
Dongdai Lin
Moti Yung
Jianying Zhou (Eds.)

 123

LN
CS

 8
95

7

10th International Conference, Inscrypt 2014
Beijing, China, December 13–15, 2014
Revised Selected Papers

Information Security
and Cryptology

Lecture Notes in Computer Science 8957

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Dongdai Lin • Moti Yung
Jianying Zhou (Eds.)

Information Security
and Cryptology
10th International Conference, Inscrypt 2014
Beijing, China, December 13–15, 2014
Revised Selected Papers

123

Editors
Dongdai Lin
SKLOIS, Institute of Engineering
Chinese Academy of Sciences
Beijing 100093
China

Moti Yung
Computer Science Department
Columbia University
New York, NY 10027
USA

Jianying Zhou
Infocomm Security Department
Institute for Infocomm Research
Singapore
Singapore

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-16744-2 ISBN 978-3-319-16745-9 (eBook)
DOI 10.1007/978-3-319-16745-9

Library of Congress Control Number: 2015934900

LNCS Sublibrary: SL4 – Security and Cryptology

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Preface

This volume contains the papers presented at Inscrypt 2014: The 10th China International
Conference on Information Security and Cryptology held during December 13–15, 2014
in Beijing, China. Since its inauguration in 2005, Inscrypt has become a well-recognized
annual international forum for security researchers and cryptographers to exchange ideas.

The conference received 93 submissions. Each submission was reviewed by 2–4
Program Committee members. The Program Committee decided to accept 29 papers.
The overall acceptance rate was, therefore, about 31%. The program also included six
invited talks.

Inscrypt 2014 was held in cooperation with the International Association for
Cryptologic Research (IACR), and was co-organized by the State Key Laboratory of
Information Security (SKLOIS) of the Chinese Academy of Sciences (CAS), and the
Chinese Association for Cryptologic Research (CACR). Inscrypt 2014 was also partly
supported by the Institute of Information Engineering (IIE) of the Chinese Academy of
Sciences, the Natural Science Foundation of China (NSFC), and the Priority Strategic
Program NICT of Chinese Academy of Sciences. The conference could not have been a
success without the support of these organizations, and we sincerely thank them for
their continued assistance and help.

We would also like to thank the authors who submitted their papers to Inscrypt
2014, and the conference attendees for their interest and support that made the con-
ference possible. We thank the Organizing Committee for their time and efforts that
allowed us to focus on selecting papers. We thank the Program Committee members
and the external reviewers for their hard work in reviewing the submissions; the
conference would not have been possible without their expert reviews. Last but not
least, we thank the EasyChair system and its operators, for making the entire process
of the conference convenient.

December 2014 Dongdai Lin
Moti Yung

Jianying Zhou

Inscrypt 2014

10th China International Conference
on Information Security and Cryptology

Beijing, China
December 13–15, 2014

Sponsored and organized by

State Key Laboratory of Information Security
(Chinese Academy of Sciences)

Chinese Association for Cryptologic Research

in cooperation with

International Association for Cryptologic Research

General Chair

Xiaoyun Wang Tsinghua University, China

Program Co-chairs

Dongdai Lin SKLOIS, Institute of Information Engineering,
Chinese Academy of Sciences, China

Moti Yung Google Inc. and Columbia University, USA
Jianying Zhou Institute for Infocomm Research, Singapore

Organization Co-chairs

Yanping Yu Chinese Association for Cryptologic Research,
China

Chuankun Wu SKLOIS, Institute of Information Engineering,
Chinese Academy of Sciences, China

Yongbin Zhou SKLOIS, Institute of Information Engineering,
Chinese Academy of Sciences, China

Publicity Chair

Yu Chen SKLOIS, Institute of Information Engineering,
Chinese Academy of Sciences, China

Technical Program Committee

Cristina Alcaraz University of Malaga, Spain
Basel Alomair King Abdulaziz City for Science and Technology

and University of Washington, USA
Man Ho Au University of Wollongong, Australia
Elisa Bertino Purdue University, USA
Ioana Boureanu École Polytechnique Fédérale de Lausanne,

Lausanne, Switzerland
Bogdan Carbunar Florida International University, USA
Yu Chen SKLOIS, Institute of Information Engineering,

Chinese Academy of Sciences, China
Kefei Chen Hangzhou Normal University, China
Liqun Chen Hewlett-Packard Laboratories, UK
Songqing Chen George Mason University, USA
Cunsheng Ding Hong Kong University of Science and Technology,

China
Jintai Ding University of Cincinnati, USA
Xuhua Ding Singapore Management University, Singapore
Shlomi Dolev Ben-Gurion University of the Negev, Israel
Chun-I Fan National Sun Yat-sen University, Taiwan
Sara Foresti Università degli Studi di Milano, Italy
Dieter Gollmann Hamburg University of Technology, Germany
Stefanos Gritzalis University of the Aegean, Greece
Huaqun Guo Institute for Infocomm Research, Singapore
Jinguang Han Nanjing University of Finance and Economics,

China
Feng Hao Newcastle University, UK
Matt Henricksen Institute for Infocomm Research, Singapore
Xinyi Huang Fujian Normal University, China
Matthias Krause University of Mannheim, Germany
Xuejia Lai Shanghai Jiao Tong University, China
Costas Lambrinoudakis University of Piraeus, Greece
Jiguo Li Hohai University, China
Chao Li National University of Defense Technology, China
Hui Li Xidian University, China
Peng Liu The Pennsylvania State University, USA
Xiapu Luo The Hong Kong Polytechnic University,

Hong Kong
Subhamoy Maitra Indian Statistical Institute, India
Florian Mendel Graz University of Technology, Austria
Chris Mitchell Royal Holloway, University of London, UK
Atsuko Miyaji Japan Advanced Institute of Science

and Technology, Japan
Yi Mu University of Wollongong, Australia
Claudio Orlandi Aarhus University, Denmark

VIII Inscrypt 2014

Xinming Ou Kansas State University, USA
Giuseppe Persiano Università di Salerno, Italy
Bertram Poettering Royal Holloway, University of London, UK
Radha Poovendran University of Washington, USA
Giovanni Russello The University of Auckland, New Zealand
Kouichi Sakurai Kyushu University, Japan
Willy Susilo University of Wollongong, Australia
Tsuyoshi Takagi Kyushu University, Japan
Wenling Wu Institute of Software, Chinese Academy

of Sciences, China
Yang Xiang Deakin University, Australia
Shouhuai Xu University of Texas at San Antonio, USA
Jia Xu Institute for Infocomm Research, Singapore
Danfeng Yao Virginia Tech, USA
Mingwu Zhang Hubei University of Technology, China
Rui Zhang Chinese Academy of Sciences, China
Fangguo Zhang Sun Yat-sen University, China
Futai Zhang Nanjing Normal University, China
Yuliang Zheng University of North Carolina at Charlotte, USA
Hong-Sheng Zhou Virginia Commonwealth University, USA
Cliff Zou University of Central Florida, USA

External Reviewers

Albrecht, Martin
Alrimeih, Hamad
Armknecht, Frederik
Aslan, Mahmoud
Brownstein, Dan
Chen, Hua
Chen, Jiageng
Chen, Xiao
Chen, Xiaofeng
Chen, Yonghui
Cohen, Ran
Dahan, Xavier
Dickin, Fraser
Ding, Yi
Dobraunig, Christoph
Döttling, Nico
Elashry, Ibrahim
Galbraith, Steven
Gao, Wei
Geneiatakis, Dimitris
Gong, Zheng

Gunasinghe, Hasini
Guo, Zhiyuan
Habibi, Mohammad
Hamann, Matthias
He, Debiao
Huang, Jialin
Huang, Qiong
Kalloniatis, Christos
Kambourakis, Georgios
Kang, Hyunho
Kılınç, Handan
Kopeetsky, Marina
Lepoint, Tancrède
Li, Nan
Li, Wei
Li, Ximing
Liang, Kaitai
Lin, Li
Liu, Joseph
Liu, Zhe
Liu, Zhenhua

Inscrypt 2014 IX

Long, Yu
Lu, Yang
Lu, Yao
Lucks, Stefan
Ma, Hui
Mao, Xianping
Mikhalev, Vasily
Ohkubo, Miyako
Omote, Kazumasa
Perret, Ludovic
Petit, Christophe
Pitropakis, Nikolaos
Rao, Vanishree
Rizomiliotis, Panagiotis
Roy, Sankardas
Ruan, Ou
Samanthula, Bharath Kumar
Sarkar, Santanu
Shirase, Masaaki
Snook, Michael
Sui, Han
Susil, Petr
Tanaka, Satoru
Tang, Fei
Tang, Qiang
Tao, Chengdong
Tischhauser, Elmar

Tsoulkas, Vasilis
Venkateswarlu, Ayineedi
Vouyioukas, Demosthenes
Vrakas, Nikos
Wang, Daniel
Wang, Ding
Wang, Gaoli
Wang, Liangliang
Wang, Yanfeng
Wenger, Erich
Xu, Hong
Yan, Fei
Yang, Rupeng
Yasuda, Takanori
Yuan, Wei
Zhang, Bingsheng
Zhang, Huang
Zhang, Lei
Zhang, Liqiang
Zhang, Tao
Zhang, Yuanyuan
Zhang, Yuexin
Zhang, Zongyang
Zhao, Chang’An
Zhao, Fangming
Zomlot, Loai

X Inscrypt 2014

Contents

Privacy and Anonymity

An Efficient Privacy-Preserving E-coupon System. 3
Weiwei Liu, Yi Mu, and Guomin Yang

Spatial Bloom Filters: Enabling Privacy in Location-Aware Applications 16
Paolo Palmieri, Luca Calderoni, and Dario Maio

Security of Direct Anonymous Authentication Using TPM 2.0 Signature 37
Tao Zhang and Sherman S.M. Chow

Multiparty and Outsource Computation

Revocation in Publicly Verifiable Outsourced Computation 51
James Alderman, Christian Janson, Carlos Cid, and Jason Crampton

Private Aggregation with Custom Collusion Tolerance. 72
Constantinos Patsakis, Michael Clear, and Paul Laird

Signature and Security Protocols

Ring Signatures of Constant Size Without Random Oracles 93
Fei Tang and Hongda Li

Universally Composable Identity Based Adaptive Oblivious Transfer
with Access Control . 109

Vandana Guleria and Ratna Dutta

Three-Round Public-Coin Bounded-Auxiliary-Input Zero-Knowledge
Arguments of Knowledge. 130

Ning Ding

A Model-Driven Security Requirements Approach to Deduce Security
Policies Based on OrBAC . 150

Denisse Muñante Arzapalo, Vanea Chiprianov, Laurent Gallon,
and Philippe Aniorté

Optimal Proximity Proofs. 170
Ioana Boureanu and Serge Vaudenay

http://dx.doi.org/10.1007/978-3-319-16745-9_1
http://dx.doi.org/10.1007/978-3-319-16745-9_2
http://dx.doi.org/10.1007/978-3-319-16745-9_3
http://dx.doi.org/10.1007/978-3-319-16745-9_4
http://dx.doi.org/10.1007/978-3-319-16745-9_5
http://dx.doi.org/10.1007/978-3-319-16745-9_6
http://dx.doi.org/10.1007/978-3-319-16745-9_7
http://dx.doi.org/10.1007/978-3-319-16745-9_7
http://dx.doi.org/10.1007/978-3-319-16745-9_8
http://dx.doi.org/10.1007/978-3-319-16745-9_8
http://dx.doi.org/10.1007/978-3-319-16745-9_9
http://dx.doi.org/10.1007/978-3-319-16745-9_9
http://dx.doi.org/10.1007/978-3-319-16745-9_10

Lattice and Public Key Cryptography

Simpler CCA-Secure Public Key Encryption from Lossy
Trapdoor Functions . 193

Bei Liang, Rui Zhang, and Hongda Li

Attacking RSA with a Composed Decryption Exponent
Using Unravelled Linearization . 207

Zhangjie Huang, Lei Hu, and Jun Xu

Fully Homomorphic Encryption with Auxiliary Inputs 220
Fuqun Wang and Kunpeng Wang

Trapdoors for Ideal Lattices with Applications . 239
Russell W.F. Lai, Henry K.F. Cheung, and Sherman S.M. Chow

Block Cipher and Hash Function

Speeding Up the Search Algorithm for the Best Differential
and Best Linear Trails . 259

Zhenzhen Bao, Wentao Zhang, and Dongdai Lin

The Boomerang Attacks on BLAKE and BLAKE2 286
Yonglin Hao

Second Preimage Analysis of Whirlwind . 311
Riham AlTawy and Amr M. Youssef

Boomerang Attack on Step-Reduced SHA-512 . 329
Hongbo Yu and Dongxia Bai

Collision Attack on 4-Branch, Type-2 GFN Based Hash Functions
Using Sliced Biclique Cryptanalysis Technique. 343

Megha Agrawal, Donghoon Chang, Mohona Ghosh,
and Somitra Kumar Sanadhya

Rig: A Simple, Secure and Flexible Design for Password Hashing 361
Donghoon Chang, Arpan Jati, Sweta Mishra,
and Somitra Kumar Sanadhya

Authentication and Encryption

Efficient Hardware Accelerator for AEGIS-128 Authenticated Encryption . . . 385
Debjyoti Bhattacharjee and Anupam Chattopadhyay

Fully Collusion-Resistant Traceable Key-Policy Attribute-Based Encryption
with Sub-linear Size Ciphertexts . 403

Zhen Liu, Zhenfu Cao, and Duncan S. Wong

XII Contents

http://dx.doi.org/10.1007/978-3-319-16745-9_11
http://dx.doi.org/10.1007/978-3-319-16745-9_11
http://dx.doi.org/10.1007/978-3-319-16745-9_12
http://dx.doi.org/10.1007/978-3-319-16745-9_12
http://dx.doi.org/10.1007/978-3-319-16745-9_13
http://dx.doi.org/10.1007/978-3-319-16745-9_14
http://dx.doi.org/10.1007/978-3-319-16745-9_15
http://dx.doi.org/10.1007/978-3-319-16745-9_15
http://dx.doi.org/10.1007/978-3-319-16745-9_16
http://dx.doi.org/10.1007/978-3-319-16745-9_17
http://dx.doi.org/10.1007/978-3-319-16745-9_18
http://dx.doi.org/10.1007/978-3-319-16745-9_19
http://dx.doi.org/10.1007/978-3-319-16745-9_19
http://dx.doi.org/10.1007/978-3-319-16745-9_20
http://dx.doi.org/10.1007/978-3-319-16745-9_21
http://dx.doi.org/10.1007/978-3-319-16745-9_22
http://dx.doi.org/10.1007/978-3-319-16745-9_22

Integrating Ciphertext-Policy Attribute-Based Encryption with Identity-Based
Ring Signature to Enhance Security and Privacy in Wireless
Body Area Networks . 424

Changji Wang, Xilei Xu, Yuan Li, and Dongyuan Shi

Elliptic Curve

Parallelized Software Implementation of Elliptic Curve Scalar Multiplication. . . 445
Jean-Marc Robert

A Note on Diem’s Proof . 463
Song Tian, Kunpeng Wang, Bao Li, and Wei Yu

Cryptographic Primitive and Application

Stand-by Attacks on E-ID Password Authentication. 475
Lucjan Hanzlik, Przemysław Kubiak, and Mirosław Kutyłowski

Stegomalware: Playing Hide and Seek with Malicious Components
in Smartphone Apps . 496

Guillermo Suarez-Tangil, Juan E. Tapiador, and Pedro Peris-Lopez

A Lightweight Security Isolation Approach for Virtual
Machines Deployment . 516

Hongliang Liang, Changyao Han, Daijie Zhang, and Dongyang Wu

A Novel Approach to True Random Number Generation in Wearable
Computing Environments Using MEMS Sensors. 530

Neel Bedekar and Chiranjit Shee

Author Index . 547

Contents XIII

http://dx.doi.org/10.1007/978-3-319-16745-9_23
http://dx.doi.org/10.1007/978-3-319-16745-9_23
http://dx.doi.org/10.1007/978-3-319-16745-9_23
http://dx.doi.org/10.1007/978-3-319-16745-9_24
http://dx.doi.org/10.1007/978-3-319-16745-9_25
http://dx.doi.org/10.1007/978-3-319-16745-9_26
http://dx.doi.org/10.1007/978-3-319-16745-9_27
http://dx.doi.org/10.1007/978-3-319-16745-9_27
http://dx.doi.org/10.1007/978-3-319-16745-9_28
http://dx.doi.org/10.1007/978-3-319-16745-9_28
http://dx.doi.org/10.1007/978-3-319-16745-9_29
http://dx.doi.org/10.1007/978-3-319-16745-9_29

Privacy and Anonymity

An Efficient Privacy-Preserving
E-coupon System

Weiwei Liu(B), Yi Mu, and Guomin Yang

School of Computer Science and Software Engineering,
University of Wollongong, Wollongong, NSW 2522, Australia

wl265@uowmail.edu.au, {ymu,gyang}@uow.edu.au

Abstract. Previous work on electronic coupon (e-coupon) systems
mainly focused on security properties such as unforgeability, double-
redemption detection, and anonymity/unlinkability. However, achieving
both traceability against dishonest users and anonymity for honest users
without involving any third party is an open problem that has not been
solved by the previous work. Another desirable feature of an e-coupon
system that has not been studied in the literature is user privacy, which
means the shop cannot identify the good (among all the choices specified
in the coupon) that has been chosen by the customer during the redemp-
tion process. In this paper, we present a novel e-coupon system that can
achieve all these desirable properties. We define the formal security mod-
els for these new security requirements, and show that our new e-coupon
system is proven secure in the proposed models.

Keywords: Unforgeability · Anonymity · Double-redemption detection ·
Traceability

1 Introduction

An electronic coupon (or e-coupon) can be used by a user to obtain an electronic
good or service from a service provider, which is usually a coupon issuer. E-coupon
systems are similar but different from electronic cash (or e-cash) systems
[2,4,9,15]. One major difference is that an e-coupon system only involves two par-
ties: the user and the coupon issuer, while in an e-cash system there is a third party
which is the bank. An e-coupon system has less algorithms/protocols compared
with e-cash. The coupon issuer can issue a coupon to a user through a coupon issu-
ing algorithm; then the user can redeem the coupon at a later time to obtain the
good/service specified in the coupon. Similar to e-cash systems, e-coupon systems
are very useful in e-commerce, especially when the shops don’t want to have the
bank involved in the transactions.

There are a number of e-coupon systems proposed in the literature. Chen
et al. [10] presented a privacy-preserving e-coupon system, in which the users
are allowed to redeem a single e-coupon for a pre-determined number of times.
In order to reduce the cost for issuing and redeeming coupons, Nguyen [16]

c© Springer International Publishing Switzerland 2015
D. Lin et al. (Eds.): Inscrypt 2014, LNCS 8957, pp. 3–15, 2015.
DOI: 10.1007/978-3-319-16745-9 1

4 W. Liu et al.

later presented another more efficient e-coupon system which has constant com-
munication and computation costs. In [7], Canard et al. also proposed another
interesting multi-coupon system which allows a user to transfer some value of a
multi-coupon to another user.

Although user anonymity has been considered in all the above e-coupon
systems, none of them has considered traceability against dishonest users. That
is, if a dishonest user redeems a multi-coupon more than the pre-determined
number of times, it is desirable to allow the coupon issuer to trace the identity
of the user. On the other hand, for honest users, we should ensure that their
identities will remain anonymous to the coupon issuer.

Another desirable feature of an e-coupon system is user privacy. Different
from user anonymity, here we are concerning the privacy of the goods/services
chosen by the users during the redemption process. In general, an e-coupon can
contain a number of options that have the same value and a user can choose
any one of them. If the shop can know the good/service chosen by the user in
the redemption process, then it is possible for the shop to link two redemptions
performed by the same customer (e.g., a customer may prefer to redeem the
same item among several transactions). Therefore, it is also desirable to keep
the buying behavior of a user secret from the coupon issuer. It is worth noting
that user privacy is possible in the electronic world since we are considering
electronic goods, so there is no physical reduction of the goods from the shop’s
‘warehouse’, while in the physical world, the shop can always trace the number
of each good to find out the item redeemed by the user.

In this paper, we propose a new e-coupon system, which can achieve all
the desirable properties mentioned above, namely unforgeability, anonymity for
honest users, double redemption detection, traceability against dishonest users,
and user privacy. It is worth noticing that different from a fair e-cash system
[12,14,18], the traceability in our e-coupon system is performed by the merchant
(i.e., coupon issuer) rather than the bank, which makes the task more chal-
lenging. In order to achieve unforgeability, anonymity for honest users, double
redemption detection and traceability against dishonest users, we design a new
variant of blind signature which allows the signer (which is essentially the coupon
issuer) to issue a signature (coupon) on a message without seeing its content.
However, different from conventional blind signature schemes [1,5,6,8,13], our
scheme involves an extra dynamic challenge-response verification in the verifica-
tion phase to ensure that if a coupon is redeemed more than once, the identity of
the coupon holder can be calculated. In order to achieve user privacy, we employ
a mechanism that is similar to oblivious transfer in the redemption protocol.
In addition, we present a multi-coupon extension of our basic scheme to allow
multi-use of an e-coupon.

The rest of the paper is organized as follows. We provide some definitions
and security assumptions in Sect. 2. The formal security model for our e-coupon
system is presented in Sect. 3. We then present our construction in Sect. 4 and
prove its security in Sect. 5. We propose an extension of our system in Sect. 6
and the paper is concluded in Sect. 7.

An Efficient Privacy-Preserving E-coupon System 5

2 Definition and Assumptions

2.1 Definition of an E-coupon System

An e-coupon system consists of two participants, namely, a user and a coupon
issuer, which is also a service provider or shop. Our e-coupon system consists of
the following algorithms.

1. ParamGen: On input a security parameter κ, the parameter generation
algorithm outputs the public parameters.

params ← ParamGen(1κ).

2. KeyGen: On input the public parameter params, the key generation algo-
rithm outputs a key pair for a user or a service provider.

(pk, sk) ← KeyGen(params).

3. Issue: The issue algorithm is an interactive protocol between the service
provider S and a user U ,

C ← Issue(S(pkS , skS),U(pkU , params)).

The output is an e-coupon for the user.
4. Redeem: The redeem algorithm is an interactive protocol between a user U

and the service provider S, taking as input an e-coupon C, the public key
pkS of the service provider, the public parameters params, a challenge c from
the service provider S and a corresponding response R from the user U . The
output of this algorithm for the service provider is accept or reject.

‘accept’ or ‘reject’ ← RedeemS(pkS , params,C, c,R).

The output of this algorithm for the user is the item itemi of his choice or a
failure symbol.

‘⊥’ or itemi ← RedeemU (pkS , params,C, c,R).

5. Reveal: The reveal algorithm is executed by the service provider, taking
a sequence of the challenge-response pairs and the corresponding redeemed
coupon {(c1, R1), (c2, R2), C} and the public parameters params as input,
outputs the identity IDU of the corresponding user or a failure symbol ‘⊥’.

IDU or ‘⊥’ ← Reveal((c1, R1), (c2, R2), C, params).

2.2 Complexity Assumptions

Definition 1 Decisional Diffie-Hellman (DDH) Assumption: Given a
cyclic group G of order q, the DDH assumption states that, given g, ga, gb, Z ∈ G
for some unknown a, b ∈ Zq and a random generator g, decide whether Z = gab.

6 W. Liu et al.

Definition 2 Knowledge of Exponent Assumption [3]: Given a cyclic
group G of order q, for any adversary A that takes input q, g, ga and returns
(C, Y) with Y = Ca, there exists an “extractor” Ā, which given the same inputs
as A returns c such that gc = C.

Definition 3 One More Discrete Logarithm (OMDL) Assumption:
Given a cyclic group G of order q and g is a generator of G, Let DLogg(·)
be the discrete logarithm oracle that takes an element in Gq and returns the dis-
crete logarithm in base g. Let C(·) be a challenge oracle which takes no input
and returns a random element in Gq. Let W1,W2, . . . ,Wt denote the challenges
returned by C(·), we say an OMDL adversary A wins if A can output a sequence
of w1, w2, . . . , wt ∈ Zq satisfying gwi = Wi and the number of queries make by
A to the discrete logarithm oracle DLog(·) is less than t.

3 Security Model

We formalize four security requirements for our e-coupon system, that is unforge-
ability, user anonymity, double-redemption detection, and user privacy.

3.1 Unforgeability

Unforgeability requires that an adversary A (could be a malicious user) cannot
forge a new valid coupon that can be redeemed successfully with an honest
service provider S.

The adversarial game for unforgeability between an adversary A and a sim-
ulator B is defined as follows:

1. ParamGen: The simulator B runs algorithm ParamGen to generate public
parameters params.

2. KeyGen: The simulator B generates two key pairs (pkS , skS) and (pkU , skU),
B sends pkS and (pkU , skU) to A and keeps skS secret.

3. Issue queries: Assume A makes qs issue queries to the issuing oracle I(·), for
the i-th query, 1 ≤ i ≤ qs, A runs the issue protocol with B in an interactive
manner, after each query, A obtains a coupon

Ci ← Issue(S(pkS , skS),U(pkU , params)).

4. Challenge: Finally, A outputs a new coupon C∗. We say A wins the game
if this coupon has not appeared in any issue query but can be redeemed
successfully by A, i.e.,
– ‘accept’ ← RedeemS(pkS , params,C∗, c, R).
– C∗ �= Ci, for 1 ≤ i ≤ qs.

Define the advantage of a adversary A in winning the unforgeability game as

Advunf
A (κ) = Pr[A wins the game]

Definition 1. An e-coupon system is said to be unforgeable if Advunf
A (κ) is

negligible for any PPT adversary A.

An Efficient Privacy-Preserving E-coupon System 7

3.2 Anonymity

Anonymity requires that if one user follows the protocol honestly, even a mali-
cious service provider cannot link one redeemed coupon to the identity of the
user. The adversarial game between A and simulator B for anonymity is defined
as follows:

1. ParamGen: The simulator B runs algorithm ParamGen to generate public
parameters params.

2. KeyGen: The simulator B generates key pairs for a service provider (pkS ,
skS) and two users U0 (pkU0 , skU0) and U1 (pkU1 , skU1) respectively, B sends
(pkS , skS , pkU0 , pkU1) to A.

3. Issue queries: Assume A runs Issue algorithm q times with U0 and U1

respectively. Let C0 = {C1
U0

, C2
U0

, . . . , Cq
U0

} and C1 = {C1
U1

, C2
U1

, . . . , Cq
U1

} be
the coupon set obtained by U0 and U1.

4. Challenge: A outputs an index 1 ≤ i ≤ q. B flips a coin to decide a value
b∗ ∈ {0, 1}, and returns Ci

Ub∗ to A. A makes a guess b′ of the value b∗.

We say A wins the game if b′ = b∗. Define the advantage of a adversary A in
winning the game as

AdvAno
A (κ) = Pr[A wins the game] − 1

2

Definition 2. An e-coupon system is said to provide anonymity if AdvAno
A (k)

is negligible for any PPT adversary A.

3.3 Double-Redemption Detection

Detection of double-redemption is a major concern for any digital coupon sys-
tem. An e-coupon system is said to provide double-redemption detection if one
user cannot redeem one coupon twice with the same service provider without
being caught. In our e-coupon system, if one coupon is redeemed twice, the ser-
vice provider can find a polynomial time algorithm to trace the identity of the
user with overwhelming probability. The adversarial game for double-redemption
detection is defined as follows:

1. ParamGen: The simulator B runs algorithm ParamGen to generate public
parameters params.

2. KeyGen: The simulator B generates two key pairs (pkU , skU) and (pkS , skS),
B sends (pkU , skU) and pkS to A.

3. Issue queries: Assume A makes qd coupon issuing queries. S runs the Issue
algorithm with A to issue a sequence of coupons {C1, C2, . . . , Cqd} for A.

4. Redeem queries: A runs the redeem protocol with S with any coupon of
his choice.

5. Challenge: A outputs two pairs (C∗, c∗
1, R

∗
1) and (C∗, c∗

2, R
∗
2). We say A wins

the game if
– (C∗, c∗

1, R
∗
1) �= (C∗, c∗

2, R
∗
2).

8 W. Liu et al.

– RedeemS(pkS , params,C∗, c∗
1, R

∗
1) = 1 and RedeemS(pkS , params,

C∗, c∗
2, R

∗
2) = 1.

– ‘⊥’←Reveal((c∗
1, R

∗
1), (c

∗
2, R

∗
2), C

∗, params)

Define the advantage of A in winning the adversarial game above as

Advdrd
A (κ) = Pr[A wins the game]

Definition 3. An e-coupon system is said to provide double-redemption detec-
tion if Advdrd

A (κ) is negligible for any PPT adversary A.

3.4 User Privacy

We formalize a new security property which has not been considered in previous
e-coupon systems. When a valid user redeems an e-coupon with the service
provider, it is desirable that the service provider cannot make a connection
between the coupon from the user and the service that is redeemed by the
user if the coupon can be used to redeem an item from a list of options. The
adversarial game for user privacy is defined as follows.

1. ParamGen: The simulator B runs algorithm ParamGen to generate public
parameters params.

2. KeyGen: The simulator B generates two key pairs (pkU , skU) and (pkS , skS),
B sends (pkS , skS) and pkU to A.

3. Issue queries: A runs the Issue algorithm with B to generate a set of
coupons C = {C1, C2, . . . , CqR}.

4. Guess: A outputs an index 1 ≤ i ≤ qR. B then redeems Ci with A to choose
an item mb∗ from {m1,m2, . . . ,mn}, which is the set of items that can be
redeemed by B. Finally, A makes a guess b′ ∈ [1, n] for b∗.

We say A wins the game if b′ = b∗. Define the success probability of the adversary
A in making a successful guess about the service that the user choose as

Advup
A (κ) = Pr[Awins the game] − 1

n

Definition 4. An e-coupon system is said to provide user privacy if Advup
A (κ)

is negligible for any PPT adversary A.

4 Construction of Our E-coupon System

We denote in our system the service provider by S and a user by U . Denote
{m1,m2, . . . ,mn} the set of items that can be redeemed. The detail description
of our e-coupon system is as follows.

1. ParamGen: On input a security parameter κ ∈ N, generates the system
parameters paras = (G, g, p, q,H1,H2), where Gq is the subgroup of Zp with
prime order q and g is a generator of Gq, where p = 2q + 1 is also prime.
H1 : {0, 1}∗ → Gq and H2 : Gq → {0, 1}κ are two collision-resistant hash
functions.

An Efficient Privacy-Preserving E-coupon System 9

2. KeyGen: On input a security parameter κ ∈ N and the public parameter
params, randomly choose x, y ∈R Z

∗
q and calculate gx, gy and output the

private and public key pairs (skU = x, pkU = gx) and (skS = y, pkS = gy) for
the user and service provider respectively.

3. Issue: The issue protocol is performed through interactive communications
between the service provider S and a user U . The result of the issue protocol
is that S generates a valid coupon for a user U .
– On receiving a request from U , S chooses k ∈R Z

∗
q and computes δ1 ← pkk

U
and δ2 ← gk sends (δ1, δ2) to U .

– After receiving (δ1, δ2) from S, U checks whether δ1 = δskU
2 . If the verifica-

tion fails, U stops; otherwise, U chooses x1 ∈ Z
∗
p and computes α ← (gxy)x1 ,

β ← (gx)x1 and λ = gx1 , m ← H1(α, β, λ). U chooses two different random
number a, b and computes r ← mβaδbx1

1 and m′ ← H1(m, r)/b, U sends m′

to S.
– S computes the signature s′ = m′y + k on the blind message m′ and sends

s′ to U .
– U verifies if gs′ ≡ Y m′

δ2 mod p, if the equation holds, U removes the blind
factor b by calculating s = s′b+a and stores (α, β, λ, r, s); otherwise, abort.

4. Redeem: The redeem protocol is performed as follows:
– After receiving a redeem request from the user, S generates a challenge

c = H1(IDS ||Date||Time) and sends c to U .
– After receiving c, U computes R = x1 + cx1x and choose σi ∈ {1, 2, . . . , n}

and a random number ai ∈ Z
∗
q , wσi

= H1(σi) and A = wσi
gai . U sends

(c,R, α, β, λ, r, s) and A to S.
– S checks if H1(α, β, λ) = β−sαH1(H1(α,β,λ),r)r and gR = λβc. If the equa-

tion not holds, aborts; otherwise, S computes D = Ay, wi = H1(i) and
ci = mi ⊕ H2(w

y
i), i = 1, 2, . . . , n. S sends D and c1, c2, . . . , cn to U .

– U computes K = D/Y ai and recover mσi
= cσi

⊕ H2(K).
5. Reveal: Assume the coupon C = (α, β, λ, r, s) is redeemed twice, the S

could get two challenge-response pairs (R1, c1) and (R2, c2) on C such that
R1 = x1 + c1x1x and R2 = x1 + c2x1x. It is obvious that S could calculate x
and x1, thus the identity of U is traced by S.

6. Correctness: The correctness check for validity of the coupon is as follows:

β−sαH1(H1(α,β,λ),r)r

= (pkx1
U)−s(gxyx1)rr

= (pkx1
U)−H1(H1(α,β,λ),r)y−kb−a(pkx1

U)H1(H1(α,β,λ),r)ym(pkx1
U)a(pkx1

U)kb

= m

= H1(α, β, λ)

10 W. Liu et al.

The correctness check for a user U to recover the correct message is as follows:

cσi
⊕ H2(K)

= mσi
⊕ H2(wy

σi
) ⊕ H2(Ay/Y ai)

= mσi
⊕ H2(wy

σi
) ⊕ H2((wσi

gai)y/Y ai)
= mσi

⊕ H2(wy
σi

) ⊕ H2((wσi
)y)

= mσi

5 Security Analysis

5.1 Unforgeability

Theorem 1. The proposed e-coupon system is unforgeable.

Proof. The security proof is by contradiction. We will prove that if there exists a
PPT adversary A that can forge a coupon, then there exists another algorithm B
that can break the OMDL assumption with a non-negligible probability. Suppose
there exists a polynomial time forge adversary A which can break the unforge-
ability of our system with a non-negligible probability ε. B is the simulator in
our proof and has access to two types of oracles. The first is discrete logarithm
oracle DLogGq,g

(·) which takes Pi ∈ Gq as input and returns pi ∈ Zq such that
gpi = Pi. The second is a challenge oracle C(·) which takes noting as input, but
for each time it is invoked it returns a challenge P ∈ Gq. Besides, B maintains an
H-table to record all the hash queries and the corresponding answers. Assume A
makes qh hash queries and qs coupon issuing queries, the simulation is as follows:

1. ParamGen: B runs algorithm ParamGen to generate public parameters
(G, p, q, g,H1,H2).

2. KeyGen: B runs KeyGen to generate a key pair (skU , pkU). B queries the
challenge oracle C(·) and sets the response P0 as the public key of the shop
pkS = P0. B sends (p, g, pkS) and (skU , pkU) to A.

3. Hash queries: For each hash query with an input message m, B first checks
the H-table:
– If there exists a pair (m,h) in the H-table,where m refers to the message

queried before, B returns h as the answer to A.
– Otherwise, B chooses a random h ∈ Zq, sends h to A as the answer for

the hash query, and adds (m,h) into the H-table.
4. Issue queries: Upon receiving an issuing query, B make a query to the

challenge oracle C(·) and obtains a challenge Pi. B then sets (δ1, δ2) =
(P skU

i , Pi) and sends (δ1, δ2) to the adversary. After receiving a message mi,
B sends PiP

mi
0 to the discrete logarithm oracle DLog(·) and gets a response

zi, and sends zi to A. Since zi = DLogGq,g
(PiP

mi
0) = DLogGq,g

(Pi) +
miDLogGq,g

(P0). In A’s view, B simulates the signer perfectly.

An Efficient Privacy-Preserving E-coupon System 11

5. Challenge: Suppose A can successfully forge a new coupon C∗ = (α∗, β∗, λ∗,
r∗, s∗) where s∗ = ep0+r′, and C∗ can pass the redemption protocol. Accord-
ing to the Forking lemma [17] by rewinding A to the step where H1(m∗, r∗) =
e is determined and providing a new hash value for H1(m∗, r∗) = ê. B can
generate another valid coupon Ĉ∗ = (α∗, β∗, λ∗, r∗, ŝ∗) where ŝ∗ = e′p0 + r′.
Then B can compute

p0 = DLogGq,g
(P0) =

s∗ − ŝ∗

e − ê
.

Once B obtains p0, for each challenge Pi from the challenge oracle C(·), it can
calculate pi = zi − mip0 for each Pi. Therefore, B can successfully solve the
OMDL problem.

5.2 Anonymity

Theorem 2. The proposed e-coupon system provides anonymity.

Proof. Anonymity of the user requires the service provider cannot link a redeemed
coupon to a honest user. The proof is by contradiction, suppose that there exists
a PPT adversary A which can break anonymity of our e-coupon system with
a non-negligible probability ε, then we can build an algorithm B that use A to
solve the DDH problem with a non-negligible probability. Let (g, ga, gb, gz) be
an instance of the DDH problem, the purpose of B is to decide whether gz = gab.
The simulation is as follows:

1. ParamGen: B runs algorithm ParamGen to generate public parameters
(G, p, q, g,H1,H2).

2. KeyGen: B choose two random number s∗, r0 ∈ Z
∗
p and computes S∗ = gs∗

,
S sets key pair of the service provider as (pkS , skS) = (S∗, s∗) and the public
keys of two valid users U0 and U1 as pkU0 = gr0 and pkU1 = gb respectively.
B sends (pkS , skS) and pkU0 , pkU1 to A.

3. Issuing queries: B performs Issuing queries with A as follows.
(a) For U0, B knows the private key of U0. Thus B just follows the Issue

protocol to obtains a set of coupons {C1
U0

, C2
U0

, . . . , Cqc
U0

};
(b) For U1, B simulates the queries as follows:

– Upon receiving a pair (δ1, δ2) = (pkki

U1
, gki) from A. B executes the

extractor defined in the KEA assumption to extract the value ki. If A
misbehaves to generate a fake pair (δ′

1, δ
′
2). The extractor will return

a failure symbol ‘⊥’ and thus B stops this query. Otherwise, B chooses
a random number ri and sets αi = g(z)s

∗ri , βi = g(z)ri , λi = g(a)ri and
computes mi = H1(αi, βi, λi).

– B chooses two random number ai, bi ∈ Zq and computes r = mig
zriai

· gzkibi and m′ = H1(mi,r)
b . B sends m′ to A.

– On receiving an s̄ from A, B calculates s = s̄bi + ai, and stores
(αi, βi, λi, r, s).

12 W. Liu et al.

Let C0 = {C1
U0

, C2
U0

, . . . , Cqc
U0

} and C1= {C1
U1

, C2
U1

, . . . , Cqc
U1

} be the q coupons
generated for U0 and U1 respectively in this phase.

4. Challenge: After receiving the index i, B flips a coin to decide a value b∗ ∈
{0, 1} and returns Ci

Ub∗ to A. A finally returns b′. B outputs ‘1’ if b′ = b∗.
Otherwise, B outputs ‘0’.

We finish the simulation for the e-coupon system. Assume a PPT A have a
non-negligible probability ε in breaking anonymity of our scheme. Then the
probability of B to solve the DDH problem ADDH

B (κ) can be calculated as follows:

ADDH
B (κ)

= Pr[Awins|gz = gab] − Pr[A wins|gz = gr]

= Pr[b∗ = b′|gz = gab] − Pr[b∗ = b′|gz = gr]

=
1
2

+ ε − (Pr[b∗ = b′|gz = gr ∧ b∗ = 0]Pr[b∗ = 0] + Pr[b∗ = b′|gz = gr ∧ b∗ = 1]

· Pr[b∗ = 1])

=
1
2

+ ε − 1
2
(
1
2

+ ε +
1
2
)

=
1
2
ε

which is non-negligible. Thus, we reach a contradiction.

5.3 Double-Spend Detection

Theorem 3. The proposed e-coupon systemprovides double-redemption detection.

Proof. According to our e-coupon system, if U has double-redeemed a coupon
(α, β, λ, r, s), then B obtains two different challenge-response pairs (c1, R1) and
(c2, R2) on the coupon where R1 = x1 + c1x1x and R2 = x1 + c2x1x, therefore,
the secret key x of U can be easily calculated as follows:

x =
R2 − R1

c2R1 − c1R2

Thus, the public key of the user could be obtained by the service provider by
further calculating y = gx mod p.

5.4 User Privacy

Theorem 4. The proposed e-coupon system provides unconditionally user
privacy.

Proof. User privacy of our e-coupon system can be prove by following the
receiver’s privacy in the oblivious transfer scheme proposed in [11]. For any
A = wσi

gai , there exists wl and a′
l such that l �= σi, but A = wlg

a′
l . Thus in

the service provider’s view, A could be a masked value of any index. Thus, the
user’s choices are unconditionally secure.

An Efficient Privacy-Preserving E-coupon System 13

6 An Extension of Our E-coupon System

In order to enable the user to redeem one coupon for multiple times, we propose
an extension of our e-coupon system. In the extensional system, the user is able
to redeems a single coupon for k times. However, if the user misuse the coupon
for more than k times then the service provider can trace the identity of the
user. The extension scheme is as follows:

1. ParamGen and KeyGen: Same as above.
2. Issue: The issue protocol is performed through interactive communications

between the service provider S and a user U . The result of the issue protocol
is that S generates a valid coupon for a user U .
– On receiving a request from U , S chooses k ∈R Z

∗
q and computes δ1 ← pkk

U
and δ2 ← gk sends (δ1, δ2) to U

– After receiving (δ1, δ2) from S, U checks whether δ1 = δskU
2 . If the ver-

ification fails, U stops; otherwise, U chooses x1, a1, a2, . . . , ak ∈ Z
∗
q and

computes α ← (gxy)x1 , β ← (gx)x1 , λ = gx1 and A1 = ga1 , A2 =
ga2 , . . . , Ak = gak , m ← H1(α, β, λ,A1, . . . , Ak). U chooses two different
random number a, b and computes r ← mβaδbx1

1 and m′ ← H1(m, r)/b,
U sends m′ to S.

– S computes the signature s′ = m′y+k on the blind message m′ and sends
s′ to U .

– U verifies if gs′ ≡ Y m′
δ2 mod p, if the equation holds, U removes the

blind factor b by calculating s = s′b + a; otherwise, abort. U stores
(α, β, λ,A1, A2, . . . , Ak, r, s).

3. Redeem: The redeem protocol is performed as follows:
– After receiving a redeem request from the user, S generates a challenge

ci = H1(IDS ||Date||Time) and sends ci to U .
– After receiving the challenge ci from the service provider and U computes

Ri = x1 + a1ci + a2c
2
i + . . . + akck

i and choose σi ∈ {1, 2, . . . , n} and a
random number bi ∈ Z

∗
q , U computes wσi

= H1(σi) and A = wσi
gbi . U

sends (c,R, α, β, λ, r, s, A1, . . . , Ak) and A to S.
– S checks if H1(α, β, λ,A1, . . . , Ak) = β−sαH1(H1(α,β,λ,A1,...,Ak),r)r and

gRi = λAci
1 A

c2i
2 . . . A

cki
k . If the equation does not hold, abort; otherwise,

S computes D = Ay, wi = H1(i) and ci = mi ⊕ H2(w
y
i), i = 1, 2, . . . , n.

S sends D and c1, c2, . . . , cn to U .
– U computes K = D/Y bi and recover mσi

= cσi
⊕ H2(K).

4. Reveal: If the user redeem one single coupon for k+1 times, then the service
provider can get the following equations:

R1 = x1 + a1c1 + a2c
2
1 + ... + akck

1

R2 = x1 + a1c2 + a2c
2
2 + ... + akck

2

. . .

Rk+1 = x1 + a1ck+1 + a2c
2
k+1 + ... + akck

k+1

14 W. Liu et al.

It is obvious that S can obtain the value x1 from the k + 1 equations above.
Once S calculates x1, he makes an exhaustive search in his database to deter-
mine the public key of the user such that pkx1

U = β. In this way, the identity
of the user is exposed.

7 Conclusion

In this paper, we proposed a practical e-coupon system which enables the coupon
issuer to trace the identity of misbehaving users, while maintaining the anony-
mity for the honest users. We achieved this without requiring any third party
in the system. In addition, we formalized the notion of user privacy during
the coupon redemption process and proved that our new e-coupon system also
satisfied this property.

Acknowledgments. We are grateful to the anonymous reviewers for their helpful
comments on this paper and we would like to thank Dr. Fuchun Guo for his valuable
discussion.

References

1. Abe, M., Okamoto, T.: Provably secure partially blind signatures. In: Bellare, M.
(ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 271–286. Springer, Heidelberg (2000)

2. Au, M.H., Wu, Q., Susilo, W., Mu, Y.: Compact e-cash from bounded accumu-
lator. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 178–195. Springer,
Heidelberg (2006)

3. Bellare, M., Palacio, A.: The knowledge-of-exponent assumptions and 3-round
zero-knowledge protocols. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152,
pp. 273–289. Springer, Heidelberg (2004)

4. Brands, S.: Untraceable off-line cash in wallets with observers. In: Stinson, D.R.
(ed.) CRYPTO 1993. LNCS, vol. 773, pp. 302–318. Springer, Heidelberg (1994)

5. Camenisch, J.L., Koprowski, M., Warinschi, B.: Efficient blind signatures without
random oracles. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352,
pp. 134–148. Springer, Heidelberg (2005)

6. Camenisch, J.L., Piveteau, J.-M., Stadler, M.A.: Blind signatures based on the
discrete logarithm problem. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS,
vol. 950, pp. 428–432. Springer, Heidelberg (1995)

7. Canard, S., Gouget, A., Hufschmitt, E.: A handy multi-coupon system. In: Zhou,
J., Yung, M., Bao, F. (eds.) ACNS 2006. LNCS, vol. 3989, pp. 66–81. Springer,
Heidelberg (2006)

8. Chaum, D.: Blind signatures for untraceable payments. In: CRYPTO, pp. 199–203
(1982)

9. Chaum, D., Fiat, A., Naor, M.: Untraceable electronic cash. In: Goldwasser, S.
(ed.) CRYPTO 1988. LNCS, vol. 403, pp. 319–327. Springer, Heidelberg (1990)

10. Chen, L., Enzmann, M., Sadeghi, A.-R., Schneider, M., Steiner, M.: A privacy-
protecting coupon system. In: S. Patrick, A., Yung, M. (eds.) FC 2005. LNCS,
vol. 3570, pp. 93–108. Springer, Heidelberg (2005)

An Efficient Privacy-Preserving E-coupon System 15

11. Chu, C.-K., Tzeng, W.-G.: Efficient k -out-of-n oblivious transfer schemes with
adaptive and non-adaptive queries. In: Vaudenay, S. (ed.) PKC 2005. LNCS,
vol. 3386, pp. 172–183. Springer, Heidelberg (2005)

12. Frankel, Y., Tsiounis, Y., Yung, M.: Fair off-line e-cash made easy. In: Ohta, K.,
Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 257–270. Springer,
Heidelberg (1998)

13. Juels, A., Luby, M., Ostrovsky, R.: Security of blind digital signatures. In: Kaliski
Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 150–164. Springer, Heidelberg
(1997)

14. Mu, Y., Nguyen, K.Q., Varadharajan, V.: A fair electronic cash scheme. In:
Kou, W., Yesha, Y., Tan, C.J.K. (eds.) ISEC 2001. LNCS, vol. 2040, pp. 20–32.
Springer, Heidelberg (2001)

15. Nguyen, K.Q., MU, Y., Varadharajan, V.: A new digital cash scheme based on
blind Nyberg-Rueppel digital signature. In: Okamoto, E. (ed.) ISW 1997. LNCS,
vol. 1396, pp. 313–320. Springer, Heidelberg (1998)

16. Nguyen, L.: Privacy-protecting coupon system revisited. In: Di Crescenzo, G.,
Rubin, A. (eds.) FC 2006. LNCS, vol. 4107, pp. 266–280. Springer, Heidelberg
(2006)

17. Pointcheval, D., Stern, J.: Security proofs for signature schemes. In: Maurer, U.M.
(ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 387–398. Springer, Heidelberg
(1996)

18. Stadler, M.A., Piveteau, J.-M., Camenisch, J.L.: Fair blind signatures. In: Guillou,
L.C., Quisquater, J.-J. (eds.) EUROCRYPT 1995. LNCS, vol. 921, pp. 209–219.
Springer, Heidelberg (1995)

Spatial Bloom Filters: Enabling Privacy
in Location-Aware Applications

Paolo Palmieri1(B), Luca Calderoni2, and Dario Maio2

1 Parallel and Distributed Systems Group, Delft University of Technology,
Mekelweg 4, 2628CD Delft, The Netherlands

p.palmieri@tudelft.nl
2 Department of Computer Science and Engineering, Università di Bologna,

via Sacchi 3, 47521 Cesena, Italy
{luca.calderoni,dario.maio}@unibo.it

Abstract. The wide availability of inexpensive positioning systems made
it possible to embed them into smartphones and other personal devices.
This marked the beginning of location-aware applications, where users
request personalized services based on their geographic position. The loca-
tion of a user is, however, highly sensitive information: the user’s privacy
can be preserved if only the minimum amount of information needed to
provide the service is disclosed at any time. While some applications, such
as navigation systems, are based on the users’ movements and therefore
require constant tracking, others only require knowledge of the user’s posi-
tion in relation to a set of points or areas of interest. In this paper we focus
on the latter kind of services, where location information is essentially used
to determine membership in one or more geographic sets. We address this
problem using Bloom Filters (BF), a compact data structure for repre-
senting sets. In particular, we present an extension of the original Bloom
filter idea: the Spatial Bloom Filter (SBF). SBF’s are designed to manage
spatial and geographical information in a space efficient way, and are well-
suited for enabling privacy in location-aware applications. We show this by
providing two multi-party protocols for privacy-preserving computation
of location information, based on the known homomorphic properties of
public key encryption schemes. The protocols keep the user’s exact posi-
tion private, but allow the provider of the service to learn when the user is
close to specific points of interest, or inside predefined areas. At the same
time, the points and areas of interest remain oblivious to the user.

Keywords: Location privacy · Bloom filters · Secure multi-party
computation

1 Introduction

In recent years, location-aware applications spread widely. These applications
usually require the user to disclose her exact position, in order to receive content

L. Calderoni—Part of this research work was accomplished while visiting the Parallel
and Distributed Systems group of Delft University of Technology (The Netherlands).

c© Springer International Publishing Switzerland 2015
D. Lin et al. (Eds.): Inscrypt 2014, LNCS 8957, pp. 16–36, 2015.
DOI: 10.1007/978-3-319-16745-9 2

Spatial Bloom Filters: Enabling Privacy in Location-Aware Applications 17

and information relevant to the user’s location. Examples of such location-aware
services are local advertising, traffic or weather information, or suggestions about
points of interest (PoI) in the user’s surroundings [5]. In general, the ability
to detect movements and exact position of the users in outdoor environments
has become widespread since the introduction of smartphones equipped with
positioning systems such as a GPS receiver.

