a univariate attack. We verified that, for the Grizzly
dataset [12], this unsupervised PCA method provides no useful attack (i.e. the
guessing entropy did not decrease).

We now provide four efficient methods for implementing PCA and LDA with
stochastic models. All these methods work in three main steps. In the first step,
for which we offer two methods (labelled “S” and “T” below), we compute the
matrix B̂, as an approximation of the between groups matrix B from (15), and
the raw covariance matrix Ŝ

r
(only needed for LDA). Next, we use either PCA

or LDA to obtain the matrix of eigenvectors Um, and use that to compress the
raw leakage matrix Xr ∈ R

N×mr
into X ∈ R

N×m . Finally, for the third step, we
use the stochastic model, on the compressed (projected) traces, to model each
sample xj of a compressed trace xi = [x1, . . . , xm] ∈ X.

Note that the “S” methods apply the stochastic method twice, once on raw
traces and once on compressed traces, placing the PCA or LDA compression
algorithm into a stochastic model sandwich. The general method is shown in
Fig. 1, Algorithm A.

S-PCA. Our first PCA method for stochastic models (named S-PCA) relies
on the stochastic model from Sect. 2.2, to build the mean vectors x̂r

k of the raw
traces. In the first step, we use these vectors to compute B̂ (see Algorithm B),
and in the second step, we obtain Um as the eigenvectors of B̂ (see Sect. 3.2).

T-PCA. Our second PCA method for stochastic models (T-PCA) is based on
the observation that the matrix B in (15) may be approximated from a subset
Ss ⊂ S of values k. Therefore, in the first step, we obtain raw traces for the
subset Ss, and we use the resulting leakage matrices Xr

k to compute the matrix
B̂ (see Algorithm C). In the second step, we obtain Um as the eigenvectors of B̂.
Note that for this method (as well as for T-LDA, described next), we need two
sets of raw traces: (a) the N traces in Xr (used in step 2 and then, compressed,
in step 3), and (b) the |Ss| · np traces for the matrices Xr

k (k ∈ Ss).

S-LDA and T-LDA. We also propose two methods for using LDA with
stochastic models: S-LDA and T-LDA. These are very similar to their PCA
counterparts, with S-LDA using Algorithm B, and T-LDA using Algorithm C,
to compute B̂. The main difference is that, besides the matrix B̂, we also
need to compute the covariance matrix Ŝr ∈ R

mr×mr
of the raw traces. Then,

Efficient Stochastic Methods: Profiled Attacks Beyond 8 Bits 93

Fig. 1. Algorithms needed to implement PCA and LDA with stochastic models.

we can obtain Um from the eigenvectors of Ŝr
−1

B̂, as explained in Sect. 3.3.
Algorithms D and E show how to obtain Ŝr for S-LDA and T-LDA, respectively.
In Fig. 2, we show the first four PCA eigenvectors of the Grizzly dataset for
template PCA, S-PCA, T-PCA with different random subsets Ss, and the unsu-
pervised PCA, along with the coefficients βjb. For the unsupervised PCA, it is
clear that the eigenvectors fail to provide useful information. For the other meth-
ods, the first two eigenvectors are very similar. This suggests that S-PCA and
T-PCA can produce eigenvectors similar to those from template attacks. Note
that for S-PCA and S-LDA we can only obtain a maximum of u eigenvectors
corresponding to non-zero eigenvalues, because that is the maximum number of
independent vectors used in the computation of B̂ (see Algorithm B).

5 Evaluation on 8-Bit Data

We use the Grizzly dataset [12] to compare the template attacks (TA) with sto-
chastic models (SM). The Grizzly dataset contains np = 3072 raw traces xr

ki

for each 0 ≤ k ≤ 255 (786432 traces in total), which we randomly divide into a
training set and an attack set. Each raw trace xr

ki has mr = 2500 samples, corre-
sponding to the current consumption of several consecutive LOAD instructions
executed by the unprotected 8-bit Atmel XMEGA 256 A3U microcontroller.

94 M.O. Choudary and M.G. Kuhn

Fig. 2. Normalized eigenvectors for different PCA methods, along with coefficients βjb

of F9 computed via (10).

A single instruction loads the value k, while the other instructions load the con-
stant value 0. Note that the value k affects the traces over several clock cycles.

5.1 Guessing Entropy

To evaluate the overall practical success of a profiled attack we use the guessing
entropy, following our definition in [12], which estimates the (logarithmic) aver-
age cost of an optimised brute-force search. The guessing entropy approximates
the expected number of bits of uncertainty remaining about the target value k�,
by averaging the results of the attack over all k� ∈ S. The lower the guessing
entropy, the more successful the attack has been and the less effort remains to
search for the correct k�. For all the results shown in this paper, we compute the
guessing entropy (g) on 10 random selections of traces Xk� and plot the average
guessing entropy over these 10 iterations.

5.2 Results on 8-Bit Data

In Fig. 3, we show the results of SM using our PCA/LDA methods, along with
TA using PCA/LDA for m = 4. For TA, we used np = 1000 traces per value k
during profiling, while for SM we used different N and subsets Ss. We also show
the results for SM and TA using 1ppc (m = 10) and 20ppc (m = 80), computed
using the absolute difference of means [12].

Efficient Stochastic Methods: Profiled Attacks Beyond 8 Bits 95

Fig. 3. Comparing TA with SM using PCA, LDA, 1ppc and 20ppc with different N
and na. For TA we used np = 1000.

From these figures, we can observe several things. Firstly, it is clear that all
the SM methods provide a guessing entropy equal to or better than their TA
equivalent, even when supplied with a much smaller amount of training data.
Therefore, our results confirm the observations of Standaert et al. [8], that SM
can be at least one order of magnitude more efficient than TA. Theoretically,
given enough training data, SM cannot perform better than TA. However, with
a limited number of profiling traces, SM may outperform TA when the leakage
is modeled well by the chosen base functions. With 256 × 1000 profiling traces
from the Grizzly dataset, SM reaches nearly 0-bit guessing entropy with 1000
attack traces, whereas TA does not (Fig. 3, bottom right). Furthermore, if we
want to use profiled attacks against data having more than 8 bits, as we show in
the next section, the SM may be the only practical choice.

Secondly, we can observe that both S-PCA and T-PCA reach the TA bound-
ary quicker than S-LDA and T-LDA. We believe this to be the case because
the PCA methods only depend on B̂ (the approximation of B), while the LDA
methods depend on both B̂ and Ŝr.

Thirdly, we observe that, for large na, the T-PCA, T-LDA, S-PCA, S-LDA,
and 20ppc methods provide similar results, but for small na, the best results are
obtained by LDA. In particular, note that, using T-LDA and S-LDA, we can
reach 4.1 bits of entropy when na = 1, while this limit is unreachable for 1ppc
(5.7 bits), 20ppc (4.5 bits) or PCA (4.7 bits).

96 M.O. Choudary and M.G. Kuhn

From the TA, we knew that PCA and LDA are the most efficient compres-
sion methods. Now, we have seen that our PCA/LDA implementations for SM
can achieve the same performance. On the other hand, the SM provide more
efficient profiling than TA and, moreover, the SM may be the only viable solu-
tion to implement profiled attacks against more than 8-bit targets. Therefore,
our proposed methods (S-PCA, S-LDA, T-PCA and T-LDA) combine the best
compression methods (PCA, LDA) with the most efficient profiled attack (SM).

6 Profiled Attacks on 16-Bit Data and More

So far, most publications on profiled attacks have focused on 8-bit attacks. The
possibility of attacking 16 bits was mentioned in passing [11], but we are not
aware of any public description of the challenges involved in attacking 16-bit
data. Therefore, we now consider and demonstrate a profiled 16-bit attack.

6.1 Considerations for the Attacker

It is not feasible to mount a template attack on much more than 8 bits, as we need
to obtain leakage traces for each value k to compute and store the mean vectors
x̄k. However, for the stochastic model, all we need is a selection of traces from
a random subset of values k, to estimate the coefficient vectors vj , from which
we can derive any desired stochastic mean vector x̂k. The remaining limitation
is that, in the attack phase, we still need to compute the discriminant dLINEAR

from (4) over all possible values k. While doing so for |S| = 232 candidate values
is no problem with normal PCs, attempting to do this for 264 candidates would
certainly require special hardware.

6.2 Considerations for Evaluation Laboratories

Even if stochastic methods are practical given a single attack trace xi, a prob-
lem that remains, in particular for evaluation labs, is computing the guessing
entropy [12], which requires to store na traces for each value k� ∈ S and run the
attack on each of these. This is not practical for values having 16 bits or more.
However, one practical solution is to run the attack merely over a subset Ss of
the target values k� and estimate the expected value of the guessing entropy
over these. We refer to this measure as the sampled guessing entropy (SGE).

6.3 Efficient Attacks and Evaluations on More Than 8-Bit

The complexity of dLINEAR is O(m2 + na · m). However, that implies the use of
a covariance in (4). But with LDA, we no longer use a covariance matrix (see
Sect. 3), so the complexity of dLINEAR reduces to O(m+na·m) = O(na·m). Then,
an attacker who simply wants to find the most likely k, requires a computation
of complexity O(|S|·na ·m) when using LDA (since we need to compute dLINEAR

for each k ∈ S), and O(|S|(m2 +na ·m)) when using PCA or sample selection. If

Efficient Stochastic Methods: Profiled Attacks Beyond 8 Bits 97

na is of a lower order than m, then the use of LDA will provide a computational
advantage to an attacker. Also, both PCA and LDA will typically work with
an m much smaller than that required for sample selection. In our experiments,
on the Grizzly dataset, we used m = 4 for PCA and LDA, while for 20ppc we
use m = 80 (sample selection benefits from using many samples per clock [12]).
In the extreme case na = 1, an attack using LDA will be about 1600 times
faster than using 20ppc, and PCA will be about 400 times faster than 20ppc. For
larger traces, covering many clock cycles (e.g. for a cryptographic algorithm), we
expect this difference to increase. Therefore, our PCA and LDA implementations
for SM can offer great computational advantage.5

An evaluator who wants to compute the SGE will run the attack for each
k� ∈ Ss. Therefore, the complexity of the evaluation is O(|Ss| · |S| · na · m) for
LDA and O(|Ss| · |S| · (m2 + na · m)) for PCA or sample selection. However, we
can optimise the computation of the SGE by precomputing yk = x̂′

kŜ
−1

, and
zk = yk

′x̂k, which require a computation of O(|S|m2). With these values, the
discriminant dLINEAR can be computed as

dfast
LINEAR(k | Xk�) = yk

′
(∑

xi∈Xk�

xi

)
− na

2
zk, (17)

which has complexity O(na ·m). Therefore, the evaluation of the partial guessing
entropy can be done with complexity O(|S|m2 + |Ss| · |S| ·na ·m). For PCA, the
value m may be comparable to or smaller than |Ss| and therefore an evaluation
using dfast

LINEAR will run as fast as an evaluation using LDA. However, if we need
to use a sample selection method with very large m, then the evaluation will be
considerably slower. Remember also that, while 1ppc with low m may be as fast
as LDA in this case, we confirmed in Fig. 3 that both PCA and LDA provide
better results than 1ppc.

These considerations show that the choice of compression method depends
also on who will need to use it: an attacker who only wants the correct k�, or an
evaluator who wants to know the average attack cost. In both cases, our LDA
and PCA methods will help.

6.4 Results on 16-Bit Data

In order to verify that an attack on 16-bit data is feasible, and to obtain an esti-
mate on the actual run time, we used the same device as in the Grizzly dataset:
an Atmel XMEGA 256 A3U, with similar data acquisition setup for current
traces. In order to obtain 16-bit data, we varied the 8-bit values processed by
two consecutive LOAD instructions, thus obtaining leakage traces that depend
on 16-bit values. Using this scenario, we cannot evaluate the limit of SM on a
16-bit parallel bus, but we can evaluate the feasibility of profiled attacks on more
5 We also note that, for SM with sample selection, we should use bnorm (see Sect. 4.1),

as that is more computationally efficient than the other methods for estimating the
signal-strength estimate sj .

98 M.O. Choudary and M.G. Kuhn

Sample index

150 200 250 300 350 400 450 500
-300

-200

-100

0

100

200

300

400

500

600

700
bit 1
bit 2
bit 3
bit 4
bit 5
bit 6
bit 7
bit 8
bit 9
bit 10
bit 11
bit 12
bit 13
bit 14
bit 15
bit 16
bit 1 bit 9
bit 2 bit 10
bit 3 bit 11
bit 4 bit 12
bit 5 bit 13
bit 6 bit 14
bit 7 bit 15
bit 8 bit 16

Fig. 4. Contribution of coefficients βjb in F17 (bits 1 to 16) and F17x (F17 enhanced
with XOR between bits of 8-bit halves) for the Panda dataset. Pipelining causes leakage
of the two 8-bit halves to overlap (e.g. around sample 300). Their consecutive processing
also leaks their XOR value (e.g. around sample 430). While the βjb for bits 1–16 are
not exactly identical for F17 and F17x, the difference is visually indistinguishable.

than 8 bits of data. For this dataset, which we call Panda, we acquired np = 200
traces for each of the 216 = 65536 values k ∈ S (N = 13 107 200 traces in total).
Each trace has mr = 500 samples, recorded with 125 MS/s using the HIRES
mode of our Tektronix TDS 7054 oscilloscope (which provides ≈ 10.5 bits per
sample by averaging 40 consecutive 8-bit samples acquired internally at 5 GS/s),
and contained data over 5 LOAD instructions, of which two contained our target
data and the other three processed the constant value 0. We split this data into
two sets, for profiling and attack. In addition we also acquired np = 1000 traces
for a selection of |Ss| = 512 random values k (512000 traces in total), which we
used for the estimation of B̂ and Ŝ

r
with T-PCA and T-LDA. For the imple-

mentation of the SM we simply extended the set of base functions to include
the individual contributions of all the 16 bits of the values k, resulting in the set
F17. The contribution of each base function is shown in Fig. 4.

In Fig. 5, we show our results for the full 16-bit attack. For our SM versions
of PCA and LDA we used m = 10. With most methods, the guessing entropy
converges after only about N = 1000 × 24 = 16000 traces, which confirms the
efficiency of stochastic models. S-LDA reduces the guessing entropy below 4 bits
when using na = 100 traces, which means that, in this case, we can find the
correct k� in a brute-force search attack with at most 16 trials, on average.
S-PCA, S-LDA and T-PCA are better than 20ppc, but T-LDA is not. Both S-
PCA and S-LDA are better than T-PCA and T-LDA, which suggests that the
subset of |Ss| = 512 values we used for the estimation of the T-PCA/T-LDA

Efficient Stochastic Methods: Profiled Attacks Beyond 8 Bits 99

Fig. 5. Results of full 16-bit F17 attack for pipelined data, with S-PCA, S-LDA, 20ppc,
T-PCA, T-LDA, and results from S-LDA on 8 bits at a time, using different N and
na. We tried N = 1000 · 2x, where x is the value shown on the logarithmic x-axis. For
T-PCA and T-LDA, we used |Ss| = 512.

parameters B̂ and Ŝ
r

was not enough to reach the full potential of PCA and
LDA. Therefore, for attacks on more than 8 bits the methods S-PCA and S-
LDA may be the best option, as they can use all the available N traces with the
stochastic model for both the modeling of the compressed mean vectors x̂k (step
3 in Algorithm A), as well as for the modeling of all the raw vectors x̂r

k (lines
3–5 in Algorithm B). This in turn can result in a better estimation of the matrix
B̂ (step 1 in Algorithm A), than what can be achieved with a small subset of
real vectors x̄r

k for the T-PCA and T-LDA methods.
In the bottom-right of Fig. 5, we also show the results when performing the

SM attack separately, for each of the two bytes of our target value (i.e. during
profiling we only consider one byte known, while the varying value of the other
represents noise). We computed the results by adding the guessing entropy from
each 8-bit attack. This figure shows that, in our particular scenario, performing
two 8-bit attacks (each with F9) provided better results than any of the 16-
bit attacks with F17. This could potentially be due to several factors. Firstly,
by attacking only 8 bits, there are fewer parameters to be estimated during the
attack (e.g. the SM coefficients). Secondly, the signal-to-noise ratio in the acqui-
sition setup might have been too low to provide sufficient separation between
the |S| = 216 classes to be distinguished by our classifier. Finally, the base func-
tion set F17 may simply not have adequately modeled the leakage. The latter
turned out to be the main factor, which was easily fixed. Our 16-bit target value

100 M.O. Choudary and M.G. Kuhn

k = [k1|k2] is composed of two 8-bit halves (k1 and k2), which are processed con-
secutively in the XMEGA CPU. If these two values pass through the same parts
of the circuit, their XOR difference is likely to affect part of the leakage traces.
Therefore, we also evaluated an attack where the stochastic model included the
XOR between the bits of k1 and k2, resulting in the set F17x (see Fig. 4).

Figure 6 shows the results of our SM attacks using S-PCA (left) and S-LDA
(right) with F17x. We see that, using F17x, both S-PCA and S-LDA perform
better than with F17. Also, in this case S-LDA reduces the guessing entropy to
about one bit, which is far better than any of the other results, including the
attack on k1 and k2 separately. Therefore, a 16-bit attack can perform better
than two 8-bit attacks, if a model is used that also takes into consideration
differences between the bits, as we did in F17x.

In Table 1, we show the execution times for the main steps of an evaluation
using S-PCA. This table shows that SM attacks are feasible, at least compu-
tationally, on 16-bit data. All the steps can be extended for 32-bit data and
more. The only steps that depend on the number of bits are the computation
of the raw vectors x̂r

k and the computation of the compressed vectors x̂k for all
k ∈ S, and the computation of the SGE. These steps depend linearly on k, so
a straight-forward extension to 32-bit may require 65536 times more time. That

Fig. 6. Results of SM attack using F17x with S-PCA (left) and S-LDA (right).

Table 1. Approximate time required for the main steps of an evaluation using S-PCA
on 16 bits with F17 and N = 64000

Step Time

Obtaining V on raw data (Algorithm B, step 2) 40 s

Approximating raw mean vectors x̂r
k (Algorithm B, steps 3–5) 32 s

Computing PCA parameters (Algorithm A, step 2) 2 s

Obtaining V on compressed data (Algorithm A, step 5) 38 s

Obtaining x̂k for all k (Algorithm A, steps 6–8) 28 s

Obtaining Ŝ (Algorithm A, steps 9–13) 33 s

Compute SGE using |Ss| = 256 with m of the same order as na 210 s

Efficient Stochastic Methods: Profiled Attacks Beyond 8 Bits 101

means that, for an attacker who only wants to find what the most likely target
k� is, the attacks would take 24 days for the computation of the raw vectors x̂r

k,
21 days for the computation of the compressed vectors x̂k and 15 hours for the
attack step. However, it seems that for an evaluator it would be impractical to
compute the SGE on 32-bit data for large |Ss|.

7 Conclusions

In this paper, we have shown how to implement the PCA and LDA compression
methods, which have so successfully boosted the performance of template attacks
in the past, also for stochastic models. As both techniques implement coordinate
transforms based on singular-value decomposition of covariance matrices, there
were two opportunities to apply a stochastic model: first before the compression
step, on raw traces, to aid estimating the matrices required by the compression
method, and secondly, on the compressed traces that they output, to better
estimate the mean vectors for each data value. In addition, we investigated a
variant in which the matrices for the compression step are instead estimated
directly, as in the template attacks, but using only a subset of all possible data
values, which also boosts the performance of the profiling phase.

We have shown that, for 8-bit attacks, our PCA and LDA methods for sto-
chastic models can obtain the same or even better results than their respective
implementations on template attacks. Combining the compression efficiency of
PCA and LDA with the profiling efficiency of stochastic models allows us to
extract the most out of profiled attacks. Moreover, we have shown that, from
a computational perspective, LDA can provide a significant advantage to an
attacker, which for our experiments may result in an attack step that is 1600
times faster than using sample selection. For an evaluator, both LDA and PCA
will be very helpful in obtaining efficient evaluations of profiled attacks.

We also performed an evaluation on 16-bit data, which allowed us to con-
firm that: (a) our PCA and LDA implementations provide good results, and (b)
stochastic attacks are feasible, at least computationally, on 16-bit data. Extra-
polating the run-time of our evaluation, even an attack on 32 bits appears com-
putationally feasible (requiring in the order of 45 days for the profiling step and
15 hours for the attack step on our PC).

Our results also showed that two separate 8-bit attacks performed better
than a 16-bit attack, which could be attributed to several factors, such as fewer
parameters to be estimated, or a limitation in the acquisition setup and attack
method to distinguish a 16-bit value. However, when adding the contribution of
the XOR between the two 8-bit halves of our target value to the 16-bit model,
we obtained better results. This showed that simply expanding the attack to
16 bits is not guaranteed to improve the results, because the larger number of
parameters that need to be estimated reduced the accuracy achievable with a
given set of traces, and in such situations, an attack targeting two 8-bit halves
separately can actually perform better. A 16-bit attack, however, can perform
better if a more informative model is used, such as taking into consideration

102 M.O. Choudary and M.G. Kuhn

differences between the bits, as we did in F17x, in which case the attack could
outperform the individual 8-bit attacks.

Data and Code Availability: In the interest of reproducible research we make
available our data and related MATLAB scripts at:

http://www.cl.cam.ac.uk/research/security/datasets/grizzly/

Acknowledgement. The first author is a recipient of the Google Europe Fellowship
in Mobile Security, and this research was supported in part by this fellowship. The
opinions expressed in this paper do not represent the views of Google unless otherwise
explicitly stated.

References

1. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, Ç.K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003)

2. Schindler, W., Lemke, K., Paar, C.: A stochastic model for differential side channel
cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp.
30–46. Springer, Heidelberg (2005)

3. Archambeau, C., Peeters, E., Standaert, F.-X., Quisquater, J.-J.: Template attacks
in principal subspaces. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol.
4249, pp. 1–14. Springer, Heidelberg (2006)

4. Gierlichs, B., Lemke-Rust, K., Paar, C.: Templates vs. stochastic methods. In:
Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 15–29. Springer,
Heidelberg (2006)

5. Lemke-Rust, K., Paar, C.: Analyzing side channel leakage of masked implemen-
tations with stochastic methods. In: Biskup, J., López, J. (eds.) ESORICS 2007.
LNCS, vol. 4734, pp. 454–468. Springer, Heidelberg (2007)

6. Karsmakers, P., et al.: Side channel attacks on cryptographic devices as a classi-
fication problem, KU Leuven, COSIC, internal report, 2007. https://www.cosic.
esat.kuleuven.be/publications/article-2450.pdf

7. Standaert, F.-X., Archambeau, C.: Using subspace-based template attacks to com-
pare and combine power and electromagnetic information leakages. In: Oswald, E.,
Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 411–425. Springer, Heidelberg
(2008)

8. Standaert, F.-X., Koeune, F., Schindler, W.: How to compare profiled side-channel
attacks? In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS
2009. LNCS, vol. 5536, pp. 485–498. Springer, Heidelberg (2009)

9. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets
of Smart Cards, 1st edn. Springer, Heidelberg (2010)

10. Oswald, D., Paar, C.: Breaking Mifare DESFire MF3ICD40: power analysis and
templates in the real world. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS,
vol. 6917, pp. 207–222. Springer, Heidelberg (2011)

11. Heuser, A., Kasper, M., Schindler, W., Stöttinger, M.: A new difference method
for side-channel analysis with high-dimensional leakage models. In: Dunkelman, O.
(ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 365–382. Springer, Heidelberg (2012)

Efficient Stochastic Methods: Profiled Attacks Beyond 8 Bits 103

12. Choudary, O., Kuhn, M.G.: Efficient template attacks. In: Francillon, A., Rohatgi,
P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 253–270. Springer, Heidelberg (2014)

13. Choudary, O., Kuhn, M.G.: Template attacks on different devices. In: Prouff, E.
(ed.) COSADE 2014. LNCS, vol. 8622, pp. 179–198. Springer, Heidelberg (2014)

14. Choudary, M.O., Kuhn, M.G.: Efficient stochastic methods: profiled attacks beyond
8 bits, extended version, Cryptology ePrint Archive, Report 2014/885 (2014).
https://eprint.iacr.org/2014/885.pdf

Kangaroos in Side-Channel Attacks

Tanja Lange1, Christine van Vredendaal1,2(B), and Marnix Wakker2

1 Department of Mathematics and Computer Science,
Eindhoven University of Technology, P.O. Box 513,

5600 MB Eindhoven, The Netherlands
tanja@hyperelliptic.org, c.v.vredendaal@tue.nl

2 Brightsight B.V., Delftechpark 1, 2628 XJ Delft, The Netherlands
wakker@brightsight.com

Abstract. Side-channel attacks are a powerful tool to discover the cryp-
tographic secrets of a chip or other device but only too often do they
require too many traces or leave too many possible keys to explore. In
this paper we show that for side channel attacks on discrete-logarithm-
based systems significantly more unknown bits can be handled by using
Pollard’s kangaroo method: if b bits are unknown then the attack runs
in 2b/2 instead of 2b. If an attacker has many targets in the same group
and thus has reasons to invest in precomputation, the costs can even be
brought down to 2b/3.

Usually the separation between known and unknown keybits is not
this clear cut – they are known with probabilities ranging between 100%
and 0%. Enumeration and rank estimation of cryptographic keys based
on partial information derived from cryptanalysis have become important
tools for security evaluations. They make the line between a broken and
secure device more clear and thus help security evaluators determine how
high the security of a device is. For symmetric-key cryptography there
has been some recent work on key enumeration and rank estimation,
but for discrete-logarithm-based systems these algorithms fail because
the subkeys are not independent and the algorithms cannot take advan-
tage of the above-mentioned faster attacks. We present ε-enumeration
as a new method to compute the rank of a key by using the probabili-
ties together with (variations of) Pollard’s kangaroo algorithm and give
experimental evidence.

Keywords: Side-channel attacks · Template attacks ·Key enumeration ·
Rank estimation · Discrete logarithms · Pollard-kangaroo method ·
Precomputation

1 Introduction

In security evaluations it is important to investigate how well cryptographic
implementations fare against side-channel attacks (SCA’s). Numerous of these

This work was supported by the Netherlands Organisation for Scientific
Research (NWO) under grant 639.073.005. Permanent ID of this document:
c1c4c98f98c7ca3cb1b1f4208b95e8b8. Date: February 15, 2015.

c© Springer International Publishing Switzerland 2015
M. Joye and A. Moradi (Eds.): CARDIS 2014, LNCS 8968, pp. 104–121, 2015.
DOI: 10.1007/978-3-319-16763-3 7

Kangaroos in Side-Channel Attacks 105

attacks are known: In this paper we will be most interested in the Template
Attacks introduced by Chari, Rao and Rohatgi [3]. These attacks are among the
strongest possible attacks in the sense that they extract all possible information
of the samples S measured from a secret-key operation. They assume access to
an identical device as used by the target and use it to produce precise multi-
variate characterizations of the noise of encryptions with different keys. By a
process of iterative classification they then attempt to derive the key used when
measuring S. At each iteration a few bits are added to the templates. Each set
of a few bits is called a subkey.

In [3] iterative classification was performed until only a few candidates for the
key were left. We however accept being left with a larger number of possibilities
of which we are 100% sure that they are the likeliest keys according to our
attack results and then continue to enumerate the remaining keys. This might
be faster than continuing to attack and hoping to get more significant results.
The motivation for this approach is the guy in the security evaluation lab. He
starts his template attack and if he were to spend a long enough time he might
find the key. However if he is able to enumerate 2b keys, then the lab guy might
as well stop the measurements after reducing the space of the remaining keys to
an interval of size 2b. By pruning the space further he will only risk throwing out
the actual key even though he could have enumerated it. Another motivation for
our approach is that there are some implementations where it does not matter
how long the guy stays in the lab, the power traces will not give away more
information. In this case we will still have a (larger) space of possibilities we
need to enumerate based on all the information we were able to get.

When we have the results of such a SCA we can take two approaches. The
first is the black-box approach of key enumeration. A key enumeration algorithm
takes the SCA results as input and return keys k in order of likelihood. The posi-
tion of a k in such an ordering is called its rank r. For symmetric-key cryptog-
raphy some research has been done on this subject. Pan, van Woudenberg, den
Hartog and Witteman [10] described a sub-optimal enumeration method with
low storage requirements and an optimal method that required more storage.
Veyrat-Charvillon, Gérard, Renauld, and Standaert [17] improved the optimal
algorithm to require less storage and be able to enumerate more keys faster.

The second way of looking at a SCA result is the white-box approach of rank
estimation. This method is particularly relevant for security evaluation labs.
Using modern technology it is feasible to enumerate 250 to 260 keys, but when
a key is ranked higher, we can only say that its rank is higher than ∼ 260 (the
rank at which the memory is exceeded). For security evaluations of the encryp-
tion algorithm however more accuracy is required. A rank estimation algorithm
is able to extract information about the rank r of k without enumerating all the
keys. For symmetric cryptography like AES such an algorithm was put forth by
Veyrat-Charvillion, Gérard and Standaert in [18].

Our contribution in this paper is to extend these works to public-key cryptog-
raphy, specifically Elliptic-Curve Cryptology (ECC [9]). Using the (partial) infor-
mation from a template attack on the subkeys of a key k used in Diffie-Hellman

106 T. Lange et al.

Key Exchange, k might be recovered by enumerating the most likely candidates.
Contrary to the assumptions in the previously mentioned algorithms, the infor-
mation on the subkeys is not independent for ECC and therefore we cannot use
the existing algorithms. On the bright side, in ECC we are working with cyclic
groups and we can use this structure to speed up enumeration. This way, enu-
meration can be interpreted as finding the solution to the Discrete Logarithm
Problem (DLP) by using partial information on the subkeys. We present our
own algorithm which utilizes Pollard’s kangaroo methods (see [5,11,12,14,16])
to enumerate with an error margin ε. In trade for this error margin we are able
to enumerate a space of � keys in O(

√
�) group operations.

If we make use of a precomputation table like was proposed in [1] we can
reduce the expense per key to O(3

√
�) operations. This improvement of Pollard’s

methods lends itself particularly well to use in side-channel attacks. The creation
of the precomputation table costs O(3

√
�2) group operations and a specific table

can only be used to speed up solving of DLPs in one particular group and interval
length. So creating the table is only useful if we want to perform an attack a
lot of times on the same length interval of a certain subgroup, but this is a
fairly common scenario since many smart card vendors implement the NIST
P-256 curve for which the curve equation and the base point are standardized.
This means that security evaluation labs can create the most commonly needed
tables beforehand and re-use them every time an attack is performed on an
implementation for this curve.

We end this introduction with noting that even though the results in this
paper are posed in the setting of elliptic curves, the techniques are applicable to
solving a DLP in any cyclic group.

2 Background

This section gives a short description of methods to solve the Discrete Loga-
rithm Problem (DLP) in a group of prime order n. The “square-root methods”
solve this problem on average in O(

√
n) group operations. We will use additive

notation since the main application is to is to solve the DLP on an elliptic curve
E over a finite field Fp but the methods work in any group. Let P,Q ∈ E(Fp)
be in a cyclic group; the goal is to find an integer k such that Q = kP .

2.1 A Short History of Discrete Logarithm Algorithms

A well known method is Shanks’ Baby-Step-Giant-Step (BSGS) method [13].
It uses a table to find collisions between baby steps 0P, P, . . . , (m − 1)P and
giant steps Q − 0P,Q − mP,Q − 2mP,Q − 3mP, . . . , where m ≈ √

n. This finds
k = k0+k1m as the collision of k0P and Q−k1mP in O(m) steps. A drawback of
this method it that it has a storage requirement of m elements, which is a more
serious limitation than O(m) computation. If the discrete logarithm k is known
to lie in an interval [a, b] of length � then choosing m ≈ √

� gives a runtime of
O(

√
�).

Kangaroos in Side-Channel Attacks 107

The Pollard-ρ method [11] gives a solution to the storage problem. It uses
a deterministic random walk on the group elements with the goal of ending
up in a cycle (which can be detected by Floyd’s cycle finding algorithm). The
walk is defined in such a way that the next step in the walk depends solely on
the representation of the current point and that a collision on the walk reveals
the discrete logarithm k. Van Oorschot and Wiener [16] introduced a parallel
version of the Pollard-ρ method which gives a linear speed-up in the number of
processors used. They use distinguished points: a point is a distinguished point
if its representation exhibits a certain bit pattern, e.g., has the top 20 bits equal
to zero. Whenever one of the parallel random walks reaches such a point it
is stored on a central processor. A collision between two of these distinguished
points almost surely reveals the value of the key. This method is an improvement
over BSGS in that the storage requirements are minimal, but the algorithm is
probabilistic and it cannot be adapted to search an interval efficiently.

Pollard’s kangaroo method solves the latter problem. It reduces the storage
to a constant and is devised to search for the solution of a DLP in an interval
of length �. The mathematical ingredients, the algorithm and improvements are
the topic of the remainder of this section.

2.2 Mathematical Aspects of Kangaroos

To adequately explain Pollard’s kangaroo method we first have to dive into the
notion of a mathematical kangaroo. We define a kangaroo by the sequence of its
positions Xi ∈ 〈P 〉. Its starting point is X0 = s0P for a certain starting value
s0 and the elements that follow are a pseudo-random walk. The steps (or rather
jumps) of a kangaroo are additions with points from a finite set of group elements
S = {s1P, . . . , sLP}.

The step sizes si are taken such that their average is s = β
√

� for some
scalar β. To select the next step we use a hash function H : 〈P 〉 → {1, 2, . . . , L}
and we compute the distance by defining d0 = 0 and then updating it for every
step as follows

di+1 = di + sH(Xi), i = 0, 1, 2, . . . ,

Xi+1 = Xi + sH(Xi)P, i = 0, 1, 2,

This results in a kangaroo which after i jumps has travelled a distance of di and
has value (s0 + di)P .

2.3 Pollard’s Kangaroo Method

The original algorithm that Pollard presented in [11] works as follows: Suppose
we know that the value k in Q = kP is in the interval [a, b] of length � = b−a+1.
We introduce two kangaroos. The first one is the tame kangaroo T and we set
it down at the point bP . We tell him to take N = O(

√
�) jumps and then stop.

The point at which he stops and how far the kangaroo travelled to get there
are recorded. This information can be seen as a trap meant to catch the second

108 T. Lange et al.

kangaroo. The trap consists of the endpoint XN = (b + dN)P and the travelled
distance dN . Then a second, wild, kangaroo W is let loose at the unknown
starting point X ′

0 = Q = kP following the same instructions determining jumps.
The crucial fact upon which this algorithm is based is that if at any point the path
of the wild kangaroo crosses with that of the tame one, meaning that they land
on the same point, their remaining paths are the same. So if the wild kangaroo
starts jumping and crosses the tame one’s path, then there is a jump M at which
X ′

M = XN . From this we have (k + d′
M)P = (b + dN)P and k = b + dN − d′

M

and we will detect this collision since X ′
M+j = XN+j , so the wild kangaroo will

eventually meet the tame one.
Van Oorschot and Wiener [16] also presented a parallel version of this algo-

rithm which even for just two kangaroos gives an improvement. Here instead of
one trap, multiple traps are set: a fraction 1/w of the group elements which sat-
isfy a certain distinguishing property D are defined as the distinguished set. Here
w is taken to be α

√
�, where α is some small constant (usually smaller than 1).

A central server then records the distance and location of any kangaroo reaching
a point in D. We again have a wild and a tame kangaroo. Instead of starting
at the end of the interval however, the tame kangaroo now starts in the middle
at some point cP . Instead of finishing their entire paths, the kangaroos now
jump alternately. Whenever one of them jumps to a distinguished point, their
relevant information (position, distance, offset of starting point, kangaroo type)
= (Xi, di, ci, Y) is recorded in a hash table which hashes on the Xi. When two
kangaroos of different types have been recorded in the same entry of the hash
table, we can derive the answer to the DLP.

Let us analyze this algorithm. The distance between the two kangaroos at
the starting position is at most (a − b + 1)/2 = �/2 and on average �/4. If
we take s = β

√
�, then the average number of jumps needed for the trailing

kangaroo to catch up to the starting point of the front kangaroo is �/4s. Now
we use that the probability of missing the front kangaroo’s trail after passing its
starting point for i steps is (1 − 1/s)i ≈ e−i/s (we can use this approximation
as s is large) and get that it takes s steps on average to hit the trail. Lastly,
both kangaroos have to hop far enough to hit a distinguished point. If 1/w is the
fraction of group elements that are distinguished, then w steps are needed on
average before hitting a distinguished point. The total average number of steps
is the 2(�/4s + s + w) = 2(α + β + 1/4β)

√
�, in which α and β can be optimized

experimentally.
This algorithm can be improved even further by using 3 or 4 kangaroos

(see [5]), but in this paper we consider the 2-kangaroo version.

2.4 Pollard’s Kangaroo Method with Precomputation

Pollard’s kangaroo method can be sped up using precomputation. Bernstein and
Lange [1] suggest to first produce a table of T distinguished points. Selecting
the distinguished-point property and creating the table is then similar to setting
a trap at every distinguished point in a desert, then sending a bunch of kan-
garoos into said desert and recording in a table which traps are most popular.

Kangaroos in Side-Channel Attacks 109

Then when we are ready to send in the wild kangaroo we really want to trap we
already know where he is most likely to fall in.

The algorithm works as follows. In the precomputation phase we start a
lot of walks from random values yP and continue these walks until they reach a
distinguished point at (y+d)P . We record (y+d, (y+d)P) in the precomputation
table T . We keep starting new walks until T different distinguished points are
found (or sample for longer and keep the most popular ones). As [1] notes, these
walks should be independent from Q.

In the main computation phase we start random walks that are dependent
on Q. We let a kangaroo on X ′

0 = Q hop until it reaches a distinguished point. If
this point is in the table we have solved our DLP. If not we start a new walk at
Q+xP for some small random x. For each new walk we use a new randomization
of Q and continue this way until a collision is found.

If enough DLPs in this group need to be solved so that precomputation is
not an issue — or if a real-time break of the DLP is required — they propose
to use T ≈ 3

√
� precomputed distinguished points, walk length w ≈ α

√
�/T , i.e.,

w ≈ α 3
√

�, with α an algorithm parameter to be optimized, and a random step
set S with mean s ≈ �/4w. This means that the precomputed table T takes
O(3

√
�2) group operations to create but can be stored in ≈ 3

√
�. This reduces the

number of group operation required to solve a DLP to O(3
√

�) group operations,
essentially a small number of walks.

3 ε-Enumeration

Now that we have the mathematical background covered, we continue to enu-
meration in side-channel attacks. Our goal is to enumerate through SCA results
and give a rank estimation for a key similar to what was done in [17,18] for
SCAs on implementations of symmetric cryptography. To do this we first have
to model the result of SCA on ECC.

3.1 The Attack Model

We will assume a template attack like Chari, Rao and Rohatgi performed in [3].
In this attack we use our own device to make a multivariate model for each of
the possibilities for the first bits of the key. When we then get a power sample of
the actual key, we compute the probability of getting this shape of power sample
given the template for each possible subkey. These probabilities will be our SCA
results.

We can iterate this process by taking a few bits more and creating new
templates, but making these requires a lot of storage and work. At the same
time, they will either confirm earlier guesses or show that the wrong choice was
made. At each iteration we only include the most likely subset of the subkeys
from the previous iteration. Discarding the other possibilities creates a margin
of error that we want to keep as small as possible.

110 T. Lange et al.

In Chari [3] the aim was to recover all the bits of the key with a high success
rate. Our goal is to minimize the overall attack time — the time for the mea-
surements plus the time for testing (and generating) key candidates. We do not
require to only be left with a couple of options at the end of the attack of which
one is correct with a high probability. We accept ending the experiments being
left with a larger number of possibilities of which we are close to 100% sure that
they are the likeliest keys according to our attack results. After this we wish
to enumerate them in the order of their posterior probabilities. We show how
this can be faster than continuing to measure and hoping to get more significant
results.

The results of the measurement and evaluation can be visualized as depicted
in Fig. 1.

Fig. 1. The graphical representation the SCA result

We will call this visualization the enumeration tree. It consists of three sec-
tions. The first section consists of the subkey bits that we consider recovered.
After the iterations of the template attack all options but one were discarded.
Section II consists of the subkeys that we have partial information on, but not
enough to reduce the number of likely subkeys to one. The last section consists of
the subkeys that we have very little to no information on. It contains all possible
subkeys per layer.

The idea is that each node ni,j in the representation is located in the i’th
level (starting with 1 at the root) and corresponds to the j’th choice for subkeys
ki,1, ki,2 . . . ,. For each node ni,j there is an associated subkey ki,j and a posterior
probability qi,j . This is the probability that subkey i is equal to ki,j given that
the path up to its parent node is correct. So if the nodes on the path to ni,j

are n1,x1 , n2,x2 , . . . , ni−1,xi−1 , ni,j , then the probability qi,j associated with this
node is

qi,j = Pr[ki = ki,j |k1 = k1,x1 , k2 = k2,x2 , . . . , ki−1 = ki−1,xi−1]. (1)

Then we can also associate with each node a probability pi,j that represents
the posterior probability of the key consisting of the subkeys represented by the
nodes leading up to it (including itself). This probability is then

Kangaroos in Side-Channel Attacks 111

pi,j = qi,j ·
i−1∏

h=1

q1,xh
. (2)

In sections I and II the subkeys that were discarded during the attack and
are not in the model might have a combined small probability pε. We assume
that these probabilities are negligible (otherwise more nodes should be included
in section II or the transition between section I and II should have moved closer
to the root) and thus assume that the sum of the probabilities pi,j of each level
of the tree is 1.

3.2 Enumeration in an Interval

The brute-force approach an attacker could take to enumerate the keys is to
sort the nodes of the rightmost layer of section II by posterior probability pij

and then for each choice brute-force all the options in section III. However using
the algorithms from Sects. 2.3 and 2.4 we can do better. Enumerating section III
of a node is equivalent to computing the keys in an interval. Therefore we can
use the Pollard-kangaroo algorithms to speed up the enumeration. The downside
of this approach is that without searching the whole interval we can never say
with 100% certainty that the key is not in the interval. However, in return
we are able to speed up enumeration in an interval of size � to O(

√
�) group

operations or even to O(3
√

�) if we have the luxury of a precomputation table. We
do have to note that even though we will call this process of searching the interval
enumeration, it is a different kind than the enumeration in [17]. In that algorithm
each key enumerated had to be checked for correctness against the encryption
in an exhaustive-search manner. Using the kangaroo algorithms means that we
search for a collision between group elements and only after this happens we can
compute and double-check correctness against the public key of the cryptosystem
attacked. This is much more sophisticated and much faster than the brute-force
approach of having to check every key. The rank r of k now reflects the number
of group operations required to find k after the end of the experimental session.
It also means that we have only O(

√
�) ranks and they are dependent on the

parameters used in the algorithm. To accurately reflect the uncertainty in this
kind of enumeration, we introduce the following definition.

Definition 1. Let the key k̂ that we wish to find have rank r̂. In an
ε-enumeration we check keys in such a way that when we have enumerated
up to rank r, then there is a (1 − ε) probability that r̂ > r.

If we want to perform such an ε-enumeration we have to have a stopping criterion.
This criterion dictates how many group operations we have to do in order to get
the probability of having missed our actual key below the ε bound. We have the
following theorem.

Theorem 1. Assume that the private key k̂ lies in the interval of size �. Let the
average step size of the kangaroos be s = β

√
�. Let the probability of hitting a

112 T. Lange et al.

distinguished point be θ = c/
√

� and assume the distinguished points are spread
uniformly over the whole group. Lastly we assume that the hash function H and
the step set in the improved Pollard-kangaroo algorithm of Sect. 2.3 is sufficiently
random. Then for x > �/(4s) the average probability of not finding k̂ in 2x steps,
i.e. x hops per kangaroo, of that algorithm is

ε(x) = e− x
s + �

4s2 + (eθ(�
4s+2−x) − e2θ− 1

s (x− �
4s))/(s − se(θ− 1

s)). (3)

Proof. Recall that in this algorithm we had 2 kangaroos placed in the interval
and they alternate their jumps. In this proof we analyze the x steps of the back
kangaroo and compute the average probability that it does not collide with the
front kangaroo even though they were both placed in the same interval. First
the back kangaroo needs to catch up to the front one. The number of steps to
do this is on average �/4s. Given that the back kangaroo takes x steps we now
have y = x − �/(4s) steps left on average. To avoid a recorded collision in these
remaining y steps we either have to avoid the trail of the front kangaroo, or hit it
after i steps and avoid distinguished points for the next y − i steps. We assumed
the hash function H to be sufficiently random, so the average probability of
avoiding the trail is (1 − 1/s) for each step taken and the chance of missing a
distinguished point is (1−θ) in each step. Thus we have the average approximate
probability of avoiding detected collisions as follows

(
1 − 1

s

)x− �
4s

+
x− �

4s −1∑

i=0

(
1 − 1

s

)i 1
s

(1 − θ)x− �
4s −i−2

.

We can approximate the second part of this equation as follows

x− �
4s −1∑

i=0

(
1 − 1

s

)i 1
s

(1 − θ)x− �
4s −i−2 ≈ 1

s

x− �
4s −1∑

i=0

e
−i
s e−θ(x− �

4s −i−2)

=
eθ(�

4s+2−x)

s

x− �
4s −1∑

i=0

e
−i
s eθi.

This in turn then evaluates to

eθ(�
4s+2−x)

s

x− �
4s −1∑

i=0

(
eθ− 1

s

)i

=
eθ(�

4s+2−x)

s
· 1 − e(θ− 1

s)(x− �
4s)

1 − e(θ− 1
s)

=
eθ(�

4s+2−x) − e2θ− 1
s (x− �

4s)

s − se(θ− 1
s)

.

So indeed we have our average probability of

ε(x) =
(

1 − 1
s

)x− �
4s

+
eθ(�

4s+2−x) − e2θ− 1
s (x− �

4s)

s − se(θ− 1
s)

≈ e− x
s + �

4s2 +
eθ(�

4s+2−x) − e2θ− 1
s (x− �

4s)

s − se(θ− 1
s)

. 	

Kangaroos in Side-Channel Attacks 113

Note that this equation is only valid for values of x > �
4s , otherwise ε(x) = 1.

We now analyze the situation of using Pollard’s kangaroo algorithm with
a precomputation table. For this we make a hypothesis on the distribution of
distinguished points and the number of points covered by each walk: Let the
precomputation table T consist of the first found T different distinguished points
Di = tiP . Let the average walk length be w = α

√
�/T and the average step size

of the kangaroos be s ≈ �/(4w) such that the average distance of a walk is
≈ �/4. Since the points in T are different their paths are disjoint. They cover
on average Tw points. Assume that these points are uniformly distributed over
{P, 2P, . . . , γ�P} for some value of γ. In Sect. 4 we will present experiments
showing that γ = max

1≤i≤T
ti/� − min

1≤i≤T
ti/� is a good fit.

Theorem 2. Let k̂ lie in an interval of size �. Let the average walk length be
w = α

√
�/T and the average step size of the kangaroos be s ≈ �/(4w). Under

the hypothesis made above, T represents tW points distributed uniformly over
{P, 2P, . . . , γ�P} for some value of γ. The average probability that the Pollard-
kangaroo algorithm with precomputation (Sect. 2.4) does not find k̂ in y indepen-
dent walks of the algorithm is

ε(x) = e
−α2y

γ . (4)

Proof. Under the hypothesis the probability of the wild kangaroo hitting the
trail of one of the table points’ kangaroos is on average (Tw)/(γ�) = α2/(γw) at
each step. Since the walk takes on average w steps the probability of avoiding a
collision is

(
1 − α2/(γw)

)w ≈ e
−α2

γ .

We assume independent walks, so we have that the probability that after y
walks we have not found a collision is

y∏

i=1

e
−α2

γ = e
−α2y

γ .

which is the result we desired. 	

3.3 Further Considerations and Optimizations

Combining Intervals. If we have adjacent intervals in the enumeration tree
we might combine these intervals to speed up the search. If they are of the same
length then searching the intervals separately simply means searching twice as
long. Combining two intervals in the kangaroo method reduces the search time
by a factor

√
2. When we do this we do have to take the posterior probabili-

ties of the intervals into account. If we simply combine all adjacent intervals in
the enumeration tree and search them in the order of the subinterval with the
highest posterior probability then it might happen that an interval ranked high

114 T. Lange et al.

separately is not searched because it is not part of some large combined interval.
We therefore only combine intervals if they also have subsequent posterior prob-
abilities. For the precomputation case of the algorithm we also have to take the
availability of tables into account. We only combine intervals if we have a table
and step set corresponding to that newly created interval length.

