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Abstract. There is a lack of more complicated ideal-lattice-based cryp-
tosystems which require the use of lattice trapdoors, for the reason that
currently known trapdoors are either only applicable to general lattices
or not well-studied in the ring setting. To facilitate the development of
such cryptosystems, we extend the notion of lattice trapdoors of Mic-
ciancio and Peikert (Eurocrypt ’12) into the ring setting with careful
justification. As a demonstration, we use the new trapdoor to construct
a new hierarchical identity-based encryption scheme, which allows us to
construct public-key encryption with chosen-ciphertext security, signa-
tures, and public-key searchable encryption.
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1 Introduction

Lattice-based cryptography is a promising alternative to create cryptosystems
that are secure even against quantum adversaries. Many powerful primitives
including fully-homomorphic encryption [1–4], homomorphic signatures [5,6],
multilinear map [7], (hierarchical) identity-based encryption [8,9] (which is also
useful for achieving other cryptographic goals like public-key encryption with
chosen-ciphertext security, signatures, and public-key searchable encryption),
and much more can be realized by lattices. Security reductions of some of these
constructions are directly based on the now well-studied (ring-)LWE (learning
with errors) or (ring-)SIS (short integer solutions) problems, which are both as
hard as the corresponding worst-case (ideal) lattice problems.

Hard Lattice Problems. An instance of the LWE problem is defined by a random
n by m integer matrix A and a vector b, where b = ATs + e mod q for some
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secret vector s and small noise vector e. The problem is to find the vector s.
As a “dual” problem to LWE, an instance of the SIS problem is defined by the
same random matrix A, where one is asked to find a short vector x so that
Ax = 0 mod q.

The “ring” versions of LWE and SIS, named ring-LWE and ring-SIS respec-
tively, are specific instances of LWE and SIS respectively defined for some struc-
tured matrix A to be explained below.

Ideal Lattices. In ideal lattices, or the so called “ring setting”, the matrix A
above is required to have some additional algebraic structures. One commonly
used example is to interpret each column of A as coefficients of a degree-(n − 1)
polynomial p(x), and require that xp(x) mod (xn + 1) is also contained in some
column of A. In such case, the matrix multiplications by A are equivalent to
polynomial multiplications. We can therefore view each vector v as an element
v in the ring Rq = Zq[x]/〈xn + 1〉, and each n-by-n sub-matrix Ai in A a ring
element ai in Rq. As the (ring-)LWE and (ring-)SIS problems have such simple
forms, the operations performed in the corresponding cryptosystems are rather
efficient.

Due to the algebraic structure of ideal lattices, cryptosystems based on ideal
lattices (with security based on the ring-LWE or ring-SIS assumptions) are more
efficient than their counterparts in general lattices: (1) The size of some para-
meters, which are originally matrices, is reduced by a factor of n, as each n-by-n
sub-matrix is now represented as a ring element; (2) The multiplications of ring
elements in Rq can be implemented on hardware by a variant of Fourier trans-
form [3].

Lattice Trapdoors. For more complicated primitives, a “trapdoor” is generated
together with a random lattice so that, while it is still hard for the adversary to
solve the (ring-)LWE or (ring-)SIS problems, the problems become easily solvable
with the help of the trapdoor.

Initiated by the work of Gentry et al. [10], a (old-type) trapdoor [10,11] of
(the lattice defined by) a matrix A is a short basis of the lattice Λ⊥

q (A), which
contains all the vectors x such that Ax = 0 mod q. Using the trapdoor, one
can sample short vectors x so that Ax = u mod q for any target vector u.
Moreover, the owner of the trapdoor of A can “delegate” the trapdoor of an
extended matrix (A,B) for any matrix B.

Micciancio and Peikert [12] developed a new type of trapdoors for general
lattices which is simpler and more efficient to use when compared to the old
trapdoors. A new-type trapdoor of A is a matrix T with small norm so that

A

[
T
I

]
= HG for some invertible matrix H, which is referred as the tag of the

trapdoor, and a nicely structured matrix G called the primitive matrix, where
the inversions of SIS (also known as “Gaussian sampling”) and LWE involving G
are easy and efficient.1 At the high-level sense, T can be considered as a secret
1 We switch the notation from the original R in [12] to T to avoid clashing of notations

in the later sections.



Trapdoors for Ideal Lattices with Applications 241

transformation from A to G which reduces the originally difficult inversions of SIS
and LWE involving A to the much easier inversions involving G. Notice that the
new-type trapdoors have the additional ability to invert LWE, which is not the
case for the old-type trapdoors. In addition, the size of the new-type trapdoors
is much (at least 4 times) smaller than that of the old-type.

However, despite the increase of efficiency, there is a lack of cryptosystems
in ideal lattices that require the use of trapdoors. One possible reason for this is
that, the trapdoors introduced by Gentry et al. [10] and improved by Alwen and
Peikert [11] are based on general lattices. Stehlé [13] attempted to extend the
trapdoor algorithms to ideal lattices, but the result is based on a non-standard
ideal-LWE assumption which, unlike the ring-LWE assumption, does not have
search-to-decision reduction. Later, Micciancio and Peikert [12] introduced a
new notion of lattice trapdoors which have even greater functionality, namely,
to invert not only SIS but also LWE. More importantly, the new trapdoors can
be translated to the ring setting, as mentioned in [12] but unfortunately without
much details.