The ability to track a user’s position raises however deep privacy concerns,
due to the sensitive nature of location information. In fact, a number of poten-
tially sensitive professional and personal information about an individual can
be inferred knowing only her presence at specific places and times [1,4]. Even
anonymized position data sets (not containing name, phone number or other
obvious references to the person) do not prevent precise identification of the
user: in fact, just four mobility traces may be enough to identify her [11]. The
more users disclose their data, the more providers are able to profile them in an
accurate way. This is for instance the case discussed by Wicker in [21], where
a marketing company database model is used in conjunction with anonymous
mobile phone location traces. Smartphones and location-aware services are now
an integral part of our everyday life, but it is reasonable to predict that in the
coming years users will demand privacy safeguards for their information with
respect to the involved service provider [17] and more specifically for location
information [10,22]. The real challenge is therefore how to protect user’s privacy
without losing the ability to deliver services based on her location [15].

A common application scenario of location-based services requires the service
provider to learn when the user is close to some sensitive or interesting locations.
This is the case, for instance, of “around-me” applications or security and mili-
tary systems [5]. If we add to this scenario the requirement of the user position
to stay private, the problem becomes an interesting and fundamental research
question. In literature a similar problem, known as private proximity testing has
been studied: Alice can test if she is close to Bob without either party revealing
any other information about their location [12]. Narayanan et al. proposed a solu-
tion based on location tags (features of the physical environment) and relying on
Facebook for the exchange of public keys [12]. His protocol was later improved in
efficiency by Saldamli et al. [16]. Location tags and proximity tests are also used
in [8], as a way of providing local authentication, while [23] presents a secure
handshake for communication between the two actors in proximity. The security
of the basic proximity testing protocol has been further improved in [13]. In [19],
Tonicelli et al. propose a solution for proximity testing based on pre-distributed
data, secure in the Universal Composability framework. Finally, the problem of
checking the proximity in a specific time is addressed in [18].

In this paper we do not focus on proximity testing, but on a broader and more
general problem: testing in a private manner whether a user is within one of a
set of areas of arbitrary size and shape. By solving this problem and applying an
intelligent conformation of areas, we can also solve the proximity testing problem
(for one or multiple points simultaneously), and we are actually able to identify
with some precision the distance of the user from the point of interest. Given the

18 P. Palmieri et al.

conceptual similarity of our problem with membership testing in sets, we base
our solution on a novel modification of Bloom Filters (BF). Bloom filters are a
compact data structure that allows to compute whether an element is a member
of the set the filter has been built upon, without knowledge of the set itself
[2]. Bloom filters have already been used in privacy-preservation protocols, and
they are particularly suited to be used in conjunction with the homomorphic
properties of certain public key encryption schemes [9].

1.1 Contribution

In this paper we propose a modification of Bloom filters aimed at managing loca-
tion information, and we present two private positioning protocols for privacy-
preserving location-aware applications.

The novel variant of Bloom filters we introduce, which we call Spatial Bloom
Filter (SBF), is specifically designed to deal with location information. Similarly
to the classic Bloom filters, SBFs are also well suited to be used in privacy pre-
serving applications, and we show this by presenting two protocols for private
positioning. The first protocol is based on a two-party setting, where commu-
nication happens directly between the user of a location-based service and the
service provider. A more complex scenario is defined in the second protocol, that
involves a three-party setting in which the service provider outsources to a third
party the communication with the user. In both settings we do not assume any
trust between the different parties involved. The protocols allow secure com-
putation of location-aware information, while keeping the position of the user
private. The only information disclosed to the provider is the user’s vicinity to
specific points of interest or his presence within predefined areas. At the same
time, the areas of interest are not disclosed to the user. Therefore, unlike other
works on location privacy, which is usually discussed from the end-user point of
view, we work here in the secure multi-party computation, where both parties
have an interest in keeping their information private. Military and government
applications are just the most immediate examples of when location privacy
represents a key-problem for the provider as well.

In the paper, we discuss the security and the computational cost of the pro-
posed schemes, as well the probabilistic and storage properties of the SBF.

2 Preliminaries

We introduce in the following some useful notions and definitions, that will be
used later in the paper.

2.1 Bloom Filters

A Bloom Filter (BF) is a data structure that represents a set of elements in
a space-efficient manner. A BF generated for a specific set allows membership
queries on the originating set without knowledge of the set itself. The BF always

Spatial Bloom Filters: Enabling Privacy in Location-Aware Applications 19

determines positively if an element is in the set, while elements outside the set
are generally determined negatively, but with a probabilistic false positive error.

Definition 1. We define a Bloom filter B (S) representing a set S = {a1, . . . , an}
as the set

B (S) =
⋃

a∈S,h∈H

h(a), (1)

where H = {h1, . . . , hk} is a set of k hash functions such that each hi ∈ H :
{0, 1}∗ → {1, . . . , m}, that is, the hash functions take binary strings as input
and output a random number uniformly chosen in {1, . . . , m}.
A Bloom filter B (S) can be represented as a binary vector b composed of m
bits, where the i-th bit

b [i] =
{

1 if i ∈ B(S)
0 if i �∈ B(S) . (2)

A detailed discussion about Bloom filters construction and verification as reported
in literature, along with an explanation of false positive probability and optimal
number of hash functions is proposed in AppendixA.

2.2 Cryptographic Primitives

In part of our construction we use the homomorphic properties of encryption
schemes. In general, a cipher has homomorphic properties when it is possible to
perform certain computations on a ciphertext without decrypting it and, there-
fore, without knowledge of the decryption key. In particular, we say an encryp-
tion scheme is additively homomorphic when a specific operation � applied on
two ciphertexts (Enc (p1) , Enc (p2)) decrypts to the sum of their corresponding
plaintexts (p1 + p2):

Dec (Enc (p1) � Enc (p2)) = p1 + p2. (3)

There is additive homomorphism also when an operation on a ciphertext and a
plaintext results in the sum of the two plaintexts. We have instead multiplica-
tive homomorphism between an encrypted plaintext and a plaintext when an
operation � results into the multiplication of the two plaintexts:

Dec (Enc (p1) � p2) = p1 · p2. (4)

An example of encryption scheme that is both additively and multiplicatively
homomorphic is the Paillier cryptosystem [14]. In this case, the product of two
ciphertexts will decrypt to the sum of their corresponding plaintexts (additive
property), while an encrypted plaintext raised to the power of another plaintext
will decrypt to the product of the two plaintexts (multiplicative property).

20 P. Palmieri et al.

Private Hadamard Product. The Hadamard (or entrywise) product of two vec-
tors, one binary (owned by Alice) and one composed of natural numbers (owned
by Bob), is performed in a privacy-preserving manner by Algorithm1. The algo-
rithm is private with respect to the input vectors, and only reveals the product
vector to Alice. The security of the algorithm is based on the encryption of Alice’s
vector using a public key encryption scheme that is multiplicative homomorphic
for operation �.

Algorithm 1. Private Hadamard product of an encrypted binary vector
for a cleartext vector of natural numbers
Input Alice: X = (x1, . . . ,xn), X ∈ {0, 1}n.
Input Bob: Y = (y1, . . . ,yn), Y ∈ N

n.
Output Alice: X · Y.

1 Alice generates a public and private key pair using a multiplicative
homomorphic encryption scheme, and sends the public key to Bob.

2 Alice sends to Bob the ciphertext vector E = (Enc (x1) , . . . , Enc (xn)).
3 Bob computes the vector C = (Enc (x1) � y1, . . . , Enc (xn) � yn) and sends the

result to Alice.
4 Alice uses her secret key to decrypt C and obtains D = Dec (C) = X · Y.

A more conservative version of the algorithm requires Bob to multiply a
randomly chosen prime number p, larger than any y ∈ Y, to each value in the
vector, before performing the homomorphic multiplication. Alice can then obtain
X · Y by calculating p using any greatest common divisor algorithm.

In general, we assume that the parties participating in the proposed con-
struction do not deviate from the protocol, but gather all available information
in order to try to learn private information of other parties. We are, therefore,
in the semi-honest setting.

Security Model. We assume the parties are honest-but-curious, that is, the parties
will follow the protocol but try to learn additional information about other
parties private data.

3 Spatial Representation

The construction we present in this paper is based on a novel variant of BFs
aimed at managing location information. Since BFs are constructed over finite
sets of elements, we need to represent location information – that is, a geograph-
ical position – as an element that is part of the finite and discrete set of all
possible positions. Therefore, instead of considering a location as a point, we
divide Earth’s surface into a set of distinct areas, and we identify a position as
the corresponding element in this set. Considering that we can set the dimen-
sion of such areas to an arbitrarily small size, there is no loss in the precision of

Spatial Bloom Filters: Enabling Privacy in Location-Aware Applications 21

Δ

Fig. 1. A sample area covered by an arbitrary grid.

the location information. In particular, we do not use this approach in order to
obfuscate or partially hide an exact position: on the contrary, we are interested
in retaining a precision as high as the one allowed by the location sensor used in
the specific application. A detailed discussion concerning spatial model designed
for the presented method is provided in AppendixB.

For the purpose of this work we choose to consider the grid defined by longi-
tude and latitude values with a precision of three decimal point places. This grid
divides Earth’s surface in a number of regions. We define the set of all regions
as follows.

Definition 2. We define E as the set of all regions in which Earth’s surface
is divided by the grid defined by the circles (called parallels) of latitude distant
multiples of 0.001◦ from the equator and the arcs (called meridians) of longitude
distant multiples of 0.001◦ from the Prime Meridian.

The sides (in meters) of a region of side 0.001 degrees in terms of longitude
and latitude vary depending on its position on the globe. AppendixB contains
some reference values.

3.1 Areas and Points of Interest (AoI & PoI)

The purpose of this paper is to present a method able to preserve both user’s
and provider’s privacy in location-aware applications. We imagine a scenario in
which the provider of such an application wants to be notified of the presence of
the user in one of a predefined set of areas of interest (AoI). The areas of interest
are selected by the provider, and each is composed of an arbitrary number of
regions in E , defined above. An area may, for instance, represent a sensitive or
interesting location for the purposes of the application. A number of concentric
areas around a point of interest (PoI) can be used to detect the user’s vicinity
to the PoI. In the following we present two ways in which the set-based location
information described above can be used to achieve this goal. Both approaches
are used in the following of the paper as strategies to select the areas of interest
by the service provider, but we stress here that our construction is independent

22 P. Palmieri et al.

Fig. 2. An example of the area coverage algorithm applied to a point of interest of
interest. After defining the grid (a), the Manhattan distance from the center region
is computed (b). Finally, each region is assigned to the right set (c). In this case, the
maximum distance (σ) is 4, so we assign the regions belonging to the distance classes
4 and 3 to Δ1, those belonging to the classes 2 and 1 to Δ2 and the sole region belonging
to the 0 class to the set Δ3.

of the strategy used, and therefore can accommodate any other set selection
mechanism.

The first strategy to define a set of areas of interest follows naturally from the
idea of detecting the presence/absence of a person in a given area. In order to do
that, the provider of the service defines an area by selecting a subset of E (Fig. 1).
The regions in the area need not to be contiguous, and there is no limitations in
shape or size of the area. The set containing all of these regions is defined as Δ
(we get back on this subject in Sect. 4).

A second approach is instead to monitor the user by detecting his proximity
to the area’s center as he approaches it. We achieve this goal without knowing
the user’s exact location by defining several concentric areas around the point
of interest to be monitored. In the example shown in Fig. 2 we use three areas
for this purpose, but this parameter can take any value deemed useful.

Let c be the center of the area (having coordinates lngc, latc) and let r be
the range we are interested to monitor users around the center itself. First of
all we choose a region such that it is the element of E that contains the point c.
Then a number of adjacent elements (all belonging to E) are added in order
to form a grid, until the circle of center c and radius r is completely included
in the grid, as shown in Fig. 2a. Now let us label each region with its distance
from the center region, using the standard Manhattan distance. Assume that σ
is the maximum distance value in the generated grid; we need to discuss two
cases. If (σ + 1) mod 3 = 0, we assign to the set Δ3 each region labeled from
0 to q − 1, where q = (σ + 1)/3. Similarly, we fill the set Δ2 with each square
labeled from q to 2q − 1 and the set Δ1 with each square labeled from 2q to σ.
If 3 does not divide σ + 1 exactly (i.e. (σ + 1) mod 3 �= 0) some rounding is
required; we could for instance assign the first remaining class to Δ1 and the
second optionally remaining class to Δ2. In that case, given q = �(σ +1)/3�, the

Spatial Bloom Filters: Enabling Privacy in Location-Aware Applications 23

procedure can be formalized assigning each region labeled from 0 to q − 1 to the
set Δ3, each region labeled from q to 2q to the set Δ2 and each region labeled
from 2q + 1 to σ to the set Δ1.

4 Spatial Bloom Filter

After defining a spatial representation E of Earth’s surface and providing a way
to identify geographical areas (and points) as elements of a subset of E , we can
use a set-based data structure like the Bloom filter to encode this information.
However, the original definition of BF proves to be quite inefficient for this task,
as it would be possible to encode only one area for each BF.

In the following we define a novel data structure called Spatial Bloom Filter.
A spatial Bloom filter can be used, likewise the original BF, to perform mem-
bership queries on the originating set of elements without knowledge of the set
itself. Contrary to the BF, however, a spatial Bloom filter can be constructed
over multiple sets, and querying a spatial Bloom filter for an element returns the
identifier of the specific set among all the originating sets in which the element
is contained, minus a false positive probability (of assigning the element to the
wrong set). Similarly to a classical BF, there is also a false positive probabil-
ity that querying a SBF with an element outside the originating sets returns a
positive result (wrongly assigning the element to one of the originating sets).

An important property of SBF is that the probability of false positives, that
is, the probability that an element is wrongly recognized as belonging to a specific
originating set, depends on the order in which the sets have been encoded in the
filter: a false positive can occur either when an element outside the originating
sets is recognized as being part of one, or when an element that is part of
an originating set is recognized as being belonging to a different one (sets are
disjoint). The latter case, however, can only happen if the wrongly recognized
set has been encoded later than the actual originating set.

This fundamental property allows to define an order of priority for the dif-
ferent originating sets, thus reducing the error probability for elements (areas)
deemed more important. Considering the strategies described in the previous
section for selecting areas of interests, this property is particularly useful when
using SBFs to store location information. In the example presented in Sect. 3.1,
for instance, we used a set of three different areas S = {Δ1,Δ2,Δ3}. Assum-
ing the provider would prefer a more accurate monitoring of the area’s central
region, we assigned the highest label value (3) to the inner area. In the following
we generally consider the sets as already ordered by priority, meaning that set
Δ2 is considered as having higher priority than Δ1.

Definition 3. Let S = {Δ1,Δ2, . . . , Δs} be a set of areas of interest such that
Δi ⊆ E and S is a partition of the union set S̄ =

⋃
Δi∈S Δi. Let O be the strict

total order over S for which Δi < Δj for i < j. Let also H = {h1, . . . , hk} be
a set of k hash functions such that each hi ∈ H : {0, 1}∗ → {1, . . . , m}, that
is, each hash function in H takes binary strings as input and outputs a random

24 P. Palmieri et al.

number uniformly chosen in {1, . . . , m}. We define the Spatial Bloom Filter
(SBF) over (S,O) as the set of pairs

B# (S,O) =
⋃

i∈I

〈i,max Li〉, (5)

where I is the set of all values output by hash functions in H for elements of S̄

I =
⋃

δ∈S̄,h∈H

h (δ) , (6)

and Li is the set of labels l such that:

Li = {l | ∃δ ∈ Δl,∃h ∈ H : h(δ) = i} . (7)

A spatial Bloom filter B# (S,O) can be represented as a vector b# composed
of m values, where the i-th value

b# [i] =
{

l if 〈i, l〉 ∈ B# (S,O)
0 if 〈i, l〉 �∈ B# (S,O) . (8)

In the following, when referring to a SBF, we refer to its vector representa-
tion b#.

A SBF is built as follows. Initially all values in b# are set to 0. Then, for
each element δ ∈ Δ1 and for each h ∈ H we calculate h (δ) = i, and set the i-th
value of b# to 1 (that is, to the label of Δ1). We do the same for the elements
belonging to the set Δ2, setting b# [i] to 2. We proceed incrementally until all
sets in S have been encoded in b#. We observe that, following Definition 3, should
a collision occur, the label with higher value is the one stored at the end of the
process. Thus, values in the filter corresponding the elements in Δs will never be
overwritten. This procedure is formalized in Algorithm2 and depicted in Fig. 3.

The verification process shall check whether an element δu is contained in a
set Δi ∈ S. Hence we verify whether δu ∈ Δi if

∃h ∈ H : b# [h(δu)] = i and ∀h ∈ H, b# [h(δu)] ≥ i. (9)

The procedure is described in Algorithm 3.
In practice, if any value of b# in a position that corresponds to the output

of one of the hash functions for δu is 0, then δu �∈ S̄. If all the hashes map to
elements of value i, then δu ∈ Δi minus a false positive probability which is
discussed in the following. The same applies if at least one hash maps to an
element of value i and the remaining hashes map to elements of value > i. In
fact, since when a collision occurs the highest value is stored, a lower value could
be overwritten.

Similarly to the case of the original Bloom filter (Sect. 2.1), a false positive
probability p exists when determining whether an element belongs to the set S̄
or not. In the case of a spatial Bloom filter B# (S,O), however, the probability
p can be split into several probabilities pi, each one subset-specific. Specifically,

Spatial Bloom Filters: Enabling Privacy in Location-Aware Applications 25

a

b

c

SBF : 0 0 0 0 0 0 0 0 0 0

Δ1

Δ1 : 1 0 1 0 1 0 1 0 0 1

Δ2

Δ2 : 1 2 1 0 2 0 1 0 2 1

Δ3

Δ3 : 1 3 1 0 2 0 1 3 2 3

Fig. 3. Areas Δ1, Δ2 and Δ3 are used to construct a SBF. Three hash functions
are used to map each element into the filter. Only the first ten elements of the SBF
are shown. In a, two elements belonging to Δ1 are processed by the hash functions,
resulting in six 1 value elements to be written into the SBF. The first element collides
as highlighted. This kind of collision is the same that may occur in a classic Bloom
Filter. After each element in Δ1 is processed, the algorithm processes elements in Δ2

(b) and finally in Δ3 (c). Note that the collisions in b and c are different from the
previous one and are SBF specific. Areas marked with a greater label are assumed to
be more important from the provider point of view and overwrite elements of lower
value on collision.

pi is the probability that an element δ is wrongly recognized as belonging to
the set Δi, while either δ �∈ S̄ or δ ∈ Δj , with j < i. For instance, a false positive
assigned to the set Δs occurs if each hash collides with a value s in b#. Thus we
can denote this probability as follows:

ps ≈
(
1 − e− k|Δs|

m

)k

. (10)

The above probability follows from the false probability of classical Bloom fil-
ters (15), as explained in AppendixA. Similarly, we can compute the probabil-
ity to wrongly assign an element to the set Δs−1 considering all of the possible
collisions with elements belonging to Δs and Δs−1, excluding those deriving
from collisions with elements belonging to Δs entirely. Hence

ps−1 ≈
(

1 − e− k|Δs∪Δs−1|
m

)k

− ps. (11)

26 P. Palmieri et al.

Algorithm 2. Spatial Bloom
Filter construction.
Input: Δ1, Δ2, . . . , Δs, H;
Output: b#;

1 for i ← 1 to s do
2 foreach δ ∈ Δi do
3 foreach h ∈ H do
4 b# [h (δ)] ← i;

end
end

end
5 return b#;

Algorithm 3. Spatial Bloom
Filter verification.
Input: b#, H, δu, s;
Output: Δi;

1 i = s;
2 foreach h ∈ H do
3 if b# [h (δu)] = 0 then
4 return false;

else
5 if b# [h (δu)] < i then
6 i ← b# [h (δu)];

end
end

end
7 return Δi;

We can proceed likewise to the last set:

p1 ≈
(
1 − e− k|S̄|

m

)k

− ps − ps−1 − · · · − p2. (12)

It follows that p1+p2+· · ·+ps = p, where p is the same false positive probability
provided in (15) if |S̄| = n.

In the following we assume that the possibility of false positives among sets
(that is, having elements in S̄ assigned to the wrong set) is deemed as generally
acceptable when using a SBF.

Let us finally note that a SBF bears some resemblance to a bloomier filter
[6,7], a variant of the classical Bloom filter used for storing binary functions
instead of sets. We could in fact define the originating sets through a function,
and build the corresponding bloomier filter. However, in the case of a spatial
Bloom filter we have an error probability between different Δ’s, but we know
exactly whether a δ ∈ S or not. A bloomier filter, instead, would behave in
the opposite way: the function always outputs the correct Δ, but there exists
a probability that a δ �∈ S will be wrongly recognized as belonging to one Δ.
Considering location-aware applications, we deem an error in positioning over
two contiguous areas of interest as acceptable, while mistakenly recognizing a
position outside the areas of interests (even by far) as inside as much more
problematic. Therefore, we believe that the proposed spatial Bloom filters are
better suited to be used in the location-aware context, while bloomier filters
might still be useful in specific application scenarios.

5 Private Positioning Protocols for Spatial Bloom Filters

A major feature of SBFs is that they allow private computation of location
based information. We show this by providing two protocols based on spatial

Spatial Bloom Filters: Enabling Privacy in Location-Aware Applications 27

Bloom filters that address the problem of location privacy in a location-aware
application. In general, a location-aware application is any service that is based
on (partial) knowledge of the geographic position of the user. In this work,
however, we focus on applications in which the service provider has an interest
in learning when the user is within an area (or close to a point) of interest.

The protocols we present are designed for a secure multi-party computation
setting, where the user and the service provider are mutually distrusting, and
therefore do not want to disclose private information to the other party. In the
case of the user, private information is his exact location. The service provider,
instead, does not want to disclose the monitored areas. We address this prob-
lem by providing a scheme that allows the provider of a service to detect when
the user is within an area of interest, without requiring the user to reveal his
exact position to the provider. At the same time, the privacy of the provider
is also guaranteed with respect to the areas of interest. The privacy benefits
for the user are double: first and foremost, the relative location is only revealed
when the user is within predetermined areas, and remains private otherwise. Sec-
ondly, even when presence in an area is detected, only this generic information is
learned by the provider, and not the actual position. Following the area coverage
mechanism proposed in Sect. 3.1, for instance, the provider learns the distance
from the central area to a certain extent, while the direction from which the
user approaches it stays private. Dividing the area around the point of interest
in a different manner may reveal instead the direction but conceal the distance
within the area range.

In the following we discuss two different settings: in the first setting the user
communicates directly with the service provider, who computed beforehand a
spatial Bloom filter relative to the areas he is interested in monitoring. In the sec-
ond setting, instead, the service provider computes the SBF, but communication
with the user is handled by a third party, to which the provider outsources the
task. In both setting, no trust is implied among the parties, including the third
party, and we assume the parties do not collude with each other. We work in the
honest-but-curious setting, as defined in the preliminaries (Sect. 2).

5.1 Two-Party Scenario

In the two-party scenario the communication happens between the service
provider Paul and the user Ursula. We assume the user has access to a posi-
tioning system that allows her to determine her geographic position. Ursula is
interested in using a location-aware service provided by Paul, but she does not
want to disclose her exact position. Paul, on the other hand, wants to learn if
Ursula is close to some points of interest or is within an area of interest, but
he does not want to share with her these locations. Since the two parties are
mutually distrusting, this is a secure multi-party computation problem.

We propose Protocol 1, that addresses the problem securely by disclosing only
the identifier i of the area Δi in which the user is. Intuitively, the protocol works
as follows. Paul creates a SBF for the points and areas of interest as described in
the previous sections. He encrypts the filter (by encrypting each value therein)

28 P. Palmieri et al.

with an encryption scheme that allows the private Hadamard product defined in
Algorithm 1, and sends it to Ursula. Ursula creates a SBF for the set composed
only of her position in the grid. The filter is binary, since 0’s and 1’s are the only
possible values in a filter with only one point of interest. Then Ursula computes
the entrywise homomorphic product of the received SBF with the one she just
computed: this way, only the values of the encrypted filter corresponding to a 1
in her filter are preserved, while the others take value 0. Then she shuffles the
values in the resulting encrypted filter and sends the randomly ordered filter
back to Paul.

Protocol 1. Two-party private positioning protocol between service
provider Paul and user Ursula.

Before any communication, the provider selects the areas of interest
Δ1, . . . , Δs ⊂ E . Then, he selects the desired false positive probability p, and
determines k and m according to (16) and (17) respectively. Finally, following
the notation of Definition 3, the provider computes the spatial Bloom filter b#

over S̄ using Algorithm 2.

1 The service provider Paul generates a public and private key pair using a
multiplicative homomorphic encryption scheme, and sends the public key to the
user Ursula.

2 Paul sends to Ursula the encryption of the precomputed SBF Enc
(
b#
)
, the set

of k hash functions H, the value m and the conventional grid E .
3 At regular time intervals, or when required by the specific application, Ursula

determines her geographic position and selects the corresponding grid region
eu ∈ E . Then, following Algorithm 2 and using the values and functions shared
by Paul, she builds a spatial Bloom filter b#u over {eu} and counts the number z
of values equal to 1 therein.

4 Ursula computes e# = Enc
(
b#
)

� b#u using the homomorphic properties of the
encryption scheme (Algorithm 1). Then she applies a random permutation to
the values in the filter, and sends z and the result to Paul.

5 Paul decrypts e# and counts all non-zero values. If the resulting number is < z,
Ursula’s position is outside of the areas on which the SBF was built. Otherwise,
the value i, corresponding to area Δi identifying Ursula’s position (minus error
probability pi), is the smallest non-zero value in Dec

(
e#
)
.

Security Definition. In a two-party setting implementing Protocol 1, the com-
putation is achieved privately if at the end of the protocol execution Paul learns
only i ∈ {1, . . . , s}, and Ursula learns nothing.

In the following we analyze the security of the protocol with respect to the
above definition. In order to quantify the information learned by Paul during
the protocol execution, we introduce an arbitrarily small security parameter ε.
Then, we prove that the probability of Paul learning useful information is upper-
bounded by the chosen ε.

Spatial Bloom Filters: Enabling Privacy in Location-Aware Applications 29

Security Analysis. As stated in the security definition, a successful execution of
Protocol 11 should guarantee three conditions: correctness of the result for Paul,
privacy for Ursula’s position and privacy of the areas encoded in the filter by
Paul. We discuss the three conditions in the following.

The protocol ends correctly if the number of non-zero values read in the
decrypted e# by Paul is < z in case Ursula is outside the areas of interests;
in case Ursula is within an area, the protocol ends correctly if the number of
non-zero values is equal to z, and the area is identified by the smallest non-
zero value, minus error probability pi. The former case is always true, for the
properties of Definition 3, as explained in Sect. 4. In the latter case, the false
positive probability pi for each area i is determined by Paul according to (12)
during filter creation. It is therefore Paul himself who decides the correctness
bounds of the protocol.

The second condition (Ursula’s privacy) is respected if Paul learns only in
which (predefined) area the user is, and not her exact position at the end of the
protocol. If the user is outside the areas of interest, the provider should learn
nothing. Ursula encodes her position in b#u at step 3 of the protocol, and sends
the encrypted filter e# = Enc

(
b#

)
�b#u back to Paul after performing a random

permutation on the order of its values. The homomorphic properties of a public
key encryption scheme guarantee that Paul can only learn a number of values
from b# that corresponds to non-zero values in b#u [9]. At the same time, the
random permutation prevents him from understanding to which position in b#

each of these values corresponds to, therefore making it impossible to reconstruct
Ursula’s filter based on the order of elements. If the number of non-zero values is
z, and all take the value i corresponding to an area of interest, Paul only learns
the area of interest. In case, instead, some values are > i for some of the positions
on the grid within the area of interest, then Paul learns the area of interest Δi

and a pattern of values. The same applies in case Ursula is outside of any area of
interest, but the decryption of e# reveals a number of non-zero values w < z. In
the following we focus on the latter scenario, as a potential attack exploiting the
pattern information could reveal the user’s position even when she is outside the
areas of interests. In fact, if the pattern is unique for a position on the grid, Paul
may be able to learn Ursula’s position by performing an exhaustive search on
all the possible positions on the grid: given the irreversibility of (spatial) Bloom
filters, the complexity of the attack is linear to the number of such positions.
We prevent this attack by having each pattern shared by at least a possible
positions: in which case we achieve a-anonimity for the user’s position even in
case of an exhaustive search. We define an arbitrarily small security parameter
ε, and we consider the privacy condition to be met if the probability of Paul
learning Ursula’s position is 1

a < ε. For each number w ∈ {1, . . . , z} of non-zero
values obtained by Paul, we can estimate the value of a based on the number of
possible positions in E and the number of areas of interest s. In particular, we
calculate the number of possible patterns for a given w as the combinations with

repetitions of length w,
(

s + w − 1
w

)
. Based on this, we can estimate the average

value ā for the different a’s of all possible combination with repetitions to be

30 P. Palmieri et al.

ā =
|E|

∑k
w=1

(
s + w − 1

w

)
+ 1

, (13)

if we assume a linear distribution of the values {1, . . . , s} over the filter. The
security condition is hence met if 1

a < ε for all a’s relative to any possible w.
We note, from the formula above, that this mostly depends on the number of
areas of interest s and, on a lesser extent, on the number of hashes k (since
z ≤ k). These two values can therefore be tuned in order to achieve the desired
security parameter ε, as both values are selected before the creation of the filter.
Considering the order of magnitude of |E|, which is 1012, an appropriately built
filter can satisfy a security parameter ε = 10−6 for most values of k and s. Thanks
to the fine grained nature of the grid, even geographically limited settings which
restricts the area of potential positions of the user can achieve reasonable security
margins (ε ≈ 10−3): in fact, small areas of a few square kilometers already include
several millions possible positions (Sect. 3 and AppendixB).

Finally, the privacy of the service provider, that is, the secrecy of the areas
encoded in the filter, is ensured by the encryption of the filter itself. Ursula,
in fact, never learns the cleartext of the filter, as she is able to perform the
multiplication of step 4 in the encrypted domain thanks to the homomorphic
properties of the public key encryption scheme.

Computation and Communication Analysis. The computational complexity for
the insertion and the verification of a single element in a SBF are linear in the
number k of hash functions used for the filter. The private Hadamard product
has instead a computational cost linear to the length of the filter m.

Since we intend this primitive to be used in concrete scenarios, in the fol-
lowing we provide an evaluation of actual communication costs, and number of
computational operations to be performed during the execution of the protocol
(Table 1). While being a generally compact data structure, a SBF built over a
significantly large number of sets can consume a sizeable amount of memory.
While m bits are required for storing a classical Bloom filter b, a SBF needs
more bits due to the labels relative to the subsets Δi. More precisely, in order to
store b#, (�log2 s� + 1) m bits are needed. Depending on the number of areas and
the desired error probability, a SBF could require a storage space (and commu-
nication cost when transmitted) not suitable for constrained scenarios, as in the
case of mobile devices. For instance, consider hash functions with a 16 bit digest
(i.e. m = 216) and an area of interest divided into six sub areas. Since s = 6, a
SBF built on these functions needs (�log2 6� + 1) 216 bits, resulting in approxi-
mately 24 KB data structure. For this reason, we introduce in the next section a
protocol involving a third party which offloads user’s bandwidth consumption.

5.2 Three-Party Scenario

In the three-party scenario the communication does not happen directly between
the service provider and the user. The service provider is responsible for creating

Spatial Bloom Filters: Enabling Privacy in Location-Aware Applications 31

Table 1. Computation and communication load for stakeholders.

User Provider Third party

Comp. 1 SBF-insertion, 1 decryption,

(2-p) 1 Private Hadamard
Product

1 match count

Comp. k hashes 1 decryption, 1 SBF-completion,

(3-p) 1 match count 1 Private Hadamard Product

Comm. O (m) O (m)

(2-p) (�log2 s� + 1) m (�log2 s� + 1) m

Comm. O (log2 m) O (m) O (m)

(3-p) k (�log2 m� + 1) (�log2 s� + 1) m k (�log2 m� + 1) + (�log2 s� + 1) m

and managing the filter, but the verification of user values and therefore all
direct communication with the user is outsourced to a third party, whom we
call Olga. We introduce the third party in order to decrease the computation
and communication burden imposed on the user Ursula. In fact, while it is
reasonable to assume that the service provider has adequate resources in terms
of computational power and bandwidth to manage filters of big size, the same
assumption can not be made for the user, who might be constrained to the
limited resources of a mobile device such as a smartphone. Therefore, we offload
all onerous tasks to the provider and the third party, who is also assumed to be
communication and computationally capable.

Security Definition. In a three-party setting implementing Protocol 2, assuming
that no information other than the one implied by the protocol is shared between
the parties (parties do not collude), the computation is achieved privately if at
the end of the protocol execution Paul learns only i ∈ {0, . . . , s}, while Olga and
Ursula learn nothing.

Security Analysis. The security of the three-party protocol follows that of the
two-party protocol above. The introduction of the third party means however
that the user sends her unencoded hash values to the third party, who per-
forms the private Hadamard product. This exposes the user to an attack on
the spatial Bloom filter by the third party. While Bloom filters have proved
to be irreversible, an exhaustive search may reveal to Olga the input used to
produce the received hash outputs. This attack, however, assumes knowledge
of E by Olga. The conventional grid E represents in fact the coding scheme (or
ordering) of the elements on the geographical grid: that is, which value is to be
given as input to the hash functions for each position. Since this information is
not required by Olga for the execution of the protocol, the user and the provider
can agree on an encoding scheme (which can simply be a random ordering of
the geographical grid elements) unknown to the third party, thus preventing her
from running a search attack. We note that the same goal can also be achieved

32 P. Palmieri et al.

by using keyed hash functions, which would however require a key exchange
between the two parties.

A second threat to which the user is exposed is due to the deterministic
nature of the hash results for the same input. In fact, the third party may easily
know if the user is revisiting the same grid position twice by comparing the hash
digests. In settings in which this is considered unacceptable, a temporal-based
variation of the above encoding of the geographical grid can be used.

Protocol 2. Three-party private positioning protocol among provider Paul,
third party Olga and user Ursula.

Before any communication, the provider selects the areas of interest and creates
the corresponding spatial Bloom filter similarly to Protocol 1.

1 The service provider Paul generates a public and private key pair using a
multiplicative homomorphic encryption scheme, and sends the public key to the
third party Olga.

2 Paul sends to Olga the encryption of the precomputed spatial Bloom filter

Enc
(
b#
)

and the value m. Then, Paul sends to the user Ursula the set of k
hash functions H and the conventional grid E .

3 At regular time intervals, or when required by the specific application, Ursula
determines her geographic position and selects the corresponding grid region
eu ∈ E . Then, she computes the values {v1, . . . , vk} where vi = hi (eu), and
sends them to Olga.

4 Olga receives the values from Ursula and builds b#o , by assigning b#o [vi] = 1 for

every vi ∈ {v1, . . . , vk}. Then, she calculates z as the number of 1’s in b#o .
5 Olga computes e# = Enc

(
b#
)

� b#o using the homomorphic properties of the
encryption scheme (Algorithm 1). Then she applies a random permutation to
the values in the filter, and sends z and the result to Paul.

6 Paul decrypts e# and counts all non-zero values. If the resulting number is < z,
Ursula’s position is outside of the areas on which the SBF was built. Otherwise,
the value i, corresponding to Ursula’s area Δi (minus error probability pi), is
the smallest non-zero value in Dec

(
e#
)
.

6 Conclusions

In this paper we present a novel privacy-preserving primitive, the spatial Bloom
filter. Based on the classical Bloom filter, the SBF extends it by allowing multiple
different sets to be encoded in a single filter. Spatial Bloom filters are particu-
larly suited to store location information represented in a set-based format. We
provide a spatial representation system for geographic areas, which allows us
to encode or query positioning information (such as the one produced by GPS
devices) into an SBF. In this paper we propose two protocols for privacy preser-
vation in location-based services based on spatial Bloom filters. We imagine a

Spatial Bloom Filters: Enabling Privacy in Location-Aware Applications 33

scenario in which the provider of the service is interested in detecting the pres-
ence of a user within predetermined areas of interest, or his proximity to points
of interest. Thanks to the properties of SBF, the provider can build a filter over
a number of geographic areas, and the user can query the filter to determine
whether his current location lies within those areas without knowing the areas
themselves, thus preserving the privacy of the provider. By using the homomor-
phic properties of a public key encryption scheme, we can also guarantee the
user’s privacy, by allowing the provider to only learn in which (predefined) area
the user is, and not his exact position. The provider learns nothing in case the
user is outside the predefined set of areas.

Acknowledgments. The authors would like to acknowledge Marco Miani for the code
used in producing Fig. 4.

A Bloom Filters Properties

The bloom filter is built as follows. Initially all bits are set to 0. Then, for
each element a ∈ S and for each h ∈ H we calculate h (a) = i, and set the
corresponding i-th bit of b to 1. Thus, m bits are needed in order to store b.

We test an element au against b to determine membership in S, that is, we
verify whether au ∈ S if

∀h ∈ H, b [h(au)] = 1. (14)

If any bit in b that corresponds to a value output by one of the hash functions
for au is 0, then au �∈ S. If, instead, all the hashes map to bits of value 1, then
au ∈ S minus a false positive probability p determined by the number n of
elements in S, the number k of hash functions in H and the maximum possible
value m output by the hash functions (equal to the binary length of b) as follows:

p =

(
1 −

(
1 − 1

m

)kn
)k

≈
(
1 − e− kn

m

)k

. (15)

This small false positive probability is due to the potential collision of hashes
evaluated on different inputs, resulting into all bits associated to an element
outside the originating set having value 1. As such, it is determined largely by
k: if k is sufficiently small for given m and n, the resulting b is sufficiently sparse
and collisions are infrequent. If we consider the approximation in (15), we can
calculate the optimal number of hashes k as

opt (k) =
m

n
ln 2, (16)

from which we can infer

m =
⌈
− n ln p

(ln 2)2

⌉
. (17)

34 P. Palmieri et al.

However, the number of hashes also determines the number of bits read for
membership queries, the number of bits written for adding elements to the filter,
and the computational cost of calculating the hashes themselves. Therefore, in
constrained settings, we may choose to use a less than optimal k, according
to performance reasons, if the resulting p is considered sufficiently low for the
specific application domain.

B More on Spatial Representation

The most natural spatial representation for Earth is the standard geographic
coordinate system. In the geographic coordinate system every location on Earth
can be specified by using a set of values, called coordinates. Standard coor-
dinates are latitude, longitude and elevation. For the purposes of this work we
focus on longitude and latitude only, as the combination of these two components
is enough to determine the position of any point on the planet (excluding eleva-
tion or depth). The whole Earth is divided with 180 parallels and 360 meridians;
the plotted grid resulting on the surface is known as the graticule (Fig. 4).

λ
φ1

φ2

Fig. 4. An example of the planet’s surface and the grid plotted on it. φ1 and φ2 are
longitude values while λ is a latitude value.

Longitude (lng) and latitude (lat) can be stored and represented according
to several formats. In the following we use the decimal degrees plus/minus for-
mat, where latitude is positive if it is north of the equator (negative otherwise),
and longitude is positive if it is east of the prime meridian (negative otherwise);
for instance, 31.456764◦ (lat) and −85.887734◦ (lng) are two possible values.

Using a fixed precision in longitude and latitude (that is, choosing a fixed
number of decimal points for their values) allows us to easily divide the planet’s
surface into a discrete grid. Since meridians get closer as they converge the poles,
as can be seen in Fig. 4, the portions of the Earth’s surface defined by such a grid
have varying areas depending on their position (Table 2). While the construction

Spatial Bloom Filters: Enabling Privacy in Location-Aware Applications 35

proposed in the following is not dependent on the size or shape of the regions,
for simplicity in the discussion it is reasonable to approximate such portions to
rectangles and assume they have the same area.

Table 2. Some reference values of accuracy using three decimal places for coordinate
representation.

In actual applications, the precision in decimal points for longitude and lat-
itude should reflect the expected error of the device or sensor used for learning
the location information. The precision and accuracy of mobile devices in deter-
mining their geographic position were proved to vary considerably depending on
the context (urban areas, rural areas, etc.) [20].

In a detailed experiment on the accuracy of GPS sensors installed on mobile
devices, Blum et al. show that the location is reported with a precision varying
from 10 to 60 meters, depending on the device orientation and type, and, in
cities, on the surrounding buildings [3]. Hence, when designing a system based
on mobile devices it would reasonable to consider regions with sides tens of
meters long.

References

1. Avoine, G., Calderoni, L., Delvaux, J., Maio, D., Palmieri, P.: Passengers informa-
tion in public transport and privacy: can anonymous tickets prevent tracking? Int.
J. Inf. Manag. 34(5), 682–688 (2014)

2. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun.
ACM 13(7), 422–426 (1970)

3. Blum, J.R., Greencorn, D.G., Cooperstock, J.R.: Smartphone sensor reliability for
augmented reality applications. In: Zheng, K., Li, M., Jiang, H. (eds.) MobiQuitous
2012. LNICST, vol. 120, pp. 127–138. Springer, Heidelberg (2013)

4. Blumberg, A.J., Eckersly, P.: On locational privacy, and how to avoid losing it
forever, April 2009. https://www.eff.org/wp/locational-privacy

5. Calderoni, L., Maio, D., Palmieri, P.: Location-aware mobile services for a smart
city: design, implementation and deployment. JTAER 7(3), 74–87 (2012)

6. Charles, D., Chellapilla, K.: Bloomier filters: a second look. In: Halperin, D.,
Mehlhorn, K. (eds.) ESA 2008. LNCS, vol. 5193, pp. 259–270. Springer, Heidelberg
(2008)

7. Chazelle, B., Kilian, J., Rubinfeld, R., Tal, A.: The bloomier filter: an efficient data
structure for static support lookup tables. In: SODA, pp. 30–39. SIAM (2004)

https://www.eff.org/wp/locational-privacy

36 P. Palmieri et al.

8. Jiazhu, D., Zhilong, L.: A location authentication scheme based on proximity test
of location tags. In: ICINS 2013, pp. 1–6 (2013)

9. Kikuchi, H., Sakuma, J.: Bloom filter bootstrap: Privacy-preserving estimation of
the size of an intersection. JIP 22(2), 388–400 (2014)

10. Kulik, L.: Privacy for real-time location-based services. SIGSPATIAL Spec. 1(2),
9–14 (2009)

11. de Montjoye, Y.-A., Hidalgo, C.A., Verleysen, M., Blondel, V.D.: Unique in the
crowd: the privacy bounds of human mobility. Sci. Rep. 3(1376) (2013). doi:10.
1038/srep01376

12. Narayanan, A., Thiagarajan, N., Lakhani, M., Hamburg, M., Boneh, D.: Location
privacy via private proximity testing. In: NDSS. The Internet Society (2011)

13. Nielsen, J.D., Pagter, J.I., Stausholm, M.B.: Location privacy via actively secure
private proximity testing. In: PerCom Workshops, pp. 381–386. IEEE (2012)

14. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, p. 223. Springer,
Heidelberg (1999)

15. Pan, X., Meng, X.: Preserving location privacy without exact locations in mobile
services. Front. Comput. Sci. 7(3), 317–340 (2013)

16. Saldamli, G., Chow, R., Jin, H., Knijnenburg, B.P.: Private proximity testing with
an untrusted server. In: WISEC, pp. 113–118. ACM (2013)

17. Shu, X., Yao, D.D.: Data leak detection as a service. In: Keromytis, A.D., Di Pietro,
R. (eds.) SecureComm 2012. LNICST, vol. 106, pp. 222–240. Springer, Heidelberg
(2013)

18. Sun, J., Zhang, R., Zhang, Y.: Privacy-preserving spatiotemporal matching. In:
INFOCOM, pp. 800–808. IEEE (2013)

19. Tonicelli, R., David, B.M., de Morais Alves, V.: Universally composable private
proximity testing. In: Boyen, X., Chen, X. (eds.) ProvSec 2011. LNCS, vol. 6980,
pp. 222–239. Springer, Heidelberg (2011)

20. von Watzdorf, S., Michahelles, F.: Accuracy of positioning data on smartphones.
In: LocWeb, p. 2. ACM (2010)

21. Wicker, S.B.: The loss of location privacy in the cellular age. Commun. ACM 55(8),
60–68 (2012)

22. Zakhary, S., Radenkovic, M., Benslimane, A.: The quest for location-privacy in
opportunistic mobile social networks. In: IWCMC, pp. 667–673. IEEE (2013)

23. Zheng, Y., Li, M., Lou, W., Hou, Y.T.: SHARP: private proximity test and secure
handshake with cheat-proof location tags. In: Foresti, S., Yung, M., Martinelli, F.
(eds.) ESORICS 2012. LNCS, vol. 7459, pp. 361–378. Springer, Heidelberg (2012)

http://dx.doi.org/10.1038/srep01376
http://dx.doi.org/10.1038/srep01376

Security of Direct Anonymous Authentication
Using TPM 2.0 Signature

A Possible Implementation Flaw

Tao Zhang(B) and Sherman S.M. Chow

Department of Information Engineering,
Chinese University of Hong Kong, Sha Tin, N.T., Hong Kong

{zt112,sherman}@ie.cuhk.edu.hk

Abstract. Direct Anonymous Attestation (DAA) is a digital signature
scheme designed for anonymous authentication. A major application of
DAA is privacy-preserving remote authentication of a trusted platform
module (TPM). The private key used by DAA is stored within the TPM.
The resource of TPM is limited, thus TPM devices usually implement
only necessary secret-related algorithms and only store sensitive data.
Recently, in CCS 2013, Chen and Li proposed the notion of TPM 2.0
signature, which implements a simple yet generic algorithm taking the
private key as an input, for a wide range of higher applications such as
DAA and others (e.g., Schnorr’s signature, U-Prove). However, the reuse
of the same TPM algorithm and private key for multiple purposes may
introduce vulnerability, even within the same context of DAA. In partic-
ular, there are two situations in which the DAA scheme uses the same
signature scheme and private key, namely, signing or authentication, and
joining the system (for proving the knowledge of the private key to the
issuer of the DAA credential). In this paper, we analyzed the current secu-
rity model of DAA schemes with this in mind, identified the weakness and
the corresponding implementation flaw which leads to insecurity, and sug-
gested a fix. Our study provides more comprehensive security analysis for
DAA which suggests a prudent practice of DAA implementation.

Keywords: Accountable privacy · Direct anonymous authentication ·
Trusted platform module · DAA · TPM 2.0

1 Introduction

Direct anonymous authentication (DAA) are originally designed for privacy-
preserving remote authentication of a trusted platform module (TPM). A DAA
scheme involves three kinds of entities: an issuer, signers, and verifiers. The issuer,

This work is supported by grant 439713 from Research Grants Council (RGC),
Hong Kong, and grants (4055018, 4930034) from Chinese University of Hong Kong.
Sherman Chow is supported by the Early Career Award from RGC, Hong Kong.
The authors would like to thank Liqun Chen for inspiration of this research.

c© Springer International Publishing Switzerland 2015
D. Lin et al. (Eds.): Inscrypt 2014, LNCS 8957, pp. 37–48, 2015.
DOI: 10.1007/978-3-319-16745-9 3

38 T. Zhang and S.S.M. Chow

after successfully authenticated the signer via some means outside of the DAA
system, issues a credential to each signer. The signer can prove membership to a
verifier anonymously with a DAA signature generated from the credential. The
signer can choose to make a certain set of DAA signatures linkable, by specifying
the same “base name” during the creation of these signatures. This functionality
is known as user-controlled-linkability. The verifiers are in charge of verifying the
membership of the signers by verifying the DAA signatures the signers created.
The verifiers cannot learn the identity of each signer, beyond what could be
inferred from linkability.

TPM [1] is a secure multipurpose hardware chip which provides support for
various cryptographic functions. TPM devices implement a secure environment
to store and operate on the sensitive data. The computation power and storage
space of TPM devices are usually more expensive than common (untrusted)
devices such as desktop computers. Thus, the secure storage space is limited,
and the algorithms implemented in a TPM device are fixed and only provide
minimum functionalities. TPM devices only store sensitive data, or more often, a
private key for the cryptographic function such as decryption of the sensitive data
or authentication. Moreover, TPM devices only process the operations which
need direct access to the sensitive data.

DAA scheme was originally designed for TPM authentication. It splits the
signer role into two parts, namely, a Host (e.g., a desktop computer), and the TPM
device embedded in the Host. The TPM device, as the principle signer, is in charge
of the sensitive data related operations, while the Host, as the assistant signer, is
in charge of the non-sensitive operations. The Host has more computation and
storage resources, which complements TPM’s deficiency in the resources.

From the cost perspective, it is desirable for the TPM device to support only
one signature scheme, and the algorithm implementation within the TPM device
should also be fixed. Chen and Li [2] proposed a new signature scheme, called
TPM 2.0 signature, which provides a single implementation of signing functional-
ity with the goal of supporting more than one higher-level signing-related appli-
cations. The scheme splits the traditional signing algorithm Sign() into two parts,
namely, a commitment algorithm Commit() and a signature generating algorithm
GenSig(). With this new design, higher applications can just call these two algo-
rithms according to the specification of a specific scheme when the private key
embedded in the TPM is expected as an input.This is a nice and neat concept
which can potentially help the widespread application of TPM 2.0 in DAA, reg-
ular signature (e.g., Schnorr’s signature), or anonymous credential systems (e.g.,
U-Prove) [2].

Related Work. DAA can be seen as a group signature without the feature that
the signatures can be opened and linked to the signer by the group manager.
Brickell et al. [3] introduced the concept and proposed the first concrete DAA
construction. Since then, DAA has drawn a lot of attentions [4–11] from both
industry and academia. Brickell et al. [8,12] proposed the first pairing-based
DAA constructed with Camenisch-Lysyanskaya (CL) signature. Chen [5] reduced
the resource requirement on TPM for DAA scheme under Strong Diffie-Hellman

Security of Direct Anonymous Authentication Using TPM 2.0 Signature 39

(SDH) assumption. Brickell and Li [11] further reduced the resource requirement.
Brickell et al. [13] proposed a DAA scheme under LRSW assumption supporting
batch proof. Researchers have also worked on security analysis of DAA [7,14].
For example, Leung et al. considered a possible privacy flaw in DAA [6].
Our Contribution. The nature of DAA scheme requires multiple uses of the same
private key. To obtain a DAA credential, a non-interactive proof of the signing
key should be produced by the TPM. At the same time, the same signing key
will of course be used in the actual Sign algorithm. Both are inevitable. Many
DAA schemes [3,5,11,13] employ this design. An implementer may expect the
non-interactive proof produced by the TPM to follow a certain fixed algorithm
implementation available in the TPM, say, via the Commit() and GenSig() oracle
as advocated by the work of Chen and Li [2], On the other hand, the issuer is
normally considered to be trusted, so is its interaction with the TPM via the
Join algorithm. It may explain why existing security models did not consider the
usage of the private key by the adversary via this interface.