Restarts. We described the general kangaroo algorithm to have the kangaroos
continue along their paths after finding a distinguished point. For the standard
rho method [2] show the benefits of restarting walks after a distinguished point
is found. If we do not use a precomputation table then doing restarts means
redoing the initial phase of the two kangaroos catching up to each other and
the error function will decrease at a slower rate. This is only advantageous if
the kangaroos ended up in a loop they cannot get out. If we detect such a
loop, the kangaroo(s) can be restarted. If � � n the probability of ending in
a loop is very small. On the other hand, we do not have the problem of the
initial catching up phase. Therefore we restarted walks if they exceeded 20w
steps. An advantage of using the improved Pollard-kangaroo algorithm without
precomputation tables is that there is a probability of finding the solution of
a DLP in an adjacent interval because the kangaroos naturally venture out in
the direction of larger discrete logarithms. This is also an argument against
doing restarts. Even though the current interval was chosen for the good reason
of having the highest posterior probability among those not considered, yet,
it is an added benefit that one might accidentally find a solution in another
interval. If the tame kangaroo is started in interval I1 of size �, but the key was
actually in adjacent interval I2, then after a longer initial catch-up phase there
is a probability of collisions. We could estimate this probability with an error
function like we did for I1 to reduce search time, but the longer the kangaroos
jump the bigger the variance gets and the less accurate the error function is
going to be. Therefore we do not advise to include this extra probability into
the considerations.

Parallelization. There are two levels at which the ε-enumeration method can
be parallelized: One level is the underlying kangaroo algorithm using distin-
guished points; the second level is dividing the intervals over the processors
used, i.e., we could simply place one interval search on each processor, or we
could have all processors search one of the intervals, or use a combination of
the two. Using multiple processors for a single interval only makes sense if the
interval is sufficiently large and many walks are needed (so rarely with precompu-
tation) and if the posterior probability is significantly higher. If a lot of intervals
have a similar probability it might be better to search them in parallel.

ε-Rank Estimation. Now that we have a definition of ε-enumeration we can
easily extend it to estimating ranks of keys that we cannot ε-enumerate in feasible
time. To do this we have to adapt the attack on the device using the key k̂. When
discarding keys of a too low probability from future templates we do store the
subkey in the enumeration tree with their probabilities. They are however not

Kangaroos in Side-Channel Attacks 115

included in new templates, so the corresponding branch of the enumeration tree
will not grow any more. After finishing the measurement we can determine with
the error function for each interval with a higher posterior probability than the
one that contains k̂ how many steps we would (on average) take in this interval.
The sum of these quantities is then an estimated lower bound for the rank of k̂.
We can use a similar method to determine an estimated upper bound.

4 Experimental Results

This section presents representative examples of our implementations. We ran
our experiments on a Dell Optiplex 980 using one core of an Intel Core i5 Proces-
sor 650 / 3.20 GHz. We re-used parts of the Bernstein/Lange kangaroo C++ code
used for [1]. Our adaptations will be posted at http://www.scarecryptow.org/
publications/sckangaroos. For ease of implementation we used the group F

∗
p as

was used in [1], which uses a “strong” 256-bit prime (strong meaning that p−1
2

is also prime) and a generator g, which is a large square modulo p. Although in
the previous sections we focussed on elliptic curves, both those and F

∗
p are cyclic

groups and thus these results hold for both. We set the interval size to � = 248

and at each run took a random h in the interval for a new DLP.
For the experiments without precomputation we made use of distinguished

points to find the collision, which were recorded in a vector table that was
searched each time a new distinguished point was found. We chose the probability
of landing in a distinguished point to be 2−19 = 25√

�
by defining a point as

distinguished if the least-significant 19 bits in its representation were zero, i.e.,
if the value modulo w = 219 was zero. The step function selected the next
step based on the value modulo 128, the 128 step sizes were taken randomly
around

√
�.

Step Sets. The goal of this paper is not to find the optimal parameters for the
kangaroo algorithm. The choice of step set is however relevant for usability of
the error function of Eq. 3. As can be seen Eq. 3 only uses the mean of the step
set and not its actual values, so it is possible to create one that will not adhere to
the error function at all. Even if we choose the step set randomly it can contain
dependencies and this makes the error function less accurate. We can see this in
the top graph of Fig. 2.

We did 8192 experiments and saw that the error function in blue is a rather
good approximation for the fraction of unsolved DLPs in red for the first 10 million
steps of step set S1 of the wild kangaroo and from 25 million onward. In between
these values we see some unexpected behavior. It might be that our step set con-
tains some dependencies, e.g., it might be that the step set contains too many
steps in a certain equivalence class; meaning that the probability of missing the
trail is larger than (1 − 1/s) per step. We were not able to visually identify what
the problem was. By trying a different seed for the random step set we found S2

which behaved nicely according to our expectations as can be observed in the bot-
tom graph of Fig. 2. For concrete attacks it is advisable to run a few tests to check
the quality of the step function.

116 T. Lange et al.

Fig. 2. The theoretic function ε(x) for the kangaroo method without precomputations
and the experimental results using two random step sets S1 and S2 with β ≈ 1. Top:
β = 0.978. Bottom: β = 0.971

Combining Intervals. We were able to find similar results for intervals where
we combined two adjacent intervals of length 248 to one of size 249. We observed
the same problem of good and bad step sets. With trying three step sets, we got
a step set that had the error function as an upper bound for the experiments.
These graphs are similar to the graphs before and therefore ommitted. They
did confirm that by combining the intervals we can search twice the keyspace in
approximately

√
2 times the steps.

Using Precomputation. We again searched for DLPs in an interval of length
248. Our 128 step sizes however were now uniformly chosen between 0 and �/4w
instead of around β

√
� for some β. Each DLP h = gy was chosen randomly and

each walk starting from it was randomized in the interval between y − 240 and
y + 240. For the precomputation we used a table of size N = T = 3

√
� = 216.

We used the first T distinguished points found as table points and computed
γ = 1.923 as max

1≤i≤T
ti/� − min

1≤i≤T
ti/�, for the T table elements of the form gti .

We used an average walklength of w = 215 such that α = 0.5. Using 2097152
experiments we got the results on the top of Fig. 3. We see that the error function
is a good upper bound for the experimental results. We continued with the same
experiment for an interval of length � = 250. We used a table of T = 104032 ≈ 3

√
�

table points and found γ = 1.853. We used an average step set of w = 216 such
that α ≈ 0.630. Using 2097152 experiments we got the results on the bottom
of Fig. 3. We again see that the error function is a good approximation for the
experiments.

Other parameters than α and γ can influence the performance of the algo-
rithm. The error function does not reflect information on the step set other
than its mean, nor on how often distinguished points were found but it relies on
the hypothesis that the table covers about wT points and these are uniformly
distributed over {P, 2P, . . . , γP}.

Considerations about the step set are even more relevant when preparing
the precomputation table by making N > T walks and selecting for T the T

Kangaroos in Side-Channel Attacks 117

Fig. 3. The theoretic function ε(y) for the kangaroo method with precomputation and
the experimental results using a step set with s ≈ �

4w
. Top: � = 248. Bottom: � = 250.

points with the largest number of ancestors (longest walks leading up to them,
distinguished points found with multiplicity).

For the ε-enumeration we suggest to include a parameter σ in the exponent
of the error function ε(y) = eσα2y/γ that is determined experimentally. After
determining the step set and table we can run the algorithm on different ran-
domly chosen DLPs, much like we did in our experiments, and determine a value
for σ. After this the error function is ready to be used in a security evaluation.

ε-Enumeration. The result is that according to our best found results we can
ε-enumerate in an interval of length � in the steps displayed in Table 1.

Table 1. Required group operations for ε-enumeration

ε 1.0 · 10−1 1.0 · 10−3 1.0 · 10−5 1.0 · 10−7 1.0 · 10−9

N = T = 0, σ = 1 4.2 · √
� 10.8 · √

� 17.6 · √
� 24.3 · √

� 31.0 · √
�

N = T = 3
√

�, σ = 1 18 · 3
√

� 54 · 3
√

� 89 · 3
√

� 124 · 3
√

� 160 · 3
√

�

N = T = 3
√

�, σ = 1.12 16 · 3
√

� 48 · 3
√

� 79 · 3
√

� 111 · 3
√

� 142 · 3
√

�

N = 2T = 2 · 3
√

�, σ = 1 5 · 3
√

� 14 · 3
√

� 23 · 3
√

� 32 · 3
√

� 41 · 3
√

�

N = 2T = 2 · 3
√

�, σ = 1.28 4 · 3
√

� 11 · 3
√

� 18 · 3
√

� 25 · 3
√

� 32 · 3
√

�

N = 8T = 8 · 3
√

�, σ = 1 5 · 3
√

� 14 · 3
√

� 23 · 3
√

� 31 · 3
√

� 40 · 3
√

�

N = 8T = 8 · 3
√

�, σ = 1.40 4 · 3
√

� 10 · 3
√

� 16 · 3
√

� 23 · 3
√

� 29 · 3
√

�

There are a couple of remarks to be made. We took only semi-optimized
parameters. What we mean by this is that we did some experiments to find a
reasonable step set, but as the purpose of our research was not to find the best
parameters for Pollard-kangaroo algorithms, we did not fully optimize the step
set. The results might thus be improved with optimal parameters. We observe
that the higher N is relative to T , the fewer group operations are necessary to
drop below the margin of error. Increasing the value of N improves the function-
ality of the algorithm more than the variables α and γ reflect. This is seen in the

118 T. Lange et al.

experimental values of σ. It increases as N increases. We also see that increasing
N from T to 2T makes a big difference in the required group operations. The
effect of increasing N even further to 8T does not have the same magnitude.

Although even small speed-ups are always nice, we also have to take the
time it takes to create the tables into account. For N = T it took us just
over 9 billion group operations and under 19 min to create the table. This is
equal to 1.4 3

√
�2 multiplications. When we increased N to 2T it took about

50 minutes and 3.8 3
√

�2 group operations. Finally, when we took N up to 8T it
took approximately 9 hours and 2.5 million walks of in total 161544244922 ≈
37.6 3

√
�2 group operations. This is doable for evaluation companies, even if they

have to make a lot of tables, but doing many more might not have enough yield
for the time it takes.

We see that we can determine how many group operations we have to do
on average for different degrees of confidence. If we increase the confidence by a
factor 100 the constant c in c

√
� or c 3

√
� increases linearly. This means that if we

use the N = 8T precomputation table and we do 170 3
√

� steps in an interval of
length 248 we can 2−128-enumerate it in less than 223.5 group operations. This is
a massive improvement over brute-force enumerating all 248 keys in an interval.
The new ranking method that is induced by such an enumeration is also a much
more accurate measure of the security of a device. Security evaluation labs could
more confidently estimate how secure an implementation is.

5 Comparison and Conclusion

This is the first paper studying key enumeration and rank estimates for public
key cryptosystems. Gopalakrishnan, Thériault, and Yao [8] studied key recovery
for ECC if a side-channel attack only provided some bits of the key. In contrast
to our model they assume that the known bits are absolutely correct and do
not discuss the possibility that we might have partial information on a subkey.
If we were to make an enumeration tree of such a result it would solely consist
of sections I and III. Although their assumption makes enumeration a lot easier
it is not very realistic. Often there are too few bits fully recovered to make
searching the remaining key space feasible. Using not only fully recovered bits
but also the partial information we can search an interval smartly and possibly
recover the solution to the DLP where [8] could not. Finally, they do not consider
enumeration and rank computation.

5.1 Comparison

One important assumption of the model covered in this paper so far is that
we have not only information about specific subkeys, but also that these keys
are adjacent and start from the most significant bits. This is true for the very
common case of implementations using windowing methods (including signed
and sliding) starting from the most significant bits. However, we can adjust our
method to the scenarios considered in [8] as we will now discuss.

Kangaroos in Side-Channel Attacks 119

The first scenario in their paper is that contiguous bits of the key are revealed.
These bits can be the most significant bits, the least significant bits or be some-
where in the middle. So far we considered the first case but our model can be
easily adapted to the others:

– If the least significant bits are revealed, then our tree would get inverted.
Searching section III would then require a slight adaptation of the algorithms
used on it. Searching it with for instance Pollard kangaroo would require
searching in equivalence classes instead of an interval. This adaptation means
the probability of finding our solution ‘accidentally’ in a neighboring interval
becomes zero. Creating tables in the Bernstein/Lange precomputation is still
possible; we would shift each instance of the DLP to the same equivalence
class.

– If bits somewhere in the middle are revealed the model would become more
complicated. We would get a bow-shaped model with 2 sections II and III.
There are 5 sections; the third contains known bits, on the second and fourth
we have partial information and we have no information on the remaining sec-
tions. Enumerating through the sections III would become more complicated,
though not impossible.

The second scenario [8] poses is that the information is not on any specific bits,
but on the square-and-multiply chain. In this case the enumeration tree of Fig. 1
would become a binary tree. Searching the sections is the same as before.

We now present an application that is not mentioned in [8] but is realistic
for an ECC scenario. A common speed up for scalar multiplication using the
base point P is to include P ′ = 2mP in the system parameters, where the
group order n is of length 2m, and compute kP as (k0 + 2mk1)P = k0P + k1P

′.
This halves the number of doublings required to compute kP (see Straus [15])
and reduces the overhead of dummy instructions introduced to perform one
addition per doubling. When such an implementation is attacked, we will know
the MSBs of k0 and k1 with much higher probability than their lower bits.
This results in an enumeration tree of six sections: sections I and IV contain
known bits, for sections II and V we have partial information, and we have
little to no information on sections III and VI. Enumeration in such a structure
is not straightforward with the methods we presented so far. If section III is
small enough, we can brute-force it and use ε-enumeration in section VI, but
realistically sections III and VI have equal size. To compute the key we have to
adapt the kangaroo algorithms to simultaneously hop intervals and equivalence
classes. This is achieved by algorithms for multidimensional DLPs which have
been studied by Gaudry and Schost in [7]. The running time is O(

√
�1�2) if

the section III and VI are intervals of length �1 and �2. An improved version
of this algorithm was presented by Galbraith and Ruprai in [6]. We have not
devised an error function for these algorithms, but expect results similar to
Theorems 1 and 2.

Lastly, it was pointed out to us by a kind anonymous reviewer that there are
attacks on ECC where in fact the subkeys are independent (see e.g. [4,19,20]).
In this case the rank estimation algorithm of [18] is applicable. The methods in

120 T. Lange et al.

this paper can then still be used as a comparison method; it is more realistic to
compare dependent subkey attacks to independent ones with a ε-rank than the
brute-force rank.

5.2 Conclusion

In summary, we showed that kangaroos can be very useful in making SCA on
ECC more efficient:

– Once section III is below 80 bits and section II not too wide there is no point in
letting the lab guy do further measurements since a standard PC can casually
do the 240 group operations to break the DLP.

– In cases where measurements cannot be pushed further by physical limita-
tions (restricted number of measurements, limits on what templates can be
measured) our improvements allow retrieving the key in some situations in
which previous methods could not.

– Theoretical kangaroos can be used to estimate the rank of the key in white-
box scenarios to determine whether a sufficiently motivated attacker could
mount the attack to break the system and we present error functions to use
in ε-enumeration.

References

1. Bernstein, D.J., Lange, T.: Computing small discrete logarithms faster. In: Gal-
braith, S., Nandi, M. (eds.) INDOCRYPT 2012. LNCS, vol. 7668, pp. 317–338.
Springer, Heidelberg (2012)

2. Bernstein, D.J., Lange, T., Schwabe, P.: On the correct use of the negation map
in the Pollard rho method. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A.
(eds.) PKC 2011. LNCS, vol. 6571, pp. 128–146. Springer, Heidelberg (2011)

3. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, Ç.K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003)

4. Clavier, C., Feix, B., Gagnerot, G., Roussellet, M., Verneuil, V.: Horizontal corre-
lation analysis on exponentiation. In: Soriano, M., Qing, S., López, J. (eds.) ICICS
2010. LNCS, vol. 6476, pp. 46–61. Springer, Heidelberg (2010)

5. Galbraith, S.D., Pollard, J.M., Ruprai, R.S.: Computing discrete logarithms in an
interval. Math. Comput. 82(282), 1181–1195 (2013)

6. Galbraith, S., Ruprai, R.S.: An improvement to the Gaudry-Schost algorithm for
multidimensional discrete logarithm problems. In: Parker, M.G. (ed.) Cryptogra-
phy and Coding 2009. LNCS, vol. 5921, pp. 368–382. Springer, Heidelberg (2009)

7. Gaudry, P., Schost, É.: A low-memory parallel version of Matsuo, Chao, and Tsu-
jii’s algorithm. In: Buell, D.A. (ed.) ANTS 2004. LNCS, vol. 3076, pp. 208–222.
Springer, Heidelberg (2004)

8. Gopalakrishnan, K., Thériault, N., Yao, C.Z.: Solving discrete logarithms from
partial knowledge of the key. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.)
Indocrypt 2007. LNCS, vol. 4859, pp. 224–237. Springer, Heidelberg (2007)

9. Hankerson, D., Menezes, A.J., Vanstone, S.: Guide to Elliptic Curve Cryptography.
Springer-Verlag New York Inc., Secaucus (2003)

Kangaroos in Side-Channel Attacks 121

10. Pan, J., van Woudenberg, J.G.J., den Hartog, J.I., Witteman, M.F.: Improving
DPA by peak distribution analysis. In: Biryukov, A., Gong, G., Stinson, D.R.
(eds.) SAC 2010. LNCS, vol. 6544, pp. 241–261. Springer, Heidelberg (2011)

11. Pollard, J.M.: Monte Carlo methods for index computation (mod p). Math. Com-
put. 32, 918–924 (1978)

12. Pollard, J.M.: Kangaroos, monopoly and discrete logarithms. J. Cryptol. 13(4),
437–447 (2000)

13. Shanks, D.: Class number, a theory of factorization, and genera. In: Lewis, D.J.
(ed.) 1969 Number Theory Institute. Proceedings of Symposia in Pure Mathe-
matics, Providence, Rhode Island, vol. 20, pp. 415–440. American Mathematical
Society (1971)

14. Stein, A., Teske, E.: The parallelized Pollard kangaroo method in real quadratic
function fields. Math. Comput. 71(238), 793–814 (2002)

15. Straus, E.G.: Addition chains of vectors (problem 5125). Am. Math. Mon. 70,
806–808 (1964). http://cr.yp.to/bib/entries.html#1964/straus

16. van Oorschot, P.C., Wiener, M.J.: Parallel collision search with cryptanalytic appli-
cations. J. Cryptol. 12(1), 1–28 (1999)

17. Veyrat-Charvillon, N., Gérard, B., Renauld, M., Standaert, F.-X.: An optimal key
enumeration algorithm and its application to side-channel attacks. In: Knudsen,
L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp. 390–406. Springer, Heidelberg
(2013)

18. Veyrat-Charvillon, N., Gérard, B., Standaert, F.-X.: Security evaluations beyond
computing power. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013.
LNCS, vol. 7881, pp. 126–141. Springer, Heidelberg (2013)

19. Walter, C.D.: Sliding windows succumbs to big mac attack. In: Koç, Ç.K., Nac-
cache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 286–299. Springer,
Heidelberg (2001)

20. Witteman, M.F., van Woudenberg, J.G.J., Menarini, F.: Defeating RSA multiply-
always and message blinding countermeasures. In: Kiayias, A. (ed.) CT-RSA 2011.
LNCS, vol. 6558, pp. 77–88. Springer, Heidelberg (2011)

Combining Leakage-Resilient PRFs and Shuffling

Towards Bounded Security for Small Embedded Devices

Vincent Grosso(B), Romain Poussier, François-Xavier Standaert,
and Lubos Gaspar

ICTEAM/ELEN/Crypto Group, Université catholique de Louvain,
Louvain-la-Neuve, Belgium

vincent.grosso@uclouvain.be

Abstract. Combining countermeasures is usually assumed to be the
best way to protect embedded devices against side-channel attacks. These
combinations are at least expected to increase the number of measure-
ments of successful attacks to some reasonable extent, and at best to
guarantee a bounded time complexity independent of the number of mea-
surements.This latter guarantee, only possible in the context of leakage-
resilient constructions,wasonly reachedeither for stateful (pseudo-random
generator) constructions, or large parallel implementations so far. In this
paper, we describe a first proposal of stateless (pseudo-random func-
tion) construction, for which we have strong hints that security bounded
implementations are reachable under the constraints of small embedded
devices. Our proposal essentially combines the well-known shuffling coun-
termeasure with a tweaked pseudo-random function introduced at CHES
2012. We first detail is performances. Then we analyze it against standard
differential power analysis and discuss the different parameters influenc-
ing its security bounds. Finally, we put forward that its implementation
in 8-bit microcontrollers can provide a better security vs. performance
tradeoff than state-of-the art (combinations of) countermeasures.

1 Introduction

Securing block cipher implementations in small embedded devices is a challeng-
ing problem. Popular countermeasures include masking, shuffling or the insertion
of random delays, for which state-of-the-art solutions can be found in [3,16,20].
In practice, such countermeasures are usually combined in order to reach high
security levels – which raises the question of which combinations bring the best
security vs. efficiency tradeoffs. For example, mixing masking with shuffling has
been shown to be an effective solution [9,17], while mixing masking with random
delays may be easier to cryptanalyze [5]. These type of combinations essentially
aim at reducing the amount of information leakage per block cipher execution.

More recently, an orthogonal approach has attracted the attention of cryptog-
raphers, of which the goal is to limit the adversary’s power by bounding its data
complexity (i.e. number of plaintexts for which the leakage can be observed) or
number of measurements. This approach is usually referred to as re-keying [11] or
c© Springer International Publishing Switzerland 2015
M. Joye and A. Moradi (Eds.): CARDIS 2014, LNCS 8968, pp. 122–136, 2015.
DOI: 10.1007/978-3-319-16763-3 8

Combining Leakage-Resilient PRFs and Shuffling 123

leakage-resilient cryptography [6] in the literature. From an application point-of-
view, the most interesting primitives are stateless ones – Pseudo-Random Func-
tions (PRFs), typically – since they provide essentially the same functionalities as
block ciphers (so are useful, e.g. for encryption, authentication, hashing). In this
context, the standard construction is the tree-based one from Goldreich, Gold-
wasser and Micali (GGM) [8]. Its leakage-resilience has first been analyzed under
a random-oracle based assumption in [18]. A modified construction exploiting an
“alternating structure” has then been proven secure in the standard model by
Dodis and Pietrzak [4]. Faust et al. next succeeded to get rid of this alternating
structure and to prove the GGM construction in the standard model, at the
cost of some additional randomness requirements. Eventually, Yu Yu and Stan-
daert showed how to relax these randomness requirements in minicrypt [21], and
Abdalla et al. studied how to improve the efficiency of these constructions by
exploiting a skip-list data structure [1]. All these previous results were obtained
for non-adaptive leakage functions (i.e. pre-determined by the hardware).

In practice, the hope of leakage-resilient constructions is to obtain security-
bounded implementations, in the sense that the time complexity of the best side-
channel attack is lower-bounded, independent of the number of measurements
performed by the adversary. Unfortunately, a recent report from Beläıd puts
forward that this hope is not reached with the previously listed leakage-resilient
PRFs1. This work further shows that the combination of leakage-resilient PRFs
with masking does not lead to any significant security improvements. In this
context, the only positive (heuristic) result of security bounded implementation
was obtained for the tweaked PRF construction proposed by Medwed et al. at
CHES 2012 [15], that takes advantage of hardware parallelism and carefully
chosen plaintexts. The main idea of this tweak is to exploit plaintexts of the
shape p = (b, b, . . . , b), i.e. where all the bytes entering the key additions are the
same. Intuitively, if these bytes are manipulated in parallel, they create a “key-
dependent algorithmic noise” that is hard to exploit by side-channel adversaries
and may (under certain conditions) lead to security-bounded implementations.
However, this positive result only applied to hardware implementations so far.

In this paper, we investigates whether more positive results can be obtained
for software implementations, by combining the CHES 2012 tweaked PRF with
the shuffling countermeasure. We next denote this proposal as the Shuffled PRF
(SPRF) construction. The main motivation behind such a proposal is that key-
dependent algorithmic noise can be produced by the parallel manipulation of
carefully chosen plaintexts p = (b, b, . . . , b). Hence, since the impact of a shuffling
is (under certain conditions) to emulate the noise of large parallel implementa-
tions within the constraints of small embedded devices, this combination could
be effective. For this purpose, we first describe a framework allowing us to ana-
lyze the security of SPRF implementations against standard DPA attacks [13],
and put forward that it depends on two main parameters: first, the amount of
1 In short, because these (stateless) PRF constructions can only bound the adver-

sary’s data complexity, by contrast with (stateful) leakage-resilient Pseudo-Random
number Generators (PRGs) that bound the adversary’s number of measurements.

124 V. Grosso et al.

direct leakage on the S-box computations and permutation used for shuffling;
second, the amount of indirect leakage, essentially due to the fact that the power
consumed to compute different S-boxes may depend on the resource used and
execution time. We then show that one type of indirect leakages (namely, dif-
ferent resources leaking differently at the same time sample) is beneficial to the
adversary, while the other type (namely, the same resource leaking differently
at different time samples) is detrimental. This suggests simple guidelines for
cryptographic hardware designers willing to improve the security of SPRFs. We
finally apply our results to the challenging case-study of an 8-bit microcontroller,
and show that security-bounded implementations can be obtained under actual
(direct and indirect) leakages. To the best of our knowledge, it is the first time
that such a positive result is obtained for a small embedded device. Furthermore,
and compared to the hardware construction in [15], our software scheme has the
additional advantage that all operations (i.e. the key additions and S-boxes, but
also MixColumns and the key scheduling) are shuffled with a 16-permutation.
This mitigates possible weaknesses due to adversaries targeting one out of four
MixColumns, hence reducing the key-dependent algorithmic noise.

2 Background

2.1 Leakage-Resilient PRFs

We first describe the GGM construction evaluated on an input x ∈ {0, 1}n under
a key k ∈ {0, 1}n, next denoted Fk(x). It requires n stages and 2n random plain-
texts pib, with b ∈ {0, 1} and 1 ≤ i ≤ n. Each stage consists in a block cipher
execution, where an intermediate key ki is computed from the previous inter-
mediate key ki−1 and the plaintext pix(i) (i.e. ki = Eki−1

(
pix(i)

)
, with x(i) the

ith bit of x, k0 initialized to k and the output Fk(x) set to kn. Taking AES
as an example, this implies computing n = 128 block cipher executions to pro-
duce a single output. The tweak proposed in [15] is to use more (namely, 256)
plaintexts of a specific shape per stage, leading to a total of 16 stages (plus one
output whitening). For this purpose, the input is first split in 16 bytes denoted
as x = (x1, x2, . . . , x16). Next and as illustrated in Fig. 1, each stage updates
the intermediate key as ki+1 = Eki(pxi+1), with 1 < i ≤ 16 and plaintexts
of a specific shape pxi

= (xi, xi, . . . , xi). Eventually, the output is defined as
Fk(x) = Ek16(p) (with p an additional plaintext). Intuitively, the combination
of a parallel implementation with the carefully selected plaintexts creates key-
dependent algorithmic noise, and the output whitening prevents attacks exploit-
ing the ciphertext (given that the block cipher is secure against SPA).

2.2 Shuffled AES Implementation

Shuffling is a countermeasure against side-channel attacks that aims to random-
ize the execution of an algorithm over time. It has been applied to the AES
in [9,20]. The main parameter influencing its security is the number of per-
mutations randomizing each operation. Taking the simple example of the AES

Combining Leakage-Resilient PRFs and Shuffling 125

Fig. 1. Efficient leakage-resilient PRF.

S-boxes, one can choose between executing them according to a random index
(among 16 possible ones) that is just incremented, or according to a random
permutation (among 16! possible ones). It has been shown in [20] that the first
solution (although cheaper) may lead to very efficient attacks. In particular,
an implementation protected with such a Random Start Index (RDI) may be
as weak as an unprotected one for low noise levels. As a result, our following
investigations will only consider shuffling based on a random permutation.

Besides the generation of a permutation vector (that is common to all solu-
tions), different alternatives exist to implement a shuffled AES. The straightfor-
ward method requires an indirect indexing of the operands. That is, a counter is
used to index a permutation vector, and the result is used to index the operand
vector. Thus, instead of operating on registers directly, two RAM accesses are
required for each (read or write) access to operands. This naturally leads to quite
large cycle counts. A more efficient solution proposed at ASIACRYPT 2012 is
to randomize the execution path. For this implementation, the assembly code of
every transform is split into 16 independent blocks of instructions. Each of these
16 blocks is augmented with a label. This allows identifying its address in ROM.
Furthermore, every transform is associated with an array of 17 16-bit words,
where the first 16 words hold the addresses of the 16 blocks, and the 17th holds
the address of the return instruction. During the execution of the cipher, the
addresses are first re-ordered according to a previously generated permutation.
Then, whenever entering a transform, a pointer is set to the beginning of the
array in order to execute its 16 blocks of instructions in random order.

Note that the implementations with double indexing and randomized execu-
tion path from [20] that we re-use in the following paid attention to shuffle all the

126 V. Grosso et al.

Table 1. SPRF performances compared to masking [16].

Implementation Cycles count ×103

First-order masking 129

Second-order masking 271

Third-order masking 470

SPRF (double indexing) 788

SPRF (rand. exec. path) 252

AES operations with a 16-permutation. For this purpose, MixColumns is imple-
mented in sets of 16 independent instructions based on xtime operations and
three dummy key schedulings are interleaved with the real one (since the AES
key scheduling only has four independent operations). Based on these choices,
the cycle count of a SPRF implementation in an Atmel AVR micro-controller is
given in Table 1, and compared with (1st-, 2nd- and 3rd-order) masking.

3 Evaluation Framework

In order to analyze the security of SPRF implementations, we will use the stan-
dard DPA attacks defined in [13]. Furthermore, as our goal is to approach worst-
case evaluations, we will consider the profiled setting of template attacks [2], and
quantify their complexity with the security graphs described in [19].

Since the SPRF construction essentially relies on a shuffled AES design, the
main challenge for our following investigations is to efficiently exploit the leakages
of such implementations. In particular, and as previously discussed in [20] this
requires to combine information obtained from the permuted operations in a
meaningful way. As usual in side-channel attacks, we will target the first-round
S-boxes and consider different (more or less ideal) models for this purpose.

Starting with the simplest situation, we can assume that all the S-boxes leak
in the same manner (as in [15]), e.g. according to a Hamming weight function.
This provides the adversary with 16-element vectors defined as:

Lu = [HW(S(x0 ⊕ k0)) + N0, . . . ,HW(S(x15 ⊕ k15)) + N15],

in the unprotected case, with Ni a Gaussian-distributed random noise with vari-
ance σ2

n. Moving to a shuffled implementation, the vector becomes:

Ls = [HW(S(xp(0) ⊕ kp(0))) + N0, . . . ,HW(S(xp(15) ⊕ kp(15))) + N15],

with p the permutation used in the shuffling. Eventually, the SPRF construction
will additionally force the same single value for all bytes, that is:

Lsprf = [HW(S(x ⊕ kp(0))) + N0, . . . ,HW(S(x ⊕ kp(15))) + N15].

Combining Leakage-Resilient PRFs and Shuffling 127

In this context, the standard DPA adversary essentially requires a leakage model
for the key byte s she targets, that can be written as:

Pr[L = l|Ks = k] =
∑

t

f(t, s, l′)∑
t′ f(t′, s, l′)

Pr[Lt = lt|Ks = k],

where t is the time instant where an S-box is executed, l′ is an optional vector
containing information on the permutation p, Lt is an element of the leakage
vector L, and the function f indicates how the adversary deals with the permuted
operations. In the (ideal) case where only the vector Lsprf would be available, the
only possibility is to perform a direct template attack assuming a uniform prior
for the permutation, i.e. f(t, s, l′) = 1/16. Next, and based on a leakage model
Pr[L|Ks], the template adversary combines the leakage vectors corresponding to
q different inputs for each candidate ks using Bayes’ law as follows:

pks
=

q∏

j=1

Pr[ks|L(j), p(j)].

For each target implementation in the next section we will repeat 100 experi-
ments and for each value q in these experiments, use the rank estimation in [19]
to evaluate the time complexity needed to recover the full AES master key. Even-
tually, we will build security graphs, where the attack probability of success is
provided in function of a time complexity and number of measurements.

Incorporating indirect leakages. The execution of 16 S-boxes is illustrated
in Fig. 2 for unprotected and shuffled S-boxes. In this respect, one important
observation made in [20] is the existence of indirect leakages on the permutation
p, due to the fact that the different physical resources used to execute the S-
boxes may leak according to different models. In order to capture this possibility
in our simulations, we will define a family of linear leakage functions as:

Lr(x) =
7∑

i=0

ai
r · x(i),

where the ai
r are random coefficient within some interval (see next). These dif-

ferent leakage functions are directly reflected in the leakage vector as follows:

Lr
sprf = [Lp(0)(S(x ⊕ kp(0))) + N0, . . . , Lp(15)(S(x ⊕ kp(15))) + N15].

Intuitively, such resource-based indirect leakages break the assumption that all
the S-boxes leak similarly, and help the adversary to know at which time instant
a target S-box is executed. How strong are indirect leakages depends on the
correlation between the models for different resources. In [15], FPGA experi-
ments suggest that this correlation can rate between strong (i.e. 0.99 for S-boxes
implemented in RAM) and weaker (i.e. 0.68 for combinatorial S-boxes).

Interestingly, we will show in the following that for SPRFs, the detrimental
effect of leakage functions depending on the resource used is moderated by the

128 V. Grosso et al.

Fig. 2. S-boxes execution paths: unprotected device (u boxes, blue), shuffling with ran-
dom start index (i boxes, green), shuffling with randomized permutation (p boxes, red)
(Color figure online).

fact that these functions may also depend on the time instant when they are
executed (e.g. because of the pipeline state of a software implementation). We
incorporate this possibility in our simulations with the following definition:

Lr,t(x) =
7∑

i=0

ai
r,t · x(i),

which directly leads to the leakage vectors of the form:

Lr+t
sprf = [Lp(0),0(S(x ⊕ kp(0))) + N0, . . . , Lp(15),15(S(x ⊕ kp(15))) + N15].

Incorporating direct leakages. Quite naturally, indirect leakages are not the
only information one can obtain about the permutation used for shuffling. If
this permutation is generated on-chip, an informed adversary could also take
advantage of a direct permutation leakage vector. In this context, the fact that
the leakages functions depends on the resource used or time of execution has no
impact on security. So we illustrate it with a Hamming weight function:

L′ = [HW(p(0)) + N0, . . . ,HW(p(15)) + N15].

Note however that direct permutation leakages can be avoided in certain cases,
e.g. by randomizing the program memory as can be achieved (assuming a secure
precomputation phase) within the recent FRAM technology [10].

Combining Leakage-Resilient PRFs and Shuffling 129

4 Simulated Experiments

Simulated experiments are convenient tools to evaluate implementations in vari-
ous (more or less realistic) settings and to test the impact of different parameters
on their security level. In the following, the first parameter we will play with is
the amount of noise in the leakage vectors defined in the previous section. It is
characterized by the variance of the noise variables Ni. In order to make its read-
ing more intuitive, we will relate this noise level with the Signal-to-Noise Ratio
(SNR), defined as the quotient between the variance of the mean leakage traces
(aka signal) and the noise variance [12]. For Hamming weight leakages on 8-bit
values, this signal equals 2 and we considered two noise levels for illustration: a
weak one corresponding to σ2

n = 0.1, SNR= 20 and a stronger one corresponding
to σ2

n = 10, SNR= 0.2. Based on these parameters, we first study the ideal case
with no direct permutation leakage and all S-boxes leaking identically.

4.1 Ideal setting (identical S-box leakages, no direct perm. leakage)

In this case, the adversary is only provided with the leakage vector Lsprf and the
only attack she can mount is a template one with uniform prior. As expected, the
construction is security-bounded. That is, after a transient period, the template
attack’s time complexity saturates and becomes independent of the number of
measurements. The impact of the noise parameter is clearly exhibited on Fig. 3,
where a higher noise level (i.e. 10 vs. 0.1) ensures a higher security bound (i.e.
285 vs. 260) that is also reached for larger number of measurements (i.e. 1000
vs. 100). Note that these results even improve the ones of Medwed et al. [15] for
hardware implementations, since a higher noise only implied a later saturation
of the bound in this case (i.e. had no impact on the value of the bound).

Fig. 3. Template attacks with uniform prior in the ideal scenario where all S-boxes
leak identically. Left: low noise level (σ2 = 0.1). Right: high noise level (σ2 = 10).

4.2 Adding Indirect Resource-Based Leakages

We now move towards a more realistic scenario with indirect leakages due to the
use of different resources in the implementation, helping the adversary to dis-
tinguish between the different S-boxes. That is, she can use the leakage vector
Lr
sprf . Note that in this case, the only possibility remains to perform a tem-

plate attack with uniform prior. But the probabilities Pr[Lt = lt|Ks = k] now

130 V. Grosso et al.

depend on the byte index s = p(t). This indirect information is directly obtained
during profiling, so the attack methodology remains identical. As a result, the
main additional parameter is the “similarity” of the leakage functions Lr(.) for
different r’s. For illustration, we will consider a high (average) correlation (of
ρr = 0.99) and a smaller one (of ρr = 0.75). We picked up the leakage functions
(more precisely, their coefficients ai

r) randomly for our experiments, under the
additional constraint that the signal was constant and set to 2, in order for the
noise levels to have a similar meaning as in our previous Hamming weight based
simulations. The results in Fig. 4 clearly exhibit the weaknesses of the simulated
SPRF implementations when the noise level is low and S-box leakages differ
too significantly (e.g. for ρr = 0.75 in the left part of the figure) – they are not
security-bounded anymore. Additional simulations performed at the higher noise
level (σ2

n = 10) are provided in Appendix A, Fig. 12, and suggest that increasing
the noise level is a simple way to preserve a security bound.

Fig. 4. Template attacks with uniform prior and indirect resource-based leakages, in
the low noise scenario (i.e. σ2

n = 0.1). Left: ρr = 0.75. Right: ρr = 0.99.

4.3 Mitigating Resource-Based Leakages with Time-Based Ones

We now consider the possibility to reduce the previous indirect information by
making the leakage functions not only dependent on the resource used, but
also on the time instant when they are executed. Intuitively, such dependen-
cies are expected to make the exploitation of resource-based indirect leakages
more difficult, by introducing some additional confusion between them due to
the (useless for the adversary) time dependencies. In order to illustrate their
impact, we stick with the most challenging scenario in the previous subsection,
with low noise (σ2

n = 0.1) and low similarity between the resources ρr = 0.75.
We additionally consider weak and strong time-dependencies (with ρt = 0.99
and ρt = 0.75 for the leakage functions Lr,t(.), respectively). As illustrated in
Fig. 5, these time-dependencies indeed provide an efficient alternative way to
reach security-bounded SPRF implementations, with lower noise levels (the same
figure is provided for the high noise level in Appendix A, Fig. 13.

Note that in this setting, the adversary has to estimate 16 × 16 templates,
each of them corresponding to 256 intermediate values, which is a quite time-
consuming task. Simplifying this profiling can result in a loss of informations.

Combining Leakage-Resilient PRFs and Shuffling 131

Fig. 5. Template attacks with uniform prior and indirect time + resource-based leak-
ages (ρr = 0.75), in the low noise scenario (i.e. σ2

n = 0.1). Left: ρt = 0.99. Right:
ρt = 0.75.

4.4 Direct Permutation Leakage

Eventually and for completeness, we add the direct permutation leakage vector
and consider an adversary who can exploit Lr+t

sprf and L′. This context has been
investigated in [20]: it requires an adversary performing a template attack with
non-uniform prior and considers f(t, s, l′) = Pr[L′

t = l′t|Kt = Kt], where Kt is the
part of the master key that is manipulated at time instant t. As in this previous
work, we see that its impact on security is limited when the shuffling is based on
random permutations – yet, they allow to converge faster towards the bound.

Fig. 6. Template attacks with direct and indirect (time + resource-based) leakages
(ρr = 0.75), in the low noise scenario (i.e. σ2

n = 0.1). Left: ρt = 0.99. Right: ρt = 0.75.

5 Practical Experiments

The previous section suggests that SPRF implementations are promising can-
didates for designing security-bounded implementations in low-cost devices. It
further puts forward that designers have two main parameters to increase their
security level: the noise (as usual) and the time- vs. resource-based indirect leak-
ages. In the latter case, we have strong incentive to design shuffled operations
that only slightly depend on the resource used, and more significantly on their
execution time. It naturally raises the question whether such designs exist in
practice. In this respect, an interesting reference is the work on collision attacks
in [7]: it shows that different implementations of the AES (e.g. always re-using

132 V. Grosso et al.

Fig. 7. Correlation between resources. Left: rand. exec. path. Right: double indexing.

the same registers or not) make the leakage models corresponding to different
operations more or less similar (hence, collision attacks more or less realistic).
We now provide an experimental case study based on an implementation of the
SPRF construction in an Atmel AVR microcontroller. We first investigate the
time- and resource-based dependencies in a shuffled AES implemented with dou-
ble indexing and randomized execution path, then exhibit security evaluations
based on these concrete values, and finally discuss scopes for further research.

In order to characterize the time- and resource-dependencies of the leakage
models in our target AVR implementation, we build accurate templates for each
S-box and time instant. As previously mentioned, this implies computing 16×16
sets of 256 templates – for each of them, we used 50,000 traces. Unfortunately,
we rapidly found out that, both for the randomized execution path and the
double indexing implementations, the time dependencies were small (i.e. with
average values of ρ̂t ≈ 0.99). By contrast, we could observe the quite strong
resource-dependencies illustrated in Fig. 7. Interestingly, we also noticed signif-
icant differences between the two approaches to shuffling. Namely, the double
indexing implementation exhibits larger average values of ρ̂r ≈ 0.86, compared
to ρ̂r ≈ 0.5 for the randomized execution path one. This intuitively matches the
expectations for these two designs, since the first one is based on the repeated
exploitation of a single register, while the randomized execution path inherently
requires traveling through the different resources of the target device. In view of

Fig. 8. Template attacks against the randomized execution path implementation (ρ̂r =
0.5, ρ̂t = 0.99, SNR = 2). Left: with direct leakages. Right: without direct leakages.

Combining Leakage-Resilient PRFs and Shuffling 133

Fig. 9. Template attacks against the double indexing implementation (ρ̂r = 0.86, ρ̂t =
0.84, SNR = 2). Left: with direct leakages. Right: without direct leakages.

the performances listed in Table 1, this leads to a clear security vs. performance
tradeoff.

We then launched experiments against these two implementations (with and
without exploiting direct permutation leakages). In order to exhibit the impact of
indirect leakages, we first analyzed an intermediate scenario, where the template
mean values follow exactly the patterns of our target device, but we arranged the
noise levels of all the leakage samples so that their SNR was fixed to a constant
value. As expected and illustrated in Figs. 8 and 9, the implementation based on
double indexing allows a better security bound in this case.

We then considered the leakage samples with their actual noise level, as mea-
sured experimentally. It turned out (see Figs. 10 and 11) that for the exploited
samples, the SNR of the double indexing implementation was larger, hence can-
celing its advantage over the randomized execution path implementation. The
exact reason of this observation is hard to state with confidence (we assume the
additional memory manipulation of intermediate values in the double indexing
implementation may be in cause). But this last experiment confirms the sub-
tle dependencies between our two parameters on the concrete security level of
an implementation. Since the leakage models are admittedly hard to control in
cryptographic devices, this suggests that ensuring a large enough noise level may
be the most reliable way to ensure large enough security levels in practice.

Fig. 10. Template attacks against the rand. execution path implementation (ρ̂r = 0.5,
ρ̂t = 0.99, variable SNR). Left: with direct leakages. Right: without direct leakages.

134 V. Grosso et al.

Fig. 11. Template attacks against the double indexing implementation (ρ̂r = 0.86,
ρ̂t = 0.84, variable SNR). Left: with direct leakages. Right: without direct leakages.

Discussion. The previous results are worth a couple of words of interpretation
as we now detail. First, from a pragmatic complexity point-of-view, the values
of the security bounds obtained may not be sufficient (as the enumeration of
up to 250 keys is reachable by determined adversaries and improved attacks
and measurement strategies can probably be deployed). Yet, the very fact of
being security-bounded is already a significant improvement compared to most
state-of-the-art countermeasures (e.g. the combination of masking and shuffling).
Combined with the simulated results in the previous section, showing that it is
possible to improve these bounds with higher noise or less informative indirect
leakages, we believe this section confirms that SPRFs lead to an interesting fam-
ily of protected implementations, that are certainly worth further investigation.
In particular, we conjecture that combining it with a commercial security chip
(including some hardware countermeasures) could already lead to much better
concrete results. Furthermore, the best exploitation of time-dependent resource
leakages is a nice research scope as well. In this respect, it is worth mentioning
that the constructive investigation of the similarities between leakage models as
we envision here is different (more demanding) than the destructive one in col-
lisions attacks. That is, while a single sample showing good similarity is enough
for these attacks to succeed, we need to guarantee that all of them are similar (for
resource-based indirect leakages) or different (for time-based indirect leakages) –
which also raises interesting characterization challenges. Eventually, and as for
the previous (hardware) construction of CHES 2012, we recall that our current
security analyses are based on first-round leakages. While we believe this is a
natural first step for understanding these constructions, investigating whether
(more computationally intensive) attacks against the inner block cipher rounds
could be more damaging remains an important research topic.

Acknowledgements. F.-X. Standaert is a research associate of the Belgian Fund
for Scientific Research (FNRS-F.R.S.). This work has been funded in parts by the
European Commission through the ERC project 280141 (CRASH).

Combining Leakage-Resilient PRFs and Shuffling 135

A Additional Figures

Fig. 12. Template attacks with uniform prior and indirect resource-based leakages, in
the high noise scenario (i.e. σ2

n = 10). Left: ρr = 0.75. Right: ρr = 0.99.

Fig. 13. Template attacks with uniform prior and indirect time+resource-based leak-
ages (ρr = 0.75), in the high noise scenario (i.e. σ2

n = 10). Left: ρt = 0.99.
Right: ρt = 0.75.