Our Contributions. In this work, we extend the trapdoors from Micciancio and
Peikert [12] to the ring setting. As a result, the sizes of the “primitive vectors”,
the public vectors and trapdoors are reduced by a factor of n. As in other recent
cryptosystems [2,3,14] that are based on ring-LWE, we work with the “preferred”
choice of ring R := Z[x]/〈xn +1〉 where n is a power of 2. For such choice of ring
R, the general strategy of transforming the trapdoors to the ring setting is to
interpret each n by n submatrix in the construction of [12] as a ring element in R.
By breaking down elements in R in terms of the “power basis” 1, x, x2, . . . , xn−1,
we show that some of the algorithms in [12] can be reused. We also justify the
correctness of such transformation carefully by replacing certain theorems and
lemmas by those proven in the ring setting.

Finally, we demonstrate the power of the new trapdoors by constructing a
new identity-based encryption (IBE) scheme which improves the IBE scheme
constructed by Agrawal et al. [8] in three aspects, namely, being ideal-lattice-
based, having reduced trapdoor size, and being secure against chosen-ciphertext
attack.

2 Preliminary

Notations. Let λ be the security parameter. Let f(x) = fλ(x) ∈ Z[x] be a
polynomial of degree n = n(λ). Let q = q(λ) ∈ Z be a prime integer, p =
p(λ) ∈ Z

∗
q be relatively prime to q. Let R := Z[x]/〈f(x)〉 and Rq := R/qR. Let

χ be a distribution over the ring R. “|” denotes row concatenation of vectors or
matrices. If S is a set, then x ← S denotes the sampling of a uniformly random
element x from S. If X is a distribution, then x ← X denotes the sampling of
a random element x according to the distribution X. If A is an algorithm, then
x ← A means that x is the output of the algorithm A. To distinguish between
elements, vectors and matrices of Z and R, we follow the notations listed in
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Table 1. Notations of elements, vectors and matrices of Z and R

Element Vector Matrix

Integers Z a a A

Ring R a a A

Table 1. We denote the k-by-k identity matrix over R by Ik and the k-by-l zero
matrix over R by 0k×l. Without further specifications, ‖x‖ denotes the L2 norm
of the vector x and is extended naturally to ‖x‖ via the coefficient embedding.

2.1 Lattice Background

Statistical Distance. Let X and Y be two random variables taking values in
some finite set Ω. The statistical distance Δ(X;Y ) is defined as

Δ(X;Y ) :=
1
2

∑

s∈Ω

|Pr[X = s] − Pr[Y = s]|.

We say that the ensembles of random variables X(λ) and Y (λ) are statistically
close if Δ(X;Y ) is a negligible function in λ.

Integer Lattices. We consider three types of integer lattices. For an integer mod-
ulus q, A ∈ Z

n×m
q and u ∈ Z

n
q , define:

Λq(AT ) := {x ∈ Z
m : ∃ s ∈ Z

n
q s.t. ATs = x mod q}

Λ⊥
q (A) := {x ∈ Z

m : Ax = 0 mod q}
Λu

q (A) := {x ∈ Z
m : Ax = u mod q}

Note that for any t ∈ Λu
q (A), Λu

q (A) = Λ⊥
q (A) + t is a shift of Λ⊥

q (A).

Ideal Lattices. Correspondingly, we consider three types of ideal lattices. For an
integer modulus q, a ∈ Rk

q and u ∈ Rq, define:

Λq(a) := {x ∈ Rk : ∃ s ∈ Rq s.t. as = x mod q}
Λ⊥

q (aT ) := {x ∈ Rk : aTx = 0 mod q}
Λu

q (aT ) := {x ∈ Rk : aTx = u mod q}

Note that for any t ∈ Λu
q (aT ), Λu

q (aT ) = Λ⊥
q (aT ) + t is a shift of Λ⊥

q (aT ).

Discrete Gaussian. Let L ⊂ Z
n, c ∈ R

n, σ ∈ R
+. Define:

ρσ,c(x) = exp(−π
‖x − c‖2

σ2
) and ρσ,c(L) =

∑

x∈L

ρσ,c(x).
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The discrete Gaussian distribution over L with center c and parameter σ is
defined as

∀x ∈ L,DL,σ,c(x) =
ρσ,c(x)
ρσ,c(L)

.

For c = 0, denote ρσ,0 as ρσ and DL,σ,0 as DL,σ.

Gram-Schmidt Norm. Let T = {t1, . . . , tk} ⊂ R
m be a set of real vectors, and

‖T‖ denotes the L2-norm of the longest vector in T , i.e., ‖T‖ := maxk
j=1 ‖tj‖,

T̃ := {t̃1, . . . , t̃k} denotes the Gram-Schmidt orthogonalization of the vectors
t̃1, . . . , t̃k taken in that order. ‖T̃‖ is called the Gram-Schmidt norm of T .