In this paper, we point out that, when a DAA scheme is not properly imple-
mented, in the sense that all different computations involving the same private
key really follow just a single implementation (either using the same hash func-
tion within the TPM, or relying on the external hash value supplied to the TPM),
it is possible that an adversary may take advantage of the Join() operation to
make a forgery. The rest of the paper exploits this vulnerability with several
existing DAA designs as illustrations, and proposes a new security model for
DAA schemes.

2 Preliminaries

This section reviews the recently proposed TPM 2.0 signature scheme and the
definition of DAA’s algorithms suite.

2.1 TPM 2.0 Signature

TPM 2.0 signature (or simply TPM signature) is basically a normal signature
scheme. Unlike the usual signature schemes, Sign algorithm is split into Commit
and GenSig. When used in TPM 2.0 device, the signing algorithm(s) should have a
fixed implementation for cost reason. This separation makes the application more
flexible since one may realize more than one applications such as different DAA
constructions or anonymous credentials as long as they share some similarities
in the usage of the private key embedded in the TPM.

TPM 2.0 signature is a tuple of four algorithms (Setup,KeyGen,Sign,Verify),
where Sign is actually a protocol between the TPM and the Host.

Setup(1λ): Let G1 be a cyclic group. Randomly choose h1
$← G1. Choose

the collision resistant hash functions H3 : {0, 1}∗ → G1, H4 : {0, 1}∗ → Zp,
H5 : {0, 1}∗ → Zp. Output the system parameter gpk = (G1, h1,H3,H4,H5).

KeyGen(gpk): Randomly choose f ← Zp and compute F = hf
1 . Output (tpk,

tsk)= (F, f).

40 T. Zhang and S.S.M. Chow

Sign(gpk, tsk, m):

– Commit(str, P1): Given P1 ∈ G1 and str ∈ {0, 1}∗:
1. If str =⊥, set J = 1G1 , otherwise, J = H3(str).
2. Randomly choose r ← Zp and compute R1 = Jr, R2 = P r

1 , K = Jf .
3. Output (K,R1, R2).

– GenSig(ch,m): Given ch and m as input, where ch = H4(R1||R2) in general
cases, and it is computed outside the TPM:
1. Compute c = H5(ch||m), s = r + c · f , where r is from Commit and will

be deleted after this operation.
2. Output (c, s).

The signature on m is σ = (P1, J,K,R1, R2, c, s). It is a signature of knowledge

SPK{(f) : K1 = P f
1 ∧ K = Jf}(m).

Verify(m,σ,K1): Parse σ = (P1, J,K,R1, R2, c, s):

1. If P1 = 1G1 and P2 = 1G1, reject and return 0.
2. Verify if c = H5(H4(R1||R2)||m). Reject and return 0 if the equation does not

hold.
3. Verify if R1 = Js · K−c and R2 = P s

1 · K−c
1 . Reject and return 0 if either of

the equations does not hold.
4. Return 1 if all the above succeed.

2.2 Direct Anonymous Attestation (DAA)

A DAA scheme involves three entities: an issuer, signers, and verifiers. The signer
role is split into a Host and the TPM embedded in it. A DAA scheme has five
polynomial-time algorithms (Setup, Join,Sign,Verify, Link).

– Setup. An issuer runs this probabilistic polynomial-time algorithm to setup
the system. On input of a security parameter, Setup output a pair (isk, param),
where isk is the secret key of the issuer, param is the global public parameters
for the system including issuer’s public key, a description of the DAA creden-
tial space, a description of a finite message space, and a description of a finite
DAA signature space.

– Join. An issuer and a signer jointly run this probabilistic polynomial-time
algorithm to authorize a signer (a Host-TPM pair). On the TPM part, TPM
runs Join to produce a pair (tsk, comm) where tsk is the TPM secret key and
comm is a commitment on tsk associated with the issuer. TPM sends comm to
the issuer. On the issuer part, the issuer produces a DAA credential cred with
comm and isk for certifying tsk. This credential cred is given to both TPM and
the corresponding Host.

– Sign. TPM and the corresponding Host jointly run this probabilistic algorithm
to generate an anonymous signature with authentication for a specific verifier.
On input theTPM secret key tsk, the DAA credential cred, a basename bsn from
the target verifier (or a special symbol ⊥), a message m, and a nonce nV from
the target verifier, Sign outputs a signature σ on m and nV under (tsk, cred)
associated with bsn. The basename bsn is used for user-controlled linkability.

Security of Direct Anonymous Authentication Using TPM 2.0 Signature 41

– Verify. A verifier V runs this deterministic polynomial-time algorithm to verify
the authenticity of a signer. On input a message m, a basename bsn, a signa-
ture σ, and a rogue list RogueList containing signers with revoked credential,
Verify returns accept or reject.

– Link. A verifier V runs this deterministic polynomial-time algorithm to deter-
mine whether two signatures are linked. On input two DAA signatures σ0 and
σ1, Link returns linked, unlinked, or ⊥. Link outputs ⊥ only if either σ0 or
σ1 is rejected by Verify with an empty rogue list (i.e., the rogue list does not
influence the result of Link). That means the corresponding message and the
basename should also be part of the inputs.

Chen and Li [2] instantiated the DAA schemes in [11,15] with TPM 2.0 signa-
tures described in Sect. 2.1. The DAA schemes in [11,15] use different algorithms
to issue credentials to the signers, but both use a Schnorr type signature in Join
and Sign operations. The use of Schnorr type signature in Join and Sign is com-
patible with TPM 2.0. The high-level idea to apply existing DAA schemes to
TPM 2.0 is described below.

– Join. A TPM device invokes GenSig to create a signature of knowledge on its
private key. An issuer verifies the signature and issues a credential associated
with the TPM’s private key.

– Sign. A Host randomizes the credential. The TPM takes in a message along
with the randomized credential, and invokes GenSig to create a signature on
the message and the credential with the TPM’s private key.

3 Review of the Current Security Model

This section presents the current security model for DAA schemes (e.g., [5,11,
15]), and briefly states the possible security problem of the model.

3.1 Current Security Model

Correctness. If both the signer and verifier are honest, the signatures generated
by the signer will be accepted by the verifier and can be linked together with
overwhelming probability. This means that the DAA algorithms must meet the
following consistency requirement. If

(isk, gpk) ← Setup(1λ)
(tsk, cred) ← Join(isk, gpk)
(mb, σb) ← Sign(mb, bsn, tsk, cred, gpk)|b=0,1

then we must have

1 ← Verify(mb, bsn, σb, gpk,RogueList)|b=0,1

1 ← Link(σ0, σ1, gpk)|bsn �=⊥

User-Controlled-Anonymity. The notion of user-controlled-anonymity is defined
via a game played by a PPT challenger C and a PPT adversary A as below:

42 T. Zhang and S.S.M. Chow

– Initial: A runs Setup, obtains (isk, gpk), and publishes gpk. C verifies the valid-
ity of gpk.

– Phase 1: A makes the following queries to C:
• Signing query: A submits a signer’s identity ID, a basename bsn (either

⊥ or a data string) and a message m of his choice to C, who runs Sign to
get a signature σ and responds with σ.

• Joining query: A submits a signer’s identity ID of his choice to C, who
runs Join with A to create tsk and to obtain cred from A. C verifies the
validity of cred and keeps tsk secret.

• Corrupt query: A submits a signer’s identity ID of his choice to C, who
responds with the value tsk of the signer.

– Challenge: At the end of Phase 1, A outputs two signers’ identities ID0 and
ID1, a message m and a basename bsn of his choice to C. A must not have made
any Corrupt query on either ID0 or ID1, and not have made the Sign query
with the same bsn if bsn �=⊥ with either ID0 or ID1. To make the challenge,
C chooses a bit b ∈ {0, 1} uniformly at random, signs m associated with bsn
under (tskb, credb) to get a signature σ and returns it to A.

– Phase 2: Same as Phase 1, but it is not allowed to corrupt signer ID0 or ID1,
or to make any Signing query with bsn if bsn �=⊥ with either ID0 or ID1.

– Response: A returns a bit b′. We say that the adversary wins the game if
b′ = b.

Definition 1 (User-Controlled-Anonymity). The advantage of the adver-
sary A in user-controlled-anonymity game is Adv[Aanon

DAA] = |Pr[b′ = b] − 1
2 |.

A DAA scheme is user-controlled-anonymous if for any PPT adversary A,
Adv[Aanon

DAA] is negligible.

User-Controlled-Traceability. The notion of User-Controlled-Traceability is defin-
ed via a game played by a C and an A as below:

– Initial: There are two initial cases.
• Case 1: C runs Setup and gives the resulting gpk to A, and C keeps isk

secret.
• Case 2: C receives gpk from A and does not know the value of isk.

– Query: A makes the following queries to C:
• Signing query: The same as in the game of user-controlled-anonymity.
• Semi-signing query: A submits a signer identity ID along with the data

transmitted from the host to the TPM in Sign of his choice to C, who
acts as the TPM in Sign and responds with the data transmitted from the
TPM to the host in Sign.

• Joining query: There are three cases of this query. The first two are used
with Initial Case 1, while the last one is used with Initial Case 2. We
assume that A does not use a single ID for more than one join query.

∗ Join Case 1a: A submits a signer’s identity ID of his choice to C, who
runs Join to create tsk and cred for the signer, and finally C sends cred
to A and keeps tsk secret.

Security of Direct Anonymous Authentication Using TPM 2.0 Signature 43

∗ Join Case 1b: A submits a signer’s identity ID with a tsk of his choice
to C, who runs Join to create cred for the signer and puts the given
tsk on the rogue list RogueList. C responds A with cred.

∗ Join Case 2: A submits a signer’s identity ID of his choice to C, who
runs Join with A to create tsk and to obtain cred from A. C verifies
the validity of cred and keeps tsk secret.

• Corrupt query:This is the same as in the gameof user-controlled-anonymity,
except that at the end C puts the revealed tsk on the rogue list RogueList.

– Forge: A returns a signer’s identity ID, a message m, a signature σ on m, and
the associated basename bsn. We say that the A wins the game if either of
the following two situations is true:
1. With Initial Case 1 where A does not have access to isk,

(a) Verify(m, bsn, σ) = 1, but σ is neither a response of the existing Sign-
ing queries nor a response of the existing Semi-signing queries.

(b) In the case of bsn �=⊥, there exists another signature σ′ associated
with the same identity and bsn, and Link(σ, σ′) = 0.

2. With Initial Case 2 where A knows isk, the same as in (a), in the condition
that the secret key tsk used to create σ was generated in Join Case 2 where
A does not have access to tsk.

Definition 2 (User-Controlled-Traceability). The advantage of the adver-
sary A in user-controlled-traceability game is Adv[Atrace

DAA] = Pr[A wins]. A DAA
scheme is user-controlled-traceable if for any PPT adversary A, Adv[Atrace

DAA] is
negligible.

3.2 Security Concerns

TPM 2.0 signature provides two signing-related interface (APIs), a commitment
API Commit() and a signing API GenSig(). The current security model of DAA
does not cover all the information an adversary can get from a DAA scheme.
Generally speaking, the more APIs a system provide, the more potential attack
vectors one may exploit. Xi et al. [16] and Acar et al. [17] both have studied
the impact on security by TPM API Commit(). Here, we located another vul-
nerability brought in by the multiple uses of GenSig for different purposes. This
vulnerability is not as obvious as the one in [16,17], but is also vital for the
security of DAA schemes.

In more details, DAA with TPM devices typically employ one signature
scheme for all usage due to the resource limitation of TPM devices. Thus, both
Join() and Sign() uses GenSig() API. For example, the DAA scheme of Brickell
and Li [11] used the same signing key for Sign() (for the actual signing) and
Join() (for proving its knowledge). It is possible for an adversary to exploit this
for creating a forgery. Section 4.2 describes a possible breach and gives an attack
when existing DAA schemes are not properly implemented.

44 T. Zhang and S.S.M. Chow

4 Our Analysis

We explain why the same signing algorithm may be used in the actual Sign algo-
rithm and (perhaps surprisingly) the Join algorithm. We then describe the nec-
essary modification on the current security model of DAA schemes. The second
part of this section analyzes the current security model, explains the vulnerabil-
ity in the current security model, and explains what could go wrong with this
vulnerability in some existing DAA schemes.

4.1 Revision of Security Model

For DAA, the user secret key should be created by the TPM. Obviously, this
secret key should be certified by the issuer in the Join algorithm. Yet, for the
security proof of the whole DAA scheme, it is common to expect the TPM to
produce a proof of knowledge of this user secret key during the Join algorithm.
On the other hand, as argued in the introduction, the TPM usually provides
a single fixed interface for every operation involving this secret key. In other
words, DAA schemes use the same “signature scheme” (since a non-interactive
proof-of-knowledge of a signing key can be considered as a signature scheme)
and the same signing key for both Join and Sign operations.

We consider the situation that the target TPM’s Host or an issuer are cor-
rupted by the adversary. Now, Join operation acts as an oracle which returns
signature of a certain type to the adversary. The adversary does not have control
on the choice of the messages for these signatures, however, with the corrupted
issuer, the adversary can meddle with part of the input of signatures. Hence,
the adversary is able to produce a forgery with this join oracle provided by the
corrupted issuer.

To make the security model more comprehensive, the following oracle needs
to be added into the security model of DAA schemes. This oracle complements
the current security model for user-controlled-traceability in Sect. 3.1.

Definition 3 (Join Oracle 2). Join oracle 2 outputs the transcript of TPM.
An adversary inputs a nonce nIssuer as in Join operation, Join oracle 2 invokes
the GenSig oracle of the TPM oracles to generate the transcript of TPM in Join
operation.

In the security model, the adversary has the access to Join oracle 2 besides all
the other oracles stated in Sect. 3.1.

4.2 Potential Vulnerability

Now we describe attacks on a possible mis-implementation of the schemes in [11]
(SDH-DAA) and [15] (LRSW-DAA). We keep the notations used in the original
paper, yet we omit the encryption scheme employed in Join as it is not essential
in the forgery. For the attack, we assume that the hash functions H2 and H5

are instantiated with the same hash function H
∗, and the arrangement of the

Security of Direct Anonymous Authentication Using TPM 2.0 Signature 45

inputs are concatenated in a specific order (for both of the original schemes).
This assumption is strong but may hold when TPM devices implement only
one signature scheme at a time to reduce the cost. For example, as described in
Chen and Li’s work [2], there is only one implementation of GenSig algorithm. To
instantiate the DAA schemes in [11,15] with TPM 2.0 signature, Join and Sign
have to invoke the same API, GenSig, with a fixed hash algorithm implemented.

While it may be pretty obvious to cryptographers that the reuse of hash func-
tions for different purposes (even within the same scheme) is bad to security, it
may not be apparent to the developers who actually implement the scheme,
especially under the cost constraints of TPM which only affords a single imple-
mentation, and the TPM 2.0 signature idea advocated by Chen and Li which
allows multiple higher applications to use the same “basic” signature scheme
implemented within the TPM.

We stress that our attacks below are not applicable to the original DAA
schemes as described in the original papers [11,15], if they do not utilize a single
implementation via TPM 2.0 signature. Yet, we have reasons to believe that it
may be the case since only the only available way to access the private key is via
the same GenSig API. Moreover, we believe that it is the job of cryptographers
to propose a security model which is as comprehensible (in terms of possible
vulnerabilities) as possible, and point out what could go wrong if cryptographic
schemes are not properly implemented.

Attack on SDH-DAA Scheme. An adversary A can generate a signature for
a verifier V with basename bsn in a variant of utilizing TPM 2.0 signature to
instantiate the SDH-based DAA scheme [11] in this way:

1. A starts a Sign operation with V and receives a nonce nV from V.
2. A makes a sign query on an arbitrary message for V, and extract (B =

H3(bsn),K = Bf ,bsn) from the output. We assume that the signature query
for V with basename bsn has been made prior to the attack, thus A can obtain
the value K = Bf without the knowledge of f . If this has not happened, a
signing query can always be made on a random message. The adversary only
concerns about the tuple (B,K, bsn).

3. A performs the following calculation as the Join operation of TPM and Host
in the real Sign operation:
(a) A chooses r∗

f , r∗
x, r∗

a, r∗
b

$← Zp.
(b) A computes b = a · x mod p and T = A · ha

2 .

(c) A computes R∗
1 = Br∗

f and R∗
2 = e(h

r∗
f

1 · T−r∗
x · h

r∗
b

2 , g2) · e(h2, w)r∗
a .

(d) A computes ch = H4(gpk, B,K, T,R∗
1, R

∗
2, nV).

4. A starts Join oracle 2 with the victim TPM, and sends ch as the nonce nIssuer

as in Join algorithm.
(a) TPM chooses rf

$← Zp, and computes R = h
rf

1 .
(b) TPM computes c = H

∗(gpk||ch||F ||R).
(c) TPM computes sf = rf + c · f and outputs σ = (sf , c).

46 T. Zhang and S.S.M. Chow

Note that in the preceding steps, A plays Issuer’s role. However, we only need
a TPM signature on the nonce input by A. Join oracle 2 ends after outputting
the TPM signature on nIssuer to A.

5. A computes R̂ = h
sf

1 · F−c and outputs a DAA signature (sf , c) on F ||R̂
for V. Obviously, the signature (sf , c) can be verified for message F ||R̂ in our
variant of the SDH-DAA scheme. And A can easily compute (s∗

x, s∗
a, s∗

b) with
the signature (sf , c) and finally output the forgery.

Attack on LRSW-DAA Scheme. An adversary A can generate a signature
for a verifier V with basename bsn in a variant of utilizing TPM 2.0 signature to
instantiate the LRSW-based DAA scheme [15] in this way:

1. A starts a Sign operation with V and receives a nonce nV from V.
2. A makes a sign query on an arbitrary message for V, and then extract

(R,S, T,W, J,K = [skT]J, bsn) from the output. We assume that the sig-
nature query for V with basename bsn has been made prior to the attack,
thus A can obtain the value K = [skT]J without the knowledge of skT . If this
has not happened, a signing query can always be made on a random message.
The adversary only concerns about the tuple (R,S, T,W, J,K, bsn).

3. A perform the following operation:
(a) A chooses l∗ $← Zp and re-randomize the credential (R∗ = [l∗]R,S∗ =

[l∗]S, T ∗ = [l∗]T,W ∗ = [l∗]W).

(b) A chooses r∗ $← Zp and computes R∗
1 = [r∗]J,R∗

2 = [r∗]S∗.
(c) A computes str∗ = J ||K||bsn||R∗

1||R∗
2.

(d) A computes c∗ = H4(R∗||S∗||T ∗||W ∗||nV).
(e) A computes ch = c||str∗.

4. A starts Join oracle 2 with the victim TPM, and sends ch as the nonce nIssuer

as in Join algorithm.
(a) TPM chooses u

$← Zp and computes Q2 = [skT]P1, U = [u]P1.
(b) TPM computes str= X||Y ||nIssuer = X||Y ||ch.
(c) TPM computes v = H

∗(P1||Q2||U ||str) and w = u + v·skT mod p.
Note that in the preceding two steps, A plays Issuer’s role. However, we only
need a TPM signature on the nonce input by A. Join oracle 2 ends after
outputting the TPM signature (w, v) on nIssuer to A.

5. A outputs a DAA signature (w, v) on P1||Q2||U for V. Obviously, the sig-
nature (w, v) can be verified for message P1||Q2||U in the variant of the
LRSW-DAA scheme.

5 Conclusion

In this paper, we proposed a new security model for DAA schemes. We analyzed
the current security model of DAA schemes, and found a possible vulnerability
in the current model. This possible vulnerability affects the DAA schemes which
use the same signing algorithm and the same signing key for different usages.

Security of Direct Anonymous Authentication Using TPM 2.0 Signature 47

We conducted an attack on potential mis-implementations of DAA to show the
consequence of the vulnerability. As a concrete (yet well-known) advice, it is
dangerous to reuse the same hash function for more than one purpose, even
within the same context. We leave it as an interesting (but maybe not necessarily
a pure-research type) question to strike a balance between security of the higher
applications and the generality of the single building block implementation for
those higher applications.

References

1. Sumrall, N., Novoa, M.: Trusted computing group (TCG) and the TPM 1.2 spec-
ification. In: Intel Developer Forum 2003, vol. 32 (2003)

2. Chen, L., Li, J.: Flexible and scalable digital signatures in TPM 2.0. In: CCS 2013,
pp. 37–48. ACM (2013)

3. Brickell, E., Camenisch, J., Chen, L.: Direct anonymous attestation. In: CCS 2004,
pp. 132–145. ACM (2004)

4. Brickell, E., Li, J.: Enhanced privacy ID: a direct anonymous attestation scheme
with enhanced revocation capabilities. In: Proceedings of the 2007 ACM Workshop
on Privacy in Electronic Society, pp. 21–30. ACM (2007)

5. Chen, L.: A DAA scheme requiring less TPM resources. In: Bao, F., Yung, M.,
Lin, D., Jing, J. (eds.) Inscrypt 2009. LNCS, vol. 6151, pp. 350–365. Springer,
Heidelberg (2010)

6. Leung, A., Chen, L., Mitchell, C.J.: On a possible privacy flaw in direct anonymous
attestation (DAA). In: Lipp, P., Sadeghi, A.-R., Koch, K.-M. (eds.) Trust 2008.
LNCS, vol. 4968, pp. 179–190. Springer, Heidelberg (2008)

7. Rudolph, C.: Covert identity information in direct anonymous attestation (DAA).
In: Venter, H., Eloff, M., Labuschagne, L., Eloff, J., von Solms, R. (eds.) New
Approaches for Security, Privacy and Trust in Complex Environments, pp. 443–
448. Springer, New York (2007)

8. Brickell, E., Chen, L., Li, J.: Simplified security notions of direct anonymous attes-
tation and a concrete scheme from pairings. Int. J. Inf. Secur. 8(5), 315–330 (2009)

9. Chen, L., Morrissey, P., Smart, N.P.: On proofs of security for DAA schemes. In:
Baek, J., Bao, F., Chen, K., Lai, X. (eds.) ProvSec 2008. LNCS, vol. 5324, pp.
156–175. Springer, Heidelberg (2008)

10. Chen, X., Feng, D.: Direct anonymous attestation for next generation TPM. J.
Comput. 3(12), 43–50 (2008)

11. Brickell, E., Li, J.: A pairing-based DAA scheme further reducing TPM resources.
In: Acquisti, A., Smith, S.W., Sadeghi, A.-R. (eds.) TRUST 2010. LNCS, vol. 6101,
pp. 181–195. Springer, Heidelberg (2010)

12. Brickell, E., Chen, L., Li, J.: A new direct anonymous attestation scheme from
bilinear maps. In: Lipp, P., Sadeghi, A.-R., Koch, K.-M. (eds.) Trust 2008. LNCS,
vol. 4968, pp. 166–178. Springer, Heidelberg (2008)

13. Brickell, E., Chen, L., Li, J.: A (corrected) DAA scheme using batch proof and
verification. In: Chen, L., Yung, M., Zhu, L. (eds.) INTRUST 2011. LNCS, vol.
7222, pp. 304–337. Springer, Heidelberg (2012)

14. Backes, M., Maffei, M., Unruh, D.: Zero-knowledge in the applied pi-calculus and
automated verification of the direct anonymous attestation protocol. In: IEEE SP
2008, pp. 202–215. IEEE (2008)

48 T. Zhang and S.S.M. Chow

15. Chen, L., Page, D., Smart, N.P.: On the design and implementation of an efficient
DAA scheme. In: Gollmann, D., Lanet, J.-L., Iguchi-Cartigny, J. (eds.) CARDIS
2010. LNCS, vol. 6035, pp. 223–237. Springer, Heidelberg (2010)

16. Xi, L., Yang, K., Zhang, Z., Feng, D.: DAA-related APIs in TPM 2.0 revisited.
In: Holz, T., Ioannidis, S. (eds.) Trust 2014. LNCS, vol. 8564, pp. 1–18. Springer,
Heidelberg (2014)

17. Acar, T., Nguyen, L., Zaverucha, G.: A TPM Diffie-Hellman oracle. Technical
Report MSR-TR-2013-105, Microsoft Research (2013) Also available at Cryptology
ePrint Archive 2013/667

Multiparty and Outsource
Computation

Revocation in Publicly Verifiable Outsourced
Computation

James Alderman(B), Christian Janson, Carlos Cid, and Jason Crampton

Information Security Group, Royal Holloway, University of London,
Egham, Surrey TW20 0EX, UK

{James.Alderman.2011,Christian.Janson.2012}@live.rhul.ac.uk
{Carlos.Cid,Jason.Crampton}@rhul.ac.uk

Abstract. The combination of software-as-a-service and the increasing
use of mobile devices gives rise to a considerable difference in compu-
tational power between servers and clients. Thus, there is a desire for
clients to outsource the evaluation of complex functions to an external
server. Servers providing such a service may be rewarded per computa-
tion, and as such have an incentive to cheat by returning garbage rather
than devoting resources and time to compute a valid result.

In this work, we introduce the notion of Revocable Publicly Verifi-
able Computation (RPVC), where a cheating server is revoked and may
not perform future computations (thus incurring a financial penalty).
We introduce a Key Distribution Center (KDC) to efficiently handle the
generation and distribution of the keys required to support RPVC. The
KDC is an authority over entities in the system and enables revocation.
We also introduce a notion of blind verification such that results are ver-
ifiable (and hence servers can be rewarded or punished) without learning
the value. We present a rigorous definitional framework, define a number
of new security models and present a construction of such a scheme built
upon Key-Policy Attribute-based Encryption.

Keywords: Publicly Verifiable Outsourced Computation · Key Distri-
bution Center · Key-Policy Attribute-Based Encryption · Revocation

1 Introduction

It is increasingly common for mobile devices to be used as general computing
devices. There is also a trend towards cloud computing and enormous volumes of

J. Alderman acknowledges support from BAE Systems Advanced Technology Centre
under a CASE Award.
C. Cid—This research was partially sponsored by US Army Research laboratory
and the UK Ministry of Defence under Agreement Number W911NF-06-3-0001. The
views and conclusions contained in this document are those of the authors and should
not be interpreted as representing the official policies, either expressed or implied,
of the US Army Research Laboratory, the U.S. Government, the UK Ministry of
Defence, or the UK Government. The US and UK Governments are authorized to
reproduce and distribute reprints for Government purposes notwithstanding any
copyright notation hereon.

c© Springer International Publishing Switzerland 2015
D. Lin et al. (Eds.): Inscrypt 2014, LNCS 8957, pp. 51–71, 2015.
DOI: 10.1007/978-3-319-16745-9 4

52 J. Alderman et al.

data (“big data”) which means that computations may require considerable com-
puting resources. In short, there is a growing discrepancy between the computing
resources of end-user devices and the resources required to perform complex com-
putations on large datasets. This discrepancy, coupled with the increasing use
of software-as-a-service, means there is a requirement for a client device to be
able to delegate a computation to a server.

Consider, for example, a company that operates a “bring your own device”
policy, enabling employees to use personal smartphones and tablets for work.
Due to resource limitations, it may not be possible for these devices to per-
form complex computations locally. Instead, a computation is outsourced over
some network to a more powerful server (possibly outside the company, offering
software-as-a-service, and hence untrusted) and the result of the computation is
returned to the client device. Another example arises in the context of battlefield
communications where each member of a squadron of soldiers is deployed with
a reasonably light-weight computing device. The soldiers gather data from their
surroundings and send it to regional servers for analysis before receiving tactical
commands based on results. Those servers may not be fully trusted e.g. if the
soldiers are part of a coalition network. Thus a soldier must have an assurance
that the command has been computed correctly. A final example could consider
sensor networks where lightweight sensors transmit readings to a more powerful
base station to compute statistics that can be verified by an experimenter.

In simple terms, given a function F to be computed by a server S, the client
sends input x to S, who should return F (x) to the client. However, there may
be an incentive for the server (or an imposter) to cheat and return an invalid
result y �= F (x) to the client. The server may wish to convince a client of an
incorrect result, or (particularly if servers are rewarded per computation per-
formed) the server may be too busy or may not wish to devote resources to
perform the computation. Thus, the client wishes to have some assurance that
the result y returned by the server is, in fact, F (x). This problem, known as
Verifiable Outsourced Computation (VC), has attracted a lot of attention in the
community recently. In practical scenarios, it may well be desirable that cheating
servers are prevented from performing future computations, as they are deemed
completely untrustworthy. Thus, future clients need not waste resources dele-
gating to a ‘bad’ server, and servers are disincentivised from cheating in the
first place as they will incur a significant (financial) penalty from not receiving
future work. Many current schemes have an expensive pre-processing stage run
by the client. However, it is likely that many different clients will be interested
in outsourcing computations, and that functions of interest to each client will
substantially overlap, as in the “bring your own device” scenario above. It is
also conceivable that the number of servers offering to perform such computa-
tions will be relatively low (limited to a reasonably small number of trusted
companies with plentiful resources). Thus, it is easy to envisage a situation in
which many computationally limited clients wish to outsource computations of
the same (potentially large) set of functions to a set of untrusted servers. Current
VC schemes do not support this kind of scenario particularly well.

Revocation in Publicly Verifiable Outsourced Computation 53

Our main contribution, then, is to introduce the new notion of Revocable
Publicly Verifiable Computation (RPVC). We also propose the introduction of a
Key Distribution Center (KDC) to perform the computationally intensive parts
of VC and manage keys for all clients, and we simplify the way in which the
computation of multiple functions is managed. We enable the revocation of mis-
behaving servers (those detected as cheating) such that they cannot perform
further computations until recertified by the KDC, as well as “blind verifica-
tion”, a form of output privacy, such that the verifier learns whether the result
is valid but not the value of the output. Thus the verifier may reward or pun-
ish servers appropriately without learning function outputs. We give a rigorous
definitional framework for RPVC, that we believe more accurately reflects real
environments. This new framework both removes redundancy and facilitates
additional functionality, leading to several new security notions.

In the next section, we briefly review related work. In Sect. 3, we define our
framework and the relevant security models. In Sect. 4, we provide an overview,
technical details and a concrete instantiation of our framework using Attribute-
based Encryption as well as full security proofs. Additional background details
can be found in the Appendix.

Notation. In the remainder of this paper we use the following notation. If A is
a probabilistic algorithm we write y ← A(·) for the action of running A on given
inputs and assigning the result to an output y. We denote the empty string by
ε and use PPT to denote probabilistic polynomial-time. We say that negl(·) is a
negligible function on its input and κ denotes the security parameter. We denote
by F the family of Boolean functions closed under complement – that is, if F
belongs to F then F , where F (x) = F (x) ⊕ 1, also belongs to F . We denote the
domain of F by Dom(F) and the range by Ran(F). By M we denote a message
space and the notation AO is used to denote the adversary A being provided
with oracle access. Finally, [n] denotes the set {1, . . . , n}.

2 Verifiable Computation Schemes and Related Work

The concept of non-interactive verifiable computation was introduced by
Gennaro et al. [5] and may be seen as a protocol between two polynomial-time
parties: a client, C, and a server, S. A successful run of the protocol results in
the provably correct computation of F (x) by the server for an input x supplied
by the client. More specifically, a VC scheme comprises the following steps [5]:

1. KeyGen (Run once):C computes evaluation information EKF that is given to
S to enable it to compute F ;

2. ProbGen (Run multiple times):C sends the encoded input σF,x to S;
3. Compute (Run multiple times):S computes F (x) using EKF and σF,x and

returns an encoding of the output θF (x) to C;
4. Verify (Run multiple times):C checks whether θF (x) encodes F (x).

54 J. Alderman et al.

SC

1. EKF

2. σF,x

3. θF (x)

4.

(a) A VC system

SC1 C2

Public

EKF

σF,x1

θF (x1)

σF,x2

θF (x2)

PKF , V KF,x1 V KF,x2

Verify Verify

(b) A PVC system

Fig. 1. The operation of verifiable computation schemes

The operation of a VC scheme is illustrated in Fig. 1a. KeyGen may be com-
putationally expensive but the remaining operations should be efficient for the
client. The cost of setup is amortized over multiple computations of F .

In prior work, Gennaro et al. [5] gave a construction using Garbled Circuits [11],
which provides a “one-time” Verifiable Outsourced Computation allowing a client
to outsource the evaluation of a function on a single input. However, the construc-
tion is insecure if the circuit is reused on a different input and thus this cost
cannot be amortized. Moreover, the cost of generating a new garbled circuit is
approximately equal to the cost of evaluating the function itself. The authors
therefore suggested using fully homomorphic encryption [6] to re-randomise the
circuit to allow multiple executions. In independent and concurrent work, Carter
et al. [3] introduce a third party to generate garbled circuits for such schemes
but require this entity to be online throughout and model the system as a
secure multi-party computation between the client, server and third-party. Some
works [4,7] consider the multi-client case where functions are computed over joint
input from multiple clients. Parno et al. [10] introduced Publicly Verifiable Com-
putation (PVC), where a single client C1 computes EKF , as well as publishing
information PKF that enables other clients to encode inputs (so only one client
has to run the expensive pre-processing stage). A client submits an input x and
may publish V KF,x to allow other clients to verify the output. The operation of
a PVC scheme is illustrated in Fig. 1b. It uses the same four algorithms as VC
but KeyGen and ProbGen now output public values that other clients may use
to encode inputs and verify outputs. Parno et al. gave an instantiation of PVC
using Key-Policy Attribute-based Encryption (KP-ABE) for a class of Boolean
functions. Further details are available in AppendixA.

3 Revocable Publicly Verifiable Computation

We now describe our new notion of PVC, which we call Revocable Publicly Ver-
ifiable Computation (RPVC). We assume there is a Key Distribution Center
(KDC) and many clients which make use of multiple untrusted or semi-trusted
servers to perform complex computations. Multiple servers may be certified, by

Revocation in Publicly Verifiable Outsourced Computation 55

the KDC, to compute the same function F . As we briefly explained in the intro-
duction, there appear to be good reasons for adopting an architecture of this
nature and several scenarios in which such an architecture would be appropri-
ate. The increasing popularity of relatively lightweight mobile computing devices
in the workplace means that complex computations may best be performed by
more powerful servers run by the organization or in the cloud and we would wish
to have some guarantee that those servers are certified to perform certain func-
tions. It is essential that we can verify the results of the computation. If cloud
services are competing on price to provide “computation-as-a-service” then it is
important that a server cannot obtain an unfair advantage by simply not both-
ering to compute F (x) and returning garbage instead. It is also important that
a server who is not certified cannot return a result without being detected.

Key Distribution Center. Existing frameworks assume that a client or clients
run the expensive phases of a VC scheme and that a single server performs
the outsourced computation. We believe that this is undesirable for a number
of reasons, irrespective of whether the client is sufficiently powerful. First, in
a real-world system, we may wish to outsource the setup phase to a trusted
third party. In this setting, the third party would operate rather similarly to a
certificate authority, providing a trust service to facilitate other operations of an
organization (in this case outsourced computation, rather than authentication).
Second, we may wish to enforce an access control policy limiting the functions
each client can outsource; an internal trusted entity would operate both as a
facilitator of outsourced computation and as a policy enforcement point. (We
will examine the integration of RPVC and access control in future work.)

We consider the KDC to be a separate entity to illustrate separation of duty
between the clients that request computations, and the KDC that is authoritative
on the system and users. The KDC could be authoritative over many sets of
clients (e.g. at an organizational level as opposed to a work group level), and
we minimise its workload to key generation and revocation only. It may be
tempting to suggest that the KDC, as a trusted entity, performs all computations
itself. However we believe that this is not a practical solution in many real
world scenarios, e.g. the KDC could be an authority within the organization
responsible for user authorization that wishes to enable workers to securely use
cloud-based software-as-a-service. As an entity within organization boundaries,
performing all computations would negate the benefits gained from outsourcing
computations to externally available servers.

System Architecture. In this paper we consider two system architectures,
which we call the Standard Model and the Manager Model. The standard model
is a natural extension of the PVC architecture with the addition of a KDC (as
shown in Fig. 2a). The entities comprise a set of clients, a set of servers and a
KDC. The KDC initializes the system and generates keys to enable verifiable
computation. Clients submit computation requests to a particular server and
publish some verification information. Any party can verify the correctness of a
server’s output. If the output is incorrect, the client may report the server to the

56 J. Alderman et al.

KDCS1 S2 S3

PublicC1 C2

EKF,S1 EKF,S2

EKG,S3

σF,x1 θF (x1)

σF,x2 θF (x2)

σG,x3

θG(x3)

V KF,x1

V KF,x2

V KG,x3

Revoke PKF , PKG

Verify

Verify

(a) Standard Model

KDCS1

M
S2

Public

C1

C2

EKF,S1

EKG,S2

σF,x1

θF (x1)

τθF (x1)

σ
G,x

2

θG(x2)

τθ
G(x

2)

V KF,x1

PKF

PKG

V KG,x2

Revoke

BVerif
Retrieve

Retrieve

(b) Manager model

Fig. 2. The operation of RPVC

KDC for revocation which will prevent the server from performing any further
computations. The manager model, in contrast, employs an additional Manager
entity who “owns” a pool of computation servers (as shown in Fig. 2b). Clients
submit jobs to the manager, who will select a server from the pool based on
workload scheduling, available resources or by a bidding process if servers are to
be rewarded per computation. A plausible scenario is that servers enlist with a
manager to “sell” the use of spare resources, whilst clients subscribe to utilise
these through the manager. Results are returned to the manager who should
be able to verify the server’s work. The manager forwards correct results to the
client whilst a misbehaving server may be reported to the KDC for revocation,
and the job assigned to another server. In some situations we may not desire
external entities to access the result, yet there remain legitimate reasons for
the manager to perform verification. Thus we introduce “blind verification”, as
hinted by Parno et al. [10], such that the manager (or other entity) may verify
the validity of the computation without learning the output, while the client
holds an extra key that enables the output to be retrieved.

3.1 Formal Definition

Definition 1. A Revocable Publicly Verifiable Outsourced Computation Scheme
(RPVC) comprises the following algorithms:

– (PP ,MK) ← Setup(1κ): Run by the KDC to establish public parameters PP
and a master secret key MK.

– PKF ← FnInit(F,MK,PP): Run by the KDC to generate a public delegation
key, PKF , for a function F .

– SKS ← Register(S,MK,PP): Run by the KDC to generate a personalised
signing key SKS for a computation server S.

– EKF,S ← Certify(S, F,MK,PP): Run by the KDC to generate a certificate
in the form of an evaluation key EKF,S for a function F and server S.

– (σF,x, V KF,x, RKF,x) ← ProbGen(x, PKF , PP): ProbGen is run by a client to
delegate the computation of F (x) to a server. The output value RKF,x is used
to enable output retrieval after the blind verification step.

Revocation in Publicly Verifiable Outsourced Computation 57

– θF (x) ← Compute(σF,x, EKF,S , SKS , PP): Run by a server S holding an eval-
uation key EKF,S , SKS and an encoded input σF,x of x, to output an encod-
ing, θF (x), of F (x), including an identifier of S.

– (ỹ, τθF (x)) ← Verify(θF (x), V KF,x, RKF,x, PP):
Verification comprises:
• (RTF,x, τθF (x)) ← BVerif(θF (x), V KF,x, PP): Run by any verifying party

(standard model), or by the manager (manager model), in possession of
V KF,x and an encoded output, θF (x). This outputs a token τθF (x) = (accept,
S) if the output is valid, or τθF (x) = (reject, S) if S misbehaved. It also
outputs a retrieval token RTF,x which is an encoding of the actual output
value.

• ỹ ← Retrieve(τθF (x) , RTF,x, V KF,x, RKF,x, PP): Run by a verifier holding
RKF,x to retrieve the actual result ỹ which is either F (x) or ⊥.1

– {EKF,S′} or ⊥ ← Revoke(τθF (x) ,MK,PP): Run by the KDC if a misbehav-
ing server is reported i.e. that Verify returned τθF (x) = (reject, S) (if τθF (x) =
(accept, S) then this algorithm outputs ⊥). It revokes all evaluation keys
EK·,S of the server S thereby preventing S from performing any further eval-
uations. Updated evaluation keys EK·,S′ are issued to all servers.2

Although not stated, the KDC may update the public parameters PP during
any algorithm. A RPVC scheme is correct if the verification algorithm almost
certainly outputs accept when run on a valid verification key and an encoded
output, where the encoded output is honestly produced by a computation server
given a validly generated encoded input and evaluation key. That is, if all algo-
rithms are run honestly then the result should almost certainly be accepted.

3.2 Security Models

We now formalize several notions of security as a series of cryptographic games.
The adversary against a particular function F is modelled as a PPT algorithm
A run by a challenger with input parameters chosen to represent the knowledge
of a real attacker as well the security parameter κ and a parameter qt > 1
denoting the number of queries the adversary makes to the Revoke oracle before
the challenge is generated. The adversary algorithm may maintain state and
be multi-stage and we overload the notation by calling each of these adversary
algorithms A. The notation AO denotes the adversary A being provided with
oracle access to the following functions: FnInit(·,MK,PP), Register(·,MK,PP),
Certify(·, ·, ·,MK,PP) and Revoke(·, ·, ·,MK,PP).3 For each game, we define
the advantage and security of A as:
1 Note that if a server is not given RKF,x then it too cannot learn the output.
2 In some instantiations, it may not be necessary to issue entirely new evaluation keys

to each entity. In Sect. 4, we only need to issue a partially updated key for example.
3 We do not need to provide a Verify oracle since this is a publicly verifiable scheme

and A is given verification keys (thus we also avoid the rejection problem).

58 J. Alderman et al.

Definition 2. The advantage of a PPT adversary A making a polynomial num-
ber of queries q (including qt Revoke queries) is defined as follows, where X ∈
{sSS-PubV erif, sSS-Revocation, sSS-V indictiveM}:

– AdvX
A (RPVC, F, 1κ, q) = Pr[ExpX

A [RPVC, F, qt, 1κ] = 1]
– AdvVindictiveS

A (RPVC, F, 1κ, q) = Pr[ExpVindictiveS
A [RPVC, F, 1κ] = 1]

– AdvBVerif
A (RPVC, F, 1κ, q) = Pr[ExpBVerif

A [RPVC, F, 1κ] = 1] −
max

y∈Ran(F)
(Pr
x∈Dom(F)

[F (x) = y]).

A RPVC is secure against Game X, VindictiveS or BVerif for a function F , if
for all PPT adversaries A, AdvX,VindictiveS ,BVerif

A (RPVC, F , 1κ, q) ≤ negl(κ).

Public Verifiability. In Game 1 we extend the Public Verifiability game of
Parno et al. [10] to formalize that multiple colluding servers should be unable to
convince any verifying party of an incorrect output (i.e. that Verify returns accept
on an encoded output not representing the true output of the computation). We
define a selective, semi-static notion4 such that the adversary must select its
challenge input before seeing the public parameters and must declare a list of
entities that must be revoked at the challenge time before receiving oracle access.

The adversary first selects an input value to be outsourced. The challenger
initializes a list of currently revoked entities QRev and a time parameter t before
running Setup and FnInit to create a public delegation key for the function F
(lines 2–5). The adversary is given the generated public parameters and must
output a list R of servers to be revoked when the challenge is created. It is then
given oracle access to the above functions which simulate all values known to
a real server as well as those learnt through corrupting entities. The challenger
responds to Certify and Revoke queries as detailed in Oracle Queries 1 and 2
respectively. It must ensure that QRev is kept up-to-date by adding or remov-
ing the queried entity, and in the case of revocation must increment the time
parameter. It also ensures that issued keys will not lead to a trivial win.

Once the adversary has finished this query phase (and in particular, due to
the parameterisation of the adversary, after exactly qt Revoke queries), the chal-
lenger must check that the queries made by the adversary has indeed left the list
of revoked entities to be at least that selected beforehand by the adversary. If
there is a server that the adversary included on R but is not currently revoked,
then the adversary loses the game. Otherwise, the challenger generates the chal-
lenge by running ProbGen on x�. The adversary is given the resulting encoded
input and oracle access again, and wins the game if it creates an encoded output
that verifies correctly yet does not encode the correct value F (x�).
4 This is due to the selective IND-sHRSS game that we base the construction upon.

Since this is used in a black-box manner however, a stronger primitive may allow
this game to be improved accordingly.

Revocation in Publicly Verifiable Outsourced Computation 59

Game 1. ExpsSS-PubVerif
A [RPVC, F, qt, 1κ]:

1: x� ← A(1κ);

2: QRev = ε;

3: t = 1;

4: (PP , MK) ← Setup(1κ);

5: PKF ← FnInit(F, MK, PP);

6: R ← A(PKF , PP);

7: AO(PKF , PP);

8: if (R �⊆ QRev) return 0;

9: (σF,x� , V KF,x� , RKF,x�) ← ProbGen(x�, PKF , PP);

10: θ� ← AO({σF,x� , V KF,x� , RKF,x�}, EKF,A, SKA, PKF , PP);

11: if ((((ỹ, τθ�) ← Verify(θ�, V KF,x� , RKF,x� , PP))

and ((ỹ, τθ�) �= (⊥, (reject, ·))) and (ỹ �= F (x�))))

12: return 1;

13: else return 0;

Oracle Query 1. OCertify(S, F ′,MK,PP):
1: if ((F ′ = F and S /∈ R) or (t = qt and R �⊆ QRev \ S)) return ⊥;
2: QRev = QRev \ S;
3: return Certify(S, F ′, MK, PP);

Oracle Query 2. ORevoke(τθF ′(x)
,MK,PP):

1: t = t + 1;
2: if (τθF ′(x)

= (accept, ·)) return ⊥;

3: if (t = qt and R �⊆ QRev ∪ S) return ⊥;
4: QRev = QRev ∪ S;
5: return Revoke(τθF ′(x)

, MK, PP);

Revocation. The notion of revocation requires that any subsequent computa-
tions by a server detected as misbehaving should be rejected (even if the result
is correct). Thus a misbehaving server may be completely removed from the
system and will be punished by not receiving rewards for future work.

The selective, semi-static notion of Revocation given in Game 2 proceeds
exactly as the sSS-PubVerif game except that the adversary wins if it outputs
any result (even a correct encoding of F (x�)) that is accepted as a valid response
from any server that was revoked at the time of the challenge. This game also uses
the Certify and Revoke oracles specified in Oracle Queries 1 and 2 respectively.

Vindictive Server. This notion is motivated by the manager model where the
client does not a priori know the identities of servers selected from the pool.
Since an invalid result can lead to revocation, this reveals a new threat model
(particularly if servers are rewarded per computation). A malicious server may
return incorrect results but attribute them to an alternate server ID such that an
(honest) server is revoked, thus reducing the size of the server pool and increasing

60 J. Alderman et al.

Game 2. ExpsSS-Revocation
A [RPVC, F, qt, 1κ]:

1: x� ← A(1κ);

2: QRev = ε;

3: t = 1;

4: (PP , MK) ← Setup(1κ);

5: PKF ← FnInit(F, MK, PP);

6: R ← A(PKF , PP);

7: AO(PKF , PP);

8: if (R �⊆ QRev) return 0;

9: (σF,x� , V KF,x� , RKF,x�) ← ProbGen(x�, PKF , PP);

10: θ� ← AO(σx� , V KF,x� , RKF,x� , PKF , PP);

11: if (((ỹ, (accept, S)) ← Verify(θ�, V KF,x� , RKF,x� , PP))

and (S ∈ R) then

12: return 1

13: else

14: return 0

Game 3. ExpVindictiveS
A [RPVC, F, 1κ]:

1: QReg = ε;

2: (PP , MK) ← Setup(1κ);

3: PKF ← FnInit(F, MK, PP);

4: x� ← AO(PKF , PP);

5: (σF,x� , V KF,x� , RKF,x�) ← ProbGen(x�, PKF , PP);

6: S̃ ← AO,Register2(σF,x� , V KF,x� , RKF,x� , PKF , PP) subject to (1);

7: θ� ← AO,Compute,Register2(σF,x� , V KF,x� , RKF,x� , PKF , PP) subject to (2);

8: if ((ỹ, τθ�) ← Verify(θ�, V KF,x� , RKF,x� , PP))

and ((ỹ, τθ�) = (⊥, (reject, S̃))) and (⊥� Revoke(τθ� , MK, PP))) then

9: return 1

10: else

11: return 0

the future reward for the malicious server. In Game 3, the challenger maintains
a list of registered entities QReg. The game proceeds similarly to the previous
notions, except that, on lines 6 and 7, the adversary selects a target server ID, S̃,
he wishes to be revoked and generates an encoded output that will cause this. He
is given oracle access subject to the following constraints to avoid trivial wins:

(1) No query of the form ORegister(S̃,MK,PP) was made;
(2) As above and no query OCompute(σF,x�

i
, EKF,S̃ , SKS̃ , PP) was made.

In addition, he is provided with an oracle, Register2, which performs the Register
algorithm but does not return the resulting key SKS (it may however update
the public parameters to reflect the additional registered entity). The adversary
may query any identity to Register2 (including S̃). We also modify the stan-
dard Register oracle such that if an identity has been previously queried to the
Register2 oracle, it generates the same parameters (and vice versa). The adver-
sary wins if the KDC believes S̃ returned ỹ and revokes S̃.

Revocation in Publicly Verifiable Outsourced Computation 61

Game 4. ExpsSS-V indictiveM
A [RPVC, F, qt, 1κ]:

1: x� ← A(1κ);

2: QRev = ε;
3: t = 1

4: (PP , MK) ← Setup(1κ);

5: PKF ← FnInit(F, MK, PP);
6: R ← A(PKF , PP)

7: AO(PKF , PP);
8: if ((R �⊆ QRev) or (R = UID)) return 0;

9: S
$← UID \ R;

10: SKS ← Register(S, MK, PP);

11: EKF,S ← Certify(S, F, MK, PP);
12: (σF,x� , V KF,x� , RKF,x�) ← ProbGen(x�, PKF , PP);

13: θF (x�) ← Compute(σF,x� , EKF,S , SKS , PP);

14: (RTF,x� , τθF (x�)
) ← AO(σF,x� , θF (x�), V KF,x� , PKF , PP);

15: if (ỹ ← Retrieve(τθF (x�)
, RTF,x� , V KF,x� , RKF,x� , PP))

and (ỹ �= F (x�)) and (ỹ �=⊥) then

16: return 1
17: else

18: return 0

Vindictive Manager. This is a natural extension of the Public Verifiability
notion to the manager model where a vindictive manager may attempt to pro-
vide a client with an incorrect answer. We remark that instantiations may vary
depending on the level of trust given to the manager: a completely trusted man-
ager may simply return the result to a client, whilst an untrusted manager may
have to provide the full output from the server. Here we consider a semi-trusted
manager where the clients would still like a final, efficient check.