References

1. Abdalla, M., Beläıd, S., Fouque, P.-A.: Leakage-resilient symmetric encryption
via re-keying. In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS, vol. 8086,
pp. 471–488. Springer, Heidelberg (2013)

2. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski Jr., B.S., Koç,
Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003)

3. Coron, J.-S., Kizhvatov, I.: Analysis and improvement of the random delay coun-
termeasure of CHES 2009. In: Mangard, S., Standaert, F.-X. (eds.) [14], pp. 95–109

4. Dodis, Y., Pietrzak, K.: Leakage-resilient pseudorandom functions and side-channel
attacks on feistel networks. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223,
pp. 21–40. Springer, Heidelberg (2010)

5. Durvaux, F., Renauld, M., Standaert, F.-X., van Oldeneel tot Oldenzeel, L.,
Veyrat-Charvillon, N.: Efficient removal of random delays from embedded soft-
ware implementations using hidden markov models. In: Mangard, S. (ed.) CARDIS
2012. LNCS, vol. 7771, pp. 123–140. Springer, Heidelberg (2013)

136 V. Grosso et al.

6. Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: FOCS,
pp. 293–302. IEEE Computer Society (2008)

7. Gérard, B., Standaert, F.-X.: Unified and optimized linear collision attacks and
their application in a non-profiled setting: extended version. J. Cryptographic Eng.
3(1), 45–58 (2013)

8. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions
(extended abstract). In: FOCS, pp. 464–479. IEEE Computer Society (1984)

9. Herbst, C., Oswald, E., Mangard, S.: An AES smart card implementation resistant
to power analysis attacks. In: Zhou, J., Yung, M., Bao, F. (eds.) ACNS 2006. LNCS,
vol. 3989, pp. 239–252. Springer, Heidelberg (2006)

10. Kerckhof, S., Standaert, F.-X., Peeters, E.: From new technologies to new solu-
tions exploiting FRAM memories to enhance physical security. In: Francillon, A.,
Rohatgi, P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 16–30. Springer, Heidelberg
(2014)

11. Kocher, P.C.: Leak resistant cryptographic indexed key update. US Patent 6539092
12. Mangard, S.: Hardware countermeasures against DPA – a statistical analysis

of their effectiveness. In: Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp.
222–235. Springer, Heidelberg (2004)

13. Mangard, S., Oswald, E., Standaert, F.-X.: One for all - all for one: unifying stan-
dard differential power analysis attacks. IET Inf. Secur. 5(2), 100–110 (2011)

14. Mangard, S., Standaert, F.-X. (eds.): CHES 2010. LNCS, vol. 6225. Springer,
Heidelberg (2010)

15. Medwed, M., Standaert, F.-X., Joux, A.: Towards super-exponential side-channel
security with efficient leakage-resilient PRFs. In: Prouff, E., Schaumont, P. (eds.)
CHES 2012. LNCS, vol. 7428, pp. 193–212. Springer, Heidelberg (2012)

16. Rivain, M., Prouff, E.: Provably secure higher-order masking of AES. In: Mangard,
S., Standaert, F.-X. (eds.) [14], pp. 413–427

17. Rivain, M., Prouff, E., Doget, J.: Higher-order masking and shuffling for software
implementations of block ciphers. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS,
vol. 5747, pp. 171–188. Springer, Heidelberg (2009)

18. Standaert, F.-X., Pereira, O., Yu, Y., Quisquater, J.-J., Yung, M., Oswald, E.:
Leakage resilient cryptography in practice. In: Sadeghi, A.-R., Naccache, D. (eds.)
Towards Hardware-Intrinsic Security, Information Security and Cryptography, pp.
99–134. Springer, Heidelberg (2010)

19. Veyrat-Charvillon, N., Gérard, B., Standaert, F.-X.: Security evaluations beyond
computing power. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013.
LNCS, vol. 7881, pp. 126–141. Springer, Heidelberg (2013)

20. Veyrat-Charvillon, N., Medwed, M., Kerckhof, S., Standaert, F.-X.: Shuffling
against side-channel attacks: a comprehensive study with cautionary note. In:
Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 740–757.
Springer, Heidelberg (2012)

21. Yu, Y., Standaert, F.-X.: Practical leakage-resilient pseudorandom objects with
minimum public randomness. In: Dawson, E. (ed.) CT-RSA 2013. LNCS, vol. 7779,
pp. 223–238. Springer, Heidelberg (2013)

Embedded Implementations

Double Level Montgomery Cox-Rower
Architecture, New Bounds

Jean-Claude Bajard1,2 and Nabil Merkiche3(B)

1 Sorbonnes Universités, UPMC Univ Paris 06,
UMR 7606, LIP6, 75005 Paris, France

2 CNRS, UMR 7606, LIP6, 75005 Paris, France
jean-claude.bajard@lip6.fr
3 DGA/MI, Rennes, France

nabil.merkiche@intradef.gouv.fr

Abstract. Recently, the Residue Number System and the Cox-Rower
architecture have been used to compute efficiently Elliptic Curve Cryp-
tography over FPGA. In this paper, we are rewriting the conditions of
Kawamura’s theorem for the base extension without error in order to
define the maximal range of the set from which the moduli can be cho-
sen to build a base. At the same time, we give a procedure to compute
correctly the truncation function of the Cox module. We also present a
modified ALU of the Rower architecture using a second level of Mont-
gomery Representation. Such architecture allows us to select the moduli
with the new upper bound defined with the condition. This modification
makes the Cox-Rower architecture suitable to compute 521 bits ECC
with radix downto 16 bits compared to 18 with the classical Cox-Rower
architecture. We validate our results through FPGA implementation of
a scalar multiplication at classical cryptography security levels (NIST
curves). Our implementation uses 35 % less LUTs compared to the state
of the art generic implementation of ECC using RNS for the same per-
formance [5]. We also slightly improve the computation time (latency)
and our implementation shows best ratio throughput/area for RNS com-
putation supporting any curve independently of the chosen base.

Keywords: Residue Number System · High speed · Hardware imple-
mentation · Elliptic Curve Cryptography · FPGA

1 Introduction

The Residue Number System (RNS) has shown interest for efficient implemen-
tation and high performances in large integer computations for public key cryp-
tography and digital signature [5,6]. Due to the ability to compute any operation
quickly (O(n) complexity in RNS vs O(nlog2(3)) in multiprecision for multiplica-
tions when using Karatsuba) without carry propagation and with natural paral-
lelism, RNS has gained interest in the literature [1,11,12]. Recently, it has also
been demonstrated to be suitable for pairing computations [3,13]. Improvement
c© Springer International Publishing Switzerland 2015
M. Joye and A. Moradi (Eds.): CARDIS 2014, LNCS 8968, pp. 139–153, 2015.
DOI: 10.1007/978-3-319-16763-3 9

140 J.-C. Bajard and N. Merkiche

has been made for efficient computation of the final exponentiation in [2]. All
these implementations are based on the Cox-Rower architecture proposed by
Kawamura for RSA [6] and improved by Guillermin for ECC computations [5].

In this paper, we reformulate the conditions for the base extension in order
to build bases for the RNS Cox-Rower. Then, we present a new ALU that takes
advantages of the new conditions for the base extension.

The paper is organised as follow: in Sect. 2, we will recall briefly mathematical
background about RNS, Montgomery over RNS and approximations made in the
base extension. Section 3 deals with the range of the moduli set induced by
the approximation made during the base extension. The truncation function of
the Cox is re-evaluated under those conditions. Section 4 presents a new Rower
architecture, together with its base extension algorithm, to take advantage of
the maximal range of the moduli set defined in Sect. 3. Section 5 gives results
with scalar multiplication as well as area and performance comparisons with the
classical Rower architecture. Section 6 concludes the paper.

2 Background Review

2.1 Residue Number System

RNS represents a number using a set of smaller integers. Let B = {m1, . . . ,mn}
be a set of coprime natural integers. B is also called a base. Let M =

∏n
i=1 mi.

The RNS representation of X ∈ Z/MZ is the unique set of positive integers
{X}B = {x1, . . . , xn} with xi = X mod mi. The conversion from RNS repre-
sentation to binary representation can be computed using the Chinese Remain-
der Theorem (other methodology as Mixed Radix is possible):

X =

(
n∑

i=1

(xiM
−1
i mod mi)Mi

)
mod M with Mi =

M

mi
(1)

Operations in RNS are computed as follows:
∀X,Y ∈ Z/MZ,∃Z ∈ Z/MZ s.t.:

Z = X � Y mod M ⇔ zi = xi � yi mod mi with � ∈ {+,−, ∗,÷}
and ÷ only available when Y is coprime with M and a divisor of X.

Notation: In the rest of the paper, {X}B will refer to the representation of
X in the RNS base B. We use braces to denote the fact that this is a set of
integers.

2.2 RNS and Montgomery

RNS arithmetic has several drawbacks over multiprecision arithmetic. One of
them is that reduction over p is complex. Reduction over p is still possible when
using Montgomery Reduction since it computes exactly the value using a base

Double Level Montgomery Cox-Rower Architecture, New Bounds 141

Algorithm 1. Montgomery Reduction in RNS
Input: {X}B , {X}B′

Output: {S}B , {S}B′

1 Precomputed: {−p−1}B , {p}B′ , {M−1}B′

2 {Q}B ← {X}B ∗ {−p−1}B

3 {Q}B′ ← BE({Q}B ,B,B′)
4 {S}B′ ← ({X}B′ + {Q}B′ ∗ {p}B′) ∗ {M−1}B′

5 {S}B ← BE({S}B′ ,B′,B)

extension [9,10]. Thereafter, we recall the algorithm to compute the Montgomery
Reduction in RNS [5,6,10].

The main part of Montgomery Reduction relies on the Base Extension func-
tion (BE in the algorithm) that is described in the next section.

2.3 Base Extension

Let n be the cardinality of the base in RNS. In [9,10], Posch and Posch introduced
a floating approach to compute the base extension function. In [6], Kawamura
came to a similar result, but the base extension function introduced by Kawamura
supposes that the moduli mi are pseudo-Mersenne numbers of the form mi =
2r − μi with 0 ≤ μi 	 2r,∀i ∈ [[1, n]]. The base extension function relies on the
conversion from RNS representation to binary representation. From (1), we have:

x =
n∑

i=1

(xiM
−1
i mod mi)Mi − kM,

for some k to be determined. Let ξi(xi) = xiM
−1
i mod mi but we will use

ξi to lighten notations. Then it follows:

n∑

i=1

ξi/mi = k + x/M

Since 0 ≤ x/M < 1, we have k ≤
n∑

i=1

ξi/mi < k + 1. Hence:

k =

⌊
n∑

i=1

ξi/mi

⌋
(2)

Thanks to the special form of mi and to the condition 0 ≤ μi 	 2r,
Kawamura has approximated mi by 2r to ease the computation. Let k̂ be:

k̂ =
n∑

i=1

truncq(ξi)
2r

+ α where truncq(ξi) =
⌊

ξi

2(r−q)

⌋
2(r−q) and 0 ≤ α < 1 (3)

142 J.-C. Bajard and N. Merkiche

One can see that 0 ≤ ξi − truncq(ξi) ≤ 2(r−q) − 1. To evaluate the error due
to the truncation approximation, Kawamura introduced some definitions that
we recall here:

εmi
=

2r − mi

2r
, δmi

=
ξi − truncq(ξi)

mi
(4)

ε = max
i∈[[1,n]]

(εmi
), δ = max

i∈[[1,n]]
(δmi

) (5)

The denominator’s approximations error is called εmi
whereas δmi

is due
to the numerator’s approximation. Then, Kawamura proved 2 theorems for the
base extension function. The conditions of one of the theorems will help to find
the μi’s upper bound (called μmax), which is the maximal range of the set from
which we can select the moduli to build a base.

Theorem 1 (Kawamura [6]). If 0 ≤ n(ε+δ) ≤ α < 1 and 0 ≤ x < (1−α)M ,
then k̂ = k and the base extension function extends the base without error.

One can see from the proof of the Theorem 1 in [6] that the conditions can be
relaxed in:

0 ≤ n(ε + δ(1 − ε)) ≤ α and 0 ≤ x < (1 − α)M with α < 1 (6)

This new condition will help us to estimate μmax’s upper bound. To our knowl-
edge, conditions on μmax have not been clearly established. In order to ease the
moduli selection, we define the conditions on μmax in the next section.

3 New Bounds for the Cox-Rower Architecture

3.1 µi’s Upper Bound for RNS Base

In the previous section, we have presented Kawamura’s approximation of the
factor k for the base extension. The only condition given by Kawamura is 0 ≤
μi 	 2r. In this section, we will explore the different equations to evaluate the
impact on μi’s upper bound. From (4) and (5), we have:

ε = max
(

2r − mi

2r

)
=

2r − min(mi)
2r

which leads to min(mi) = 2r(1 − ε)

On the other hand, ∀x ∈ Z/MZ we have:

0 ≤ δ = max
(

ξi − truncq(ξi)
mi

)
≤ 2(r−q) − 1

min(mi)
=

2(r−q) − 1
2r(1 − ε)

From the new condition (6), it follows that:

0 ≤ n

(
ε +

2(r−q) − 1
2r(1 − ε)

(1 − ε)
)

≤ α then 0 ≤ ε ≤ α

n
− 2(r−q) − 1

2r
(7)

Double Level Montgomery Cox-Rower Architecture, New Bounds 143

Now, we will evaluate Eq. (7) in ε to find the condition on mi since ε =
2r−min(mi)

2r = μmax

2r . Let substitute ε in (7):

0 ≤ μmax

2r
≤ α

n
− 2r−q − 1

2r
⇔ 0 ≤ μmax ≤ 2r α

n
− 2r−q + 1 (8)

If q = r, then μmax is maximum and is in the range of:

0 ≤ μmax ≤ 2r α

n
(9)

Then, we can rewrite an equivalent condition of the Theorem 1 using only
the parameters α, r, n, q and μmax, which is more explicit for implementations:

Theorem 2. If 0 ≤ μmax ≤ 2r α
n − 2r−q + 1 and 0 ≤ x < (1 − α)M with α < 1,

then k̂ = k and the base extension function extends the base without error.

With this new formulation, we can easily build bases for the RNS Cox-Rower
architecture.

3.2 Lower Bound for the Parameter Q of the Cox

In [6], Kawamura described a procedure to determine n, ε, δ, α and q for a given p.
While n is easy to determine (same order of magnitude as n ≈ log2(p)/r), q is
determined using the approximations ε 	 1 and 2−(r−q) 	 1 with Theorem 1’s
conditions. While those approximations are asymptotically correct, we want to
determine q for any range of parameters. We give, here, a new procedure to
determine correctly q from α, n, r and μmax.

Once the bases are choosen using (9), from the Theorem 2’s conditions, the
following equation can be applied to find the parameter q:

q ≥
⌈
− log2

(α

n
+ 2−r − μmax

2r

)⌉
with μmax = max

μi∈{B,B′}
(μi) (10)

This is a necessary and sufficient condition to get an exact computation.
Unlike Kawamura’s method [6], no assumption is made on ε (or equivalently on
μmax) and 2−(r−q).

4 A New Cox-Rower Architecture

In the previous section, conditions on μmax has been determined. In this section,
we first present the algorithm and the classical ALU used to compute the reduc-
tion inside the Rower. To our knowledge, it is the only ALU used with the RNS
Cox-Rower architecture [2,3,5,8,13].

Then, we introduce the new ALU proposed in this paper. This new ALU has
been designed to fit on FPGAs, and we compare it with the classical ALU. Our
comparison analysis uses 3 types of cells: DSP (Digital Signal Processing) blocks,
LUTs (Look-Up Table) and registers (basic elements of FPGA) to compare the
2 ALUs. Multipliers are implemented inside DSP blocks on FPGA, with some
additional features such as pre/post-adder/substracter. LUTs are the cell bases
to implement any combinatorial logic.

144 J.-C. Bajard and N. Merkiche

Algorithm 2. Efficient Reduction Algorithm
Input: a ≤ 2r, b ≤ 2r and mi = 2r − μi with 0 ≤ μi <

√
2r

Output: z = (ab) mod mi

1 c ← ab = c12
r + c0

2 d ← c1μi = d12
r + d0

3 e ← d1μi

4 z ← (e + d0 + c0) mod mi

4.1 Classical Rower Unit

The Cox-Rower architecture defined in [3,5,6,8,13] computes the reduction inside
the Rower using Algorithm 2 when 0 ≤ μi <

√
2r.

The last addition (line 4 of Algorithm 2) gives a number up to 3 · 2r < 4mi.
It is also possible to reduce the last addition during the computation of the
multiplications, if the adder/reducer block are not the critical path of the design
compared to the multipliers. Such implementation gives good results for efficient
implementation and computation for Fp/RSA and ECC [2,3,5,6,8,13]. Figure 1
presents the ALU of the Rower unit introduced by Guillermin [5].

Fig. 1. Classical ALU’s Rower

The first reduction stage (second level in Fig. 1) is not necessary because its
output is reduced within the second stage (third level in Fig. 1) (in the design,
we have 2r + mi < 3mi but 2r + 2r < 3mi). The last part of the design is two
accumulators before adding and reducing the 2 branches.

4.2 New Rower Unit

A drawback of the previous ALU is the condition 0 ≤ μi ≤ √
2r. This restriction

on moduli is taken to allow efficient reduction. Notice that, on the contrary, the
condition we derived in (9) has to be met to ensure a base extension without
error.

Double Level Montgomery Cox-Rower Architecture, New Bounds 145

Then the two following cases can be met:

(i) 0 ≤ μmax ≤ 2r α
n <

√
2r. In that case, choosing moduli in the range

[2r α
n ;

√
2r] may lead to erroneous computations.

(ii) 0 ≤ μmax ≤ √
2r < 2r α

n . In this second case we observe that, using the
classical ALU, we are restricted for the choice of moduli while our conditions
(9) shows that taking more moduli without inducing errors is possible.

As an example, when r ≥ 14 and log2(p) = 521, we are restricted by the condition
0 ≤ μmax ≤ √

2r to select the moduli. The condition given for efficient reduction,
when r is large, is sufficient to be in (ii), which is the case in [2,3,5,6,8,13].

We propose here a new ALU for the Rower unit to exploit the upper bound
μmax ≤ 2r α

n given by our condition (9). Using this upper bound, we will be able
to use smaller radix than the classical ALU for computing equivalent size of p
(r = 16 for computing log2(p) = 521 whereas we need r = 18 with the classical
ALU). Our ALU is based on the Montgomery reduction1 inside the Rower unit
(called inner level of Montgomery). Our ALU computes the reduction using
Algorithm 3 without any assumption on mi excepted the one that mi is coprime
with 2r to ease the computation in hardware2.

Algorithm 3. Inner Montgomery Reduction algorithm
Input: a ≤ 2r, b ≤ mi, mi = 2r − μi with gcd(mi, 2

r) = 1, mi < 2r

Output: z = (ab2−r) mod mi

1 c ← ab = c12
r + c0

2 q ← (c0(−m−1
i)) mod 2r = q0

3 s ← (q0mi) + c = s12
r + s0

4 z ← s1 mod mi

The most significant bits of the last addition (line 3 of Algorithm 3) gives a
number up to 2mi (compared to 4mi with the classical ALU). Figure 2 presents
the ALU of the Rower unit proposed in this paper.

Levels of multiplication and reduction are also well separated, which makes
our design fully pipelinable inside DSP blocks of the FPGA. Our ALU has also
one accumulator. Moreover, we can take advantage of the adder integrated in the
DSP blocks to compute the last addition of the Montgomery reduction algorithm
(Algorithm 3).

4.3 Computation Algorithm

The computation of the Montgomery reduction over RNS (called outer level
of Montgomery), when using the classical ALU, is given in [5]. We recall this
1 Barrett reduction is also possible, but we would need larger multipliers for the same

results.
2 For mi = 2r (only one even number can be selected), we use a classical multiplier

and gather the r least significant bits of the multiplier.

146 J.-C. Bajard and N. Merkiche

Fig. 2. New ALU’s Rower

algorithm in the Appendix. It is based on precomputation of values depending
on the parameters of the elliptic curve (a4, a6, p with y2 = x3 + a4x + a6) and
on the values of the bases (mi,Mi,M

−1
i ,M,M−1, m′

i,M
′
i ,M

′−1
i ,M ′).

Our ALU uses the same algorithm as the one given in [5]. Differences reside in
the precomputed values. Indeed, values that have to be computed are {X2r}B =
{x̃i = xi2r mod mi}3. Mainly, we precompute the values using Montgomery
representation inside the ALU (which is ×2r mod mi in the inner level of Mont-
gomery). When we use the base extension function, we need to compute the
real value (inner level of Montgomery representation to normal representation
mod mi) to extend it to the second base. The new ALU needs the same number
of cycles in order to compute the outer Montgomery compared to the classical
ALU (Algorithms for outer Montgomery computation, as well as precomputed
values, for the classical ALU and our ALU are given in Appendix A).

4.4 Comparison Analysis

Despite the fact that our ALU was designed specifically to fit on FPGA, we give
some comparisons for ASIC implementations.

Area analysis. Size of the multipliers are not the same between the classical
ALU and our ALU. When using the classical ALU, we need 3 multipliers of size
r × r → 2r, r × r/2 → 3r/2 and r/2 × r/2 → r (lines 1, 2 and 3 of Algorithm 2).
Our ALU costs the same number of multipliers, but the size will be r × r →
3 It is well known that the Montgomery representation is stable for addition and

product using Algorithm 3.

Double Level Montgomery Cox-Rower Architecture, New Bounds 147

2r, r×r → r and r×r → 2r. With our ALU, we fully used the full size of the DSP
blocks on FPGA whereas quarter and half of the DSP blocks are lost with the
classical ALU. When looking at LUTs used on FPGA, our ALU is less complex
(in term of additions and reductions) than the classical ALU. This reduces the
number of LUTs used within our ALU. The final adder in Montgomery reduction
algorithm (Algorithm 3) can also be included inside the DSP blocks of the FPGA
to help reducing the number of LUTs used, which is not the case with the classical
ALU. Looking at Fig. 2, we can estimate that we would use 5 times less LUTs
with our ALU than with the classical one. For ASIC, those considerations are no
more true since the cost of the reduction level is far more important on FPGA
than in ASIC (where multipliers are far more area consuming than adders).

Timing analysis. Timing path of a classical multiplier is an affine function on
the size of its inputs. In the classical ALU, for each multiplications, we need the
most significant bits of the previous multiplication (lines 2 and 3 of Algorithm 2).
In ASIC or FPGA, this is usually the critical path of the design if it is not well
pipelined. On the other hand, our ALU only needs the least significant bits from
one multiplier to the next (lines 2 and 3 of Algorithm 3), which reduces the
length of the critical timing path.

Others considerations. Stages of multiplications and reductions are well sepa-
rated, which reduces the fanouts, placement and routing issues. Stages of multi-
plication are also fully pipelinable without any impact on the final reduction in
our ALU.

Remarks. With the classical ALU, Kawamura’s approximation on ε 	 1 and
2−(r−q) 	 1 to determine q is correct when r is large enough to have

√
2r 	 2r α

n .
With the new ALU, the procedure to determine q, defined in the previous section,
is available.

5 Experiments and Comparison

5.1 Validation on FPGA

Target technology. We have implemented our ALU (and also the classical ALU
[5] for the purpose of comparison) on a Xilinx Kintex-7 FPGA using the KC705
evaluation board available from Xilinx. This board includes the device xc7k325t
which is a mid range FPGA on the 28 nm process node.

Parameters design. We have implemented the classical cryptography security
level from NIST but no restriction is given on the parameters of the elliptic
curve but to be a valid curve. DSP blocks of the Xilinx 7 series family are signed
multipliers of size 25 × 18 → 43. Since we need only the unsigned part of the
multiplier, and we want to be base-independent, we choose to take radix r = 17.
The base has been chosen such that we can take α = 0.5.

148 J.-C. Bajard and N. Merkiche

Table 1. P&R performances and comparisons

Design Curve n Cycles Slices Fmax Latency q log2(µmax) Ratio

Classical ALU (C) 160 10 78892 1614 233,8 0,337ms 5 7 293,7

Our ALU (O) 1011 285,7 0,276ms 5 7 573,1

C 192 12 106205 1880 231,3 0,459ms 5 7 222,4

O 1190 283,0 0,375ms 5 7 429,8

C 224 14 137360 2249 232,5 0,590ms 5 8 168,6

O 1358 285,0 0,481ms 5 8 342,2

C 256 16 172520 2540 224,2 0,769ms 5 8 130,9

O 1630 281,5 0,612ms 5 8 256,2

O 384 23 339463 2163 281,0 1,208ms 6 9 146,9

O 521 31 585926 2565 265,9 2,203ms 7 10 92,2

Implementation. For both design (classical ALU and our ALU) and each curve,
Table 1 gives the area in terms of slices4, maximum frequency after Place and
Route, number of cycles for a whole computation (binary to RNS or INT2RNS,
scalar multiplication or MULT, final inversion or INV, and RNS to binary trans-
formation or RNS2INT), the computation time, q (size of the adder in the Cox
module), log2(μmax) and the ratio bits.s−1/slices. The slice count is indepen-
dent on DSP slices or BRAM (Block RAM). Table 2, in Appendix A, gives the
details account on LUTs, registers, DSP and BRAM, as well as the cycles for
each command. Area implementation results take the datapath, the sequencer
and the interface into accounts. Only the ALU has been modified as well as the
precomputations.

Comparison of the 2 ALUs. Because of the condition given for an efficient reduc-
tion (0 ≤ μi ≤ √

2r = 362) with the classical ALU, we were not able to build
2 bases with r = 17 for log2(p) > 256 which is a critical size for the DSP block
for the Xilinx FPGA. On the other hand, using our ALU and the condition (9)
(0 ≤ μmax ≤ 2r α

n = 2114), we were able to build 2 bases up to log2(p) = 521. To
reach similar size of p, Guillermin took r = 18 with the classical ALU to over-
come this issue [5], which it’s not acceptable if we want to use 1 DSP block per
multiplication and don’t want to penalize the maximal frequency and latency.

As expected in the previous section, we use 35 % less area, globally, with the
Montgomery ALU than with the classical ALU. The area reduction given here
takes into account the logic for the whole datapath, the sequencer and the inter-
face. The area reduction inside the ALU is around 75 %. The area of the 256 bits
with the classical ALU is almost the same as with the 521 bits for our ALU.

The gap on the maximal frequency between the 2 ALUs is due to the place-
ment and routing issues. Indeed, critical timing paths of the classical ALU are
from multipliers to adder/reducers blocks (Fig. 1). The multiple interconnections

4 The slices is the cells counting system on Xilinx FPGA. A slice on a Kintex-7 includes
4 LUTs with 6 inputs and 8 registers.

Double Level Montgomery Cox-Rower Architecture, New Bounds 149

make those paths really difficult to place and route efficiently (essentially due
to the fanouts). On the other hand, critical timing paths of our ALU is from
one multiplier to the next multiplier. Thus, if we want to increase the frequency,
we will have to increase the pipeline. For scalar multiplication in ECC, a pipeline
of 5 registers is enough to have 95 % of the pipeline used during the whole
computation (Guillermin came to similar results [5]). For application to pairing
computations, we can increased the pipeline to 10 registers thus expecting better
frequency than for scalar multiplication [3,13].

5.2 Comparison

We compare our design with 3 others design RNS and non RNS. Our architecture
supports any elliptic curve over Fp and implements the Montgomery Ladder
algorithm to be SPA resistant. We used projective coordinates for computations.
We considered the general elliptic curve in the Weierstrass form y2 = x3 +
a4x+a6 with no assumption on the parameters. Our architecture does not make
assumption on the form of the moduli except that they respect Theorem 2’s
conditions.

(i) First design is the one given in [5] and is based on RNS. The ALU used is the
classical one. A larger size of radix has also been used in his implementation.
This design shows really fast computation with any elliptic curve over Fp.
To our knowledge, it is the fastest implementation of elliptic curve scalar
multiplication with generic curves independently of the choosen base on
FPGA using RNS Cox-Rower architecture. For ratio comparison, a slice in
recent Xilinx devices (virtex-5 and beyond) is equivalent to 3 ALMs5 in
Altera. To achieve high running frequency, all the precomputed values and
the GPR are implemented into registers inside ALMs.

(ii) Second design is an implementation of a specific curve where p is a pseudo-
Mersenne number [4]. Using the property of the pseudo-Mersenne value,
this implementation can be specialized to run at high frequency and quickly
computing the multiplication scalar.

(iii) Third design is based on fast quotient pipelining Montgomery multipli-
cation algorithm in [7]. The scalar multiplication algorithm is based on
window method algorithm. Jacobian coordinates is used and a4 parameter
is set to −3 (which is not a real restriction with Weierstrass form through
an isogeny). To our knowledge, it is the fastest implementation of scalar
multiplication over ECC and smallest design for such performance with
generic curves.

Design (i) is the one we compare during the paper. Our implementation is
smaller and a slightly faster than the implementation in [5].

Design (ii) used the specific form of the parameter p to improve the overall
performance. This design is faster than ours, but it is dependent on the pseudo-
Mersenne form of the parameter p of the elliptic curve.
5 An ALM, in the Stratix-2 family, contains 2 LUTs with 5 inputs and 2 registers, and

equivalent to the Xilinx Virtex-4 slice.

150 J.-C. Bajard and N. Merkiche

Design Curve Device Size (DSP) Frequency Latency Ratio

Our work 256 any Kintex-7 1630 slices (46) 281,5 0,612 ms 256,2

521 any 2565 slices (91) 265,9 2,203 ms 92,2

[5] 256 any Stratix-2 9177 ALM (96) 157,2 0,68 ms 123,1

512 any 17017 ALM (244) 144,97 2,23 ms 40,47

[4] 256 NIST Virtex-4 1715 slices (32) 490 0,49 ms 304,6

[7] 256 any Virtex-4 4655 slices (37) 250 0,44 ms 250,0

Virtex-5 1725 slices (37) 291 0,38 ms 390,5

Design (iii) shows really fast computation of ECC scalar multiplication. Com-
pared to our design, the gain in computation time comes from the use of Jacobian
coordinates and the window method algorithm whereas we use Montgomery Lad-
der and projective coordinates. But when comparing the numbers of cycles to
complete a multiplication and an addition/substraction, 35 cycles is needed to
compute a multiplication whereas we need 2n + 3 cycles (35 cycles for 256 bits),
and 7 cycles is needed to compute an addition/substraction, whereas we need
1 cycle for an addition/substraction. Eventually, the gain in performance is not
scalable to any size of elliptic curve as our work.

6 Conclusion and Perspectives

In this paper, we established the link between moduli’s properties and base
extension for the Cox-Rower architecture. To our knowledge, that was not clearly
defined yet. Now, the given bounds are more appropriate for designers. We also
give a new procedure to determine q parameter which is used for truncation
in the Cox module. We propose a new ALU design, based on an inner Mont-
gomery reduction. This ALU is designed to fully use the bounds of the Cox-Rower
architecture and to reduce the combinatorial area of the architecture on FPGA
without penalizing performance. Moreover, using the same pipeline depth, we
manage to increase the frequency of our ALU compare to the classical one.

In future works, we will increase the pipeline depth in DSP blocks for appli-
cations to pairing computations in order to improve computation time. Further-
more, we will take advantage of the pre-substracter of the DSP block to easily
compute (−AB) mod p and reduce computation time. In the perspective of
improving the algorithmic, we will study the use of different coordinates and
implementations, such as Jacobian coordinates and window method. Although
our ALU is designed for FPGA, we will also study the potential application of
our ALU to ASIC.

Double Level Montgomery Cox-Rower Architecture, New Bounds 151

A Algorithm to Compute the Montgomery Reduction
over RNS and Implementation Details

Let B and B′ be 2 RNS bases such that B = {mi} and B′ = {m′
i} with

M =
∏n

i=1 mi, M ′ =
∏n

i=1 m′
i, gcd(p,M) = 1 and gcd(M,M ′) = 1. Algorithm 4

recalls the Montgomery reduction over RNS, when using the classical ALU.
Precomputed values are in bald.

Algorithm 5 is the algorithm for the Montgomery reduction over RNS, when
using our ALU. Operation ⊗ will denote the inner Montgomery multiplication
and reduction (Algorithm 3) such that a ⊗ b mod m = ab2−r mod m.

Algorithm 4. Montgomery Reduction over RNS with classical ALU
Input: {X}B = {xi} and {X}B′ = {x′

i}
Output: {S = (XM−1 mod p) mod M}B = {si} and {S = (XM−1 mod p)

mod M ′}B′ = {s′
i}

1 for i = 1 to n do
2 qi ← xi(−p−1)M−1

i mod mi

3 q′
i ← 0

4 si ← 0

5 end
6 k ← 0 // Initialization of the cox with α = 0
7 for i = 1 to n do
8 k ← k + truncq(qi) // Evaluating the factor k
9 for j = 1 to n do

10 q′
j ← (q′

j + qiMipM
−1M′−1

j) mod m′
j

11 end

12 end
13 for i = 1 to n do

14 q′
i ← (q′

i + � k
2r

�(−M)pM−1M′−1
i) mod m′

i

15 end
16 for i = 1 to n do

17 s′
i ← (q′

i + x′
iM

−1M′−1
i) mod m′

i

18 end
19 k ← errinit // Initialization of the cox with α = errinit
20 for i = 1 to n do
21 k ← k + truncq(s

′
i) // Evaluating the factor k

22 for j = 1 to n do
23 sj ← (sj + s′

iM
′
i) mod mj

24 end

25 end
26 for i = 1 to n do
27 si ← (si + � k

2r
�(−M′)) mod mi

28 s′
i ← (s′

iM
′
i) mod m′

i

29 end

152 J.-C. Bajard and N. Merkiche

Algorithm 5. Montgomery Reduction over RNS with Montgomery ALU
Input: {X̃}B = {x̃i = xi2

r mod mi} and {X̃}B′ = {x̃′
i = x′

i2
r mod m′

i}
Output: {S̃ = (XM−1 mod p)2r mod M}B = {s̃i = si2

r mod mi} and
{S̃ = (XM−1 mod p)2r mod M ′}B′ = {s̃′

i = s′
i2

r mod m′
i}

1 for i = 1 to n do
2 qi ← x̃i ⊗ (−p−1)M−1

i mod mi

3 q′
i ← 0

4 si ← 0

5 end
6 k ← 0 // Initialization of the cox with α = 0
7 for i = 1 to n do
8 k ← k + truncq(qi) // Evaluating the factor k
9 for j = 1 to n do

10 q′
j ← (q′

j + qi ⊗ MipM
−1M′−1

j 2r) mod m′
j

11 end

12 end
13 for i = 1 to n do

14 q′
i ← (q′

i + � k
2r

� ⊗ (−M)pM−1M′−1
i 2r) mod m′

i

15 end
16 for i = 1 to n do

17 s′
i ← (q′

i + x̃′
i ⊗ M−1M′−1

i) mod m′
i

18 end
19 k ← errinit // Initialization of the cox with α = errinit
20 for i = 1 to n do
21 k ← k + truncq(s

′
i) // Evaluating the factor k

22 for j = 1 to n do
23 sj ← (sj + s′

i ⊗ M′
i2

2r) mod mj

24 end

25 end
26 for i = 1 to n do
27 si ← (si + � k

2r
� ⊗ (−M′)22r) mod mi

28 s′
i ← (s′

i ⊗ M′
i2

2r) mod m′
i

29 end

Table 2. Performances details

Design Curve LUTs Regs DSP BRAM INT2RNS MULT INV RNS2INT

Classical 160 4864 2959 28 10 228 66406 11598 682

192 5691 3497 34 12 262 89659 15446 862

224 6688 4028 40 14 300 116227 19805 1058

256 7482 4605 46 16 336 146144 24804 1270

Ours 160 2988 2023 28 10 228 66406 11598 682

192 3446 2346 34 12 262 89659 15446 862

224 3847 2696 40 14 300 116227 19805 1058

256 4250 3532 46 16 336 146144 24804 1270

384 5517 4962 67 23 462 289101 47810 2090

521 7067 5882 91 31 606 500577 81437 3306

Double Level Montgomery Cox-Rower Architecture, New Bounds 153

References

1. Antão, S., Bajard, J.-C., Sousa, L.: RNS-based elliptic curve point multiplication
for massive parallel architectures. Comput. J. 55(5), 629–647 (2012)

2. Bigou, K., Tisserand, A.: Improving modular inversion in RNS using the plus-
minus method. In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS, vol. 8086,
pp. 233–249. Springer, Heidelberg (2013)

3. Cheung, R.C.C., Duquesne, S., Fan, J., Guillermin, N., Verbauwhede, I., Yao,
G.X.: FPGA implementation of pairings using residue number system and lazy
reduction. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp.
421–441. Springer, Heidelberg (2011)

4. Güneysu, T., Paar, C.: Ultra high performance ECC over NIST primes on com-
mercial FPGAs. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154,
pp. 62–78. Springer, Heidelberg (2008)

5. Guillermin, N.: A high speed coprocessor for elliptic curve scalar multiplications
over Fp. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp.
48–64. Springer, Heidelberg (2010)

6. Kawamura, S., Koike, M., Sano, F., Shimbo, A.: Cox-rower architecture for fast par-
allel montgomery multiplication. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 523–538. Springer, Heidelberg (2000)

7. Ma, Y., Liu, Z., Pan, W., Jing, J.: A high-speed elliptic curve cryptographic proces-
sor for generic curves over GF(p). In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC
2013. LNCS, vol. 8282, pp. 421–437. Springer, Heidelberg (2014)

8. Nozaki, H., Motoyama, M., Shimbo, A., Kawamura, S.: Implementation of RSA
algorithm based on RNS montgomery multiplication. In: Koç, Ç.K., Naccache, D.,
Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 364–376. Springer, Heidelberg
(2001)

9. Posch, K.C., Posch, R.: Base extension using a convolution sum in residue number
systems. Computing 50(2), 93–104 (1993)

10. Posch, K.C., Posch, R.: Modulo reduction in residue number systems. IEEE Trans.
Parallel Distrib. Syst. 6(5), 449–454 (1995)

11. Schinianakis, D.M., Fournaris, A.P., Michail, H.E., Kakarountas, A.P., Stouraitis,
T.: An RNS implementation of an fp elliptic curve point multiplier. IEEE Trans.
Circuits Syst. I: Regul. Pap. 56(6), 1202–1213 (2009)

12. Szerwinski, R., Güneysu, T.: Exploiting the power of GPUs for asymmetric cryp-
tography. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp.
79–99. Springer, Heidelberg (2008)

13. Yao, G.X., Fan, J., Cheung, R.C.C., Verbauwhede, I.: Faster pairing coprocessor
architecture. In: Abdalla, M., Lange, T. (eds.) Pairing 2012. LNCS, vol. 7708, pp.
160–176. Springer, Heidelberg (2013)

How to Use Koblitz Curves on Small Devices?

Kimmo Järvinen1,2(B) and Ingrid Verbauwhede1

1 KU Leuven ESAT/COSIC and iMinds, Kasteelpark Arenberg 10, Bus 2452,
3001 Leuven-Heverlee, Belgium

{Kimmo.Jarvinen,Ingrid.Verbauwhede}@esat.kuleuven.be
2 Department of Information and Computer Science, Aalto University,

Konemiehentie 2, 02150 Espoo, Finland

Abstract. Koblitz curves allow very efficient scalar multiplications
because point doublings can be traded for cheap Frobenius endomor-
phisms by representing the scalar as a τ -adic expansion. Typically ellip-
tic curve cryptosystems, such as ECDSA, also require the scalar as an
integer. This results in a need for conversions between integers and the τ -
adic domain, which are costly and prevent from using Koblitz curves on
very constrained devices, such as RFID tags or wireless sensors. In this
paper, we provide a solution to this problem by showing how complete
cryptographic processes, such as ECDSA signing, can be completed in
the τ -adic domain with very few resources, consequently outsourcing the
expensive conversions to a more powerful party. We also provide small
circuitries that require about 76 gate equivalents on 0.13 µm CMOS and
that are applicable for all Koblitz curves.

1 Introduction

Because elliptic curve cryptography (ECC) [12,18] offers high security levels with
short key lengths and relatively low amounts of computation, it is one of the most
feasible alternatives for implementing public-key cryptography on constrained
devices where resources (e.g., circuit area, power, and energy) are extremely
limited. Constrained devices that require lightweight implementations of public-
key cryptography are, e.g., wireless sensor network nodes, RFID tags, and smart
cards. Several researchers have proposed lightweight implementations which aim
to minimize area, power, and/or energy of computing elliptic curve scalar multi-
plications [2,3,8,14,16], which are the fundamental operations required by every
elliptic curve cryptosystem.

Koblitz curves [13] are a special class of elliptic curves offering very efficient
elliptic curve operations when scalars used in scalar multiplications are given as
τ -adic expansions. It is commonly known that Koblitz curves allow extremely fast
scalar multiplications in both software [25] and hardware [9]. A recent paper [2]
showed that they can be implemented also with very few resources (especially, in
terms of energy) if the scalar is already in the τ -adic domain. Many cryptosystems
require both the integer and τ -adic representations of the scalar which results in
a need for conversions between the domains. All known methods for computing

c© Springer International Publishing Switzerland 2015
M. Joye and A. Moradi (Eds.): CARDIS 2014, LNCS 8968, pp. 154–170, 2015.
DOI: 10.1007/978-3-319-16763-3 10

How to Use Koblitz Curves on Small Devices? 155

these conversions in hardware [1,5,6,10,23] require a lot of resources making them
unfeasible for constrained devices. In most cases, this prevents from using Koblitz
curves although they would otherwise result in very efficient lightweight imple-
mentations. A workaround to this problem is to design a protocol that operates
directly in the τ -adic domain [4]. However, this approach has several drawbacks
because it prevents from using standardized algorithms and protocols, which, con-
sequently, makes the design work more laborious and may even lead to crypto-
graphic weaknesses in the worst case.

In this paper, we show how the computationally weaker party of a cryp-
tosystem can delegate the conversions to the more powerful party by computing
all operations directly in the τ -adic domain with an extremely small circuitry.
Our approach can be straightforwardly used for many existing Koblitz curve
cryptosystems that require scalar multiplications on Koblitz curves and modu-
lar arithmetic with the scalar (e.g., ECDSA) without affecting the cryptographic
strength of the cryptosystem. We also provide small circuitries that enable effi-
cient lightweight implementations of the approach. Consequently, we show how
Koblitz curves can be used also in lightweight implementations.

This paper is structured as follows. Section 2 surveys the preliminaries of
ECC and Koblitz curves. Section 3 discusses the existing solutions for using
Koblitz curves by reviewing the related work on conversions between integers
and the τ -adic domain and presents the outline of the new idea. An algorithm for
computing additions in the τ -adic domain is presented and analyzed in Sect. 4.
Section 5 presents algorithms for computing other arithmetic operations using
the algorithm from Sect. 4. Section 6 introduces an architecture for a circuitry
implementing the algorithms from Sects. 4 and 5. Section 7 presents implemen-
tation results on 0.13µm CMOS and compares them to converters from the
literature. Section 8 presents a case study of how the findings of this paper could
be used in computing ECDSA signatures in lightweight implementations. The
paper ends with conclusions in Sect. 9.

2 Elliptic Curve Cryptography and Koblitz Curves

In the mid-1980s, Miller [18] and Koblitz [12] showed how public-key cryptog-
raphy can be based on the difficulty of computing the discrete logarithm in an
additive Abelian group E formed by points on an elliptic curve. Let k ∈ Z+ and
P ∈ E . The fundamental operation in ECC is the scalar multiplication which is
given by:

kP = P + P + . . . + P︸ ︷︷ ︸
k times

. (1)

The operation Q + R, where Q,R ∈ E , is called point addition if Q �= ±R and
point doubling if Q = R. Scalar multiplication can be computed with a series of
point doublings and point additions, e.g., by using the well-known double-and-
add algorithm. Elliptic curves over finite fields of characteristic two GF (2m) are
often preferred in implementing ECC because they allow efficient implementa-
tions, especially, in hardware. These curves are commonly called binary curves.

156 K. Järvinen and I. Verbauwhede

Koblitz curves [13] are a subclass of binary curves defined by the equation:

y2 + xy = x3 + ax2 + 1 (2)

where a ∈ {0, 1} and x, y ∈ GF (2m). Let K denote the Abelian group of points
(x, y) that satisfy (2) together with O which is a special point that acts as
the zero element of the group. Koblitz curves have the property that if a point
P = (x, y) ∈ K, then also its Frobenius endomorphism F (P) = (x2, y2) ∈ K.
This allows devising efficient scalar multiplication algorithms where Frobenius
endomorphisms are computed instead of point doublings. It can be shown that
F (F (P)) − μF (P) + 2P = 0, where μ = (−1)1−a, holds for all P ∈ K [13].
Consequently, F (P) can be seen as a multiplication by the complex number τ
that satisfies τ2 − μτ + 2 = 0, which gives τ = (μ +

√−7)/2.
If the scalar k is given using the base τ as a τ -adic expansion K =

∑
Kiτ

i, the
scalar multiplication KP can be computed with a Frobenius-and-add algorithm,
where Frobenius endomorphisms are computed for each Ki and point additions
(or subtractions) are computed for Ki �= 0. This is similar to the double-and-add
algorithm except that computationally expensive point doublings are replaced
with cheap Frobenius endomorphisms. Hence, if a τ -adic expansion can be effi-
ciently found, then Koblitz curves offer considerably more efficient scalar multi-
plications than general binary curves.

We use the following notation. Lower-case letters a, b, c, . . . denote integer
values and upper-case letters A,B,C, . . . denote τ -adic expansions. If both lower-
case and upper-case version of the same letter are used in the same context, then
the values are related; to state this explicitly, we denote A � a. Bold-faced upper
case letters P,Q, . . . denote points on elliptic curves.

3 Related Work and Outline of the Idea

Lightweight applications are typically asymmetric in the sense that one of the
communicating parties is strictly limited in resources, whereas the other is not.
As an example, we consider an application where a wireless tag communicates
with a server over a radio channel. The tag is limited in computational resources,
power, and energy but the server has plenty of resources for computations. The
tag implements an elliptic curve cryptosystem which requires both elliptic curve
operations and modular arithmetic with integers (e.g., it signs messages with
ECDSA [21]). The tag uses Koblitz curves for efficient scalar multiplication
resulting in a need for obtaining both τ -adic expansions and their integer equiva-
lents. In the following, we survey two existing options for implementing the above
scheme as well as a new idea which allows delegating the expensive conversions
from the tag to the powerful server.

3.1 Survey of the Existing Options

The first option, which is depicted in Fig. 1(a), is to generate k as a random inte-
ger and convert it into a τ -adic expansion K for scalar multiplication.

How to Use Koblitz Curves on Small Devices? 157

RNG Conv. ECSM Arith.

Consts.

Tag

Ops.

Server
(a)

RNG
ECSM

Conv.
Arith.

Consts.

Tag

Ops.

Server
(b)

RNG ECSM Arith.

Consts.

Tag

Conv. Ops.

Server
(c)

Fig. 1. Three options for using Koblitz curves on a wireless tag. Thin black arrows
and thick gray arrows represent integer and τ -adic values, respectively. (a) the random
number generator (RNG) generates scalar k as an integer which is converted to a τ -adic
expansion K in order to use it in the elliptic curve scalar multiplication (ECSM) but
k can be used as it is in the arithmetic part; (b) the RNG generates a random τ -adic
expansion K which is used as it is in the ECSM but it is converted into an integer k
in order to use it in the arithmetic part; and (c) the RNG generates a random τ -adic
expansion K but the arithmetic part is also performed (at least partly) in the τ -adic
domain. The computationally expensive conversion is delegated to the server.

The arithmetic part can be computed using the original integer k. The first
method for conversion was given by Koblitz [13]. It has the drawback that the
length of the τ -adic expansion is twice the length of the original scalar, con-
sequently, reducing the efficiency of the scalar multiplication. Later, Meier and
Staffelbach [17] and Solinas [24] showed that expansions of approximately the
same length as the original scalar can be found. Solinas [24] also showed how
to find τ -adic nonadjacent form (τNAF) and windowed NAF (w-τNAF) repre-
sentations for the scalar k. These algorithms require, e.g., operations with large

158 K. Järvinen and I. Verbauwhede

rational numbers, which render them very inefficient for hardware implementa-
tions. The first hardware oriented conversion algorithm and implementation was
presented by Järvinen et al. [10]. Brumley and Järvinen [6] later presented an
algorithm requiring only integer additions, which resulted in the most compact
hardware converter to date; however, even it is too large for very constrained
devices mostly because it uses long adders and a high number of registers. Their
work was extended by Adikari et al. [1] and Sinha Roy et al. [23] who focused
on improving speed at the expense of resource requirements, which makes them
even less suitable for constrained devices.

The second option, which is shown in Fig. 1(b), is to generate the scalar as a
random τ -adic expansion K and to find its integer equivalent for the arithmetic
part. Generating random τ -adic expansions was first mentioned (and credited
to Hendrik Lenstra) by Koblitz [13] but he did not provide a method for finding
the integer equivalent of the scalar. The first method for retrieving the integer
equivalent k was proposed by Lange in [15]. Her method requires several multi-
plications with long operands. More efficient methods were later introduced by
Brumley and Järvinen in [5,6]. The resource requirements of their methods are
smaller than computing conversions to the other direction [6] but even they are
too expensive for lightweight implementations.

3.2 Outline of the New Idea

In this paper, we propose a third option which, to the best of our knowledge,
is not previously available in the literature. This option is shown in Fig. 1(c).
Similarly to the second option, the tag generates a random τ -adic expansion
K and uses it for scalar multiplication. However, the tag does not compute the
integer equivalent k but, instead, it uses K directly and all operations which
depend on it are computed in the τ -adic domain. The results of these operations
(τ -adic expansions) are transmitted over the radio channel to the server, which
first converts the results to integers and then proceeds with normal server-side
operations. Only the operations which depend on the scalar need to be computed
in the τ -adic domain and, hence, it may be possible to compute other opera-
tions (and transmit their results) using integers. Clearly, this option improves
efficiency of the tag only if operations in the τ -adic domain are cheap. In the fol-
lowing, we show that they can, indeed, be implemented with very few resources.
From security perspective, the third option is equivalent with the second option
discussed in Sect. 3.1 (c.f. [15]) because transmitting τ -adic expansions instead
of their integer equivalents does not reveal any additional information about the
secret scalars.

The new idea has similarities with [4], which presented a modified version of
the Girault-Poupard-Stern identification scheme that handles only τ -adic expan-
sions. Both [4] and the new idea use arithmetic in the τ -adic domain. We adapt
and further develop the addition algorithm from [4]. The new idea allows dele-
gating conversions to the more powerful party for arbitrary cryptosystems that
require scalar multiplications on Koblitz curves and modular integer arithmetic
with the scalar, whereas [4] presented a single identification scheme built around

How to Use Koblitz Curves on Small Devices? 159

τ -adic expansions only. For instance, it is unclear how to build a digital signa-
ture scheme that uses only τ -adic expansions because the ideas of [4] cannot be
directly generalized to other schemes. We also provide the first hardware realiza-
tions of algorithms required to implement the new idea. These implementations
may have importance also for implementing the scheme from [4].