2.2 Assumptions

The learning with errors (LWE) problem defined by Regev [15] is now a well-
studied hard problem that is as hard as some worst-case lattice hard problems
such as the shortest vector problem (SVP), via either quantum or classical reduc-
tions [15,16]. An LWE instance is defined by a matrix A ∈ Z

n×m
q and a vector

b ∈ Z
m
q . The search version of LWE is to find a secret vector s ∈ Z

n so that
ATs + e = b for some short error vector e ∈ Z

m. The decision version is to
decide whether such a pair of (A, b) comes from the uniform distribution or the
LWE distribution, i.e. ATs + e = b for some short error vector e ∈ Z

m.
To define LWE in the ring setting, namely ring-LWE, A is restricted to have

a certain algebraic structure. We interpret the entries in a column of A as the
coefficients of a degree-(n−1) polynomial p(x), and require that the vector given
by the coefficients of xp(x) mod f(x), for some degree-n polynomial f(x), is also
contained in some column of A. Assuming that m = nk for some integer k, we
can then interpret the i-th n-by-n sub-matrix of A as a ring element ai in Rq,
the vector s as s in R, e as (e1, . . . , ek)T in Rk and b as (b1, . . . ,bk)T in Rk

q .
Multiplications between a sub-matrix of A and the vector s correspond to the
multiplications of the ring elements ai and s. Apparently, the search version of
ring-LWE is then to find s given {ai,bi = ais + ei}k

i=1. The decision version of
ring-LWE is to distinguish the distribution of the given samples from the uniform
distribution. For the detailed definitions and reductions related to ring-LWE, we
refer to the comprehensive work of Lyubashevsky et al. [3,14].

In this work, we further restrict the polynomial f(x) such that f(x) = xn+1,
which is the preferred choice in recent ring-LWE-based cryptosystems [2,3,14]
due to its simplicity. In this case, the ring-LWE assumption has a much simpler
form. This special case is named as polynomial LWE (PLWE) by Brakerski and
Vaikuntanathan [2].

Definition 1 (PLWE assumption [2]). For all λ ∈ N, l = poly(λ), ai,u ← Rq,
ei, s ← χ, the PLWE

(l)
f,q,χ assumption states that the distribution of {(ai,ais +

pei)}l
i=1 is computationally indistinguishable from the distribution of {(ai,ui)}l

i=1.
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Theorem 1 [2, Theorem1]. Let λ be the security parameter. Let k ∈ N and let
m = 2�log λ� be a power of two. Let Φm(x) = xn + 1 be the m-th cyclotomic
polynomial of degree n = ϕ(m) = m/2. Let σ ≥ ω(

√
log n) be a real number, and

let q ≡ 1 (mod m) be a prime integer. Let R = Z[x] = 〈Φm(x)〉. Then there is
a randomized reduction from (n2q/r) · (n(l + 1)/ log(n(l + 1)))1/4-approximate
R-SVP to PLWE

(l)
Φm,q,χ where χ = DZn,σ is the discrete Gaussian distribution.

The reduction runs in time poly(n, q, l).

3 Primitive Vectors in Ideal Lattices

Although Micciancio and Peikert [12] mentioned that their trapdoors can be
extended to ideal lattices, they did not explain it in details. In this section, we
first extend their notion of primitive matrices for general lattices to the notion of
primitive vectors (of ring elements) for ideal lattices. We will then show in Sect. 4
how to use the primitive vectors to generate trapdoors for ideal lattices. The
general strategy used in these sections is to interpret each n-by-n submatrices
in the notion of trapdoors for general lattices as ring elements in Rq.

3.1 Construction of Primitive Vectors

Recall from [12] that a matrix G ∈ Z
n×m
q is primitive if its columns generate

all of Zn
q , i.e., G ·Zm = Z

n
q . For some nicely structured primitive matrices, LWE

inversion and Gaussian sampling can be done efficiently. Given such a primitive
matrix, the crux of the trapdoor generation algorithm is to perform a random
transform on the primitive matrix.

As mentioned in [12, Sect. 4.3], the primitive vector g = (1, 2, . . . , 2k−1)T in
Rk

q can be used in the ring setting to replace the previous primitive matrix G by
interpreting the values in the ring Rq instead of Zq. Furthermore, the inversion
and Gaussian sampling algorithms can be obtained in the ring setting as well.

Intuitively, to obtain a primitive vector in the ring setting, we need to find
a primitive matrix (in the general lattices setting) in which each n-by-n sub-
matrix is rotational, i.e., a column is obtained by shifting the previous column
by one entry and adding a negative sign to the first entry. One way is to permute
the columns of the previous primitive matrix G to obtain such a structure. An
example of G is as follows [12]:

G :=

⎡

⎢⎢⎢⎣

. . . gT . . .
. . . gT . . .

. . .
. . . gT . . .

⎤

⎥⎥⎥⎦ , gT =
[
1 2 4 . . . 2k−1

] ∈ Z
1×k
q

We permute columns of G so that identical terms forms n-by-n diagonal
block matrices. As a result, we obtain:

G′ := [In|2In| . . . |2k−1In].
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Since G′ is obtained by permutation of columns of G, G′ is still primitive.
By the same permutation on the basis S of Λ⊥

q (G), we obtain the basis S′ of
Λ⊥

q (G′), where

S′ :=

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

2In q0In

−In 2In q1In

−In q2In

. . .
2In qk−2In

−In qk−1In

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

∈ Z
nk×nk.