The security model is presented in Game 4. First, the adversary selects its
challenge input x�, and the challenger initializes a list of revoked entities QRev

and a time paramter t. It also sets up the system and gives the public parameters
to the adversary, who must select a list R of servers to be revoked at the challenge
time. We require that R is not the full set of all servers in the system, as one non-
revoked identity is required to generate the challenge. The adversary then gets
oracle access (using the Certify and Revoke oracles specified in Oracle Queries 1
and 2 respectively). If, after finishing this query phase (and in particular after qt

Revoke queries), the list of revoked entities does not include R then the adversary
loses the game. Otherwise, a server S is chosen at random from the set of all
server identities UID excluding R (as these must be revoked at the challenge
time). This server is used to generate the challenge. If not already done, the
challenger registers and certifies S for F , and runs ProbGen on the challenge
input, before finally running Compute to generate an encoded output θF (x�).
The adversary is then given the encoded input, verification key and θF (x�), as
well as oracle access, and must output a retrieval token RTF,x� and an acceptance
token τθF (x�) . The challenger runs Retrieve on RTF,x to get an output value ỹ,
and the adversary wins if the challenger accepts this output and ỹ �= F (x�).

62 J. Alderman et al.

Game 5. ExpBV erif
A [RPVC, F, 1κ]:

1: (PP , MK) ← Setup(1κ);
2: PKF ← FnInit(F, MK, PP);

3: x
$← Dom(F);

4: S
$← UID;

5: SKS ← Register(S, MK, PP);

6: EKF,S ← Certify(S, F, MK, PP);
7: (σF,x, V KF,x, RKF,x) ← ProbGen(x, PKF , PP);
8: θF (x) ← Compute(σF,x, EKF,S , SKS , PP);

9: ŷ ← AO(θF (x), V KF,x, PKF , PP);

10: if (ŷ = F (x)) then
11: return 1

12: else

13: return 0

Blind Verification. With this notion we aim to show that a verifier that does
not hold the retrieval token RTF,x chosen in ProbGen cannot learn the value of
F (x) given the encoded output. This property was hinted at by Parno et al. [10]
but was not formalized. The game begins as usual with the challenger initializing
the system. The challenger then selects an input at random from the domain
of F , and a random server S. It registers and certifies S, runs ProbGen for the
chosen input and runs Compute to generate an output θF (x). This is given to the
adversary along with the verification key and oracle access, and the adversary
wins if it can guess the value of F (x) without seeing the retrieval key. Clearly,
the adversary can trivially make a guess for F (x) based on a priori knowledge of
the distribution of F over all possible inputs. Unless F is balanced (i.e. outputs
1 exactly half the time), the adversary could gain an advantage. Thus, we define
security by subtracting the most likely guess for F (x).

4 Construction

We now provide an instantiation of a RPVC scheme. Our construction is based on
that used by Parno et al. [10] (summarised in AppendixA) which uses Key-Policy
Attribute-based Encryption (KP-ABE) in a black-box manner to outsource the
computation of a Boolean function.5 Notice that to achieve the outsourced eval-
uation of functions with n bit outputs, it is possible to evaluate n different
functions, each of which applies a mask to output the single bit in position i.

Recall that if ⊥ is returned by the server then the verifier is unable to deter-
mine whether F (x) = 0 or whether the server misbehaved. To avoid this issue, we
follow Parno et al. and restrict the family of functions F to be the set of Boolean
5 Following Parno et al. we restrict our attention to Boolean functions, and in partic-

ular the complexity class NC1 which includes all circuits of depth O(log n). Thus
functions we can outsource can be built from common operations such as AND, OR,
NOT, equality and comparison operators, arithmetic operators and regular expres-
sions.

Revocation in Publicly Verifiable Outsourced Computation 63

functions closed under complement. That is, if F ∈ F then F (x) = F (x) ⊕ 1
also belongs to F . Then, the client encrypts two random messages m0 and m1.
The server is required to return the decryption of those ciphertexts. Thus, a
well-formed response θF (x), comprising recovered plaintexts (db, d1−b), satisfies
the following, where RKF,x = b:

(db, d1−b) =

{
(mb,⊥), if F (x) = 1;
(⊥,m1−b), if F (x) = 0.

(1)

4.1 Technical Details

We require an indirectly revocable KP-ABE scheme comprising the algorithms
ABE.Setup, ABE.KeyGen, ABE.KeyUpdate, ABE.Encrypt and ABE.Decrypt. We
also use a signature scheme with algorithms Sig.KeyGen, Sig.Sign and Sig.Verify,
and a one-way function g. Let U be the universe of attributes acceptable by the
ABE scheme, and let U = Uattr ∪UID ∪Utime ∪UF where: attributes in Uattr form
characteristic tuples for input data, as detailed in AppendixA; UID comprises
attributes representing entity identifiers; Utime comprises attributes representing
time periods issued by the time source T; and finally UF comprises attributes that
represent functions in F . Define a bijective mapping between functions F ∈ F
and attributes f ∈ UF . Then the policy F ∧f denotes adding a conjunctive clause
requiring the presence of the label f to the expression of the function F , and
(x∪f) denotes adding the function attribute to the attribute set representing the
input data x. This will prevent servers using alternate evaluation keys for a given
input and hence we are able to certify servers to compute multiple functions.

Parno et al. [10] considered two models of publicly verifiable computation.
In single function PVC, the function to be computed is embedded in the public
parameters, whilst in multi-function PVC delegation keys for multiple functions
can be generated and a single encoded input can be used to input the same
data to multiple functions. To achieve this latter notion, Parno et al. required
the somewhat complex primitive of KP-ABE with Outsourcing [9]. In this work,
we take a different approach. We believe that in practical environments it is
unrealistic to expect a server to compute just a single function, and we also
believe that it is a reasonable cost expectation to prepare an encoded input per
computation, and that the input data to different functions may well differ. Thus,
whereas Parno et al. use complex primitives to allow an encoded input to be used
for computations of different functions on the same data, we use the simple trick
of adding a conjunctive clause to the functions requiring the presence of the
appropriate function label in the input data – that is, the function F is encoded
in a decryption key for the policy F ∧ f where f is the attribute representation
of F in UF ; the complement function F is encoded as a key for F ∧ f ; and we
encode the input data x to the function F as x∪f . Thus, the client must perform
the ProbGen stage per computation as the function label in the input data will
differ, but servers can be certified for multiple functions and may not use a key
for one function to compute on data intended for another (since the function

64 J. Alderman et al.

label required by the conjunctive clause in the key will not be present in the
input data). As a result, and unlike the single function notion of Parno et al.,
we are able to provide the adversary with oracle access in our security games.

The scheme of Parno et al. required a one-key IND-CPA notion of security
for the underlying KP-ABE scheme. This is a more relaxed notion than consid-
ered in the vast majority of the ABE literature (where the adversary is given a
KeyGen oracle and the scheme must prevent collusion between holders of differ-
ent decryption keys). Parno et al. could use this property due to their restricted
system model where the client is certified for only a single function per set of
public parameters (so the client must set up a new ABE environment per func-
tion). In our setting, we must be able to certify servers for multiple functions
and hence the KDC must be able to issue multiple keys and we require the more
standard, multi-key notion of security usually considered for ABE schemes.

4.2 Instantiation

Informally the scheme operates as follows.

1. RPVC.Setup establishes public parameters and a master secret key by calling
the ABE.Setup algorithm twice. This algorithm also initializes a time source6

T, a list of revoked servers, and a two-dimensional array of registered servers
LReg – the array is indexed in the first dimension by server identities and
the first dimension will store signature verification keys while the second will
store a list of functions that server is authorized to compute.

2. RPVC.FnInit simply outputs the public parameters.
3. RPVC.Register creates a public-private key pair by calling the signature

KeyGen algorithm. This is run by the KDC (or the manager in the man-
ager model) and updates LReg to store the verification key for S.

4. RPVC.Certify creates the key EKF,S that will be used by a server S to com-
pute F by calling the ABE.KeyGen and ABE.KeyUpdate algorithms twice –
once with a “policy” for F and once with the complement F . It also updates
LReg to include F . Note that since we have a form of multi-function PVC,
we must prevent a server certified to perform two different functions, F and
G (that differ on their output) from using the key for G to retrieve the plain-
text and claiming it as a result for F . To prevent this, we add an additional
attribute to the input set in ProbGen encoding the function the input should
applied to, and add a conjunctive clause for such an attribute to the key
policies. Thus an input set intended for F (including the F attribute) will
only satisfy a key issued for F (comprising the F conjunctive clause), and a
key for G will not be satisfied as G is not in the input set.

5. RPVC.ProbGen creates a problem instance σF,x = (cb, c1−b) by encrypting two
randomly chosen messages under an attribute set corresponding to x, and a
verification key V KF,x by applying a one-way function g to the messages.

6
T could be a counter that is maintained in the public parameters or a networked
clock.

Revocation in Publicly Verifiable Outsourced Computation 65

The ciphertexts and verification tokens are ordered randomly according to
RKF,x = b for a random bit b, such that the positioning of an element does
not imply whether it relates to F or to F .

6. RPVC.Compute is run by a server S. Given an input σF,x = (cb, c1−b) it
returns (m0,⊥) if F (x) = 1 or (⊥,m1) if F (x) = 0 (ordered according to
RKF,x chosen in RPVC.ProbGen) and a signature on the output.

7. RPVC.Verify either accepts the output θF (x) = (db, d1−b) or rejects it. This
algorithm verifies the signature on the output and confirms the output is
correct by applying g and comparing with V KF,x. In RPVC.BVerif the ver-
ifier can compare pairwise between the components of θF (x) and V KF,x to
determine correctness but as they are unaware of the value of RKF,x, they
do not know the order of these elements and hence whether the correct out-
put corresponds to F or F being satisfied i.e. if F (x) = 1 or 0 respectively.
The verifier outputs an accept or reject token as well as the output value
RTF,x ∈ {db, d1−b,⊥} where RKF,x = b. Parno et al. [10] gave a one line
remark that permuting the key pairs and ciphertexts given out in ProbGen
could give output privacy. We believe that doing so would require four decryp-
tions in the Compute stage to ensure the correct keys have been used (since an
incorrect key,associated with different public parameters, but for a satisfying
attribute set will return an incorrect, random plaintext which is indistinguish-
able from a valid, random message). Since our construction fixes the order of
the key pairs, we do not have this issue and only require two decryptions. In
RPVC.Retrieve a verifier that has knowledge of RKF,x can check whether the
output from BVerif matches m0 or m1.

8. RPVC.Revoke is run by the KDC and redistributes fresh keys to all non-
revoked servers. This algorithm first refreshes the time source T (e.g. incre-
ments T if it is a counter). It then updates LReg and LRev, and updates
EKF,S using the results of two calls to the ABE.KeyUpdate algorithm.

More formally, our scheme is defined by Algorithms 1–9.

Algorithm 1. (PP ,MK) ← RPVC.Setup(1κ)
1: Let U = Uattr ∪ UID ∪ Utime ∪ UF
2: (MPK0

ABE, MSK0
ABE) ← ABE.Setup(1κ, U)

3: (MPK1
ABE, MPK1

ABE) ← ABE.Setup(1κ, U)

4: for S ∈ UID do

5: LReg[S][0] = ε

6: LReg[S][1] = {ε}
7: LRev = ε

8: Initialise T

9: PP = (MPK0
ABE, MPK1

ABE, LReg, T)

10: MK = (MSK0
ABE, MSK1

ABE, LRev)

Algorithm 2. PKF ← RPVC.FnInit(F,MK,PP)
1: Set PKF = PP

66 J. Alderman et al.

Algorithm 3. SKS ← RPVC.Register(S,MK,PP)
1: (SKSig, V KSig) ← Sig.KeyGen(1κ)

2: SKS = SKSig

3: LReg[S][0] = V KSig

Algorithm 4. EKF,S ← RPVC.Certify(S, F,MK,PP)
1: LReg[S][1] = LReg[S][1] ∪ F

2: LRev = LRev \ S

3: t ← T

4: SK0
ABE ← ABE.KeyGen(S, F ∧ f, MSK0

ABE, MPK0
ABE)

5: SK1
ABE ← ABE.KeyGen(S, F ∧ f, MSK1

ABE, MPK1
ABE)

6: UK0
LRev,t ← ABE.KeyUpdate(LRev, t, MSK0

ABE, MPK0
ABE)

7: UK1
LRev,t ← ABE.KeyUpdate(LRev, t, MSK1

ABE, MPK1
ABE)

8: EKF,S = (SK0
ABE, SK1

ABE, UK0
LRev,t, UK1

LRev,t)

Algorithm 5. (σF,x, V KF,x, RKF,x) ← RPVC.ProbGen(x, PKF , PP)
1: t ← T

2: (m0, m1)
$← M × M

3: b
$← {0, 1}

4: cb ← ABE.Encrypt(mb, (x ∪ f), t, MPK0
ABE)

5: c1−b ← ABE.Encrypt(m1−b, (x ∪ f), t, MPK1
ABE)

6: Output: σF,x = (cb, c1−b), V KF,x = (g(mb), g(m1−b), LReg) and RKF,x = b

Algorithm 6. θF (x) ← RPVC.Compute(σF,x, EKF,S , SKS , PP)
1: Input: EKF,S = (SK0

ABE, SK1
ABE, UK0

LRev,t, UK1
LRev,t) and σF,x = (cb, c1−b)

2: Parse σF,x as (c, c′)
3: db ← ABE.Decrypt(c, SK0

ABE, MPK0
ABE, UK0

LRev,t)

4: d1−b ← ABE.Decrypt(c′, SK1
ABE, MPK1

ABE, UK1
LRev,t)

5: γ ← Sig.Sign((db, d1−b, S), SKS)

6: Output: θF (x) = (db, d1−b, S, γ)

Algorithm 7. (RTF,x, τθF (x)) ← RPVC.BVerif(θF (x), V KF,x, PP)
1: Input: V KF,x = (g(mb), g(m1−b), LReg) and θF (x) = (db, d1−b, S, γ)

2: if F ∈ LReg[S][1] then

3: if accept ← Sig.Verify((db, d1−b, S), γ, LReg[S][0]) then

4: if g(mb) = g(db) then Output (RTF,x = db, τθF (x)
= (accept, S))

5: else if g(m1−b) = g(d1−b) then Output (RTF,x = d1−b, τθF (x)
= (accept, S))

6: else

Output (RTF,x =⊥, τθF (x)
= (reject, S))

7: Output (RTF,x =⊥, τθF (x)
= (reject, ⊥))

Algorithm 8. ỹ ← RPVC.Retrieve(τθF (x) , RTF,x, V KF,x, RKF,x, PP)
1: Input: V KF,x = (g(mb), g(m1−b), LReg), θF (x) = (db, d1−b, S, γ), RKF,x = b, and

(RTF,x, τθF (x)
) where RTF,x ∈ {db, d1−b, ⊥}

2: if (τθF (x)
= (accept, S) and g(RTF,x) = g(m0)) then Output ỹ = 1

3: else if (τθF (x)
= (accept, S) and g(RTF,x) = g(m1)) then Output ỹ = 0

4: else Output ỹ =⊥

Revocation in Publicly Verifiable Outsourced Computation 67

Algorithm 9. {EKF,S′} or ⊥ ← RPVC.Revoke(τθF (x) ,MK,PP)
1: if τθF (x)

= (reject, S) then

2: LReg[S][1] = {ε}
3: LRev = LRev ∪ S

4: Refresh T

5: t ← T

6: UK0
LRev,t ← ABE.KeyUpdate(LRev, t, MSK0

ABE, MPK0
ABE)

7: UK1
LRev,t ← ABE.KeyUpdate(LRev, t, MSK1

ABE, MPK1
ABE)

8: for all S ∈ UID do

9: Parse EKF,S as (SK0
ABE, SK1

ABE, UK0
LRev,t−1, UK1

LRev,t−1)

10: Update and send EKF,S = (SK0
ABE, SK1

ABE, UK0
LRev,t, UK1

LRev,t)

11: else

12: output ⊥

Theorem 1. Given a revocable KP-ABE scheme secure in the sense of indis-
tinguishability against selective-target with semi-static query attack (IND-
sHRSS) [2] for a class of Boolean functions F closed under complement, an
EUF-CMA secure signature scheme and a one-way function g. Let RPVC be
the RPVC scheme defined in Algorithms 1–9. Then RPVC is secure in the sense
of selective semi-static Public Verifiability, selective semi-static Revocation, Vin-
dictive Servers, Blind Verification and selective semi-static Vindictive Managers.

Lemma 1. The RPVC construction defined by Algorithms 1–9 is secure against
Vindictive Servers (Game 3) under the same assumptions as in Theorem1.

Proof. Let AV C be an adversary with non-negligible advantage against the Vin-
dictive Servers game (Game 3) when instantiated by Algorithms 1–9. We show
that an adversary ASig with non-negligble advantage δ in the EUF-CMA sig-
nature game can be constructed using AV C . ASig interacts with the challenger
C in the EUF-CMA security game and acts as the challenger for AV C in the
security game for Vindictive Servers for a function F as follows. The basic idea
is that ASig can create a VC instance and play the Vindictive Servers game with
AV C by executing Algorithms 1–9 himself. ASig will guess a server identity that
he thinks the adversary will select to vindictively revoke. The signature signing
key that would be generated during the Register algorithm for this server will be
implicitly set to be the signing key in the EUF-CMA game and any Compute
oracle queries for this identity will be forwarded to the challenger to compute.
Then, assuming that ASig guessed the correct server identity, AV C will output
a forged signature that ASig may output as its guess in the EUF-CMA game.

1. C initializes Q = ε to be an empty list of messages queried to the Sig.Sign
oracle and runs Sig.KeyGen(1κ) to generate a challenge signing key SK and
verification key V K. C sends V K to ASig.

2. ASig chooses a function F on which to instantiate AV C .
3. ASig initializes the revocation list QReg = ε. Furthermore, it chooses a server

identity from UID \ AV C which will be denoted by S.

68 J. Alderman et al.

4. ASig runs RPVC.Setup(1κ) and RPVC.FnInit(F,MK,PP), as specified in
Algorithms 1 and 2 and passes PKF and PP to the VC adversary AV C .

5. AV C may now perform oracle queries to RPVC.FnInit RPVC.Register
RPVC.Certify and RPVC.Revoke which ASig handles by running Algorithms 2,
3, 4 and 9 respectively.

6. Eventually, AV C finishes querying and declares the challenge input x�.
7. ASig runs RPVC.ProbGen on the challenge x� as specified in Algorithm 5.
8. AV C is given the values of PKF , PP , σF,x� , V KF,x� and RKF,x� . It is also

given oracle access to the following functions. ASig simulates these oracles
and maintains a state of the generated parameters for each query.
– FnInit(·,MK,PP): ASig runs this step as per Algorithm 2.
– Register(·,MK,PP): If, for a queried server S, S = S then return ⊥.

Otherwise, ASig makes queries to ORegister(S,MK,PP). If S has not been
registered before and therefore does not appear on the registration list
QReg then the oracle returns a signing key SKS for S and adds the pair
(S, SKS) to QReg. Otherwise, the stored signing key is returned.

– Certify(·, ·,MK,PP): ASig honestly runs Algorithm4.
– Revoke(·,MK,PP): ASig operates as in Algorithm 9.
– Register2(·,MK,PP): ASig responds in the same way as for standard
Register queries above, but always returns ⊥ and not a signing key.

AV C eventually outputs a target server identity S̃.
9. If S̃ �= S then ASig outputs ⊥ and stops. Else, AV C continues with oracle

access as in Step 8 as well as a Compute oracle. AV C submits queries of the
form OCompute(σF,x, EKF,S , SKS , PP) for its choice of server S and σF,x If
S �= S then ASig simply follows Algorithm 6 using the decryption and signing
keys generated during the oracle queries. Otherwise, S = S and ASig does
not have access to the signing key SKS . Thus, he runs the ABE.Decrypt
operations correctly to generate plaintexts d0 and d1, and submits m =
(d0, d1, S) as a Sig.Sign oracle query to C. C adds m to the list Q and returns
γ ← Sig.Sign(m, SK), which ASig uses to return θF (x) = (d0, d1, S, γ).

10. AV C finally outputs θ� which appears to be an invalid result computed by S̃.
Thus, Verify will output a reject token for S̃ and accept ← Sig.Verify((d0, d1,
S̃), γ, V K). Thus, γ is a valid signature under key SK.

11. ASig outputs m� = (d0, d1, S̃) and γ� = γ to C.

Note that due to Constraint 2 in Game 3, AV C is not allowed to have made a
query for OCompute(σx� , EKF,S̃ , SKS̃ , PP) and thus the forgery (m�, γ�) output
by ASig will satisfy the requirement in that m� /∈ Q. We argue that, assuming
S = S̃ (i.e. ASig correctly guessed the challenge identity) then ASig succeeds
with the same non-negligible advantage δ as AV C . We assume that n = |UID|
is polynomial (else the KDC could not efficiently search the list LReg). The
probability that ASig correctly guesses S = S̃ is 1

n and

AdvASig
≥ 1

n
AdvAV C

≥ δ

n
≥ negl(κ)

We conclude that if AV C has a non-negligible advantage in the Vindictive
Servers game then ASig has the same advantage in the EUF-CMA game, but
since the signature scheme is assumed EUF-CMA secure, AV C may not exist.�

Revocation in Publicly Verifiable Outsourced Computation 69

5 Conclusion

We have introduced the new notion of RPVC and provided a rigorous framework
that we believe to be more realistic than the purely theory oriented models of
prior work, especially when the KDC is an entity responsible for user autho-
rization within a organization. We believe our model more accurately reflects
practical environments and the necessary interaction between entities for PVC.
Each server may provide services for many different functions and for many dif-
ferent clients. The first model of Parno et al. [10] considered evaluations of a
single function, while their second allowed for multiple functions but required a
more exotic type of ABE scheme. This allowed a single ProbGen stage to encode
input for any function, whilst in our model, we also allow multiple functions
but use a simpler ABE scheme that also permits the revocation functionality.
We require ProbGen to be run for each unique F (x) to be outsourced which
we believe to be reasonable. Additionally, in our model, any clients may submit
multiple requests to any available servers, whereas prior work considered just
one server.

We have shown that by using a revocable KP-ABE scheme we can revoke
misbehaving servers such that they receive a penalty for cheating and that, by
permuting elements within messages, we achieve output privacy (as hinted at
by Parno et al. although seemingly with two fewer decryptions than their brief
description implies). We have shown that this blind verification could be used
when a manager runs a pool of servers and rewards correct work – he needs to
verify but is not entitled to learn the result. We have extended previous notions of
security to fit our new definitional framework, introduced new models to capture
additional threats (e.g. vindictive servers using revocation to remove competing
servers), and provided a provably secure construction.

We believe that this work is a useful step towards making PVC practical and
provides a natural set of baseline definitions from which to add future function-
ality. For example, in future work we will introduce an access control framework
(using our scheme as a black box construction) to restrict the set of functions
that clients may outsource, or to restrict (using the blind verification property)
the set of verifiers that may learn the output. In this scenario, the KDC entity
may, in addition to certifying servers and registering clients, determine access
rights for such entities. The full version of this paper is available online [1].

A PVC Using KP-ABE

Parno et al. [10] provide a instantiation using Key-policy Attribute-based Encryp-
tion7 (KP-ABE) [8], for Boolean functions. Define a universe U of n attributes
and associate V ⊆ U with a binary n-tuple (the characteristic tuple of V) where
the ith place is 1 if and only if the ith attribute is in V . Thus, there is a nat-
ural one-to-one correspondence between n-tuples and attribute sets; we write
7 If input privacy is required then a predicate encryption scheme could be used in

place of the KP-ABE scheme.

70 J. Alderman et al.

Ax to denote the set associated with x. A function F : {0, 1}n → {0, 1} is
monotonic if x � y implies F (x) � F (y), where x = (x1, . . . , xn) is less than or
equal to y = (y1, . . . , yn) if and only if ∀i, xi � yi. For a monotonic F, the set
AF = {x ∈ {0, 1}n : F (x) = 1} defines a monotonic access structure. Informally,
for a Boolean function F , the client generates a private key SK

AF
using the

KeyGen algorithm.
Given an input x, a client encrypts a random message m “with” Ax using

the Encrypt algorithm and publishes V KF,x = g(m) where g is a suitable one-
way function (e.g. a pre-image resistant hash function). The server decrypts the
message using the Decrypt algorithm, which will either return m (when F (x) = 1)
or ⊥.

The server returns m to the client. Any client can test whether the value
returned by the server is equal to g(m). Note, however, that a “rational” mali-
cious server will always return ⊥, since returning any other value will (with high
probability) result in the verification algorithm returning a reject decision. Thus,
it is necessary to have the server compute both F and its “complement” (and
for both outputs to be verified).

Note that, to compute the private key SK
AF

, it is necessary to identify all
minimal elements x of {0, 1}n such that F (x) = 1. There may be exponentially
many such x. Thus, the initial phase is indeed computationally expensive for the
client. Note also that the client may generate different private keys to enable the
evaluation of different functions.

References

1. Alderman, J., Janson, C., Cid, C., Crampton, J.: Revocation in publicly verifi-
able outsourced computation. Cryptology ePrint Archive, Report 2014/640 (2014).
http://eprint.iacr.org/

2. Attrapadung, N., Imai, H.: Attribute-based encryption supporting direct/indirect
revocation modes. In: Parker, M.G. (ed.) Cryptography and Coding 2009. LNCS,
vol. 5921, pp. 278–300. Springer, Heidelberg (2009)

3. Carter, H., Lever, C., Traynor, P.: Whitewash: outsourcing garbled circuit genera-
tion for mobile devices. In: Payne, Jr., C.N., Hahn, A., Butler, K.R.B., Sherr, M.
(eds.) Proceedings of the 30th Annual Computer Security Applications Conference,
ACSAC 2014, pp. 266–275. ACM (2014)

4. Choi, S.G., Katz, J., Kumaresan, R., Cid, C.: Multi-client non-interactive verifi-
able computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 499–518.
Springer, Heidelberg (2013)

5. Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: outsourc-
ing computation to untrusted workers. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 465–482. Springer, Heidelberg (2010)

6. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher,
M. (ed.) STOC, pp. 169–178. ACM (2009)

7. Goldwasser, S., Gordon, S.D., Goyal, V., Jain, A., Katz, J., Liu, F.-H., Sahai, A.,
Shi, E., Zhou, H.-S.: Multi-input functional encryption. In: Nguyen, P.Q., Oswald,
E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 578–602. Springer, Heidelberg
(2014)

http://eprint.iacr.org/

Revocation in Publicly Verifiable Outsourced Computation 71

8. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Juels, A., Wright, R.N., di Vimercati,
S.D.C. (eds.) Proceedings of the 13th ACM Conference on Computer and Com-
munications Security, CCS 2006, pp. 89–98. ACM (2006)

9. Green, M., Hohenberger, S., Waters, B.: Outsourcing the decryption of ABE
ciphertexts. In: 2011 Proceedings of the 20th USENIX Security Symposium, San
Francisco, CA, USA, August 8–12. USENIX Association (2011)

10. Parno, B., Raykova, M., Vaikuntanathan, V.: How to delegate and verify in public:
verifiable computation from attribute-based encryption. In: Cramer, R. (ed.) TCC
2012. LNCS, vol. 7194, pp. 422–439. Springer, Heidelberg (2012)

11. Yao, A.C.-C.: How to generate and exchange secrets (extended abstract). In: FOCS,
pp. 162–167. IEEE Computer Society (1986)

Private Aggregation
with Custom Collusion Tolerance

Constantinos Patsakis1(B), Michael Clear2, and Paul Laird2

1 Department of Informatics, University of Piraeus, Piraeus, Greece
kpatsak@unipi.gr

2 Distributed Systems Group, School of Computer Science and Statistics,
Trinity College, Dublin, Ireland
{clearm,lairdp}@scss.tcd.ie

Abstract. While multiparty computations are becoming more and more
efficient, their performance has not yet reached the required level for
wide adoption. Nevertheless, many applications need this functionality,
while others need it for simpler computations; operations such as mul-
tiplication or addition might be sufficient. In this work we extend the
well-known multiparty computation protocol (MPC) for summation of
Kurswave et al.More precisely, we introduce two extensions of the protocol
one which bases its security on the Decisional Diffie-Hellman hypothesis
and does not use pairings, and one that significantly reduces the pair-
ings of the original. Both protocols are proven secure in the semi-honest
model. Like the original, the protocols are entirely broadcast-based and
self-bootstrapping, but provide a significant performance boost, allowing
them to be adopted by devices with low processing power and can also
be extended naturally to achieve t-privacy in the malicious model, while
remaining practical. Finally, the protocols can further improve their per-
formance if users decide to decrease their collusion tolerance.

Keywords: Multiparty computation · Private aggregation · Crypto-
graphic protocols

1 Introduction

The core of many applications needs input from other entities to generate the
expected output. Nevertheless, the point where other entities on the Internet
could be trusted has long been passed. This lack of trust makes users unwill-
ing in many cases to provide the necessary feedback, unless they have credible
guarantees that it will not be disclosed. This has generated an increased interest
among the research community towards secure multiparty computation (MPC).
The role of MPC is to allow users to evaluate a given function with their inputs,
without disclosing any information to any other entity. Additionally, some MPC
protocols provide additional measures to counter malicious acts, e.g. detecting
users who try to disturb the execution of the protocol or leak information.

c© Springer International Publishing Switzerland 2015
D. Lin et al. (Eds.): Inscrypt 2014, LNCS 8957, pp. 72–89, 2015.
DOI: 10.1007/978-3-319-16745-9 5

Private Aggregation with Custom Collusion Tolerance 73

Consider a scenario where a user might have to calculate a function in col-
laboration with other entities that cannot be trusted. Hence, user input to the
function should be hidden in such a way that other users cannot disclose his
input, while preserving the ability for the output of the function to be calcu-
lated correctly and efficiently. More formally, we have n entities that want to
calculate function f(x1, x2, ...xn) without disclosing xi, i ∈ {1, 2, ..., n} to any
other entity. This is in fact a special case of MPC. We refer to such functions f
as (public) aggregation functions. Note that the output of f may be learned by
everyone, not merely the n participants.

While MPC has been around for a few decades, it is only recently that effi-
cient protocols have started to appear. Throughout this period, a wide range
of protocols emerged with a view to providing solutions to simplified problems
or problems with relaxed security requirements. The reason is that many appli-
cations do not need the evaluation of complex functions, or the intended users
of these applications do not have any incentive to break the correctness of the
protocol, they just want their own input to remain secret. A typical example can
be seen in the case of smart meters in a smart grid. Each smart meter has to send
its expected power consumption to the power plant, so that the latter balances
the demand without wasting any resources. Clearly, if these values are disclosed,
one could deduce many things regarding the daily habits and preferences of indi-
viduals [14,16,18,22]. Additionally, the power plant needs only to calculate the
overall consumption, the sum of these values. Other such applications include
collective decision making, sensor aggregation in smart cities or anonymous sta-
tistics. Such applications introduce requirements that state of the art in MPC
protocols cannot meet. Such requirements include scalability (number of users),
low computational cost (for constrained devices like sensors) and low bandwidth
consumption.

The focus of this work is on extending the protocol of Kursawe et al.
[15]. In general, the protocol has several nice features, for instance, it is self-
bootstrapping. Practically, this means that there is no trusted third party to
provide users with secret shares. These shares are generated only by the users
and are known only to them. It also implies that no setup phase is needed involv-
ing point-to-point contact among the participants. The protocol is also efficient
enough to perform the calculations much faster than standard MPC. Finally,
it is broadcast-based; no one-to-one communication takes place among the
participants. This decreases significantly the computational effort of each node,
while simultaneously diminishing the communication overhead.

The self-bootstrapping quality means that no trusted dealer is needed for
setup. Protocols which are not self-bootstrapping may allow one execution of
the protocol without requiring a dealer, such as the protocol of Yang et al.
[23], based on the ElGamal encryption scheme, but cannot be used for multiple
executions of the protocol (in [23] this would invalidate the security of ElGamal).
Alternatively, they may allow multiple rounds of aggregation to be executed, as
in the protocol of Shi et al. [21] for time-series data, but require a dealer at the
outset. Naturally, it is possible to bootstrap [21] using a round of [23] to simulate

74 C. Patsakis et al.

a dealer, but the ability to run a single protocol for multiple rounds of aggregation
without a separate set-up phase or dealer is desirable for reasons of simplicity,
security (a security proof with a single underlying security assumption), and
lower communication cost (fewer communication rounds).

Protocols are considered to be “broadcast-based” where no point-to-point
channels are assumed to exist between pairwise parties. Secure point-to-point
channels are a strong assumption, which is not always appropriate, particu-
larly where nodes are resource-constrained and communicate wirelessly. In a
broadcast-based protocol, the security of the protocol must be unaffected by
message interceptions; the content of any message from one party to another
is available in the clear to all other parties. The required architecture typically
involves each party broadcasting two types of protocol message: (1) a public key,
and (2) an input for a given “round of aggregation” (i.e. an independent aggre-
gate sum, referred to in this work as simply an aggregation). The first type of
protocol message, namely a public key, is broadcast in the first stage of the pro-
tocol. Each subsequent stage corresponds to a different aggregation. In practice,
the broadcast channel might be implemented in a number of alternative ways,
such as a public registry where each party stores its messages, communication
through an aggregator that relays authenticated protocol messages between par-
ties. Note that the messages sent by each party are assumed to be authenticated.

Originally, the Kursawe, Danezis and Kohlweiss [15] protocol, which we refer
to here as KDK, was designed to be used for private aggregation in the smart grid
as a faster alternative to standard MPC. Nevertheless, due to its heavy reliance
on pairings, the protocol cannot be used from devices with low processing capa-
bilities. Notably, as we experimentally demonstrate, for large scale implementa-
tions, the measurements cannot be sent in less than a second, something that is
going to be needed soon for the smart grid. It has to be highlighted that accord-
ing to the UK’s smart metering equipment technical specifications v2 [10], the
current needed rate is one measurement per 10 s. Nevertheless, our experiments
show that for 1000 users the calculations on a common laptop take roughly 4 s,
clearly indicating that it cannot face current needs in urban environments where
we have thousands of users.

1.1 Related Work

The concept of secure multiparty computation was introduced by Yao in [24]
with the introduction of the famous millionaires problem. In this problem, two
millionaires want to compare their assets in order to verify which one is the
richest, but without revealing the actual value of their assets. Some important
foundational advances were made soon after such as [3,6,12,25], however it took
almost two decades for real-world implementations to became practical [2,5,17].

Secure multiparty computation can be broadly divided into schemes which
allow arbitrary computations to be performed without leaking information, and
specialized protocols for the evaluation of one particular function, such as sum-
mation, while keeping individual inputs private.

Private Aggregation with Custom Collusion Tolerance 75

Schemes for specific arithmetic operations trade generality for greater effi-
ciency in calculating their particular operation. Many also allow further trade-
offs, such as collusion-resistance against efficiency.

Clifton et al. in [7] proposed a very efficient and elegant scheme for sum-
ming the shares of n entities anonymously. Their scheme involves communication
among parties in a ring, and their is a trade-off between the number of passes
needed and the collusion tolerance supported. However, the protocol relies on
point-to-point channels. Another significant disadvantage of the approach is that
to achieve collusion tolerance of n − 2, a total of n�n

2 � messages must be sent
serially, with each node sending and receiving �n

2 � messages. This is not practical
where latency is an issue or where large numbers of nodes are involved.

Protocols involving self-canceling blinding variables alleviate this problem,
allowing a constant number of communication rounds for an arbitrary number of
participants. Yang et al. use two rounds of communication, with the first establish-
ing common key material [23], but the key material cannot be used for more than
one round of aggregation. Shi et al. allow aggregation to be performed with a sin-
gle round of communication [21], however the protocol relies upon the existence
of a secret share of zero, which must be supplied in advance by a trusted dealer or
created using another protocol. For protocols based on secret sharing which sup-
port an additive homomorphism, either a trusted dealer is needed to distribute the
shares, or point-to-point channels are needed. Examples of the latter include BGW
[3] and more recently SPDZ [9], whereas the former is exemplified by [21].

The KDK protocol is entirely broadcast-based and self-bootstrapping.
Kursawe et al. present both a single-aggregation and a multi-aggregation vari-
ant of this protocol; the latter supports an unbounded number of independent
aggregations from the same set of public keys published by the parties. The
latter relies heavily on bilinear pairings, and as such, computing a round of
aggregation is computationally expensive. In this work, we present an alternative
multi-aggregation protocol that relies on the standard Decisional Diffie-Hellman
(DDH) assumption, and does not need pairings. As such, it significantly outper-
forms multi-aggregation KDK. However, our protocol only supports a bounded
number of aggregations from the same public keys (as opposed to an unbounded
number in the case of multi-aggregation KDK), and there is a connection between
the number of rounds supported and the collusion tolerance guaranteed.

1.2 Overview of Our Protocols

At the heart of single-aggregation KDK, described formally in Sect. 2.2, is the
following fixed n × n matrix A, known to all n parties where:

A =

⎡

⎢⎢⎢⎢⎢⎢⎣

0 −1 −1 −1 −1
1 0 −1 −1 −1

1 1 0 · · · ...
...

...
...

. . .
...

1 1 1 · · · 0

⎤

⎥⎥⎥⎥⎥⎥⎦

76 C. Patsakis et al.

Suppose party Pi’s public key is ui = gxi where g is a public generator of a
group G of order p, and xi ∈ Zp is party Pi’s private key. At first, each party
Pi broadcasts her public key. Subsequently, each party Pi computes a “blinded”
version of her private input mi by first computing wi ← ∏

j∈{1,...,n} u
Ai,j

j where
Ai,j denotes the j-th column of the i-th row of A, and then broadcasting wxi

i ·gmi .
This will be discussed in more detail later in the paper.

Observe that A is a skew-symmetric matrix, that is −A = AT , but clearly any
such matrix can be used instead of the proposed one, as any such matrix fulfills
the basic principle which is

∑
xiyi = 0, where yi is the sum of the elements

other than element xi, as originally set in [13]. So far this does not give us any
advantages over the standard protocol of Kursawe et al.

As previously discussed, users could agree upon a skew-symmetric matrix to
generate the coefficients Ai,j . However, if they would like to compute one more
summary, then they could not use the previous values. The reason is that an
adversary could deduce important information from that. For instance, if they
had originally published gxiyi+mi1 and then gxiyi+mi2 , where yi =

∑
j=1 Ai,jxj ,

given that m1 and m2 are small, the value m1−m2 could easily be calculated. It
becomes apparent that a new matrix should be generated to protect users’ pri-
vacy. This way, users could co-operate in the generation of the skew-symmetric
matrix, defining their collusion thresholds, that is how many users should col-
lude to recover their input. Undeniably, by lowering the threshold users are
making certain compromises in their privacy. Nevertheless, this is speeding up
the calculations and decreasing the communication overhead. The compromise,
depending on the nature of the network, the trust of the users to each other,
and the importance of protected information can imply a good balance in the
user’s benefit.

Thus, we argue that in order to minimize the bandwidth overhead and com-
munication between users, instead of agreeing on a matrix A, users on the ini-
tialization of the scheme agree on a random seed that is used to generate a series
of matrices Aρ. However, we must allow each Aρ’s independent entries to be
uniformly random over Zp instead of over {−1, 1} to avoid a straightforward
linear algebra attack. Instead of using the public keys of the parties (i.e. the
gxi) for a single aggregation, we observe that we can re-use them for multiple
aggregations provided that we use a different skew-symmetric matrix A in each
round, where the independent entries of each A are uniformly random over Zp.
We use a hash function to derive the matrix A for each round.

Nevertheless, since the reuse of gxi in many aggregations might enable collu-
sion attacks, the number of matrices that can be generated is bounded by n−t

2 ,
where t is the minimum threshold. More details on the latter bound are given in
Sect. 3. The advantage of allowing users to reuse their published values is that it
decreases the computational and communication cost. Rather than going through
the first step of the algorithm again; generating, publishing gxi and downloading
the output of the other users, users recompute locally the new instance of matrix
A and compute the new values of gyi . It turns out that Kursawe et al. propose a
variant of their protocol that similarly supports multiple aggregations, but they
rely on bilinear pairings to achieve this. However, their multi-aggregation protocol

Private Aggregation with Custom Collusion Tolerance 77

supports an unbounded number of aggregations, as opposed to n−t
2 aggregations

for our basic protocol, as described above. As a result we can consider two multi-
aggregation protocols:

– Basic protocol with a bounded number of aggregations: This is our
protocol that supports n−t

2 independent aggregations with the same public
key information and does not use any pairings. Arithmetic is performed over
a finite cyclic group G. We abbreviate the basic protocol as “BP”.

– Hybrid protocol with unbounded number of aggregations: This proto-
col combines our basic protocol (BP) with ideas from multi-aggregation KDK
to achieve greater efficiency than multi-aggregation KDK while still allowing
an unbounded number of aggregations with the same public-key information.
Arithmetic is performed over a “larger” finite cyclic group GT . We abbreviate
the hybrid protocol as “HP”.

BP can be viewed as supporting a finite batch of aggregations of size b = n−t
2 ,

where t ∈ [n] is the collusion tolerance. HP uses BP as a building block along with
multi-aggregation KDK (MA-KDK). Every aggregation in MA-KDK requires n−
1 pairings, which are considerably expensive, as demonstrated later in Sect. 5. The
main idea in HP is to amortize this cost over a whole batch of aggregations; the
larger the batch size, the greater the savings. But since the batch size b = n−t

2
grows with n for any fixed collusion threshold, the savings over MA-KDK also
grow with n.

2 Preliminaries

2.1 Notation and Definitions

Let k be an integer. We denote the contiguous set of integers {1, . . . , k} by [k].
Let X and Y be distributions. The notation X ≈

C
Y denotes the fact that both

distributions are computationally indistinguishable to any probabilistic polyno-
mial time (PPT) algorithm.

In order to show that the proposed protocol provides the necessary privacy
to the participants, we have to show that it provides privacy against collusions
of up to t users when executed with at most max(1, �n−t

2 �) rounds. Intuitively,
suppose n−2 users collude, then it should not be possible for the colluding users
to learn anything about the 2 honest users’ inputs beyond their sum. If n − 1
users collude, then we expect them to learn the honest party’s input. So for the
case of n − 1 ≤ t ≤ n, there is no privacy requirement, and thus these trivial
cases are easily handled in meeting our security definition below.

We adopt the standard simulation-based definition of security in the semi-
honestmodelwith static adversaries.Webase our definitionbelowonDefinition 2.1
in [1]. Here we consider only computational security, and relax the more standard
definition to deterministic functionalities with a single output, since this paper is
concerned with aggregation. Note that this definition is general enough to accom-
modate multi-aggregation aggregation as provided by our protocol.

78 C. Patsakis et al.

Let m ∈ ({0, 1}∗)n be a vector of the inputs from each party and let π
be a protocol. We define OUTPUTπ(m1, . . . , mn) as the final aggregated result
computed with protocol π from the input vector m. Furthermore, we define the
view of a party Pi in the execution of protocol π with input vector m as

VIEWπ
i (m) = (mi, ri, μ

(1)
i , . . . , μ

(�)
i)

where mi is party P ′
is input, ri is its random coins and μ

(1)
i , . . . , μ

(�)
i are the

� protocol messages it received during the protocol execution. Similarly, the
combined view of a set of I ⊆ {1, . . . , n} parties is denoted by VIEWπ

I (x).

Definition 1 (t-privacy of n-party protocols for deterministic aggrega-
tion functionalities). Let f : ({0, 1}∗)n → ({0, 1}∗) be a deterministic n-ary
functionality and let π be a protocol. We say that π t-privately computes f if for
every m ∈ ({0, 1}∗)n where |m1| = . . . = |mn|,

OUTPUTπ(m1, . . . , mn) = f(m1, . . . , mn) (1)

and there exists a PPT algorithm S such that for every I ⊂ [n] with |I| ≤ t, and
every m ∈ ({0, 1})n where |m1| = . . . = |mn|, it holds that:

{VIEWπ
I (m)} ≈

C
{S(I,mI , f(m))}. (2)

2.2 Single-Aggregation KDK

Kursawe, Danezis and Kohlweiss (KDK) [15] present a specialized multiparty
computation (MPC) protocol for private summation, which is shown to be secure
in the semi-honest model under the Decisional Diffie-Hellman (DDH) assump-
tion. We refer to this protocol as KDK. In their protocol, n parties P1, . . . , Pn can
compute a joint sum of their inputs m1, . . . , mn ∈ {0, . . . , β} for some positive
integer β. An overview of their protocol follows.

Let p be a prime. The “public parameters” used in the protocol consist of a
description of a cyclic group G of order p together with a generator g of G. It is
assumed that DDH is intractable in G. These public parameters PP = (G, g, p)
are known to all parties Pi. The group operation of G is written multiplicatively.

1. Setup: Party Pi generates a secret key xi ∈ Zp and computes her public key
ui = gxi ∈ G. She broadcasts ui.

2. Main Round:
– Party Pi chooses her input mi ∈ {0, . . . , β}.
– Compute w ← ∏i−1

j∈1 u−1
j · ∏n

j∈i+1 uj ∈ G.
– Broadcast vi ← wxi · gmi ∈ G.

3. Output: The protocol produces an output in {0, . . . , nβ}, namely the sum
of the user inputs. To compute the sum σ:
– Compute z ← ∏n

j=1 vj .

Private Aggregation with Custom Collusion Tolerance 79

– Use Pollard’s Lambda algorithm to compute the discrete log σ ∈
{0, . . . , nβ} of z with respect to g in G. The time complexity of Pollard’s
lambda algorithm is

√
nβ.

– Output σ.

It can be easily observed that
∏n

j=1 vj = g
∑n

j=1 mj .

2.3 Multi-aggregation KDK (MA-KDK)

If the protocol must be run a number of times, it would be desirable to avoid
re-running the “Setup” phase above which involves each party generating and
broadcasting a new public key; in practice, a verification step for these keys may
also be needed. To re-use the published keys ui, . . . , un for more than a single
round of aggregation, Kursawe et al. propose an extension of their protocol
that facilitates multiple aggregations. In fact, their multi-aggregation protocol
accommodates an unbounded number of aggregations. They make use of bilinear
pairings to achieve this. More details on bilinear pairings are provided in Sect. 5
when we address practical issues.

Let G1, G2 and GT be cyclic groups of prime order p. Let e : G1 ×G2 → GT

be a cryptographic bilinear pairing. Furthermore, the Bilinear Decisional Diffie
Hellman (BDDH) assumption is expected to hold with respect to G1, G2, GT

and e. Let H2 : Z → G2 be a hash function. The main changes to KDK to
support multiple rounds are as follows (optimizations are discussed later):

– The public parameters include generators P ∈ G1, Q ∈ G2 and g = e(P,Q)
∈ GT .

– The public keys are generated as Ui ← xiP ∈ G1 for all 1 ≤ i ≤ n.
– In aggregation k, party Pi computes

• Qk ← H2(k) ∈ G2 (i.e. for a good choice of H2, we have Qk = rQ for
some uniformly random r, which is intractable to find).

• w ← ∏i−1
j∈1 e(Uj , Qk)−1 · ∏n

j∈i+1 e(Uj , Qk) ∈ GT .

The rest of the protocol remains unchanged except that the computations are
performed in GT , and Pi may choose a different input value in every round.
Naturally, the output of the protocol is then (σ1, . . . , σ�) ∈ {0, . . . , nβ}� if �
rounds are executed.

3 Protocol for Bounded Number of Aggregations

We start with a description of our basic MPC protocol, i.e. BP, that extends
KDK to achieve a bounded number of aggregations from the same public key
information.

80 C. Patsakis et al.

3.1 Main Protocol Description

Our protocol builds on the work in [15] to add support for multiple aggregation
rounds using the same public keys generated by all parties in the initial stage.
Moreover, instead of relying on additional assumptions to achieve this (as is the
case in [15] where bilinear groups are employed), our construction provides secu-
rity in the semi-honest model for max(1, �n−t

2 �) rounds where t is the collusion
tolerance. This is optimal for our techniques.

Let A ∈ Z
k×k
p be a skew-symmetric matrix with uniformly random entries

in Zp. Each row of A represents a quadratic polynomial over Zp in k unknowns.
There are k(k−1)

2 possible monomials. Thus, A can be transformed into a coef-
ficient matrix B ∈ Z

k×k(k−1)/2
p . We write this as B = coeff(A). It follows that

rank(B) = k − 1. Therefore, no linear combination of k − 1 equations yields 0.
Let H : {0, 1}∗ → Zp be a hash function. We define a function χ :

Zp × Z → Z
n×n
p that takes a random seed and a round number, and out-

puts a pseudorandom skew-symmetric matrix over Zp. Let s ∈ {0, 1}∗ be a
seed. To compute the cells of the skew-symmetric matrix A(i) for round i, we set
A

(i)
j,k ← H(s ‖ i ‖ j ‖ k) and A

(i)
k,j ← −A

(i)
j,k for every j, k satisfying 1 ≤ j < k ≤ n.

The remaining entries of A(i) are set to zero. By construction, A(i) is skew-
symmetric. Furthermore, rank(coeff(A(i))) = n − 1.

Suppose there are n parties and the desired collusion tolerance is T ≤ n − 2.
Then the protocol can accommodate � ≤ �n−T�

2 independent aggregations. Let
β > 0 denote the size of the message space i.e. every party chooses her input for
a given round of aggregation from the set {0, . . . , β}. Therefore, the sums are
bounded from above by nβ.

A public seed s is deterministically derived from the users’ public keys gen-
erated in the first stage of the protocol. Alternatively, s may be pre-agreed or
collaboratively generated. In the security proof, it is assumed to be unique for a
given protocol execution.

The “public parameters” used in the protocol consist of a description of a
cyclic group G of order p together with a generator g of G. It is assumed that
the Decisional Diffie-Hellman (DDH) problem is intractable in G. These public
parameters PP = (G, g, p) are known to all parties Pi.

The protocol proceeds in the following stages:

1. Setup: Party Pi generates a secret key xi ∈ Zp and computes her public key
ui = gxi ∈ G. She broadcasts ui.

2. Aggregation r: For every r ∈ {1, . . . , �}:

– Party Pi chooses her input m
(r)
i ∈ {0, . . . , β}.

– Compute A(r) ← χ(s, i).

– Compute w ← ∏n
j∈1 u

A
(r)
i,j

j ∈ G.

– Broadcast v
(r)
i ← wxi · gm

(r)
i ∈ G.

3. Output: The protocol produces an output of � elements, namely the sum of
the inputs in each round. To compute the sum σr for round r:

Private Aggregation with Custom Collusion Tolerance 81

– Compute z ← ∏n
j=1 v

(r)
j .