4 Addition in the τ -adic Domain

The cornerstone of the idea discussed in Sect. 3.2 is to devise an efficient algo-
rithm for adding two τ -adic expansions. In this section, we show how to construct
such an algorithm. Our addition algorithm is close to the algorithm from [4] but
we improve its efficiency and provide an analysis of the algorithm. Other arith-
metic operations can be built upon the addition algorithm and they are discussed
later in Sect. 5.

Let A and B be the τ -adic expansions of two positive integers a and b such that

A =
n−1∑

i=0

Aiτ
i and B =

n−1∑

i=0

Biτ
i (3)

where Ai ∈ {0, 1} and Bi ∈ {−1, 0, 1} so that An−1 = 1 and/or Bn−1 = ±1.
Signed bits are allowed for B for two reasons: (a) Koblitz curve cryptosystems
are typically implemented by using the τNAF) representation [24] or some other
representation with signed bits (e.g., [22,27]) and (b) this allows computing
subtractions with the same algorithm.

Adding the two expansions gives the following expansion:

C = A + B =
n−1∑

i=0

Ciτ
i (4)

where Ci = Ai + Bi ∈ {−1, 0, 1, 2}. This expansion is correct in the sense that
C � a + b but it has several drawbacks because the set of digits has grown.
Hence, the expansion must be processed in order to obtain a binary-valued τ -
adic expansion. Instead of allowing C to have signed binary values as in [4], we
limit the set of digits to unsigned binary values (i.e., Ci ∈ {0, 1}) in order to
decrease the storage requirements for C. This does not imply restrictions for the
use of the addition algorithm in our case as long as Bi are allowed to have signed
binary values because we do not use the results of additions for computing scalar
multiplications.

The binary-valued expansion C can be found analogously to normal addition
of binary numbers by using a carry [4]. The main difference is that the carry
is a τ -adic number t. The unsigned binary valued Ci is obtained by adding the
coefficients Ai and Bi with the carry from the previous iteration and by reducing
this value modulo 2; i.e., by taking the least significant bit (lsb). Every τ -adic
number can be represented as t0 + t1τ where t0, t1 ∈ Z [24] and, hence, also
the carry t can be represented with two integer coefficients as t = t0 + t1τ .

160 K. Järvinen and I. Verbauwhede

Input: τ -adic expansions A =
∑n−1

i=0 Aiτ
i � a and B =

∑n−1
i=0 Biτ

i � b

Output: C =
∑n′−1

i=0 Ciτ
i, where Ci ∈ {0, 1}, such that C � a + b

1 (t0, t1) ← (0, 0); i ← 0 ;
2 while i < n or (t0, t1) �= (0, 0) do
3 r ← Ai + Bi + t0 ;
4 Ci ← r mod 2 ;
5 (t0, t1) ← (t1 + μ �r/2� , − �r/2�);
6 i ← i + 1;

7 return C

Algorithm 1. Addition in the τ -adic domain

Updating the carry for the next iteration requires a division by τ . As shown by
Solinas [24], t0 + t1τ is divisible by τ if and only if t0 is even. Subtracting Ci

(rounding towards the nearest smaller integer) ensures this and, hence, we get:

((t0 − Ci) + t1τ)/τ = t1 + μ

⌊
t0
2

⌋
−

⌊
t0
2

⌋
τ . (5)

We continue the above process for all n bits of the operands and as long as
(t0, t1) �= (0, 0). The resulting algorithm is shown in Algorithm 1.

Remark 1. Computing subtractions with Algorithm 1 is straightforward:
A − B = A + (−B) = A +

∑n−1
i=0 (−Bi)τ i. I.e., we flip the signs of Bi and

compute an addition with Algorithm 1. Alternatively, we revise Algorithm 1 so
that Line 3 is replaced with r ← Ai − Bi + t0.

4.1 Analysis of Algorithm 1

There are certain aspects that must be analyzed before Algorithm 1 is ready for
efficient hardware implementation. The most crucial one is the sizes of the carry
values t0 and t1 because efficient hardware implementation is impossible without
knowing the number of flip-flops required for the carry. The ending condition of
Algorithm 1 also implies that the latency of an addition depends on the values
of the operands. This might open vulnerabilities against timing attacks. The
following analysis sheds light on these aspects and provides efficient solutions
for them.

In order to analyze Algorithm 1, we model it as a finite state machine (FSM)
so that the carry (t0, t1) represents the state. Algorithm 1 can find unsigned
binary τ -adic expansions with any Ai, Bi ∈ Z but, in this analysis and in the
following propositions, we limit them so that Ai ∈ {0, 1} and Bi ∈ {−1, 0, 1}, as
described above. The FSM is constructed starting from the state (t0, t1) = (0, 0)
by analyzing all transitions with all possible inputs Ai + Bi ∈ {−1, 0, 1, 2}. E.g.,
when μ = 1, we find out that the possible next states from the initial state (0, 0)
are (0, 0) with inputs 0 and 1 (the corresponding outputs are then 0 and 1),
(−1, 1) with input −1 (output 1), and (1,−1) with input 2 (output 0). Next, we

How to Use Koblitz Curves on Small Devices? 161

−2.5 −2.0 −1.5 −1.0 −0.5 0.5 1.0 1.5 2.0 2.5

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.5

1.0

1.5

2.0

2.5

3.0

(0,0)

(1,-1)(0,-1)

(-1,0)

(-1,1)

(1,0)

(-2,1) (0,1)

(2,-1)

(1,-2)

(-1,-1)

(-2,0)

(-2,2)

(2,0)

(2,-2)(0,-2)

(-3,1)

(-1,2)

(1,1)

(0,2)

(3,-1)

-1
/

1

0,1 / 0,1

2
/

0-1,0
/
0,1

1,2 / 0,1

-1
/

1
0
,1

/
0
,1

2 / 0

-1
,0

/
0
,1

1,2 / 0,1

-1,0 / 0,1

1,2
/
0,1

-1,0 / 0,1

1
,2

/
0
,1

-1
/
1

0,1 / 0,1

2 / 0

-1 / 1 0
,1

/
0
,1

2
/

0

-1 / 1

0,1 / 0,1

2
/
0

-1,0
/
0,1

1,2
/
0,1

-1
,0

/
0
,1

1
,2

/
0
,1

-1
/

1

0,
1
/
0,
1

2 / 0

-1 / 1

0,1 / 0,1

2
/
0

-1 / 1

0,
1
/
0,
1

2
/

0

-1 / 1

0,1 / 0,1

2 / 0

-1
/

1

0
,1

/
0
,1

2
/

0

-1,
0 / 0,1

1,2 / 0,1

-1,0
/
0,1

1,2
/
0,1

-1
,0

/
0
,1

1
,2

/
0
,1

-1
/

1

0
,1

/
0
,1

2
/

0

-1,0 / 0,1

1,2
/ 0,1

Fig. 2. The FSM for Algorithm 1, when μ = 1, with inputs Ai ∈ {0, 1} and
Bi ∈ {−1, 0, 1}. The FSM is plotted on the complex plane so that each state is posi-
tioned based on its complex value t = t0 + t1τ . The states are labeled with (t0, t1).
State transitions are marked with in / out where in are the input values for which the
transition is taken and out are the corresponding outputs.

analyze (−1, 1) or (1,−1), and so on. The process is continued as long as there
are states that have not been analyzed. The resulting FSM for μ = 1 is depicted
in Fig. 2 and it contains 21 states. We draw two major conclusions from this
FSM (and the corresponding one for μ = −1).

162 K. Järvinen and I. Verbauwhede

Proposition 1. For both μ = ±1, the carry (t0, t1) of Algorithm 1 can be rep-
resented with 6 bits so that both t0 and t1 require 3 bits.

Proof. The FSM of Fig. 2 directly shows that −3 ≤ t0 ≤ 3 and −2 ≤ t1 ≤ 2.
There are 7 distinct values for t0 and 5 for t1 and, hence, they can be represented
with 3 bits, e.g., by using two’s complement representation. The FSM for μ = −1
can be constructed similarly and it also contains 21 states so that −3 ≤ t0 ≤ 3
and −2 ≤ t1 ≤ 2. Hence, t0 and t1 both require 3 bits for μ = ±1. Consequently,
the carry requires 6 bits. ��
Remark 2. The FSM of Fig. 2 includes 21 states. Hence, the states could be
represented with only 5 bits. Unfortunately, if the algorithm is implemented
directly as an FSM, the growth in the size of the combinational part outweighs
the benefits gained from the lower number of flip-flops.

Proposition 2. Let n be the larger of the lengths of A and B; i.e., An−1 = 1
and/or Bn−1 = ±1. Then, Algorithm 1 returns C with a length n′ that satisfies

n′ ≤ n + λ (6)

where λ = 7 for both μ = ±1.

Proof. After all n bits of A and B have been processed, the FSM can be in any
of the 21 states. Hence, the constant λ is given by the longest path from any
state to the state (0, 0) when the input is fixed to zero; i.e., Ai = Bi = 0. The
FSM of Fig. 2 shows that the longest path starts from the state (0, 2) and goes
through the following states (2, 0), (1,−1), (0,−1), (−1, 0), (−1, 1), and (0, 1)
to (0, 0) and outputs (0, 0, 1, 1, 1, 0, 1). Thus, λ = 7 for μ = 1. It can be shown
similarly that λ = 7 also for μ = −1. ��

5 Other Operations in the τ -adic Domain

In this section, we describe algorithms for other arithmetic operations in the
τ -adic domain, which are required in order to implement the idea of Sect. 3.2.
The algorithms are based on using the addition algorithm given in Algorithm 1.

5.1 Folding

The length of an arbitrarily long τ -adic expansion can be reduced to about m bits
without changing its integer equivalent modulo q, where q is the order of the base
point of the scalar multiplication. The integer equivalent of a τ -adic expansion
A =

∑n−1
i=0 Aiτ

i can be retrieved by computing the sum a =
∑n−1

i=0 Ais
i (mod q)

where s, the integer equivalent of τ , is a per-curve constant integer [15]. Because
sm ≡ 1 (mod q),

a =
n−1∑

i=0

Ais
i ≡

�n/m�∑

j=0

m−1∑

i=0

Ajm+is
i (mod q), (7)

How to Use Koblitz Curves on Small Devices? 163

Input: τ -adic expansion A =
∑n−1

i=0 Aiτ
i � a, m, and � ≥ m

Output: B =
∑n′−1

i=0 Biτ
i � b = a and n′ ≤ �

1 B ← A(0) ;
2 for j = 1 to �n/m� do

3 B ← B + A(j) ; /* Algorithm 1 */

4 while n′ > � do

5 B ← B(0) + B(1) + . . . + B(�n′/m�) ; /* Optional, Algorithm 1 */

6 return B

Algorithm 2. Folding

where Ai = 0 for i ≥ n. As a result of (7), an expansion can be compressed to
approximately m bits by “folding” the expansion; i.e., folding is analogous to
modular reduction. Let A(j) =

∑m−1
i=0 Ajm+iτ

i, the j-th m-bit block of A. Then,
an approximately m-bit τ -adic expansion B having the same integer equivalent
with A can be obtained by computing B = A(0)+A(1)+. . .+A(�n/m�) with �n/m�
applications of Algorithm 1. Because of the carry structure of Algorithm 1, the
length of the expansion may still exceed m bits. Additional foldings can be
computed in the end in order to trim the length of B below a predefined bound
� ≥ m. An algorithm for folding (including the optional trimming in the end) is
given in Algorithm 2. In most practical cases, the optional trimming requires at
most one addition: B(0) + B(1).

5.2 Multiplication

Multiplication of two τ -adic expansions A and B is given as follows:

C = A × B =
n−1∑

i=0

Aiτ
iB . (8)

An algorithm for multiplication in the τ -adic domain can be devised by using
a variation of the binary method. An addition is computed with Algorithm 1
if Ai = 1 and a multiplication by τ is performed for all Ai by shifting the bit
vector. Hence, multiplication requires n− 1 shifts and ρ(A)− 1 additions, where
ρ(A) is the Hamming weight of A. A bit-serial most significant bit (msb) first
multiplication algorithm is presented in Algorithm 3. A similar multiplication
algorithm was used also in [4].

It is also possible to use the binary method for computing multiplications
where the other operand, say a, is an integer. Algorithm 4 presents a bit-serial
msb first algorithm for computing C = a × B such that C � a × b. It requires
n + ρ(A) − 2 additions with Algorithm 1.

Remark 3. Algorithm 4 also serves as an algorithm for converting integers to
the τ -adic domain. An integer a can be converted by computing a × 1 with
Algorithm 4. The algorithm returns C = A, the unsigned binary τ -adic expansion

164 K. Järvinen and I. Verbauwhede

Input: τ -adic expansions A = τn−1 +
∑n−2

i=0 Aiτ
i � a, where Ai ∈ {0, 1}, and

B � b, where Bi ∈ {−1, 0, 1}
Output: C = A × B such that C � a × b

1 C ← B;
2 for i = n − 2 to 0 do
3 C ← τC ; /* Shift */

4 if Ai = 1 then
5 C ← C + B ; /* Algorithm 1 */

6 return C

Algorithm 3. Multiplication in the τ -adic domain

Input: Integer a = 2�log2 a� +
∑�log2 a�−1

i=0 ai2
i, where ai ∈ {0, 1}, and a τ -adic

expansion B � b, where Bi ∈ {−1, 0, 1}
Output: C such that C � a × b

1 C ← B;
2 for i = �log2 a� − 1 to 0 do
3 C ← C + C ; /* Algorithm 1 */

4 if ai = 1 then
5 C ← C + B ; /* Algorithm 1 */

6 return C

Algorithm 4. Multiplication by an integer in the τ -adic domain

of a. This could also be used for converting k but, in that case, K would have
ρ(K) ≈ n/2, whereas representing K in τNAF gives ρ(K) ≈ n/3 and results in
more efficient scalar multiplications.

Remark 4. Different versions of the binary method can be straightforwardly used
for devising an algorithm for multiplications of τ -adic expansions (also when the
other operand is an integer). Especially, using Montgomery’s ladder [19] would
give an algorithm with a constant sequence of operations (shifts and additions),
which would provide resistance against side-channel analysis. The scalar k is
typically a nonce and the adversary is limited to a single side-channel trace.
Thus, constant pattern of operations offers sufficient protection against most
attacks.

5.3 Multiplicative Inverse

The multiplicative inverse modulo q, a−1, for an integer a can be found via
Fermat’s Little Theorem by computing the following exponentiation:

a−1 = aq−2 (mod q) . (9)

How to Use Koblitz Curves on Small Devices? 165

Input: τ -adic expansion A of integer a and q′ = q − 2
Output: B such that b ≡ a−1 (mod q)

1 B ← A ;
2 for i = �log2 q′� − 1 to 0 do
3 B ← B × B ; /* Algorithm 3 */

4 if q′
i = 1 then

5 B ← B × A ; /* Algorithm 3 */

6 return B

Algorithm 5. Inversion modulo q in the τ -adic domain

This exponentiation gives a straightforward way to compute inversions also
with τ -adic expansions. Let q′ = q − 2. Given a τ -adic expansion A, a τ -adic
expansion A−1 such that A × A−1 � a × a−1 ≡ 1 (mod q) can be found by
computing:

A−1 = Aq′
=

�log2 q′�∏

i=0

Aq′
i2

i

. (10)

Algorithm 5 shows an algorithm for computing (10) by using Algorithm 3.

6 Architecture

The objective of this work was to provide an efficient circuitry with small resource
requirements that could be used for computing τ -adic arithmetic in lightweight
implementations. Figure 3 presents an architecture that implements Algorithm 1
for μ = 1. Because Bi ∈ {−1, 0, 1}, it can be used for K given using signed-bit
representations (e.g., [22,24,27]). Because t0 ∈ [−3, 3] and Ai + Bi ∈ [−1, 2],
r ∈ [−4, 5] and we need 4 bits to represent it. The division �r/2� can be triv-
ially performed by dropping off the lsb of r, which is used directly as Ci. The
carry values t0 and t1 are represented as 3-bit two’s complement numbers (see
Proposition 1). Hence, −�r/2� is obtained by flipping the bits and adding one,
which results in the circuitry shown on the right in Fig. 3. The while loop can
be implemented as a for loop from 0 to n+λ−1 (see Proposition 2). The rest of
Algorithm 1 and the other algorithms (e.g., Algorithm 3) can be implemented
with a simple control logic and shift registers for the operands. Algorithm 1 and
the architecture of Fig. 3 are independent of the field size m and, hence, the same
architecture can be used for all Koblitz curves with μ = 1.

A circuitry for μ = −1 can be devised similarly but we omit the description
because of space restrictions. We merely state that it is almost similar: the only
difference is that the adders updating t0 (on the left in Fig. 3) use the outputs of
the negation part that computes −�r/2� (on the right in Fig. 3) instead of taking
�r/2� directly. Hence, the area requirements should, in theory, remain the same
but the critical path becomes longer by one NOT and two XORs (in the half
adders).

166 K. Järvinen and I. Verbauwhede

t0,2 t0,1 t0,0 t1,2 t1,1 t1,0

FA’ FA HA HA’ HA

HA

HA’

HA

FA

FA

FA’

Ai

Bi,0

Bi,1

r0

r1

r2

r3

Ci

Fig. 3. Architecture for μ = 1. The circuit consists of 4 half adders (HA), 3 full adders
(FA), 2 half adders without carry logic (HA’), 2 full adders without carry logic (FA’),
3 NOTs, and 6 flip-flops. All wires are single bit wires

The circuitry of Fig. 3 computes additions in the τ -adic domain with a con-
stant latency of n+λ clock cycles. Assuming that n ≈ m, we get that an addition
requires m + 7 clock cycles; this gives 170 clock cycles for the NIST curve K-
163 from [21]. If multiplication by τ (shift) takes one clock cycle, Algorithm 3
requires approximately m(m + λ + 2)/2 clock cycles and Algorithm 4 requires
approximately 3m(m+λ)/2 clock cycles; this gives roughly 14000 or 41600 clock
cycles, respectively, for NIST K-163. These latencies are small compared to the
latency of scalar multiplication [2,3,8,14,16]. It is also typical for lightweight
implementations that area, power, and energy consumption are more important
than latency.

7 Results and Comparison

We described the circuitry of Fig. 3 and the corresponding one for μ = −1 in
VHDL and simulated them with ModelSim SE 6.6d. We used Synopsys Design
Compiler D-2010.03-SP4 with Faraday FSC0L standard cell libraries for synthe-
sizing them for UMC 0.13µm CMOS with voltage of 1.2 V. When synthesized
using the ‘compile ultra’ process without additional constraints, the areas of the
circuitries were 75.25 and 76.25 gate equivalents (GE) for μ = 1 and μ = −1,
respectively.

The converter architectures available in the literature have been implemented
on field-programmable gate arrays (FPGA) and, consequently, their area and
performance characteristics are available only for FPGAs. Hence, comparing the

How to Use Koblitz Curves on Small Devices? 167

Table 1. Comparison to the state-of-the-art converters for NIST K-163 (μ = 1)

Work Technology Area / Notes GE

[6], integer-to-τNAF FPGA, Stratix II S60C4 948 ALUTs, 683 FFs > 7200

[6], τ -adic-to-integer FPGA, Stratix II S60C4 850 ALUTs, 491 FFs > 3600

This work, μ = 1 ASIC, 0.13 μm CMOS Fig. 3 75.25

This work, μ = 1 ASIC, 0.13 μm CMOS Fig. 3, 340 FFs ∼ 2000

circuitries presented above to the state-of-the-art converters is not straightfor-
ward. In order to perform a fair comparison, we estimate the GE counts of
the converters from [6], which are the most compact converters available in the
literature. These estimates in the case of NIST K-163 are collected in Table 1.

The integer to τNAF converter [6] includes two m-bit and four m/2-bit adders
and registers as well as several multiplexers and comparators. A full adder and
a flip-flop both require 5.5 GE on 0.13µm CMOS and, hence, we can estimate
that only the adders and registers occupy an area of about 7200 GE if m = 163.
The area of the τ -adic expansion to integer converter [6] that requires two
m-bit adders, two m-bit registers, multiplexers, and comparators can be esti-
mated similarly. The adders and registers alone give an area estimate of about
3600 GE if m = 163.

Algorithms 3–4 require two (m + λ)-bit registers. We anticipate that in
most implementations these registers can be shared with the circuitry comput-
ing scalar multiplications. In that case, the overhead of the circuitries is only
about one hundred GEs (including the control logic), which is negligible com-
pared to the converters. If none of these registers can be shared with the scalar
multiplier, then the circuitry for NIST K-163 including registers has an area
of approximately 2000 GE. This area is still only about half of the area of the
smallest converter available today.

8 Case Study: ECDSA

In this section, we present a case study of how the new scheme could be used for
ECDSA. The tag computes an ECDSA signature for a message M and sends
it to a more powerful server for verification. The signature (r, s) is computed as
follows [21]:

k ∈R [1, q − 1] (11)
r = [kP]x (12)
e = H(M) (13)

s = k−1(e + dr) mod q (14)

where d is the signer’s private key, [kP]x denotes the x-coordinate of the result
point of the scalar multiplication kP, and H(M) is the hash value of M (e.g.,
SHA-256).

168 K. Järvinen and I. Verbauwhede

Equation (12) can be efficiently computed using Koblitz curves if k is given
as a τ -adic expansion; i.e., we compute r = [KP]x. We can use the τNAF
representation for K in order to speedup computations. If the compact encoding
proposed by Joye and Tymen [11] is used, then K can be obtained by generating
m random bits. In order to avoid computing the expensive inversion of (14), we
can transmit the nominator and denominator separately after blinding them with
b ∈R [1, q − 1] as proposed in [20]: sn = b(e + dr) mod q and sd = bk mod q.
Because K affects only sd, we compute sn using cheaper integer arithmetic.
The denominator can be computed with a single multiplication in the τ -adic
domain: Sd = b × K by using Algorithm 4. The result of the multiplication
should be compressed by folding it with Algorithm 2 after (and at any time
during) the execution of Algorithm 4. Instead of transmitting a 2m-bit (r, s), we
now transmit approximately 3m-bit (r, sn, Sd). The server computes sd from Sd

and performs the modular division s = sn/sd (mod q), after which it proceeds
normally with the signature verification procedure from [21].

If transmission is expensive, the transmittable amount can be reduced to 2m
bits by computing the inversion in the tag and transmitting (r, S). In this case,
it is preferable to compute e+dr using integers, invert K using Algorithm 5, and
compute S = (e + dr) × K−1 with Algorithm 4. Both S and intermediate values
should be folded with Algorithm 2 in order to limit the amount of storage and
transmission. In this case, the server simply converts S to s before proceeding
normally.

9 Conclusions and Future Work

In this paper, we showed that, contrary to previous beliefs, Koblitz curves can
be efficiently used in lightweight implementations even if integer arithmetic is
required with the scalar k. Because Koblitz curves offer more efficient scalar
multiplications compared to general binary curves, utilizing the findings of this
paper will probably enable more efficient lightweight implementations of ECC
than what has been possible in the past. We conclude with the following sugges-
tions for future research:

Future work 1. For Koblitz curve cryptosystems, resistance against side-channel
attacks can be achieved by using dummy point additions [7], randomized repre-
sentations for the scalar [7], or more efficiently with a zerofree representation for
the scalar [22,27]. The approach presented in this paper can be straightforwardly
applied also in these cases. As mentioned in Remark 4, the side-channel resis-
tivity of the algorithms proposed in this paper can be improved, e.g., by using
Montgomery’s ladder [19] in Algorithms 3 and 4. The circuitries of Sect. 6 can
be implemented with secure logic styles (e.g., [26]) in order to limit side-channel
leakage. Although the more significant side-channel leakages are typically in
scalar multiplication parts, resistance against side-channel attacks deserves fur-
ther research in the future.

How to Use Koblitz Curves on Small Devices? 169

Future work 2. The registers for t occupy almost half of the areas of the addition
circuits. Hence, significant speedups and area-speed ratio improvements could
be achieved by processing several Ai and Bi in one iteration because this would
affect only the amount of logic, not the number of flip-flops.

Future work 3. As discussed in Sect. 7, the circuitries have negligible area over-
heads if the shift registers for the operands can be shared with the circuitry
computing scalar multiplications. It will be studied in the future how registers
could be shared, e.g., with the compact architecture presented in [2].

Acknowledgments. We would like to thank the anonymous reviewers for their valu-
able comments and improvement suggestions. The work was partly funded by KU
Leuven under GOA TENSE (GOA/11/007) and the F+ fellowship (F+/13/039) and
by the Hercules Foundation (AKUL/11/19).

References

1. Adikari, J., Dimitrov, V., Järvinen, K.: A fast hardware architecture for integer to
τNAF conversion for Koblitz curves. IEEE Trans. Comput. 61(5), 732–737 (2012)

2. Azarderakhsh, R., Järvinen, K.U., Mozaffari-Kermani, M.: Efficient algorithm and
architecture for elliptic curve cryptography for extremely constrained secure appli-
cations. IEEE Trans. Circ. Syst. I-Regul. Pap. 61(4), 1144–1155 (2014)

3. Batina, L., Mentens, N., Sakiyama, K., Preneel, B., Verbauwhede, I.: Low-cost
elliptic curve cryptography for wireless sensor networks. In: Buttyán, L., Gligor,
V.D., Westhoff, D. (eds.) ESAS 2006. LNCS, vol. 4357, pp. 6–17. Springer,
Heidelberg (2006)

4. Benits Jr, W.D., Galbraith, S.D.: The GPS identification scheme using frobenius
expansions. In: Lucks, S., Sadeghi, A.-R., Wolf, C. (eds.) WEWoRC 2007. LNCS,
vol. 4945, pp. 13–27. Springer, Heidelberg (2008)

5. Brumley, B.B., Järvinen, K.U.: Koblitz curves and integer equivalents of frobenius
expansions. In: Adams, C., Miri, A., Wiener, M. (eds.) SAC 2007. LNCS, vol. 4876,
pp. 126–137. Springer, Heidelberg (2007)

6. Brumley, B.B., Järvinen, K.U.: Conversion algorithms and implementations for
Koblitz curve cryptography. IEEE Trans. Comput. 59(1), 81–92 (2010)

7. Hasan, M.A.: Power analysis attacks and algorithmic approaches to their counter-
measures for Koblitz curve cryptosystems. IEEE Trans. Comput. 50(10), 1071–
1083 (2001)

8. Hein, D., Wolkerstorfer, J., Felber, N.: ECC is ready for RFID – a proof in silicon.
In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381, pp.
401–413. Springer, Heidelberg (2009)

9. Järvinen, K.: Optimized FPGA-based elliptic curve cryptography processor for
high-speed applications. Integr. VLSI J. 44(4), 270–279 (2011)

10. Järvinen, K., Forsten, J., Skyttä, J.: Efficient circuitry for computing τ -adic non-
adjacent form. In: Proceedings of the 13th IEEE International Conference on Elec-
tronics, Circuits and Systems – ICECS 2006, pp. 232–235. IEEE (2006)

11. Joye, M., Tymen, C.: Compact encoding of non-adjacent forms with applications
to elliptic curve cryptography. In: Kim, K. (ed.) PKC 2001. LNCS, vol. 1992, pp.
353–364. Springer, Heidelberg (2001)

170 K. Järvinen and I. Verbauwhede

12. Koblitz, N.: Elliptic curve cryptosystems. Math. Comput. 48(177), 203–209 (1987)
13. Koblitz, N.: CM-curves with good cryptographic properties. In: Feigenbaum, J.

(ed.) CRYPTO 1991. LNCS, vol. 576, pp. 279–287. Springer, Heidelberg (1992)
14. Koçabas, Ü., Fan, J., Verbauwhede, I.: Implementation of binary edwards curves for

very-constrained devices. In: Proceedings of the 21st IEEE International Confer-
ence on Application-specific Systems Architectures and Processors – ASAP 2010,
pp. 185–191. IEEE (2010)

15. Lange, T.: Koblitz curve cryptosystems. Finite Fields Appl. 11, 200–229 (2005)
16. Lee, Y.K., Sakiyama, K., Batina, L., Verbauwhede, I.: Elliptic-curve-based security

processor for RFID. IEEE Trans. Comput. 57(11), 1514–1527 (2008)
17. Meier, W., Staffelbach, O.: Efficient multiplication on certain nonsupersingular

elliptic curves. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 333–
344. Springer, Heidelberg (1993)

18. Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.)
CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)

19. Montgomery, P.L.: Speeding the Pollard and elliptic curve methods of factorization.
Math. Comput. 48, 243–264 (1987)

20. Naccache, D., M’Räıhi, D., Vaudenay, S., Raphaeli, D.: Can D.S.A. be improved?
In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 77–85. Springer,
Heidelberg (1995)

21. National Institute of Standards and Technology (NIST): Digital signature standard
(DSS). Federal Information Processing Standard, FIPS PUB 186–4 (July 2013)

22. Okeya, K., Takagi, T., Vuillaume, C.: Efficient representations on Koblitz curves
with resistance to side channel attacks. In: Boyd, C., González Nieto, J.M. (eds.)
ACISP 2005. LNCS, vol. 3574, pp. 218–229. Springer, Heidelberg (2005)

23. Sinha Roy, S., Fan, J., Verbauwhede, I.: Accelerating scalar conversion for Koblitz
curve cryptoprocessors on hardware platforms. In: IEEE Transactions on Very
Large Scale Integration (VLSI) Systems (to appear)

24. Solinas, J.A.: Efficient arithmetic on Koblitz curves. Des. Codes Crypt. 19(2–3),
195–249 (2000)

25. Taverne, J., Faz-Hernández, A., Aranha, D.F., Rodŕıguez-Henŕıquez, F.,
Hankerson, D., López, J.: Speeding scalar multiplication over binary elliptic curves
using the new carry-less multiplication instruction. J. Crypt. Eng. 1(3), 187–199
(2011)

26. Tiri, K., Verbauwhede, I.: A logic level design methodology for a secure DPA
resistant ASIC or FPGA implementation. In: Proceedings of Design, Automation
and Test in Europe Conference and Exhibition – DATE 2004, vol. 1, pp. 246–251.
IEEE (2004)

27. Vuillaume, C., Okeya, K., Takagi, T.: Defeating simple power analysis on Koblitz
curves. In: IEICE Transactions on Fundamentals of Electronics, Communications
and Computer Sciences E89-A(5), pp. 1362–1369 (May 2006)

Public-Key Cryptography

Caml Crush: A PKCS#11 Filtering Proxy

Ryad Benadjila, Thomas Calderon, and Marion Daubignard(B)

ANSSI, Paris, France
{ryad.benadjila,thomas.calderon,marion.daubignard}@ssi.gouv.fr

Abstract. PKCS#11 is a very popular cryptographic API: it is the
standard used by many Hardware Security Modules, smartcards and soft-
ware cryptographic tokens. Several attacks have been uncovered against
PKCS#11 at different levels: intrinsic logical flaws, cryptographic vul-
nerabilities or severe compliance issues. Since affected hardware remains
widespread in computer infrastructures, we propose a user-centric and
pragmatic approach for secure usage of vulnerable devices. We intro-
duce Caml Crush, a PKCS#11 filtering proxy. Our solution allows to
dynamically protect PKCS#11 cryptographic tokens from state of the
art attacks. This is the first approach that is immediately applicable
to commercially available products. We provide a fully functional open
source implementation with an extensible filter engine effectively shield-
ing critical resources. This yields additional advantages to using Caml
Crush that go beyond classical PKCS#11 weakness mitigations.

Keywords: PKCS#11 · Filter · Proxy · OCaml · Software

Introduction

The ever increasing needs for confidentiality and privacy of information advo-
cates for a pervasive use of cryptography. However, the security provided by
cryptography itself completely relies on the confidentiality and integrity of some
(quite small) pieces of data, e.g., secret keys. Therefore, sound management of
this sensitive data proves to be as critical in ensuring any amount of security as
the use of cryptography itself. In practise, cryptographic material is accessed and
operated on through an Application Programming Interface (API). Protection
and handling of sensitive objects thus fall back on security APIs, which enable
external applications to perform cryptographic operations.

Normalization efforts have yielded the RSA PKCS#11 standard, which nowa-
days appears as the de facto standard adopted by the industry [18]. Therefore,
much effort should be devoted to the provision of solutions allowing for safe and
sound implementations of the PKCS#11 security API. In this article we present
Caml Crush, a secure architecture meant to protect vulnerable PKCS#11 mid-
dlewares. As an additional software layer sitting between applications and the
original PKCS#11 middleware, Caml Crush acts as a mandatory checkpoint con-
trolling the flow of operations. The result is a PKCS#11 filtering proxy which

c© Springer International Publishing Switzerland 2015
M. Joye and A. Moradi (Eds.): CARDIS 2014, LNCS 8968, pp. 173–192, 2015.
DOI: 10.1007/978-3-319-16763-3 11

174 R. Benadjila et al.

can enforce dynamic protection of cryptographic resources through the use of an
extensible filtering engine.

Though software tokens do exist, it is rather classical to depend on hardware
assisted solutions, such as smartcards and Hardware Security Modules (HSMs).
Having put to test numerous platforms exposing the PKCS#11 interface, it has
come to our attention that the available implementations, be it open-source
or commercial solutions, often do not meet average requirements in terms of
standard compliance, robustness, let alone security properties. As many end-
users of HSMs are not granted the ability to modify (or even access) the source
code of their interface, tending to these diverse weaknesses whilst preserving
standard compliance commends for a global approach. Additionally, we aim to
provide users with means to dynamically customize such APIs according to self-
imposed restrictions or needs for vulnerability patches.

Possible improvements of the exposed API. The first and rather obvious
step to take is to enforce more acute conformity to the PKCS#11 standard.
Elementary as it seems, it really forms an inescapable axis of improvement, as
there exist deployed tokens dutifully answering direct requests to output sen-
sitive values, oblivious to the fact that the standard does explicitly prohibit it
(see, e.g., [11]). That being said, security requirements stated in the PKCS#11
specification cannot be reached by solely implementing the standard to the let-
ter. Indeed, the quite generic API described in the document bears inherent
flaws which enable logical key-revealing attacks, such as the notorious wrap-
and-decrypt attack. References depicting such attacks include [11,13,15]1. It is
worth mentioning that Bortolozzo et al. introduce in [11] a tool, Tookan, allowing
for automatic API analysis and attack search. A second relevant amelioration of
tokens consists in patching PKCS#11 logical defects while remaining as close as
possible to the standard. In the meantime, it seems welcome to address possible
cryptographic attacks such as padding oracle existence.

Fixing the PKCS#11 standard. Two main alternatives can be chosen to
get a secure API: either try and fix the ubiquitous standard, or start over from
scratch. This latter possibility has been explored by Cortier and Steel in [14],
and by Cachin and Chandran in [12], who propose a server-centric approach. As
mentioned earlier, the need we address is to allow for a secure use of already
available – and even possibly deployed – tokens. This calls for the choice of the
first and more pragmatic alternative.

In [11], the authors exhibit a successfully fixed PKCS#11 middleware: the
software token named CryptokiX [2], whose security has been verified using
the Tookan tool. CryptokiX is the work that bears the more similarities to our
approach, in the sense that it successfully patches a number of the PKCS#11
standard flaws. There is no way to ensure that vendors provide customers with a
patched version of their software. Hence, we believe that CryptokiX might not be
a viable alternative for customers using HSMs as they operate the cryptographic
resource with a proprietary and binary-only middleware. This objection put
1 We refer the reader to the extended version of this paper [17] for more details.

Caml Crush: A PKCS#11 Filtering Proxy 175

aside, this work proves their patches realistic, and we reuse them in our work.
Though it is clear that no piece of software can replace a secure API embedded
in the hardware itself, we advocate a best-of-both-worlds approach in which
users can suit to their needs and constraints the trade-off between security,
performance and confidence in the token native implementation.

Our contributions. In this paper, we propose an additional middleware and
a software stack running a filtering proxy service between client applications
using cryptography and PKCS#11 compatible security devices. The idea is to
exclusively expose to regular users - or potential adversaries - the API as made
available by the proxy, rather than letting them interact with the commercially
available middleware. We show that Caml Crush provides the means to effec-
tively augment the security properties of the resulting solution. Obviously, these
security guarantees rely on the assumption that adversaries cannot bypass the
proxy - which we find to be relevant, according to several examples of deployment
scenarios presented in the paper.

We emphasize that Caml Crush allows to adequately patch problems in
PKCS#11 implementations, but not to search for them. Indeed, our architec-
ture includes a filtering engine able to hook API function calls to either simply
block them or filter them based on a run-time policy. Our proxy can feature
any tailored filtering functionality throughout the client connection’s lifetime.
In particular, it can be configured to enforce some or all of the aforementioned
hardening measures on top of any PKCS#11 interface.

Below is a non-exhaustive list of noticeable functionalities:

• every feature offered by CryptokiX is implemented in the filter module included
in Caml Crush: patches to all known logical attacks are readily available.

• the PKCS#11 standard allows to tag cryptographic objects using labels or
identifiers. Caml Crush twists this feature to filter objects and thus restrict
their visibility. It finds an immediate application in virtualized environments
or resource sharing scenarios.

• our implementation and design choices ensure great portability and interop-
erability even on platforms with different operating systems and endianness.

• we provide solutions to other attacks (coding flaws, buffer overflows vulnera-
bilities, etc.) by blocking, altering, or detecting and disabling repeated calls
to a function.

We have validated our solution using both known attack implementations of
our own and the more exhaustive trials performed by the Tookan tool. Finally,
we underline the practical relevance of our work on several accounts. The fil-
ter engine possible configurations allow for flexible filtering policies. The com-
plete source code of our implementation is made publicly available [1]. Moreover,
the project was architectured with modularity in mind: it features user-defined
extensions through plug-ins. Lastly, the performance cost measured in concrete
deployment scenarios turns out to be reasonable.

Outline. Section 1 introduces PKCS#11 key concepts, briefly describes short-
comings of the API and details our motivations. Section 2 depicts the proxy

176 R. Benadjila et al.

architecture while justifying our design choices. Section 3 focuses on the filter-
ing engine. Section 4 discusses deployment scenarios to secure various classes of
devices, while Sect. 5 is both a security and performance evaluation.

1 Motivations of the Work

1.1 An Introduction to PKCS#11

PKCS are a set of standards developed to allow interoperability and compat-
ibility between vendor devices and implementations. The PKCS#11 standard
specifies a cryptographic API. This allows the cryptographic resource vendors to
expose common interfaces so that application developers can implement portable
code, while hiding low-level implementation details. A common way of exposing
the API is through OS shared libraries.

To abstract away from the cryptographic resource, PKCS#11 defines a logi-
cal view of the devices: the tokens. To interact with the token, an application
opens a session in which objects are manipulated. Objects can be keys, data
or certificates and are used as input of cryptographic mechanisms defined by
the standard. The objects can differ in their lifetime and visibility. Non-volatile
objects are called token objects. They are accessible from all client applica-
tions. They differ from session objects are not meant to be shared between
applications, and are destroyed once the session ends. Visibility of objects is
also conditioned on whether a user is authenticated. When no authentication
has been carried out, an application is only allowed to handle public objects,
whereas authenticated users can use private objects. Once a session is opened
with a resource, users traditionally achieve authentication by providing a PIN.

On top of implementing cryptography, tokens are meant to enforce security
measures w.r.t. the objects they store. Namely, the main feature expected from
tamper-resistant devices is that even legitimate users logging in on the token
cannot clone it using the API. Thus, one of the key concepts behind PKCS#11
is to enable the use of cryptographic mechanisms without passing sensitive values
in plaintext as arguments. The API uses handles to refer to objects, they are
local to an application and bound to a session.

PKCS#11 objects can be exported from or injected into a token. This allows
to save and restore keys (useful in case of broken or obsolete devices), but also to
share keys over public channels between tokens. PKCS#11 objects are defined by
a set of attributes which may vary depending on the object nature: symmetric
secret keys have their value as an attribute, while asymmetric private keys have
their modulus and exponents as attributes. Some attributes are common to all
the storage objects though: examples are the private attribute and the token
attribute characterizing the nature of the object (session vs. token objects as
introduced previously).

Since the confidentiality of secret objects must be preserved, only their
encrypted values are to be given to the user. PKCS#11 offers specific functions
to export and import objects: C WrapKey for wrapping and C UnwrapKey for
unwrapping. The result of a wrapping operation is an encrypted key value with

Caml Crush: A PKCS#11 Filtering Proxy 177

a key that is inside the token, so that only the ciphertext is exported. In turn,
keys used to protect other objects must be carefully managed. The PKCS#11
standard defines a few specific attributes to capture properties of keys allowing
to monitor their use. Briefly, the sensitive attribute, when set to TRUE, is meant
to prevent the user from fetching the value of the object, while an extractable
attribute with value FALSE should prevent the user from exporting the object
through a wrapping operation. Keys with attributes amongst encrypt, decrypt,
sign, verify, wrap and unwrap can be used for the corresponding operation.

1.2 Attacker Model and Usual Shortcomings Exhibited by
PKCS#11 Middlewares

Cryptographic resources implementing the standard are formed by some com-
bination of software and hardware, and need a piece of software to export the
PKCS#11 API. This latter is usually referred to as a PKCS#11 middleware.
In the case of a Hardware Security Module, this middleware might be partly
hosted inside the token, whereas for smartcards, it is a library to be loaded by
the operating system.

The issues addressed by Caml Crush mainly fall into two categories.
Firstly, Caml Crush allows to fix defects in the way middlewares implement
the PKCS#11 API, leading to unexpected behaviors that can break applications
expecting standardized answers. Secondly, Caml Crush enables the prevention
of purposeful attacks that consist in any interaction with the PKCS#11 mid-
dleware resulting in the leak of sensitive information (such as the values of sen-
sitive keys), or in tampering with the middleware itself (through classical buffer
overflow attacks for instance).

In a nutshell, our attacker model encompasses applications or users (be it
legitimate or not) forging any sequence of API calls leading to a suc-
cessful leak of sensitive information or API defect. Compared to usual
definitions of a successful attack – typically resulting in sensitive information
disclosure – our success criterion takes into account less obvious threats. Let
us also emphasize that the attackers that we consider remain at the PKCS#11
API level: this implies that they only interact with the resource through the
PKCS#11 middleware and never gain a direct lower level access to the token.
We discuss this attacker model in Sect. 1.3 and give valid use cases in Sect. 4. In
this model, PKCS#11 issues can be classified in three categories.

Compliance Defects. The PKCS#11 standard comprehends a broad set of
features without providing a reference implementation, compliance is therefore
hard to achieve. Most tokens only implement part of the specification. Even
then, quite trivial inconsistencies have been found. Serious mishandling of the
attributes of keys probably feature amongst the most critical disagreements with
the standard requirements. Indeed, they very concretely lead to the output in
plaintext of the value of secret keys. Such behaviors are explicitly not com-
pliant with the specification.

178 R. Benadjila et al.

PKCS#11 API-level Attacks. Even strict compliance with the standard is
not enough. Logical attacks that only exploit flaws in the API design itself
confirm it. The most famous example is perhaps the so-called wrap-and-decrypt
attack. It exploits the possibility to use keys for more than one type of oper-
ation, in order to extract sensitive keys from the token. Other attacks exploit
use of obsolete cryptographic schemes (e.g., DES) and of combinations of
mechanisms yielding padding oracle attacks. Details about flaws and possi-
ble patches can be found in the extended version of this paper [17], and in the
seminal references [11,13,15].

Classic Vulnerabilities. Middlewares are also prone to the generic pitfalls
yielding vulnerabilities that an adversary can exploit in any piece of code.
These oversights include absence of checking for errors, presence of buffer over-
flows or null-pointer dereferences. Consequences range from the pure and simple
crash of the middleware to the redirection of the control flow of the programs
or execution of arbitrary code. The large size and relatively low-level at which
the PKCS#11 standard is specified make the resulting token implementations
rather subject to exhibit such weaknesses.

1.3 Our Motivations for Providing a Filtering Proxy

Limitations of State of the Art Solutions. In [11], Bortolozzo et al. intro-
duce Tookan, a tool to automatically search for attacks on PKCS#11 tokens,
along with CryptokiX, a reference implementation of a fixed software token.
A fork of openCryptoki [5], a famous PKCS#11 software implementation of the
standard, CryptokiX implements patches that turn out sufficient to fix the API
against logical and cryptographic attacks.

However, these works suffer from two practical limitations. Firstly, they only
take into consideration a subset of the attacks described in Sect. 1.2 (namely
PKCS#11 API-level attacks). Thus, compliance defects as well as classic vul-
nerabilities are not covered. Secondly, they can be of interest to token vendors,
but are of limited interest to token users in the field. Users are able to check with
Tookan whether their token is vulnerable to certain classes of attacks. Unfortu-
nately, without the vendor support nothing can be done, and the user still ends
up using his token despite its possible vulnerabilities.

As a consequence, the matter of fixing commercially available tokens is not
addressed by the related work. We envision two possible scenarios regarding this
issue. One can hope that vendors successfully repair existing vulnerable tokens
and integrate the countermeasures in their future designs. In our experience, it
takes a long time to achieve such a goal. We rather believe that vulnerable tokens
are not to completely disappear anytime soon. Many PKCS#11 devices, e.g.,
smartcards, cannot be updated easily, if they are updatable at all. Furthermore,
vendors will probably not maintain obsolete PKCS#11 devices, even if some are
still being used. Finally, when some vendors provide a patch for their tokens, it
is very likely that only the most recent platforms benefit from them. Deprecated
operating systems interfacing with the token will not be able to get updates.

Caml Crush: A PKCS#11 Filtering Proxy 179

Using Caml Crush to Dynamically Protect Vulnerable Tokens. Previ-
ous limitations call for the design of a suitable solution for users who want to
protect potentially vulnerable tokens, but are deprived of patches. With Caml
Crush, we aim at dynamically detecting and applying mitigations against attacks
on PKCS#11 requests before they reach the token. To do so, our solution
consists in a PKCS#11 proxy that sits between the original middleware and the
PKCS#11 applications. Alternatives include developing a replacement middle-
ware, but low-level interfaces with devices are often proprietary. Therefore, we
opted for a lightweight and more portable solution. This induces some limita-
tions, though, discussed in 5.3.

Not only does our design implement the state of the art patches inherited
from [11], but it also comes with supplementary features. Caml Crush adds
to tokens a detection and protection layer against adversaries who can forge
PKCS#11 requests that exploit vulnerabilities on tokens that are known to be
vulnerable (e.g., to a buffer overflow on a PKCS#11 function argument). We
stress out that the hardware device remains in charge of secure key storage and
cryptographic operations.

We recall that we make one working hypothesis about the attacker capabili-
ties though: no adversary can bypass the PKCS#11 proxy and directly commu-
nicate with the resource (see the attacker model discussed in Sect. 1.2). This is
obviously not a limitation in cases where the cryptographic resource is a – part
of – a dedicated machine on a managed network. This approach is easily applied
to network HSMs and more thoroughly discussed in Sect. 4.

2 Architecture

Using a proxy is an efficient approach in order to protect cryptographic resources
and vulnerable PKCS#11 middlewares. Though there exist some projects imple-
menting PKCS#11 proxies – among which GNOME Keyring [3] and pkcs11-
proxy [6] – they rather focus on performance, usability or ergonomic concern,
which are orthogonal to our motives. Thus, we have chosen to propose a com-
pletely new architecture. In this section, we motivate our design choices and
present the components of Caml Crush.

2.1 Design Choices

Critical pieces of the software use the OCaml language: it offers a static type sys-
tem, a type-inferring compiler and relieves the programmer from memory man-
agement issues. The functional programming paradigm is well-suited to express
filtering rules.

The communication layer plays an essential role in a proxy architecture. Caml
Crush uses standard Sun RPC [8] Remote Procedure Call and its XDR [10] data
serialization format. This ensures greater portability as most operating systems
have a native implementation of this standard. Caml Crush can operate over

180 R. Benadjila et al.

PKCS#11 proxy

RPC Layer
PKCS#11
RPC server

PKCS#11
filter

PKCS#11
binding

RPC Layer

PKCS#11
exported
functions

PKCS#11 client library

TCP/UNIX socket

(SSL/TLS optional)

PKCS#11 interface

PKCS#11 interface

Real PKCS#11
middleware

(shared library)

Cryptoki ap-
plication

1

2

3 4 5

6

Smartcard
(token example)

Transport
layer (USB,
RS232 ...)

Fig. 1. Caml Crush architecture overview

Unix domain or TCP sockets and the link can be secured using TLS mutual
authentication. Acceptable TLS cipher suites are tunable on the server side.

To end up with code of higher quality, we generalize the use of automatic
code generation. We thus rely on the code of the tool, which is generally smaller
and well tested-out. It is very likely that it also reduces the introduction of vul-
nerabilities in the resulting code (bad memory management, human errors . . .).