The matrices G′ and S′ correspond to the collections of vectors of ring ele-
ments g = (1, 2, . . . , 2k−1)T ∈ Rk

q and (s1, . . . , sk) ∈ Rk×k
q respectively, where

si = (0, . . . , 0, 2,−1, 0, . . . , 0)T for i < k, and sk = (q0, q1, . . . , qk−1)T , where
q =

∑k−1
i=0 2iqi and qi ∈ {0, 1}.

Theorem 2 summarizes the result of primitive vectors in the ring setting, with
explanation deferred to the later subsections.

Theorem 2. For any q =
∑k−1

i=0 2iqi < 2k where qi ∈ {0, 1} and k ≥ 1, there
exists g = (1, 2, . . . , 2k−1)T ∈ Rk

q and S = (s1, . . . , sk) ∈ Rk×k
q (thus gTS =

01×k ∈ Rk
q ), such that:

– We have ‖s̃i‖ <
√

5 in the coefficient embedding.
– The storage requirement of g and S are further reduced by a factor of n com-

pared to their counterparts in general lattices.
– Inverting αg(z, e) := gz+e mod q can be performed in quasilinear O(n·logc n)

time for any z ∈ R and any e ∈ q · B−T · [− 1
2 , 1

2 )nk, where B can denote
either S or S̃. Moreover, the algorithm is perfectly parallelizable, running in
polylogarithmic O(logc n) time using n processors.

– Preimage sampling for βg(x) = gTx mod q with Gaussian parameter σ ≥
‖S̃‖ · w(

√
log n) can be performed in quasilinear O(n · logc n) time, or parallel

polylogarithmic O(logc n) time using n processors.

3.2 Inversion for Primitive Vectors

Given a PLWE instance b = gz + e, which is equivalent to bi = 2iz + ei

for i = 0, . . . , k − 1, we can expand bi, z and ei in terms of the power basis
1, x, x2, . . . , xn−1 so that the problem is equivalent to solving bij = 2izj + eij

independently for j = 0, . . . , n − 1, where bi =
∑n−1

j=0 bijx
j , z =

∑n−1
j=0 zjx

j and
ei =

∑n−1
j=0 eijx

j . Recombining the terms according to i, the problem becomes
solving bj = gz + ej where g = (1, 2, . . . , 2k−1)T ∈ Z

k
q . Let S = (s1, . . . , sk) be

a basis of Λ⊥
q (gT ). Then V = qS−T = (v1, . . . ,vk) is a basis of Λq(g). We can

then use Babai’s nearest plane algorithm to recover z ∈ Zq from b = gz + e:
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Algorithm 3. [17] Babai’s Nearest Plane Algorithm
Input: {v1, . . . ,vk} a basis of Λq(g), b.
Output: z and e.

1. Compute Gram-Schmidt basis v∗
1, . . . ,v

∗
k.

2. For j = k → 1:
(a) Compute lj =< bj ,v

∗
j > / < v∗

j ,v
∗
j >.

(b) Set bj−1 = bj − (lj − �lj�)v∗
j − �lj�vj.

3. Return z =
∑k

j=1�lj�cj mod q, e = b − gz, where vj = cjg mod q.

3.3 Gaussian Sampling for Primitive Vectors

We first recall that the goal of Gaussian sampling in [12] is to sample a vector
from Λu

q (G). This can be done by repeating n times of the sampling from Λ
uj
q (gT )

for a desired syndrome uj ∈ Zq, where j = 0, . . . , n − 1.
For the later task, there are two extreme approaches and one hybrid app-

roach. In the one extreme, we first pre-compute a large set of samples from DZk,σ

and bucket them according to the different values of u. The sampling algorithm
simply draws one sample from the appropriate bucket. This approach requires
large storage so that each bucket can be filled with sufficient number of sam-
ples. The other extreme exploits the fact that if q is a power of 2, then we have
the orthogonalized basis S̃k = 2Ik. In this case, there is a simple and efficient
way to perform Babai’s nearest plane algorithm [17]. In this algorithm, we first
pre-compute two large sets of samples from D2Z,σ and D2Z+1,σ. The sampling
algorithm draws each coefficient of x one by one from the appropriate set. This
approach requires less storage space but takes k steps to complete. Naturally,
there is a hybrid approach that pre-computes samples from DZl,σ for some l < k
and fills in the coefficients of x in blocks of l.

To perform Gaussian sampling in the ring setting, we can of course use the
sampling algorithm for general lattices and perform the permutation mentioned
above to the preimage. More formally, recall that our task is to sample a vector of
ring elements x from Λu

q (gT ) = {x ∈ Rk : gTx = u mod q} where u ∈ Rq. That
is,

∑k−1
i=0 2ixi = u. By expanding xi in the power basis 1, x, x2, . . . , xn−1, this is

equivalent to
∑k−1

i=0 2ixij = uj for j = 0, 1, . . . , n − 1, where xi =
∑n−1

j=0 xijx
j

and u =
∑n−1

j=0 ujx
j . Thus, we can use the same sampling algorithms for each

equation
∑k−1

i=0 2ixij = uj in the ring setting, since xij and uj are integers
modulo q. However, notice that the reduction of ring-LWE in [2,3,14] requires
that q = 1 mod 2n, which means that q cannot be a power of 2. Therefore,
practically we can only use the first approach for Gaussian sampling in the ring
setting.