– Use Pollard’s Lambda algorithm to compute the discrete log σr ∈
{0, . . . , nβ} of z with respect to g in G. The time complexity of Pollard’s
lambda algorithm is

√
nβ.

– The final output is (σ1, . . . , σ�).

It can be easily observed that for any 1 ≤ r ≤ �,
∏n

j=1 v
(r)
j = g

∑n
j=1 m

(r)
j .

Theorem 1. Under the DDH assumption, our multi-aggregation protocol is
computationally t-private for all t ≤ n with at most max(1, �(n − t)/2�) rounds
in the random oracle model.

The proof of Theorem 1 is given in Appendix A.

3.2 Security Against Malicious Adversaries

Our protocol, like KDK, can be extended to provide t-privacy in the presence of
malicious adversaries. However in the malicious setting, we relax the correctness
requirement given by Eq. 1 in Definition 1. Requiring both properties in the
malicious setting is captured by the stronger notion of t-security defined in [1],
and although our protocol can also be adapted to meet this definition, we focus
only on privacy in this work.

First we consider why the basic version of our protocol as previously described
is not t-private in the malicious model. It turns out there is quite a simple attack
that can be mounted by an active adversary. A dishonest party Pi can set her
public key ui to depend on one or more other party’s public keys. For example, Pi

might set ui ← uj
cj for a carefully chosen cj ∈ Zp such that some monomial xjxk

“cancels out” in the exponent, and as a result, Pi can learn more information
about the honest users’ inputs. This is a very straightforward attack to mount
by an active adversary.

Fortunately this can be circumvented in a standardmanner by requiring thatPi

proves in zero knowledge that she knows theprivate key corresponding toui; that is,
the discrete log of ui inGwith respect to g. However, an interactive zero-knowledge
proof would impede the attractive broadcast nature of the protocol. Hence as sug-
gested in [15], we can employ a non-interactive zero-knowledge (NIZK) argument
system for proving knowledge of discrete logs. We can do this in the random oracle
model by applying the Fiat-Shamir heuristic [11] to the well-known and practi-
cal Schnorr Protocol [20] (an honest-verifier zero-knowledge protocol for proving
knowledge of discrete logs). The latter is computationally inexpensive, involving
only one exponentiation and one multiplication in G for the prover, and two expo-
nentiations andonemultiplication for the verifier.Wedefer toAppendixBadiscus-
sion on how to prove this extended protocol t-private in the malicious model. For a
discussion on how to yield the stronger notion of t-security, we refer the interested
reader to Sect. 4.1 in [15].

82 C. Patsakis et al.

4 Hybrid Protocol

The hybrid protocol (HP) presented in this section exploits our MPC protocol
(BP) from the last section together with multi-aggregation KDK (MA-KDK) to
create a protocol that supports an unbounded number of aggregations from the
same public key information, but with improved performance over MA-KDK.
The only price we way is a reduction in the collusion tolerance t. However, as n
grows, the collusion tolerance need not be lowered by much to enjoy performance
gains over MA-KDK. In practice, however, a collusion tolerance of n ≤ n/2 or
n ≤ 3n

4 is usually adequate. We introduce a new parameter b, referred to as the
“batch size”. This parameter represents the number of aggregations that can
be performed with a single execution of BP (with parameters n and t). The
maximum value of this parameter is b = �(n − t)/2�.

Recall the description of MA-KDK from Sect. 2.3. Let G1, G2 and GT be
cyclic groups of prime order p. Let e : G1 × G2 → GT be a cryptographic
bilinear pairing. Furthermore, the Bilinear Decisional Diffie Hellman (BDDH)
assumption is expected to hold with respect to G1, G2, GT and e. Let H2 : Z →
G2 be a hash function. Our protocol HP is given as follows:

– The public parameters include generators P ∈ G1.
– The public keys are generated as Ui ← xiP ∈ G1 for all 1 ≤ i ≤ n.
– In aggregation k, party Pi performs the following steps:

1. If k ≡ 0 mod b:
(a) Q ← H2(k mod b) ∈ G2 (i.e. for a good choice of H2, we have Q = rQ

for some uniformly random r, which is intractable to find).
(b) Compute uj ← e(Uj , Q) ∈ GT for j ∈ [n] \ {i}:
(c) Compute g ← e(P,Q) ∈ GT .
(d) Set π ← BPInstance((GT , g), n, t, {u1, . . . , un}) where BPInstance

instantiates the BP protocol with the group GT and generator g ∈ GT ,
and parameters n and t, along with public keys u1, . . . , un ∈ GT .

2. Set ρ ← k mod b.
3. Run aggregation round ρ of protocol π for party Pi.

The security proof of the HP protocol is similar with the proof of the BP protocol.
More precisely, the only change that should be introduced is the re-keying of the
matrix generation so that the new seed is derived from each time a pairing is
performed.

We will see in the next section how HP considerably improves upon the
performance of MA-KDK.

5 Performance

5.1 Computation of an Aggregation Round

We first turn our attention to comparing the cost of an aggregation round in BP
vs. MA-KDK. Later, we take a look at HP.

Private Aggregation with Custom Collusion Tolerance 83

To begin the comparison, we compare the necessary group operations that a
party Pi must perform in a given aggregation round. MA-KDK requires n − 1
pairings, n − 1 multiplications in GT and an exponentiation in GT . Note the
omission of the inversions in GT for 1 ≤ j < i. The reason for this is that in the
Setup phase, party Pi can compute Uj ← −Uj for 1 ≤ j < i where Uj ∈ G1 is
Pj ’s public key. Thus by bilinearity of e, no inversions are needed in GT .

On the other hand, BP needs n exponentiations and n multiplications in group
G, Derivation of the per-round information for KDK involves computing Qk ←
H2(k) ∈ G2 whereas our protocol involves computing A(k) ← χ(s, k). However,
the latter can be optimized since only a single row of the matrix A(k) is needed by
party Pi. Recall that χ uses a hash function H : Zp ×Z×Z×Z → Zp to generate
A

(k)
i,j ; that is, A

(k)
i,j ← H(s, k, i, j). However, derivation of the per-round informa-

tion in both protocols is negligible relative to the cost of the group operations.
At present, all known efficient realizations of bilinear pairings are based on

elliptic curves. Therefore, in order to implement multi-aggregation KDK, we had
to instantiate G1 and G2 with elliptic curve groups. There is far less freedom when
choosing an elliptic curve when pairings are involved, since the chosen curve must
satisfy additional properties. Notwithstanding, to provide a fair performance com-
parison between both protocols, the same curve was used for both protocols.

Consider an elliptic curve E over Fq for prime q whose order is #E(Fq) = p.
For our protocol, the group G may be instantiated by the additive group formed
by E(Fq). For multi-aggregation KDK, we have opted to use the Modified Tate
Pairing to instantiate e since efficient implementations exist in libraries such as
MIRACL.

Now the embedding degree k of E is the smallest positive integer such that p
| qk−1. Concretely, the Tate pairing takes two points on E(Fqk)[p] and outputs an
element of F∗

qk (more precisely, an element of a multiplicative subgroup of order p

of F∗
qk

), where E(Fqk)[p] denotes the set of points on E(Fqk) of order p i.e. the set
of points A with pA = O, where O is the additive identity (point at infinity). Basi-
cally, G1 and G2 must be two distinct subgroups of E(Fqk) of order p. In fact, we
can set G1 to E(Fq) to make the pairing calculation faster. Furthermore, certain
pairing-friendly curves E allow us to choose G2 such that it is isomorphic to a sub-
group of E′(Fqk/d) where E′ is related to E (known as the “twisted curve”); this
means arithmetic operations can be carried out in the smaller field Fqk/d where d
is the “twist degree”.

The curve chosen for our implementation is a member of the pairing-friendly
BN family from [19] with a 254-bit prime q, embedding degree k = 12, and “twist
degree” d = 6. As a consequence of the latter, arithmetic operations in G2 can be
carried out in Fq2 instead of Fq12 . In addition, GT is the group generated by g =
e(P,Q) ∈ F

∗
qk , and thus its arithmetic operations are carried out in the “big” field

Fqk . This has implications for message recovery, since Pollard’s lambda algorithm
is much slower.

We implemented both protocols in C++ using the MIRACL C/C++ library
version 51 using the BN curve as described above. The code was compiled with
1 On Github, commit https://github.com/CertiVox/MIRACL/commit/6d7bb13285e7

962ccfa110b4149fa8a63db2ed52.

https://github.com/CertiVox/MIRACL/commit/6d7bb13285e7962ccfa110b4149fa8a63db2ed52
https://github.com/CertiVox/MIRACL/commit/6d7bb13285e7962ccfa110b4149fa8a63db2ed52

84 C. Patsakis et al.

g++ with the compiler flags “-m64 -O2” as recommended in the MIRACL doc-
umentation, and was executed on a machine with an Intel Core i5-3340M CPU
(2.7 GHz) and 4 GB of RAM, and running 64-bit Debian GNU/Linux 3.2.41. For
each protocol. we measured the time taken to compute a single round per partic-
ipant (recall that a round involves preparing the value vi for some party Pi). We
ran this 100 times for different values of n. Note that on each run a random index
i ∈ {1, . . . , n} was chosen, and the round was executed for Pi. Our results are
shown in Table 1. As expected, the cost of a round is roughly linear in n. More-
over, the difference in times between KDK and our protocol is significant; on aver-
age our protocol outperforms KDK by a factor of ≈437 based on the times in
Table 1. For even a moderate number of users such as n = 100, it is clear that
multi-aggregation KDK is not suited to time-sensitive applications. This is more
pronounced for resource-constrained devices such as wireless sensors.

We also implemented the hybrid protocol (HP) as described in Sect. 4. HP uses
an instantiation of BP with the group GT , and thus the exponentiations involved
in a round of aggregation are more costly. However, the dominant cost is that of the
n− 1 pairings. Unlike MA-KDK, these pairings need only be carried out once per
“batch” of aggregations. Table 1 reports the per-party time to compute a round
of aggregation as τ = τBP + τP /b where τBP is the time taken to compute a round
of aggregation in BP (instantiated with GT), τP is the time taken to compute the
n − 1 pairings, and b is the batch size. In other words, τ represents the amortized
time. The batch size is b = 1 − Tn/2 for some collusion tolerance T ∈ [0, 1]. For
our experiments, we set T = 1/2 and thus our results for HP pertain to a batch
size of b = n/4.

Table 1. Mean time in ms (over 100 runs) for a party to compute a round of agg-
regation (standard deviation in parenthesis). Note that for HP, the threshold tolerance
is T = 1/2, so the batch size is b = (1 − T)n/2 = n/4.

n=10 n=100 n=1000

Multi-aggregation KDK 47.78 (0.25) 480.71 (2.34) 4795.33 (6.69)

Our Protocol (BP) 0.94 (0.053) 1.33 (0.01) 5.33 (0.07)

Hybrid Protocol (HP)(col. tolerance 1/2) 34.72 (0.31) 53.79 (0.2) 324.23 (1.34)

5.2 Recovery of the Sum with Pollard’s Lambda Algorithm

Now we turn our attention to the aggregation phase of our BP protocol. In any
given round, this entails multiplying all elements vi to calculate z ← ∏

vi, then
finding a discrete logarithm with respect to a generator g to recover the sum
σ =

∑
mi of the parties’ inputs in the round. For this purpose, Pollard’s Lambda

algorithm is employed. In our protocol, the vi belong to G whereas in the multi-
aggregation KDK or the HP, they belong to GT . Recall that our implementation
with elliptic curves of BP instantiates G as E(Fq) whereas GT is instantiated as
a subgroup of F∗

qk . As such, this phase is more expensive for multi-aggregation

Private Aggregation with Custom Collusion Tolerance 85

KDK because the field operations take place in a “bigger” field. Pollard’s Lambda
algorithm dominates recovery of the sum. Its time complexity is O(

√
M) where

M denotes the size of the message space. In this case, M = nβ since each party
chooses her message in {0, . . . , β}.

Fig. 1. Average time to find discrete logs in E(Fq) (Our Protocol, denoted PCL in the
figure) and Fqk (multi-aggregation KDK) for different value ranges (upper bound in
bits).

In order to compare multi-aggregation KDK to our protocol in this phase,
we measured the time taken to compute Pollard’s Lambda algorithm for differ-
ent message space sizes. Moreover, values were randomly generated in the set
m

$←− {2b−2, . . . , 2b} for different values of b and the time taken to recover m
given gm using Pollard’s Lambda algorithm was measured (the range given to
the algorithm was {0, . . . , 2b}); here g denotes the generator of the group in ques-
tion and multiplicative notation is employed arbitrarily. The measurements were
performed in Sage version 5.9 on the same machine and operating system as that
used for the previous experiments above. We ran the experiment 10 times each for
b ∈ {5, 10, 15, 20, 25, 30} for both E(Fq) and the group 〈e(P,Q)〉 ⊂ F

∗
qk (recall that

k = 12 for the curve we used). Our results are shown in Fig. 1. Observe that for
≈30-bit numbers, multi-aggregation KDK takes almost half a minute to recover
the result. Hence, for large values of β, the recovery phase acts a big bottleneck in
multi-aggregation KDK.

A Proof of Theorem 1

Lemma 1. Let m = �k/2�. Let A(1), . . . , A(m) be skew-symmetric k × k matri-
ces with uniformly random entries in Zp. Let B(1) = coeff(A(1))[1, . . . , k −
1], . . . , B(m) = coeff(A(m))[1, . . . , k − 1] where the notation [1, . . . , k − 1] signifies
the first k − 1 rows of the matrix. Let M = (B(1); . . . ;B(m)) ∈ Z

m(k−1)×m(k−1)
p be

the joint matrix consisting of k − 1 rows from each of the m coefficient matrices.
Then Pr[rank(M) �= m(k − 1)] ≤ poly(k)

p .

86 C. Patsakis et al.

Proof. We can rearrange the rows of M such that the t-th block M (t) consists of
the t-th rows of the coefficient matrices. In each such row, there are only k − 1
nonzero entries. Eliminating the zero columns results in an m × (k − 1) matrix
M (t)′ with independent and uniformly random elements from Zp. Since m < k−1,
the probability that M (t)′ is linearly independent is at least the probability that
its left m × m submatrix is linearly independent.It is mentioned in [4] (the result
is due to Cooper [8]) that the probability that an m × m random matrix over Zp

is linearly independent is at least:

m∏

i=1

(1 − 1
pi

).

Now the probability that this does not hold is bounded by m
p . Observe that if M (t)

is linearly independent for all 1 ≤ k − 1 then so is M , since each submatrix M (t)

contains a unique column that is zero in all other submatrices, provided that a
submatrices’s unique column is nonzero. The probability of the latter not hold-
ing is k−1

pm . Therefore, an upper bound on the probability of M not being linearly
independent is:

k − 1
pm

+
m(k − 1)

p
=

poly(k)
p

.

��
Theorem 1. Under the DDH assumption, our multi-aggregation protocol is com-
putationally t-private for all t ≤ n with at most max(1, �(n − t)/2�) rounds in the
random oracle model.

Proof. Let � ≤ max(1, �(n−t)/2�) be the number of aggregations. Let h = n−t be
the number of honest users. If h ≤ 1, it is trivial to construct a simulator S since S
can fully learn m and then simulate all parties. Therefore, we assume that h ≥ 2.
Let w = h(h − 1)/2. Consider the following series of Hybrids.

Hybrid 0: This is the same as the real distribution i.e. the LHS of Eq. 2 with the
exception that we “simulate” each honest party Pk using input m

(ρ)
k ; therefore we

have access to xk.
For 1 ≤ q ≤ w: Hybrid q involves two honest parties which we denote by Pi

and Pj . Their equations share the monomial xixj . There are w = h(h−1)/2 such
monomials and the goal of each Hybrid q is to replace the q-th monomial with a
uniformly random element.

Hybrid q: The changes between Hybrid q and Hybrid q − 1 involve changing the
protocol messages of the honest parties Pi and Pj in all � aggregations. Let m

(ρ)
i

and m
(ρ)
j be the inputs of these honest parties in round ρ. Generate a uniformly

random integer r ∈ {0, . . . , p−1} and replace all occurrences of gxixj by gr in the
computation of the second messages in all aggregations.

Hybrid q − 1 and Hybrid q are computationally indistinguishable under the
DDH assumption. Hybrid q − 1 involves the DDH instance (g, gxi , gxj , gxixj) and

Private Aggregation with Custom Collusion Tolerance 87

Hybrid q involves the DDH instance (g, gxi , gxj , gr) where xi, xj and r are uni-
formly distributed in {0, . . . , p − 1}. A non-negligible advantage distinguishing
between Hybrid 0 and Hybrid 1 implies a non-negligible advantage against DDH.

Hybrid w + 1: (where w = h(h − 1)/2) H is modelled as a random oracle
and as such the skew-symmetric matrices contain uniformly random elements in
Zp. In this Hybrid, we program H such that the joint coefficient matrix M ∈
Z

�(n−t−1)×(n−t)(n−t−1)/2
p formed from the coefficient matrix in every aggregation

is linearly independent. By Lemma 1, the probability of M not being linearly inde-
pendent when generated as in the real world is at most poly(n−t)

p . Because p is
superpolynomial in the security parameter, an adversary has a negligible chance
between distinguishing Hybrid w + 1 and Hybrid w.

Hybrid w + 2: Without loss of generality, assume that parties P1, . . . , Ph are
the honest parties. For all 1 ≤ i < h and 1 ≤ ρ ≤ �, replace the protocol message
v
(ρ)
i of party Pi in aggregation ρ with gr

(ρ)
i · gm

(ρ)
i for uniformly random r

(ρ)
i ∈

Zp. Furthermore, for every 1 ≤ ρ ≤ �, replace the protocol message v
(ρ)
h with

g−∑h−1
j=1 r

(ρ)
j +m

(ρ)
h . Due to the linear independence of the coefficient matrix M ∈

Z
�(n−t−1)×(n−t)(n−t−1)/2
p , distinguishing between Hybrid w +2 and Hybrid w +1

is impossible.

Hybrid w + 3: Finally, in this Hybrid, the inputs m
(ρ)
1 , . . . , m

(ρ)
h are replaced by

a random partition of
∑h

k=1 m
(ρ)
k , namely the values s

(ρ)
1 , . . . , s

(ρ)
h for every ρ ∈

{1, . . . , �}.
An adversary has a zero advantage distinguishing Hybrid w + 3 and Hybrid

w+2. To see this, suppose the adversary could distinguish the hybrids. Then it can
determine that some party’s input (say Pi) in some aggregation ρ is not s

(ρ)
i . But

v
(ρ)
i = gr′

for some uniformly random r′, which provides no information about the
message (whether it is m

(ρ)
i or s

(ρ)
i). Note that v

(ρ)
h gives no additional information

since it can be derived from the information known to the adversary (recall that
the sum in each aggregation is known).

Since Hybrid w + 3 no longer relies on the honest parties’ messages, and all
other information needed to construct the distribution can be derived from the
simulators’ inputs in Eq. 2, it follows that there exists an algorithm S that can
simulate the real distribution. ��

B t-privacy in theMalicious Setting

We only give a brief overview here of how to prove t-privacy of the extended pro-
tocol described in Sect. 3.2 in the presence of malicious adversaries. Recall that
the protocol uses a NIZK argument system (Setup,Prove,Verify) for statements
of the form Si = {(xi) : ui = gxi}. The common reference string σ ← Setup(1κ)
is known to all parties and consists of a description of a hash function HNIZK, which
is modeled in the proof as a random oracle. A party Pj rejects a public key and
proof pair (ui, pi) if Verify(σ, Si, pi) �= 1. As a result, we can argue that the xi for

88 C. Patsakis et al.

i ∈ I are independent of {xj}j∈[n]\I with all but negligible probability. The main
modification to the proof of Theorem 1 involves the simulation of the NIZK proofs
for the honest parties, since we need to embed DDH challenges and thus do not
know the exponents. Before embedding the DDH challenges, we have a series of
h = n − t hybrids, where in the k-th such hybrid, we invoke the zero-knowledge
property of the NIZK argument system to simulate (which will involve program-
ming the oracle HNIZK) the proof string pk for honest party Pk with a computa-
tionally indistinguishable proof string p′

k. The remainder of the proof proceeds in
the same manner as the proof of Theorem 1.

References

1. Asharov, G., Lindell, Y.: A full proof of the BGW protocol for perfectly-secure mul-
tiparty computation. Electron. Colloq. Comput. Complex. (ECCC) 18, 36 (2011)

2. Ben-David, A., Nisan, N., Pinkas, B.: Fairplaymp: a system for secure multi-party
computation. In: Proceedings of the 15th ACM Conference on Computer and Com-
munications Security, pp. 257–266. ACM (2008)

3. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In Proceedings of the Twen-
tieth Annual ACM Symposium on Theory of Computing, pp. 1–10. ACM (1988)

4. Blake, I.F., Studholme, C.: Properties of random matrices and applications. Unpub-
lished report (2006). http://www.cs.toronto.edu/∼cvs/coding

5. Bogetoft, P., Christensen, D.L., Damg̊ard, I., Geisler, M., Jakobsen, T.P.,
Krøigaard, M., Nielsen, J.D., Nielsen, J.B., Nielsen, K., Pagter, J., et al.: Multiparty
computation goes live. IACR Cryptology ePrint Archive 2008, p. 68 (2008)

6. Chaum, D., Crépeau, C., Damgard, I.: Multiparty unconditionally secure protocols.
In: Proceedings of the Twentieth Annual ACM Symposium on Theory of Comput-
ing, pp. 11–19. ACM (1988)

7. Clifton, C., Kantarcioglu, M., Vaidya, J., Lin, X., Zhu, M.Y.: Tools for privacy pre-
serving distributed data mining. ACM SIGKDD Explor. Newsl. 4(2), 28–34 (2002)

8. Cooper, C.: On the rank of random matrices. Random Struct. Algorithms 16, 2000
(2000)

9. Damgrd, I., Pastro, V., Smart, N.P., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. IACR Cryptology ePrint Archive 2011, p. 535
(2011)

10. Department of Energy and Climate Change. Smart metering equipment tech-
nical specifications: second version July 2013. https://www.gov.uk/government/
consultations/smart-metering-equipment-technical-specifications-second-version

11. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987)

12. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: Pro-
ceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, pp.
218–229. ACM (1987)

13. Hao, F., Zieliński, P.: A 2-round anonymous veto protocol. In: Christianson, B.,
Crispo, B., Malcolm, J.A., Roe, M. (eds.) Security Protocols. LNCS, vol. 5087, pp.
202–211. Springer, Heidelberg (2009)

14. Hart, G.W.: Nonintrusive appliance load monitoring. Proc. IEEE 80(12), 1870–1891
(1992)

http://www.cs.toronto.edu/~cvs/coding
https://www.gov.uk/government/consultations/smart-metering-equipment-technical-specifications-second-version
https://www.gov.uk/government/consultations/smart-metering-equipment-technical-specifications-second-version

Private Aggregation with Custom Collusion Tolerance 89

15. Kursawe, K., Danezis, G., Kohlweiss, M.: Privacy-friendly aggregation for the
smart-grid. In: Fischer-Hübner, S., Hopper, N. (eds.) PETS 2011. LNCS, vol. 6794,
pp. 175–191. Springer, Heidelberg (2011)

16. Laughman, C., Lee, K., Cox, R., Shaw, S., Leeb, S., Norford, L., Armstrong, P.:
Power signature analysis. IEEE Power Energy Mag. 1(2), 56–63 (2003)

17. Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay-secure two-party computation
system. In: USENIX Security Symposium, pp. 287–302 (2004)

18. Molina-Markham, A., Shenoy, P., Fu, K., Cecchet, E., Irwin, D.: Private memoirs
of a smart meter. In: Proceedings of the 2nd ACM Workshop on Embedded Sensing
Systems for Energy-efficiency in Building, pp. 61–66. ACM (2010)

19. Pereira, G.C.C.F., Simpĺıcio Jr., M.A., Naehrig, M., Barreto, P.S.L.M.: A family of
implementation-friendly bn elliptic curves. J. Syst. Softw. 84(8), 1319–1326 (2011)

20. Schnorr, C.: Efficient identification and signatures for smartcards. pp. 239–252
(1990)

21. Shi, E., Chow, R., Chan, T.H.H., Song, D., Rieffel, E.: Privacy-Preserving Aggre-
gation of Time-Series Data. Technical report, UC Berkeley (2011)

22. Weiss, M., Helfenstein, A., Mattern, F., Staake, T.: Leveraging smart meter data
to recognize home appliances. In: 2012 IEEE International Conference on Pervasive
Computing and Communications (PerCom), pp. 190–197. IEEE (2012)

23. Yang, Z., Zhong, S., Wright, R.N.: Privacy-preserving classification of customer data
without loss of accuracy. In: SIAM International Conference on Data Mining, pp.
1–11 (2005)

24. Yao, A.C.-C.: Protocols for secure computations. In: FOCS, vol. 82, pp. 160–164
(1982)

25. Yao, A.C.-C.: How to generate and exchange secrets. In: 27th Annual Symposium
on Foundations of Computer Science, 1986, pp. 162–167. IEEE (1986)

Signature and Security Protocols

Ring Signatures of Constant Size Without
Random Oracles

Fei Tang1,2,3(B) and Hongda Li1,2

1 State Key Laboratory of Information Security, Institute of Information Engineering
of Chinese Academy of Sciences, Beijing, China

2 Data Assurance and Communication Security Research Center of Chinese Academy
of Sciences, Beijing, China

3 University of Chinese Academy Sciences, Beijing, China
tangfei127@163.com, lihongda@iie.ac.cn

Abstract. Ring signatures allow a signer to anonymously sign on behalf
of a group of users, the so-called ring; the only condition is that the signer
is a member of the ring. At PKC 2007, Shacham and Waters left an open
problem, “obtain a ring signature secure without random oracles and its
signature size is independent of the number of signers implicated in the
ring”, which has not been solved yet. In this paper, by using a powerful
tool, indistinguishability obfuscator (iO), we construct a constant size
ring signature scheme without random oracles and thus answer Shacham
et al.’s open problem. Furthermore, we construct an identity-based ring
signature scheme which also has constant signature size in the standard
model. However, we stress that due to the low efficiency of the existing
iO candidates, we mainly focus on the existence of the constant size ring
signature schemes without random oracles, but do not care about their
practicability. A shortcoming of our approach is that the ring unforge-
ability merely is selective but not adaptive.

Keywords: Ring signatures · Constant size · Indistinguishability
obfuscation

1 Introduction

Ring signatures allow a signer to anonymously sign on behalf of a group of
users, the so-called ring; the only condition is that the signer is a member of
the ring. In such a signature scheme, a verifier can be convinced that someone
in the ring is responsible for a valid signature, but cannot tell who is the real
signer. In contrast to group signatures [12], the anonymity of the signer in a ring
signature scheme cannot be revoked. Ring signatures provide an elegant way to
leak authoritative secrets in an anonymous way [26], and it also can be used to
implement designated verifier signatures [24].

This research is supported by the National Natural Science Foundation of China
(Grant No. 60970139) and the Strategic Priority Program of Chinese Academy of
Sciences (Grant No. XDA06010702).

c© Springer International Publishing Switzerland 2015
D. Lin et al. (Eds.): Inscrypt 2014, LNCS 8957, pp. 93–108, 2015.
DOI: 10.1007/978-3-319-16745-9 6

94 F. Tang and H. Li

Related works. The notion of ring signature was introduced by Rivest, Shamir,
and Tauman [26]. In a ring signature scheme, the signer chooses the ring members
who do not need to cooperate and may be unaware that they are included in
a ring signature. Since then, ring signatures, along with the related notion of
ring/ad-hoc identification schemes, have been studied extensively. We may divide
these schemes into two classes according to their security model. The first class
of schemes are secure in the random oracle model (e.g., [2,13,15,22,26,33]) and
the second class of schemes are secure in the standard model (e.g., [1,6,11,14,29,
31,32]). Due to some negative results about the random oracles, such as [10,16],
researches on cryptographic primitives that are secure in the standard model has
gained much attention. The scheme of [14] is based on a strong new assumption.
The scheme in [6] makes use of generic ZAPs for NP. Schacham and Waters [31]
gave a construction of linear size that is secure under the computational setting
of the definitions in [6]. The scheme in [11] has sub-linear signature size uses the
common reference string model. Schäge and Schwenk [29] gave a CDH-based
construction.

The description of the ring itself is in general linear in the number of members
because it is need to specify the users included in the ring. To the best of our
knowledge, most ring signature schemes known today are of linear or sub-linear
size in the number of ring members, the only exception being the scheme of [15]
which is secure in the random oracle model. All existing ring signature schemes
(except [15]) admit signature sizes relying on the ring size. Yet, one might face
a situation wherein we would like to put many members in a ring. In such
situation, the size of the ring signature being constant is quite useful. Based on
this consideration, Shacham and Waters [31] proposed an open problem at PKC
2007, “obtain a ring signature secure without random oracles and its signature
size is independent of the number of signers implicated in the ring”, which has
not been solved yet. The goal of this paper is to solve this open problem.

Our approach. Our constructions will make use of a powerful tool, indistinguisha-
bility obfuscator (iO). The notion of iO derives from the program obfuscation
which aims at making a computer program “unintelligible” while preserving
its functionality. Barak et al. [4] initiated the formal study, but unfortunately,
they showed that the most natural simulation-based formulation of obfusca-
tion, i.e., “black-box obfuscation”, is impossible to achieve for general programs.
To circumvent this negative result, they suggested another weaker notion called
indistinguishability obfuscation. A uniform indistinguishability obfuscator for a
class of circuits guarantees that obfuscations of given any two equal-size circuits
that compute a same function are computationally indistinguishable. A recent
breakthrough by Garg et al. [17] admits the first candidate construction of an
efficient iO for general boolean circuits. Whereafter, this powerful tool is shown
to be very useful in cryptography, some successful examples including replac-
ing random oracles [23], functional encryption [17,18], deniable encryption [30],
(identity-based) multiparty key exchange [9] and so on.

Our approach makes use of Sahai and Waters’ [30] technique, namely punc-
tured program. (Please see [30] for details.) Our constructions are inspired by

Ring Signatures of Constant Size Without Random Oracles 95

Boneh and Zhandry’s [9] (identity-based) multiparty key exchange schemes.
In our constructions, a trusty authority is needed to create an obfuscated signing
program. Then, each user is able to run this program on inputs (M,SKs, R =
(V K1, . . . , V Kn), s), where M is the message that the user wants to sign, SKs

is his secret key, R is the ring that the user wants to sign on half of, and the
index s means that his verification key in R is V Ks. The signing program will
check that whether SKs is a valid secret key corresponds to the s-th verification
key in R, if it checks succeed, then a constrained pseudorandom function (PRF)
[3,8,25] will act on the concatenation of M and R and output the result as the
signature. Hence the signature size equals to the length of the output of the
constrained PRF which is a constant with respect to the size, n, of the ring R.
(See below for details.) Due to the low efficiency of the existing iO candidates
[5,7,17], our constructions are inefficient. In addition, another shortcoming of
our approach is that the ring unforgeability merely is selective but not adaptive.

Furthermore, we will show that our ring signature scheme can be easily
extended to the identity-based setting, i.e., identity-based ring signatures of con-
stant size in the standard model.

2 Building Blocks

2.1 Pseudorandom Generator

Definition 1. A function G : {0, 1}λ → {0, 1}2λ is a pseudorandom generator
(PRG) if for any PPT adversary A its advantage

AdvA,G(λ)= |Pr[A(y) = 1 : y = G(s), s $← {0, 1}λ]−Pr[A(y) = 1 : y
$← {0, 1}2λ]|

is at most negligible.
H̊astad, Impagliazzo, Levin, and Luby [21] proved that there is a PRG if and

only if there is a one way function (OWF).

2.2 Constrained Pseudorandom Functions

Definition 2. A puncturable family of PRFs mapping is consists of a triple of
algorithms Key,Pun, and Eva, and a pair of computable functions u(·) and v(·),
satisfying the following conditions:

– Functionality preserved under puncturing: For every PPT adversary A such
that A(1λ) outputs a set S ⊆ {0, 1}u(λ), then for all x ∈ {0, 1}u(λ) where
x �∈ S, we have:

Pr[EvaK(x) = EvaK(S)(x) : K ← Key(1λ),K(S) ← Pun(K,S)] = 1.

– Pseudorandom at punctured points: For every PPT adversary (A1,A2) such
that A1(1λ) outputs a set S ⊆ {0, 1}u(λ) and state τ , consider an experiment
where K ← Key(1λ) and K(S) ← Pun(K,S). Then we have:

Pr[A2(τ,K(S), S,EvaK(S))=1]−Pr[A2(τ,K(S), S, Um(λ)·|S|)=1]=negl(λ),

96 F. Tang and H. Li

where S = (x1, . . . , xk), EvaK(S) denotes EvaK(x1)|| · · · ||EvaK(xk) is the enu-
meration of the elements of S in lexicographic order, and U� denotes the uni-
form distribution over � bits.

The GGM tree-based construction of PRFs [19] from PRG that maps {0, 1}λ

to {0, 1}2λ are easily seen to yield constrained PRFs, as realized by [3,8,25]. In
the GGM-based constrained PRF constructions, the length, v(λ), of the outputs
equals to λ and the length, u(λ), of the inputs equals to the depth of the binary
tree. Hence the output length is independent of the input length.

2.3 Indistinguishability Obfuscation

Definition 3. A uniform PPT machine iO is called an indistinguishability obfus-
cator for a class of circuit {Cλ} if it meets the following conditions:

– Functionality preservation: For all security parameters λ ∈ N, all circuits
C ∈ Cλ, and all inputs x, we have:

Pr[C ′(x) = C(x) : C ′ ← iO(λ,C)] = 1.

– Indistinguishability: For any (not necessarily uniform) PPT adversaries (Samp,
D), there exists a negligible function negl such that the following holds: if
Pr[∀x,C0(x) = C1(x) : (C0, C1, τ) ← Samp(1λ)] > 1 − negl(λ), then:

∣∣Pr[D(τ, iO(λ,C0)) = 1 : (C0, C1, τ) ← Samp(1λ)]

−Pr[D(τ, iO(λ,C1)) = 1 : (C0, C1, τ) ← Samp(1λ)]
∣∣ ≤ negl(λ).

Garg et al. [17] constructed such an indistinguishability obfuscator for NC1 and
all polynomial size circuits. In this paper, we make use of the version of the
polynomial size circuits defined below.

Definition 4. A uniform PPT machine iO is called an indistinguishability obfus-
cator for P/poly if the following holds: Let {Cλ} be the circuits class of size at
most λ. Then iO is an indistinguishability obfuscator for the class {Cλ}.

3 Definitions of Ring Signatures

In this section, we review the formal definition and security models of the ring
signature schemes.

3.1 Syntax

We define a Setup algorithm, run by a trusted authority (TA), to generate public
parameters and create the system of the ring signature scheme. Additionally, we
refer to an ordered set R = (V K1, . . . , V Kn) of verification keys as a ring, and
let R[i] = V Ki. We will also freely use set notation, e.g., V K ∈ R if there exists
an index i such that R[i] = V K.

Ring Signatures of Constant Size Without Random Oracles 97

Definition 5. A ring signature scheme consists of the following four PPT
algorithms:

– Setup algorithm takes as input a security parameter λ ∈ N and outputs the
public parameters PP. The public parameters contain the descriptions of the
message space M and signature space S. We write it PP ← Setup(1λ).1

– KeyGen algorithm outputs the users’ signing and verification keys (SK, V K).
We write it (SK, V K) ← KeyGen().

– Sign algorithm takes as inputs a message M ∈ M to be signed, a set of
verification keys R (i.e., the ring), and an user’s signing key SKs. It is required
that V Ks ∈ R holds. The algorithm outputs a signature σ on M for the ring
R. We write it σ ← Sign(M,SKs, R).

– Vrfy algorithm takes as inputs the ring R of verification keys and a purported
signature σ ∈ S on a message M ∈ M. It outputs 1 (accept) if σ is valid.
Otherwise, it outputs 0 (reject). We write it 1/0 ← Vrfy(M,σ,R).

Correctness. For all security parameters λ ∈ N, messages M ∈ M, and all
PP ← Setup(1λ), {(SKi, V Ki)}n(λ)

i=1 ← KeyGen(), σ ← Sign(M,SKs, R), if R ⊆
{V K}n(λ)

i=1 and V Ks ∈ R, then we have Pr[Vrfy(M,σ,R) = 1] = 1.

3.2 Security Models

Informally, a ring signature scheme should satisfy two security properties. The
first one is unforgeability, meaning that an adversary is able to compute a valid
signature on behalf of a ring if and only if he knows a secret key corresponding to
one of them. The second one is anonymity, meaning that a verifier is convinced
that someone in the ring is responsible for the signature, but cannot tell who it
is. In this paper, we follow the following two notions: unforgeability with respect
to insider corruption introduced by Bender, Katz, and Morselli [6];2 and perfect
anonymity introduced by Chandran, Groth, and Sahai [11].

Ring Unforgeability. The notion of unforgeability with respect to insider
corruption [6] is defined by the following game which is played by a challenger
and a PPT adversary A.

1. Setup: The challenger runs the Setup and KeyGen algorithms to generate
the public parameters PP and all keys {(SKi, V Ki)}n(λ)

i=1 . The adversary A is
given PP and verification keys S = {V Ki}n(λ)

i=1 . The challenger maintains a
set C to record the corrupted users. Initially, C ← ∅.

1 For ease of notation on the reader, we suppress repeated PP arguments that are
provided to all of the following algorithms. For example, we will write (SK, V K) ←
KeyGen() instead of (SK, V K) ← KeyGen(PP).

2 We consider a weaker version of this notion in which corruptions of honest users are
allowed but adversary-chosen public keys are not allowed. This weaker notion has
been used in [20,29].

98 F. Tang and H. Li

2. Signing queries: The adversary A is allowed to adaptively make singing
queries. A ring signing query is of the form (M,R, s). Here M ∈ M is the
message to be signed, R ⊆ S is a ring of verification keys, and s is an index
such that V Ks ∈ R. The challenger responds with a ring signature σ ←
Sign(M,SKs, R).

3. Corruption queries: The adversary A is allowed to adaptively make cor-
ruption queries. A corruption query is of the form s ∈ [n(λ)]. The challenger
returns SKs to A and adds V Ks into the set C.

4. Output: Finally, the adversary A outputs a tuple (M∗ ∈ M, σ∗ ∈ S, R∗ ∈ S).
We say that A wins the game if (1) Vrfy(M∗, σ∗, R∗) = 1; (2) R∗ ⊆ S\C; and
(3) it never made a singing query (M∗, R∗, s) for any s.

We denote the success probability of a PPT adversary A (taken over the
random coins of the challenger and adversary) to win the above game as

AdvUnf
A = Pr[A wins].

Definition 6. We say that a ring signature scheme is unforgeable with respect
to insider corruption, if for any PPT adversary A, it cannot win the above game
with non-negligible advantage.

Selective security. We consider a selective variant to the above definition where
the adversary A is required to commit to a forgery ring/message pair (R∗,M∗)3

before the setup phase. Then it cannot make signing query on inputs (M∗, R∗, s)
for any s, and also cannot make corruption query on input s for which V Ks ∈ R∗.

Ring Anonymity. Informally, a ring signature scheme is perfectly anonymous
[11], if a signature on a message M∗ ∈ M, a ring R∗ ⊆ S, and a key V Ki0 ∈ R∗

looks exactly the same as a signature on the same message M∗ and ring R∗, and
a different key V Ki1 ∈ R∗. This means that the signer’s key is hidden among all
the honestly generated keys in the ring. Formally, we define the following game
which is played by a challenger and an unbounded adversary A.

1. Setup: The challenger runs the Setup and KeyGen algorithms to generate
the public parameters PP and key pairs {(SKi, V Ki)}n(λ)

i=1 . Then it gives the
public parameters and all keys {(SKi, V Ki)}n(λ)

i=1 to the adversary A.
2. Challenge: The adversary A submits a tuple (M∗, R∗, i0, i1), where M∗ ∈ M

is the challenge message, R∗ ⊆ {V Ki}n(λ)
i=1 is the challenge ring, i0 and i1 are

two indices such that {V Ki0 , V Ki1} ⊆ R∗, to the challenger. The challenger
chooses a random b ∈ {0, 1}, then computes σ∗ ← Sign(M∗, SKib , R

∗) and
returns σ∗ to the adversary.

3 In the beginning, A does not given the keys S = {V Ki}n(λ)
i=1 . In order to obtain the

forgery ring R∗, we require that A submits a set of index IR∗ = {i1, . . . , i|R∗|} ⊆
[n(λ)]. Then after the keys S = {V Ki}n(λ)

i=1 are generated, the forgery ring R∗ =
{V Ki1 , . . . , V Ki|R∗|} ⊆ S is also obtained.

Ring Signatures of Constant Size Without Random Oracles 99

3. Guess: Finally, the adversary outputs b′, indicating his guess for b.

We denote the advantage of an unbounded adversary A (taken over the
random coins of the challenger and the adversary) to win the above game as

AdvAno
A = |Pr[b′ = b] − Pr[b′ �= b]|.

Definition 7. We say that a ring signature scheme is perfectly anonymous,
if even an unbounded adversary has no non-negligible advantage to win the
above game of anonymity.

4 Constant Size Ring Signature Scheme

4.1 Our Construction

The idea of our construction is the following: Each user chooses a random string
xi as his secret key. His public key is a PRG value V Ki = G(xi). To allow a legal
user V Ks to get a signature on behalf of a set of users R = (V K1, . . . , V Kn), the
trusty authority (TA) publishes an obfuscated signing program for constrained
PRF which requires knowledge of a secret key to operate. In this way, if V Ks ∈
R, then he can get a signature that the PRF acts on a concatenation of the
message and R, but anyone else will not know any of a secret key xi such that
∃i ∈ [n] s.t. V Ki = G(xi), will be returned back ⊥.4

Let Eva : {0, 1}�(λ)+2·n·λ → {0, 1}λ be a constrained PRF. Let G : {0, 1}λ →
{0, 1}2λ be a PRG. Let f(·) be a OWF. The message space is M = {0, 1}�(λ).
The signature space is S = {0, 1}λ. Our ring signature scheme is as follows:

– Setup(1λ): TA first chooses a random key K for the constrained PRF. Next,
it creates two obfuscated programs of the signing circuit PS and verifica-
tion circuit PV , respectively. Here, we assume that these two circuits contain
authentication block to check the validity of the public keys. The public para-
meters are PP = (iO(PS), iO(PV)).

– KeyGen(): Each user chooses a random bit string xi ∈ {0, 1}λ as his secret
key SKi. Correspondingly, his verification key is V Ki = G(xi).

– Sign(SKs,M,R = (V K1, . . . , V Kn), s): The holder (i.e., the real signer) of
secret key SKs with s ∈ [n] runs the signing program iO(PS) on inputs
(M,SKs, R, s).

– Vrfy(M,σ,R = (V K1, . . . , V Kn)): The verifier runs the verification program
iO(PV) on inputs (M,σ,R).

PS

– Constants: PRF key K.
– Input: Message M , secret key SKs, set R = (V K1, . . . , V Kn), index s.

1. Test if G(xs) = V Ks. Output EvaK(M ||R) if true, ⊥ if false.

4 This idea is from [9] where Boneh and Zhandry constructed a non-interactive key
exchange protocol.

100 F. Tang and H. Li

PV

– Constants: PRF key K.
– Inputs: Message M , signature σ, set R = (V K1, . . . , V Kn).

1. Test if f(σ) = f(EvaK(M ||R)). Output 1 if true, 0 if false.

Remark 1. Correctness of the ring signature scheme is trivial by inspection.
In our construction, the signer (resp. verifier) should run the signing (resp. veri-
fication) program, and hence the signer (resp. verifier) should be online or down-
load the signing (resp. verification) program before sign messages (resp. verify
signatures). In this paper, we focus on the existence of the constant size ring
signature scheme without random oracles rather than its practicability.

Remark 2. The above construction restricts that the ring can contain only n
verification keys, that is, it is an n-user ring signature scheme [6]. We can easily
extend it to that can support flexible ring. The launching point for this issue
is that by using Ramchen and Waters’ [27] technique. In [27], Ramchen and
Waters constructed a new constrained PRF by adapting the GGM construction.
This new constrained PRF accepts variable-length inputs. (Please refer to [27]
for details.) Therefore, the above n-user ring signature scheme equipped with
this new PRF can form a fully-fledged ring signature scheme.

4.2 Security

Selective Unforgeability. We show that if there exists a PPT adversary A
that can break the selective unforgeability of the above ring signature scheme,
then we can construct a challenger B to break the security of the OWF. We
describe the proof as a sequence of the following hybrid games:

– Hyb0 : This hybrid corresponds to the honest execution of the selective unforge-
ability game where the adversary initially submits his target (challenge) value
T ′ = (M∗ ∈ {0, 1}�(λ), IR∗ ⊆ [n(λ)]), then it interacts with B:
• Setup: B chooses a constrained PRF key K, a PRG G, and a OWF f .

Then it creates the public parameters PP. In addition, B chooses random
{xi}n(λ)

i=1 ⊆ {0, 1}λ as the secret keys and computes S = {V Ki = G(xi)}n(λ)
i=1

as the public keys. The adversary’s challenge value T ′ is replaced by T =
(M∗, R∗). B maintains a set C to record the corrupted users. Initially,
C ← ∅. The adversary is given PP and S.

• Queries: There are two kinds of queries that B must answer: signing oracle
OSig and corruption oracle OCor.

* For each query to OSig on inputs (M ∈ M, R ⊆ S, s), where (M,R) �=
T , B responds with a ring signature σ = EvaK(M ||R).

* For each query to OCor on input s ∈ [n(λ)], where V Ks �∈ R∗, B
returns xs to A and adds V Ks into the set C.

Ring Signatures of Constant Size Without Random Oracles 101

• Output: At the end the adversary outputs a forgery σ∗ with respect to
M∗ and R∗, it succeeds if Vrfy(M∗, σ∗, R∗) = 1.

– Hyb1 : This hybrid is identical to Hyb0 with the exception that for the chal-
lenge ring R∗ = (V K∗

1 , . . . , V K∗
n), B randomly chooses V K∗

i ∈ {0, 1}2λ, for
i ∈ [n], as their verification keys.

– Hyb2 : This hybrid is identical to Hyb1 with the exception that we let w∗ =
EvaK(T) and replace the signing program iO(PS) by an obfuscation of the
following circuit P∗

S . The sizes of the circuits PS and P∗
S are identical by

appropriate padding.

P∗
S

• Constants: PRF key K(T), set T = (M∗, V K∗
1 , . . . , V K∗

n), w∗.
• Input: Message M , secret key SKs, set R = (V K1, . . . , V Kn), s.

1. Test if G(xs) = V Ks. Output ⊥ if false.
2. If (M,R) = T , output w∗. Otherwise, output EvaK(m||R).

– Hyb3 : This hybrid is identical to Hyb2 with the exception that we let z∗ =
f(EvaK(T)) and replace the verification program iO(PV) by an obfuscation
of the following circuit P∗

V . The sizes of the circuits PV and P∗
V are identical

by appropriate padding.

P∗
V

• Constants: PRF key K(T), set T = (m∗, V K∗
1 , . . . , V K∗

n), z∗.
• Input: Message M , signature σ, set R = (V K1, . . . , V Kn).

1. If (M,R) = T , test if f(σ) = z∗. Output 1 if true, 0 if false.
2. Else, test if f(σ) = f(EvaK(m||R)). Output 1 if true, 0 if false.

– Hyb4 : This hybrid is identical to Hyb3 with the exception that z∗ = f(t) for
t chosen uniformly at random from {0, 1}λ in the verification circuit P∗

V .

First, we argue that the advantage of any PPT adversary in forging a signa-
ture must be negligibly close in hybrids Hyb0 and Hyb1 since the security of the
PRG. We may note that with overwhelming probability, none of values V K∗

i , for
i ∈ [n], have a preimage under PRG. Therefore, the adversary (with overwhelm-
ing probability) cannot run the signing program iO(P∗

S) on input the target ring
R∗ (since there is no valid x∗

i such that G(x∗
i) = V K∗

i) even if it obtains all the
other secret keys.

Then, we argue that the advantage of any PPT adversary in forging a sig-
nature must be negligibly close in hybrids Hyb1 and Hyb2. We first observe that
the input/output behaviors of the circuits PS and P∗

S are identical. The only
difference is that the circuit PS computes EvaK(T) by itself, whereas the circuit
P∗

S is given EvaK(T) as the constant w∗. Therefore, if there is a difference in

102 F. Tang and H. Li

advantage we can create an attacker (Samp,D) to break the indistinguishability
security of the iO. Samp submits two circuits C0 = PS and C1 = P∗

S to the
iO challenger. Then Samp will receive an obfuscated program of C0 or C1, it
builds the public parameters which contain the obfuscated program. If the iO
challenger chooses C0, then we are in Hyb1. If iO challenger chooses C1, then
we are in Hyb2. Finally, D outputs 1 if the adversary successfully forges. In con-
clusion, any adversary with different advantages in Hyb1 and Hyb2 will lead to
(Samp,D) as an attacker on the indistinguishability security of the iO. Similarly,
the advantage of any PPT adversary in forging a signature must be negligibly
close in hybrids Hyb2 and Hyb3.

Next, we argue that the advantage of any PPT adversary in forging a sig-
nature must be negligibly close in hybrids Hyb3 and Hyb4. Otherwise, we can
build an attacker (A1,A2) to break the security of the constrained PRF at the
punctured point T . A1 first obtains T = (M∗, R∗) from the adversary. It submits
this set to the constrained PRF challenger and receives a constrained PRF key
K(T) and challenge value z∗. If z∗ = f(EvaK(T)), then we are in Hyb3. If it
was chosen uniformly at random, then we are in Hyb4. A2 will output 1 if the
adversary successfully forges. In conclusion, any PPT adversary with different
advantages in hybrids Hyb3 and Hyb4 will leads to (A1,A2) as an attacker to
break the pseudorandomness of the constrained PRF.

Finally, we show that in the last hybrid Hyb4, any PPT adversary cannot
win the selective game with non-negligible advantage. If there is an adversary in
Hyb4, we can use it to break the security of the OWF. We build a reduction B
that first receives set T = (M∗, R∗) from the adversary and challenge instance
y from the OWF challenger, it then sets z∗ = y. If an adversary successfully
forges on M∗ and R∗, then by assumption he has computed a signature σ∗ such
that f(σ∗) = z∗ = y. B outputs σ∗ as the solution of the given OWF challenge
instance. Therefore, if the OWF is secure, no PPT adversary can forge in Hyb4
with non-negligible advantage. Since the advantage of any PPT adversary are
negligibly close in each successive hybrid, this proves the selective unforgeability
for the ring signature scheme. �

Corollary 1. If the OWF f(·) is injective, then the above ring signature scheme
is strongly unforgeable.