The PKCS#11 API matches each application with a context, mainly a list
of handles and session states (read-only, user logged, etc.). The standard out-
lines that “an application consists of a single address space and all the threads
of control running in it”, meaning that an application is mapped to a single
process. Therefore the logical separation of processes is supposed to isolate mul-
tiple PKCS#11 contexts. This is handled by all operating systems supporting
virtual memory. In our opinion, using a multi-threaded architecture for the proxy
is in contradiction with the standard and bound to create unforeseen issues.
This partially explains why thread-based projects such as GNOME-Keyring or
pkcs11-proxy [3,6] were not reused. Caml Crush is a multi-process architecture
handling client connections through fork-exec. Each process is tied to a client
and runs its own instance of the filter engine, with its own object and session
handles stored in its memory space.

2.2 Components

One of the design goals of Caml Crush is modularity. Having the possibility
to replace portions of code while minimizing the impact is essential. This is
why Caml Crush is split in several sub-components. Figure 1 illustrates this
architecture.

Caml Crush: A PKCS#11 Filtering Proxy 181

OCaml PKCS#11 Binding 1©. PKCS#11 middlewares are shared libraries.
Before performing calls to PKCS#11 functions, client applications must load the
middleware. While OCaml does not natively support loading a C shared library,
calling C foreign functions is allowed.

The binding is the low-level part of Caml Crush. It is used to load the middle-
ware and forward calls to the cryptographic resource. The code of this component
is mostly generated with the help of CamlIDL [9]. This tool can generate the nec-
essary stubbing code to interface OCaml with C. CamlIDL works with an IDL
file whose syntax is derived from C and enhanced to add type information. This
greatly simplified our work as the conversion code and memory allocation are
handled automatically. The resulting stubbing functions point to corresponding
symbols that call the PKCS#11 functions of the real middleware. These were
manually written and mainly act as a pass-through.

PKCS#11 Filter 2©. Thoroughly detailed in Sect. 3, the filtering engine relies
on the OCaml PKCS#11 binding 1© to communicate with the real middleware.

PKCS#11 Proxy 3© 4©. The proxy server is a critical component of this
architecture. Because it is facing potentially hostile clients it has to be robust
and secure. As motivated earlier, we choose to use one process per client to avoid
abusive sharing of handles, be it with honest or hostile clients.

We based our proxy service on the Ocamlnet library, and more specifically
the Netplex subclass, used to implement our PKCS#11 RPC listening ser-
vice 3©. We benefit from the support for the Sun RPC standard in OCamlnet.
As for the binding described earlier, we use a description file to produce the code
in charge of data serialization on the transport layer 4©. A file with the XDR
syntax describes the available RPC functions and the various structures. Both
the client and server take advantage of this.

Best security practices recommend dropping all unnecessary privileges for
system daemons. Since OCaml does not provide the necessary APIs to accom-
plish this task to harden the server process we provide a custom primitive. After
its initialization, we instruct Netplex to call a function that performs capabil-
ities dropping and privilege reduction from our C bindings. Further hardening
can be achieved depending on the sandboxing features available on the operating
system running the Caml Crush daemon.

PKCS#11 Client Library 5© 6©. The final component is the PKCS#11
shared library that substitutes to the original middleware. Client applications
load it to perform cryptographic operations. The main task of the client library
is to set up a communication channel with the server, export PKCS#11 sym-
bols 6© to the calling application and relay function calls to the proxy server
with serialized arguments. As for the proxy, the transport layer code 5© is gen-
erated from the XDR file. Some sanity checks are performed within the library
to prevent invalid requests from reaching the proxy server. However, we want to
stress that the client library plays no role in the security of this architecture
(i.e. an attacker controlling the library does not reduce the overall security).

182 R. Benadjila et al.

PKCS#11 filter

Core engine

PKCS#11
RPC server

Filter frontend

Configuration
parser

Common
helpers

Inner state Actions

U
se
r-
d
efi

n
ed

ex
te
n
si
o
n
s

let my_new_function a =
if a then
...

OCaml

Filter backend

PKCS#11
binding

CONF LOGS

PKCS#11 interface

PKCS#11 interface

1

2

3 4

5

6

7
8

9

Fig. 2. Caml Crush filtering engine overview

3 PKCS#11 Filtering Engine

3.1 Architecture of the Filter

Overview. The engine is divided into several components detailed in Fig. 2.
Firstly, it is isolated from the PKCS#11 proxy by a frontend and from the
OCaml PKCS#11 binding by a backend . Secondly, it includes a configuration
parser , to process set-up data provided by the administrator. Helpers are
also used for common tasks such as logging. Eventually, the filter core engine
performs the filtering actions within PKCS#11 calls, helped by requests to the
backend.

Core Engine . The configuration parser takes as input a configuration
(defined by the administrator) and uses it to build a static filtering policy. This
policy is expressed as a mapping from PKCS#11 function names to a sequence
of operations performed each time the given function is called . The most basic
example of operation consists in simply forwarding the call to the backend,
getting the matching output and forwarding it back to the frontend. A filter
instance is loaded when an application opens a connection with the server, a
new process is forked on the proxy side. It is unloaded when the connection
is closed. The multi-process model grants Caml Crush the ability to load and
isolate multiple PKCS#11 middlewares. The filter configuration allows to apply
fine-grained filtering policies depending on the target middleware.

Actions and User Extensions . The engine is architectured to allow
precise tuning of the filtering policy and user-specific extensions. To achieve
such modularity, we introduce an intermediate abstraction layer, built on the
notion of filtering actions .

Caml Crush: A PKCS#11 Filtering Proxy 183

Two alternatives are available to users to adapt the filter to their needs.
Firstly, predefined configurations are proposed, based on concrete use-cases.
They comprise all of PKCS#11 patches as well as function blocking and label/id
filtering (see Sect. 3.2). Secondly, users can write plug-ins in OCaml to suit their
needs. Since each PKCS#11 function is hooked inside the filter, it can be con-
figured to call any other user-defined function implemented in the plug-ins.

3.2 Filtering Features Involving Standard PKCS#11 Mitigations

Mitigations Against Logical Attacks. Logical attacks detailed in Sect. 1.2
are mainly due to exposing wrap and unwrap functions. Completely remov-
ing them partially fixes the API, and proves relevant as most use cases do not
use them. To address the generic case, Fröschle et al. have proposed patches
in [16], then extended in [11]. They put forward two sets of patches, that each
presents their own advantages and drawbacks. Details about the patches can
be found in the extended version of this paper [17]. In our proxy design, these
fixes are naturally implemented as filtering actions. The checks are dynami-
cally enforced at runtime each time a PKCS#11 request is sent to the middle-
ware. Caml Crush provides the same security level as CryptokiX against logical
attacks.

Mitigations Against Cryptographic Attacks. Efficiently preventing the
usage of obsolete ciphers and mechanisms implies prohibiting their usage
in the token. Our filter engine allows to mimic the absence from a token of weak
mechanisms – e.g., substandard cipher suites or poor key derivation schemes.
Indeed, all the cryptographic functions called with these mechanisms can be
blocked, as well as the creation of keys supporting them. To avoid impacting
client applications, we also amend the behavior of functions listing mechanisms
supported by the token. Padding oracle attacks can also be prevented this
way: mechanisms as PKCS#1 v1.5 and CBC PAD can be deemed “weak mech-
anisms”. As padding oracles exploit the unwrapping functionality, these latter
can be suppressed when useless. When removal is unrealistic, a better alternative
is provided by the wrapping format patch (see details in [17]). This patch pre-
cludes the decryption of malformed ciphertexts, thus preventing the information
leakage useful to these attacks.

3.3 Object and Structure Filtering

Resource Sharing and Label/Id Filtering. Though client applications can
have different criticality levels, they most likely share the same cryptographic
resource. This can lead to involuntary information leaks: as PKCS#11 defines
a single user mode of operation, an application authenticated to the token can
use any private token object.

PKCS#11allows applications to search for objectsmatching certain attributes.
One can fetch a handle to a specific object using its label or identifier attribute.
We propose to use both attributes in the filter engine to restrict the set of token

184 R. Benadjila et al.

objectswithwhich an application can operate. It can be done in a completely trans-
parent way. For instance, by prefixing or suffixing labels used by applications with
criticality levels. Then, calls to PKCS#11 functions with which objects can be
accessed, read or modified are adapted by the filter to simulate a token contain-
ing only the objects of a given criticality level. A concrete use case of this feature
is given in Sect. 4.2.

Key Usage Segregation. As mentioned earlier, many PKCS#11 flaws result
from some keys being allowed multiple usages or roles. Even subtle ways of dis-
respecting the key separation principle yield confusions at the API level and
enable attacks. The fixes presented in [11,16] mainly focus on wrap/unwrap and
encrypt/decrypt segregation. One might also want to push this logic further
with the sign/verify attributes. For example, a PKI (Public Key Infrastruc-
ture) application only needs to sign and verify data with the asymmetric keys.
Disabling other uses of these keys seems relevant. All these patches have been
easily integrated to the filtering rules we provide.

Token Information Filtering. PKCS#11 describes a set of structures that
characterize a token. For instance, the CK TOKEN INFO structure contains infor-
mation such as a serial number, a manufacturer ID and so on. The filtering proxy
can be used to transparently modify such information: for instance, a PIN length
policy can be set up by changing the ulMinPinLen and ulMaxPinLen fields.
A policy on the characters set as well as protection against dictionary attacks
can also be enforced when setting PINs. It is readily enabled by the hooking of
PKCS#11 functions C InitToken and C SetPIN performed in the filter engine,
to allow returning an error if the PIN disrespects the policy.

3.4 Blocking PKCS#11 Functions and Mechanisms

Function blocking offers a simple way to deactivate unused or dangerous features
of PKCS#11. Though rather elementary, disabling functions can prove effective
to prevent security breaches often left unaddressed by usual PKCS#11 patches.
For example, one can express a filtering policy to block administration functions,
thus only allowing regular use of the token to clients connecting to this instance.

Furthermore, we recall that provided that the user is authenticated, he can
freely create and modify objects on the token. This in turn potentially enables
him to tamper with the device to force known values as keys. Blocking object
creation and modification offers a way to impede such attacks, thus addressing
the issue of hostile users, while object management can still be performed on a
dedicated trusted filter instance.

Finally, as pointed out before, mechanisms filtering can also be of interest, be
it to completely block unwanted mechanisms, or to filter out some combination
of operations.

Caml Crush: A PKCS#11 Filtering Proxy 185

3.5 Security Breaches Beyond PKCS#11 Flaws

Fixing Generic Coding Errors. Since the filter sits between the client appli-
cation and the PKCS#11 middleware, one can detect, filter and alter any known
bad request or behaviour of malicious applications. Thus, prevention of vul-
nerability exploitation, or more generally mending design flaws in middle-
wares, puts the proxy to good use. Let us illustrate these words with a realistic
example of an error that we found in an existing middleware, in the PKCS#11
C SetPIN function call, as presented on Listing 1.1.

CK_RV C_SetPIN(CK_SESSION_HANDLE hSession , CK_UTF8CHAR_PTR pOldPin , CK_ULONG
ulOldLen , CK_UTF8CHAR_PTR pNewPin , CK_ULONG ulNewLen){

...
/* Compare stored PIN with old PIN */
if(memcmp(StoredPin , pOldPin , ulOldLen) == 0){

/* If test is ok , store the new PIN */
*StoredPinLen = ulNewLen;
memcpy(StoredPin , pNewPin , ulOldLen);
return CKR_OK;

}
/* Provided old PIN is incorrect */
return CKR_PIN_INCORRECT;

}

Listing 1.1. C SetPIN coding error example

As we can see, the newly stored PIN is either truncated or extended to the
old PIN length; either way it is rendered erroneous by a call to C SetPIN. The
inherent risk is to block the underlying token, the user having no clue which PIN
is actually set. Even though it is not possible to truly patch this error without
modifying the code or the binary of the middleware, the filtering proxy can help
avoiding such a pitfall. The filtering actions associated to the C SetPIN function
can consist in checking that the old and new PIN share the same length before
forwarding the call to the middleware. In case lengths do not coincide, the proxy
returns the error CKR PIN LEN RANGE and the PIN is not modified. The client
application can later fetch the correct length it needs using another PKCS#11
function and call C SetPIN again. Although a constant PIN length is forced, the
entered PIN and the stored one are consistent.

Preventing Denial of Service. PKCS#11 defines a calling convention
described in [18, p. 101] for functions returning variable-length output data. In
some cases, the affected functions are supposed to handle either null or valid
pointers. During our development we observed that some middlewares end up
dereferencing null pointers. These vulnerabilities are easily prevented by imple-
menting a filter action that performs input sanitizing.

Another example we encountered is that using a cryptographic function with
a malformed input (a non-standard mechanism) we could freeze a token, leading
to the unavailability of the cryptographic resource. Again, this behavior was
corrected using a custom filter action, the malformed input is not sent to the
device and a PKCS#11 compliant error is returned to the client application.

186 R. Benadjila et al.

We advocate that a large set of such coding errors and vulnerabilities can
similarly be corrected by stopping or modifying malformed requests before they
reach the middleware.

4 Deployment Scenarios

Security guarantees provided by Caml Crush rest upon the assumption that
going through the proxy is mandatory. Yet it is potentially still possible to
connect to the cryptographic resource directly. For instance, an attacker could try
to load the vendor middleware or use the transport layer to directly communicate
with the device. Though such attacks are realistic, we advocate that for any type
of token, complementary security measures can mitigate this issue. This section
discusses secure deployment strategies for Caml Crush.

4.1 HSMs in Corporate Networks

Network HSMs provide a convenient way to perform cryptographic operations
and securely store keys in a corporate environment. They are frequently used as
backends for PKI solutions, timestamping servers and document or code sign-
ing applications. Traditionally, these devices can be considered as black boxes,
accessed using the interfaces provided by the vendor (usually PKCS#11). In this
context of use, Caml Crush is to be installed on a dedicated server with at least
two network cards. The first card shall be directly connected to the network
HSM, thus shielding the device from any other hosts, while the second network
card shall be connected to the corporate network. Since the HSM is only linked
to the proxy, client applications are forced to access the cryptographic resource
through our filtering proxy using the Caml Crush client library. Clearly, metic-
ulous users can apply complementary hardening measures to further reduce the
attack surface of the server hosting Caml Crush.

In rare cases, HSM vendors allow non-proprietary code to run on their plat-
form. These particular devices offer a way to tightly couple Caml Crush with
the cryptographic device without needing additional hardware. We also point
out that OEM vendors who integrate standalone HSMs (such as PCI devices)
can benefit from Caml Crush when it is accessed using PKCS#11. As they may
face the same issues as customers when provided with binary-only middlewares,
they shall integrate Caml Crush within their designs.

4.2 Virtualized Environment

Caml Crush can be used within virtualized operating systems in order to securely
use a cryptographic resource. Figure 3 illustrates such a deployment scenario.
In this example, the PKCS#11 device is only exposed to the trusted hyper-
visor, virtual machines wishing to use the resource can only do so using the
Caml Crush client library. This architecture also leverages Caml Crush resource
sharing capabilities using a filtering policy dedicated to each virtual machine.

Caml Crush: A PKCS#11 Filtering Proxy 187

Here, the policy for Virtual Machine 1 restricts PKCS#11 applications to use
objects with a label in the set A (resp. B for VM 2). Therefore, the filtering
engine transparently compels virtualized environments to use objects matching
their respective policy.

While this scenario uses the hypervisor isolation features, more lightweight
isolation alternatives exist for standalone desktops using USB smartcards. The
Linux operating system can be enhanced with Mandatory Access Control (MAC)
support such as SELinux [7] or Grsecurity role-based access control [4]. Building
on discretionary access control and MAC enforces a security policy restricting
PKCS#11 and low-level smartcard access to Caml Crush instances.

Virtual Machine 1 Virtual Machine 2

Trusted Hypervisor

PKCS#11
application

objects

Caml Crush
PKCS#11

client
library

PKCS#11
application

objects

Caml Crush
PKCS#11

client
library

Caml Crush
Allowing
labels in A

Allowing
labels in B

Middleware Middleware

Cryptographic Token

A

A

B

B

handles handles

Fig. 3. Caml Crush used for resource sharing in a virtualized environment

4.3 Mobile and Embedded Platforms

Given the fact that vendors provide binary-only PKCS#11 middlewares, com-
patibility is generally limited to mainstream operating systems and microar-
chitectures. In our opinion, running an unconventional CPU platform (such
as MIPS or ARM to a lesser extent) should not stand in the way of the use
of hardware-assisted cryptography. Having chosen standardised communication
protocols ensures great portability of our code. Our initial implementation was
Linux specific but it is worth mentioning that porting to Mac OS X and FreeBSD
required little efforts. Windows support is limited to the client library, running
the server code through Cygwin is a work in progress. A native Windows port for
the server is not excluded but requires significant development. We stress that

188 R. Benadjila et al.

Caml Crush is fully capable of handling clients with a foreign endianness. We
have successfully validated interoperability scenarios using our PKCS#11 client
library on ARM, MIPS and PowerPC architectures. Corporate environments can
benefit from the variety of systems supported, from embedded to mobile devices
or legacy systems, in order to access remote PKCS#11 resources through the
use of Caml Crush.

5 Evaluation

5.1 Security Evaluation

We ensure that the filtering engine performs as expected, i.e. protects vulnera-
ble devices, using two complementary approaches. First, we have implemented
classic PKCS#11 attacks to manually verify the efficiency of our filtering rules.
Then, since manual verification can only go so far, the Tookan tool is used to
try finding attack paths.

On a Linux computer, we installed openCryptoki, a software HSM. We also
compiled and installed Caml Crush on this machine and configured it to use the
default filtering rules. These latter enforce the needed properties described in
the extended version of this paper [17] to secure the PKCS#11 API (conflict-
ing and sticky attributes, wrapping format). Unsurprisingly, the unprotected
device remains vulnerable. However, once instructed to use the Caml Crush
client library, our filtering engine works as expected since neither Tookan nor
our manual tools are able to identify or perform attacks. The completeness result
obtained by the authors of Tookan allows to deduce that the filter efficiently pre-
vents all attacks that can be carried out in the model underlying their tool.

5.2 Performance Evaluation

In this section we present the various test cases that we used to quantify the
performance impact of our solution. The experiments were conducted on three
different platforms, a PCI HSM, a network HSM and a USB smartcard. For each
cryptographic device, our benchmark is run three times. First, the raw perfor-
mance is computed using various cryptographic operations. Second, we run the
same benchmarks using Caml Crush with the filtering engine disabled to mea-
sure the architectural cost. Finally, we enable all of our filtering rules to add up
the remaining cost of Caml Crush. Figure 4 summarizes the types of operations
we used during our performance testing, as well as the number of such operations
performed on each type of device. We point out that the card is a USB smartcard
using an open source middleware and has fewer capabilities compared to HSMs.
We iterated the type of operation depending on the device performance. HSMs
and network HSMs are fast devices capable of handling multiple requests at the
same time. Therefore, we also ran benchmarks simulating multiple client appli-
cations performing the described operations (about ten clients running various
operations).

Caml Crush: A PKCS#11 Filtering Proxy 189

PCI HSM. Figure 4 illustrates the performance impact of Caml Crush using
a sequential client application. The most significant performance drop affects
the aes operations. These are fast operations and adding Caml Crush on top of
such local devices reduces throughput. The key-gen and rand-dgst operations
respectively have a 25 % and 50 % performance penalty. On the other hand,
rsa tests are time-consuming operations and the impact is negligible. The right
side of the figure clearly demonstrates that when the resource is accessed using
multiple applications at the same time, the impact of Caml Crush is low.

Network HSM. We now focus on the evaluation on a network HSM, the results
are shown in Fig. 4. The observation is similar to the PCI-HSM, using a single
sequential client, Caml Crush has roughly the same performance impact. We
recall that the filter engine fetches attributes from the device when process-
ing PKCS#11 calls (using C GetAttributeValue). Those supplementary calls
account for a large portion of the throughput drop. Again, Caml Crush cost is
reduced when the cryptographic resource is under heavier load from multiple
clients.

Smartcard. The performance impact of Caml Crush related to the smartcard
at our disposal is illustrated in Fig. 4. Smartcards are rather slow devices and
perform through the USB bus. Given this, we observe a 20 % drop on rsa tests
and less than 10 % on the rand-dgst operations.

We used various benchmarks to quantify the performance cost of our solu-
tion. Assembling a software layer on top of another one obviously consumes
some resources. In our case, the RPC layer accounts for a substantial part of
the performance penalty. Furthermore, the supplementary calls needed by the
filtering logic add an overhead that is device-specific. Nevertheless, we state that
the performance trade-off remains acceptable.

5.3 Filter Limitations and Future Work

Currently, the filtering engine lacks the ability to adapt filtering actions based on
the state between different client connections. We described in Sect. 2.1 that each
client’s connection is isolated in separate processes. Caml Crush would need to
use Inter-Process Communication (IPC) mechanisms in order to exchange state-
related messages. It could prove useful in some filtering scenarios but would
require development of synchronization primitives and significantly increase the
code complexity. Such feature would probably have further impact on the overall
performance.

Another limitation is that the current filter plug-ins use the OCaml mar-
shalling module that lacks type safety: this means that extra care must be taken
by users when writing code as filter extensions. Errors in the plug-in code could
indeed evade the compile-time checks, and might allow an attacker to tamper
with the memory of the server instance (process) dealing with the client. The
implications of such memory tampering of OCaml native structures is not clear,
but it would at least provide the attacker with a denial of service capability

190 R. Benadjila et al.

Token types

PCI HSM and NetHSM USB Smartcards

The token does not support the operation types.
†Number of operations performed on the token to measure performance.

Operation type Number† Operation type Number†

key-gen
AES-128

Generate keys
104

rand-dgst

random/SHA-1
Generate random

then hash it

104
random/SHA-1

Generate random
then hash it

103

rsa

RSA-2048
encrypt/decrypt

sign/verify
104

RSA-2048
sign/verify 103

aes
AES-128

encrypt/decrypt
105

rand-dgst

rsa

key-gen

aes

native
proxy
filter

Relative Timings

O
p
er

a
ti

o
n

T
y
p
e

PCI HSM sequential processing

100%

rand-dgst

rsa

key-gen

aes

native
proxy
filter

Relative Timings

O
p
er

a
ti

o
n

T
y
p
e

PCI HSM parallel processing

100%

rand-dgst

rsa

key-gen

aes

native
proxy
filter

Relative Timings

O
p
er

a
ti

o
n

T
y
p
e

NetHSM sequential processing

rand-dgst

rsa

key-gen

aes

native
proxy
filter

Relative Timings

O
p
er

a
ti

o
n

T
y
p
e

NetHSM parallel processing

100%

rand-dgst

rsa

native
proxy
filter

Relative Timings

O
p
er

a
ti

o
n

T
y
p
e

Smartcard sequential processing

100%

100%

Fig. 4. Performance of Net/PCI-HSM and smartcards. Relative timings are used, the
operation taking maximum time is at 100 %

Caml Crush: A PKCS#11 Filtering Proxy 191

on the instance. Albeit, the attacker would not be able to attack other clients
instances thanks to the fork-exec model (provided that appropriate operating
system level protections and sandboxing features are used).

Furthermore, writing plug-ins requires expertise in OCaml. We are currently
working toward the removal of marshalling functions. We profit from this step
in the filter development to rethink the way filter actions are encoded. We plan
on introducing an intermediate domain-specific language using more generic and
fine-grained atomic actions. This would allow advanced users to use this inter-
mediate language to specify filter actions. Such an abstraction is meant to relieve
users from dealing with the complexity of OCaml and adherence to our design
choices in the filter backend.

Conclusion

We are able to dynamically address security issues of the PKCS#11 API. Related
work has paved the way to resolve these issues with a reference PKCS#11 soft-
ware implementation. However, applying such countermeasures is left to the
vendors of cryptographic devices. This is insufficient as commercially available
and already deployed devices remain vulnerable. Caml Crush offers an alterna-
tive to protect cryptographic resources from state of the art attacks. Substituting
the original middleware with our proxy and filtering PKCS#11 function calls is
a pragmatic and effective approach. Moreover, the filter engine is conceived to be
modular: it is possible to customize and extend the filter with plug-ins written
in OCaml.

The filtering engine of Caml Crush is versatile enough to enable complemen-
tary features such as function blocking, improved PKCS#11 compliance and
secure resource sharing We are confident that these functionalities find immedi-
ate application for users of compliant cryptographic devices.

References

1. Caml Crush. https://github.com/ANSSI-FR/caml-crush/
2. CryptokiX. http://secgroup.dais.unive.it/projects/security-apis/cryptokix/
3. GNOME Keyring. http://live.gnome.org/GnomeKeyring
4. grsecurity. http://grsecurity.net/
5. openCryptoki. http://sourceforge.net/projects/opencryptoki/
6. pkcs11-proxy. http://floss.commonit.com/pkcs11-proxy.html
7. SELinux. http://selinuxproject.org/
8. Sun RPC RFC 1057 (1988). http://www.ietf.org/rfc/rfc1057.txt
9. CamlIDL project page (2004). http://caml.inria.fr/pub/old caml site/camlidl/

10. Xdr, RFC 4506 (2006). http://tools.ietf.org/html/rfc4506
11. Bortolozzo, M., Centenaro, M., Focardi, R., Steel, G.: Attacking and fixing

PKCS#11 security tokens. In: ACM Conference on Computer and Communica-
tions Security, pp. 260–269. ACM Press, October 2010

12. Cachin, C., Chandran, N.: A secure cryptographic token interface. In: CSF 2009,
pp. 141–153. IEEE Computer Society (2009)

192 R. Benadjila et al.

13. Clulow, J.: On the security of PKCS #11. In: Walter, C.D., Koç, Ç.K., Paar, C.
(eds.) CHES 2003. LNCS, vol. 2779, pp. 411–425. Springer, Heidelberg (2003)

14. Cortier, V., Steel, G.: A generic security API for symmetric key management
on cryptographic devices. In: Backes, M., Ning, P. (eds.) ESORICS 2009. LNCS,
vol. 5789, pp. 605–620. Springer, Heidelberg (2009)

15. Delaune, S., Kremer, S., Steel, G.: Formal security analysis of PKCS#11 and pro-
prietary extensions. J. Comput. Secur. 18(6), 1211–1245 (2010)

16. Fröschle, S., Steel, G.: Analysing PKCS#11 key management APIs with
unbounded fresh data. In: Degano, P., Viganò, L. (eds.) ARSPA-WITS 2009.
LNCS, vol. 5511, pp. 92–106. Springer, Heidelberg (2009)

17. Benadjila, R., Calderon, T., Daubignard, M.: CamlCrush: a PKCS#11 Filtering
Proxy (2014). http://eprint.iacr.org/2015/063

18. RSA Security Inc.: PKCS#11 v2.20: Cryptographic Token Interface Standard
(2004)

Algorithms for Outsourcing Pairing
Computation

Aurore Guillevic2,3(B) and Damien Vergnaud1

1 Département d’Informatique, École normale supérieure, Paris, France
2 Inria, Paris, France

aurore.guillevic@ens.fr
3 École Polytechnique/LIX, Palaiseau, France

Abstract. We address the question of how a computationally limited
device may outsource pairing computation in cryptography to another,
potentially malicious, but much more computationally powerful device.
We introduce two new efficient protocols for securely outsourcing pair-
ing computations to an untrusted helper. The first generic scheme is
proven computationally secure (and can be proven statistically secure
at the expense of worse performance). It allows various communication-
efficiency trade-offs. The second specific scheme – for optimal Ate pairing
on a Barreto-Naehrig curve – is unconditionally secure, and do not rely
on any hardness assumptions. Both protocols are more efficient than the
actual computation of the pairing by the restricted device and in partic-
ular they are more efficient than all previous proposals.

1 Introduction

Pairings (or bilinear maps) were introduced in cryptography in 2000 by Joux [14]
and Boneh-Franklin [4]. A pairing is a bilinear, non-degenerate and computable
map e : G1 × G2 → GT . In practice, the first two groups G1 and G2 are prime-
order r subgroups of the group of points E(Fq) of an elliptic curve E defined
over a finite field Fq. The so-called target group GT is the order r subgroup of
a finite field extension Fqk . Bilinear pairings proved to be an amazingly flexible
and useful tool for the construction of cryptosystems with unique features (e.g.
efficient identity based cryptography or short signatures). However, the pairing
computation is more resource consuming compared to a scalar multiplication on
the elliptic curve E(Fq).

In the last decade, several papers [7,9,12] studied the question of how a com-
putationally limited device may outsource pairing computation to another, poten-
tially malicious, but much more computationally powerful device. In this setting,
one wants to efficiently delegate the computation of a pairing e(SK1,SK2) of two
secret keys, or a pairing e(SK,PP) of a secret key and some public parameter.
Obviously, one needs to ensure that this malicious device does not learn anything
about what it is actually computing (secrecy) and sometimes one also needs to,
when possible, detect any failures (verifiability, also called correctness).

c© Springer International Publishing Switzerland 2015
M. Joye and A. Moradi (Eds.): CARDIS 2014, LNCS 8968, pp. 193–211, 2015.
DOI: 10.1007/978-3-319-16763-3 12

194 A. Guillevic and D. Vergnaud

As mentioned in [7,9], a delegation protocol that does not ensure verifiabil-
ity may cause severe security problems (in particular if the pairing computation
occurs in the verification algorithm of some authentication protocol). Unfortu-
nately, the different proposals for verifiable pairing delegation are very inefficient
and it is actually better in practice to directly embed the pairing computation
inside the restricted device than using these solutions. The main interest is then
to save of area that is required to implement a pairing in the restricted device
such as smart card.

However, if verifiability is mandatory in authentication protocols, this is not
necessarily the case in scenarios where the delegated pairing value is used in an
encryption scheme as a session key. In this case, one can indeed use additional
cryptographic techniques to ensure that the values returned by the powerful
device are correct (e.g. by adding a MAC or other redundancy to the ciphertext).
One can even consider settings where the powerful device actually learns the
pairing value. For instance, in a pay-TV scenario, the set-up box (provided by the
pay-TV company) needs to know the (one-time) session key K used to decipher
the content (e.g. movie, football match) but it does not know the secret key
SK securely stored in the smartcard. If the smartcard delegates the pairing
computation to the set-up box there is no harm to let it know the session key K
since it will learn it anyway.

In 2005, Girault and Lefranc [12] introduced the first secure pairing dele-
gation protocol through the Server-Aided Verification notion which consists in
speeding up the verification step of an authentication/signature scheme. Their
pairing delegation protocol only achieves secrecy with unconditional security
(and the verifiability is achieved via a different mean). Chevallier-Mames, Coron,
McCullagh, Naccache and Scott introduced in 2005 the security notions for pair-
ing delegation [8,9] and they provided a verifiable delegation protocol for pair-
ing computation. Their protocols are much more resource consuming for the
restricted device than directly computing the pairing.

Recently, Canard, Devigne and Sanders proposed a more efficient protocol
for verifiable pairing delegation. The authors showed that their proposal is more
efficient than the computation of the pairing for optimal ate pairing on a so-
called KSS-18 curve [15]. Unfortunately, we will show in this paper that this
is not the case for state-of-the-art optimal Ate pairing on a Barreto-Naehrig
curve [3].

Contributions of the paper. We propose two new efficient protocols for secret
pairing delegation. Our protocols are not verifiable but as explained above, this
is not really an issue for encryption primitives where verifiability can be achieved
by other means. In particular, our typical usecases are Pay-TV where a smartcard
delegates a pairing computation to the set-up box and encrypted GSM commu-
nication where the sim-card delegates a pairing computation to the smartphone
processor (e.g. an ARM or Intel processor with high competitive performances).
In these scenarios, one can even assume that the set-up box or the smart-
phone actually learns the pairing value (but of course not the secret information
stored by the smartcard or the sim-card). Both methods enable to delegate the

Algorithms for Outsourcing Pairing Computation 195

computation of a pairing e(SK,PP) of a secret key SK and some public parame-
ter PP. They achieve better efficiency than actual computation of the pairing by
the restricted device and in particular they are more efficient than all previous
proposals.

We first present a (generalized) knapsack-based approach which uses different
endomorphisms on the groups G1,G2,GT to speed-up the method. Instead of
masking the secret point SK by a scalar multiplication with a random secret
exponent, it is masked by adding to it a sum of (small) multiple of random
points that are also sent to the powerful device. It computes several pairings of
these points with the public parameter PP and the restricted device combines
them to get the actual value. The method is generic and can be applied to
any pairing instantiation. The method increases the communication complexity
between the two devices but one can propose different communication-efficiency
trade-off.

In our second approach, we present a way to delegate only the non-critical
steps in the pairing algorithm, looking carefully at each instruction in Miller
algorithm. The powerful device does not learn any information on the secret
point SK except the actual value of the pairing e(SK,PP) (which is perfectly
suitable in our usecases). The technique can be applied to any instantiation of
pairings but we concentrate on the state-of-the-art optimal Ate pairing on a
Barreto-Naehrig curve [3]. We obtain a 65% improvement (for a 128-bit security
level) for the restricted device compared to the computation of the pairing.

2 Preliminaries

Timing Estimates Using the Relic Library. To illustrate the algorithms pre-
sented in this paper, we estimate the various costs of scalar multiplication, expo-
nentiations and pairings. We choose as a practical example a Barreto–Naehrig
(BN) curve [3] at the 128-bit security level with the implementation provided in
Relic library of Aranha [1].

This library is at the state of the art for pairing computation [2] and is freely
available for research purpose. We assume that scalar multiplications [a]P and
exponentiations za are performed with a binary signed representation of a. So
it requires roughly log a doublings (resp. squarings) and log a/3 additions (resp.
multiplications). A doubling on a BN curve (with a4 = 0) costs 2Mp + 5Sp

(multiplications and squarings in a finite field Fp) and a mixed addition costs
7Mp + 4Sp [1]. We assume that Mp = Sp first because it is the case for Relic
library and secondly to simplify (but the estimation Sp = 0.9Mp would also be
accurate for another implementation). We obtain a total cost of ≈ 256 DblE(Fp)+
86 AddE(Fp) ≈ 2738Mp for a scalar multiplication on G1, 2.4 times this cost:
≈ 6590Mp for a scalar multiplication in G2 and ≈ 256Sp12 + 86Mp12 ≈ 9252Mp

for an exponentiation in GT . We note that checking that an element is in GT

is much more expensive than performing an exponentiation in GT . Indeed GT

is an order-r subgroup in a large finite field Fpk . GT has particular properties
permitting very fast squaring that Fpk does not. We summarize these estimates
in Table 1 (which may be of independent interest).

196 A. Guillevic and D. Vergnaud

Table 1. Estimations for common operations in algorithms, for a BN curve with log p =
256 bits and Relic [1] implementation (Running Relic toolkit on a Intel Xeon E5-1603
at 2.80 GHz).

Operation Cost Total over Fp Relic

Fpk arithmetic

Mp 0.149µs

Mp2 3Mp 3Mp 0.427µs

Sp2 2Mp 2Mp 0.360µs

Mp6 6Mp2 18Mp 3.362µs

Sp6 2Mp2 + 3Sp2 12Mp 2.523µs

Mp12 3Mp6 54Mp 10.856µs

Sp12 2Mp6 36Mp 7.598µs

Sφ12(p) z2, z ∈ Fp12 , Norm(z) = 1 18Mp 4.731µs

za, for any z, a log a Sp12 + log a /3 Mp12 54 log a Mp 3.864 ms

za, NormF
p12/Fp(z) = 1 log a Sφ12(p) + log a /3 Mp12 36 log a Mp 2.818 ms

NormF
p12/Fp(z), for any z NormF

p12/F
p6/F

p2/Fp(z) 59 Mp –

zr, NormF
p12/Fp(z) = 1 zpz1−t = zp(zp6

)t−1 4616 Mp –

check order(z) = r in Fpk NormF
p12/Fp(z) = 1; zr = 1 4675 Mp –

E(Fp) arithmetic

Doubling (Dblp) 2Mp + 5Sp 7Mp 1.043µs

Addition (Addp) 7Mp + 4Sp 11Mp 1.639µs

Scalar mult. [a]P log a Dbl + log a /3 Add 10.7 log a Mp –

[a1]P1 + [a2]P2
max(log a1, log a2)

(Dbl +2/3 Add)

max(log a1, log a2)

14.33Mp

–

E(Fp2) arithmetic

Doubling (Dblp2) 2Mp2 + 5Sp2 16Mp 3.137µs

Addition (Addp2) 7Mp2 + 4Sp2 29Mp 4.866µs

Scalar mult. [b]Q log b Dblp2 + log b /3 Addp2 25.7 log b Mp 2.017 ms

[b1]Q1 + [b2]Q2
max(log b1, log b2)

(Dblp2 +2/3 Addp2)

max(log b1, log b2)

35.33Mp

–

Pairing on a BN curve with log2 p = 256

Dbl step + �T,T (P) 3Mp2 + 7Sp2 + 4Mp 27 Mp 6.036µs

Add step + �T,Q(P) 11Mp2 + 2Sp2 + 4Mp 41 Mp 7.593µs

Miller loop see Algorithm 1 8425Mp 1.776 ms

Final powering see Algorithm 1 7911Mp 1.465 ms

Pairing see Algorithm 1 16336Mp 3.241 ms

Algorithms for Outsourcing Pairing Computation 197

Algorithm 1. Optimal Ate Pairing eOptAte(P,Q) on a BN curve

Input: E(Fp) : y2 = x3 + b, P (xP , yP) ∈ E(Fp)[r], Q(xQ, yQ) ∈ E
′
(Fp2)[r], t

trace, x curve parameter
Output: eOptAte(P, Q) ∈ GT ⊂ F

∗
p12

1 R(XR : YR : ZR) ← (xQ : yQ : 1)
2 f ← 1
3 s ← 6x + 2
4 for m ← �log2(s)� − 1, . . . , 0 do
5 R ← [2]R; � ← �R,R(P) 3Mp2 + 7Sp2 + 4Mp = 27Mp

6 f ← f2 · � Sp12 + 13Mp2 = 36 + 39 = 75Mp

7 if sm = 1 or sm = −1 then
8 R ← R ± Q; � ← �R,±Q(P) 11Mp2 + 2Sp2 + 4Mp = 41Mp

9 f ← f · � 13Mp2 = 39Mp

total Miller function:log s · 102Mp + log s/3 · 80Mp

Miller function (e.g. log2 s = 64): 6528 + 1760 = 8288Mp

10 Q1 ← πp(Q) Mp2 = 3Mp

11 R ← R + Q1; � ← �R,Q1(P) 3Mp2 + 7Sp2 + 4Mp = 27Mp

12 f ← f · � 13Mp2 = 39Mp

13 Q2 ← πp2(Q) 2Mp

14 R ← R − Q2; � ← �R,−Q2(P) 3Mp2 + 7Sp2 + 4Mp = 27Mp

15 f ← f · � 13Mp2 = 39Mp

total: 137Mp

total Miller Loop: 137 + 8288 = 8425Mp

16 f ← fp6−1 3Mp6 + 2Sp6 + 10Mp2 + 3Sp2 + 2Mp + 2Sp + Ip = 118Mp + Ip

17 f ← fp2+1 10Mp + Mp12 = 64Mp

18 if x < 0 then

19 a ← f6|x|−5

20 else (fp6
= f−1)

21 a ← (fp6
)6x+5

log p
4

SΦ6(p2) + log p
12

Mp12 = 64 · 18 + 22 · 54Mp = (1152 + 1188)Mp = 2340Mp

22 b ← ap 5Mp2 = 15Mp

23 b ← ab Mp12 = 54Mp

24 Compute fp, fp2
and fp3

5Mp2 + 10Mp + 5Mp2 = 40Mp

25 c ← b · (fp)2 · fp2
SΦ6(p2) + 2Mp12 = 126Mp

26 c ← c6x2+1

log p
2

SΦ6(p2) + log p
6

Mp12 = 128 · 18 + 43 · 54Mp = 2304 + 2322 = 4626Mp

27 f ← fp3 · c · b · (fp · f)9 · a · f4 7Mp12 + 5SΦ6(p2) = 468Mp

Exponentiation f ← f (p6−1)(p2+1)(p4−p2+1)/r: 7851Mp + Ip ≈ 7911Mp

28 return f Pairing: 16336Mp

Optimal Ate Pairing on a Barreto–Naehrig Curve. A pairing is computed
in two steps (see Algorithm 1): a Miller function f ← fr,Q(P) (Algorithm 1,

198 A. Guillevic and D. Vergnaud

lines 1–15) followed by a final powering f
pk−1

r (Algorithm 1, lines 16–27) to
obtain a unique value in GT , the subgroup of order r of F∗

pk .
There are several papers on pairing computation on BN curves. We present in

Algorithm 1 all the steps for an optimal ate pairing computation on a BN curve.
Our global estimate is 16 336 Mp (multiplications in Fp) for one pairing. The
Miller loop takes 8425 Mp (52 %) and the exponentation 7911 Mp (48 %). From
Relic benchmarks on an Intel Xeon CPU E5-1603 0 at 2.8 GHz, we obtain one
pairing in 3.241 ms, the Miller loop in 1.776 ms (55 %) and the exponentiation
in 1.465 ms (45 %).

Security Model for Pairing Delegation. In this subsection, we provide an
informal description of the security model for pairing delegation protocol and
refer the reader to the papers [7,9] for more details. We consider only proto-
cols for delegation of a pairing e(SK,PP) of a secret key SK and some public
parameter PP. The security notions defined in [7,9] are the following:

Secrecy requires that the powerful device cannot learn any information on SK.
Verifiability requires that the restricted device, even interacting with a dishon-

est powerful device, will not output a wrong value for e(SK,PP).

The formal security game for secrecy is similar to the indistinguishability security
notion for encryption schemes. The adversary chooses two secret points SK0 and
SK1 and runs the delegation protocol with the restricted device for the secret
point SKb for some bit b. The scheme achieves secrecy if the probability that
a (polynomial-time) adversary guesses the bit b is negligibly close to 1/2. The
formal security game for verifiability ensures that at the end of the delegation
protocol, the restricted device obtains the actual value e(SK,PP) or knows that
the powerful device cheated in the protocol.

As mentioned above, in some cases, the secrecy property is too strong if
the powerful device is allowed to learn the value e(SK,PP) afterwards. Indeed
this value reveals some information on SK and the complete protocol does not
achieve the secrecy property. Therefore, we propose the following notion which
is weaker than the secrecy notion but well-suited for our usecases of Pay-TV and
encrypted GSM communication:

Weak Secrecy requires that the powerful device cannot learn any information
about SK except what can be deduced from the value e(SK,PP).

Let us assume that we use a pairing delegation protocol for the decryption in
a pairing-based scheme (such as the well-known Boneh-Franklin identity-based
encryption [4]). If the delegation protocol achieves only Weak Secrecy, a mali-
cious powerful device can mount a lunch-time attack (or CCA1) against the
encryption scheme (using the restricted device in the delegation protocol as a
decryption oracle). However, since it does not learn any information about SK
(except from the one-time session keys e(SK,PPi) for several public parame-
ters PPi’s), it is not able to decrypt any ciphertext if the restricted device is
no longer active (e.g. after revocation of the decryption rights in the Pay-TV
scenario).

Algorithms for Outsourcing Pairing Computation 199

3 Review of Previous Proposals

3.1 Girault-Lefranc Pairing Delegation Protocol

In this subsection, we present Girault-Lefranc protocol for server-aided signature
verification [12, Sect. 4.1] in Algorithm 2 with a performance estimation on a
BN curve at a 128-bit security level (log r = log p = 256) using the Relic library
described above.

Our cost estimation concludes that the delegation of e(SK,SP) with secret
SK,SP costs ≈ 18640Mp which is more than a pairing computation at the state
of the art (we estimate this for 16336Mp in Relic library).

Note that if pre-computation is possible, then the computation of [a]SK in the
first step of Algorithm 2 can actually be done off-line. If moreover, the point SP
is public, then the complexity of the delegation protocol falls down to 9252 Mp

(i.e. 0.6 pairing). This basic scheme (with pre-computation) is the most efficient
pairing delegation protocol (without verifiability) of a pairing e(SK,PP) of a
secret key SK and some public parameter PP.

In Girault-Lefranc delegation, as f is a pairing output, we can use the opti-
mized squaring formula of Granger and Scott [13] when computing f (ab)−1

, hence
Sp12 = 18Mp instead of 36Mp. The computations over the group G1 might be
available on the restricted device such as a smartcard. More precisely, we need
multiplication (Mp), addition - subtraction (Ap) and inversion Ip in Fp. Finite
field operations are implemented on a smartcard e.g. for ECDSA but the arith-
metic operations are not available for the user. We can use the RSA primitives
to simulate Fp arithmetic. We set no padding, the exponent to 2 and the “RSA
modulus” to p to get squares mod p, then simulate multiplications through
2xy = (x + y)2 − x2 − y2. Computations in the group GT are not available and
must be implemented. If a BN curve [3] is used, GT ⊂ F

∗
p12 hence a complicated

arithmetic must be implemented.

Remark 1 (Lightening the Girault-Lefranc scheme). If the session key K can
be known by the untrusted helper (i.e. if one only needs weak secrecy), we

Algorithm 2. Girault-Lefranc Secure pairing delegation [12].
Input: secret points SK ∈ G1 and SP ∈ G2 of prime order r, elliptic curve parameters
Output: corresponding session key K = e(SK, SP)

1 Sample random a, b ∈ Zr and compute I = [a]SK, J = [b]SP.
[a]SK on E(Fp): ≈ 256 DblE(Fp) + 86 AddE(Fp) ≈ 256 · (2Mp + 5Sp) + 86 · (7Mp + 4Sp)

≈ 2738Mp

[b]SP on E
′
(Fp2): ≈ 256Dbl

E
′ (F

p2)
+ 86 Add

E
′ (F

p2)
≈ 6590Mp

If SP is public we can set b = 1
2 Send I, J to the server.

3 Compute (ab)−1 mod r. ≈ 60Mp

4 Receive f = e(I, J). delegated: ≈ 16336Mp

5 Compute f(ab)−1
to retrieve K = e(SK, SP). ≈ 9252Mp

6 return K. Total cost (b = 1): ≈ 9252 + 60 + 2738 ≈ 12050Mp = 0.74 pairing
Total cost a, b �= 1: ≈ 12050 + 6590 ≈ 18640Mp = 1.14 pairing

200 A. Guillevic and D. Vergnaud

note that a variant of the protocol may be used in some cases. We propose to ask
the external resource to compute e([α]SK, [α−1]SP) = e(SK,SP) = K with α
taken at random. The output will be exactly K. This solution is not very efficient
as it costs 9388/16336 = 0.6 pairing. To improve it slightly in practice, we can
swap SK and PP, i.e. put SK in E

′
(Fp2) and PP ∈ E(Fp). In this way, [α]SK is

the costly part and can be computed offline. Note that this delegation procedure
reveals some information on the secret key SK and it is necessary to reprove the
security of the underlying scheme if it is used to improve its efficiency.

3.2 Chevallier-Mames et al. Pairing Delegation Protocol

Another pairing delegation protocol was introduced by Chevallier-Mames,
Coron, McCullagh, Naccache and Scott in 2005 [8,9]. Contrary to Girault-
Lefranc’s protocol, the protocol proposed by Chevallier-Mames et al. achieves
secrecy (unconditionnally) and verifiability. Unfortunately, the protocol is very
inefficient since the overall cost for the restricted device is 3.5 times the cost for
computing the pairing (3.3 if pre-computation is possible). The main advantage

Algorithm 3. Pairing delegation with public right-side point [7, Sect. 4.1].
Input: secret point SK ∈ G1 and public point PP ∈ G2 of prime order r, G1

generator of G1, G2 of G2, elliptic curve parameters
Output: Pairing value e(SK, PP)

1 Sample a random a ∈ Zr and compute I1 = [a]G1. [a]G1 on E(Fp): ≈ 2738Mp

2 Sample a random b ∈ Zr and compute I2 = [b]G2. [b]G1 on E(Fp): ≈ 2738Mp

3 Compute χ = e(G1, G2)
ab 1 exp. in GT ≈ 9216Mp

4 Compute (a)−1 mod r and (b)−1 mod r Ip + 3Mp ≈ 63Mp

5 Sample c random c ∈ Zr and compute J0 = [c]SK. [c]SK on E(Fp): ≈ 2738Mp

6 Compute J1 = [b−1]J0 + I1. [b−1]J0 on E(Fp): ≈ 2738Mp

7 Compute J2 = [a−1]PP + I2. [a−1]PP on E(Fp): ≈ 2738Mp

8 Send J1, J2, PP to the server.
9 Ask for α1 = e(J1, J2)(e(G1, PP)e(J0, G2))

−1, α2 = e(J0, PP) delegated:

≈ 4 · 16336Mp = 65344Mp

10 Receive α1, α2

11 Check that α2 ∈ GT : compute αr
2 4675Mp

12 if αr
2 �= 1 then

13 outputs ⊥ and halt.