4 Trapdoors in Ideal Lattices

Analogous to the trapdoors for general lattices defined in [12], we extend the
notion to the ring setting. This includes the derivation of old-type trapdoors from
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Gentry et al. [10] (Sect. 4.1), the generation of (new-type) trapdoors (Sect. 4.2),
ring-LWE inversion (Sect. 4.3), Gaussian sampling (Sect. 4.4) and trapdoors del-
egation (Sect. 4.5).

Definition 2. Let a ∈ Rl+k
q and g ∈ Rk

q . A g-trapdoor for a is a collection
of linearly independent vectors of ring elements R = (r1, . . . , rk) ∈ Rl×k

q such

that aT

[
R
Ik

]
= hgT , for some non-zero ring element h ∈ Rq. h is referred as

the tag or label of the trapdoor. The qulity of the trapdoor is measured by its
largest singular value s1(R), which is computed as the largest singular value of
the matrix obtained by interpreting R as a matrix in Z

ln×kn
q .

4.1 Derivation of Old Trapdoors

Lemma 1. Let g ∈ Rk
q and S = (s1, . . . , sk) ∈ Rk×k be linearly indepen-

dent with gT si = 0 ∈ Rq for i = 1, . . . , k. Let a ∈ Rl+k
q have trapdoor R =

(r1, . . . , rk) ∈ Rk×k with tag h ∈ Rq. Then the lattice Λ⊥
q (aT ) is generated by

Sa =
[

Il R
0k×l Ik

] [
Il 0l×k

W S

]
,

where W ∈ Rk×l is an arbitrary solution to gTW = −h−1aT [Il|0l×k]T mod q.

Moreover, the basis Sa satisfies ‖S̃a‖ ≤ s1

([
Il R

0k×l Ik

])
· ‖S̃‖ ≤ (s1(R) + 1) ·

‖S̃‖, when Sa is orthogonalized in suitable order and interpreted as a matrix in
Z
[(l+k)n]×[(l+k)n] by the coefficient embedding.

Proof. Compared to the derivation in general lattices, the non-trivial part is to
construct a matrix W of ring elements, or equivalently, a matrix W consisting
of k × l blocks of n × n rotational matrices. Otherwise, the rest of the proof
follows the proof of [12, Lemma 5.3]. To construct such a matrix W, let a =
(a1,a2, . . . ,al+k)T ∈ Rl+k

q and let

W =

⎡

⎢⎣
w1,1 . . . w1,l

...
. . .

...
wk,1 . . . wk,l

⎤

⎥⎦

where wi,j ∈ Rq.
Now, gTW = −h−1aT [Il|0l×k]T mod q implies

[1|2| . . . |2k−1]W = [1|2| . . . |2k−1]

⎡

⎢⎣
w1,1 . . . w1,l

...
. . .

...
wk,1 . . . wk,l

⎤

⎥⎦ = −h−1
[
a1 a2 . . . al.

]
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This equation implies that for each j = 1, . . . , l, we need to independently
solve

[1|2| . . . |2k−1]

⎡

⎢⎣
w1,j

...
wk,j

⎤

⎥⎦ = −h−1ai ∈ Rq.

By expanding wi,j and aj with respect to the power basis 1, x, x2, . . . , xn−1,
the problem is equivalent to solving the system for each coefficient independently.

�

Although the derivation of the old-type trapdoors for ideal lattices is merely
theoretical, it solves an open problem in [10] which asked how trapdoors can be
generated together with random looking ideal lattices.

4.2 Generation of New Trapdoor

As in [12], the derivation of old trapdoors from the new trapdoors is just a proof
of concept and will not be used in the rest of this work. In this subsection, we
extend their trapdoors for general lattices to our ring version in Algorithm4.

Algorithm 4. ringGenTrapD(a0,h)
Input:

– a vector of ring elements a0 = (a1, . . . ,al)T ∈ Rl
q;

– a non-zero ring element h ∈ Rq;
– a distribution χl×k over Rl×k. (If no particular a0, h are given as input, then

the algorithm may choose them itself, e.g. picking a0 ← Rl
q uniformly, and

setting h = 1.)

Output:

– a vector of ring elements a = (aT
0 ,aT

1 )T ∈ Rl+k
q ;

– a trapdoor R = (r1, . . . , rk) ∈ Rl×k with tag h ∈ Rq.

1. Choose a collection of linearly independent vectors of ring elements R =
(r1, . . . , rk) ∈ Rl×k from distribution χl×k,

2. Output a = (aT
0 ,hgT − aT

0 R)T ∈ Rl+k
q and trapdoor R ∈ Rl×k.

Moreover, the distribution of a is close to uniform (either statistically or com-
putationally) as long as the distribution of (aT

0 ,−aT
0 R) is.