PerfectAnonymity. For any (M∗, R∗, i0, i1), where M∗ ∈ M, R∗ ⊆ {V Ki}n(λ)
i=1 ,

and i0, i1 ∈ [n], which are chosen by an unbounded adversary A, both of the signa-
tures created by the member i0 and i1 are σ∗

i0
= EvaK(M∗||R∗) = σ∗

i1
. Therefore,

any member of a ring can get a same signature on a given message and a ring. The
perfect anonymity follows easily from this observation. �

5 Identity-Based Ring Signature Scheme

In an identity-based system [28], the public key of each user is his recognizable
identity, e.g. email address, phone number and so on. This property avoids the

Ring Signatures of Constant Size Without Random Oracles 103

necessity of certificates. In the mean time, users’ secret keys are computed by a
key generator center (KGC) who is in possession of a master secret key MSK.
Please refer to [13] for definition and security models of the identity-based ring
signature schemes.

5.1 Our Construction

It is straightforward to turn our ring signature scheme into an identity-based
ring signature scheme.5

Let EvaK : {0, 1}�(λ)+2·n·λ → {0, 1}λ and EvaK′ : {0, 1}2λ → {0, 1}λ be
two constrained PRFs. Let G : {0, 1}λ → {0, 1}2λ be a PRG. Let f(·) be a
OWF. The identity space is I = {0, 1}2λ. The message space is M = {0, 1}�(λ).
The signature space is S = {0, 1}λ. The construction of the identity-based ring
signature scheme is as follows:

– Setup(1λ): TA first chooses two random keys K and K ′ for the above con-
strained PRFs. Next, it creates two obfuscated programs of the signing circuit
PIS and verification circuit PIV , respectively. The public parameters are PP =
(iO(PIS),
iO(PIV)), and the master secret key is MSK = K ′ which will be given to
the KGC.

– KeyGen(MSK, id): The KGC computes SKid = EvaK′(id) as id’s secret key.
– Sign(M,SKids , R = (id1, . . . , idn), s): The holder (i.e., the real signer) of sign-

ing key SKids with s ∈ [n] runs the signing program iO(PIS) on inputs
(M,SKids ,
R, s).

– Vrfy(M,σ,R = (id1, . . . , idn)): The verifier runs the verifying program iO(PIV)
on inputs (M,σ,R).

PIS

– Constants: PRF keys K and K ′.
– Inputs: Message M , key SKids , set R = (id1, . . . , idn), index s.

1. Test if G(SKids) = G(EvaK′(ids)). Output EvaK(M ||R) if true, ⊥ if
false.

PIV

– Constants: PRF key K.
– Inputs: Message M , signature σ, set R = (id1, . . . , idn).

1. Test if f(σ) = f(EvaK(M ||R)). Output 1 if true, 0 if false.

5 The idea of our identity-based ring signature scheme is from Boneh and Zhandry’s
[9] identity-based non-interactive key exchange scheme.

104 F. Tang and H. Li

5.2 Security

Selective Unforgeability. We show that if there exists a PPT adversary A
that can break the selective unforgeability of the above identity-based ring sig-
nature scheme, then we can construct a challenger B to break the security of the
OWF. We describe the proof as a sequence of the following hybrid games:

– Hyb0 : This hybrid corresponds to the honest execution of the selective unforge-
ability game where the adversary initially submits his target (challenge) set
T = (M∗ ∈ {0, 1}�(λ), R∗ = (id∗

1, . . . , id
∗
n)), then it interacts with B:

• Setup: B randomly chooses two constrained PRF keys K and K ′, a PRG
G, and a OWF f . Then it creates the public parameters PP. The adversary
is given the public parameters PP.

• Queries: There are two kinds of queries that B must answer: signing oracle
OSig and extract oracle OExt.
* For each query to OSig on inputs (M ∈ M, R, s), where (M,R) �= T , B

responds with a ring signature σ = EvaK(M ||R).
* For each query to OExt on input id ∈ I, where id �∈ R∗, B returns

SKid = EvaK′(id) to A.
• Output: At the end the adversary outputs a forgery σ∗ with respect to

M∗ and R∗, it succeeds if Vrfy(M∗, σ∗, R∗) = 1.
– Hyb1 : This hybrid is identical to Hyb0 with the exception that we let w∗

i =
G(EvaK′(id∗

i)), for id∗
i ∈ R∗, and replace the signing program iO(PIS) by an

obfuscation of the following circuit P∗
IS . The sizes of the circuits PIS and P∗

IS

are identical by appropriate padding.

P∗
IS

• Constants: PRF keys K and K ′(R∗), set R∗, values w∗
i .

• Inputs: Message M , key SKids , set R = (id1, . . . , idn), index s.
1. If ids = id∗

i ∈ R∗, test if G(SKids) = w∗
i .

2. Otherwise, test if G(SKids) = G(EvaK′(R∗)(ids)).
3. Output EvaK(M ||R) if true, ⊥ if false.

– Hyb2 : This hybrid is identical to Hyb1 with the exception that the values
w∗

i = ti which are chosen uniformly at random from {0, 1}2λ.
– Hyb3 : This hybrid is identical to Hyb2 with the exception that we let w∗ =
EvaK(T) and replace the signing program iO(P∗

IS) by an obfuscation of the
following circuit P∗∗

IS . The sizes of the circuits P∗
IS and P∗∗

IS are identical by
appropriate padding.

Ring Signatures of Constant Size Without Random Oracles 105

P∗∗
IS

• Constants: PRF keys K(T) and K ′(R∗), sets T , values w∗ and w∗
i .

• Inputs: Message M , key SKids , set R = (id1, . . . , idn), index s.
1. If ids = id∗

i ∈ R∗, test if G(SKids) = w∗
i .

2. Otherwise, test if G(SKids) = G(EvaK′(R∗)(ids)).
3. If (M,R) = T then output w∗; else output EvaK(T)(M ||R) if

true, ⊥ if false.

– Hyb4 : This hybrid is identical to Hyb3 with the exception that we let z∗ =
f(EvaK(T)) and replace the verification program iO(PIV) by an obfuscation
of the following circuit P∗

IV . The sizes of the circuits PIV and P∗
IV are identical

by appropriate padding.

P∗
IV

• Constants: PRF key K(T), set T , value z∗.
• Inputs: Message M , signature σ, set R = (id1, . . . , idn).

1. If (M,R) = T , test if f(σ) = z∗. Output 1 if true, 0 if false.
2. Else, test if f(σ) = f(EvaK(m||R)). Output 1 if true, 0 if false.

– Hyb5 : This hybrid is identical to Hyb4 with the exception that z∗ = f(t) for
t chosen uniformly at random from {0, 1}λ in the verification circuit P∗

IV .

First, we argue that the advantage of any PPT adversary in forging a signa-
ture must be negligibly close in hybrids Hyb0 and Hyb1. We first observe that
the input/output behaviors of the circuits PIS and P∗

IS are identical. The only
difference is that the circuit PIS computes EvaK′(id∗

i), for i ∈ [n], by itself,
whereas the circuit P∗

IS is given EvaK′(id∗
i) as some constants w∗

i . Therefore, if
there is a difference in advantage we can create an attacker (Samp,D) to break
the indistinguishability security of the iO. Samp submits two circuits C0 = PIS

and C1 = P∗
IS to the iO challenger. Then Samp will receive an obfuscated pro-

gram of C0 or C1, it builds the public parameters which contains the obfuscated
program. If the iO challenger chooses C0, then we are in Hyb0. If iO challenger
chooses C1, then we are in Hyb1. Finally, D outputs 1 if the adversary success-
fully forges. In conclusion, any adversary with different advantages in Hyb0 and
Hyb1 will lead to (Samp,D) as an attacker on the indistinguishability security
of the iO. Similarly, the advantage of any PPT adversary in forging a signature
must be negligibly close in hybrids Hyb2 and Hyb3; and the advantage of any
PPT adversary in forging a signature must be negligibly close in hybrids Hyb3
and Hyb4.

Then, we argue that the advantage of any PPT adversary in forging a sig-
nature must be negligibly close in hybrids Hyb1 and Hyb2. Otherwise, we can
build an attacker (A1,A2) to break the security of the constrained PRF at the

106 F. Tang and H. Li

punctured set R∗. A1 first obtains T = (M∗, R∗) from the adversary. It submits
the set R∗ to the constrained PRF challenger and receives a constrained PRF
key K ′(R∗) and challenge value w∗

i for i ∈ [n]. If w∗
i = EvaK′(id∗

i) for all i ∈ [n],
then we are in Hyb1. If they were chosen uniformly at random, then we are in
Hyb2. A2 will output 1 if the adversary successfully forges. In conclusion, any
PPT adversary with different advantages in hybrids Hyb1 and Hyb2 will leads
to (A1,A2) as an attacker to break the pseudorandomness of the constrained
PRF. We may note that, in Hyb2, with overwhelming probability, none of val-
ues id∗

i , for i ∈ [n], have a preimage under PRG. Therefore, the adversary (with
overwhelming probability) cannot run the signing program iO(P∗

IS) on input the
target ring R∗ (since there is no valid SKid∗

i
such that G(SKid∗

i
) = w∗

i even if it
obtains all the other secret keys from the extract oracle. Similarly, the advantage
of any PPT adversary in forging a signature must be negligibly close in hybrids
Hyb4 and Hyb5.

Finally, we show that in the last hybrid Hyb5, any PPT adversary cannot win
the selective game with non-negligible advantage. If there is an adversary in Hyb5,
we can use it to break the security of the OWF. We build a reduction B that first
receives set T = (M∗, R∗) from the adversary and challenge instance y from the
OWF challenger, it then sets z∗ = y. If an adversary successfully forges on M∗

and R∗, then by assumption he has computed a signature σ∗ such that f(σ∗) =
z∗ = y.
B outputs σ∗ as the solution of the given OWF challenge instance. Therefore,
if the OWF is secure, no PPT adversary can forge in Hyb5 with non-negligible
advantage. Since the advantage of any PPT adversary are negligibly close in each
successive hybrid, this proves the selective unforgeability for the ring signature
scheme. �

Perfect Anonymity. For any challenge tuple (M∗, R∗, i0, i1), where M∗ ∈ M,
R∗ = (id∗

1, . . . , id
∗
n), and i0, i1 ∈ [n], which is chosen by an (unbounded) adversary

A, bothof the signatures createdbythemember i0 and i1 areσ∗
i0

= EvaK(M∗||R∗)=
σ∗

i1
. Therefore, any member of a ring can get a same signature on a given message

and ring. The perfect anonymity follows easily from this observation. �

Acknowledgement. The authors would like to thank anonymous reviewers for their
helpful comments and suggestions.

References

1. Au, M.H., Liu, J.K., Susilo, W., Zhou, J.: Realizing fully secure unrestricted ID-
based ring signature in the standard model from HIBE. IEEE Trans. Inf. Forensics
Secur. 8(12), 1909–1922 (2013)

2. Abe, M., Ohkubo, M., Suzuki, K.: 1-out-of-n signatures from a variety of keys.
In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 415–432. Springer,
Heidelberg (2002)

3. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom func-
tions. Cryptology ePrint Archive, Report 2013/631 (2013)

Ring Signatures of Constant Size Without Random Oracles 107

4. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (Im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001)

5. Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting obfuscation
against algebraic attacks. Cryptology ePrint Archive, Report 2013/631 (2013)

6. Bender, A., Katz, J., Morselli, R.: Ring signatures: stronger definitions, and con-
structions without random oracles. In: Halevi, S., Rabin, T. (eds.) TCC 2006.
LNCS, vol. 3876, pp. 60–79. Springer, Heidelberg (2006)

7. Brakerski, Z., Rothblum, G.N.: Virtual black-box bofuscation for all circuits via
generic graded encoding. Cryptology ePrint Archive, Report 2013/563 (2013)

8. Boneh, D., Waters, B.: Constrained pseudorandom functions and their applica-
tions. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270,
pp. 280–300. Springer, Heidelberg (2013)

9. Boneh, D., Zhandry, M.: Multiparty key exchange, efficient traitor tracing, and
more from indistinguishability obfuscation. Cryptology ePrint Archive, Report
2013/642 (2013). http://eprint.iacr.org

10. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited.
J. ACM (JACM) 51(4), 557–594 (2004)

11. Chandran, N., Groth, J., Sahai, A.: Ring signatures of sub-linear size without
random oracles. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP
2007. LNCS, vol. 4596, pp. 423–434. Springer, Heidelberg (2007)

12. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT
1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)

13. Chow, S.S.M., Yiu, S.-M., Hui, L.C.K.: Efficient identity based ring signature. In:
Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp.
499–512. Springer, Heidelberg (2005)

14. Chow, S.S.M., Wei, V.K., Liu, J.K., Yuen, T.H.: Ring signatures without random
oracles. Proceedings of the 2006 ACM Symposium on Information, Computer and
Communications Security, pp. 297–302. ACM (2006)

15. Dodis, Y., Kiayias, A., Nicolosi, A., Shoup, V.: Anonymous identification in Ad
Hoc groups. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 609–626. Springer, Heidelberg (2004)

16. Dodis, Y., Oliveira, R., Pietrzak, K.: On the generic insecurity of the full domain
hash. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 449–466. Springer,
Heidelberg (2005)

17. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: FOCS
2013, pp. 40–49. IEEE (2013)

18. Goldwasser, S., Goyal, V., Jain, A., Sahai, A.: Multi-input functional encryption.
Cryptology ePrint Archive, Report 2013/727 (2013). http://eprint.iacr.org

19. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.
ACM (JACM) 33(4), 792–807 (1986)

20. Herranz, J.: Some digital signature schemes with collective signers. Ph.D. the-
sis, Universitat Politècnica de Catalunya, Barcelona, April 2005. http://www.lix.
polytechnique.fr/herranz/thesis.htm

21. H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator
from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)

22. Herranz, J., Sáez, G.: New identity-based ring signature schemes. In: López, J.,
Qing, S., Okamoto, E. (eds.) ICICS 2004. LNCS, vol. 3269, pp. 27–39. Springer,
Heidelberg (2004)

http://eprint.iacr.org
http://eprint.iacr.org
http://www.lix.polytechnique.fr/herranz/thesis.htm
http://www.lix.polytechnique.fr/herranz/thesis.htm

108 F. Tang and H. Li

23. Hohenberger, S., Sahai, A., Waters, B.: Replacing a random oracle: full domain
hash from indistinguishability obfuscation. In: Nguyen, P.Q., Oswald, E. (eds.)
EUROCRYPT 2014. LNCS, vol. 8441, pp. 201–220. Springer, Heidelberg (2014)

24. Jakobsson, M., Sako, K., Impagliazzo, R.: Designated verifier proofs and their
applications. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp.
143–154. Springer, Heidelberg (1996)

25. Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable
pseudorandom functions and applications. In: Proceedings ACM CCS (2013)

26. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001)

27. Ramchen, K., Waters, B.: Fully secure and fast signing from obfuscation. Cryptol-
ogy ePrint Archive, Report 2014/523 (2014). http://eprint.iacr.org

28. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985)

29. Schäge, S., Schwenk, J.: A CDH-based ring signature scheme with short signatures
and public keys. In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052, pp. 129–142. Springer,
Heidelberg (2010)

30. Sahai, S., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. IACR Cryptology ePrint Archive, 2013, p. 454 (2013)

31. Shacham, H., Waters, B.: Efficient ring signatures without random oracles. In:
Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 166–180. Springer,
Heidelberg (2007)

32. Yuen, T.H., Liu, J.K., Au, M.H., Susilo, W., Zhou, J.: Efficient linkable and/or
threshold ring signature without random oracles. Comput. J. 56(4), 407–421 (2013)

33. Zhang, F., Kim, K.: ID-based blind signature and ring signature from pairings.
In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 533–547. Springer,
Heidelberg (2002)

http://eprint.iacr.org

Universally Composable Identity Based
Adaptive Oblivious Transfer with Access Control

Vandana Guleria(B) and Ratna Dutta

Department of Mathematics, Indian Institute of Technology Kharagpur,
Kharagpur 721302, India

vandana.math@gmail.com, ratna@maths.iitkgp.ernet.in

Abstract. We propose the first identity based adaptive oblivious trans-
fer protocol with access control (IBAOT-AC) secure in universal compos-
able (UC) framework. The IBAOT-AC is run between multiple senders,
multiple receivers and an issuer. Each sender incorporates its identity and
access policies associated with the messages in the generation of cipher-
text database. Receivers whose attribute sets satisfy the access policy
associated with the message and who interact with a sender generating
the corresponding ciphertext can only recover the message. The scheme
supports access policy in disjunctive form, thereby, realizes disjunction
of attributes. The proposed scheme is UC secure in the presence of mali-
cious adversary under q-Strong Diffie-Hellman (SDH), Decision Bilinear
Diffie-Hellman (DBDH), q-Decision Bilinear Diffie-Hellman Exponent
(DBDHE) and Decision Linear (DLIN) assumptions. The scheme out-
performs the existing similar schemes in terms of both communication
and computation.

Keywords: Oblivious transfer · Identity based encryption · Universally
composable security · Access policy · Non-interactive zero-knowledge
proofs · Attribute based encryption

1 Introduction

Adaptive oblivious transfer (AOT) is a two-party protocol between a sender and
a receiver and is an extensively used primitive in cryptography. It has been
used in many cryptographic applications including fair exchange in e-commerce
and secure multi-party computation. It is useful in oblivious search of patent
database, medical database etc., where database size is very large. Suppose the
sender has a database of N messages and does not want to reveal the entire
database to the receiver. In AOT, each message is encrypted and the generated
ciphertext database is made public by the sender in initialization phase, while
enabling the receiver to learn only k out of N messages of its choice sequentially
in transfer phase. The (i-1)-th message may be obtained before deciding on the
i-th index by the receiver.

The first AOT protocol was proposed by Naor and Pinkas [15] followed by
several AOT constructions [6,7] secure in full-simulation security framework and
c© Springer International Publishing Switzerland 2015
D. Lin et al. (Eds.): Inscrypt 2014, LNCS 8957, pp. 109–129, 2015.
DOI: 10.1007/978-3-319-16745-9 7

110 V. Guleria and R. Dutta

[11,13,16] secure in universal composable (UC) framework. The UC secure pro-
tocol guarantees security even when the protocol is composed with an arbitrary
set of protocols. The UC secure AOT protocols [11,13,16] do not impose any
restrictions on who can access which message. Coull et al. [9] proposed the first
AOT with access control. Since then, there is a vast literature on oblivious trans-
fer protocols with access control [6] secure in full-simulation security framework
and become insecure when composed with other protocols. To overcome this,
Abe et al. [1] framed the first UC secure AOT with access control.

Our Contribution. We design the first identity based adaptive oblivious trans-
fer with access control (IBAOT-AC) secure in UC framework. Our construction
employs Water’s identity based encryption (IBE) [17], ciphertext policy attribute
based encryption (CP-ABE) [18] and Boneh-Boyen (BB) [4] signature. Besides,
Groth-Sahai [12] proofs are used for non-interactive verification of pairing prod-
uct equations. The CP-ABE [18] enables those receivers to decrypt ciphertexts
whose attribute set satisfies the access policies associated with the ciphertexts.
The IBE [17] allows the decryption of a ciphertext only if the receiver, whose
attribute set satisfy the access policy associated with the ciphertext, interacts
in transfer phase with the sender, who has generated the ciphertext in initial-
ization phase. The malicious behavior of the sender and receiver is controlled
by providing non-interactive zero-knowledge proofs and using BB [4] signature.
The sender can verify whether the receiver has randomized the same ciphertext
in transfer phase which was previously published by the sender in initialization
phase. If the verification succeeds, then the sender is convinced that the receiver
follows the protocol specifications. The sender also gives non-interactive zero
knowledge (NIZK) proof [12] to convince the receiver about its honest behavior
of using the same secrets in both initialization and transfer phase.

The security of the proposed protocol is analyzed in UC framework [8] that
does not allow the simulator to rewind the adversary’s state to previous computa-
tion state to extract the hidden secret in zero-knowledge proofs. Our IBAOT-AC
is secure under Decision Bilinear Diffie-Hellman (DBDH) [17], q-Decision Bilin-
ear Diffie-Hellman Exponent (DBDHE) [18], q-Strong Diffie-Hellman (SDH) [4]
and Decision Linear (DLIN) [12] assumptions. The sender’s security and the
receiver’s security are proved separately. The receiver’s security in IBAOT-AC
ensures that the sender does not learn which message is being queried and who
queries the message. The sender’s security is achieved by proving that a receiver–
(i) engages in transfer phase only if its attribute set satisfies the access policy
associated with a message, (ii) learns only one message in each transfer phase
and remains oblivious to other messages.

The proposed IBAOT-AC outperforms significantly in terms of both compu-
tation and communication in contrast to [1,11,13,16], which are, to the best
of our knowledge, the only existing UC secure AOT protocols. Green et al.
[10] proposed AOT treating the index of each message as an identity. Their
scheme is not IBAOT as they have used the identity concept in blinding the
index of ciphertext that the receiver wants to decrypt in each transfer phase.

Universally Composable Identity Based Adaptive Oblivious Transfer 111

They further developed a generic solution for the construction of AOT from
unique blind IBE. Later, Zhang et al. [19] designed an IBAOT together with a
generic solution for the construction of IBAOT from identity based unique blind
signature. The security of [10] and [19] are in the random oracle model and do not
use any access control over the messages. Besides, the construction of [19] uses
bilinear groups of composite order. On the contrary, our IBAOT-AC uses bilinear
groups of prime order and enables the sender to put some restrictions on who
can recover the messages. More interestingly, our IBAOT-AC takes into account
the disjunction of attributes whereas Abe et al.’s [1] covers only conjunction of
attributes.

2 Preliminaries

Throughout, we use ρ as the security parameter, x
$←− A means sample an

element x uniformly at random from the set A, y ← B indicates y is the output
of algorithm B, X

c≈ Y means X is computationally indistinguishable from Y
and [�] denotes {1, 2, . . . , �} . A function f(n) is negligible if f = o(n−c) for every
fixed positive constant c.

2.1 Bilinear Pairing and Mathematical Assumptions

Definition 1. (Bilinear Pairing.) Let G1, G2 and GT be three multiplicative
cyclic groups of prime order p and g1 and g2 be generators of groups G1 and
G2 respectively. Then the map e : G1 × G2 → GT is bilinear if it satisfies the
following conditions: (i) Bilinear – e(xa, yb) = e(x, y)ab ∀ x ∈ G1, y ∈ G2, a, b ∈
Zp. (ii) Non-Degenerate – e(x, y) generates GT , ∀ x ∈ G1, y ∈ G2, x �= 1, y �= 1.
(iii) Computable – the pairing e(x, y) is computable efficiently ∀ x ∈ G1, y ∈ G2.

If G1 = G2, then e is symmetric bilinear pairing. Otherwise, e is asymmet-
ric bilinear pairing. Throughout the paper, we use symmetric bilinear pairing.

BilinearSetup: The BilinearSetup is an algorithm which on input security para-
meter ρ generates params = (p, G, GT , e, g), where e : G × G → GT is a
symmetric bilinear pairing, g is a generator of group G and p, the order of the
groups G and GT , is prime, i.e. params ← BilinearSetup(1ρ).

Definition 2. (q-SDH [4]) The q-Strong Diffie-Hellman (SDH) assumption in
G states that for all probabilistic polynomial time (PPT) algorithm A, with
running time in ρ, the advantage Advq-SDH

G
(A) = Pr[A(g, gx, gx2

, . . . , gxq

) =

(c, g
1

x+c)] is negligible in ρ, where g
$←− G, x

$←− Zp, c ∈ Zp.

Definition 3. (DBDH [17]) The Decision Bilinear Diffie-Hellman (DBDH) as-
sumption in (G, GT) states that for all PPT algorithm A, with running time in ρ,
the advantage AdvDBDH

G,GT
(A) = Pr[A(g, ga, gb, gc, e(g, g)abc)] − Pr[A(g, ga, gb, gc,

Z)] is negligible in ρ, where g
$←− G, Z

$←− GT , a, b, c ∈ Zp.

112 V. Guleria and R. Dutta

Definition 4. (q-DBDHE [17]) The q-Decision Bilinear Diffie-Hellman Expo-
nent (DBDHE) assumption in (G, GT) states that for all PPT algorithm A, with
running time in ρ, the advantage Advq-DBDHE

G,GT
(A) = Pr[A(Y, e(g, g)αq+1s)] −

Pr[A(Y,Z)] is negligible in ρ, Y = (g, gs, gα, g(α
2), . . . , g(α

q), g(α
q+2), . . . , g(α

2q)),

g
$←− G, Z

$←− GT , s, α
$←− Zp.

Definition 5. (DLIN [5]) The Decision Linear (DLIN) assumption in G states
that for all PPT algorithm A, with running time in ρ, the advantage AdvDLIN

G (A)
= Pr[A(g, ga, gb, gra, gsb, gr+s)] − Pr[A(g, ga, gb, gra, gsb, t)] is negligible in ρ,

where g
$←− G, t

$←− G, a, b, r, s ∈ Zp.

2.2 Linear Secret Sharing Schemes (LSSS) [2]

Definition 6. (Access policy) Let Ω = {a1, a2, . . . , am} be the universe of attri-
butes and P(Ω) be the collection of all subsets of Ω. An access policy (structure)
is a collection A of non-empty subsets of Ω, i.e., A ⊆ P(Ω)\∅. The sets in A

are called the authorized sets, and the sets not in A are called the unauthorized
sets.

A secret sharing scheme ΠA for the access policy A over Ω is called linear (in Zp)
if it consists of two PPT algorithms– Distribute(M, η, s) and Reconstruct(M, η, w)
which are described below, where M is a matrix with � rows and t columns, called
the share generating matrix for ΠA, η : [�] → IΩ is the function which maps each
row of M to an attribute index in A, s ∈ Zp is the secret to be shared, w ∈ A is
the set of attributes and IΩ is the index set of Ω.

– Distribute(M, η, s): This algorithm upon input (M, η, s), takes r2, r3, . . . , rt
$←−

Zp, sets v = (s, r2, r3, . . . , rt) ∈ Z
t
p and outputs a set {Mi · v | i ∈ [�]} of �

shares, where Mi ∈ Z
t
p is the i-th row of M. The share λi = Mi · v belongs to

the attribute aη(i).
– Reconstruct(M, η, w): This algorithm takes input (M, η, w). Let I = {i ∈

[�] | aη(i) ∈ w}.
1. Construct each row of matrix F by picking i-th row of M, ∀aη(i) ∈ w.
2. Find the solution vector −→x = {xi ∈ Zp | i ∈ I} such that

∑
aη(i)∈w λixi =

s holds by solving system of equation F
T −→x = e1, where F

T is the transpose
of the matrix F of size ν × t, ν is the length of solution vector −→x which is
equal to the number of attributes in w, e1 is a vector of length t with 1 at
first position and 0 elsewhere and {λi ∈ Zp | i ∈ I} is a valid set of shares
of the secret s generated by Distribute(M, η, s) algorithm. The algorithm
outputs −→x .

Theorem 1. ([14]) Let (M, η) be a LSSS access structure realizing an access
policy A over universe of attributes Ω, where M is the � × t share generating
matrix. Let w ⊂ Ω. If w /∈ A, then there exists a PPT algorithm that outputs a
vector −→x = (−1, x2, x3, . . . , xt) ∈ Z

t
p such that Mi · −→x = 0 for each row i of M

for which η(i) ∈ IΩ.

Universally Composable Identity Based Adaptive Oblivious Transfer 113

Converting Access Policy (AP) to LSSS Matrices: In our construction,
we consider the access policy as a binary access tree, where interior nodes are
AND (∧) and OR(∨) gates and the leaf nodes correspond to attributes. Label
the root node of the tree with the vector (1), a vector of length 1. Label each
internal node with a vector determined by the vector assigned to its parent node
recursively as discussed below. Maintain a counter c with initial value 1.

1. If the parent node is ∨ with a vector v, then label its children by v keeping c
same.

2. If the parent node is ∧ with a vector v, pad v if necessary with 0’s at the
end to make it of length c. Label one of its children with the vector (v, 1)
and other with the vector (0, 0, . . . , 0,−1), where (0, 0, . . . , 0) is zero-vector of
length c. Note that (v, 1) and (0, 0, . . . , 0,−1) sum to (v, 0). Now increment
the counter c by 1.

After labeling the entire tree, the vectors labeling the leaf nodes form the rows
of LSSS matrix. If the vectors are of different length, pad the shorter ones with
0’s at the end to make all the vectors of same length.

2.3 Non-Interactive Verification of Pairing Product Equation [12]

The Groth-Sahai proofs are two party protocols between a prover and a verifier
for non-interactive verification of a pairing product equation

Q∏

q=1

e(aq

n∏

i=1

x
αq,i

i , bq

n∏

i=1

y
βq,i

i) = tT , (1)

where aq=1,2,...,Q ∈ G, bq=1,2,...,Q ∈ G, {αq,i, βq,i}q=1,2,...,Q,i=1,2,...,n ∈ Zp and
tT ∈ GT are the coefficients of the pairing product Eq. 1 which are given to
the verifier. The prover knows secret values xi=1,2,...,n, yi=1,2,...,n ∈ G also called
witnesses that satisfy the Eq. 1. The prover wants to convince the verifier in a
non-interactive way that he knows xi and yi without revealing anything about
xi and yi to the verifier. Let W = {xi=1,2,...,n, yi=1,2,...,n} be the set of all secret
values in the pairing product Eq. 1. The set W is referred as witnesses of the
pairing product equation. The product of two vectors is defined component wise,
i.e., (a1, a2, a3)(b1, b2, b3) = (a1b1, a2b2, a3b3) for (a1, a2, a3), (b1, b2, b3) ∈ G

3 for
a finite order group G.

For non-interactive verification of the pairing product Eq. 1, a trusted party
upon input a security parameter ρ generates common reference string GS =
(params, u1, u2, u3, μ, μT), where params = (p, G, GT , e, g) ← BilinearSetup(1ρ),
u1 = (ga, 1, g) ∈ G

3, u2 = (1, gb, g) ∈ G
3, u3 = uξ1

1 uξ2
2 = (gaξ1 , gbξ2 , gξ1+ξ2) ∈

G
3, ξ1, ξ2

$←− Zp, a, b
$←− Zp and μ : G → G

3, μT : GT → G
9
T are two efficiently

computable embeddings such that

μ(g) = (1, 1, g) and μT (tT) =

⎛

⎝
1 1 1
1 1 1
1 1 tT

⎞

⎠ ∀ g ∈ G, tT ∈ GT .

114 V. Guleria and R. Dutta

Note that μT (tT) is an element of G
9
T . For convenience, it has been written in

matrix form. The product of two elements of G
9
T is also component wise. The

trusted party publishes GS to both the parties. The prover generates commitment
to all the witnesses xi=1,2,...,n and yi=1,2,...,n using GS. To commit xi ∈ G and

yi ∈ G, the prover picks r1i, r2i, r3i
$←− Zp and s1i, s2i, s3i

$←− Zp, sets

ci = Com(xi) = μ(xi)ur1i
1 ur2i

2 ur3i
3 , di = Com(yi) = μ(yi)us1i

1 us2i
2 us3i

3 .

The prover generates the proof components

Pj =

Q∏

q=1

(

μ(aq)
n∏

i=1

μ(xi)
αq,i

)∑n
i=1 βq,isji (

d̂q

)∑n
i=1 αq,irji

, i = 1, 2, . . . , n, j = 1, 2, 3,

using random values rji, sji, which were used for generating commitments to
xi=1,2,...,n, yi=1,2,...,n, and gives proof π = (c1, c2, . . . , cn, d1, d2, . . . , dn, P1, P2, P3)
to the verifier, where d̂q = μ(bq)

∏n
i=1 d

βq,i

i . The verifier computes

ĉq = μ(aq)
n∏

i=1

c
αq,i

i , d̂q = μ(bq)
n∏

i=1

d
βq,i

i ,

using ci, di, coefficients αq,i, βq,i and outputs VALID if the following equation
holds

Q∏

q=1

F (ĉq, d̂q) = μT (tT)
3∏

j=1

F (uj , Pj), (2)

where F : G
3 × G

3 → G
9
T is defined as

F ((x1, x2, x3), (y1, y2, y3)) =

⎛

⎝
e(x1, y1) e(x1, y2) e(x1, y3)
e(x2, y1) e(x2, y2) e(x2, y3)
e(x3, y1) e(x3, y2) e(x3, y3)

⎞

⎠ .

Note that the function F is also bilinear and F ((x1, x2, x3), (y1, y2, y3)) is an
element of G

9
T . The product of two elements of G

9
T is component wise. For

convenience, it has been written in matrix form.
The Eq. 2 holds if and only if Eq. 1 holds. The Eq. 1 is non-linear. If in Eq. 1

only yi=1,2,...,n are secrets, then it is a linear equation. For a linear equation, the
verifier has to verify the following equation

Q∏

q=1

F

(
μ(aq)

n∏

i=1

μ(xi)αq,i , d̂q

)
= μT (tT)

3∏

j=1

F (uj , Pj), (3)

where Pj =
Q∏

q=1

(
μ(aq)

n∏

i=1

μ(xi)αq,i

)∑n
i=1 βq,isji

, j = 1, 2, 3. (4)

Universally Composable Identity Based Adaptive Oblivious Transfer 115

Note that there are two types of settings in Groth-Sahai proofs - perfectly
sound setting and witness indistinguishability setting. The common reference
string GS = (u1, u2, u3) discussed above is in perfectly sound setting, where
u1 = (ga, 1, g), u2 = (1, gb, g), u3 = (gaξ1 , gbξ2 , gξ1+ξ2). One who knows the
extractable trapdoor text = (a, b, ξ1, ξ2), can extract the secret values from their
commitments. In witness indistinguishability setting, GS′ = (u1, u2, u3), where
u1 = (ga, 1, g), u2 = (1, gb, g), u3 = (gaξ1 , gbξ2 , gξ1+ξ2+1). One who knows the
simulation trapdoor tsim = (a, b, ξ1, ξ2), may open the commitment differently in
a pairing product equation as discussed with an example given below.

Example 1. Let Com(x) = μ(x)uθ1
1 uθ2

2 uθ3
3 in witness indistinguishability set-

ting, where θ1, θ2, θ3
$←− Zp. Opening values to Com(x) are (D1 = gθ1 ,D2 =

gθ2 ,D3 = gθ3). The simulator knowing witness x opens Com(x) to any value
x′ using tsim = (a, b, ξ1, ξ2) and D1,D2,D3 as follows. The simulator sets D′

1 =
D1(x′

x)ξ1 ,D′
2 = D2(x′

x)ξ2 , D′
3 = D3

x
x′) and opens the Com(x) to x′ by computing

xgθ1+θ2+θ3(ξ1+ξ2+1)

D′
1D′

2(D
′
3)

ξ1+ξ2+1 .

In GS, ga, gb, g, gaξ1 , gbξ2 , gξ1+ξ2 forms a DLIN tuple, whereas in GS′, ga, gb, g,
gaξ1 , gbξ2 , gξ1+ξ2+1 is not a DLIN tuple. The commitments in both the setting
are computationally indistinguishable by the following theorem.

Theorem 2. [12] The common reference string in perfectly sound setting is
computationally indistinguishable from the common reference string in witness
indistinguishability setting under DLIN assumption.

Definition 7. (NIWI) The non-interactive witness-indistinguishable (NIWI)
proof states that for all PPT algorithm A, with running time in ρ, the advantage

AdvNIWI
G,GT

(A) = Pr [A(GS,S,W0) = π] − Pr [A(GS,S,W1) = π]

is negligible in ρ under DLIN assumption, where GS is the common reference
string in perfectly sound setting, S is a pairing product equation, W0,W1 are
two distinct set of witnesses satisfying S and π is the proof for S.

Definition 8. (NIZK) The non-interactive zero-knowledge (NIZK) proof states
that for all PPT algorithm A, with running time in ρ, the advantage

AdvNIZKG,GT
(A) = Pr[A(GS′,S,W) = π0] − Pr[A(GS′,S, tsim) = π1]

is negligible in ρ under DLIN assumption, where GS′ is the common reference
string in witness indistinguishability setting, S is a pairing product equation, W
is a set of witnesses satisfying S, π0 is the proof for S and π1 is the simulated
proof for S.

The notations NIWI
{

({xi, yi}1≤i≤n)|∏Q
q=1 e(aq

∏n
i=1 x

αq,i

i , bq

∏n
i=1 y

βq,i

i) = tT

}

and NIZK
{

({xi, yi}1≤i≤n)|∏Q
q=1 e(aq

∏n
i=1 x

αq,i

i , bq

∏n
i=1 y

βq,i

i) = tT

}
, for NIWI

116 V. Guleria and R. Dutta

and NIZK proof are followed respectively in our construction. The convention is
that the quantities in the parenthesis denote elements the knowledge of which
are being proved to the verifier by the prover while all other parameters are
known to the verifier. We have the following theorem.

Theorem 3. [12] The Groth-Sahai proofs are composable NIWI and NIZK for
satisfiability of a set of pairing product equation over a bilinear group under
DLIN assumption.

Remark 1. (Randomizing Groth-Sahai Proofs) Belenkiy et al. [3] proved that the
Groth-Sahai proofs can be randomized such that the same statement still hold.
For instance, consider a pairing equation e(g, h) = H, where h is secret. The
prover generates commitment to h such that F (μ(g),Com(h)) = μT (H)

∏3
i=1

F (ui, Pi) hold, where Com(h) = μ(h)ur1
1 ur2

2 ur3
3 , P1 = μ(g)r1 , P2 = μ(g)r2 , P3 =

μ(g)r3 , r1, r2, r3
$←− Zp. The proof π = (Com(h), P1, P2, P3). To randomize the

proof π, the verifier picks s1, s2, s3
$←− Zp, sets

π′ = (Com(h)us1
1 us2

2 us3
3 , P1μ(g)s1 , P2μ(g)s2 , P3μ(g)s3)

= (μ(h)ur1+s1
1 ur2+s2

2 ur3+s3
3 , μ(g)r1+s1 , μ(g)r2+s2 , μ(g)r3+s3),

such that e(g, h) = H still holds. Both the proofs π and π′ have the same
distribution and satisfy the equation e(g, h) = H.

2.4 Security Model of IBAOT-AC

UC Framework: The security of the proposed IBAOT-AC is analyzed in univer-
sal composable (UC) framework assuming static corruption. The UC framework
consists of a real world and an ideal world. In the real world, parties (multiple
senders, multiple receivers and an issuer) and a real world adversary A, who
has the ability of corrupting the parties, interact with each other according to
IBAOT-AC protocol Ψ . In the ideal world, there are dummy parties (multiple
senders, multiple receivers and an issuer), an ideal world adversary A′ and a
trusted party called ideal functionality FIBAOT−AC. The parties are dummy in
the sense that they submit their inputs to FIBAOT−AC and receive respective
outputs from FIBAOT−AC instead of performing any computation by themselves.
A protocol is said to be secure in UC framework if no interactive distinguisher,
called environment machine Z, can distinguish the execution of the protocol Ψ
in the real world from the execution of the protocol in the ideal world.

For the message in the ideal world, we follow the notation: 〈type : sid, payload〉,
where type denotes type of the message, sid is a session identity and payload is
an optional parameter. The sid is provided by Z. No two copies of FD

CRS can have
the same sid. Two parties are said to have the same sid if and only if they are
participants of the same instance of a protocol. The sid is used to distinguish
between different instances of the same protocol. We now describe ideal function-
ality FD

CRS for the generation of common reference string (CRS) parameterized
by some specific distribution D and ideal functionality FIBAOT−AC for IBAOT-AC
protocol following [8].

Universally Composable Identity Based Adaptive Oblivious Transfer 117

CRSSetup– Upon receiving a message 〈CRS : sid, P 〉, from a party P (either S,
R or issuer), FD

CRS first checks if there is a recorded value crs. If there is no

recorded value, FD
CRS generates crs

$←− D(1ρ) and records it. Finally, FD
CRS

sends 〈CRS : sid, crs〉 to the party P and A′, where sid is the session identity.

In the ideal world, parties just forward their inputs to the FIBAOT−AC and get
back their respective outputs.The functionality FIBAOT−AC is as follows.

ISetup– The issuer upon receiving the message 〈isetup : sid〉 from Z, passes it
to FIBAOT−AC. The FIBAOT−AC checks that it has not seen the message before
and then forwards it to A′. If seen, FIBAOT−AC ignores the message.

IdSkIssue– Upon receiving the message 〈idsk : sid, IDS〉 from S, FIBAOT−AC sends
〈idsk : sid, IDS〉 to the issuer. The FIBAOT−AC keeps an identity string IDS

for each sender S which is initially set to be empty. The issuer returns
〈idsk : sid, b〉 in response. If b = 1, FIBAOT−AC updates IDS = IDS and sends
b = 1 to S. Otherwise, FIBAOT−AC does nothing and simply sends b = 0.

DBSetup– The FIBAOT−AC upon receiving a message 〈dbsetup : sid, IDS ,DBS , NS〉
from a sender S with identity IDS , stores DBS , where DBS = ((m1,AP1), (m2,
AP2), . . . , (mNS

,APNS
)), APi is the access policy associated with each mi,

NS is the size of DBS , i = 1, 2, . . . , NS .
AttSkIssue– A receiver R upon receiving the message 〈attsk : sid, wR〉 from Z,

passes it to FIBAOT−AC. The FIBAOT−AC keeps an attribute set wR for each
receiver R which is initially set to be empty. Upon receiving the message
〈attsk : sid, wR〉 from R, FIBAOT−AC sends 〈attsk : sid, wR〉 to the issuer. The
issuer returns 〈attsk : sid, b〉 in response. If b = 1, FIBAOT−AC updates wR =
wR and sends b = 1 to R. Otherwise, FIBAOT−AC does nothing and simply
sends b = 0 to R.

Transfer– Upon receiving the message 〈transfer : sid, IDS , σ〉 from R, FIBAOT−AC

sends 〈transfer : sid, IDS〉 to S and receives 〈transfer : sid, IDS , b〉 in response
from S. If b = 1 and wR satisfies APσ, then FIBAOT−AC returns mσ to R.
Otherwise, FIBAOT−AC returns ⊥ to R.

Definition 9. A protocol Ψ securely realizes the ideal functionality FIBAOT−AC

if for any real world adversary A, there exists an ideal world adversary A′ such
that for any environment machine Z, IDEALFIBAOT−AC,A′,Z

c≈ REALΨ,A,Z , where
IDEALFIBAOT−AC,A′,Z is the output of Z after interacting with A′ and dummy par-
ties interacting with FIBAOT−AC in the ideal world and REALΨ,A,Z is the output
of Z after interacting with A and the parties running the protocol Ψ in the real
world.

3 Our Protocol

Our IBAOT-AC protocol is a tuple of the following PPT algorithms: IBAOT-
AC = (CRSSetup, ISetup, IdSkIssue, DBSetup = (InitDB,DBVerify), AttSkIssue,
Transfer = (RequestTra, ResponseTra, CompleteTra)). For instance, we consider

118 V. Guleria and R. Dutta

crs = (params, GSS , GSR)
params = (p,G,GT , e, g)

Sender S Receiver R

(pkDBS
, skDBS

, ψDBS
, cDBS) ← InitDB

pkDBS
= (H1, H2, y1, y2)

skDBS
= (x, γ, h1, h2)

cDBS = (Φ1, Φ2, . . . , ΦNS
)

pkDBS
,ψDBS

,cDBS−−−−−−−−−−−−→
ACCEPT ← DBVerify

Transfer Phase
σj ∈ {1, 2, . . . , N}, j = 1, 2, . . . , k
(Reqσj

,Priσj
) ← RequestTra

Reqσj
= (Vσj

, Xσj
, Yσj

, Zσj
, πσj

)

Priσj
= (v3,σj

, t1,σj
, t2,σj

, t3,σj
)

Reqσj←−−−−
Resσj

← ResponseTra

Resσj
= (sσj

, δσj
)

sσj
= e(Zσj

, h2) · e(d1, Xσj
)e(d−1

2 , Yσj
)

Resσj−−−−→
mσj

← CompleteTra

Fig. 1. Initialization phase and jth transfer phase of our IBAOT-AC protocol, j =
1, 2, . . . , k.

an execution between a sender S with identity IDS , a receiver R and an issuer. We
invoke algorithm BilinearSetup described in Sect. 2.1 for the generation of bilinear
groups and pairing. The identity IDS ∈ {0, 1}n and Ω = {a1, a2, . . . , am} is the
universe of attributes. A pictorial view of high-level description of the interaction
between the sender S with identity IDS and the receiver R is given in Fig. 1.

CRSSetup(1ρ): This randomized algorithm on input security parameter ρ gen-
erates common reference string crs as follows. It first generates params =
(p, G, GT , e, g) ← BilinearSetup(1ρ), chooses a, b, ξ1, ξ2, ã, b̃, ξ̃1, ξ̃2

$←− Z
∗
p and

sets g1 = ga, g2 = gb, g̃1 = gã, g̃2 = gb̃, u1 = (g1, 1, g), u2 = (1, g2, g), u3 =

uξ1
1 uξ2

2 = (gξ1
1 , gξ2

2 , gξ1+ξ2), ũ1 = (g̃1, 1, g), ũ2 = (1, g̃2, g), ũ3 = ũ1
ξ̃1 ũ2

ξ̃2 =

(g̃1
ξ̃1 , g̃2

ξ̃2 , gξ̃1+ξ̃2),GSR = (u1, u2, u3),GSS = (ũ1, ũ2, ũ3), crs = (params,
GSR, GSS). GSR is used for creating non-interactive witness indistinguish-
able (NIWI) proof by a receiver and GSS for generating non-interactive zero-
knowledge (NIZK) proof by a sender.

ISetup(params): This randomized algorithm takes as input params = (p, G, GT , e,

g) from the issuer, selects c, α, β
$←− Z

∗
p, ĝ2, f

′, f1, f2,. . . , fn, h1, h2, . . ., hm
$←−

G, sets ĝ1 = gα, g3 = gc, U = e(g, g)β , PK1 = (ĝ1, ĝ2, f ′, f1, f2, . . . , fn),
MSK1 = ĝ2

α, PK2 = (g3, U, h1, h2, . . . , hm), MSK2 = (c, β). The algorithm
outputs two key pairs (PK1,MSK1) and (PK2,MSK2) to the issuer. The issuer
uses key pair (PK1,MSK1) for the generation of identity secret key SKS corre-
sponding to a unique identity IDS of a sender S and (PK2,MSK2) for issuing

Universally Composable Identity Based Adaptive Oblivious Transfer 119

attribute secret key ASKR corresponding to an attribute set wR of a receiver
R. The issuer publishes PK1,PK2 and keeps MSK1,MSK2 secret.

IdSkIssue(params,PK1,MSK1, IDS): The issuer upon receiving the identity IDS ∈
{0, 1}nfrom S runs this randomized algorithm using params = (p, G, GT , e, g),
public key PK1 = (ĝ1, ĝ2, f ′, f1, f2, . . . , fn) and master secret key MSK1 =
ĝ2

α. Let VS = {t |t-th bit of IDS is 1} ⊆ [n]. The algorithm first selects

tS
$←− Z

∗
p, sets d1 = ĝ2

α (
f ′ ∏

l∈VS
fl

)tS , d2 = gtS , SKS = (d1, d2). The iden-
tity secret key SKS is given to S through a secure communication channel.
The sender S checks the correctness of the secret key SKS by verifying the
equation e(d1, g)e(d−1

2 , f ′ ∏
l∈VS

fl) = e(ĝ1, ĝ2). If the verification holds, S
accepts the secret key SKS . Otherwise, S aborts the execution.

InitDB(IDS ,SKS , crs,PK1,PK2,DBS): This randomized algorithm upon input
(IDS , SKS , crs, PK1, PK2, DBS) from a sender S generates database public
key pkDBS

, database secret key skDBS
, ciphertext database cDBS and NIZK

proof ψDBS
as follows and makes pkDBS

, ψDBS
, cDBS public to all parties while

keeping skDBS
secret to itself. The database DBS = ((m1,AP1), (m2,AP2),

. . . , (mNS
,APNS

)), where mi ∈ GT ,APi is the access policy associated with
each mi, NS is the size of the DBS , i = 1, 2, . . . , NS , SKS = (d1, d2),

crs = (params,GSR,GSS) and IDS ∈ {0, 1}n. The algorithm picks x, γ
$←−

Z
∗
p, ĥ1

$←− G and sets ĥ2 = gγ , y1 = gx, y2 = ĥ1

x
, H1 = e(g, ĥ1),H2 = e(g, ĥ2)

pkDBS
= (H1,H2, y1, y2), skDBS

= (x, γ, ĥ1, ĥ2). It generates NIZK proof
ψDBS

= NIZK{(d1, d−1
2 , ĥ2, ĝ1

γ , g′) | e(d1, g)e(d−1
2 , f ′ ∏

l∈VS
fl)e(g′, ĝ2

−1) =
1 ∧ e(g′, ĥ2)e(ĝ1

γ , g−1) = 1 ∧ e(g′, ĝ2) = e(ĝ1, ĝ2)}, where μ : G → G
3 and

NIZK are as described in Sect. 2.3, VS as defined in algorithm IdSkIssue. The
proof ψDBS

also consists of commitments to ĥ1 and ĥ2 generated using GSR.
The Com(ĥ1) and Com(ĥ2) generated using GSR are used by the receiver in
transfer phase as shown in algorithm RequestTra. For i = 1 to NS , the algo-
rithm generates Φi = (Ai,Di, Ei,APi) along with the description of (Mi, ηi)
as follows.
1. Compute BB signature on index i as Ai = g

1
x+i .

2. Compute Bi = e(Ai, ĥ1).
3. Encrypt Bi to generate CP-ABE ciphertext Di under the access policy

APi associated with message mi as follows. Generate LSSS matrix Mi

corresponding to access policy APi as described in Sect. 2.2, where Mi

is the ni × θi matrix, ni is the number of attributes in APi. The func-
tion ηi associates index of each row of Mi to an attribute index in APi.
Pick si, si,2, si,3, . . . , si,θi

$←− Z
∗
p, set vi = (si, si,2, si,3, . . . , si,θi

) ∈ Zθi
p ,

compute Mi · vi = (λ1, λ2, . . . , λni
) ∈ Zni

p invoking Distribute algorithm
described in Sect. 2.2 and set

D
(1)
i = Bi · Usi ,D

(2)
i = gsi ,D

(3)
i = {D

(3)
i,� , � = 1, 2, . . . , ni},

120 V. Guleria and R. Dutta

whereD
(3)
i,� = gλ�

3 ·h−si

ηi(�)
∀aηi(�) ∈ APi,usingPK2 = (g3, U, h1, h2, . . . , hm).