14 Compute χ′ = χ · α
(ab)−1

2 1 exp. in GT ≈ 9216Mp

15 if χ′ = α1 then
16 compute (c)−1 mod r Ip ≈ 60Mp

17 outputs α
(c)−1

2 and halt. 1 exp. in GT ≈ 9216Mp

18 else
19 outputs ⊥ and halt.

Total cost: 46136Mp = 2.8 pairings

Cost w/o pre-computation: 25905Mp = 1.6 pairings

Algorithms for Outsourcing Pairing Computation 201

of the scheme is to save of area that is required to implement a pairing in the
restricted device such a smart card. However, as mentioned above, even if we
can use tricks, computations in the group GT are usually not available and must
be implemented (i.e. complex arithmetic in GT ⊂ F

∗
p12 for a BN curve).

3.3 Canard-Devigne-Sanders Pairing Delegation Protocol

We present in Algorithm 3 the pairing delegation protocol proposed recently by
Canard, Devigne and Sanders [7]. The protocol is more efficient than the pre-
vious one. It also achieves secrecy (unconditionnally) and verifiability. Canard
et al. actually showed that their proposal is in fact more efficient than the com-
putation of the pairing for optimal ate pairing on a so-called KSS-18 curve [15].
Unfortunately, as shown by the precise complexity of Algorithm 3, this is not the
case for state-of-the-art optimal Ate pairing on a BN curve [3]. More precisely,
we show that the overall cost for the restricted device is 2.8 times the cost for
computing the pairing (1.6 if pre-computation is possible).

4 Pairing Delegation with Knapsack

We present in this section a new approach to perform pairing delegation (without
verifiability) of a pairing e(SK,PP) of a secret key SK and some public para-
meter PP. The restricted device (e.g. a smartcard) generates random points
and sends them to the powerful device to compute several pairings. The smart-
card receives the pairings and combines some of them to get the actual value
e(SK,PP). The basic idea is to mask the secret value SK by a linear combi-
nation of those random points with “small” coefficients to improve efficiency.
A similar approach has been used successfully in the setting of server-aided
exponentiation [6,16].

4.1 Security Analysis

Let G be a cyclic group of order p denoted additively. We consider the two
following distributions:

Un = {(P1, P2, . . . , Pn, Q) R←− G
n+1}

and

Kn,A =

⎧
⎪⎨

⎪⎩
(P1, P2, . . . , Pn, Q), s.t.

(P1, P2, . . . , Pn) R←− G
n

Q ← [a1]P1 + · · · + [an]Pn

where (a1, . . . , an) R←− [[0, A − 1]]n

⎫
⎪⎬

⎪⎭
.

Un is the uniform distribution on G
n+1 and Kn,A outputs (n+1)-tuples where the

first n components are picked uniformly at random in G while the last component
is a linear combination of those elements with exponents picked uniformly at

202 A. Guillevic and D. Vergnaud

random in the interval [[0, A − 1]]. In a basic version of our delegation protocol,
the restricted device sends the elements (P1, . . . , Pn) and Pn+1 = (SK − Q)
to the powerful device. It replies by sending back the pairings e(Pi,PP) for
i ∈ {1, . . . , n + 1}. The restricted device finally gets e(SK,PP) as e(Pn+1,PP) ·∏n

i=1 e(gi,PP)ai . If the two distributions Un and Kn,A are indistinguishable, the
protocol will readily achieve the secrecy property.

– Perfect indistinguishability. It is straightforward to see that if A = p, then the
two distributions are identical (even if n = 1) and the delegation scheme as
outlined above achieves unconditional secrecy. Unfortunately, as we will see
in the next paragraph, the efficiency of our schemes depends crucially on the
size of A and one wants to use smaller A in practice.

– Statistical indistinguishability. By using classical results on the distribution of
modular sums [16], one can prove that if An = Ω(p2), then the two distribu-
tions Un and Kn,A are statistically indistinguishable (see [10,16] for details).
For these parameters, the delegation protocol achieves statistical (and there-
fore computational) secrecy. For cryptographic purposes, the order p of G

needs to be of 2k-bit size to achieve a k-bit security level. Therefore, to achieve
statistical indistinguishability, we need to have An = Ω(24k) and the resulting
delegation protocol is not really efficient.

– Computational indistinguishability. For smaller parameters (i.e. An = o(p2)),
we cannot prove that the Un and Kn,A are statistically indistinguishable. How-
ever, it may be possible to prove that they are computationally indistinguish-
able. Using a variant of Shanks “baby-step giant-step” algorithm, one can see
easily that it is possible to find the scalars (a1, . . . , an) (if they exist) such
that Q = [a1]P1 + · · ·+ [an]Pn in O(An/2) group operations in G (i.e. to solve
the generalized knapsack problem in G). Therefore, to achieve computational
indistinguishability for a k-bit security parameter, one needs to have at least
An = Ω(22k) = Ω(p).

To conclude this paragraph, we will prove that the two distributions Un and
Kn,A are computationally indistinguishable in the generic group model when
An = Ω(22k) = Ω(p). Our delegation protocol therefore achieves secrecy in the
generic group model when An = Ω(22k) = Ω(p). This model was introduced
by Shoup [17] for measuring the exact difficulty of solving discrete logarithm
problems. Algorithms in generic groups do not exploit any properties of the
encodings of group elements. They can access group elements only via a random
encoding algorithm that encodes group elements as random bit-strings.

Let A be a generic group adversary. As usual, the generic group model is
implemented by choosing a random encoding σ : G −→ {0, 1}m. Instead of work-
ing directly with group elements, A takes as input their image under σ. This
way, all A can test is string equality. A is also given access to an oracle com-
puting group addition and subtraction: taking σ(R1) and σ(R2) and returning
σ(R1 + R2), similarly for subtraction. Finally, we can assume that A submits to
the oracle only encodings of elements it had previously received. This is because
we can choose m large enough so that the probability of choosing a string that
is also in the image of σ is negligible.

Algorithms for Outsourcing Pairing Computation 203

Theorem 1. Let A be a generic algorithm that distinguishes the two distribu-
tions Un and Kn,A that makes at most τ group oracle queries, then A’s advantage
in distinguishing the two distributions is upper-bounded by O(τ2/An).

To prove this theorem, we consider the following distributions in a product group
G1 ×· · ·×Gn where each Gi is cyclic group of prime order p (for i ∈ {1, . . . , n}).

U ′
n = {(P1, P2, . . . , Pn, Q) R←− G1 × G2 × · · · × Gn × (G1 × G2 × · · · × Gn)}

and

K′
n,A =

⎧
⎪⎨

⎪⎩
(P1, P2, . . . , Pn, Q), s.t.

(P1, P2, . . . , Pn) R←− G1 × G2 × · · · × Gn

Q ← [a1]P1 + · · · + [an]Pn

where (a1, . . . , an) R←− [[0, A − 1]]n

⎫
⎪⎬

⎪⎭

It is worth mentioning that the use of these product groups in cryptography is
not interesting since even if their order is pn, the complexity of discrete loga-
rithm computation in them is not much harder than in cyclic groups of order p.
We will only use them as a tool in order to prove our Theorem 1.

Following Shoup’s technique [17], it is easy to prove that a generic algorithm
in the product group G1 × · · · × Gn (or equivalently in Z

n
p) has a negligible

advantage in distinguishing the two distributions U ′
n and K′

n,A if it makes a
polynomial number of group oracle queries. More precisely, we can prove the
following proposition:

Proposition 1. Let A be a generic algorithm that distinguishes the two dis-
tributions U ′

n and K′
n,A and makes at most τ group oracle queries, then A’s

advantage in distinguishing the two distributions is upper-bounded by O(τ2/An).

Proof. We consider an algorithm B playing the following game with A. Algo-
rithm B chooses n+1 bit strings σ1, . . . , σn, σn+1 uniformly in {0, 1}m. Internally,
B keeps track of the encoded elements using elements in the ring Zp[X1] × · · · ×
Zp[Xn]. To maintain consistency with the bit strings given to A, B creates a lists
L of pairs (F, σ) where F is a polynomial vector in the ring Zp[X1]×· · ·×Zp[Xn]
and σ ∈ {0, 1}m is the encoding of a group element. The polynomial vector F
represents the exponent of the encoded element in the group G1 × · · · × Gn.
Initially, L is set to

{((1, 0, . . . , 0), σ1), ((0, 1, . . . , 0), σ2), . . . , ((0, 0, . . . , 1), σn), ((X1, . . . , Xn), σn+1)}
Algorithm B starts the game providing A with σ1, . . . , σn, σn+1. The simulation
of the group operations oracle goes as follows:

Group Operation: Given two encodings σi and σj in L, B recovers the cor-
responding vectors Fi and Fj and computes Fi + Fj (or Fi − Fj) termwise.
If Fi + Fj (or Fi − Fj) is already in L, B returns to A the corresponding

bit string; otherwise it returns a uniform element σ
R←− {0, 1}m and stores

(Fi + Fj , σ) (or (Fi − Fj , σ)) in L.

204 A. Guillevic and D. Vergnaud

After A queried the oracles, it outputs a bit b. At this point, B chooses a
random bit b∗ ∈ {0, 1} and uniform values x1, . . . , xn ∈ Zp if b∗ = 0 or uniform
values x1, . . . , xn ∈ [[0, A − 1]] if b∗ = 1. The algorithm B sets Xi = xi for
i ∈ {1, . . . , n}.

If the simulation provided by B is consistent, it reveals nothing about b.
This means that the probability of A guessing the correct value for b∗ is 1/2.
The only way in which the simulation could be inconsistent is if, after we
choose value for x1, . . . , xn, two different polynomial vectors in L happen to
produce the same value. First, note that A is unable to cause such a collision on
its own. Indeed, notice that L is initially populated with polynomials of degree
at most one in each coordinate and that both the group addition and subtraction
oracle do not increase the degree of the polynomial. Thus, all polynomials con-
tained in L have degree at most one. This is enough to conclude that A cannot
purposely produce a collision.

It remains to prove that the probability of a collision happening due to a
unlucky choice of values is negligible. In other words, we have to bound the
probability that two distinct Fi, Fj in L evaluate to the same value after the
substitution, namely Fi(x1, . . . , xn)−Fj(x1, . . . , xn) = 0. This reduces to bound
the probability of hitting a zero of Fi −Fj . By the simulation, this happens only
if Fi − Fj is a non-constant polynomial vector and in this case, each coordinate
is a degree one polynomial in one Xi’s.

Recall that the Schwartz-Zippel lemma says that, if F is a degree d polyno-
mial in Zp[X1, . . . , Xn] and S ⊆ Zp then

Pr[F (x1, . . . , xn) = 0] ≤ d

|S|
where x1, . . . , xn are chosen uniformly from S. Going back to our case, we obtain
by applying the Schwartz-Zippel lemma to each coordinate:

Pr[(Fi − Fj)(x1, . . . , xn) = 0 ∈ Z
n
p] ≤

{
1/pn if b∗ = 0
1/An if b∗ = 1

Therefore, the probability that the simulation provided by B is inconsistent is
upper-bounded by τ(τ − 1)/An. 	

We will now prove that, provided m is large enough, a generic algorithm is not
able to decide whether it is given as inputs n generators (P1, . . . , Pn) in a cyclic
group G of prime order p or n order-p elements

(P1, 1G2 , . . . , 1Gn
), (1G1 , P2, . . . , 1Gn

), . . . , (1G1 , 1G2 , . . . , Pn)

in a product group G1 × · · · × Gn where each Gi is cyclic group of prime order
p. Note that the groups G and G1 × · · · × Gn are not of the same order and in
practice, it will probably be easy to distinguish them. We only claim that this
is difficult for a generic algorithm.

Proposition 2. Let A be a generic algorithm that distinguishes these two set-
tings and makes at most τ group oracle queries, then A’s advantage in distin-
guishing the two distributions is upper-bounded by O(τ2/p).

Algorithms for Outsourcing Pairing Computation 205

Proof. We consider an algorithm B playing the following game with A. Algo-
rithm B chooses a random bit b∗ and runs one of the following simulation depend-
ing on the bit b∗

– If b∗ = 0, B chooses n bit strings σ1, . . . , σn uniformly in {0, 1}m. Internally, B
keeps track of the encoded elements using elements in the ring Zp[X1, . . . , Xn].
To maintain consistency with the bit strings given to A, B creates a list
L of pairs (F, σ) where F is a polynomial in the ring Zp[X1, . . . , Xn] and
σ ∈ {0, 1}m is the encoding of a group element. The polynomial F represents
the exponent of the encoded element in the group G. Initially, L is set to

{(X1, σ1), (X2, σ2), . . . , (Xn, σn)}

– If b∗ = 1, B chooses also n bit strings σ1, . . . , σn uniformly in {0, 1}m. Inter-
nally, B keeps track of the encoded elements using elements in the ring Zp[X1]×
· · · × Zp[Xn]. To maintain consistency with the bit strings given to A, B
creates a list L of pairs (F, σ) where F is a polynomial vector in the ring
Zp[X1] × · · · × Zp[Xn] and σ ∈ {0, 1}m is the encoding of a group element.
The polynomial vector F represents the exponent of the encoded element in
the group G1 × · · · × Gn. Initially, L is set to

{((X1, 0, 0, . . . , 0), σ1), ((0,X2, 0, . . . , 0), σ2), . . . , ((0, 0, . . . , 0,Xn), σn)}

In each cases, algorithm B starts the game providing A with σ1, . . . , σn. The
simulation of the group operations oracle goes as follows:

Group operation: Given two encodings σi and σj in L, B recovers the corre-
sponding polynomials (or polynomial vectors, depending on b∗) Fi and Fj

and computes Fi +Fj (or Fi −Fj) termwise. If Fi +Fj (or Fi −Fj) is already
in L, B returns to A the corresponding bit string; otherwise it returns a
uniform element σ

R←− {0, 1}m and stores (Fi + Fj , σ) (or (Fi − Fj , σ)) in L.

After A queried the oracles, it outputs a bit b. At this point, B chooses
uniform values x1, . . . , xn ∈ Zp. The algorithm B sets Xi = xi for i ∈ {1, . . . , n}.

If the simulation provided by B is consistent, it reveals nothing about b. This
means that the probability of A guessing the correct value for b∗ is 1/2. The
only way in which the simulation could be inconsistent is if, after we choose
value for x1, . . . , xn, two different polynomial vectors in L happen to produce
the same value. First, note that A is unable to cause such a collision on its own.
Indeed, notice that L is initially populated with polynomials of degree at most
one in each coordinate and that both the group addition and subtraction oracle
do not increase the degree of the polynomial. Thus, all polynomials contained in
L have degree at most one. This is enough to conclude that A cannot purposely
produce a collision.

It remains to prove that the probability of a collision happening due to a
unlucky choice of values is negligible. If b∗ = 1, the probability of a collision
happening is equal to 0. If b∗ = 0, we have to bound the probability that two

206 A. Guillevic and D. Vergnaud

distinct Fi, Fj in L evaluate to the same value after the substitution, namely
Fi(x1, . . . , xn) − Fj(x1, . . . , xn) = 0. This reduces to bound the probability of
hitting a zero of Fi − Fj .

Applying the Schwartz-Zippel lemma, we obtain

Pr[(Fi − Fj)(x1, . . . , xn) = 0 ∈ Zp] ≤ 1/p

Therefore, the probability that the simulation provided by B is inconsistent is
upper-bounded by τ(τ − 1)/p. 	

To prove Theorem 1, it is then enough to prove that if there exists a generic
algorithm that distinguishes the two distributions Un and Kn,A that makes at
most τ group oracle queries with an advantage larger than Ω(τ2/An), it gives
an adversary able to distinguish the cyclic group setting from the product group
setting making at most τ group oracle queries and with advantage Ω(τ2/An)
(due to Proposition 1) and this result contradicts Proposition 2.

4.2 Description of Our Protocol

In the previous subsection, we provided a description of a basic version of our
protocol. In this subsection, we consider an improved version of it on elliptic
curves equipped with efficient endomorphisms. In this improved scheme, instead
of masking SK with [a1]P1 + · · · + [an−1]Pn−1 with (a1, . . . , an−1)

R←− [[0, A −
1]]n−1, we will mask it with [a1]Q1 + · · · + [an−1]Qn−1 with (a1, . . . , an−1)

R←−
[[0, A − 1]]n−1 where the Qi’s are images of the Pi under one of the efficient
endomorphisms defined on the curve. If we denote S the set of efficient endo-
morphisms on the curve (that can also be efficiently evaluated in the group GT),
we obtained a scheme with generic security Ω(#Sn−1 · An−1/2).

Setup (could be offline). In the following, the smartcard has to generate several
random points on an elliptic curve E(Fp). Fouque and Tibouchi [11] proposed
an efficient method to do it on a BN curve.

1. Let I a set of small integers, I = {0, 1, 2, 3, 4, 5, . . . , 2�−1} with #I = 2� = A.
2. The smartcard generates n−1 random points P1, P2, . . . , Pn−1 on the elliptic

curve E(Fp).
3. The smartcard chooses an endomorphism σi ∈ S to apply to Pi and sets

Qi = σi(Pi).
4. For each point Qi, the smartcard takes at random αi ∈ I and sets

Pn = SK − ([α1]Q1 + [α2]Q2 + . . . + [αn−1]Qn−1 = SK −
n−1∑

i=1

[αi]Qi .

Delegation

5. The smartcard sends P1, P2, . . . , Pn to the server.
6. The server computes the n pairings fi = e(Qi,PP) and sends them back to

the smartcard.

Algorithms for Outsourcing Pairing Computation 207

Session key computation

7. The smartcard computes (fσ1
1)α1 · (fσ2

2)α2 · · · (fσn−1
n−1)αn−1 · fn = K. The σi

are also almost free. Thanks to the bilinearity property,

e(SK,PP) = e(α1Q1 + α2Q2 . . . + αn−1Qn−1 + Pn,PP)
= e(α1Q1,PP)e(α2Q2,PP) · · · e(αn−1Qn−1,PP)e(Pn,PP)
= (e(P1,PP)σ1)α1 · · · (e(Pn−1,PP)σn−1)αn−1(e(Pn,PP))

with σi a cheap endomorphism in F
∗
pk such that e(σi(Pi),PP) = e(Pi,PP)σi .

Example on a Barreto–Naehrig curve. For optimal Ate pairing on a BN
curve with 128-bit security level (i.e. 256-bit prime number p), the endomor-
phism set S can be defined as {Id,−Id, φ, φ2,−φ,−φ2} where φ is computed
from the complex multiplication endomorphism available on the curve. These
endomorphisms are almost free on E(Fp) if D = 1 or D = 3. They cost at most
one multiplication and one subtraction in Fp and the resulting point Qi is still
in affine coordinates [5].

In the Setup procedure, the smartcard has to obtain Pn in affine coordinates,
this costs one inversion in Fp plus four multiplications, resulting in an additional
cost of (say) 64Mp. The cost of computing Pn is (n−1)·(�·7+�/2·11+16)+64Mp.
Indeed, in Jacobian coordinates, one addition on E(Fp) with one of the two points
in affine coordinates costs 11Mp, if none of the points are in affine coordinates,
this costs 16Mp, and one doubling costs 8Mp. If moreover we use a BN curve
(a4 = 0), a doubling costs 7Mp.

The computation cost for the powerful device is 16336(0.84(n − 1) + 1) Mp.
Indeed, the first pairing costs ≈ 16336Mp and the (n − 1) other ones cost 0.84
of one pairing (since the second argument is the fixed point PP, the tangents
and lines can be computed from PP one single time for all the pairings).

Finally, the smartcard computes1 n−1 exponentiations and multiplies n ele-
ments in GT to obtain the session key K = e(SK,PP). An exponentiation costs
in average � squaring plus �/2 multiplications in Fp12 . The n−1 exponentiations
cost (n − 1)(18� + 54�/3)Mp. It remains to compute n − 1 multiplications.

Overall, we obtain the global cost for the restricted device is: (n−1)(73Mp +
46, 7�Mp) (and (n−1)(73Mp +36�Mp) is pre-computation is possible). We sum-
marize our proposition in Algorithm 4. By choosing appropriate values for n
and �, one can achieve various communication-efficiency trade-off as shown in
Table 2. To achieve statistical security (instead of generic computational secu-
rity), one basically needs to double the value of �. One can find parameters for
which the delegation procedure is more efficient than the pairing computation
(0.5 pairing for practical parameters).

1 It is worth mentioning that this computational cost can be further decreased by
using classical multi-exponentiation techniques (in particular for small values of n
(e.g. n = 5).

208 A. Guillevic and D. Vergnaud

Algorithm 4. Pairing delegation with knapsack.
Input: secret key SK, public value PP, set I of small integers with #I = 2�

Output: Session key K = e(SK, PP)
1 Offline:
2 Generate n − 1 random points P1, P2, . . . , Pn ∈ E(Fp).
3 foreach Pi do
4 Choose at random an endomorphism σi ∈ {Id, −Id, φ, −φ, φ2, −φ2} σi on

E(Fp): at most 1Mp

5 Choose at random an integer αi ∈ I
6 Compute Qi = [αi]σ(Pi) [αi]: log2 αi(DblE(Fp) + 1

3
AddE(Fp)) � 10.7�Mp

7 Online:
8 Compute Pn = SK − ([α1]σi(P1) + [α2]σ2(P2) + . . . + [αn−1]σn−1(Pn−1) =

SK −∑n−1
i=1 [αi]σi(Pi)

n − 1 AddE(Fp) = (n − 1)11Mp

9 Send PP and all the P1, . . . , Pn to the server. communication: log(p) · (n + 1)
bits

10 Ask for all the fi = e(Pi, PP), 1 � i � n Delegated: ≈ 16336n Mp

11 Compute K = (fσ1
1)α1 · (fσ2

2)α2 · · · (fσn−1
n−1)αn−1 · fn (n − 1)(σi + αi + Mult.) =

(n − 1)(8Mp + �(SΦ12(p) + 1
3
Mp12) + Mp12) = (n − 1)(62Mp + 36�Mp)

12 return K. Total cost: (n − 1)(73Mp + 46, 7�Mp)
Cost w/o pre-computation: (n − 1)(73Mp + 36�Mp)

for n = 20 and � = 8: 6859Mp = 0.4 pairing

5 Partial Pairing Computation Delegation

In this final section, we propose a completely different approach based on the
arithmetic of the pairing computation (without verifiability) of a pairing e(SK,
PP) of a secret key SK and some public parameter PP. More precisely, we
delegate only the non-critical steps in the pairing algorithm, looking carefully at
each instruction in Miller algorithm. The protocol only achieves weak secrecy :
the helper will learn the session key K (but still not the secret key SK).

Final Powering Delegation. We can blind the output f ′ ← u · f of the Miller
function by an element u ∈ F

∗
pk which is an r-th power (there exists a u

′ ∈ F
∗
pk

such that u
′r = u), see Algorithm 5. Hence u will disappear after the final

powering f
pk−1

r (Algorithm 1, lines 16–27) since u
pk−1

r = u′pk−1 = 1. So we can
delegate the final powering thanks to the equality f ′(pk−1)/r = (uf)(p

k−1)/r =
K the session key. The helper learns the session key K but has no additional
information on f (in particular pairing inversion is not possible).

Tangent and line Delegation. The two points P,Q play two different roles in a
Tate-like pairing computation. In an ate pairing, the point P is used to evaluate
the intermediate line functions �(P). The line functions � are computed through
a scalar multiplication [s]Q (with s a public parameter of the curve). The coef-
ficients arising in the lines and tangent computation are re-used to update the

Algorithms for Outsourcing Pairing Computation 209

Table 2. Communication/Efficiency Trade-off of our knapsack delegation protocol

� n Generic security Computational cost Communication

59 5 128 8788Mp = 0.53 pairing 15360 bits

23 10 126 8109Mp = 0.49 pairing 30720 bits

13 15 127 7574Mp = 0.46 pairing 46080 bits

8 20 125 6859Mp = 0.41 pairing 61440 bits

8 20 125 6859Mp = 0.41 pairing 61440 bits

5 25 122 6072Mp = 0.37 pairing 76800 bits

3 30 118 5249Mp = 0.32 pairing 92160 bits

0 51 128 3650Mp = 0.22 pairing 156672 bits

Algorithm 5. Partial reduced Tate pairing delegation
Input: Elliptic curve E(Fp) of embedding degree k and prime order r subgroup,

with degree d twist available, points P ∈ E(Fp),
Q ∈ E(Fpk) ∩ Ker(πpk/d − [pk/d])

Output: Reduced Tate pairing er(P, Q)
pk−1

r

1 f = fr,P (Q) Miller function

2 Compute a random r-th power u ∈ F
∗
pk i.e. such that ∃v ∈ F

∗
pk , u = vr

3 f
′
= f · u

4 Send f
′

to the external resource

5 Receive h = (f
′
)
pk−1

r = upk−1f
pk−1

r = f
pk−1

r = K
6 Return K

Miller function fs,PP(SK). If Q is actually a public parameter PP, then the line
computation �PP can be delegated. The restricted device (such as a smartcard)
will ask for the successive intermediate values � then evaluate them at the secret
point P = SK.

For an ate pairing on a BN curve, the line is of the form � = �0 + �1ω +
�3ω

3, with Fp12 = Fp2 [ω] = Fp2 [ω]/(ω6 − ξ). The smartcard can delegate the
computation of the three coefficients then compute the line equation evaluated
at SK.

Tangent and line computation. One can found Relic [1] formulas for tangent and
line computation in src/pp/relic pp dbl.c (function pp dbl k12 projc basic)
and src/pp/relic pp add.c (function pp add k12 projc basic).

We recall the formula from [2, Eq. (10)]:

�2T (P) = −2Y Z yP + 3X2 xP ω + (3b
′
Z2 − Y 2)ω3 (1)

with ω such that Fp12 = Fp2 [ω]/(ω6 − ξ), X,Y,Z ∈ Fp2 and xP , yP ∈ Fp.

210 A. Guillevic and D. Vergnaud

The second formula is the following [2, Eq. (13)], with L = X − xQZ and
M = Y − yQZ:

�T+Q(P) = −LyP − MxP ω + (MX − LY)ω3 (2)

In both cases the coefficients of � are computed from a public parameter
Q = PP hence can be delegated. The smart card saves 2Sp2 + 7Mp2 = 25Mp.
It remains for the smart card to evaluate the line � at SK = P = (xP , yP). This
costs 4Mp in both cases.

Efficiency improvement. To sum up, the smartcard sends the point PP to the
external computer and computes the intermediate values of the Miller function
on the fly, when receiving the coefficients of the intermediate values. No infor-
mation on SK is provided to the external helper (except f ′ which does not
reveal more information than the session key K). For an optimal Ate pairing
on a Barreto-Naehrig curve, this saves 31 % of the Miller loop, then we dele-
gate 100 % of the final powering, saving at the end 65 % of the pairing cost. Note
that the idea can be adapted to achieve (strong) secrecy by further masking the
final powering but the efficiency improvement is smaller if pre-computation is
not possible. Note also that the same idea can be applied to any instantiation
of pairings (but requires a specific analysis).

Acknowledgements. The authors thank Olivier Blazy, Renaud Dubois and Fabien
Laguillaumie for their fruitful comments. This work was supported in part by the
French ANR-12-INSE-0014 SIMPATIC Project.

References

1. Aranha, D.F., Gouvêa, C.P.L.: RELIC is an Efficient LIbrary for Cryptography,
September 2013. http://code.google.com/p/relic-toolkit/

2. Aranha, D.F., Barreto, P.S.L.M., Longa, P., Ricardini, J.E.: The realm of the
pairings. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC 2013. LNCS, vol. 8282,
pp. 3–25. Springer, Heidelberg (2014)

3. Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In:
Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer,
Heidelberg (2006)

4. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001)

5. Bos, J.W., Costello, C., Naehrig, M.: Exponentiating in pairing groups. Cryptology
ePrint Archive, Report 2013/458 (2013)

6. Boyko, V., Peinado, M., Venkatesan, R.: Speeding up discrete log and factoring
based schemes via precomputations. In: Nyberg, K. (ed.) EUROCRYPT 1998.
LNCS, vol. 1403, pp. 221–235. Springer, Heidelberg (1998)

7. Canard, S., Devigne, J., Sanders, O.: Delegating a pairing can be both secure and
efficient. In: Boureanu, I., Owesarski, P., Vaudenay, S. (eds.) ACNS 2014. LNCS,
vol. 8479, pp. 549–565. Springer, Heidelberg (2014)

Algorithms for Outsourcing Pairing Computation 211

8. Chevallier-Mames, B., Coron, J.-S., McCullagh, N., Naccache, D., Scott, M.: Secure
delegation of elliptic-curve pairing. Cryptology ePrint Archive, Report 2005/150
(2005)

9. Chevallier-Mames, B., Coron, J.-S., McCullagh, N., Naccache, D., Scott, M.: Secure
delegation of elliptic-curve pairing. In: Gollmann, D., Lanet, J.-L., Iguchi-Cartigny,
J. (eds.) CARDIS 2010. LNCS, vol. 6035, pp. 24–35. Springer, Heidelberg (2010)

10. Coron, J.-S., M’Räıhi, D., Tymen, C.: Fast generation of pairs (k,[k]P) for Koblitz
elliptic curves. In: Vaudenay, S., Youssef, A.M. (eds.) SAC 2001. LNCS, vol. 2259,
pp. 151–164. Springer, Heidelberg (2001)

11. Fouque, P.-A., Tibouchi, M.: Indifferentiable hashing to Barreto–Naehrig curves.
In: Hevia, A., Neven, G. (eds.) LatinCrypt 2012. LNCS, vol. 7533, pp. 1–17.
Springer, Heidelberg (2012)

12. Girault, M., Lefranc, D.: Server-aided verification: theory and practice. In: Roy,
B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 605–623. Springer, Heidelberg
(2005)

13. Granger, R., Scott, M.: Faster squaring in the cyclotomic subgroup of sixth degree
extensions. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056,
pp. 209–223. Springer, Heidelberg (2010)

14. Joux, A.: A one round protocol for tripartite Diffie-Hellman. In: Bosma, W. (ed.)
ANTS 2000. LNCS, vol. 1838, pp. 385–394. Springer, Heidelberg (2000)

15. Kachisa, E.J., Schaefer, E.F., Scott, M.: Constructing Brezing-Weng pairing-
friendly elliptic curves using elements in the cyclotomic field. In: Galbraith, S.D.,
Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 126–135. Springer,
Heidelberg (2008)

16. Nguyen, P.Q., Shparlinski, I.E., Stern, J.: Distribution of modular sums and the
security of the server aided exponentiation. In: Lam, K.-Y., Shparlinski, I., Wang,
H., Xing, C. (eds.) Cryptography and Computational Number Theory. Progress
in Computer Science and Applied Logic, vol. 20, pp. 331–342. Birkhäuser, Basel
(2001)

17. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997)

Leakage and Fault Attacks

Bounded, yet Sufficient? How to Determine
Whether Limited Side Channel Information

Enables Key Recovery

Xin Ye(B), Thomas Eisenbarth, and William Martin

Worcester Polytechnic Institute, Worcester, MA 01609, USA
{xye,teisenbarth,martin}@wpi.edu

Abstract. This work presents a novel algorithm to quantify the rela-
tion between three factors that characterize a side channel adversary:
the amount of observed side channel leakage, the workload of full key
recovery, and its achievable success rate. The proposed algorithm can be
used by security evaluators to derive a realistic bound on the capabilities
of a side channel adversary. Furthermore, it provides an optimal strat-
egy for combining subkey guesses to achieve any predefined success rate.
Hence, it can be used by a side channel adversary to determine whether
observed leakage suffices for key recovery before expending computation
time. The algorithm is applied to a series of side channel measurements
of a microcontroller AES implementation and simulations. A compari-
son to related work shows that the new algorithm improves on existing
algorithms in several respects.

Keywords: Side channel analysis · Security evaluation · Guesswork ·
Full key recovery · Weak maximum likelihood

1 Motivation

Side channel analysis (SCA) of embedded cryptographic implementations has
been studied for more than 15 years [6,8]. Recently, there has been a growing
interest in studying and quantifying the amount of information that can be
extracted from a limited number of side channel observations. Knowing how
much leakage actually suffices for a full key recovery is of high practical relevance.
This question is closely tied to the computational capabilities of the side channel
adversary, since SCA often include an extensive key search component. A good
comparison of algorithms using tradeoffs between side channel information and
computation are the submissions to the DPA contest [1], where the success metric
was solely based on the number of needed observations, without a clear limitation
of computation. Another emerging trend in SCA are new attacks that are made
feasible only by tapping into the massive parallel computing power as provided
by GPUs, such as [12]. This indicates that computational power of the adversary
needs to be considered as part of side channel security metrics. Finally, leakage
resilient cryptography usually assumes limited leakage of a given key or secret
c© Springer International Publishing Switzerland 2015
M. Joye and A. Moradi (Eds.): CARDIS 2014, LNCS 8968, pp. 215–232, 2015.
DOI: 10.1007/978-3-319-16763-3 13

216 X. Ye et al.

state (c.f. [4,7,11,19]) before it is updated. The schemes provide security if an
adversary cannot successfully exploit more than the bounded leakage. In all
of these cases, it is of high interest to know how much leakage the adversary
can get from the observed measurements. Closely related is the question of the
remaining attack complexity—given the limited side channel information—and
the resulting search strategy.

So far only little effort has been put into the quantification of the remaining
computational complexity when limited leakage is available but insufficient to
narrow the key space down to a simply searchable size. While systematic met-
rics to quantify side channel leakage exist [10,17,18,21], many of them perform
relative comparisons of implementations or attacks [5,9,16]. The most promising
approach has been presented in [22,23]. The authors present a full key enumer-
ation algorithm [22] as well as a key ranking algorithm [23] in the case where
only limited side channel leakage can be extracted. These algorithms enables
estimating the remaining full key recovery complexity even if the experimental
verification is infeasible. However their algorithms assume the correct key to be
known. In other words, their results can be used by evaluation labs, but not by
the key recovering adversary.

Our Contribution. This work proposes an alternative approach to evaluate
side channel security for full key recovery attacks. The security level is expressed
as the relation between the amount of observed leakage, the success probability
and the necessary attack complexity. Following this approach, a constructive Key
Space Finding (KSF) algorithm is presented. It not only provides an estimation
on the remaining guessing complexity, but also allows the adversary, for the first
time, to derive a probabilistic winning strategy for each specific side channel
observation. Further, by statistical bootstrapping the size of returned key spaces,
the algorithm can also be used by evaluation labs to approximate a realistic
security level for various extents of information leakage.

2 Background

This section formalizes common assumptions for SCA and revisits useful metrics
and algorithms that quantifies side channel leakages.

2.1 Adversarial Model and Notations

Most SCA follow the divide-and-conquer strategy. The full secret key sk is
divided into b parts, i.e. sk = k1‖...‖kb where each subkey ki is a n bit string.
In the general setting of SCA, an adversary runs the crypto algorithm Esk()
and records side channel observations. This is followed by a leakage exploitation
phase where the adversary independently recovers information about each sub-
key ki from the measured observations. We assume the adversary to be q-limited,
i.e. she can run the algorithm up to q times and get the respective leakages.
We denote the inputs as X q = [Xi,j]b×q ∈ (Fn

2)bq where each row [Xi,j] with

Bounded, yet Sufficient? 217

1 ≤ j ≤ q corresponds to the inputs at the i-th part for the q queries. Similarly,
the leakages are denoted as Lq = [Li,j]b×q ∈ R

bq. Each row [Li,j] with 1 ≤ j ≤ q
represents the q leakage observations related to the i-th subkey part ki. With the
knowntexts (either plaintexts or ciphertexts) X q and leakages Lq, the adversary
chooses a side channel distinguisher such as DPA, CPA, MIA, template attack,
etc. and outputs an ordered list of subkey candidates gi,[1], gi,[2], ... for guessing
the correct subkey ki. Here, [·] indicates a reordering of subkey candidates in
the order of decreasing likelihood, i.e. gi,[j] refers the j-th most likely candidate.
For example, for CPA it is the descending order of the absolute value of Pearson
correlation coefficients; for template attacks it is the descending order of the
posterior probabilities.

2.2 Existing Metrics and Maximum Likelihood Principle

For evaluating side channel security on subkey recovery, the framework in [18]
proposes the (t-th order) Success Rate (SR) and the Guessing Entropy (GE). The
t-th order SR is defined as SRki(t) = Pr[ki ∈ {gi,[1], ..., gi,[t]}]. It describes the
probability that the correct subkey ki is compromised in the first t prioritized
guesses. The GE is defined as the expected rank of the correct subkey, i.e.,
GE :=

∑2n

t=1 t · Pr[ki = gi,[t]]. Clearly, GE can be expressed as a function from
the t-th order SR.

In addition, Pliam introduces marginal guesswork in [14] (also referred to as
work-factor in [13]) as a metric to benchmark password recovery attacks, or more
generically, smart exhaustive key searches. ‘Smart’ refers to adversaries that
have and utilize prior information about the key distribution. Thus, marginal
guesswork is well suited to describe adversaries that can assign probabilities to
subkey candidates. In fact, it relates the success probability to its minimum
computational complexity. More specifically, let σ ∈ [0, 1] be the probability of
success the adversary expects to achieve, the σ-marginal guesswork is defined
to be the minimum number t of guesses to ensure finding the correct subkey
ki with at least σ success rate, i.e. wσ(ki) = min{t :

∑t
j=1 pi,[j] ≥ σ}. Here

subkey guesses gi,[j] are sorted decreasingly in terms of probabilities such that
pi,[j] ≥ pi,[j+1] ≥ . . . where pi,[j] = Pr[ki = gi,[j]].

This approach is also known as Maximum Likelihood (ML) attack. Based on
side channel information, namely the inputs x q and leakages lq, it first assigns
posterior probability pi,j = Pr[gi,j | x q, lq] to subkey candidates gi,j . Next, it
enumerates them in a descending order gi,[j] according to the posterior likelihood
pi,[j]. Since pi,j is interpreted by definition as the likelihood of the true subkey ki

being the candidate gi,j , the guess gi,j ensures subkey success rate pi,j . Therefore
the t-th order success rate using ML approach is

SRki(t) =
t∑

j=1

pi,[j] (1)

It also establishes a connection between the t-th order SR and the σ-marginal
guess work as : wσ(ki) = min{t : SRki(t) ≥ σ}. To sum up, the adversary using

218 X. Ye et al.

maximum likelihood approach is expected to have the minimum complexity to
find the correct subkey.

2.3 Full Key Ranking Algorithm

The aforementioned metrics have mostly been applied for subkey recovery exper-
iments. This changed with the algorithms by Veyrat-Charvillon et al. in [22,23].
The authors present algorithms to enumerate full keys [22] and to estimate the
rank of the correct full key among all full key candidates [23]. With the latter
algorithm they manage, for the first time, to approximate the computational
complexity of successful side channel adversaries for cases where experimental
verification is no longer possible or just too expensive. This means, the work
pioneers in actually getting meaningful metrics for the expected guesswork of an
adversary achieving full key recovery. Furthermore, they apply statistical boot-
strapping to achieve cost evaluation and approximate a ML approach adversary
for full key recovery.

The rank estimation algorithm [23], referred to as VGS algorithm, works as
follows: As input it receives probabilities for all subkeys from a single side channel
experiment, as well as the knowledge of the correct key (and consequently its
probability). After sorting each of these subkey probabilities decreasingly, the
different dimensions are combined to create the key space. Next, volumes where
keys have higher (or lower) probabilities than the correct key are removed from
the space and their size is added to the lower (or upper) bound for the rank of the
correct key. The VGS algorithm stops either after a set time or once the bounds
are close enough, i.e. once the key rank has been narrowed down sufficiently.
Finally, it outputs (upper and lower bounds for) the key rank of the correct key.

By itself, the key rank only provides the placement of the probability of
the correct key. It cannot specify, in each individual side channel experiment,
how much probability of success one can achieve by guessing full key candidates
up to the correct key. Instead, the probability of success is derived by statistical
bootstrapping: the side channel experiment is repeated e.g. n = 100 times, and
the success probability is derived as the percentiles of the key ranks in different
experiments are turned into success probabilities. The VGS algorithm is used
for comparison and as a benchmark for our algorithm that we introduce next.

3 Evaluating Full Key Security

Side channel leakage enables assigning scores or posterior probabilities to subkey
candidates. However, to verify the correctness of a guess, different subkey parts
must be combined and checked. That is to say, as long as the leakage is not
strong enough to reveal each subkey part with a negligible error probability, the
remaining full key security is not trivially evaluated and is worthy of investiga-
tion. Conceptually, the ML approach can be extended to cover full key recovery
attacks so that all the metrics described in Sect. 2.2 can also be applied to eval-
uate full key security. However, the size of the key space is 2bn, e.g. in AES-128

Bounded, yet Sufficient? 219

it is 2128, and it makes it infeasible to calculate the posterior probabilities to
all full key candidates and then to enumerate them strictly following the ML
principle. In this section, we introduce a weaker but computationally efficient
approach to evaluate full key security. We call this approach the weak Maximum
Likelihood (wML) approach. We describe its basic idea, followed by a Key Space
Finding (KSF) algorithm as its realization and explain how it differs from a true
ML approach.

3.1 Weak Maximum Likelihood Approach

Since computing and enumerating probabilities for all full key candidates is
infeasible, the adversary can, nevertheless, adopt the following straightforward
strategy. For each subkey part ki, the adversary only considers the top ei subkey
candidates. When making full key guesses, she checks the Cartesian product of
such selected candidates from all subkey parts. More specifically, the adversary
considers the prioritized guesses {gi,[1], ..., gi,[ei]} for the true subkey part ki and
verifies all possible combinations {g1,[j1]‖...‖gb,[jb] where 1 ≤ ji ≤ ei, 1 ≤ i ≤ b}
as full key candidates. It is clear that this approach ensures a subkey success
rate of SRki(ei) with ei guesses for the subkey part ki. Therefore, a full key
success rate of

∏b
i=1 SR

ki(ei) is achieved, implying a full key verification cost of∏b
i=1 ei. The vector e = (e1, ..., eb) is called an effort distributor or simply a node.

The node defines how the adversary distributes her verification complexity (or
guesswork) over different subkey parts. It is easy to see from the definition above
that an effort distributor not only determines the full key success rate Prob(e)
that is achieved through guessing all candidates in the Cartesian product, but
also determines the full key verification cost Cost(e), or guesswork. They are
expressed as

Prob (e) =
b∏

i=1

SRki(ei) =
b∏

i=1

ei∑

j=1

pi,[j] Cost (e) =
b∏

i=1

ei (2)

In general, the adversary is interested in finding the minimal necessary guess-
work to achieve a σ success rate for a full key recovery attack. The procedure
of finding minimal full key recovery guesswork through finding optimal effort
distributors is referred to as the weak Maximum Likelihood (wML) approach.
Intuitively and informally, the observed leakage lq reveals different amounts of
secret information for different subkey parts. The more information is leaked of
a certain key part, the more confidence the adversary gets for prioritized subkey
guesses. Therefore, she can include more subkey candidates for the subkey posi-
tions where she has less confidence in the correctness of the output hypothesis
(cf. e.g. [20]).

Formally, the wML approach can be stated as an optimization problem with
the objective function and restriction condition defined as below.

Objective: Minimize Cost(e) (3)
Restriction Condition: Prob(e) ≥ σ (4)

220 X. Ye et al.

We will show how to solve this optimization problem in Sect. 3.3.
There are differences between the wML and the true ML approaches. In ML,

all full key candidates are ordered according to their posterior probability. In
wML, this is not necessarily the case. In fact, full key candidates that are inside
the Cartesian product of selected subkey guesses are prior to combinations that
are not defined by the effort distributor. For example, given an effort distributor
e = (e1, ..., eb), the full key candidate gx = g1,[e1]‖g2,[e2]‖g3,[e3]‖...‖gb,[eb] is inside
theCartesianproduct,while the candidategy = g1,[e1−1]‖g2,[e2+1]‖g3,[e3]‖...‖gb,[eb]

is not. The former is to be considered by the wML approach while the latter is
not. Therefore wML sets priority of the former over the latter. However, it is
not always the case that gx is more probable than gy. This means using wML
will unavoidably cause some ordering violation. The impact of such violation
is discussed in Sect. 4.4 and it turns out that the penalty is rather low, which
confirms the usability of wML approach.

3.2 The Search Domain and Its Calculus Model

An optimization problem in the continuous domain can usually be turned into
a searching problem. Tools from differential calculus such as the gradient vector
can help providing efficient search directions. Here we adjust it to our search
space which is a discretized domain and build the model for the problem of
searching optimal effort distributors. All concepts introduced here will be used
in the KSF algorithm in Sect. 3.3. For a clear illustration we use AES-128 as an
example. It can be easily applied in other block cipher scenarios.

Structure of the Search Domain. We first define the search space. Each
effort distributor e is treated as a node in the b-dimensional discrete space. For
AES-128, the key has 16 subkey parts (bytes) and each effort entry—the number
of guesses for each subkey part—can be any integer between 1 and 256 inclusively.
Therefore, the entire search space is 16 dimensional with each dimension taking
integers in [1 : 256], namely E = [1 : 256]16. The optimization problem is now
equivalent to finding the optimum node e∗ ∈ E that minimizes the full cost or
guesswork while achieving the required full key success probability. To better
understand the structure of the search space and enable an efficient search, we
introduce the following concepts.

Definition 1: a node e ′ = (e′
1, ..., e

′
b) is called the j-th decremental neighbor of

the node e = (e1, ..., eb) if e′
j = ej − 1 and e′

i = ei for all i �= j. It is also denoted
as e−

j = (e1, ..., ej − 1, ..., eb)). Similarly, the j-th incremental neighbor of node
e is denoted as e+

j = (e1, ..., ej + 1, ..., eb).

Definition 2: a node e ∈ E is said to be σ-feasible if it satisfies the restriction con-
dition (4). The set of all σ-feasible nodes is denoted as Eσ := {e | Prob (e) ≥ σ}.

Definition 3: a σ-feasible node e ∈ Eσ is said to be on the boundary if none of
its decremental neighbors is σ-feasible, i.e. e−

j /∈ Eσ,∀j. The set of all nodes on

Bounded, yet Sufficient? 221

the boundary is called the σ-feasible boundary and denoted as

∂ (Eσ) :=
{
e ∈ Eσ | e−

j /∈ Eσ,∀j
}

Definition 4: a node e∗ is called σ-optimal if it is a σ-feasible node and has
minimal complexity among all σ-feasible nodes, i.e. Cost(e∗) ≤ Cost(e),∀e ∈ Eσ

An immediate but important result can now be summarized as follows.

Boundary Property: the σ-optimal nodes are inside the σ-feasible boundary,
i.e. e∗ ∈ ∂ (Eσ) ⊂ Eσ.

The proof is straightforward. If e∗−
j ∈ Eσ, then

Cost
(
e∗−

j

)
= Cost (e∗) · e∗

j − 1
e∗
j

< Cost (e∗)

contradicting the definition of node e∗ being σ-optimal.
This property explains the fact that if making one less subkey guess at any

subkey part from an optimal effort distributor, the achieved success rate does
not reach the desired level σ. It indicates that the wML approach is to find an
σ-optimal effort distributor from the σ-feasible boundary.

A Calculus Model for the Search Problem. Now we define some calculus
tools for enabling an efficient search algorithm for finding the optimum node
in the discrete search domain. For a function in continuous space, the partial
derivative ∂f

∂xj
indicates the instantaneous change of the output of the function

f caused by the change at the j-th coordinate xj of the input. We define similar
concepts for the objective function Cost(e) and restriction condition Prob(e).

The discrete nature of our search domain [1 : 256]16 gives two situations: the
change caused by unit incrementing or decrementing on each effort coordinate
ej . More specifically, we define the incremental partial derivative of Prob(e) with
respect to ej as

∇P+
j = Prob(e+

j) − Prob(e) = [
SRkj (ej + 1) − SRkj (ej)

SRkj (ej)
]Prob(e) (5)

Each ∇P+
j is a non-negative value1 and it indicates the amount of additional

success rate that could be achieved by incrementing effort by 1 at the j-th
coordinate. Similarly, the decremental partial derivative of Prob(e) is defined as

∇P−
j = Prob(e) − Prob(e−

j) = [
SRkj (ej) − SRkj (ej − 1)

SRkj (ej − 1)
]Prob(e) (6)

1 The cases are considered separately if incrementing or decrementing is impossible,
i.e. ej = 1 or ej = 256 for Eqs. (5), (6) and (7).