The correctness of Algorithm 4 is immediate. To show that the distribution of
(aT

0 ,−aT
0 R) is close to uniform, we need to show that the distribution of aT

0 R
is close to uniform and hence is independent to that of a0, or equivalently the
distribution of aT

0 ri is close to uniform and independent to that of a0 for all i.
As for the trapdoors for general lattices, the uniformity of a can be instantiated
to be either statistical by using a regularity lemma or computational by the
ring-LWE assumption.
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Lemma 2. [3, Sect. 7] (Regularity Lemma) Let ai ← Rq and ri ← χ for i =
1, . . . , l. Then b =

∑l
i=1 airi is within 2−Ω(n) statistical distance to the uniform

distribution over Rq. Moreover, the case where l = 2 corresponds to the normal
form of ring-LWE.

4.3 ring-LWE Inversion from New Trapdoors

Given a trapdoor R for a ∈ Rl+k
q and a PLWE

(l)
f,q,χ instance b = as + e mod q,

the ring-LWE inversion algorithm given in Algorithm5 is to find the solution s
to the instance.

Algorithm 5. ringInvertO(R,a,b)
Input:

– an oracle O for inverting the function αg(s′, e′) when e′ ∈ Rk is suitably
small;

– a vector of ring element a ∈ Rl+k
q ;

– g-trapdoor R ∈ Rl×k for a with tag h;
– vector b = as + e for any s ∈ Rq and suitably small e ∈ Rl+k.

Output: s and e.

1. Get (s′, e′) ← O([RT |Ik]b).
2. return s = h−1s′ and e = b− as (interpreted as a vector in Rl+k with where

each entry has coefficients in [− q
2 , q

2 )).

The correctness of Algorithm 5 is indicated by Theorem 6 stated below.

Theorem 6. Suppose that O in Algorithm5 correctly inverts αg(s′, e′) for any
small error vector e′ ∈ Dk

Zn,σ
√

lσ2·ω(log n)+k
. Then for any s ∈ Rq and e ←

χl+k, Algorithm5 correctly inverts αa(s, e) with overwhelming probability over
the choice of e.

Proof. We first show that bT

[
R
Ik

]
gives a correct input to the oracle O.

bT

[
R
Ik

]
= (aT s + eT )

[
R
Ik

]

= aT s
[
R
Ik

]
+ eT

[
R
Ik

]

= s[aT
0 |hgT − aT

0 R]
[
R
Ik

]
+ eT

[
R
Ik

]

= s(aT
0 R + hgT − aT

0 R) + eT

[
R
Ik

]

= gThs + eT

[
R
Ik

]

= gT s′ + eT

[
R
Ik

]
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Now we need to show that e′ = eT

[
R
Ik

]
has the appropriate distribution.

Consider

e′
j =

l∑

i=1

eirij +
l+k∑

i=l+1

ei ∀j = 1, . . . , k

where e′
j = j-th component of e′, ei = i-th component of e, rij = ij-th compo-

nent of R. Since each entry of e and R are sampled from χ = DZn,σ, then the
distribution of eirij is statistically close to D

Zn,σ2·ω(
√
log n) [3, Lemma 8.7]. Hence,

the distribution of e′
j is statistically close to D

Zn,σ
√

lσ2·ω(log n)+k
[3, Lemma 8.6].

Therefore, the distribution of e′ has the correct distribution. �

4.4 Gaussian Sampling from New Trapdoors

Given a trapdoor R for a ∈ Rl+k
q and u = βa(x) = aTx mod q, the Gaussian

Sampling algorithm given in Algorithm7 is to find the solution x to the instance.

Algorithm 7. ringSampleDO(R,a0,h,u, σ)
Input:
Offline phase:

– an oracle O(v) for Gaussian sampling over a desired coset Λv
q (gT ) with para-

meter σ, where v ∈ Rq;
– a vector of ring elements a0 ∈ Rl

q;
– a trapdoor R ∈ Rl×k;
– a Gaussian parameter σ.

Online phase:

– a non-zero tag h ∈ Rq defining a = (aT
0 ,hgT −aT

0 R)T ∈ Rl+k
q (h may instead

be provided in the offline phase, if it is known);
– syndrome u ∈ Rq.

Output: A vector x drawn from a distribution statistically close to DΛv
q (a

T
0 ),σ′

for some Gaussian parameter σ′.
Offline phase:

1. Choose fresh perturbations p1 ← χl
1 and p2 ← χk

2 for some distributions χ1

and χ2 over R.
2. Compute w0 = aT

0 (p1 − Rp2) ∈ Rq and w1 = gTp2 ∈ Rq.

Online phase:

1. Let v ← h−1(u−w0)−w1 = h−1(u−aTp) ∈ Rq, and choose z ← DΛv
q (g

T ),σ

by calling O(v).

2. Return x ←
[
p1

p2

]
+

[
R
Ik

]
z.
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Theorem 8. Algorithm7 is correct.