The component Di = (D(1)
i ,D

(2)
i ,D

(3)
i) is the CP-ABE [18] of Bi along

with the description of APi = (Mi, ηi).
4. Encrypt e(Ai, ĥ1ĥ2) · mi to IBE ciphertext Ei using index set VS , where

VS is as defined in algorithm IdSkIssue. Take ri
$←− Zp and compute

E
(1)
i = e(Ai, ĥ1ĥ2) · mi · e(ĝ1, ĝ2)ri , E

(2)
i = gri , E

(3)
i = (f ′ ∏

l∈VS

fl)ri ,

using PK1 = (ĝ1, ĝ2, f ′, f1, f2, . . . , fn). The component Ei = (E(1)
i , E

(2)
i ,

E
(3)
i) is the IBE [17] of e(Ai, ĥ1ĥ2) ·mi where the identity IDS is embed-

ded through VS implicitly in E
(3)
i .

5. Set Φi = (Ai,Di, Ei,APi) along with the description of (Mi, ηi).
The ciphertext database is set to be cDBS = (Φ1, Φ2, . . . , ΦNS

). The algo-
rithm outputs (pkDBS

, skDBS
, ψDBS

, cDBS) to S. The sender S publishes
pkDBS

, ψDBS
, cDBS to all parties and keeps skDBS

secret to itself.
DBVerify(crs, pkDBS

, ψDBS
, cDBS ,PK1, IDS): A receiver R upon receiving NIZK

proof ψDBS
, ciphertext database cDBS from S runs this algorithm. Using

GSS = (ũ1, ũ2, ũ3) extracted from crs and PK1, the algorithm first checks
the correctness of proof ψDBS

, which is NIZK proof for three linear pair-
ing product equations, with witnesses d1, d

−1
2 , ĥ2, ĝ1

γ , g′ in the similar man-
ner as we have done for Eq. 1 in Sect. 2.3. The validity of cDBS is checked
by verifying the following pairing product equations. e(E(2)

i , f ′ ∏
l∈VS

fl) =

e(g,E
(3)
i), and e(Ai, g

i · y1) = e(g, g), where Ei = (E(1)
i , E

(2)
i = gri , E

(3)
i =

(f ′ ∏
l∈VS

fl)ri)), i = 1, 2, . . . , NS . If the above equations hold, the algorithm
outputs VALID, otherwise, INVALID.

AttSkIssue(params,PK2,MSK2, wR): The issuer upon receiving the attribute set
wR from a receiver R runs this randomized algorithm to generate attribute
secret key ASKR as follows. The algorithm selects tR

$←− Z
∗
p, uses PK2 =

(g3, U, h1, h2, . . . , hm),MSK2 = (c, β) and sets K0 = gβgtR
3 ,K ′

0 = gtR ,K� =
htR

� ∀ a� ∈ wR, ASKR = (K0,K
′
0,K� ∀ a� ∈ wR). The algorithm outputs

ASKR to the issuer and the issuer sends it to R through a secure communi-
cation channel.

RequestTra(crs, cDBS ,ASKR, σj): This randomized algorithm upon, receiving
from R with attribute set wR, input crs, cDBS = (Φ1, Φ2, . . ., ΦNS

), ASKR,
index σj ∈ [NS] generates (Reqσj

,Priσj
) as follows, where j = 1, 2, . . . , k.

1. Pick Φσj
= (Aσj

,Dσj
, Eσj

,APσj
) from cDBS along with the description

of (Mσj
, ησj

).
2. Compute solution vector −→xσj

= {x� ∈ Zp | aησj
(�) ∈ wR} such that∑

aησj
(�)∈wR

λ�x� = sσj
holds using Reconstruct algorithm described in

Sect. 2.2. The length of −→xσj
is equal to the number of attributes in

wR. To recover Bσj
from Dσj

= (D(1)
σj = Bσj

· Usσj , D
(2)
σj = gsσj ,

Universally Composable Identity Based Adaptive Oblivious Transfer 121

D
(3)
σj = {D

(3)
σj ,� = gλ�

3 · h
−sσj

ησj
(�) ∀ aησj

(�) ∈ APσj
}) using ASKR = (K0 =

gβgtR
3 ,K ′

0 = gtR ,Kησj
(�) = htR

ησj
(�) ∀ aησj

(�) ∈ wR), first compute

B =
e
(
D

(2)
σj ,K0

)

∏

aησj
(�)∈wR

e
(
D

(3)
σj ,�,K

′
0

)x� ∏

aησj
(�)∈wR

e
(
Kησj

(�),D
(2)
σj

)x�

=
e(gsσj , gβ · gtR

3)
∏

aησj
(�)∈wR

e
(
gλ�
3 · h

−sσj

ησj
(�), g

tR

)x� ∏

aησj
(�)∈wR

e
(
htR

ησj
(�), g

sσj

)x�

= e(g, g)sσj
β = Usσj as g3 = gc,

∑

aησj
(�)∈wR

λ�x� = sσj
.

Now
D

(1)
σj

B
=

Bσj
· Usσj

B
= Bσj

. (5)

Check if B
σj
σj · e(Aσj

, y2) = H1. If the verification does not hold, abort
the execution.

3. Otherwise, choose v1,σj
, v2,σj

, v3,σj

$←− Z
∗
p and set Vσj

= B
σj ·v1,σj
σj , Xσj

=

E
(2)
σj · gv2,σj = grσj

+v2,σj , Yσj
= E

(3)
σj · (f ′ ∏

l∈VS
fl)

v2,σj =
(f ′ ∏

l∈VS
fl)

rσj
+v2,σj , Zσj

= Aσj
· gv3,σj , t1,σj

= A
v1,σj
σj , t2,σj

=
ĝ2

v2,σj , t3,σj
= (gσj · y1)

v3,σj .
4. Generate NIWI proof πσj

using GSR = (u1, u2, u3) as

πσj
=NIWI{(gv1,σj , E(2)

σj
, E(3)

σj
, Aσj

, t1,σj
, t2,σj

, t3,σj
, gσj) |

Vσj
= e(gv1,σj , ĥ1)e(t1,σj

, y−1
2) ∧ e(E(2)

σj
, ĝ2)e(t2,σj

, g) = e(Xσj
, ĝ2)

∧ e(E(3)
σj

, ĝ2)e(t2,σj
, f ′ ∏

l∈VS

fl) = e(Yσj
, ĝ2)

∧ e(Zσj
, gσj · y1) = e(g, g)e(g, t3,σj

)}.

As explained in Sect. 2.3, the proof πσj
consists of commitments to

gv1,σj , E
(2)
σj , E

(3)
σj , Aσj

, t1,σj
, t2,σj

, t3,σj
, gσj , randomized Com(ĥ1), ran-

domized Com(ĥ2) together with proof components to 4 linear pairing
product equations. The Com(ĥ1) and Com(ĥ2) are randomized as dis-
cussed in the remark 1 using GSR. Here Com(ĥ1) and Com(ĥ2) were
generated by the sender in InitDB algorithm using GSR.

5. Set Reqσj
=

(
Vσj

,Xσj
, Yσj

, Zσj
, πσj

)
and Priσj

= (v3,σj
, t1,σj

, t2,σj
, t3,σj

).
The algorithm outputs (Reqσj

, Priσj
) to R. The receiver R sends Reqσj

to S and keeps Priσj
secret to itself.

122 V. Guleria and R. Dutta

ResponseTra(crs, skDBS
,Reqσj

,SKS ,PK1, pkDBS
): This randomized algorithm

upon receiving the input Reqσj
=

(
Vσj

,Xσj
, Yσj

, Zσj
, πσj

)
from S generates

response Resσj
using database secret key skDBS

= (x, γ, ĥ1, ĥ2) and identity
secret key SKS = (d1, d2) as follows.
1. The algorithm first verifies πσj

. If verification fails, abort the execution.
Otherwise, set a1 = Zγ

σj
, sσj

= e(Zσj
, ĥ2) · e(d1,Xσj

)e(d−1
2 , Yσj

) using

skDBS
= (x, γ, ĥ1, ĥ2) and SKS = (d1, d2).

2. Generate NIZK proof δσj
by using GSS as

δσj =NIZK{(a1, a2, a3, a4, a5, a6, a7, a8) | e(a3, g)e(a4, f
′ ∏

l∈VS

fl)e(a5, ĝ2
−1) = 1

∧ e(Zσj , a2)e(Xσj , a3)e(Yσj , a4)e(a1, g
−1)e(a−1

6 , a3)e(a
−1
7 , a4) = 1

∧ e(ĝ1, a5) = e(ĝ1, ĝ2) ∧ e(a6, g) = e(Xσj , g) ∧ e(a7, g) = e(Yσj , g)

∧ e(a5, a2)e(a8, g
−1) = 1},

where a2 = ĥ2, a3 = d1, a4 = d−1
2 , a5 = ĝ2, a6 = Xσj

, a7 = Yσj
,

a8 = ĝ1
γ .

3. Set Resσj
= (sσj

, δσj
).

CompleteTra(crs,PK1,Resσj
, Φσj

,Priσj
): The receiver R upon receiving Resσj

=
(sσj

, δσj
) runs this deterministic algorithm as follows.

1. Verify δσj
using GSS = (ũ1, ũ2, ũ3) in the similar way as we have done

for Eq. 1 in Sect. 2.3.
2. If verification fails, abort the execution. Otherwise, parse Priσj

= (v3,σj
,

t1,σj
, t2,σj

, t3,σj
), where t2,σj

= ĝ2
v2,σj and compute

E
(1)
σj · e(ĝ1, t2,σj

)H
v3,σj

2

sσj
· Bσj

= mσj
, (6)

where E
(1)
σj = e(Aσj

, ĥ1ĥ2)e(ĝ1, ĝ2)
rσj ·mσj

, t2,σj
= ĝ2

v2,σj , Bσj
= e(Aσj

,

ĥ1), H2 = e(g, ĥ2).

4 Security Analysis

Theorem 4. The IBAOT-AC protocol Ψ presented in Sect. 3 securely realizes
the ideal functionality FIBAOT−AC in the FD

CRS-hybrid model described in Sect. 2.4
assuming the hardness of DLIN, q-SDH, DBDHE and DBDH problems.

Proof. Let A be a static real world adversary interacting with multiple senders,
multiple receivers and an issuer. We construct an ideal world adversary A′ inter-
acting with FIBAOT−AC such that no environment machine Z can distinguish the
ideal world of ideal functionality FIBAOT−AC with A′ from the real world of pro-
tocol Ψ with A. For instance, we consider the interaction between a sender S
with identity IDS , a receiver R and an issuer. We consider simultaneously the
following cases: (a) when only the receiver R is honest, (b) when only the sender

Universally Composable Identity Based Adaptive Oblivious Transfer 123

S is corrupt (c) when only the receiver R is corrupt (d) when only the sender
S is honest. When all the parties (the sender S, the receiver R and the issuer)
are honest or all the parties are corrupt or only the issuer is honest or only the
issuer is corrupt are not addressed as these are trivial cases. The collusion of the
issuer with any party is restricted.

The security proof is presented using sequence of hybrid games. Let Pr[Game i]
be the probability that Z distinguishes the transcript of Game i from that in the
real execution.

(a) Simulation when the sender S and the issuer are corrupt while
the receiver R is honest. The adversary A′ simulates the honest receiver R
without having the knowledge of selected index σj of R. The sender S and issuer
are controlled by A.

Game 0: This game corresponds to the real world protocol interactions in which A′

simulates R and interacts with A exactly as in the real world. So, Pr[Game 0] = 0.

Game 1: This game is the same as Game 0 except that crs is simulated by A′

as follows. It generates params = (p, G, GT , e, g) ← BilinearSetup(1ρ), chooses

a, b, ξ1, ξ2, ã, b̃, ξ̃1, ξ̃2
$←− Z

∗
p and sets g1 = ga, g2 = gb, g̃1 = gã, g̃2 = gb̃, u1 =

(g1, 1, g), u2 = (1, g2, g), u3 = uξ1
1 uξ2

2 = (gξ1
1 , gξ2

2 , gξ1+ξ2), ũ1 = (g̃1, 1, g), ũ2 =

(1, g̃2, g), ũ3 = ũ1
ξ̃1 ũ2

ξ̃2 = (g̃1
ξ̃1 , g̃2

ξ̃2 , gξ̃1+ξ̃2),GSR = (u1, u2, u3),GSS = (ũ1, ũ2,
ũ3), crs = (params,GSR,GSS), trapdoors text = (a, b, ξ1, ξ2), t̃ext = (ã, b̃, ξ̃1, ξ̃2).
When the parties ask 〈CRS : sid〉, A′ returns 〈CRS : sid, crs〉. The adversary A′

keeps the trapdoors text and t̃ext secret to itself. The crs generated in Game 1 has
the same distribution as in Game 0. Hence, |Pr[Game 1] − Pr[Game 0]| = 0.

Game 2: This game is the same as Game 1 except that A′ replaces the honest
request Reqσj

by the simulated request Reqσ′
j

generated as follows.

– When A′ receives (pkDBS
, ψDBS

, cDBS) from A, A′ checks the validity of ψDBS

and cDBS by running the algorithm DBVerify discussed in Sect. 3. If the
verification does not hold, A′ aborts the execution. Otherwise, A′ parses
cDBS = (Φ1, Φ2, . . . , ΦNS

) and decrypts each Φi using trapdoors text and t̃ext
by executing the following steps.
– Note that Com(d1) is embedded in ψDBS

. As Com(d1) = μ(d1)ũ1
b̂1 ũ2

b̂2 ũ3
b̂3

= (g̃1
b̂1+b̂3ξ̃1 , g̃2

b̂2+b̂3ξ̃2 , d1g
b̂1+b̂2+b̂3(ξ̃1+ξ̃2)), b̂1, b̂2, b̂3

$←− Zp, A′ can extract

d1 = ĝ2
α (

f ′ ∏
l∈VS

fl

)tS by computing d1gb̂1+b̂2+b̂3(ξ̃1+ξ̃2)

(g̃1
b̂1+b̂3ξ̃1)

1
ã (g̃2

b̂2+b̂3ξ̃2)
1
b̃

= d1 as g̃1 =

gã, g̃2 = gb̃ and A′ knows t̃ext = (ã, b̃, ξ̃1, ξ̃2). Similarly, A′ extracts d2 =
gtS , ĥ2, ĝ1

γ using t̃ext and ĥ1 using text.

124 V. Guleria and R. Dutta

– From each Φi = (Ai,Di, Ei,APi) along with the description of (Mi, ηi),

A′ computes val = e(Ai,ĥ1ĥ2)e(d1,E
(2)
i)

e(d2,E
(3)
i)

=
e(Ai,ĥ1ĥ2)e(ĝ2

α
(

f ′∏
l∈VS

fl

)tS
,gri)

e(gtS ,(f ′∏
l∈VS

fl)ri))
=

e(Ai, ĥ1ĥ2)e(ĝ2
α, gri) = e(Ai, ĥ1ĥ2)e(ĝ1, ĝ2)ri as ĝ1 = gα and computes

E
(1)
i

val = e(Ai,ĥ1ĥ2)·mi·e(ĝ1,ĝ2)
ri

e(Ai,ĥ1ĥ2)e(ĝ1,ĝ2)ri
= mi.

– The adversary A′ sets DBS = ((m1,AP1), (m2,AP2), . . ., (mNS
,APNS

)) and
sends 〈dbsetup : sid, IDS ,DBS〉 to FIBAOT−AC.

– The adversary A′, upon receiving the message 〈attsk : sid, wR〉 from FIBAOT−AC,
simulates the receiver’s side of the AttSkIssue protocol with the real corrupted
issuer handled by A. If A′ obtains the valid attribute secret key ASKR, A′

sends 〈attsk : sid, b = 1〉 to FIBAOT−AC, otherwise, 〈attsk : sid, b = 0〉.
– The validity of ASKR is checked as follows. The adversary A′ picks any Φσ′

j
=

(Aσ′
j
,Dσ′

j
, Eσ′

j
,APσ′

j
) along with the description of (Mσ′

j
, ησ′

j
) from cDBS for

which wR satisfies APσ′
j
, recovers Bσ′

j
= e(Aσ′

j
, ĥ1) as discussed in Eq. 5 given

in algorithm RequestTra and checks the validity of equation B
σ′

j

σ′
j
e(Aσ′

j
, y2) =

H1. If the equation does not hold, A′ sets the bit b = 0, otherwise, b = 1.
– Upon receiving the message 〈transfer : sid, IDS〉 from FIBAOT−AC, A′ picks ran-

dom index σ′
j of its choice for which attribute set wR satisfies APσ′

j
and

generates (Reqσ′
j
,Priσ′

j
) ← RequestTra(crs, cDBS ,ASKR, σ′

j), where Reqσ′
j

=
(
Vσ′

j
,Xσ′

j
, Yσ′

j
, Zσ′

j
, πσ′

j

)
, Priσ′

j
= (v3,σ′

j
, t1,σ′

j
, t2,σ′

j
, t3,σ′

j
), Vσ′

j
= B

v1,σ′
j
σ′

j

σ′
j

,

Xσ′
j

= E
(2)
σ′

j
· g

v2σ′
j , Yσ′

j
= E

(3)
σ′

j
· (f ′ ∏

l∈VS
fl)

v2σ′
j , Zσ′

j
= Aσ′

j
g

v3,σ′
j , t1,σ′

j
=

A
v1,σ′

j

σ′
j

, t2,σ′
j

= ĝ2
v2,σ′

j , t3,σ′
j

= (gσ′
j y1)

v3,σ′
j , v1,σ′

j
, v2,σ′

j
, v3,σ′

j

$←− Zp.

The adversary A′ replaces honest receiver R’s request Reqσj
by the simu-

lated request Reqσ′
j

and sends 〈transfer : sid, IDS ,Reqσ′
j
〉 to A as if it is from real

receiver R. The adversary A returns Resσ′
j

= (sσ′
j
, δσ′

j
) to A′ and A′ checks

whether mσ′
j

= CompleteTra(crs,Resσ′
j
, Φσ′

j
,Priσ′

j
). If so, then A′ sets b = 1,

otherwise, b = 0 and returns 〈transfer : sid, IDS , b〉 to FIBAOT−AC. As Groth-Sahai
proofs are composable NIWI [12] under DLIN assumption as stated in Theorem 3,
the simulated request Reqσ′

j
is computationally indistinguishable from the hon-

estly generated request Reqσj
. Therefore, we have |Pr[Game 2] − Pr[Game 1]| ≤

ε1(ρ), where ε1(ρ) is a negligible function.
ThusGame 2 is the ideal world interaction whereasGame 0 is the real world. Now

|Pr[Game 2]−[Game 0]| ≤ |Pr[Game 2]−[Game 1]|+|Pr[Game 1]−[Game 0]| ≤ ε1(ρ),
where ε1(ρ) is a negligible function. Hence, IDEALFIBAOT−AC,A′,Z

c≈ REALΨ,A,Z .

(b) Simulation when the sender S (b)is corrupt while the receiver R
and the issuer are honest. In this case, A′ simulates the honest receiver R and
honest issuer without knowing index σj of R. The simulation of this case is very
much similar to Case(a) except that A′ runs the ISetup algorithm on behalf of real
issuer upon receiving the message 〈isetup : sid〉 from FIBAOT−AC. The ISetup out-
puts PK1 = (ĝ1, ĝ2, f ′, f1, f2, . . . , fn), MSK1 = ĝ2

α, PK2 = (g3, U, h1, h2, . . . , hm),

Universally Composable Identity Based Adaptive Oblivious Transfer 125

MSK2 = (c, β) to A′ and A′ broadcasts PK1, PK2 to all parties keeping MSK1,
MSK2 secret to itself. In this case, A′ extracts mi from ciphertext Φi = (Ai,Di, Ei,
APi) along with the description of (Mi, ηi) using extracted ĥ1, ĥ2, d1, d2 as in
the above case. Also, A′ simulates the issuer side of the IdSkIssue protocol upon
receiving the message 〈idsk : sid, IDS〉 from A. The adversary A′ sends the mes-
sage 〈idsk : sid, IDS〉 to FIBAOT−AC. If FIBAOT−AC sends the bit b = 1 to A′, A′

issues SKS to A. Otherwise, A′ sends ⊥ to A. Hence, IDEALFIBAOT−AC,A′,Z
c≈

REALΨ,A,Z .

(c) Simulation when the sender S and the issuer are honest while the
receiver R (c)is corrupt. In this case, the adversary A controls the corrupted
receiver R and the A′ simulates the honest sender S and issuer.

Game 0: This game corresponds to the real world protocol interactions in which
A′ simulates S and the issuer and interacts with A exactly as in the real world.
So, Pr[Game 0] = 0.

Game 1: This game is the same as Game 0 except that crs is simulated by A′

as follows. It generates params = (p, G, GT , e, g) ← BilinearSetup(1ρ), chooses

a, b, ξ1, ξ2, ã, b̃, ξ̃1, ξ̃2
$←− Z

∗
p and sets g1 = ga, g2 = gb, g̃1 = gã, g̃2 = gb̃, u1 =

(g1, 1, g), u2 = (1, g2, g), u3 = uξ1
1 uξ2

2 = (gξ1
1 , gξ2

2 , gξ1+ξ2), ũ1 = (g̃1, 1, g), ũ2 =

(1, g̃2, g), ũ3 = ũ1
ξ̃1 ũ2

ξ̃2(1, 1, g) = (g̃1
ξ̃1 , g̃2

ξ̃2 , gξ̃1+ξ̃2+1),GSR = (u1, u2, u3),
GSS = (ũ1, ũ2, ũ3), crs = (params,GSR,GSS), trapdoors text = (a, b, ξ1, ξ2), t̃sim =
(ã, b̃, ξ̃1, ξ̃2). The adversary A′ generates GSR in perfectly sound setting and GSS
in witness-indistinguishability setting. When the parties query 〈CRS : sid〉, A′

returns 〈CRS : sid, crs〉. The adversary A′ keeps the trapdoors text and t̃sim secret
to itself. The crs generated in Game 1 by A′ and CRSSetup in actual protocol
run are computationally indistinguishable by Theorem 2. Therefore, there exists
a negligible function ε1(ρ) such that |Pr[Game 1] − Pr[Game 0]| ≤ ε1(ρ).

Game 2: The adversary A′ upon receiving the message 〈isetup : sid〉 from
FIBAOT−AC runs the ISetup algorithm and generates PK1 = (ĝ1, ĝ2, f ′, f1,
f2, . . . , fn), MSK1 = ĝ2

α, PK2 = (g3, U, h1, h2, . . . , hm), MSK2 = (c, β). The
adversary A′ broadcasts PK1, PK2 to all parties keeping MSK1,MSK2 secret to
itself. The PK1,PK2,MSK1, MSK2 generated in Game 2 has the same distribu-
tion as in Game 1. Hence, |Pr[Game 2] − Pr[Game 1]| = 0.

Game 3: This game is exactly the same as Game 2 except that upon receiving
Reqσj

= (Vσj
,Xσj

, Yσj
, Zσj

, πσj
) from A, A′ checks the validity of πσj

. If invalid,
A′ aborts the execution, otherwise, A′ uses text = (a, b, ξ1, ξ2) to extract witnesses
and index from proof πσj

as follows.

– The adversary A′ extracts first witness wit1 from Com(gv1,σj) =
μ(gv1,σj)ur̃1

1 ur̃2
2 ur̃3

3 = (gr̃1+r̃3ξ1
1 , gr̃2+r̃3ξ2

2 , gv1,σj gr̃1+r̃2+r̃3(ξ1+ξ2)) as
g

v1,σj gr̃1+r̃2+r̃3(ξ1+ξ2)

(g
r̃1+r̃3ξ1
1)

1
a (g

r̃2+r̃3ξ2
2)

1
b

= gv1,σj = wit1, r̃1, r̃2, r̃3
$←− Zp. Similarly, A′ extracts

126 V. Guleria and R. Dutta

wit2 = E
(2)
σj , wit3 = E

(3)
σj , wit4 = Aσj

, wit5 = t1,σj
, wit6 = t2,σj

, wit7 = t3,σj
,

wit8 = gσj , wit9 = ĥ1, wit10 = ĥ2 from their respective commitments.
– The adversary A′ checks whether wit4 = Aζ , ζ = 1, 2, . . . , NS . Suppose no

matching index found, i.e., σj /∈ {1, 2, . . . , NS} and A constructs a valid proof
πσj

for the ciphertext Φσj
/∈ cDBS = (Φ1, Φ2, . . . , ΦNS

) in order to gener-
ate Reqσj

. This eventually means that the ciphertext Φσj
must be a correct

ciphertext as the proof πσj
generated by A for Φσj

is valid. This indicates
that A generates a valid BB signature Aσj

on index σj and outputs Aσj
as

a forgery contradicting the fact that the BB signature is unforgeable under
chosen-message attack assuming q-SDH problem is hard [4].

The difference between Game 3 and Game 2 is negligible provided that q-
SDH assumption hold. Therefore, there exists a negligible function ε3(ρ) such
that |Pr[Game 3] − Pr[Game 2]| ≤ ε3(ρ).

Game 4: This game is the same as Game 3. Let σj be the matching index extrac-
ted in Game 3. The adversary A′ checks whether wit2 = E

(2)
σj , wit3 = E

(3)
σj ,wit8 =

gσj . The adversary A′ computes V̂σj
= e(t1,σj

,wit9)σj = e(A
v1,σj
σj , ĥ1)σj = Vσj

.
Note that Vσj

is computed by A which requires to recover Bσj
from the cipher-

text Φσj
using a matching attribute secret key ASKR corresponding to attribute

set wR. Thus A can frame Vσj
only if A has obtained matching ASKR from the

issuer by calling algorithm AttSkIssue on wR. If A has never queried the issuer for
ASKR corresponding to wR, then V̂σj

= Vσj
occurs with negligible probability.

Otherwise, we can construct a solver to break the semantic security of CP-ABE
of [18] under q-DBDHE assumption with black box access to A. With extracted
index σj , A′ queries FIBAOT−AC with the message 〈transfer : sid, IDS , σj〉. The
FIBAOT−AC gives mσj

to A′. The difference between Game 4 and Game 3 is negli-
gible provided that DBDHE assumption hold. Therefore, there exists a negligible
function ε4(ρ) such that |Pr[Game 4] − Pr[Game 3]| ≤ ε4(ρ).

Game 5: This game is the same as Game 4 except that A′ simulates the response
sσj

and proof δσj
for each transfer phase j = 1, 2, . . . , k. The ciphertext Φσj

=
(Aσj

,Dσj
, Eσj

, APσj
) along with the description of (Mσj

, ησj
). The adversary A′

uses wit4 = Aσj
, wit6 = t2,σj

= ĝ2
v2,σj , wit9 = ĥ1,wit10 = ĥ2, mσj

extracted in
the previous game and Eσj

= (E(1)
σj = e(Aσj

, ĥ1ĥ2) ·mσj
· e(ĝ1, ĝ2)rσj , E

(2)
σj , E

(3)
σj)

to simulate the response Res′σj
= (s′

σj
, δ′

σj
) as follows. The component s′

σj
=

E
(1)
σj e(ĝ1,wit6)e(

Zσj

wit4
,wit10)

e(wit4,wit9)mσj

=
mσj e(Aσj , ĥ1ĥ2)e(ĝ1, ĝ2)

rσj e(ĝ1, ĝ2
v2,σj)e(g

v3,σj , ĥ2)

e(Aσj , ĥ1)mσj

= e(Aσj , ĥ2)e(ĝ1, ĝ2)
rσj

+v2σj · H
v3,σj

2 .

The simulated s′
σj

has the same distribution as honestly generated response
sσj

by algorithm ResponseTra discussed in correctness of Eq. 6 in Sect. 3. The
adversary A′ also simulates δ′

σj
to prove that s′

σj
is correctly framed. The proof

Universally Composable Identity Based Adaptive Oblivious Transfer 127

δσj
= NIZK{(a1, a2, a3, a4, a5, a6, a7, a8) | e(a3, g)e(a4, f

′ ∏
l∈VS

fl)e(a5, ĝ2
−1) =

1 ∧ e(Zσj
, a2)e(Xσj

, a3)e(Yσj
, a4)e(a1, g

−1)e(a−1
6 , a3)e(a−1

7 , a4) = 1 ∧ e(a5, ĝ2) =
e(ĝ1, ĝ2) ∧ e(a6, g) = e(Xσj

, g) ∧ e(a7, g) = e(Yσj
, g) ∧ e(a5, a2)e(a8, g

−1) = 1}
consists of commitments to secret values a1, a2, a3, a4, a5, a6, a7, a8 and proof
components to 6 equations. For simulation, A′ sets a1 = a2 = a3 = a4 = a5 =
a6 = a7 = a8 = 1 and generate commitments to a1, a2, a3, a4, a5, a6, a7, a8 using
GSS . With the help of trapdoor t̃sim, A′ can open the commitment of a5 = 1 in
the first equation, a6 = 1, a7 = 1 in the second equation, and a5 to ĝ1 in third
equation, a6 = Xσj

in the fourth equation and a7 = Yσj
in the fifth equation as

discussed in Sect. 2.3. As Groth-Sahai proofs are composable NIZK by Theorem
3, the simulated proof δ′

σj
is computationally indistinguishable from the hon-

estly generated proof δσj
under the DLIN assumption. Therefore, there exists a

negligible function ε5(ρ) such that |Pr[Game 5] − Pr[Game 4]| ≤ ε5(ρ).

Game 6: This game is the same as Game 5 except that the messages m1,m2, . . .,
mNS

are replaced by the random messages m̂1, m̂2, . . . , m̂NS
∈ G. Upon receiving

the message 〈attsk : sid, wR〉 from A, A′ simulates the issuer side of the AttSkIssue
protocol. The adversary A′ sends the message 〈attsk : sid, wR〉 to FIBAOT−AC. If
FIBAOT−AC sends the bit b = 1 to A′, A′ issues ASKR to A. Otherwise, A′

sends ⊥ to A. As both issuer and sender are honest, they can simulate IdSkIssue
protocol upon receiving the message 〈idsk : sid, IDS〉 from FIBAOT−AC in order to
generate identity secret key SKS . The adversary A′ runs the algorithm InitDB
with input (IDS ,SKS , crs,PK1,PK2,DB

′
S), where DB′

S = ((m̂1,AP1), (m̂2,AP2),

. . . , (m̂NS
,APNS

)), mi
$←− GT , APi are publicly available, i = 1, 2, . . . , NS . The

algorithm outputs pkDB′
S
, skDB′

S
, ψDB′

S
, cDB′

S to A′, where pkDB′
S
, skDB′

S
, ψDB′

S
have

the same distribution as in the real protocol. The ciphertext database cDB′
S is

the encryption of NS random messages. In each transfer phase, the response
Resσj

= (sσj
, δσj

) is replaced by the simulated response Res′σj
= (s′

σj
, δ′

σj
) as in

Game 5, but here the simulated response is computed on invalid statement. The
only difference between Game 6 and Game 5 is in the generation of ciphertexts.
In Game 5, cDBS is encryption of perfect messages, whereas in this game cDB′

S

is that of random messages. By the semantic security of IBE of [17] under the
DBDH assumption, Game 5 and Game 6 are computationally indistinguishable.
Therefore, |Pr[Game 6]−Pr[Game 5]| ≤ ε6(ρ), where ε6(ρ) is a negligible function.
Thus Game 6 is the ideal world interaction whereas Game 0 is the real world.
Now |Pr[Game 6]− [Game 0]| ≤ ∑6

l=1 |Pr[Game l]− [Game (l−1)]| ≤ ε7(ρ), where
ε7(ρ) = ε6(ρ)+ε5(ρ)+ε4(ρ)+ε3(ρ)+ε2(ρ)+ε1(ρ) is a negligible function. Hence,
IDEALFIBAOT−AC,A′,Z

c≈ REALΨ,A,Z .

(d) Simulation when the sender S is honest while the issuer and the
receiver R are corrupt. In this case, A′ simulates the honest sender S and
A controls the activities of corrupted receiver R and the issuer. The simulation
of this case is very much similar to Case(c) except that in this case, A′ upon
receiving the message 〈idsk : sid, IDS〉 from FIBAOT−AC, simulates the sender S’s
side of AttSkIssue protocol with the real corrupted issuer controlled by A. The
adversary A′ checks the validity of obtained identity secret key SKS = (d1, d2)

128 V. Guleria and R. Dutta

Table 1. Comparison Summary of computation cost in k transfer phases and initial-
ization phase (PO stands for number of pairings, EXP for number of exponentiations,
CRSG for crs generation, AP for access policy, m is the number of attributes, N and
NS are the database sizes, ni is the number of attributes in APi and nσj is the number
of attributes in APσj).

UC Secure Pairing PO Exponentiation EXP AP

Schemes Transfer DBSetup Transfer DBSetup CRSG

[11] ≥ 207k 24N + 1 249k 20N + 13 18 ×
[16] > 450k 15N + 1 223k 12N + 9 15 ×
[13] 147k 5N + 1 150k 17N + 5 18 ×
[1] (100m + 199)k (m + 21)N (138m + 237)k (2m + 21)N + 2m + 20 m + 26 “∧”

Ours 2
∑k

j=1 nσj
+ 253k 5NS + 63 247k 7NS + 2

∑NS
i=1 ni + 79 10 “∧” and “∨”

Table 2. Comparison summary of communication cost in k transfer phases and ini-
tialization phase (cDBS stands for ciphertext database, pkDBS

for public key, m is the
number of attributes, AC for access control, N and NS are the database sizes and ni

is the number of attributes in APi).

UC Secure Schemes Communication Storage Security Assumptions AC

Req + Res crs-Size (cDBS + pkDBS
)

[11] 144k 14 18N + 11 SXDH, q-LRSW, DLIN ×
[16] 93k 23 12N + 7 HSDH, TDH, DLIN ×
[13] 75k 16 12N + 5 q-SDH, DLIN ×
[1] (125 + 64m)k m + 28 16N + m + 20 SXDH, XDLIN

√

Ours 107k 11 6NS +
∑NS

i=1 ni + 4 q-SDH, q-DBDHE,
√

DBDH, DLIN

by verifying the equation e(d1, g)e(d−1
2 , f ′ ∏

l∈VS
fl) = e(ĝ1, ĝ2). If SKS is valid,

A′ sets the bit b = 1 and returns 〈idsk : sid, IDS , b〉 to FIBAOT−AC. Otherwise, A′

sends b = 0 to FIBAOT−AC. Hence, IDEALFIBAOT−AC,A′,Z
c≈ REALΨ,A,Z . ��

5 Comparison

We compare the computational and communication cost of our proposed scheme
IBAOT-AC with the existing UC secure AOT [1,11,13,16]. As illustrated in
Tables 1 and 2, the proposed scheme outperforms the existing schemes [1,11,13,
16]. It is clear from the Tables 1 and 2, the construction of [13] is more efficient
as compared to ours, but [13] does not realizes access control. We emphasize that
our scheme computes only a constant number of pairings and exponentiations
while that of [1] is linear to number of attributes m in each transfer phase.

References

1. Abe, M., Camenisch, J., Dubovitskaya, M., Nishimaki, R.: Universally composable
adaptive oblivious transfer (with access control) from standard assumptions. In:
ACM Workshop on Digital Identity Management, pp. 1–12. ACM (2013)

Universally Composable Identity Based Adaptive Oblivious Transfer 129

2. Beimel, A.: Secure schemes for secret sharing and key distribution. Ph.D. thesis,
Israel Institute of Technology, Technion, Haifa, Israel (1996)

3. Belenkiy, M., Camenisch, J., Chase, M., Kohlweiss, M., Lysyanskaya, A., Shacham,
H.: Randomizable proofs and delegatable anonymous credentials. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 108–125. Springer, Heidelberg (2009)

4. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (2004)

5. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

6. Camenisch, J., Dubovitskaya, M., Neven, G.: Oblivious transfer with access control.
In: ACM 2009, pp. 131–140. ACM (2009)

7. Camenisch, J., Dubovitskaya, M., Neven, G., Zaverucha, G.M.: Oblivious trans-
fer with hidden access control policies. In: Catalano, D., Fazio, N., Gennaro, R.,
Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 192–209. Springer, Heidelberg
(2011)

8. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-party
and multi-party secure computation. In: ACM 2002, pp. 494–503. ACM (2002)

9. Coull, S., Green, M., Hohenberger, S.: Controlling access to an oblivious database
using stateful anonymous credentials. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009.
LNCS, vol. 5443, pp. 501–520. Springer, Heidelberg (2009)

10. Green, M., Hohenberger, S.: Blind identity-based encryption and simulatable obliv-
ious transfer. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp.
265–282. Springer, Heidelberg (2007)

11. Green, M., Hohenberger, S.: Universally composable adaptive oblivious transfer.
In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 179–197. Springer,
Heidelberg (2008)

12. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In:
Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008)

13. Guleria, V., Dutta, R.: Efficient adaptive oblivious transfer in UC framework. In:
Huang, X., Zhou, J. (eds.) ISPEC 2014. LNCS, vol. 8434, pp. 271–286. Springer,
Heidelberg (2014)

14. Lewko, A., Waters, B.: Decentralizing attribute-based encryption. In: Paterson,
K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 568–588. Springer, Heidelberg
(2011)

15. Naor, M., Pinkas, B.: Computationally secure oblivious transfer. J. Cryptol. 18(1),
1–35 (2005)

16. Rial, A., Kohlweiss, M., Preneel, B.: Universally composable adaptive priced obliv-
ious transfer. In: Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS, vol. 5671,
pp. 231–247. Springer, Heidelberg (2009)

17. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg
(2005)

18. Waters, B.: Ciphertext-policy attribute-based encryption: an expressive, efficient,
and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi,
A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011)

19. Zhang, F., Zhao, X., Chen, X.: ID-based adaptive oblivious transfer. In: Youm,
H.Y., Yung, M. (eds.) WISA 2009. LNCS, vol. 5932, pp. 133–147. Springer,
Heidelberg (2009)

Three-Round Public-Coin
Bounded-Auxiliary-Input Zero-Knowledge

Arguments of Knowledge

Ning Ding1,2(B)

1 NTT Secure Platform Laboratories, Tokyo, Japan
2 Shanghai Jiao Tong University, Shanghai, China

ning.ding@lab.ntt.co.jp

Abstract. This paper investigates the exact round complexity of public-
coin (bounded-auxiliary-input) zero-knowledge arguments of knowledge
(ZKAOK). It is well-known that Barak’s non-black-box ZK [FOCS 01],
which can be adapted to a ZKAOK, is the first one achieving constant-
round, public-coin and strict-polynomial-time simulation properties, and
admitting a 6-round implementation shown by Ostrovsky and Visconti
[ECCC 12]. This achieves the best exact round complexity for public-
coin ZKAOK ever known, to the best of our knowledge. As for a specific
case of bounded-auxiliary-input verifiers, i.e. the auxiliary inputs are of
bounded-size, no previous works explicitly considered to improve the
general result on the exact round number of public-coin ZKAOK in this
case. It is also noticeable that when ignoring the argument of knowledge
property, Barak et al. [JCSS 06] showed based on two-round public-coin
universal arguments which admit a candidate construction of the two-
round variant of Micali’s CS-proof, there exists a two-round public-coin
plain/bounded-auxiliary-input ZK argument.

So an interesting question in ZKAOK is how to improve the exact
round complexity of public-coin ZKAOK in both the general and the
above specific cases. This paper provides an improvement for the specific
case. That is, we show that also based on two-round public-coin universal
arguments, there exists a 3-round public-coin bounded-auxiliary-input
ZKAOK for NP which admits a strict-polynomial-time non-black-box
simulator and an expected-polynomial-time extractor.

Keywords: Zero knowledge · Argument of knowledge · Exact round
complexity

1 Introduction

Zero-knowledge (ZK) proof systems, introduced by Goldwasser, Micali and
Rackoff [19], are a fundamental notion in cryptography. Later Brassard et al.
[10] suggested the notion of ZK argument systems, which differs from ZK proofs
only in that arguments are only required to be computationally sound. Goldreich
and Oren [18] refined the notion of ZK to plain ZK and auxiliary-input ZK, where
c© Springer International Publishing Switzerland 2015
D. Lin et al. (Eds.): Inscrypt 2014, LNCS 8957, pp. 130–149, 2015.
DOI: 10.1007/978-3-319-16745-9 8

Three-Round Public-Coin Bounded-Auxiliary-Input Zero-Knowledge 131

plain ZK requires ZK holds for all uniform PPT verifiers while auxiliary-input ZK
requires it holds for all PPT verifiers with polynomial-sized auxiliary-input (for
both the notions distinguishers are always defined as non-uniform polynomial-
time algorithms). Since their introduction, a fundamental positive result due to
Goldreich et al. [17] shows that every language in NP has a ZK proof. There
are also many works constructing ZK protocols that satisfy some additional
properties such as constant rounds, the proof of knowledge [6,12,19,29] and
strict-polynomial-time simulation. In this paper we focus on constant-round
(public-coin) ZK proofs and arguments of knowledge (ZKPOK and ZKAOK). In
the following we sketch the (first) known results on the exact round complexity
of ZK, ZKPOK and ZKAOK as follows.

Zero-Knowledge. For auxiliary-input ZK for NP, Goldreich and Kahan [16]
presented a 5-round ZK proof. Feige and Shamir [13] gave a 4-round ZK (which is
also a ZKAOK). The simulators of these protocols use a verifier’s code in a black-
box way and run in expected-polynomial-time. Hada and Tanaka [20] presented
a 3-round ZK argument based on two knowledge-of-exponent assumptions.

Barak [2] presented a constant-round public-coin non-black-box ZK argument.
This is the first construction achieving constant-round and strict-polynomial-time
simulation properties from complexity assumptions. Ostrovsky and Visconti [27]
showed a 6-round implementation for this protocol, achieving the best round com-
plexity ever known for it. Barak’s construction consists of a 3-round preamble and
a WI universal argument of knowledge which uses at least 4 rounds. Since the
preamble must be finished prior to the universal argument, any implementation
of the protocol seems to require 6 rounds at least and thus the 6-round implemen-
tation may be optimal.

Pandey et al. [28] presented a 4-round (concurrent) ZK argument with strict-
polynomial-time simulation from differing-input obfuscators for machines [1],
which are based on differing-input obfuscators for circuits (a candidate shown
in [14]), fully homomorphic encryption and SNARKs [7] that require knowledge
assumptions. Thus the assumption on differing-input obfuscators for machines
is quite strong. Even for differing-input obfuscation for circuits, Garg et al. [15]
came up with an example showing some circuits cannot be differing-input obfus-
cated if some new assumption is true. So the 4-round protocol is not satisfactory
in the consideration of assumptions.

For plain ZK for NP, Barak et al. [5] presented a 2-round public-coin ZK
argument assuming the existence of two-round public-coin universal arguments,
which admits a candidate construction i.e. the two-round variant of Micali’s
CS proof [26]. Bitansky and Panet [8] presented a 2-round ZK argument from
extractable one-way functions. The simulators of the two protocols run in strict
polynomial-time. By scaling the security parameters, these protocols can be
made bounded-auxiliary-input ZK, i.e. the zero-knowledge property holds when
auxiliary inputs to verifiers are of bounded-size.

ZKPOK and ZKAOK. For the auxiliary-input ZK, Lindell [24] presented
a 5-round ZKPOK. As shown above, Feige and Shamir [13] gave a 4-round

132 N. Ding

ZKAOK. Both the two protocols are private-coin and admit black-box expected
polynomial-time simulators and extractors. As well known, Barak’s protocol in
[2] can be made to satisfy the argument of knowledge property. For bounded-
auxiliary-input ZK, Bitansky and Panet [8] presented a 3-round private-coin
ZKAOK with a strict-polynomial-time simulator and an expected-polynomial-
time extractor.

When focusing on the public-coin ZKAOK (and ZKPOK), we already have
Barak’s protocol in [2] with adaption is a 6-round public-coin ZKAOK. And
as for a specific case of bounded-auxiliary-input verifiers, no previous works
explicitly considered to improve the general result on the exact round number
of public-coin ZKAOK in this scenario.

Some Negative Results. Goldreich and Oren [18] showed there is no 1-round
plain ZK protocol and there is no 2-round (auxiliary-input) ZK protocol for
any language outside BPP. Extending this result, Goldreich and Krawczyk [16]
showed that 3-round black-box ZK proofs exist only for languages in BPP and
Katz [22] showed that 4-round black-box ZK proofs exist only for languages
whose complement is in MA. Barak and Lindell [4] showed black-box simulators
and extractors cannot run in strict-polynomial-time if the protocols are constant-
round. Barak et al. [5] presented some trivialities of 2-round ZK proofs from some
complexity assumptions.

So an interesting question in ZKAOK is to improve the exact round com-
plexity of public-coin ZKAOK in both the general and the above specific cases.
The question can be stated as follows.

1. Can we construct a public-coin ZKAOK for NP which uses fewer rounds
than 6?

2. Can we construct a public-coin ZKAOK for NP with a round number signif-
icantly smaller than 6 for the bounded-auxiliary-input case?

1.1 Our Results

This paper investigates the above question for the bounded-auxiliary-input case
and the main result is a 3-round public-coin bounded-auxiliary-input ZKAOK
from complexity assumptions (without using any knowledge assumption). Let
Com denote a non-interactive perfectly-binding computationally-hiding commit-
ment scheme in e.g. [9], ZAP denote the 2-round public-coin WI proof for NP in
[11]. Let 2rUA denote a 2-round public-coin universal argument, which admits a
candidate construction suggested by Micali [26], also used in [5] (that is also a
variant of the four-round universal argument of knowledge in [3]). Our result is
stated as follows.

Theorem 1. Assuming Com,ZAP, 2rUA, there exists a 3-round public-coin
bounded auxiliary-input ZKAOK for NP which admits a strict-polynomial-time
non-black-box simulator and an expected-polynomial-time extractor.

Three-Round Public-Coin Bounded-Auxiliary-Input Zero-Knowledge 133

Our Techniques. We sketch the techniques used in the protocol. Our starting
point is the 2-round public-coin plain zero-knowledge argument in [5]. Let (2rUA1,
2rUA2) denote the two messages of 2rUA. In the protocol V first sends a ran-
dom 10n-bit string r and 2rUA1 and then P computes Z = Com(0|2rUA2 |)
and a non-interactive WI proof using w as witness for that x ∈ L or letting
2rUA2 ← Com−1(Z), (2rUA1, 2rUA2) is a valid proof for that there is Π of size
5n which outputs r in nlog log n/10 steps. This protocol is plain zero-knowledge
and sound (under sub-exponential complexity assumptions while our construc-
tion only resorts to polynomial-time assumptions). However, it is unknown if it
has an extractor.

Our first idea of providing an extractor for it is to substitute the non-
interactive WI proof with a 3-round WIPOK. We choose the 3-round public-coin
WIPOK due to Lapidot and Shamir [23], denoted LS, which enjoys a key prop-
erty that the first two messages are independent of the witness and the public
input, noted in [27]. Let (LS1, LS2, LS3) denote the 3 messages of LS. Thus the
protocol now could be as follows. In Step 1 P sends LS1 to V . In Step 2, V
sends r, 2rUA1, LS2. In Step 3, P computes Z ← Com(0|2rUA2|) and LS3 satisfy-
ing (LS1, LS2, LS3) is a valid proof for that x ∈ L or letting 2rUA2 ← Com−1(Z),
(2rUA1, 2rUA2) is a valid proof for that there is Π of size 5n such that Π(LS1)
outputs r in nlog log n/10 steps.

However, the substitution with LS causes a confliction that now the public
input to 2rUA has LS1 as a part, which means LS needs to prove a statement
referring to LS1. (This also leads to if let y denote the public input to 2rUA,
|LS1| > |y| > |LS1|.) So this is impossible. Our further idea is to let P commit to
an n-bit random seed in Step 1 and compute the messages (LS1, LS3) in Step 3
which are generated with pseudorandom coins from the seed. Now the message
in Step 1 is of O(n)-bit, independent of |LS1|, and can still determine (LS1, LS3).
Moreover, the seed still remains random and unknown to the verifier due to the
hiding property of Com. Thus LS is still a WIAOK and the confliction above can
be bypassed.

Actually, our protocol indeed adopts this as well as some additional tech-
niques. The additional techniques, for instance, include that to employ the WI
property of LS, we ask P, V to execute LS twice in parallel and then P proves
to V in ZAP that one of the two executions of LS is generated honestly. With
these techniques, there is an extractor that can obtain two valid transcripts of
LS by rewinding the prover and then extract a witness.

1.2 Organizations

The rest of the paper is arranged as follows. We relegate the preliminaries used
through this paper to AppendixA which contains the notions of commitment
schemes, auxiliary-input/bounded-auxiliary-input black-box/non-black-box zero-
knowledge, witness-indistinguishability, universal arguments and the LS proof
system etc. In Sect. 2, we present the high-level of the protocol. In Sect. 3, we
specify the protocol formally and prove the main theorem. In Sect. 4 we con-
sider the possibility of extending the new techniques to improve the exact round

134 N. Ding

complexity for the unbounded-auxiliary-input verifiers, in which we analyze the
difficulty in extending the techniques and then sketch a (possibly unreasonable)
idea to solve this.

2 High-Level Description

In this section we present the high-level description of the protocol. In Sect. 2.1
we show the underlying construction idea. In Sect. 2.2 we present the overview
of the protocol and informally argue that it satisfies all desired properties.

2.1 Construction Idea

Let us recall the 2-round public-coin plain zero-knowledge in [5]. As sketched
previously, in the protocol V first sends a random 10n-bit string r and 2rUA1

and then P computes Z ← Com(0|2rUA2|) and a non-interactive WI proof using
w as witness for that x ∈ L or letting 2rUA2 ← Com−1(Z), (2rUA1, 2rUA2) is a
valid proof for that there is Π of size 5n which outputs r in nlog log n/10 steps.
With sub-exponential complexity assumptions, this protocol is sound. However,
it is unknown if it has an extractor.

Our basic idea of providing an extractor for the protocol is to substitute the
non-interactive WI proof with a 3-round WIPOK. To reduce the round num-
ber, we adopt the 3-round public-coin WIPOK due to Lapidot and Shamir [23],
denoted LS, which enjoys a key property that the first two messages are inde-
pendent of the witness and the public input, noted in [27]. Let (LS1, LS2, LS3)
denote the 3 messages of LS.

Thus a first modification could be as follows. In Step 1 P sends LS1 to V .
In Step 2, V sends r, 2rUA1, LS2. In Step 3, P computes Z ← Com(0|2rUA2|) and
LS3 satisfying (LS1, LS2, LS3) is a valid proof for a similar statement as that of
the original non-interactive WI proof.

At first glance if P can convince V of x ∈ L, running the extractor of LS can
extract a witness for x ∈ L or 2rUA2. However, since now V receives LS1 from
P before sending r, the statement for 2rUA to prove should be changed to that
there is Π of size 5n and Π(LS1) outputs r in nlog log n/10 steps. So LS1 should be
a part of the public-input to 2rUA, which means LS needs to prove a statement
referring to LS1. Also |LS1| should be larger than the size of the public input to
LS which should contain LS1. So this is impossible to achieve.