222 X. Ye et al.

This is also a non-negative value and it tells the loss of full key success rate
caused by decreasing effort by 1 at the j-th coordinate.

With the above defined partial derivatives, we can now obtain the incre-
mental gradient ∇P+ = (∇P+

1 , ...∇P+
16) and the decremental gradient ∇P− =

(∇P−
1 , ...∇P−

16) of the restriction condition Prob(e). It is important to see that
the coordinates for the largest partial derivatives in the incremental (or decre-
mental respectively) gradient vector tells the full key success rate is increased
(or decreased resp.) mostly due to a unit effort increment (or decrement resp.).

The same concept is defined for the objective function Cost(e). The gra-
dient vectors in both incrementing and decrementing cases result in the same
expression because

∇C+
j = Cost(e+

j) − Cost(e) =
∏

i�=j

ei = Cost(e) − Cost(e−
j) = ∇C−

j (7)

For notational convenience, both ∇C+
j and ∇C−

j are replaced by ∇Cj and the
gradient of the full key complexity Cost(e) becomes ∇C = (∇C1, ...∇C16).
Again, each coordinate is a non-negative value and it indicates the change in full
key recovery complexity which is caused by incrementing/decrementing effort by
1 at the j-th entry of effort node e .

Lastly, we consider the direction vector u which is the negation of the
gradient −∇C projected onto the hyper-surface that is perpendicular to the
gradient ∇P .

u = −∇C projected onto (∇P)⊥ =
∇P · ∇C

‖∇P‖2 ∇P − ∇C (8)

where ∇P = (∇P1, ...,∇P16) is the averaged gradient, i.e. ∇Pj = (∇P+
j +

∇P−
j)/2. This direction vector u satisfies the intuition to keep the restriction

condition Prob(e) unchanged (seen from the vanishing of the inner product
u ·∇P = 0) while decreasing the objective function Cost(e) as much as possible.
A visualization can be seen in Fig. 2.

3.3 An Optimized Key Space Finding Algorithm

We now show how to realize the weak maximum likelihood approach to find the
optimum effort distributor by using the KSF algorithm.

The inputs of the algorithm include the desired full key success probability
σ and the sorted posterior probabilities pi,[j] (and hence the subkey success
rates SRki(t) according to Eq. (1)) for all subkey candidates gi,[j]. Note that this
algorithm, unlike the VGS algorithm, does not require knowledge of the correct
key, i.e. can also be used by a key recovering adversary. The applicability of
this algorithm is not restricted to the profiling adversary. In [22] it is suggested
that a non-profiling adversary can also assign likelihoods to subkey candidates
to achieve a justified full key ranking, which could also be applied in our case.

The algorithm returns two outputs: the minimum verification complexity
min {Cost (e) | e ∈ Eσ} that ensures the desired full key success rate σ together

Bounded, yet Sufficient? 223

Fig. 1. Flow Chart of the KSF algorithm.

with an optimal effort distributor e∗ = argmin {Cost (e) | e ∈ Eσ} that achieves
this complexity lower bound.

The flow chart of the KSF algorithm is shown in Fig. 1. It uses several
subroutines. The algorithm begins by generating a random node e ← [1 :
256]16 using RandomGen(). This node serves as the starting point in the search-
ing space. The initial node is then passed sequentially into two subroutines:
SearchTowardsBoundary() and SearchAlongBoundary(). The former moves a
node onto the feasible boundary ∂(Eσ) by calling SearchUp() and SearchDown().
The latter searches for nodes within the boundary that feature an even lower
value of the objective Cost(e). It uses the Swap() family of subfunctions. Note
that the algorithm is a probabilistic algorithm to finding the point on the
surface that has minimal cost. It finds local minima. In practice, it is exe-
cuted several times to ensure that the local optimization also yields the global
minimum.

The SearchTowardsBoundary() Function. The task of this function is to move
a node onto the feasible boundary ∂(Eσ). If the input node e does not satisfy
the restriction condition, i.e. Prob(e) < σ, it calls the function SearchUp()
(as shown in Alg. 1) to search for a node that is σ-feasible. More specifically,
SearchUp() iteratively increases the number of subkey guesses for some part of
the subkey and updates the node. In each iteration, the search direction, i.e. the
coordinate of the subkey part that needs to be incremented, is determined by
the incremental gradient ∇P+ as defined in Sect. 3.2. The effort coordinate that
maximizes the gain in success rate through a unit effort increase is chosen, i.e. i =
argmaxj{∇P+

j }. The node is updated by a unit increment on the chosen effort
coordinate. The process continues until a σ-feasible node is reached, namely, the
restriction condition is satisfied as Prob(e) ≥ σ.

224 X. Ye et al.

Now we have a σ-feasible node—either it is an initially generated node
that already satisfies the restriction condition or it is a node returned from
SearchUp(). The remaining task is to search for a node on the feasible bound-
ary ∂ (Eσ) since the optimal effort distributors can be found only on the bound-
ary. The function SearchDown() is called to complete this task. In each iteration,
the gradient vector ∇C of the objective function Cost(e) is used to determine
the search direction, i.e. the effort coordinate that needs to be decremented as
shown in line 2 of Alg. 2. It reflects the direction where the objective function
Cost(e) has the biggest complexity drop through a unit effort decrementing
while not violating the restriction condition. This means that the updated node
is still σ-feasible. The process continues until the Boundary Property (as defined
in Sect. 3.2) is satisfied. In other words, it returns a node e ∈ ∂ (Eσ).

The SearchAlongBoundary() Function. So far the search algorithm has found
a node on the σ-feasible boundary. The next step is to search for nodes within the
boundary, which achieve σ-feasibility at a lower cost Cost(e). The subroutine
SearchAlongBoundary() is called to accomplish this task. We have seen from
the Boundary Property in Sect. 3.2 that any decremental neighbor of a node on
the boundary is not σ-feasible. It implies that the only way to find a node with
lower full key cost is through trading-off (or swapping) efforts between different
coordinates, which is realized in the Swap() family of subroutines.

More specifically, the coordinates for swapping are determined from the direc-
tion vector u defined in Eq. (8) as it follows the intuition that the search should
decrease the overall guesswork while not compromising the full key success prob-
ability. The direction vector u suggests to increase effort on coordinate j if uj

is positive, and decrease if negative. The order of the effort coordinates being
incremented or decremented is determined by the order of the absolute values
of the entries uj . The higher the absolute value, the higher the priority that is
assigned to the coordinates for incrementing and decrementing.

Similar to search problems defined in continuous domain, the algorithm
also handles the problem of local minima that prevent effective searching. In
particular, we implement three different swapping modes –HorizontalSwap(),
VerticalSwap() and BlockSwap() – to “escape” from many local minima and
thereforemitigate the risk of being terminated in advance.The HorizontalSwap()
allows trading-off multiple efforts between the positive most and negative most
coordinates, i.e. u+

i and u−
j . The VerticalSwap() in each iteration enables

trading-off one effort between multiple coordinates where ujs are of different
signs. Finally, the BlockSwap() mode enables trading-off multiple efforts on mul-
tiple coordinates. All three modes ensure that the swap does not compromise
the required full key success probability, i.e. e ∈ Eσ always hold. The updated
node (after efforts being swapped) is again passed through SearchDown() to
ensure that the search is still performed on the boundary. The three modes pre-
vent infinite loops because the swap action occurs only if the cost of the updated
node is lower than the cost for the session node.

Bounded, yet Sufficient? 225

Fig. 2. Direction vector u is the projec-
tion of cost gradient −∇C onto (∇P)⊥

As shown in Alg. 3, a temporary node e ′ is returned from the Swap() family
of functions in each iteration. If the cost for the temporary node is lower than the
current session node, then the session node e is replaced by before being passed
into the next iteration. Otherwise the search is terminated and the algorithm
outputs the current node e and its full key verification cost Cost(e).

3.4 Usage of the KSF algorithm

Full key security evaluation used to stay as an analysis that is beyond computing
power. The KSF algorithm provides practical meaning to the security evaluation.
Firstly, the adversary can use it to determine if the leakage is strong enough to
enable full key recovery at her accessible computing power. More specifically,
upon a particular set of observations (x q, lq), the returned global minimum of
Cost(e) serves as an individual lower bound of the optimum guesswork wσ. If
the guesswork is acceptable, the associated optimal effort distributor e provides
a winning strategy: checking all the full key candidates defined by the Cartesian
product of this optimal node. This strategy ensures he adversary with success
rate being at least σ. Even if in one session the observed leakages are not strong
enough, namely requires high wσ, she can just wait for the next session until a
“good” observation appeared. This can be the case if the guesswork is impacted
a lot from different observations, which is in fact verified in our experiments in
the next section.

Secondly, it can be used by a security evaluation lab. By feeding the algorithm
with independently generated observations (x q, lq), an evaluator can bootstrap
the individual lower bounds and obtain the distribution of the guesswork wσ at
any fixed σ. This informs the evaluator the resistance of some DUT against a
probabilistic SCA. In other words, if the adversary intends σ success rate, how
much chance does she have by waiting until a strong enough leakage occurs.
A simple example would be computing the expected lower bound of guesswork—
the average of all individual lower bounds—and using it as a metric. The metric
indicates the averaged level of security of the full key as the expectation is with
respect to various experiments, i.e. not only different choices of input x q, but
also leakages observations lq.

226 X. Ye et al.

4 Experiment Results and Comparison

In this section we apply the proposed wML approach to practical side channel
leakage evaluation. We first explain the experimental setup. Next, we verify the
validity of the KSF algorithm and discuss its possible influencing factors. Finally,
we compare our approach and VGS algorithm.

4.1 Experiment Setup

We conduct the leakage evaluation experiments in two settings: real measure-
ments and simulations. For the former, we target on an unprotected AES software
implementation, the RjindaelFurious [15] running on an 8-bit AVR ATXMega
A3B processor. A total of 200,000 measurements were taken using a Tektronix
DPO 5104 oscilloscope at a sampling rate of 200 MS/s. Among all the collected
traces, 20,000 are used for building Gaussian templates. The remaining traces
are used as needed for the evaluation step. In the other setting, we simulate side
channel leakage using the widely accepted Hamming weight leakage model with
additive Gaussian noise. In both cases the targeted leakage is that of the s-box
output of the first round for each of the 16 state bytes.

4.2 Posterior Probabilities Derivation

As a preparation step of leakage evaluation, posterior probabilities for all subkey
candidates need to be estimated from side channel observations. The probably
most popular method is through Templates [2,10] where the adversary creates a
precise model of the leakage in the profiling phase and derives posterior probabil-
ities in the attack phase. An in-depth discussion of modeling errors for Gaussian
templates can be found in [3]. For our experiments, we build Gaussian tem-
plates N (L;µv, Σ2

v) regarding the internal state Y = S(X ⊕ K) over all the
16 bytes. In the attack phase, the adversary obtains the observations (x q, lq).
Since the predicted internal state for the j-th query is yi,j,g = f(xi,j , g) under
the subkey hypothesis g at the i-th subkey part, the observed leakage li,j has
conditional probability density P[li,j | g] = N (li,j ;µv, Σ2

v), where v = yi,j,g.
Since side channel leakages in different queries are independent, the conditional
probability density P[lqi | g] of observing the q leakages lqi = (li,1, ..., li,q) on the
i-th subkey part is the product of each P[li,j | g]. Namely,

P[li,1, ..., li,q | g] =
q∏

j=1

P[li,j | g] =
q∏

j=1

N (li,j ;μv, Σ2
v). (9)

Further, the Bayesian formula returns posterior probabilities pi,g := Pr[g | lqi]
of subkey hypothesis g given the q observations lqi as

pi,g := Pr[g | lqi] =
P[lqi | g] · Pr[g]∑

g∗ P[lqi | g∗] · Pr[g∗]
=

P[lqi | g]∑
g∗ P[lqi | g∗]

(10)

Bounded, yet Sufficient? 227

Finally the posterior probabilities pi,g are sorted into a descending sequence
pi,[g] as detailed in Sect. 2.2. They determine the subkey success rates in Eq. (1)
which are the inputs for the KSF algorithm and the VGS algorithm.

4.3 Correctness and Influencing Factors of the KSF Algorithm

Verifying the correctness of the KSF algorithm is rather simple: if the returned
optimal effort distributor e∗ covers the ranks of the posterior probability of
every subkey ki, then the search space defined by the Cartesian product includes
the correct full key as explained in Sect. 3.1. In the following, we check if the
algorithm in fact achieves the promised success rate for various experiments.
We provide a set of observations for a range of q from 1 to 40: higher value for
q indicates more leaked information. We furthermore set 19 different levels of
desired success rate from 0.05 to 0.95 incrementing at 0.05. For each possible
(q, σ), 200 experiments are performed for the scenario using real measurements,
and 100 experiments for the scenario using simulated leakage.

Figure 3(a) compares the promised full key success rate of the KSF algorithm
with the actually achieved success rate for real measurements. One can see that
when the leakage is strong (high value of q), the achieved success rate is far
beyond what is promised. However, when the leakage is weak, the two rates only
differ slightly. A probable reason for the achieved success rate being lower than
the desired success rate for small values of q is due to the assumption that the
Gaussian templates fully capture the underlying leakage distribution. In fact, the
empirically obtained Gaussian templates only serve as approximation to the true
leakage distribution, and hence the derived posterior probabilities are unavoid-
ably biased. This claim is also supported by the results for simulated leakage,
as given in Fig. 3(b), where the underachieving never happens. Nevertheless, for
almost all cases, especially when q ≥ 8, the KSF algorithm fulfills the promised
full key success rate.

Fig. 3. Correctness verification for real measurements (a) and simulation (b); The
success rate that KSF achieves (y-axis) is more than what it promised (x-axis).

228 X. Ye et al.

Other influencing factors of the KSF algorithm are the leakage observations
and the number of independent initial nodes used for finding local minima, as
discussed in Sect. 3. To investigate their impact, we run 50 experiments asso-
ciated with independent sets of observations (x q, lq). In each experiment, we
compare the performance of KSF algorithm at fixed σ = 50% using 100 and
10000 initial nodes. The global minimum guessworks in each experiments are
returned and compared in Fig. 4(a). The x-axis is the index of experiments indi-
cating a different set of observation (x q, lq) and the y-axis is the guesswork
in bits. As we can see, different leakage observations causes more than 40 bits
guesswork differences while the influence from the number of initial nodes (the
distance between the two curves) are rather small. In fact, the biggest difference
between the two curves is less than 2.5 bits and most of the times the difference
is smaller than one bit.

0 10 20 30 40 50
20

25

30

35

40

45

50

55

60

65

(a)

12 16 20 24 28 32 36 40

20

40

60

80

100

120

q

σ

(b)

12 16 20 25 30 35 40

0

20

40

60

80

100

120

q

σ

(c)

12 16 20 25 30 35 40

0

20

40

60

80

100

120

q

σ

(d)

Fig. 4. Figure (a) shows the impact on guesswork (y-axis) from the number of starting
nodes for KSF algorithm is far less than the impact from the set of observations (x q, lq)
in each experiment (X-axis); Figure (b,c,d) compares the size of the key space from the
KSF algorithm to the key rank from the VGS algorithmĖxperiments are performed
over real measurement with success rate σ = 50 % (b); over simulation with σ = 50 %
(c); and over simulation with σ = 25 % (d)

Bounded, yet Sufficient? 229

4.4 Comparing the KSF algorithm with the VGS algorithm

As mentioned in Sect. 2.3, the VGS algorithm estimates the rank of the cor-
rect key among all full key candidates. By bootstrapping this rank statistic, or
namely, by repeating the rank estimation from different side channel observa-
tions, one can get a security evaluation based on the success percentiles to see
the rank distributions given random side channel inputs.

We first provide several comparisons between the bootstrapping of the rank
statistic from repeating VGS algorithm and the bootstrapping of guesswork wσ

KSF algorithm. Figure 4(b) compares the two over the real measurement. We
fix the full key success rate in KSF algorithm to σ = 50%. For each q (x-axis),
we perform 200 experiments using the algorithms on the same sets of observa-
tions. The box plot indicates quartiles and outliers of the guesswork and rank
statistics. We see that the results from the two algorithms are relatively close
to each other. Further, the impact of different leakages on the rank statistic
using VGS algorithm is heavier than that on the guesswork returned from our
algorithm. This can be seen from the difference of the height of boxes for the
two algorithms. More importantly, we see that the medians of the two analyzed
cases do not align exactly. In fact, ours are always slightly higher than the VGS
algorithm. The reason is two folds. On one side, the KSF algorithm is following
wML approach, which introduces ordering violation comparing to the true ML
approach, as explained in Sect. 3. On another, since in each individual experi-
ment the VGS algorithm does not return a fixed success probability

∑rank
t=1 p[t]

(the ML adversary should guesses all the top rank full key candidates), the
50th percentile of the rank does not necessarily ensure the adversary achieves
50% success rate in an averaged experiment either. This is even more clearly
seen from the simulated leakage scenario as shown in Fig. 4(c) (rank compared
to w0.5) and 4(d) (rank compared to w0.25). In the simulated case, the ML
approach is closer to the w0.25 bootstrapping with the weak ML approach. It
indicates that the guessing the top rank most likely full key candidates in the
ML approach roughly returns winning probability of 25 %. In general, it might
suggest the evaluator to find the appropriate σ level such that the bootstrapping
of the guesswork wσ matches the bootstrapping of the key rank. By doing so,
the evaluator can estimate the success rate

∑rank
t=1 p[t] in an average experiment

that the top rank full key candidates contain.
The next comparison of the two leakage evaluation algorithms is between

the expected guesswork lower bound (Fig. 5(a)) and the bootstrapping of the
rank (Fig. 5(b)). Experiments use the data from the microcontroller measure-
ments. The x-axis for both represents the number q of accessible leakages in each
experiment. In Fig. 5(a), the y-axis is the desired full key success probability σ.
The color or gray-scale for the pixel at coordinate (x, y) = (q, σ) represents
the expected lower bound (as explained in Sect. 3.4) of the guesswork in log
scale. The darker a pixel is, the more guesswork is needed to achieve the spec-
ified success rate σ. In particular, the expected lower bound at each (q, σ) is
derived from 200 independent experiments. Each experiment uses an indepen-
dent set of observations (x q, lq) which yields different posterior probabilities pi,[g]

230 X. Ye et al.

q

5 10 15 20 25 30 35 40

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

20

40

60

80

100

120

(a)
q

5 10 15 20 25 30 35 40

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

20

40

60

80

100

120

(b)

Fig. 5. Security evaluation using KSF algorithm showing the remaining guesswork
(color in (a)) and using VGS algorithm showing the key rank (color in (b)) over the
number of observations q (x-axis) and success rate/percentile (y-axis) (Color figure
online).

computed as described in Sect. 4.2. The number of initial node is set to 100
(Fig. 4(a) already shows this number is sufficient). The global minimum guess-
work from the 100 searches is returned as the individual lower bound of the guess-
work for this single experiment. Upon the completion of the 200 experiments, the
average of the 200 individual lower bounds yields the expected lower bound as
reflected in the color of pixel in Fig. 5(a). In short, the color at pixel (q, σ) indi-
cates the expected minimum guesswork that a q-limited adversary should spend
in order to achieve full key recovery with probability σ. In Fig. 5(b), VGS algo-
rithm is executed with the same sets of observations (x q, lq). The returned 200
ranks (represented in the color of each pixel) derive the statistical bootstrapping
of the success percentile (the same as in bootstrapping) which is represented on
the y-axis. Two contour plots are fairly close to each other.

5 Conclusion

The presented algorithm finds the optimal key search space that allows the
adversary to achieve a predefined probability of success. Unlike prior work, the
algorithm provides a connection between remaining full key security and success
probability even for a single set of side channel observations. It furthermore
is a constructive algorithm, since it not only bounds the remaining key search
space, but also provides an optimized yet simple strategy to search that space.
As a consequence, the algorithm can be used by embedded security evaluators to
quantify the resistance of a device to SCA. It can also be used by an adversary
to determine whether the leakage suffices for a successful key recovery attack.

Acknowledgments. This material is based upon work supported by the National
Science Foundation under Grant No. #1261399 and Grant No. #1314770. We would
like to thank François-Xavier Standaert for the helpful discussion. We would also like
to thank the anonymous reviewers for their helpful comments.

Bounded, yet Sufficient? 231

References

1. Dpa contest (versions 1 and 2). http://www.dpacontest.org/home/
2. Chari, S., Rao, J., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, Ç.K.,

Paar, C. (eds.) Cryptographic Hardware and Embedded Systems - CHES 2002.
Lecture Notes in Computer Science, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003)

3. Durvaux, F., Standaert, F.-X., Veyrat-Charvillon, N.: How to certify the
leakage of a chip? In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS,
vol. 8441, pp. 459–476. Springer, Heidelberg (2014)

4. Faust, S., Pietrzak, K., Schipper, J.: Practical leakage-resilient symmetric cryp-
tography. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp.
213–232. Springer, Heidelberg (2012)

5. Gierlichs, B., Lemke-Rust, K., Paar, C.: Templates vs. stochastic methods. In:
Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 15–29. Springer,
Heidelberg (2006)

6. Kocher, P.C.: Timing attacks on implementations of diffie-hellman, rsa, dss, and
other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113.
Springer, Heidelberg (1996)

7. Kocher, P.C.: Leak-resistant cryptographic indexed key update (US patent
6539092) (2003)

8. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

9. Macé, F., Standaert, F.-X., Quisquater, J.-J.: Information theoretic evaluation of
side-channel resistant logic styles. In: Paillier, P., Verbauwhede, I. (eds.) CHES
2007. LNCS, vol. 4727, pp. 427–442. Springer, Heidelberg (2007)

10. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets
of Smartcards. Springer-Verlag, New York (2007)

11. Medwed, M., Standaert, F.-X., Joux, A.: Towards super-exponential side-channel
security with efficient leakage-resilient PRFs. In: Prouff, E., Schaumont, P. (eds.)
CHES 2012. LNCS, vol. 7428, pp. 193–212. Springer, Heidelberg (2012)

12. Moradi, A., Kasper, M., Paar, C.: Black-box side-channel attacks highlight the
importance of countermeasures. In: Dunkelman, O. (ed.) CT-RSA 2012. LNCS,
vol. 7178, pp. 1–18. Springer, Heidelberg (2012)

13. Pliam, J.: The disparity between work and entropy in cryptology. Cryptology
ePrint Archive, report 1998/024 (1998). http://eprint.iacr.org/

14. Pliam, J.O.: On the incomparability of entropy and marginal guesswork in brute-
force attacks. In: Roy, B., Okamoto, E. (eds.) INDOCRYPT 2000. LNCS, vol. 1977,
pp. 67–79. Springer, Heidelberg (2000)

15. Poettering, B.: Rijndael Furious. Implementation. http://point-at-infinity.org/
avraes/

16. Regazzoni, F., Badel, S., Eisenbarth, T., Großschädl, J., Poschmann, A.,
Deniz, Z.T., Macchetti, M., Pozzi, L., Paar, C., Leblebici, Y., Ienne, P.: A
simulation-based methodology for evaluating the DPA-resistance of cryptographic
functional units with application to CMOS and MCML technologies. In: Interna-
tional Symposium on Systems, Architectures, Modeling and Simulation (SAMOS
VII) (2007)

17. Rivain, M.: On the exact success rate of side channel analysis in the Gaussian
model. In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381,
pp. 165–183. Springer, Heidelberg (2009)

232 X. Ye et al.

18. Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analysis of
side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 443–461. Springer, Heidelberg (2009)

19. Standaert, F.-X., Pereira, O., Yu, Y., Quisquater, J.-J., Yung, M., Oswald, E.:
Leakage resilient cryptography in practice. In: Sadeghi, A.-R., Naccache, D. (eds.)
Towards Hardware-Intrinsic Security. Information Security and Cryptography, pp.
99–134. Springer, Berlin Heidelberg (2010)

20. Thillard, A., Prouff, E., Roche, T.: Success through confidence: evaluating the
effectiveness of a side-channel attack. In: Bertoni, G., Coron, J.-S. (eds.) CHES
2013. LNCS, vol. 8086, pp. 21–36. Springer, Heidelberg (2013)

21. Tiri, K., Akmal, M., Verbauwhede, I.: A dynamic and differential CMOS logic with
signal independent power consumption to withstand differential power analysis on
smart cards. In: Proceedings of the 28th European Solid-State Circuits Conference,
2002. ESSCIRC 2002, pp. 403–406 (September 2002)

22. Veyrat-Charvillon, N., Gérard, B., Renauld, M., Standaert, F.-X.: An opti-
mal key enumeration algorithm and its application to side-channel attacks. In:
Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp. 390–406. Springer,
Heidelberg (2013)

23. Veyrat-Charvillon, N., Gérard, B., Standaert, F.-X.: Security evaluations beyond
computing power. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013.
LNCS, vol. 7881, pp. 126–141. Springer, Heidelberg (2013)

On the Security of Fresh Re-keying
to Counteract Side-Channel and Fault Attacks

Christoph Dobraunig(B), Maria Eichlseder, Stefan Mangard,
and Florian Mendel

IAIK, Graz University of Technology, Graz, Austria
christoph.dobraunig@iaik.tugraz.at

Abstract. At AFRICACRYPT 2010 and CARDIS 2011, fresh re-keying
schemes to counter side-channel and fault attacks were introduced. The
idea behind those schemes is to shift the main burden of side-channel
protection to a re-keying function g that is easier to protect than the
main block cipher. This function produces new session keys based on the
secret master key and random nonces for every block of message that
is encrypted. In this paper, we present a generic chosen-plaintext key-
recovery attack on both fresh re-keying schemes. The attack is based on
two observations: Since session key collisions for the same message are
easy to detect, it is possible to recover one session key with a simple
time-memory trade-off strategy; and if the re-keying function is easy to
invert (such as the suggested multiplication constructions), the attacker
can use the session key to recover the master key. The attack has a
complexity of about 2 · 2n/2 (instead of the expected 2n) for an n-bit
key. For the typically employed block cipher AES-128, this would result
in a key-recovery attack complexity of only 265. If weaker primitives like
80-bit PRESENT are used, even lower attack complexities are possible.

Keywords: Side-channel attacks · Fresh re-keying · Key-recovery attack

1 Introduction

The design of efficient and effective countermeasures against side-channel and
fault attacks is a very challenging task. In fact, more than 15 years ago a kind
of an arms race between attackers and designers of countermeasures started and
still has not come to an end. In the early years, the main goal of designers of
embedded systems was to engineer systems in such a way that they do not leak
side-channel information at all [18], or to randomize the power consumption by
masking techniques [2]. However, over the years it has become more and more
clear that such countermeasures are very expensive to implement for settings
with high security requirements. An overview of costs for countermeasures can
for example be found in [11].

The main driver for these costs is the fact that in typical settings an attacker
can observe the execution of a cryptographic algorithm multiple times with the
same key. A good example for such a setting is the mutual authentication of
c© Springer International Publishing Switzerland 2015
M. Joye and A. Moradi (Eds.): CARDIS 2014, LNCS 8968, pp. 233–244, 2015.
DOI: 10.1007/978-3-319-16763-3 14

234 C. Dobraunig et al.

two communicating parties via a challenge-response protocol. In such a setting,
the attacker can send an arbitrary number of challenges to a device in order to
obtain an arbitrary number of side-channel measurements or to induce faults to
generate pairs of faulty and correct ciphertexts. During each execution of the
algorithm, the attacker learns information about the secret key and accumulates
this information. This is the basic idea of differential power analysis (DPA) [9]
as well as differential fault attacks (DFA) [3].

In [12,13], Medwed et al. propose a re-keying scheme that prevents DPA and
DFA attacks by preventing multiple executions of an algorithm with the same
key. The basic idea of this re-keying scheme is to never use a long-term key k
directly in a cryptographic algorithm, but to derive a fresh session key k∗ from
k upon each invocation of the algorithm. In fact, for each invocation a random
nonce is generated and used in a key derivation function g to generate a session
key k∗ that is then used by the cryptographic algorithm. This construction
prevents an attacker from performing differential attacks on the cryptographic
algorithm and this reduces the effort for countermeasures significantly. However,
while the cryptographic algorithm needs less protection in this construction, it
is clear that it is possible to mount differential attacks on the key derivation
function g. Hence, this re-keying approach obviously only pays off in practice
if it is significantly easier to protect g against differential attacks than it is to
protect the original algorithm.

Medwed et al. provide several arguments for this in [12,13]. In fact, they argue
that it is not necessary to have a cryptographic algorithm for the key derivation
and propose to use a modular multiplication for the key derivation. A modular
multiplication can be protected against differential attacks in a straightforward
and efficient way by using blinding techniques [11].

The proposal of Medwed et al. triggered several follow-up works. In fact,
several articles [1,4,7] treat the question of how to construct a key derivation
function that can be implemented efficiently and that at the same time provides
a high level of protection against differential attacks. Finding such a function is
a central research question in the field of side-channel attacks and countermea-
sures. This research question is in particular relevant for low-cost systems, such
as RFIDs, that typically rely on communication protocols based on symmetric
key cryptography. A key derivation function that can be protected efficiently
allows to do authentication and session-key derivation based on a symmetric
cipher without the need to protect it against differential side-channel and fault
attacks. Such a construction can also be used to negotiate a session key that is
then used in a leakage-resilient mode of operation [16] for communication.

Our Contribution. In this paper, we show that the requirements for the key
derivation function that have been formulated in [12,13] are not sufficient. In fact,
we present a simple key-recovery attack on the fresh re-keying schemes proposed
in [12,13]. The basic idea of the attack is that since the scheme changes the
block cipher key for every encrypted message block, a time-memory trade-off
strategy is possible. An adversary can recover a session key by requesting multi-
ple encryptions of the same message (under different unknown session keys) and

On the Security of Fresh Re-keying to Counteract Side-Channel 235

searching for collisions with a table of pre-computed encryptions under known
session keys. We also demonstrate how knowledge of one or a few session keys
allows to recover the master key for the proposed re-keying functions.

This chosen-plaintext key recovery attack has a complexity as low as 2 · 2n/2
with similar memory requirements, while the complexity should ideally be 2n.
Due to the properties of the function g (that derives the session key from the
master key and random nonces) proposed for these schemes, the master key can
be recovered out of one or more recovered session keys. Our attack allows a free
trade-off between memory (precomputation) and time/number of queries (online
phase), and as such can be tailored to different attack scenarios. In all variants,
it is significantly more efficient than Hellman’s generic time-memory trade-off.

Outline. The remainder of the paper is organized as follows. We describe the
generic construction of the fresh re-keying scheme by Medwed et al. in Sect. 2.
We present our generic key-recovery attack in Sect. 3 and discuss how the scheme
might be fixed in Sect. 5. Moreover, we give a brief outline to the application of
the presented attacks to other re-keying schemes in Sect. 6. Finally, we conclude
in Sect. 7.

2 Fresh Re-keying Schemes of Medwed et al.

The basic idea of the re-keying schemes described in this section is to perform
every encryption under a new session key k∗ to limit the available side-channel
information during the encryption for one key. By doing so, the requirements to
limit the leakage of side-channel information for the cipher in use can be relaxed.
In this section, we describe the two re-keying schemes presented in [12,13].

2.1 Basic Re-keying Scheme (AFRICACRYPT 2010)

The scheme from AFRICACRYPT 2010 [13] targets scenarios where one of the
two communication parties only allows limited support for side-channel protec-
tion mechanisms. Such a scenario is the communication between an RFID tag
and a reader. RFID tags are low cost and low performance devices. Therefore,
no overly expensive countermeasures can be included in the RFID tag’s block
cipher implementation, whereas the protection mechanisms on the more expen-
sive reader can be more complex.

Figure 1 shows the working principle of the re-keying scheme. This scheme
uses two functions: the re-keying function g(k, r) to derive new session keys, and
the block cipher E(k∗,m) to encrypt message blocks. For every message block
m, a new public nonce r has to be randomly generated on the tag. From this
nonce r and the secret master key k, a new session key k∗ is then generated
via k∗ = g(k, r). The session key k∗ is then used to encrypt one message block
c = E(k∗,m). With the help of the publicly known r and the master key k, the
reader is able to decrypt c to m = E−1(k∗, c).

Since the reader cannot contribute to the nonce, an attacker that imper-
sonates the tag can hold the nonce r constant for several different decryptions

236 C. Dobraunig et al.

g

E

r

k

m

k∗

Tag

g

E−1

k

k∗

Reader

m
c

Fig. 1. Structure of the basic re-keying scheme from AFRICACRYPT 2010 [13].

and increase the available side-channel information for the reader’s implementa-
tion. This means that we need different levels of protection for the block cipher
implementation E on the reader and on the tag. Medwed et al. argue [13] that
both g and E have to be protected against side-channel attacks in the reader’s
implementation. However, for the tag, only g needs full protection, whereas E
does not need to be protected against differential power analysis.

An open question for this re-keying scheme is how to find a suitable func-
tion g. In [13], Medwed et al. list six required properties for g:

1. Good diffusion of k.
2. No need for synchronization between parties, i.e., g should be stateless.
3. No additional key material, i.e., k and k∗ should be the same size.
4. Little hardware overhead.
5. Easy to protect against side channel attacks.
6. Regularity.

As we show in Sect. 3, adding another property to the list is necessary:

7. Hard to invert, i.e., it should be hard to recover k from k∗, r.

Medwed et al. [13] propose the following modular multiplication as a specific
instance of g:

g : (F28 [y]/p(y))2 → F28 [y]/p(y), (k, r) �→ k · r,

where · denotes polynomial multiplication in F28 [y] modulo p(y). The polynomial
p(y) is defined as p(y) = yd + 1 with d ∈ {4, 8, 16} for 128-bit master keys k
(typically d = 16).

Since F28 [y]/p(y) is not a field, but only a ring, and zero divisors exist, g(k, ·)
it not necessarily bijective for any k �= 0. Master keys k that are zero divisors (not
co-prime to p(y)) can be considered weak keys since they generate a smaller key
space for k∗. Medwed et al. state in [13] that only a fraction of all possible keys
k are such weak keys, and that the reduction of the key-space if weak keys are

On the Security of Fresh Re-keying to Counteract Side-Channel 237

excluded can be neglected. The same holds true for the nonce r, and randomly
generated values for r are unlikely to be ‘weak nonces’.

Note that if r is co-prime to p(y), r−1 can be calculated easily. Now we
can define g′, the inverse function to g, easily via k = g′(k∗, r) = k∗ · r−1.
Thus, the master key k can be calculated from a known session key k∗ and the
corresponding nonce r. We will make use of the function g′ in the attack of
Sect. 3.

2.2 Advanced Re-keying Scheme for Multiple Parties
(CARDIS 2011)

The basic scheme Medwed et al. proposed at AFRICACRYPT 2010 [13]
(Sect. 2.1) only allows low cost side-channel countermeasures for one of the two
communication parties. To overcome this drawback, Medwed et al. proposed a
second scheme at CARDIS 2011 [12]. This scheme is suitable for multi-party com-
munication (with a common, shared secret key) and allows cheaper side-channel
countermeasures for all parties. For clarity, we focus on two-party communica-
tion, but the attack can easily be generalized for n parties.

Figure 2 illustrates the scheme for two-party communication. In contrast to
the scheme of Sect. 2.1, both communication parties are involved in the genera-
tion of the session key k∗ by contributing a randomly generated nonce.

g

E

r

k

m

k∗

Party 1

g

E−1

k∗

Party 2

m
c

s

�
k
�

Fig. 2. Structure of the multi-party re-keying scheme from CARDIS 2011 [12] for two
parties.

In [12], Medwed et al. propose two different re-keying schemes. The first
one uses n different (common, secret) keys for an n-party communication. Each
party contributes a random nonce, which is combined with one of the n keys.
In the case of a two-party communication, the session key is k∗ = k · r + � · s
(see Fig. 2), where k and � are the secret master keys. r is the public nonce
randomly generated by party 1, and s is the public nonce randomly generated
by party 2. The ring operations + and · are defined over F28 [y]/p(y), as in the
AFRICACRYPT paper.

238 C. Dobraunig et al.

The second proposed scheme [12] uses only one master key k, and expands
this to n keys by using powers of k. For the two-party case, the session key is
computed as k∗ = r ·k+s ·k2. In general, the n nonces are used as coefficients of
a polynomial that is evaluated in k to derive the session key k. In both schemes,
the used master keys are restricted to the invertible elements in F28 [y]/p(y).

3 Generic Key-Recovery Attack

In this section, we describe simple key-recovery attacks on the encryption scheme
of [12,13]. In both schemes, the session key k∗ is new for every single new
encrypted block. In Sect. 3.1, we show that we are able to recover one of the used
session keys k∗ with a complexity as low as 2 · 2n/2 for an n-bit key. Since the
function g to derive the session key is easy to invert for both re-keying schemes,
we are able to compute the secret master key k out of recovered session keys and
the corresponding nonces. We present attacks on the basic re-keying scheme pre-
sented at AFRICACRYPT 2010 [13] in Sect. 3.3 and on the multi-party re-keying
scheme from CARDIS 2011 [12] in Sect. 3.4. Note that similar attacks have been
recently published on several authenticated encryption schemes [5,14].

Throughout this section, k is the n-bit master key, k∗ an n-bit session key,
and r an n-bit nonce.

3.1 Recovery of the Session Key

As a first step of the attack, we want to recover one of several used session keys.
This step consist of two phases: an offline (precomputation) phase and an online
(query) phase. The attack is a chosen-plaintext attack with a time complexity
of about 2 · 2n/2. The complexity in memory and number of queries is 2n/2.
Different trade-offs between the memory complexity and the number of queries
are possible, at the cost of a higher overall complexity. Chosen-plaintext attacks
are not unlikely to be practically applicable if, for instance, protocols based on
challenge-response techniques are used.

The basic idea of our attack is to recover the session key k∗ from collisions
with pre-computed keys. The encryption scheme changes the session key k∗ for
every block of plaintext that is encrypted. By keeping the plaintext message input
to the block cipher fixed, the adversary can apply a basic time-memory trade-
off strategy to recover one of the session keys. We will demonstrate in Sect. 3.3
that this is already enough to also recover the master key k if no additional
precautions are taken.

Let E(k∗,m) denote the raw block cipher encryption operation with key k∗

and plaintext m. Then the attack strategy is given in Algorithm 1, where m is
a fixed message throughout.

A match between an entry in list L and a received ciphertext c gives a
candidate session key k∗ and the according nonce r. Since there is on average
only one possible session key k∗ that maps m to c, the possibility of false positives

On the Security of Fresh Re-keying to Counteract Side-Channel 239

Algorithm 1. Recover a session key k∗

Fix a message block m.

I. Offline Phase (Precomputation)
Repeat t times:
1. Guess a new value for k∗.
2. Compute c = E(k∗,m) and save the pair (c, k∗) in a list L.

II. Online Phase (Queries)
Repeat t′ = 2n/t times:
1. Request ciphertext c and random nonce r for an encryption of m.
2. If list L contains an entry (c, k∗) for some k∗, return r and k∗.

is negligible. (If in doubt, the candidate k∗ and the derived master key k can be
verified with a few additional queries.)

The number of iterations is such that the success probability of finding at
least one collision is ≥ 1 − 1

e ≈ 63.21%, where e is Euler’s number. We assume
that no key candidate k∗ in the offline phase is selected twice (drawing without
replacement), but duplicates may occur in the online phase. Then, the proba-

bility of failure is
(
1 − t

2n

)t′
= (1 − t′)t

′
, which increases monotonically from

0 up to 1
e as the number t′ of online queries grows (while t decreases accord-

ingly). Since the expected number of false alarms is small, we can state that the
algorithm finds a correct used session key k∗ with high probability with a total
complexity of t offline encryptions plus 2n/t online chosen-plaintext queries. The
best overall complexity of 2 · 2n/2 is achieved for t = 2n/2.

Sometimes, an attacker wants to recover more than only a single master key.
In this case, only the second phase of the attack has to be repeated, while the
precomputation phase has to be done only once. In such settings, in particular
if the number of attacked keys is large, other values of t might result in a better
overall complexity. In Table 1, we give the complexities and memory requirements
for different choices of t.

Table 1. Complexities and memory requirements for both phases of the attack with
different choices of t.

log2(t) Offline phase Online phase Memory Total

n/4 2n/4 23n/4 2n/4 23n/4

n/3 2n/3 22n/3 2n/3 22n/3

n/2 2n/2 2n/2 2n/2 2 · 2n/2

2n/3 22n/3 2n/3 22n/3 22n/3

3n/4 23n/4 2n/4 23n/4 23n/4

240 C. Dobraunig et al.

3.2 Memoryless Session Key Recovery

In practice, the memory requirements are typically the most significant restric-
tion for this attack. Unfortunately, since the values of the online phase are not
under the attacker’s control, standard memoryless collision search techniques
are not directly applicable. If the attacker could additionally choose the nonce r
for online queries, memoryless cycle finding algorithms would reduce the mem-
ory requirements to constant or logarithmic while only marginally (by a small
constant factor) increasing the necessary number of online queries.

There are two possible modifications to the attack that allow this. Both
attack the reader instead of the tag in the basic scheme of Sect. 2.1. The first
assumes that the reader can also send messages to the tag by requesting a new
nonce from the tag and then encrypting under this nonce. This would require
the tag to remember the nonce until it receives the corresponding encrypted
message. Then, the attacker can send chosen nonces r together with the fixed
message m for encryption, and apply the memoryless algorithm described below.

The other variant does not make any such assumptions, but simply attacks
decryption instead of encryption in a chosen-ciphertext setting. Instead of a
fixed plaintext m, a fixed ciphertext c is sent to the reader together with a
chosen nonce r. The collision target, then, is the received plaintext m.

Either of these two versions can be used for memoryless session key recovery
as follows. We construct a helper function f : {0, 1}n → {0, 1}n:

f(x) =

{
D(x, c) if the last bit of x is 0 (offline, session key guess x),
D(g(k, x), c) if the last bit of x is 1 (query with nonce x),

where D(k∗, c) denotes decryption of a fixed ciphertext c. A collision f(x1) =
f(x2) for f will give us a session key k∗ = x1 and corresponding nonce r = x2

with a probability of 1
2 (otherwise, we have to repeat the procedure).

Now, we can consider the sequence generated by xi = f(xi−1) and apply a
standard cycle finding algorithm to determine the periodicity of this sequence
and derive a collision. For example, using Brent’s algorithm [6], the expected
number of evaluations of f to find a collision (for a random mapping) is

√
π

8
·
(

3
log 4

+ 2
)

· 2n/2 ≈ 2.6094 · 2n/2.

Since the expected necessary number of collisions to recover a session key is 2,
the overall complexity of this approach is slightly higher than before, but the
memory requirements are negligible.

For minimizing the overall complexity for a fixed given memory size, bet-
ter trade-offs are achieved by distinguished-point searches and similar meth-
ods. Examples include Quisquater and Delescaille’s [17] or van Oorschot and
Wiener’s [15] algorithms. In particular, the latter is useful if multiple collisions
are required.

On the Security of Fresh Re-keying to Counteract Side-Channel 241

3.3 Master Key Recovery for the Basic AFRICACRYPT2010
Scheme

For the attack on the basic re-keying scheme of AFRICACRYPT 2010 [13], we
can directly apply the standard or memoryless collision searches from Sect. 3.1.
Assume we successfully recovered one session key k∗ and the corresponding nonce
r. The re-keying function used in this scheme is k∗ = g(k, r) = k · r.

As already discussed in Sect. 2.1, the majority of the nonces r is coprime to
yd + 1 and the inverse r−1 exists. Therefore, we can define the inverse function
k = g′(k∗, r) = k∗ · r−1 and simply derive the master key k in use. The overall
complexity of this attack is dominated by the session-key recovery complexity
of 2 · 2n/2.

3.4 Master Key Recovery for the CARDIS 2011 Multi-party
Scheme

Two different functions g for re-keying are proposed in [12]. We first consider the
version with k∗ = r ·k+s ·� in the two-party case. Recall that k and � are the two
master keys, and r and s are nonces chosen freshly by the two communicating
parties. We attack the device during the online phase, where the attacker has con-
trol over the nonce s. For simplicity, the nonce s is kept constant during the whole
online phase, although the attack works just as well for random nonces. Now,
we need to recover two session keys k∗

1 and k∗
2 with two corresponding nonces r1

and r2 to determine the master key. We can then set up the following equations:

k∗
1 = r1 · k + s · �,

k∗
2 = r2 · k + s · �.

By combining them, we get

k∗
1 − k∗

2 = (r1 − r2) · k.

If the inverse of (r1 − r2) exists (which holds with overwhelming probability),
we can calculate the first master key k as

k = (r1 − r2)−1 · (k∗
1 − k∗

2)

As s is also invertible (trivially if we control s, with high probability otherwise),
we also get �:

� = s−1 · (k∗
1 − r1 · k).

As nearly every difference of (r1−r2) is coprime to y16+1, the complexity of this
attack is determined by finding the two necessary session keys. By increasing the
precomputed table size and the number of online queries to t = t′ =

√
2 · 2n/2,

we can achieve this with an overall complexity of 2
√

2 · 2n/2 ≈ 2.8284 · 2n/2

encryptions and a success probability of about 1 − 3
e2 ≈ 59.40%. Note that the

memoryless version cannot realistically be used in this scenario, since we are
unlikely to be able to control both parties’ nonces.

Clearly, the same attack applies if k2 is used instead of �. For m parties, we
need m session keys to recover the m unknown master keys. The necessary table
size and number of queries grow accordingly.

242 C. Dobraunig et al.

4 Comparison to Hellman’s Time-Memory Trade-Off
Attack

Hellman [8] described a generic cryptanalytic time-memory trade-off attack on
block ciphers. For a block cipher with a key size of n bits, after a precomputa-
tion with time complexity of about 2n, Hellman’s method has an (online) time
complexity of T = 22n/3 and memory requirements of M = 22n/3 to recover the
key. In more detail, it allows a time/memory trade-off curve of M · √

T = 2n.
Since we are only interested in attacks with T ≤ 2n (faster than brute force), M
has to be at least 2n/2. We want to note that the attack described in this paper
is on a much better time/memory trade-off curve, M · T = 2n, and in particular
does not require a 2n precomputation.

5 Fixing the Scheme

The main problem of the construction is that the function g is easy to invert. This
allows to extend the time-memory trade-off attacks for session key recovery to
full master key recovery as demonstrated in Sect. 3. A simple, but unsatisfactory
solution to prevent this kind of attack is to increase the master key, session
key, and nonce sizes to twice the security level each. For example, if the desired
security level is 128 bits, AES-256 is a natural choice for the block cipher E,
with a performance overhead of about 40% compared to AES-128. Additionally,
the nonce transmission overhead becomes twice as large. This is clearly not
compatible with resource-constrained application scenarios.

The alternative is to fix the construction by using a function g that is hard
to invert, as for instance the one suggested in [4]. It should be hard to recover
the master key k from the knowledge of one or a few session keys k∗ and cor-
responding nonces r. However, this raises the question how such a cryptograph-
ically strong function can be constructed without in turn being very costly to
protect against side-channel attacks. It is not sufficient to simply postprocess
k∗ with some preimage-resistant function that does not additionally depend on
any secret information (i.e., parts of the key). Clearly, additional research is
necessary to identify suitable constructions and desirable properties for g.

6 Application to Other Re-keying Schemes

The attacked schemes [12,13] are nonce-based and stateless. In short, this means
that the communicating parties share a secret key and derive the session key by
using the exchanged nonces. Besides this type of schemes, other schemes have
been proposed, such as the re-keying scheme by Kocher [10]. This scheme works
without nonces. To generate the session keys, the communicating parties traverse
a tree-like structure. We call schemes like Kocher’s [10] stateful schemes.

It is easy to see that similar time-memory trade-off attacks are also possible
on stateful schemes. To mount such attacks and recover the master key, the used
functions to generate the session keys have to be publicly known and must be
easy to invert.

On the Security of Fresh Re-keying to Counteract Side-Channel 243

7 Conclusions

In this paper, we have analyzed fresh re-keying schemes from a generic point of
view. We demonstrated how to recover one (of many) used session keys with a
complexity of about 2 ·2n/2 chosen-plaintext queries. Depending on the function
g used for deriving the session key, knowledge of one or a few session keys may
allow to even recover the master key. In case of the simple and multi-party re-
keying schemes suggested by Medwed et al. [12,13], recovering the master key is
easily possible since their function g is easy to invert. The effect of our attacks
is that the complexity to recover the master key is reduced from the ideal 2n to
about 2 · 2n/2.

A simple, but unsatisfactory solution to prevent this kind of attacks is to
increase the master key, session key and nonce sizes to twice the security level
each. More promising approaches focus on the properties of g, in particular the
hardness to invert g(·, r) to deduce the key k, as in the scheme by Belaid et al. [4].
Our results show that designing secure, efficient re-keying functions remains a
challenging task, and that frequent re-keying opens up problems of its own that
are not yet fully understood.