Proof. Let x ← ringSampleDO(R,a0,h,u, σ). Then

aTx = [aT
0 |hgT − aT

0 R]
([

p1

p2

]
+

[
R
Ik

]
z
)

= aT
0 p1 + aT

0 Rz + hgTp2 − aT
0 Rp2 + hgT z − aT

0 Rz

= aT
0 (p1 − Rp2) + hgTp2 + hv

= w0 + hw1 + u − w0 − hw1

= u

Now, consider x =
[
p1

p2

]
+

[
R
Ik

]
z. Since each entry of R and z are sam-

pled from χ = DZn,σ, and each entry of p1 and p2 are sampled from χ1 =
D

Zn,σ2·ω√
log n and χ2 = D

Zn,σ
√

σ2(k+1)·ω(log n)−1
, respectively, then the distri-

butions of all entries of x are statistically close to χ′ = DZn,σ′ , where σ′ =
σ2

√
k + 1 · ω(

√
log n). [3, Lemma 8.6 & 8.7]. �

4.5 Trapdoors Delegation

Using the trapdoor of a, there is an efficient trapdoor delegation algorithm given
in Algorithm 9 that generates a trapdoor for the vector (aT ,aT

1 )T .

Algorithm 9. ringDelTrapO(a′ = (aT ,aT
1 )T ,h′, σ)

Input:

– an oracle O for discrete Gaussian sampling over cosets of Λ⊥
q (aT ) with para-

meter σ′;
– a vector of ring elements a′ = (aT ,aT

1 )T ∈ Rm+k
q ;

– a non-zero ring element h′ ∈ Rq.

Output: a trapdoor R ∈ R(m+k)×k for a′ with tag h′.

– Using O, sample each column of R independently from a discrete Gaussian
with parameter σ′ over the appropriate cosets of Λ⊥

q (aT ), so that aTR =
h′gT − aT

1 .

5 INDr-ID-CCA-Secure (H)IBE in Ideal Lattices

5.1 Identity-Based Encryption

Identity-based encryption (IBE) is a generalization of public-key encryption [18].
In an IBE, to encrypt a message to an identity id, the encrypter does not need
to lookup the public key for the intended identity id. Instead, the encryption
algorithm simply takes the public parameters, the identity id and the message
as input and outputs a ciphertext encrypting the message to id. The identity
id obtains its secret key derived from the master secret key through the key
generation algorithm for decrypting all ciphertexts encrypted to id. Formally,
the syntax of IBE is defined as follows.
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Definition. An identity-based encryption (IBE) scheme consists of four PPT
algorithms (Setup, Extract, Encrypt, Decrypt). The Setup algorithm outputs a
public parameter PP and a master key MK. Using MK, the Extract algorithm
extracts a secret key SKid for an identity id. Unlike public-key encryption, the
Encrypt algorithm in IBE can encrypt messages directly to an identity id. The
user with identity id uses her secret key SKid to Decrypt a ciphertext.

Hierarchical identity-based encryption (HIBE) is an extension of IBE such
that an identity ID = [id1| . . . |idd] is a hierarchy of identities with depth d.
There is an additional algorithm Derive that inputs a secret key SK[id1|...|idj−1]

in the (j − 1)-th level and an identity ID = [id1| . . . |idj ] in the j-th level and
outputs the secret key SKID for identity ID.

Security. In addition to the (adaptive) chosen-plaintext-attack (CPA(2)) secu-
rity or (adaptive) chosen-ciphertext-attack (CCA(2)) security as in public-key
encryption, an (H)IBE scheme should also be secure against chosen-identity-
attack (ID). A weaker security model called selective-identity-attack (sID) is
also considered, where the adversary must choose the identity she is going to
perform CPA(2) or CCA(2) before receiving the public parameter. The indis-
tinguishability (IND) of ciphertexts under the combinations of attacks in the
two sets of variants give us eight security model, namely, IND-ID-CCA(2), IND-
sID-CCA(2), IND-ID-CPA(2) and IND-sID-CPA(2). In [8], a stronger security
guarantee in which the ciphertexts are indistinguishable from random (INDr)
elements in the ciphertext space is considered. This implies both semantic secu-
rity (of the plaintext) and recipient anonymity.

From now on, we will focus on the INDr-ID-CCA security, which is modeled
as a security game between a PPT simulator and a PPT adversary. In this
game, the simulator first generates the public parameters PP and passes them
to the adversary. The adversary is then granted the rights to query the secret
keys SKid for polynomially many identities id of its choice, and the rights to
query the decryption of any ciphertext of its choice. After that, the adversary
issues a challenge message to be encrypted to the identity id∗, whose secret
key has never been queried before. The simulator replies by either encrypting
the challenge message to id∗ or generating a uniformly random ciphertext. The
adversary wins the game if it can guess which among two ways the ciphertext is
generated.

An INDr-ID-CCA2-secure HIBE of depth d can be obtained by combin-
ing an INDr-ID-CPA-secure HIBE of depth d + 1 and a strong one-time signa-
ture scheme [19]. The rough idea is to encrypt the message to the “identity”
[id1|id2| . . . |idd|vk] where vk is the verification key of the one-time signature,
and sign the ciphertext using the one-time signature. In particular, from IBE,
we obtain a CCA2-secure public-key encryption scheme. We will omit the details
here.