Acknowledgments. This work has been supported in part by the Austrian Science
Fund (project P26494-N15) and by the Austrian Government through the research
program ICT of the Future under the project number 4593209 (project SCALAS).

References

1. Abdalla, M., Beläıd, S., Fouque, P.-A.: Leakage-resilient symmetric encryption via
re-keying. In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS, vol. 8086, pp.
471–488. Springer, Heidelberg (2013)

2. Akkar, M.-L., Giraud, C.: An implementation of DES and AES, secure against
some attacks. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol.
2162, pp. 309–318. Springer, Heidelberg (2001)

3. Ali, S., Mukhopadhyay, D., Tunstall, M.: Differential fault analysis of AES: towards
reaching its limits. J. Cryptographic Eng. 3(2), 73–97 (2013)

4. Beläıd, S., Santis, F.D., Heyszl, J., Mangard, S., Medwed, M., Schmidt, J.,
Standaert, F., Tillich, S.: Towards fresh re-keying with leakage-resilient PRFs:
cipher design principles and analysis. J. Cryptographic Eng. 4(3), 157–171 (2014)

5. Bogdanov, A., Dobraunig, C., Eichlseder, M., Lauridsen, M., Mendel, F., Schläffer,
M., Tischhauser, E.: Key Recovery Attacks on Recent Authenticated Ciphers. In:
Aranha, D., Menezes, A. (eds.) LATINCRYPT. LNCS, Springer (2014) (to appear)

6. Brent, R.P.: An improved Monte Carlo factorization algorithm. BIT, Nord. Tidskr.
Inf.-behandl. 20, 176–184 (1980)

7. Grosso, V., Poussier, R., Standaert, F.X., Gaspar, L.: Combining leakage-resilient
PRFs and shuffling (Towards Bounded Security for Small Embedded Devices).
IACR Cryptology ePrint Archive 2014, p. 411 (2014)

8. Hellman, M.E.: A cryptanalytic time-memory trade-off. IEEE Trans. Inf. Theory
26(4), 401–406 (1980)

244 C. Dobraunig et al.

9. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

10. Kocher, P.: Leak-resistant cryptographic indexed key update (Mar 25 2003).
http://www.google.com/patents/US6539092. US Patent 6,539,092

11. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks - Revealing the Secrets
of Smart Cards. Springer, New York (2007)

12. Medwed, M., Petit, C., Regazzoni, F., Renauld, M., Standaert, F.-X.: Fresh re-
keying II: Securing multiple parties against side-channel and fault attacks. In:
Prouff, E. (ed.) CARDIS 2011. LNCS, vol. 7079, pp. 115–132. Springer, Heidelberg
(2011)

13. Medwed, M., Standaert, F.-X., Großschädl, J., Regazzoni, F.: Fresh re-
keying: Security against side-channel and fault attacks for low-cost devices. In:
Bernstein, D.J., Lange, T. (eds.) AFRICACRYPT 2010. LNCS, vol. 6055, pp.
279–296. Springer, Heidelberg (2010)

14. Mendel, F., Mennink, B., Rijmen, V., Tischhauser, E.: A simple key-recovery attack
on McOE-X. In: Pieprzyk, J., Sadeghi, A.-R., Manulis, M. (eds.) CANS 2012.
LNCS, vol. 7712, pp. 23–31. Springer, Heidelberg (2012)

15. van Oorschot, P.C., Wiener, M.J.: Parallel collision search with application to
hash functions and discrete logarithms. In: ACM Conference on Computer and
Communications Security, pp. 210–218 (1994)

16. Pietrzak, K.: A leakage-resilient mode of operation. In: Joux, A. (ed.) EURO-
CRYPT 2009. LNCS, vol. 5479, pp. 462–482. Springer, Heidelberg (2009)

17. Quisquater, J.-J., Delescaille, J.-P.: How easy is collision search. New results and
applications to DES. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp.
408–413. Springer, Heidelberg (1990)

18. Tiri, K., Verbauwhede, I.: Securing encryption algorithms against DPA at the logic
level: Next generation smart card technology. In: Walter, C.D., Koç, Ç.K., Paar,
C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 125–136. Springer, Heidelberg (2003)

Evidence of a Larger EM-Induced Fault Model

S. Ordas2(B), L. Guillaume-Sage2, K. Tobich2, J.-M. Dutertre1,
and P. Maurine1,2

1 CEA-TECH and ENSMSE, Centre Microélectronique de Provence G. Charpak,
80 Avenue de Mimet, 13120 Gardanne, France
dutertre@emse.fr, philippe.maurine@cea.fr

2 LIRMM-University of Montpellier, 161 Rue Ada, 34392 Montpellier, France
{ordas,guillaume-sage,tobich}@lirmm.fr

Abstract. Electromagnetic waves have been recently pointed out as a
medium for fault injection within circuits featuring cryptographic mod-
ules. Indeed, it has been experimentally demonstrated by A. Dehbaoui
et al. [3] that an electromagnetic pulse, produced with a high voltage
pulse generator and a probe similar to that used to perform EM analy-
ses, was susceptible to create faults exploitable from a cryptanalysis view-
point. An analysis of the induced faults [4] revealed that they originated
from timing constraint violations.

This paper experimentally demonstrates that EM injection, performed
with enhanced probes is very local and can produce not only timing faults
but also bit-set and bit-reset faults. This result clearly extends the range
of the threats associated with EM fault injection.

1 Introduction

Besides power and EM analyses [5,6], fault injection constitutes [2] a serious
threat against secure circuits. Among the means used to inject faults within
cryptographic circuits, the laser [11] is undoubtedly the most popular because of
its high spatial and temporal resolutions. However, fault injection with laser is
facing difficulties. Among them one can identify the increasing number of metal
layers (up to 12 levels) used to rout signals in a chip, this may forbids the use of
laser to inject fault through the frontside. The second difficulty one may point
out is the long practice of laser injection and the related and progressive devel-
opment of more and more efficient countermeasures like embedded laser shot
detectors. It is therefore not surprising that adversaries looks for new mediums
for injecting faults. Two fault injection means appeared recently. One of them
is the injection of a voltage spike directly into the substrate of the targeted
integrated circuit to produce ground bounces or voltage drops according to the
polarity of the spike [12]. The other is EM injection which, despite the early
warning of Quisquater et al. in 2002 [1], did only find recently a larger echo in
the scientific bibliography thanks to its inherent advantages: its ability to inject
faults through the package and the frontside being the most important as high-
lighted in [10] in which a high frequency spark gap is used to produce faults in
a CRT-RSA.
© Springer International Publishing Switzerland 2015
M. Joye and A. Moradi (Eds.): CARDIS 2014, LNCS 8968, pp. 245–259, 2015.
DOI: 10.1007/978-3-319-16763-3 15

246 S. Ordas et al.

Two types of EM injection platforms can be mounted to induce faults into
circuits. Harmonic EM injection platform refers to the first type. It produces
sine EM waves, that can be modulated in amplitude or not, to produce faults.
Such type of platform has been reported efficient in [9] to disturb the behavior of
an internal clock generator and in [1] to bias a true random number generator.

EM Pulse (EMP) platform refers to the second type of platform which is
detailed in Sect. 2. It produces a single but powerful electromagnetic pulse that
creates a sudden current flow in the power/ground networks of an integrated
circuit (IC) and therefore voltage drops and/or ground bounces. Such type of
platform was first reported efficient in [3] to inject faults into a quite old micro-
controller (designed with a 350 nm technology). The analysis of the fault obtained
using such a platform was conducted in [4]. This paper concludes that EM injec-
tion produces timing faults and more precisely setup time constraint violations as
described in Sect. 3. As a result of this observation, a delay-based glitch detector
was evaluated against EM injection in [13] and demonstrated partially efficient.

If the results reported in [3] are convincing, they limit de facto the interest of
EM Pulses (EMP) for injecting faults into smartcards. Indeed, nowadays smart-
cards are typically designed with the 90 nm process and operate at a reduced
clock frequencies (<40MHz). They are therefore characterized by large timing
slacks i.e. the time margin between a circuit critical time and the clock period).
They are thus quite robust to EM injection (considering the ranges and the slew
rates of modern high speed voltage generators) if the latter does only produce
timing faults. Indeed, producing timing faults in such circuits requires the use of
extremely powerful pulse generator to produce sufficiently intense EMP. Addi-
tionally producing such EMP reduces the spatial resolution of the EM injection.

This paper addresses this limitation. It experimentally shows that EM injec-
tion can also produce other types of faults, like bit-set and bit-reset faults,
provided enhanced injectors, that allow to concentrate the magnetic flux on
a small part of the IC surface, are used. The rest of the paper is organized as
follows. First, the EM injection platform, including the enhanced injectors, used
to demonstrate that EM injection can produced bit-set and bit-reset fault is
described in Sect. 2. In Sect. 3, the ability of EM injection in producing tim-
ing fault is verified and the conditions at which timing faults appear in an AES
embedded into an FPGA (90 nm) are characterized. Then Sect. 4 gives evidences
that EM injection is able to produce bit-set and bit-reset faults into the same
FPGA. Conditions at which the bit-set and bit-reset faults appear are also char-
acterized. Finally, Sect. 5 proposes a discussion related to the EM fault model
before concluding in Sect. 6.

2 Experimental Setup

EM injection platforms, both harmonic and pulsed, are briefly described in [7].
In this section, a more detail description of the EM pulsed injection platform
used to obtain the experimental results reported in this paper is given. Both the
setup and EM injectors are discussed.

Evidence of a Larger EM-Induced Fault Model 247

2.1 EM Pulse Platform (EMP Platform)

The goal of an EMP platform is to generate, in the close vicinity of the targeted
device, an intense and sudden variation of the magnetic field. This variation of
the magnetic flow is then captured by some of the metallic loops formed by the
power/ground networks. A sudden and intense current variation thus appears in
the IC and results in voltage drops and ground bounces. Because, the IC does
not operate under its normal voltage conditions, faults are expected to appear.

The EMP platform considered in the rest of the paper is shown in Fig. 1. It
features a laptop that controls the whole platform through serial ports, a 3-axis
positioning system to place the EM injector with an accuracy of ±5µm at the
surface of the Device Under Analysis (DUA), a 3-axes vision system made of
USB microscopes connected to the laptop. An oscilloscope is also used in order
to monitor the synchronization between the EMP and the target’s operations.
The pulse generator is a main element of the platform. It delivers, to the EM
injector, a voltage pulse of amplitude Vpulse as high as 200 V (current 8 A), with
a width that ranges between 5 ns and 100 ns. Its settling times are lower than
2 ns. Because an adversary aims at injecting faults in some specific part of the
target’s computations while letting the other parts’ computations fault free, the
EMP should be localized in the smallest possible area. For that, the adversary
can design some specific and miniaturized EM injectors.

3-axes vision system
3-axes positioning system
Oscilloscope
Pulse generator
Hand made injection probes
a laptop

Fig. 1. EMP platform used for all experiments reported in this paper.

2.2 EM-Injectors

Various EM-injectors can be used according to the context of the analysis.
Figure 2 shows three types of injectors we typically use. All are hand made
and designed around a ferrite core to guide the magnetic field lines toward the
target. All are also designed in different sizes. ‘Flat’ injectors (see Fig. 2-a) were
designed with ferrite diameter ranging between 750µm and 300µm. ‘Sharp’
injectors were designed with tip end as small as 50µm (see Fig. 2-b). Finally,
‘Crescent’ injectors were designed with an air gap separation ‘s’ (see Fig. 2-c) of
the ends as small as 450µm.

248 S. Ordas et al.

The ‘Flat’ and ‘Sharp’ Injectors have been typically designed to localize the
magnetic flow below the ferrite tip end. In that case, sharpening the tip-end of
the ferrite (see Fig. 2-b), as proposed in [8], allows to further concentrate the flow
into a smaller area and thus to expect a higher spatial resolution. Note however
that contrarily to what has been obtained by simulation in [8], practice showed
that 4–7 turns around the ferrite provide better results than 1 or 2. However,
practice also shows that increasing further the number of turns does not help in
producing faults and can be counterproductive. Some magnetic field lines can
couple with interconnects quite far from the tip end indeed.

(a)

(b) (c)

s

300µm

EM-Injectors: (a) ’Flat’ Injector (b) ’Sharp’ Injector and (c) ’Crescent’ Injector

Fig. 2. EM-Injectors: (a) ‘Flat’ Injector (b) ‘Sharp’ Injector and (c) ‘Crescent’ Injector
(Color figure online).

If both the ‘Flat’ and ‘Sharp’ injectors are efficient, they suffer from a same
drawback. The magnetic field lines form close loops from one tip end to the other
in an ellipsoid shape as this is roughly represented in Fig. 2-b by the red arrows.
This implies that the resolution can be not so high even if the magnetic field is
extremely strong below the tip end of the ‘Sharp’ Injectors.

‘Crescent’ EM injectors were designed to circumvent this limitation. The
idea was to create a circular magnetic field in order to concentrate it between
the two ends of the crescent-shaped ferrite. This is expected to avoid (or limit)
any magnetic pollution all around the space separating the two ends because
the magnetic lines should get out from one end, then surround the top layer
of the power/ground network before coming back into the ferrite by the other
end. Additionally, because of their geometry, ‘crescent’ EM injectors have an
interesting property: they are directional. If rotated around the z-axis, the field
lines direction will also rotate of the same angle. This may modify the properties
of the coupling between the injector and the target. This is not the case for the
‘Flat’ and ‘Sharp’ injectors because of their cylindrical geometry.

3 Occurrence of Timing Faults

Almost all digital ICs are synchronous. Their internal operations are synchro-
nized with a common clock signal. Figure 3 depicts the principle of their internal

Evidence of a Larger EM-Induced Fault Model 249

architecture: blocks of computational logic, to process the data, surrounded
by ‘launch’ and ‘capture’ registers (or DFF, D flip-flop). The data stored in
a ‘launch’ DFF are released at the logic’s input on a clock rising edge, processed
through the logic, then latched into a ‘capture’ DFF at the next clock rising
edge. The use of synchrony leads to timing constraint requirements (as par-
tially exposed hereafter) which violation may induce computation faults. Thus
the authors of [3] showed on experimental grounds that EM injection, performed
with raw EM injectors, produces timing faults (induced by setup time constraint
violations). This observation should explain why a glitch detector was tested and
find partially efficient in detecting EM injection in [13]. The setup time constraint
is related to the amount of time spent by the circuit to process a data. This time,
roughly speaking, should be lower than the clock period of the target as written
more precisely in Eq. 1:

TClk > DClk2Q + DpMax + Tsetup + Tskew + Tjitter (1)

where TClk is the clock period, DClk2q the delay spent by the ‘capturing’ DFF
to launch a new data on its outputs after the clock rising edge (see Fig. 3), Tsetup

the setup time of the DFF capturing one bit of the resulting computation, Tskew

and Tjitter the skew that may exist between the clock signals of ‘launch’ and
‘capture’ DFFs and its jitter. Finally, DpMax is the biggest propagation delay of
the signal in the computational logic of the device. The time margin that exists
between the two hand-sides of Eq. 1 is commonly called the timing slack.

D

CK

Q

LOGIC

Tskew

‘Launch’ DFF ‘Capture’ DFF

CLK

D

CK

Q

DpMax

Fig. 3. Setup timing constraint in a synchronous IC.

DpMax depends on many factors. Among them, the most interesting, when
dealing with EM fault injection, are the supply voltage V dd and the processed
data. Indeed, EM injection is expected to alter V dd locally and thus to modify
the value of DpMax so that a fault appears by violation of Eq. 1 (i.e. a setup
time constraint violation). In this instance, EM injection leads to an increase of
DpMax that makes the right hand-side part of Eq. 1 bigger than its left hand-
side part (the timing slack became negative). Similarly, when changing the data
processed by the circuit, all terms in Eq. 1 remain unchanged except DpMax that
can change significantly. This change in the DpMax value from one dataset to
the other thus alters the value Vpulse that must be chosen to produce a fault.

250 S. Ordas et al.

The data dependence of DpMax is illustrated in Fig. 4. We performed EM
fault injection on an FPGA that embeds an AES hardware module (AES, or
advanced encryption standard, is a symmetric encryption algorithm) processing
random texts. EMPs targeted the 9th round of the AES. For any given dataset,
the magnitude Vpulse of the voltage pulse inducing the EM perturbation was
progressively increased from 60 V to 200 V. A first set of experiments was car-
ried out with the FPGA running at a clock frequency of 100 MHz. The obtained
fault occurrence rate is drawn as a function of Vpulse in Fig. 4. Below ∼120 V
no fault was injected. As Vpulse increased further to ∼175 V, the fault occur-
rence rate grew progressively from 0% to 100%. This range corresponds to the
appearance of timing violations. However, depending on DpMax, which changes
with the currently handled data, the fault probability increases progressively.
Beyond a ∼175 V Vpulse, EM fault injection became systematic.

A second set of experiments was performed with the FPGA running at
50 MHz and also processing the same dataset. We were expecting that this
increase of the clock period, which is obviously related to an increase of the
timing slack, would shift the fault occurrence rate towards higher Vpulse mag-
nitudes. The obtained fault probability curve at 50 MHz is depicted in Fig. 4,
it exhibits a 15 V shift. Moreover, the induced faults were the same at both
50 MHz and 100 MHz for any given dataset. These results are consistent with an
EM fault injection mechanism related to timing violations, it is a further experi-
mental reassurance. At that stage, it should be noticed that lowering further the
clock frequency (below 20 MHz) leads to a probability of obtaining a fault stuck
at 0% for Vpulse ∈ [−200 V, 200 V] for this positioning of the EM injector. This
is a direct illustration of the limitation associated to EM injection if the latter
produces only timing faults. Nevertheless, faults were also observed when the
AES was forced to operate at a low clock frequency. This observation suggested
us that EM injection does not only produce timing faults.

4 Evidence of a Bit-Set/Bit-Reset Fault Model

In Sect. 3, the occurrence of timing faults was confirmed. This section intends
to experimentally demonstrate that EMPs are also able to induce both bit-set

0

10

20

30

40

50

60

70

80

90

100

60 80 100 120 140 160 180 200

Vpulse (V)

P
ro

b
ab

ili
ty

 t
o

 o
b

ta
in

 a
 f

au
lt

 (
%

)

M
ax

 V
pu

ls
e

=
 2

00
V

Fig. 4. Probability to obtain a faulty response from the same AES when operated at
a clock frequency equal to 50 MHz and 100 MHz respectively.

Evidence of a Larger EM-Induced Fault Model 251

and bit-reset faults into the DFFs of an IC. We define a bit-set (resp. bit-reset)
fault as forcing to high (resp. low) level the state of a DFF initially at low (resp.
high) level as a result of a disturbance (an EMP injection in our case). To avoid
injecting timing faults while performing the experiments reported in this section,
the target’s clock was stopped during EMP injection.

4.1 Detecting Bit-Set and Bit-Reset Faults: Test Chip and
Experimental Procedure

Aiming at demonstrating the occurrence of bit-set and bit-reset faults, a specific
test chip was designed. Our intend was to be able to easily write and read the
content of DFFs to detect, by simple comparison, the occurrence of bit-set or bit-
reset faults. A large FIFO featuring (640× 8) DFFs (64 bytes) was mapped into
a Xilinx spartan 3E-1000 (technology node 90 nm). Figure 5 shows the floorplan
of this design. At that point, it should be noticed for the remainder of the paper
that all DFFs were mapped with their reset signal active low and their set signal
active high.

This test chip was exposed to EMPs for the purpose of drawing a fault
sensitivity map. The following and automated procedure was adopted in order
to detect (i.e. experimentally demonstrate) the occurrence of bit-set and bit-reset
faults:

– 1st step: the EM injector is placed at a given {X,Y } (initial value {0, 0})
coordinate above the test chip, in its close vicinity (i.e. close to contact) in
order to maximize the spatial resolution of the EM injection,

– 2nd step: the content of each byte of the FIFO is set to the hexadecimal value
‘AA’ (‘10101010’ in binary),

– 3rd step: the clock signal is stopped in order to avoid the occurrence of a
timing fault,

– 4th step: an EM pulse, with an amplitude Vpulse ranging between −200 V and
200 V is delivered to the EM injector,

– 5th step: the clock signal is re-activated after a while (several µs) and the
content of the FIFO recovered,

– 6th step: the initial and final contents are compared (a xor operation) in order
to detect the occurrence of bit-set and bit-reset faults, and the result of the
comparison is stored in a log file.

– 7th step: steps #2 to #6 are repeated 9 times in order to estimate the prob-
abilities to obtain bit-set and bit-reset faults at the current position {X,Y },

– 8th step: restart the procedure at step #1 at a new {X,Y } coordinate in order
to obtain a fault sensitivity map of the target.

4.2 Occurrence of Bit-Set and Bit-Reset Faults

Many fault sensitivity maps of the target were drawn according to the procedure
described in Subsect. 4.1 for different values of Vpulse ranging from −200 V to
200 V. Different probes were used. However, we report herein only the results

252 S. Ordas et al.

Fig. 5. Large chain of registers (FIFO) designed to demonstrate the occurrence of
bit-set and bit-reset faults.

obtained with a ‘crescent’ injector characterized by ‘s = 450µm’ because these
results are the best from a spatial resolution point of view.

During all these experiments, four types of circuit’s behavior were observed:

– injection of bit-set faults into a given number of DFFs,
– injection of bit-reset faults into a given number of DFFs,
– ‘Mute’ or loss of communication with the circuit,
– fault free.

Figure 6 shows three fault sensitivity maps obtained with a displacement step
of the EM injector equal to 300µm (< to the air gap of the crescent probe).
The whole die surface (5500µm× 5000µm) was scanned resulting in 4500µm×
2400µm fault sensitivity maps because of the shape of the EM injector and a of
guard-banding to avoid any collision of the injector with bondings. These maps
were obtained with the following settings: Vpulse = +170 V and a pulse width
PW = 8 ns. Figure 6-a shows the probability to have faults regardless of the
type of the obtained faults (either bit-set, bit-reset or Mute). Figure 6-b reports
the probability to have bit-set faults while Fig. 6-c gives the probability to have
‘Mutes’. Finally, Fig. 6-d shows the orientation of the injector above the IC sur-
face, a parameter that will be discussed later because of the directionality of the
injector. Two kind of ‘Mutes’ were observed. The first category is characterized
by a no response of the IC that does not imply to reprogram the FPGA in order
to relaunch the cartography. This suggests the occurrence of a fault in one of the
DFF of the finite state machine. The second category was more severe. Indeed
relaunching the cartography requires in that case to reprogram the FPGA. This
suggests that the bitstream was corrupted by the EM injection.

Evidence of a Larger EM-Induced Fault Model 253

Probability to obtainfaults

4500µm

24
00

µ
m

Probability0 1
Probability to obtainbitsets

24
00

µ
m

4500µm

24
00

µ
m

Probability to obtain ‘Mutes’

(a)

(b)

(c)

(d)

Probe Orientation

4500µm

Fig. 6. Probabilities to produce (a) faults regardless of the fault type (b) bit-set faults
(c) ‘mutes’ and (d) injector orientation (air gap along the y-axis) – (170 V, 8 ns) EMP.

Obtaining these sensitivity maps, especially the one of Fig. 6-b, constitutes an
experimental demonstration that EM injection, conducted with enhanced injec-
tors, is able to produce bit-set faults. This was our first objective. Additionally,
one may observe once again that EM injection is local and reproducible. Indeed,
we did verify that the bit-set faults obtained, at a given coordinate from one
injection to another, were exactly the same.

4.3 Correlation Between the EMP Polarity and the Occurrence
of Bit-Set and Bit-Reset Faults

Despite being a proof that EMP injection may inject faults into registers which
are not related to timing violations, the experiments reported in Subsect. 4.2
never leaded to a bit-reset fault. Considering that the set signal of the DFFs was
active high and that their reset signal active low, a similar set of experiments
was relaunched for both achievable polarities of the EMPs: with Vpulse = −140 V
and +140 V instead of +170 V only. The idea that motivated this experiment
was the assumption that a pulse of a given polarity may affect more the ground
network than the power network (or vice-versa). Therefore, it may be easier
to induce bit-set than bit-reset faults (or the contrary) depending on the EMP
polarity. Note however that the polarity is here an arbitrary notion that depends
in our case of both the injector orientation and the sign of the voltage spike. For
the sake of simplicity, we choose here to define the polarity as positive when
the pulse affects more the ‘set’ signal which is active high than the ‘reset’ signal
which is active low.

Figure 7-a gives the probability to obtain bit-set faults when applying a pos-
itive pulse of amplitude +140 V instead of +170 V for Fig. 6-b. Comparing these
two figures (Figs. 6-b and 7-a) allows observing that reducing Vpulse reduces
the size of the fault sensitive areas. Note however, that the two maps remain

254 S. Ordas et al.

4500µm

0 1

4500µm
24

00
µ

m

24
00

µ
m

0 1 Probability to obtain bitsets Probability to obtain bitresets

(a) (b)

Fig. 7. Probabilities to obtain (a) bit-set faults with Vpulse = +140 V and (b) bit-reset
faults with Vpulse = −140 V

similar in shape. This indicates that the magnitude Vpulse is an efficient control
parameter for EM injection, as it was expected.

Figure 7-b gives the probability to obtain bit-reset faults when applying a
negative pulse of amplitude −140 V; during this set of experiments not any
bit-set fault was induced. One may observed that the two cartographies are
completely different indicating that the susceptibility of an IC to a positive or a
negative pulse may be radically different.

Nevertheless, the main conclusion that can be drawn from these experiments
is that the pulse polarity (and therefore the injector orientation) is a key factor
in controlling the type of EMP-induced faults. It seems to allow targeting more
the ground network than the power network according to the topology of the IC.
These results also suggest that according to their occurrence, bit-set and bit-reset
faults are related to the way DFF are designed (set/reset signals active low or
high). However, further investigations are mandatory to sustain this assumption.

4.4 Threshold Voltage for the Occurrence of Bit-Set Faults

The evolution with Vpulse of the probability to obtain timing faults has been
experimentally estimated in Sect. 3. According to [4], this evolution should be
smooth when random plaintexts are passed to the AES because the electrical
paths and therefore the minimum timing slack changes with the processed plain-
texts. This has been verified in Sect. 3. Indeed, this evolution has been found, for
the AES mapped into the FPGA and the considered positioning of the injector,
varying from 10 % to 90 % for Vpulse ranging from 130 V to 180 V when the AES
operates at 100 MHz.

The evolution with Vpulse of the probability to obtain bit-set faults has also
been measured at several {X,Y } coordinates for different values of the supply
voltage, V dd, of the FPGA. Figure 8 shows the result obtained for one positioning
of the injector but for different Vdd values. As depicted, for this positioning, as
well as for many other that have been tested, the evolution is really sharp. The
probabilities vary from 10 % to 90 % when the the magnitude of Vpulse varies
from less than 1 V, which is the voltage resolution of our pulse generator. This
confirms the crossing of a threshold, V th

pulse, above which the probability to obtain
a bit-set (or a bit-reset) is equal to 1. Additionally, this threshold voltage slowly

Evidence of a Larger EM-Induced Fault Model 255

P
ro

b
ab

ili
ty

 to
 o

b
se

rv
e

b
it

se
ts

V
d

d
=

1.
10

V

V
d

d
=

1.
15

V

V
d

d
=

1.
20

V

V
d

d
=

1.
25

V

V
d

d
=

1.
30

V

Vpulse (V)

Fig. 8. Evolutions of the probabilities to obtain bit-set faults when the FPGA is sup-
plied with different V dd values.

varies with the supply voltage of the FPGA. It should also be noticed that from
one positioning of the EM injector to another one, V th,bit−set

pulse can vary for several
tens or even move out of the voltage range of our pulse generator (−200 V to
+200 V).

4200µm

24
00

µ
m

4200µm

24
00

µ
m

Probability to obtain bitreset0 1

Fig. 9. Evolutions of the probabilities to obtain bit-set faults with Vpulse when the EM
injector is parallel or orthogonal to the X-axis.

4.5 EM Injector Orientation

In Sect. 2, it is mentioned that ‘crescent’ injectors, because of their geometry, pro-
duce a polarized magnetic field, i.e. are directional. This characteristic of these

256 S. Ordas et al.

enhanced EM injectors was experimentally verified. Two fault sensitivity maps
were drawn (Vpulse = −140 V) with the EM-injector positioned parallel and per-
pendicular to the X-axis as illustrated in Fig. 9 which also discloses the obtained
maps. It is obvious that the susceptibility of the IC to magnetic fields parallel
and perpendicular to the X-axis is different. This could may be be explained by
the way the top metal layers of the power (V dd) and ground (Gnd) networks are
routed. It is common practice to route perpendicular to each other the V dd and
Gnd metal lines. However, we didn’t have this information for the FPGA under
consideration. Nevertheless, this result confirms that ‘crescent’ injector are, as
expected, directional.

4.6 Fault Types and Spatial Resolution

Considering the legacy from laser injection techniques, one may wonder what
is the spatial resolution of EM fault injection, but also the types of faults it
produces. The experimental faults maps were further analyzed: Fig. 10 reports
some results illustrating what was observed. More precisely each sub-figure gives
the number of faulted bits per byte for all bytes, for given position and orientation
of the injector (shown by the large dot and the dotted rectangles) and given
polarity and amplitude of the pulse (given in the caption). It is therefore possible
to observe, for several settings of the EM injection, the spatial resolution of
the EM injection and the type of induced faults. Figure 10-a and -b (resp. -e
and -f) show the effect of the positioning of the injector; all others settings
being constant. These sub-figures highlight that EM injection can be very local.
Figure 10-a and -c allow to observe the effect of Vpulse. Figure 10-a, -b and -c
should be compared to Fig. 10-d, -e and -f to observe the impact of the injector

Number of faulted bits per byte

4500µm

24
00

µ
m

4500µm

24
00

µ
m

Number of faulted bits per byte

4500µm

24
00

µ
m

Number of faulted bits per byte

Number of faulted bits per byte

4500µm

24
00

µ
m

(a) (b)

(d) (e)

4500µm

24
00

µ
m

Number of faulted bits per byte

Number of faulted bits per byte

4500µm

24
00

µ
m

(c)

(f)

Fig. 10. Fault types and illustration of EM injection effects for four different settings
of injection parameters: (a) Vpulse = −100 V, perpendicular; (b) Vpulse = −100 V,
perpendicular; (c) Vpulse = −140 V, perpendicular; (d) 110 V, parallel; (e) −110 V,
parallel; (f) Vpulse = −110 V, parallel.

Evidence of a Larger EM-Induced Fault Model 257

orientation. Figure 10-d should be compared to -e or -f to observe the effect of
polarity.

These six maps allow to observe that both the area affected (let’s denote it
by spatial resolution even if it is not the most appropriated term) by the EM
injection and the types of induced faults (from single bit to multi-bits and from
single byte to multi bytes that were all observed during our experiments) strongly
depend on several parameters: the pulse amplitude and its polarity, the injector
position and its orientation. It was also observed (not illustrated herein) that
the distance d (d = 0 to d = 1.5 mm in our experiments) separating the injector
from the IC surface changes significantly the obtained results. Nevertheless, even
if the size of the area affected by the EM injection significantly varies with the
aforementioned parameters, one may observe the effect is not global but more
or less local according to the settings of the injection.

These observations could be explained by the mechanism exploited by EM
injection: a local EM coupling between an emitting antenna and one or several
receiving antennas. This implies that the spatial resolution and the effects pro-
duced by EM injection depend of course on the characteristics the EM injector
(emitting antenna) but also on the characteristics of the receiving antennas, i.e.
on the way the supply network of the IC is designed. It is therefore extremely
difficult to define the spatial resolution of an EM injection, or to give any figure.
It depends on both the Device Under Test and the settings of the injection. One
may only characterize the spatial resolution of its injector in free space; but this
is of reduced interest for the practice of EM injection.

As a result, let us conclude that there are several parameters (additional
parameters with respect to laser injection) allowing to select the area affected
by the EM injection and the faults that are produced. The EM injection can
thus be perceived as more complex than laser injection in this regard. However,
EM injection offers more degrees of freedom (more tuning parameters), to obtain
the desired faults. However, their induction remain conditioned by the presence
of the appropriated receiving antenna(s) in the IC. Experiments revealed there
are plenty. One has just to target the right ones with an efficient EM injector,
i.e. with the EM injector having the best spatial resolution in the empty space.
At the moment, no general recipe emerges to quickly and directly find the rights
settings for a given desired effect. Experimentation still prevails.

5 Discussion

At that stage, it has been experimentally observed that EM injection can produce
timing faults. This result was expected from [4]. It has also been verified that
the minimum pulse amplitude, V th,timing

pulse , to produce, with a high probability
(>0.8), a timing fault depends on the plaintext processed by the AES: it could
vary for one or four tens of volts from one plaintext to the other.

Additionally to these results, we experimentally demonstrated that EM injec-
tion, conducted with enhanced EM injectors, can produce bit-set and bit-reset
faults in more or less local manner according to the settings of the EM injection.

258 S. Ordas et al.

It was also observed that the minimum pulse amplitudes related to the injection
of bit-sets or bit-resets with a probability higher than 0.8 can vary for several
tens of volts from one positioning of the EM injector to another one.

All these considerations suggest that it is particularly difficult to decide if a
fault induced by an EMP is a timing fault, a bit-set or a bit-reset. It is even pos-
sible that all type of faults coexist during a same EM injection. Nevertheless, the
experimental demonstration that EM injection can produce bit-set or bit-reset
faults significantly enlarges the scope of what can be done with EM injection.

6 Conclusion

In this paper, we have experimentally demonstrated that EM injection, con-
ducted with enhanced EM injectors, is able to produce bit-set and bit-reset
faults in addition to timing faults. This experimental demonstration signifi-
cantly enlarges the scope of what can be done with EM injection, i.e. the EM
fault model. Indeed, if this was not the case, EM injection would have been of
reduced interest for the evaluation of IC designed with modern technologies but
operating at reduced clock frequency, such as smartcards.

Such a result was obtained thanks to the design of EM injectors according to
a simple idea: concentrating the magnetic field on the smallest possible area at
constant power rather than increasing the power delivered to the EM injector.
It should be noticed that there is still room to enhance EM injectors.

References

1. Bayon, P., Bossuet, L., Aubert, A., Fischer, V., Poucheret, F., Robisson, B.,
Maurine, P.: Contactless electromagnetic active attack on ring oscillator based
true random number generator. In: Schindler, W., Huss, S.A. (eds.) COSADE
2012. LNCS, vol. 7275, pp. 151–166. Springer, Heidelberg (2012)

2. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking crypto-
graphic protocols for faults (extended abstract). In: Fumy, W. (ed.) EUROCRYPT
1997. LNCS, vol. 1233, pp. 37–51. Springer, Heidelberg (1997)

3. Dehbaoui, A., Dutertre, J.-M., Robisson, B., Orsatelli, P., Maurine, P., Tria, A.:
Injection of transient faults using electromagnetic pulses -practical results on a
cryptographic system. IACR Cryptology ePrint Archive, 2012:123 (2012)

4. Dehbaoui, A., Dutertre, J.-M., Robisson, B., Tria, A.: Electromagnetic transient
faults injection on a hardware and a software implementations of AES. In: FDTC,
pp. 7–15 (2012)

5. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: concrete results.
In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162,
pp. 251–261. Springer, Heidelberg (2001)

6. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109,
pp. 104–113. Springer, Heidelberg (1996)

7. Maurine, P.: Techniques for em fault injection: equipments and experimental
results. In: FDTC, pp. 3–4 (2012)

Evidence of a Larger EM-Induced Fault Model 259

8. Omarouayache, R., Raoult, J., Jarrix, S., Chusseau, L., Maurine, P.: Magnetic
microprobe design for em fault attackmagnetic microprobe design for EM fault
attack. In: EMC Europe (2013)

9. Poucheret, F., Tobich, K., Lisart, M., Chusseau, L., Robisson, B., Maurine, P.:
Local and direct EM injection of power into CMOS integrated circuits. In: FDTC,
pp. 100–104 (2011)

10. Schmidt, J.-M., Hutter, M.: Optical and EM fault-attacks on CRT-based RSA:
concrete results. In: Posch, J.W.K.C. (ed.) Austrochip 2007, 15th Austrian Work-
hop on Microelectronics, Proceedings, Graz, Austria, 11 October 2007, pp. 61–67.
Verlag der Technischen Universität Graz (2007)

11. Skorobogatov, S.P., Anderson, R.J.: Optical fault induction attacks. In: Kaliski,
B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 2–12. Springer,
Heidelberg (2003)

12. Tobich, K., Maurine, P., Liardet, P.-Y., Lisart, M., Ordas, T.: Voltage spikes on
the substrate to obtain timing faults. In: DSD, pp. 483–486 (2013)

13. Zussa, L., Dehbaoui, A., Tobich, K., Dutertre, J.-M., Maurine, P., Guillaume-Sage,
L., Clédière, J., Tria, A.: Efficiency of a glitch detector against electromagnetic fault
injection. In: DATE, pp. 1–6 (2014)

Author Index

Bajard, Jean-Claude 139
Balasch, Josep 64
Benadjila, Ryad 173
Bouffard, Guillaume 3, 18
Bringer, Julien 35

Calderon, Thomas 173
Chakra, Ranim 3
Chen, Cong 49
Choudary, Marios O. 85

Daubignard, Marion 173
Debande, Nicolas 35
Dobraunig, Christoph 233
Dutertre, J.-M. 245

Eichlseder, Maria 233
Eisenbarth, Thomas 49, 215

Fandi, Abdellatif 3

Gaspar, Lubos 122
Gierlichs, Benedikt 64
Grosso, Vincent 64, 122
Guillaume-Sage, L. 245
Guillevic, Aurore 193

Järvinen, Kimmo 154

Kuhn, Markus G. 85

Lackner, Michael 18
Lamrani, Rokia 3

Lanet, Jean-Louis 3, 18
Lange, Tanja 104
Loinig, Johannes 18

Maghrebi, Houssem 35
Mangard, Stefan 233
Martin, William 215
Maurine, P. 245
Mendel, Florian 233
Merkiche, Nabil 139
Mestiri, Afef 3
Monsif, Mohammed 3

Ordas, S. 245

Poussier, Romain 122

Reparaz, Oscar 64

Servant, Victor 35
Shahverdi, Aria 49
Standaert, François-Xavier 64, 122

Tobich, K. 245

van Vredendaal, Christine 104
Verbauwhede, Ingrid 154
Vergnaud, Damien 193

Wakker, Marnix 104

Ye, Xin 49, 215

	Preface
	Organization
	Contents
	Java Cards
	Memory Forensics of a Java Card Dump
	1 Introduction
	2 Java Card
	2.1 Security in the Java Card World
	2.2 Attacks on Java Card
	2.3 State of the Art of Memory Carving

	3 Memory Carving on Java Card
	3.1 A Memory Dump
	3.2 Index of Coincidence
	3.3 Finding Java Card Byte Codes
	3.4 Finding Data in a Java Card Memory Dump

	4 JCDA: Java Card Disassembler and Analyzer
	5 Experimental Results
	6 Future Works and Conclusions
	A Content of a Dumped Area
	References

	Heap . . . Hop!
Heap Is Also Vulnerable

	1 Introduction
	2 State of the Art of the Logical Attacks
	2.1 Fooling the Control Flow Graph
	2.2 Exploiting the Java Card Heap

	3 Logical Attacks Against the Java Card Heap
	3.1 Transient Arrays on Java Card
	3.2 Type Confusion Upon the Java Card Heap
	3.3 Setting up Transient Array Metadata to Snapshot the Memory

	4 Countermeasures
	4.1 Counteract Fault Attack on the Java Heap
	4.2 Logical Attack on the Java Heap

	5 Experimental Results
	5.1 Fault Attack Countermeasures on the Object Header

	6 Conclusion
	References

	Software Countermeasures
	Study of a Novel Software Constant Weight Implementation
	1 Introduction
	2 Previous Works
	3 A Constant Weight AES
	3.1 The AES Algorithm
	3.2 Constant Weight Codes
	3.3 Encoded Operations

	4 Encoding the AES
	4.1 Implementation Performance and Comparison
	4.2 Fault Detection Capability and Memory Consumption

	5 Information Theoretic Analysis
	5.1 First Case: Perfect Bits Transition
	5.2 Second Case: Random Bits Transition

	6 Security Analysis
	6.1 Higher-Order Side-Channel Resistance in the Hamming Weight Model
	6.2 Side-Channel Resistance in the Imperfect Model

	7 Conclusion
	References

	Balanced Encoding to Mitigate Power Analysis: A Case Study
	1 Introduction
	2 Background
	2.1 Balanced Logic for Hardware Implementation
	2.2 Balanced Logic for Software Implementation
	2.3 The Prince Block Cipher

	3 General Balanced Encoding Countermeasure
	4 A Case Study Based on the Prince Cipher
	5 Evaluation Methodology
	5.1 Correlation-Based DPA
	5.2 Mutual Information Based Evaluation

	6 Evaluation Results
	6.1 Implementation Results
	6.2 CPA Results
	6.3 Mutual Information Based Leakage Analysis

	7 Conclusion
	References

	On the Cost of Lazy Engineering for Masked Software Implementations
	1 Introduction
	2 Definitions
	3 Reductions
	4 Experiments
	4.1 Implementation Details
	4.2 Testing Procedure
	4.3 Security Results

	5 Concluding Remarks
	References

	Side-Channel Analysis
	Efficient Stochastic Methods: Profiled Attacks Beyond 8 Bits
	1 Introduction
	2 Profiled Attacks
	2.1 Template Attacks
	2.2 Stochastic Models

	3 Compression Methods for Template Attacks
	3.1 Sample Selection
	3.2 PCA
	3.3 LDA

	4 Compression Methods for Stochastic Models
	4.1 Sample Selection
	4.2 PCA and LDA

	5 Evaluation on 8-Bit Data
	5.1 Guessing Entropy
	5.2 Results on 8-Bit Data

	6 Profiled Attacks on 16-Bit Data and More
	6.1 Considerations for the Attacker
	6.2 Considerations for Evaluation Laboratories
	6.3 Efficient Attacks and Evaluations on More Than 8-Bit
	6.4 Results on 16-Bit Data

	7 Conclusions
	References

	Kangaroos in Side-Channel Attacks
	1 Introduction
	2 Background
	2.1 A Short History of Discrete Logarithm Algorithms
	2.2 Mathematical Aspects of Kangaroos
	2.3 Pollard's Kangaroo Method
	2.4 Pollard's Kangaroo Method with Precomputation

	3 -Enumeration
	3.1 The Attack Model
	3.2 Enumeration in an Interval
	3.3 Further Considerations and Optimizations

	4 Experimental Results
	5 Comparison and Conclusion
	5.1 Comparison
	5.2 Conclusion

	References

	Combining Leakage-Resilient PRFs and Shuffling
	1 Introduction
	2 Background
	2.1 Leakage-Resilient PRFs
	2.2 Shuffled AES Implementation

	3 Evaluation Framework
	4 Simulated Experiments
	4.1 Ideal setting (identical S-box leakages, no direct perm. leakage)
	4.2 Adding Indirect Resource-Based Leakages
	4.3 Mitigating Resource-Based Leakages with Time-Based Ones
	4.4 Direct Permutation Leakage

	5 Practical Experiments
	A Additional Figures
	References

	Embedded Implementations
	Double Level Montgomery Cox-Rower Architecture, New Bounds
	1 Introduction
	2 Background Review
	2.1 Residue Number System
	2.2 RNS and Montgomery
	2.3 Base Extension

	3 New Bounds for the Cox-Rower Architecture
	3.1 μi’s Upper Bound for RNS Base

	3.2 Lower Bound for the Parameter Q of the Cox

	4 A New Cox-Rower Architecture
	4.1 Classical Rower Unit
	4.2 New Rower Unit
	4.3 Computation Algorithm
	4.4 Comparison Analysis

	5 Experiments and Comparison
	5.1 Validation on FPGA
	5.2 Comparison

	6 Conclusion and Perspectives
	A Algorithm to Compute the Montgomery Reduction over RNS and Implementation Details
	References

	How to Use Koblitz Curves on Small Devices?
	1 Introduction
	2 Elliptic Curve Cryptography and Koblitz Curves
	3 Related Work and Outline of the Idea
	3.1 Survey of the Existing Options
	3.2 Outline of the New Idea

	4 Addition in the -adic Domain
	4.1 Analysis of Algorithm 1

	5 Other Operations in the -adic Domain
	5.1 Folding
	5.2 Multiplication
	5.3 Multiplicative Inverse

	6 Architecture
	7 Results and Comparison
	8 Case Study: ECDSA
	9 Conclusions and Future Work
	References

	Public-Key Cryptography
	Caml Crush: A PKCS#11 Filtering Proxy
	1 Motivations of the Work
	1.1 An Introduction to PKCS#11
	1.2 Attacker Model and Usual Shortcomings Exhibited by PKCS#11 Middlewares
	1.3 Our Motivations for Providing a Filtering Proxy

	2 Architecture
	2.1 Design Choices
	2.2 Components

	3 PKCS#11 Filtering Engine
	3.1 Architecture of the Filter
	3.2 Filtering Features Involving Standard PKCS#11 Mitigations
	3.3 Object and Structure Filtering
	3.4 Blocking PKCS#11 Functions and Mechanisms
	3.5 Security Breaches Beyond PKCS#11 Flaws

	4 Deployment Scenarios
	4.1 HSMs in Corporate Networks
	4.2 Virtualized Environment
	4.3 Mobile and Embedded Platforms

	5 Evaluation
	5.1 Security Evaluation
	5.2 Performance Evaluation
	5.3 Filter Limitations and Future Work

	References

	Algorithms for Outsourcing Pairing Computation
	1 Introduction
	2 Preliminaries
	3 Review of Previous Proposals
	3.1 Girault-Lefranc Pairing Delegation Protocol
	3.2 Chevallier-Mames et al. Pairing Delegation Protocol
	3.3 Canard-Devigne-Sanders Pairing Delegation Protocol

	4 Pairing Delegation with Knapsack
	4.1 Security Analysis
	4.2 Description of Our Protocol

	5 Partial Pairing Computation Delegation
	References

	Leakage and Fault Attacks
	Bounded, yet Sufficient? How to Determine Whether Limited Side Channel Information Enables Key Recovery
	1 Motivation
	2 Background
	2.1 Adversarial Model and Notations
	2.2 Existing Metrics and Maximum Likelihood Principle
	2.3 Full Key Ranking Algorithm

	3 Evaluating Full Key Security
	3.1 Weak Maximum Likelihood Approach
	3.2 The Search Domain and Its Calculus Model
	3.3 An Optimized Key Space Finding Algorithm
	3.4 Usage of the KSF algorithm

	4 Experiment Results and Comparison
	4.1 Experiment Setup
	4.2 Posterior Probabilities Derivation
	4.3 Correctness and Influencing Factors of the KSF Algorithm
	4.4 Comparing the KSF algorithm with the VGS algorithm

	5 Conclusion
	References

	On the Security of Fresh Re-keying to Counteract Side-Channel and Fault Attacks
	1 Introduction
	2 Fresh Re-keying Schemes of Medwed et al.
	2.1 Basic Re-keying Scheme (AFRICACRYPT 2010)
	2.2 Advanced Re-keying Scheme for Multiple Parties (CARDIS2011)

	3 Generic Key-Recovery Attack
	3.1 Recovery of the Session Key
	3.2 Memoryless Session Key Recovery
	3.3 Master Key Recovery for the Basic AFRICACRYPT2010 Scheme
	3.4 Master Key Recovery for the CARDIS 2011 Multi-party Scheme

	4 Comparison to Hellman's Time-Memory Trade-Off Attack
	5 Fixing the Scheme
	6 Application to Other Re-keying Schemes
	7 Conclusions
	References

	Evidence of a Larger EM-Induced Fault Model
	1 Introduction
	2 Experimental Setup
	2.1 EM Pulse Platform (EMP Platform)
	2.2 EM-Injectors

	3 Occurrence of Timing Faults
	4 Evidence of a Bit-Set/Bit-Reset Fault Model
	4.1 Detecting Bit-Set and Bit-Reset Faults: Test Chip and Experimental Procedure
	4.2 Occurrence of Bit-Set and Bit-Reset Faults
	4.3 Correlation Between the EMP Polarity and the Occurrence of Bit-Set and Bit-Reset Faults
	4.4 Threshold Voltage for the Occurrence of Bit-Set Faults
	4.5 EM Injector Orientation
	4.6 Fault Types and Spatial Resolution

	5 Discussion
	6 Conclusion
	References

	Author Index