Applications. Most earlier (H)IBE schemes are realized by pairings. Readers
can refer to [20,21] for reviews of those. Agrawal et al. proposed a lattice-based
(H)IBE scheme in the standard model [8]. The ciphertext of their scheme can
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be proven to be a random element in the ciphertext space, which implies receipt
anonymity against user attacks. An anonymous IBE can be used to obtain a
public-key searchable encryption scheme [22]. By applying Naor’s transforma-
tion [18], we can also obtain a signature scheme from an IBE scheme.

5.2 Construction

Using the trapdoors for ideal lattices developed above, the CCA-secure public-
key encryption provided in [12] and the INDr-ID-CPA-secure (H)IBE scheme
in [8], we construct an INDr-ID-CCA-secure (H)IBE in ideal lattices. We only
present the basic IBE scheme below, because the HIBE scheme can be obtained
trivially by defining the Derive algorithm of HIBE to be the same as the Extract
algorithm of the basic IBE in our case.

The basic IBE scheme is constructed as follows:

– Setup(1λ)
• Sample a−1 ← Rl

q, a0,a1, . . . ,at ← Rk
q and h ← Rq \ {0}.

• Sample (a,RMK) ← ringGenTrapD(a−1,h).
• Output PP = (a,a0,a1, . . . ,at) and MK = (h,RMK).

– Extract(PP,MK, id)
• Sample hid ← Rq.
• Set aid = a0 +

∑t
i=1 idiai and f id,hid

= (aT ,aT
id)

T .
• Sample Rid ← ringDelTrapO(f id,hid

,hid, σ).
• Output SKid = (hid,Rid).

– Encrypt(PP, id,m ∈ Rk
p)

• Sample h′ ← Rq.
• Set aid,h′ = aid + h′g.
• Sample s ← χ, e0 ← χl+k and Ri ← χl×k for i = 0, 1, . . . , t.
• Set R = R0 +

∑t
i=1 idiRi.

• Set eT
1 = −eT

0 R.
• Compute u = a0s + pe0 and v = aid,h′s + pe1 + m.
• Output CT = (h′,u,v).

– Decrypt(PP, SKid, CT )
• Output ⊥ if h′ = −hid.
• Set f id,(hid+h′) = (aT ,aT

id + h′gT )T = (aT , (hid + h′)gT − aTRid)T .
• Compute (s, e) ← ringInvertO(Rid, f id,(hid+h′), (uT ,vT )T ).
• Compute (01×k,mT )T = e mod p.
• Output m.

Theorem 10. By the PLWE
(l)
f,q,χ assumption, the (H)IBE scheme stated above

is INDr-ID-CCA-secure.

Proof. The simulation strategy is a result of combining those from [8,12]. The
simulator is given a PLWE instance (a,b). It chooses the rest of the public
parameters a0, . . . ,at as follows:
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– It samples h∗ ← Rq.
– It samples Ri ← χl×k and let aT

i = higT − aTRi, where h0 = 1 − h∗ and
hi ← Rq, for i = 0, . . . , t.

Since the distribution of a is uniform and each entry of Ri is sampled from the
distribution χ, by the regularity lemma (Lemma 2), the distribution of ai is also
uniform for all i.

To answer the queries for secret key of id, it simply returns (hid,Rid) where
hid = 1 +

∑t
i=1 idihi − h∗ and Rid = R0 +

∑t
i=1 idiRi. Note that aT

id = aT
0 +∑t

i=1 idiaT
i = hidgT − aTRid.

It answers the decryption queries (id, CT = (h,u,v)) using the tag hid, the
trapdoor Rid and the Decrypt algorithm. As long as h �= h∗ or −hid �= h∗, the
simulator can still simulate faithfully. Since ai is uniformly random in the view of
the adversary, h∗ and hi are all hidden from the adversary for all i = 0, 1, . . . , t.
Therefore the event −hid = h = h∗ only happens with negligible probability.

Finally, the challenge ciphertext for (id∗,m∗) is generated as (h∗,u∗,v∗)
where u∗ = b and v∗ = (−bTRid∗ + m∗T )T .

Suppose that the (a,b) given in the PLWE instance is uniform, then the
distribution of the challenge ciphertext (h∗,u∗,v∗) is also uniform. Otherwise,
suppose b = as+pe for some s and e sampled from the appropriate distributions,
then

v∗T = −bTRid∗ + m∗T

= −saTRid∗ − peTRid∗ + m∗T

= s(aT
id∗ − hid∗gT ) − peTRid∗ + m∗T

By [8, Lemma 24], we have hid∗ = −h∗ with non-negligible probability. In such
case, we have

v∗T = s(aT
id∗ + h∗gT ) − peTRid∗ + m∗T

which is distributed identically as valid ciphertexts do. �

6 Concluding Remarks

We detailed how to generate trapdoors for ideal lattices. We then use it to
construct a new (H)IBE scheme. Our scheme has several improvement over that
constructed by Agrawal et al. [8]:

– Our scheme is based on ideal lattices, therefore the size of the public parame-
ters, master key and the identity secret key are reduced by a factor of n.

– Using the new trapdoor delegation algorithm, the size of the identity secret
key grows linearly, rather than quadratically, in the depth of the hierarchy.

– Our scheme is secure against chosen-chiphertext-attack.
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