We then have a second modification to bypass this impossibility. Let PLS

denote the randomized honest prover algorithm of LS that on input 1poly(n)

outputs LS1 where poly(n) denotes the length of the public input, and then on
receiving LS2 ∈ {0, 1}n and a public input y and witness W outputs LS3. We
use the notations LS1 ← PLS(1|y|) and LS3 ← PLS(1|y|, LS2, y,W) to denote the
prover’s computations in the two consecutive steps.

Note that PLS needs random coins in computation. It can be seen that for PLS,
if the coins it uses are pseudorandom LS is still a WIAOK. Our observation is that
when sampling a random u ∈ {0, 1}n and running a pseudorandom generator

Three-Round Public-Coin Bounded-Auxiliary-Input Zero-Knowledge 135

PRG(u) to provide PLS pseudorandom coins, LS1 is determined by u (and |y|)
and LS3 is then further determined by LS2 and the public input y and witness
W . In this scenario we say (LS1, LS3) is generated from (u,W) when y, LS2 are
explicitly specified in the protocol. Note that |u| = n is independent of |LS1|.
Thus letting P commit to u in Step 1 can actually determine LS1 while bypassing
the impossibility.

For some technical considerations we let P choose two random seeds u1, u2

and send Z1 ← Com(u1, u2, w) and Z2 ← Com(0n, 0n) to V in Step 1 instead
of sending LS1 directly. When receiving r, 2rUA1, LS2 from V in Step 2, letting
y denote the public input to 2rUA, P computes Z3 ← Com(0|2rUA2|) and LS1 ←
PLS(1|y|) and LS3 ← PLS(1|y|, LS2, y,W) where PLS’s coins are generated from
PRG(u1). It can be seen LS1 is actually already determined by u1 in Step 1 and
|Z1| is fixed and independent of |LS1|. In extraction, by rewinding a prover to
re-do Steps 2 and 3 we can gain two valid transcripts of LS, in which the two
LS1 are equal since they are determined by the seed in Z1. Then we can run the
extractor of LS to extract a witness for x ∈ L.

However, a cheating prover may not compute LS1, LS3 honestly. Thus to
prohibit any dishonest prover behavior, we require P to send an additional proof
for that LS1 and LS3 are generated honestly from u1 and a witness. Concretely,
we let P use ZAP to do this. Typically, to employ a WI proof, the statement
to be proven by the proof is the OR of two sub-statements. Therefore, besides
(LS1, LS2, LS3), we also require P, V to use a same strategy to generate a more
independent transcript of LS, denoted (LS′

1, LS
′
2, LS

′
3), which are determined by

u2 and a witness. Then P proves to V in ZAP that either (LS1, LS3) or (LS′
1, LS

′
3)

is generated as specified.
In simulation the simulator computes Z1 ← Com(0n, 0n, 0|w|) and Z2 ←

Com(v1, v2) where v1, v2 are two random strings. Let Π denote the verifier’s
code and thus it is a witness for the public input to 2rUA. Then the simulator
can compute 2rUA2 with witness Π and compute (LS1, LS3) from (v1, 2rUA2) and
(LS′

1, LS
′
3) from (v2, 2rUA2). Thus the protocol can be proven zero-knowledge.

2.2 Overview of The Protocol

Primitives. Let Com denote a one-message perfectly-binding computationally-
hiding commitment scheme e.g. one in [9] which satisfies |Com(msg)| = O(|msg|).
Let ZAP denote the 2-round public-coin WI proof for NP constructed in [11],
(ZAP1,ZAP2) denote the two messages of ZAP. Note that ZAP is sound even if
the public input is chosen adaptively after ZAP1 is sampled. Let LS denote the
3-round WIPOK in [23], (LS1, LS2, LS3) denote the 3 messages of LS. Let 2rUA
denote the 2-round public-coin universal argument i.e. the 2-round variant of
Micali’s CS proof [26], (2rUA1, 2rUA2) denote the 2 messages of 2rUA. Let PRG
denote a pseudorandom generator constructed in e.g. [21].

Construction. Let L denote an arbitrary language in NP and w.l.o.g. assume
all witnesses for n-bit instances are of same length p(n) > n. Our protocol for

136 N. Ding

Public input: x (statement to be proven is “x ∈ L”);
Prover’s auxiliary input: w, (a witness for x ∈ L).

1. P → V : Send Z1 ← Com(u1, u2, w), Z2 ← Com(0n, 0n).
2. V → P : Send r ∈R {0, 1}np(n), 2rUA1, LS2, LS

′
2,ZAP1.

3. P → V : Send Z3 ← Com(0|2rUA2|), LS1, LS
′
1, LS3, LS

′
3,ZAP2.

Protocol 1 . The 3-round public-coin bounded-auxiliary-input ZKAOK.

L is shown in Protocol 1, which follows from the construction idea above. Let x
be the public input and P has a witness w for x ∈ L.

1. In Step 1, P sends Z1 ← Com(u1, u2, w), Z2 ← Com(0n, 0n).
2. In Step 2, V samples r ∈R {0, 1}np(n), 2rUA1, LS2, LS

′
2,ZAP1 and sends them.

3. In Step 3, P computes Z3 ← Com(0|2rUA2|), (LS1, LS3) from (u1, w) and
(LS′

1, LS
′
3) from (u2, w). (LS1, LS2, LS3) and (LS′

1, LS
′
2, LS

′
3) are both to prove

that x ∈ L or letting 2rUA2 ← Com−1(Z3), (2rUA1, 2rUA2) is a valid proof
for that there is Π of size 5n and Π(Z1, Z2) outputs r in nlog log n/10 steps.

Compute ZAP2 using witness (u1, w) such that (ZAP1,ZAP2) is a valid
proof for that either (LS1, LS2, LS3) or (LS′

1, LS
′
2, LS

′
3) is generated as specified.

Send Z3, LS1, LS
′
1, LS3, LS

′
3,ZAP2.

It can be seen that the protocol is public-coin and the completeness is satis-
fied. We now sketch the zero-knowledge and argument of knowledge properties
and the soundness follows.

Zero-Knowledge. Let S denote the simulator, V ∗ ∈ {0, 1}n be any PPT verifier
and x ∈ L. S(V ∗, x) works as follows. It samples s ∈ {0, 1}n and runs PRG(s) to
provide V ∗ coins in simulation. Let Π denote the program that has V ∗’s code,
x,PRG, s hardwired and emulates V ∗(x)’s computing while running PRG(s) to
provide it coins. So |Π| can be less than 5n and pad it to 5n bits.

In Step 1 S computes Z1 ← Com(0n, 0n, 0p(n)), Z2 ← Com(v1, v2) for random
v1, v2 ∈ {0, 1}n. Then emulate V ∗ to output (r, 2rUA1, LS2, LS

′
2,ZAP1). Once V ∗

sends out this message of Step 2, Π is actually a program such that Π(Z1, Z2)
outputs r in nlog log n/10 steps. In Step 3, S computes 2rUA2 using witness Π
and Z3 ← Com(2rUA2). Compute (LS1, LS3) from (v1, 2rUA2) and (LS′

1, LS
′
3)

from (v2, 2rUA2). Lastly, compute ZAP2 using witness (v2, 2rUA2).
Thus, the pseudorandomness of PRG, the hiding property of Com and the

WI properties of LS and ZAP ensure the indistinguishability of simulation.
Argument of Knowledge. We show there is an extractor E such that if P ′

is a polynomial-sized prover that can convince V of x ∈ L with probability ε,
E(P ′, x) outputs a witness for x with probability ε − neg(n). E works by first
interacting with P ′ of the protocol and then rewinding P ′ to re-do Steps 2 and

Three-Round Public-Coin Bounded-Auxiliary-Input Zero-Knowledge 137

3. Then E can receive a new valid P ′’s message of Step 3 in some rewinding run
in expected polynomial-time. Actually, we let E perform the rewinding process
constant times. So totally E has constant valid transcripts of the protocol.

Due to the soundness of ZAP, in each of the constant transcripts, either
(LS1, LS3) or (LS′

1, LS
′
3) is generated as specified. Since LS1 (or LS′

1) is determined
by one of u1, u2, v1, v2, which are committed in Z1, Z2 and thus are all fixed
before the rewinding. So in the constant valid transcripts, there are at least two
LS1 (or LS′

1) that are generated from a same one of u1, u2, v1, v2. Then E on the
corresponding two transcripts can output a witness that is w or 2rUA2.

Then we only need to show what E outputs is indeed w for x ∈ L. Notice
that |(Z1, Z2)| = O(p(n)) and for random r ∈ {0, 1}np(n), there exists Π of size
5n such that Π(Z1, Z2) outputs r with negligible probability. Thus there is no
polynomial-time algorithm that can output 2rUA2 such that (2rUA1, 2rUA2) is
a valid proof for that there is such a Π satisfying Π(Z1, Z2) outputs r with
noticeable probability, due to the soundness of 2rUA. So the witness output by
E must be w for x ∈ L except for negligible probability.

3 Actual Description

In this section we formalize the protocol and prove the main theorem. To facil-
itate the statement we first introduce some languages underlying the protocol,
which definitions are presented in Sect. 3.1, and then present the details of the
protocol and the proof of the theorem in Sect. 3.2.

3.1 Underlying Languages

Now we define the following languages which are used in Protocol 1 (and the
reader can refer to the protocol for the meaning of each string in these languages).

Definition 1. We define language L1 as follows: (x, r, 2rUA1, Z1, Z2, Z3) ∈ L1

iff letting n ← |x| there is a witness for x ∈ L or letting 2rUA2 ← Com−1(Z3),
(2rUA1, 2rUA2) is a valid proof of 2rUA for that there is a program Π of size 5n
such that Π(Z1, Z2) outputs r in nlog log n/10 steps.

Then L1 ∈ NP. Note that in Definition 1 the public input to 2rUA is (Z1, Z2, r)
and a witness for (Z1, Z2, r) is some Π. Let P2rUA denote the prover algorithm of
2rUA that on input the public input (Z1, Z2, r) and witness Π and 2rUA1 outputs
2rUA2. We use the notation 2rUA2 ← P2rUA((Z1, Z2, r),Π, 2rUA1) to denote this
computation.

Let INSL1 denote an instance of L1 that is of form (x, r, 2rUA1, Z1, Z2, Z3).
A witness W for INSL1 ∈ L1 is either w for x ∈ L or 2rUA2 (and the coins in
computing Z3 that we omit for simplicity) satisfying the second requirement in
Definition 1. Let LS be the proof system for L1. We still use LS1 ← PLS(1|INSL1 |),
LS3 ← PLS(1|INSL1 |, LS2, INSL1 ,W) to denote the prover’s computations in the
two consecutive steps of LS.

138 N. Ding

Definition 2. We define language L2 as follows: (INSL1 , LS1, LS2, LS3) ∈ L2

where INSL1 = (x, r, 2rUA1, Z1, Z2, Z3) iff one of the following is true:

1. Let u be the first or second message and w be the third message in Com−1(Z1).
Then LS1 = PLS(1|INSL1 |) and LS3 = PLS(1|INSL1 |, LS2, INSL1 , w) where run-
ning PRG(u) to provide PLS coins.

2. Let v be any of the two messages in Com−1(Z2) and 2rUA2 be Com−1(Z3).
Then LS1 = PLS(1|INSL1 |) and LS3 = PLS(1|INSL1 |, LS2, INSL1 , 2rUA2) where
running PRG(v) to provide PLS coins.

Then L2 ∈ NP. In Definition 2 we assume Z1, Z2 are commitments of
more than one messages. For instance (in our protocol) Z1 = Com(u1, u2, w)
and we consider Z1 actually consists of Com(u1),Com(u2),Com(w) (similarly
for Z2). Thus by saying u is the first message in Com−1(Z1), we mean u =
Com−1(Com(u1)) and to prove it one only needs the decommitment of Com(u1),
denoted decom(Com(u1)), regardless of those of Com(u2),Com(w). A witness for
(INSL1 , LS1, LS2, LS3) ∈ L2 is some (u,w) or some (v, 2rUA2) (and some coins in
decommitments that we omit for simplicity).

Definition 3. We define language L3 as follows: (INSL1 , LS1, LS2, LS3, LS
′
1, LS

′
2,

LS′
3) ∈ L3 iff (INSL1 , LS1, LS2, LS3) ∈ L2 or (INSL1 , LS

′
1, LS

′
2, LS

′
3) ∈ L2.

Then L3 ∈ NP. A witness for (INSL1 , LS1, LS2, LS3, LS
′
1, LS

′
2, LS

′
3) ∈ L3 is a

witness either for (INSL1 , LS1, LS2, LS3) ∈ L2 or for (INSL1 , LS
′
1, LS

′
2, LS

′
3) ∈ L2.

3.2 Detailed Specifications

Now we present the specification of Protocol 1 as follows.

1. In Step 1, P samples u1, u2 ∈ {0, 1}n, computes Z1 ← Com(u1, u2, w), Z2 ←
Com(0n, 0n) and sends them to V .

2. In Step 2, V responds with r ∈R {0, 1}np(n), 2rUA1, LS2, LS′
2,ZAP1.

3. In Step 3, P does the following:
(a) Compute Z3 ← Com(0|2rUA2|). Let INSL1 ← (x, r, 2rUA1, Z1, Z2, Z3).
(b) Compute LS1 ← PLS(1|INSL1 |), LS3 ← PLS(1|INSL1 |, LS2, INSL1 , w) where

running PRG(u1) to provide PLS coins.
(c) Compute LS′

1 ← PLS(1|INSL1 |), LS′
3 ← PLS(1|INSL1 |, LS′

2, INSL1 , w) where
running PRG(u2) to provide PLS coins.

(d) Compute ZAP2 for (INSL1 , LS1, LS2, LS3, LS
′
1, LS

′
2, LS

′
3) ∈ L3 using wit-

ness (u1, w) corresponding to ZAP1. (Note that (u2, w) is also a witness,
but we just let P use (u1, w).)

Send (Z3, LS1, LS
′
1, LS3, LS

′
3,ZAP2) to V , which accepts x iff (ZAP1,ZAP2) is

a valid proof for (INSL1 , LS1, LS2, LS3, LS
′
1, LS

′
2, LS

′
3) ∈ L3.

Then we restate the main theorem and present the proof as follows.

Theorem 2. Assuming the existence of Com,ZAP, 2rUA (which imply LS,PRG),
Protocol 1 satisfies all the properties claimed in Theorem 1.

Three-Round Public-Coin Bounded-Auxiliary-Input Zero-Knowledge 139

Proof. We show the completeness, zero-knowledge and argument of knowledge
properties are satisfied and the computational soundness follows from the argu-
ment of knowledge property.

Completeness. It can be seen that P can use w to finish the interaction.

Zero-Knowledge. We present a strict-polynomial-time non-black-box simula-
tor S for any PPT V ∗ ∈ {0, 1}n and any x ∈ L. S samples s ∈ {0, 1}n and runs
PRG(s) to provide V ∗ coins. Let Π denote the program that has V ∗’s code and
x,PRG, s hardwired and emulates V ∗(x)’s computing while running PRG(s) to
provide it coins. So Π’s size can be less than 5n and pad it to 5n bits.

1. In Step 1 S samples v1, v2 ∈ {0, 1}n and computes Z1 ← Com(0n, 0n, 0p(n)),
Z2 ← Com(v1, v2). Then emulate V ∗ to output (r, 2rUA1, LS2, LS

′
2,ZAP1).

Once V ∗ sends out this message of Step 2, Π is a program such that Π(Z1, Z2)
outputs r in nlog log n/10 steps.

2. In Step 3, S computes (Z3, LS1, LS3, LS
′
1, LS

′
3,ZAP2) as follows:

(a) Compute 2rUA2 ← P2rUA((Z1, Z2, r),Π, 2rUA1) and Z3 ← Com(2rUA2).
Let INSL1 denote (x, r, 2rUA1, Z1, Z2, Z3).

(b) Compute LS1 ← PLS(1|INSL1 |), LS3 ← PLS(1|INSL1 |, LS2, INSL1 , 2rUA2)
where running PRG(v1) to provide PLS coins.

(c) Compute LS′
1 ← PLS(1|INSL1 |), LS′

3 ← PLS(1|INSL1 |, LS′
2, INSL1 , 2rUA2)

where running PRG(v2) to provide PLS coins.
(d) Compute ZAP2 for (INSL1 , LS1, LS2, LS3, LS

′
1, LS

′
2, LS

′
3) ∈ L3 using wit-

ness (v2, 2rUA2) corresponding to ZAP1.

It can be seen that S runs in polynomial-time. We now show S’s output is
indistinguishable from V ∗’s real view interacting with P (w). Let S0 denote the
interaction between V ∗ and P (w) where V ∗’s coins are from PRG(s). Thus the
view output by S0 is indistinguishable from V ∗’s real view due to the pseudoran-
domness of PRG(s). In the following we use some hybrids to show S0’s output is
indistinguishable from S’s.

Hybrid 1. Let S1 denote S0 except that it adopts S’s strategy to compute Z2.
Due to the hiding property of Com, the two outputs are indistinguishable.

Hybrid 2. Let S2 denote S1 except that it adopts S’s strategy to compute Z3.
So similarly, S2’s output and S1’s are indistinguishable.

Hybrid 3. Let S3 denote S2 except that it adopts S’s strategy to compute
LS′

1, LS
′
3. That is, S3 generates (LS′

1, LS
′
3) from (v2, 2rUA2), while S2 generates

them from (u2, w). Basically, the indistinguishability of S3’s output and S2’s
follows from the hiding property of Com, the pseudorandomness of PRG and the
WI property of LS. We show it in detail through the following more hybrids.

1. Hybrid 3.1. Let S3,1 denote S2 except that it generates LS′
1, LS

′
3 from

PRG(u′) for an independently random u′ ∈ {0, 1}n and witness w. Thus
S3,1 differs from S2 only in that the coins S3,1 uses in computing LS′

1, LS
′
3 are

PRG(u′) and what S2 uses is PRG(u2).

140 N. Ding

Let z denote (x, s, Z1, Z2, Z3, decom(Com(u1)), decom(Com(w))) generated
using S2’s strategy (identically S3,1’s strategy). Let zu denote z except that
Com(u2) in Z1 is replaced by Com(u) for an independent u ∈ {0, 1}n.

We claim for any polynomial-sized D, (z,PRG(u′)) and (z,PRG(u2)) are
indistinguishable. Otherwise, suppose there is a D such that Pr[D(z,PRG
(u2)) = 1] − Pr[D(z,PRG(u′)) = 1] = ε for a noticeable ε. It can be first
seen Pr[D(zu,PRG(u2)) = 1] = Pr[D(z,PRG(u′)) = 1] because u2, u, u′ are
independently identically distributed. Thus this implies Pr[D(z,PRG(u2)) =
1] − Pr[D(zu,PRG(u2)) = 1] = ε. Then we construct a polynomial-sized D1

that can distinguish Com(u2) from Com(u) as follows.
D1 samples u2, u, u′. Send u2, u to a challenger that responds with C which

is either Com(u2) or Com(u). Then D1 generates z using S2’s strategy and
then replaces Com(u2) in Z1 of z with C. Let z′ denote the updated z. Thus
z′ is either still z or zu. Lastly, call D(z′,PRG(u2)) and output D’s output.
Due to D’s ability, D1 can distinguish Com(u2) from Com(u) with probability
ε. But this is impossible due to the hiding property of Com.

Then we claim any distinguisher D∗ for S3,1’s output and S2’s can be
transformed to a distinguisher with z for PRG(u′),PRG(u2). That is, the dis-
tinguisher has V ∗’s code hardwired and on input z and PRG(u′) or PRG(u2)
sends the message of Step 1 to V ∗ (with coins PRG(s)) and gains the message
of Step 2 and lastly generates LS1, LS3 from the coins PRG(u1) and w, LS′

1, LS
′
3

from the coins PRG(u′) or PRG(u2) and w, and further computes ZAP2 using
decom(Com(w)) and decom(Com(u1)) and then calls D∗ with the simulated
view, i.e. (x,PRG(s), Z1, Z2, Z3, LS1, LS

′
1, LS3, LS

′
3,ZAP2), that is either S3,1’s

output or S2’s to output a decision. It is impossible. So the two outputs are
indistinguishable.

2. Hybrid 3.2. Let S3,2 denote S3,1 except that it generates LS′
1, LS

′
3 from truly

random coins and w. Due to the pseudorandomness of PRG(u′), their outputs
are indistinguishable.

3. Hybrid 3.3. Let S3,3 denote S3,2 except that it generates LS′
1, LS

′
3 from truly

random coins and witness 2rUA2. Due to the WI property of LS, their outputs
are indistinguishable.

Thus S3 differs from S3,3 only in that the coins that S3 uses to compute
LS′

1, LS
′
3 are PRG(v2) and what S3,3 uses is truly random coins. Note that they

use the same witness 2rUA2. With a similar argument in Hybrids 3.2 and 3.1 (in
which now z also contains decom(Z3) for computing LS′

3), the outputs of S3,3

and S3 are indistinguishable. Thus S3’s output and S2’s are indistinguishable.

Hybrid 4. Let S4 denote S3 except that it adopts S’s strategy to compute ZAP2.
Due to the WI property of ZAP, S4’s output and S3’s are indistinguishable.

Hybrid 5. Let S5 denote S4 except that it adopts S’s strategy to compute
LS1, LS3. Thus similarly to Hybrid 3, S5’s output and S4’s are indistinguishable.

S5 differs from S only in Z1. So their outputs are indistinguishable due to the
hiding property of Com. Therefore V ∗’s real view and S’s output are indistin-
guishable. The zero-knowledge property is satisfied for all n-size V ∗. Since the
security parameter n can be scaled, this protocol can be modified to be zero-
knowledge for all V ∗ of size bounded by an a-prior fixed polynomial.

Three-Round Public-Coin Bounded-Auxiliary-Input Zero-Knowledge 141

Argument of Knowledge. We show there is an extractor E such that if P ′

is a polynomial-sized prover that can convince V of x ∈ L with noticeable
probability ε, E(P ′, x) outputs a witness for x with probability ε − neg(n). E
works as follows. First it emulates P ′ to send out Z1, Z2. In Step 2, E samples
r, 2rUA1, LS2, LS

′
2,ZAP1 honestly and sends them to P ′ and then receives P ′’s

message of Step 3. If one of P ′’s messages is invalid, abort the extraction. Oth-
erwise, perform the following process eight times: rewind P ′ to Step 2 in which
E samples the message of Step 2 honestly and sends it to P ′; if P ′’s response of
Step 3 is invalid in the rewinding run, repeat the rewinding until its message is
valid. Thus E gains eight valid P ′’s message of Step 3 in all rewinding runs.

Now totally E has nine valid transcripts of the protocol of which one is
generated in the first run and the latter eight are generated in the rewinding
processes. Due to the soundness of ZAP, in each of the eight transcripts, either
(INSL1 , LS1, LS2, LS3) ∈ L2 or (INSL1 , LS

′
1, LS

′
2, LS

′
3) ∈ L2, for which we call the

one of the two transcripts of LS being proven in ZAP primary. Since LS1 (or
LS′

1) of a primary transcript is determined by one of u1, u2, v1, v2, which are
committed in Z1, Z2 and thus are all fixed before the rewinding.

In the nine valid transcripts, there are at least five in which the primary tran-
scripts are (LS1, LS2, LS3) or (LS′

1, LS
′
2, LS

′
3). W.l.o.g. assume they are (LS1, LS2,

LS3). In these five (LS1, LS2, LS3), there are at least two in which the LS1’s
are generated from a same seed of u1, u2, v1, v2 and thus identical. Moreover,
the LS2’s in the two transcripts are different with 1 − 2−n probability. So E on
the two transcripts can output a witness for INSL1 ∈ L1, which is either w or
2rUA2. E finally outputs it. (Note that in E’s rewinding, 2rUA1 and Z3 may
change which means the public input INSL1 to LS may be different in the two
transcripts. That is, there are possibly two INSL1 ’s in the transcripts. However,
since the LS2’s in the two transcripts contain both 0 and 1 except for expo-
nentially small probability, E can recover witnesses for the two INSL1 ’s. It is
even possible that there are more than two transcripts that the extractor can
extract a witness. So E just outputs an arbitrary one. Notice that no matter how
INSL1 changes in the rewinding, x is unchanged. Thus what E outputs must be
a witness for x ∈ L and some 2rUA2.)

Let us first consider E’s running-time. Consider P ′’s message of Step 1 is valid
(otherwise E runs in polynomial-time). Let q1(n), q3(n) denote P ′’s running-time
in Steps 1 and 3. Let q2(n) denote E’s running-time in Step 2 and q4(n) denote
the running-time of the extractor of LS. Assume when fixing P ′’s message of
Step 1, P ′ can send a valid message of Step 3 with probability ξ for random
E’s message of Step 2. Then E’s total expected running-time is bounded by
q1(n) + q2(n) + q3(n) + ξ · (8/ξ · (q2(n) + q3(n)) + q4(n)) = poly(n).

We then claim the output by E is a witness w for x ∈ L except for negligible
probability. Notice that |(Z1, Z2)| = O(p(n)) and for random r ∈ {0, 1}n·p(n),
there exists Π of size 5n such that Π(Z1, Z2) outputs r with negligible probabil-
ity. Thus there is no polynomial-sized algorithm that can output 2rUA2 such that
(2rUA1, 2rUA2) is a valid proof for that there is such a Π such that Π(Z1, Z2)
outputs r with noticeable probability, due to to the soundness of 2rUA. So is the
expected polynomial-time E. So the witness output by E must be w for x ∈ L
except for negligible probability.

142 N. Ding

4 Concluding Remarks: On Extending
to the Unbounded-Auxiliary-Input Case

Having constructed the 3-round public-coin bounded-auxiliary-input ZKAOK,
we would like to employ the techniques in the previous sections to reduce the
exact round complexity of general public-coin ZKAOK (i.e. for unbounded-
auxiliary-input verifiers), for which bear in mind the best known round com-
plexity is 6. In this section we take a glimpse at the possibility of solving this
question with the techniques. However, currently we find this task extremely
difficult when insisting on using known reasonable assumptions. In Sect. 4.1, we
show when moving to the unbounded-auxiliary-input case and adopting some
natural modifications to Protocol 1, the main difficulty is to establish the argu-
ment of knowledge property as well as the soundness, which shows bypassing
the difficulty may require new assumptions. In Sect. 4.2 we sketch an idea to
modify the 4-round protocol in Sect. 4.1 which requires a (possibly unreason-
able) assumption to establish the argument of knowledge property. However,
due to the possible unreasonability of this assumption, we would not treat the
idea as a reasonable solution of constructing 4-round public-coin ZKAOK. Thus
the question of improving the exact round complexity of public-coin ZKAOK is
still open and will be our target in the future.

4.1 Difficulty in Extraction

Basically, we wish to extend Protocol 1 to a four-round protocol that is zero-
knowledge for any V ∗ ∈ {0, 1}poly(n). Thus a first idea is that let V send a
hash function h in Step 1 and P computes Z2 ← Com(0n, 0n, 0|h|) in Step 2
and other messages are similarly generated with those in Protocol 1 in which
the underlying languages are modified correspondingly (e.g. the statement for
2rUA to prove is now that there is Π of size < nlog log n/10 such that h(Π) equals
the third part of Com−1(Z2) and Π(Z1, Z2) = r). In simulation the simulator
S computes Z2 ← Com(v1, v2, h(Π)) where Π denotes the verifier’s code and
then generates 2rUA2 with witness Π and LS1, LS3, LS

′
1, LS

′
3,ZAP2 with witness

(v2, 2rUA2). Thus the protocol is still zero-knowledge. However, the difficulty is
to present an extractor or, even worse, to prove soundness directly.

Recall the proof of the argument of knowledge property of Theorem 2, where
we showed since there is no Π of size 5n satisfying Π(Z1, Z2) outputs r which
means the public input to 2rUA is false, what E outputs cannot be a valid
2rUA2 due to the soundness of 2rUA. However, when Π can be arbitrarily poly-
nomially long, a cheating prover may adaptively find a Π ′ after seeing r such
that Π ′(Z1, Z2) can output r and h(Π ′) is equal to the value committed in Z2.
So this prover may break the soundness. Also recall Barak’s auxiliary-input
zero-knowledge protocol in [2] for which to prove the soundness, an extractor
is required for the four-round universal argument. However, we now employ the
2-round 2rUA which is unknown to admit an extractor. So currently we do not
know how to establish the soundness from the underlying complexity assump-
tions, in particular from the collision resistance of hash functions.

Three-Round Public-Coin Bounded-Auxiliary-Input Zero-Knowledge 143

4.2 Introducing New Assumptions?

Accordingly, an idea of bypassing this difficulty is possibly to strength the
assumptions. The simplest way may be directly assuming the soundness. How-
ever, even with this quite strong assumption, we still cannot present an extractor.
Thus we may need another assumption other than directly assuming the sound-
ness. One way to do this is to consider to modify the protocol and then present a
related assumption. A possible modificiation is to use the tree hashing scheme in
[25] to hash Π instead of directly computing h(Π) in the protocol. Let Treeh(Π)
denote the hashing tree of Π with respect to h, rooth(Π) denote the root of
Treeh(Π), |rooth| denote the length of the root determined by h. Then in Step
2, P computes Z2 ← Com(0n, 0n, 0|rooth|). In Step 3, besides the original mes-
sages, V sends a random number Request that requests the value of the Requestth

leaf and corresponding certificate, denoted LeafCert, in Treeh(Π). In Step 4, P
computes Z3 ← Com(0|2rUA2|, 0|LeafCert|) and computes other messages basically
identically as before.

In simulation the simulator S computes Z2 ← Com(v1, v2, rooth(Π)) and
in Step 4 computes Z3 ← Com(2rUA2, LeafCert) and finishes the interaction.
Let us then consider a possible extractor. By applying the extractor shown in
the previous section to a prover we may extract a witness w for x ∈ L or
(2rUA2, LeafCert). If what is extracted is (2rUA2, LeafCert), we would like to
deduce some contradiction to the collision-resistance of h. By rewinding the
prover many times we may get many different LeafCert’s. Notice that all these
LeafCert’s share a same root. Thus the leaves in them may possibly recover a
program Π. However, there is still a problem that we are only ensured that
each LeafCert is an answer to Request in one Treeh(Π) in each extraction. We
are not assured that all these LeafCert’s are retrieved from a same Treeh(Π).
A cheating prover may possibly generate LeafCert’s from different Π’s in different
extractions. So even if we have gained these LeafCert’s, it is unknown how to
employ them to recover a full Π. Recall again Barak’s protocol [2], for which in
proving soundness a full Π can be extracted in the universal argument and then
we can reduce the soundness to the collision-resistance of h.

Whereas, let us pay more attention to the possibility that a cheating prover
generates LeafCert’s from different Treeh(Π)’s in different extractions. It can be
seen that each witness Π should satisfy that the root of its hashing tree equals
that one fixed in Z2. So it is hard to come up with more than one Π satisfying
the requirement. Then intuitively any prover cannot generate LeafCert’s from
different Treeh(Π)’s in extractions. On the contrary, it is natural that a prover
generates LeafCert’s from a same Treeh(Π) in extractions. Thus we can introduce
such an assumption that says (with overwhelming probability) there exists a Π
such that LeafCert’s in different extractions generated by an efficient prover are
from the same Treeh(Π). Then we have the following argument.

Suppose in extraction what is extracted is (2rUA2, LeafCert). Then by per-
forming the extractions twice we have two LeafCert’s. Due to the new assumption,
in each extraction the LeafCert is from a fixed Treeh(Π) which then corresponds
to a fixed Π. Since in the two extractions r is different and Π outputs r, the

144 N. Ding

two Π’s in the two extractions are different. Moreover, with some probability
the two Request’s happen to specify the position on which the two programs are
different. On the occurrence of this event the two LeafCert’s are different. On the
other hand, they share a same root, which contradicts the collision-resistance of
h. It is impossible. Thus what is extracted is actually w. The extractor works as
desired.

4.3 Summary

Section 4.2 presents a possible way to construct a 4-round public-coin ZKAOK.
But we would not treat it as a reasonable construction due to the newly intro-
duced assumption. Thus how to reduce the round number 6 for general public-
coin ZKAOK from reasonable assumptions is still an interesting open question.

Acknowledgments. The author shows his deep thanks to the reviewers of Inscrypt
2014 for their detailed and useful comments. This work is supported by the National
Natural Science Foundation of China (Grant No. 61100209) and Doctoral Fund of
Ministry of Education of China (Grant No. 20120073110094).

A Preliminaries

This section contains the notations and definitions used throughout this paper.

A.1 Basic Notions

A function μ(·), where μ : N → [0, 1] is called negligible if μ(n) = n−ω(1)

(i.e., μ(n) < 1
p(n) for all polynomial p(·) and large enough n’s). We will some-

times use neg(n) to denote an unspecified negligible function. We say that
two probability ensembles {Xn}n∈N and {Yn}n∈N are computationally indis-
tinguishable if for every polynomial-sized circuit family {Cn}n∈N it holds that
|Pr[Cn(Xn) = 1]−Pr[Cn(Yn) = 1]| = neg(n). We will sometimes abuse notation
and say that the two random variables Xn and Yn are computationally indistin-
guishable when each of them is a part of a probability ensemble such that these
ensembles {Xn}n∈N and {Yn}n∈N are computationally indistinguishable. We will
also sometimes drop the index n from a random variable if it can be inferred
from the context. In most of these cases, n will be the security parameter.

A.2 Commitment Schemes

A commitment scheme allows a party to digitally commit to a particular string,
and then to reveal this value at a later time.

Definition 4. A non-interactive perfectly-binding computationally-hiding com-
mitment scheme is a polynomial-time computable sequence of functions {Cn}n∈N

Three-Round Public-Coin Bounded-Auxiliary-Input Zero-Knowledge 145

where Cn : {0, 1}n × {0, 1}p(n) → {0, 1}q(n), and p(·), q(·) are some polynomials,
that satisfies:

Perfect Binding. For every x �=x′ ∈{0, 1}n, Cn(x, {0, 1}p(n))∩Cn(x′, {0, 1}p(n))
= φ.

Computational Hiding. For every x, x′ ∈ {0, 1}n, the random variables Cn(x;
Un) and Cn(x′;Un) are computationally indistinguishable.

A non-interactive perfectly-binding computationally-hiding commitment
scheme can be constructed under the assumption that one-way permutations
exist [9].

A.3 Interactive Proofs and Arguments

An interactive proof [19] is a two-party protocol, where one party is called the
prover and the other party is called the verifier. We use the following definition.

Definition 5. An interactive protocol (P, V) is called an interactive proof sys-
tem for a language L if the following conditions hold:

Efficiency: The number and total length of messages exchanged between P and
V are polynomially bounded and V is a probabilistic polynomial-time machine.

Perfect completeness: If x ∈ L, then V will always accept x.
Soundness: If x /∈ L, then the probability that V accepts x is neg(n).

Let L ∈ NP, an interactive argument for L [10] is the following variation on
the definition of an interactive proof.

1. The soundness requirement is relaxed to quantify only over prover strategies
P ∗ that can be implemented by a polynomial-sized circuit.

2. The system is required to have an efficient prover strategy.

A.4 Zero-Knowledge

We present the definition of zero-knowledge [19] as follows.

Definition 6 ((Auxiliary-Input) Zero-Knowledge). Let L = L(R) be some
language and let (P, V) be an interactive proof or argument for L. We say (P, V)
is auxiliary-input zero-knowledge if there exists a probabilistic polynomial-time
algorithm, called simulator, such that for every polynomial-sized circuit V ∗ and
every (x,w) ∈ R, the following two probability variables are computationally
indistinguishable:

1. The view of V ∗ in the real execution of (P (w), V ∗)(x).
2. The output of the simulator on input (x, V ∗).

146 N. Ding

If Definition 6, if the size of V ∗ should be bounded by an a-priori polyno-
mial, we call (P, V) is bounded-auxiliary-input zero-knowledge, and if V ∗ is a PPT
machine, we call (P, V) is plain zero-knowledge.

We say that a simulator is black-box if the only use it makes of its input V ∗

is to call it as a subroutine and thus we call (P, V) black-box zero-knowledge and
otherwise we call (P, V) non-black-box zero-knowledge.

A.5 Witness Indistinguishability

In a witness indistinguishable proof system [13] if both w1 and w2 are witnesses
that x ∈ L, then it is infeasible for the verifier to distinguish whether the prover
used w1 or w2 as auxiliary input. The formal definition is below.

Definition 7. Let L = L(R) be some language and (P, V) be a proof or argu-
ment system for L. We say that (P, V) is witness indistinguishable if for any
polynomial-sized circuit V ∗, any x,w1, w2 where (x,w1) ∈ R and (x,w2) ∈ R
such that the view of V ∗ in the interaction with P (x,w1) is computationally
indistinguishable from the view of V ∗ in the interaction with P (x,w2).

A.6 Proof of Knowledge

In a proof or argument of knowledge [6,12,19,29] the prover should convince
the verifier that it also knows a witness for x ∈ L. It means if the verifier is
convinced with some probability p by some (possibly cheating) prover strategy,
then by applying an efficient algorithm, called the knowledge extractor, to the
cheating prover’s strategy and private inputs, it is possible to obtain a witness
for x ∈ L, with probability (almost equal to) p. The formal definition is below.

Definition 8. Let L = L(R) and let (P, V) be a proof/argument system for L.
We say that (P, V) is a proof/argument of knowledge for L if there exists a prob-
abilistic (expected) polynomial-time algorithm E (called the knowledge extractor)
such that for every polynomial-sized prover strategy P ∗ and for every x ∈ {0, 1}n,
if we let p∗ denote P ∗’s convincing probability, then E(P ∗, x) outputs a witness
for x ∈ L with probability p∗ − neg(n).

We say that a proof/argument of knowledge has a black-box extractor if the
knowledge extractor algorithm E uses its first input (i.e., P ∗) as a black-box
subroutine (i.e., oracle). Otherwise, we say it a non-black-box extractor.

A.7 Universal Arguments

Universal arguments, introduced by [3], are interactive arguments of knowledge
for proving membership in NEXP. For sake of simplicity, we introduce the
definition of universal arguments only for an universal language LU : the tuple
〈M,x, t〉 is in LU if M is the verifying machine that accepts (x,w) within t steps.
Clearly, every language in NE is linear-time reducible to LU and every language
in NEXP is polynomial-time reducible to LU .

Three-Round Public-Coin Bounded-Auxiliary-Input Zero-Knowledge 147

Definition 9. An universal argument system is a pair of strategies, denoted
(P, V), that satisfies the following properties:

Efficient verification: There exists a polynomial p such that for any y =
(M,x, t), the total time spent by the (probabilistic) verifier strategy V , on com-
mon input y, is at most p(|y|). In particular, all messages exchanged in the
protocol have length smaller than p(|y|).
Completeness by a relatively-efficient prover: For every (y = (M,x, t), w)
in RU , Pr[〈P (w), V 〉(M,x, t)] = 1] = 1.

Furthermore, there exists a polynomial p such that the total time spent by
P (w), on common input (M,x, t), is at most p(TM (x,w)) ≤ p(t).

Computational soundness: For every polynomial-sized circuit family {P̃n}n∈N,
and every (M,x, t) ∈ {0, 1}n\LU , Pr[〈P̃n, V 〉(M,x, t)] = 1] < neg(n).

A weak proof of knowledge property: For every positive polynomial p there
exists a positive polynomial p′ and a probabilistic polynomial-time oracle machine
E such that the following holds:

For every polynomial-sized circuit family {P̃n}n∈N and every sufficiently long
y = (M,x, t) ∈ {0, 1}∗ if Pr[〈P̃ , V (M,x, t)] = 1] > 1

p(|y|) then Pr[EP̃∗(y) =
C s.t. [C] ∈ RU (y)] > 1

p′(|y|) (where [C] denotes the function computed by the
Boolean circuit C). The oracle machine E is called a (knowledge) extractor.

Note that the weaker proof of knowledge property may be considered as an
auxiliary feature, which can not be mandated by the basic definition of universal
arguments. [3] gave a construction of 4-round public-coin universal arguments
with the weak proof of knowledge property. A candidate of 2-round public-coin
constructions is the 2-round variant of Micali’s CS proof [26].

A.8 The LS Proof System in [23]

Now we describe the 3-round WIPOK protocol for the NP-complete language
graph Hamiltonicity (HC), provided by Lapidot and Shamir in [23]. This con-
struction is special in that only the size of the public input needs to be known
before the last round. The actual public input can therefore be decided during
the execution of a larger protocol.

Let k be the number of vertexes of graph G. G is represented by a k × k
adjacency matrix GMatrix where GMatrix[i][j] = 1 if there exists an edge
between vertexes i and j in G. A non-edge position (i, j) is a pair of vertexes
that are not connected in G and for which GMatrix[i][j] = 0. LS consists of k
parallel executions (with the same input G) of Protocol 2.

As noted by [27] LS enjoys the three properties. The first is witness indistin-
guishability. The second one is proof of knowledge: Getting the answer for both
b = 0 and b = 1 allows the extraction of the cycle. The reason is the following.
For b = 0 one gets the random cycle C. Then for b = 1 one gets the permutation
mapping the random cycle in the actual cycle w that is given to P . The third

148 N. Ding

Public input: G (statement to be proved is “G ∈ HC”);
Prover’s auxiliary input: w, (a witness for G ∈ HC).

1. P → V : P picks a random k-vertex cycle graph C and commits bit-by-bit to
the corresponding adjacency matrix using a statistically binding commitment
scheme.

2. V → P : V responds with a randomly chosen bit b.
3. P → V : If b = 0, P opens all the commitments, showing that the matrix com-

mitted in Step 1 is actually a k-vertex cycle. If b = 1, P sends a permutation π
mapping the vertex of C in G. Then it opens the commitment of the adjacency
matrix of C corresponding to the non-edges of the graph G.

Protocol 2 . The 3-round WIPOK LS in [23].

is that the first step is independent of the witness and the public input, since it
only requires the sampling of a random-cycle (k is the size of the public input
and must be known in advance). The witness and the public input are used only
in the last Step.

References

1. Ananth, P., Boneh, D., Garg, S., Sahai, A., Zhandry, M.: Differing-inputs obfusca-
tion and applications. IACR Cryptology ePrint Archive 2013, 689 (2013)

2. Barak, B.: How to go beyond the black-box simulation barrier. In: FOCS, pp.
106–115 (2001)

3. Barak, B., Goldreich, O.: Universal arguments and their applications. In: IEEE
Conference on Computational Complexity, pp. 194–203 (2002)

4. Barak, B., Lindell, Y.: Strict polynomial-time in simulation and extraction. In:
Reif, J.H. (ed.) STOC, pp. 484–493. ACM (2002)

5. Barak, B., Lindell, Y., Vadhan, S.P.: Lower bounds for non-black-box zero knowl-
edge. J. Comput. Syst. Sci. 72(2), 321–391 (2006)

6. Bellare, M., Goldreich, O.: On defining proofs of knowledge. In: Brickell, E.F. (ed.)
CRYPTO 1992. LNCS, vol. 740, pp. 390–420. Springer, Heidelberg (1993)

7. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: Recursive composition and boot-
strapping for snarks and proof-carrying data. In: Boneh, D., Roughgarden, T.,
Feigenbaum, J. (eds.) STOC, pp. 111–120. ACM (2013)

8. Bitansky, N., Canetti, R., Paneth, O.: How to construct extractable one-way func-
tions against uniform adversaries. Cryptology ePrint Archive, Report 2013/468
(2013). http://eprint.iacr.org/

9. Blum, M.: Coin flipping by telephone. In: Gersho, A. (ed.) CRYPTO, pp. 11–15.
U. C. Santa Barbara, Dept. of Elec. and Computer Eng., ECE Report No 82–04
(1981)

10. Brassard, G., Chaum, D., Crépeau, C.: Minimum disclosure proofs of knowledge.
J. Comput. Syst. Sci. 37(2), 156–189 (1988)

http://eprint.iacr.org/

Three-Round Public-Coin Bounded-Auxiliary-Input Zero-Knowledge 149

11. Dwork, C., Naor, M.: Zaps and their applications. SIAM J. Comput. 36(6), 1513–
1543 (2007)

12. Feige, U., Fiat, A., Shamir, A.: Zero knowledge proofs of identity. In: Aho, A.V.
(ed.) STOC, pp. 210–217. ACM (1987)

13. Feige, U., Shamir, A.: Witness indistinguishable and witness hiding protocols. In:
STOC, pp. 416–426. ACM (1990)

14. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candi-
date indistinguishability obfuscation and functional encryption for all circuits. In:
FOCS, pp. 40–49. IEEE Computer Society (2013)

15. Garg, S., Gentry, C., Halevi, S., Wichs, D.: On the implausibility of differing-inputs
obfuscation and extractable witness encryption with auxiliary input. In: Garay,
J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 518–535.
Springer, Heidelberg (2014). http://dx.doi.org/10.1007/978-3-662-44371-2 29

16. Goldreich, O., Kahan, A.: How to construct constant-round zero-knowledge proof
systems for np. J. Cryptology 9(3), 167–190 (1996)

17. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their valid-
ity and a methodology of cryptographic protocol design (extended abstract). In:
FOCS, pp. 174–187. IEEE Computer Society (1986)

18. Goldreich, O., Oren, Y.: Definitions and properties of zero-knowledge proof sys-
tems. J. Cryptology 7(1), 1–32 (1994)

19. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

20. Hada, S., Tanaka, T.: On the existence of 3-round zero-knowledge protocols.
In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 408–423. Springer,
Heidelberg (1998)

21. H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator
from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)

22. Katz, J.: Which languages have 4-round zero-knowledge proofs? In: Canetti, R.
(ed.) TCC 2008. LNCS, vol. 4948, pp. 73–88. Springer, Heidelberg (2008)

23. Lapidot, D., Shamir, A.: Publicly verifiable non-interactive zero-knowledge proofs.
In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 353–
365. Springer, Heidelberg (1991)

24. Lindell, Y.: A note on constant-round zero-knowledge proofs of knowledge. J. Cryp-
tology 26(4), 638–654 (2013)

25. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 218–238. Springer, Heidelberg (1990)

26. Micali, S.: Cs proofs (extended abstracts). In: FOCS, pp. 436–453. IEEE Computer
Society (1994)

27. Ostrovsky, R., Visconti, I.: Simultaneous resettability from collision resistance.
Electronic Colloquium on Computational Complexity (ECCC) 19, 164 (2012).
http://dblp.uni-trier.de/db/journals/eccc/eccc19.html#OstrovskyV12

28. Pandey, O., Prabhakaran, M., Sahai, A.: Obfuscation-based non-black-box sim-
ulation and four message concurrent zero knowledge for np. Cryptology ePrint
Archive, Report 2013/754 (2013). http://eprint.iacr.org/

29. Tompa, M., Woll, H.: Random self-reducibility and zero knowledge interactive
proofs of possession of information. In: FOCS, pp. 472–482. IEEE Computer Soci-
ety (1987)

http://dx.doi.org/10.1007/978-3-662-44371-2_29
http://dblp.uni-trier.de/db/journals/eccc/eccc19.html#OstrovskyV12
http://eprint.iacr.org/

A Model-Driven Security Requirements
Approach to Deduce Security Policies

Based on OrBAC

Denisse Muñante Arzapalo, Vanea Chiprianov(B),
Laurent Gallon, and Philippe Aniorté

LIUPPA, Université de Pau et des Pays de l’Adour, 64000 Pau, France
{denisseyessica.munantearzapalo,vanea.chiprianov,

laurent.gallon,philippe.aniorte}@univ-pau.fr

Abstract. Attacks on unsecured systems result in important loses. Many
of the causes are related to non-conformance of system architecture and
implementation to the requirements. To reduce these conformity prob-
lems, Model Driven Engineering proposes using modelling languages for
defining requirements and architecture and model transformations
between them. We therefore introduce a modelling language extension/
profile for defining system requirements with basic security requirement
concepts. We also formalize the model transformation between this pro-
file and a security formal verification method. We exemplify our approach
on a medical case study.

Keywords: Model-driven security · Model transformation · Require-
ments engineering · OrBAC · i* framework

1 Introduction

Nowadays, important financial loses are caused by attacks on systems. However,
many security breaches are caused by non-conformance of the system security
architecture and implementation to its requirements [1]. Therefore it is necessary
to ensure that the implementation of security policy mechanisms is conform to
its requirement specification.

Numerous approaches to specify security requirements exist (see Sect. 2).
However, if such an approach is to ensure conformity with the next phases in
the security life-cycle of architecture and implementation, it needs to describe
requirements in such a format so as to enable a (semi-)formal approach for
translating them into architecture. An additional concern is related to the fact
that such security requirements approaches usually involve security specialists.
However, in practice, such an expert is not always involved in the generic require-
ments elicitation phase, or security specialists implied in this phase do not have
sufficient knowledge about a specific security domain (e.g. access control). There-
fore, such specialised security requirements approaches cannot always be used by
the non-specialist actors. Nevertheless, it would be desirable to have at least fun-
damental security policies captured at this phase. Therefore, the requirements
c© Springer International Publishing Switzerland 2015
D. Lin et al. (Eds.): Inscrypt 2014, LNCS 8957, pp. 150–169, 2015.
DOI: 10.1007/978-3-319-16745-9 9

A Model-Driven Security Requirements Approach 151

Fig. 1. Overview of the proposed approach

approach that also takes into account security should offer the actors concepts
generic enough for them to be comfortable with, and also precise enough to be
translatable and expanded upon at the architecture level. Additionally, it would
be desirable to have preliminary verifications of the security requirements. Even
if in the requirements phase the level of details is quite sparse, early conflicts
may be discovered, influencing the further quality of the security architecture.

Model Driven Engineering (MDE) is an approach which uses modelling lan-
guages to describe the system at different phases of its life-cycle, and ensures
translations between them through formal model transformations. Model-driven
architecture (MDA) [2] uses models in the software development process and
proposes three levels of abstraction, in particular, a Computation Independent
Model (CIM) level presents what the system is expected to do (i.e. requirements)
and a Platform Independent Model (PIM) level represents how the system fulfills
its requirements and technical details (i.e. design/architecture).

To describe requirements in such a format so as to enable a (semi-)formal
approach for translating them into architecture, we present in Fig. 1 an MDE
approach in which requirements are modelled as CIM and the architecture is
modelled as PIM. We already contributed towards the PIM level [11] - a mod-
elling language extension based on UMLSec. In this paper we propose a language
extension/profile, based on i*, for capturing security requirements at the CIM
level. A model transformation can be further defined between the two levels.

The main contributions of this papers are:

– a model-driven modelling language extension/profile for capturing security
requirements. It is based on i*, choice which we argue in Sect. 2, and extend
it with basic security concepts inspired from the OrBAC metamodel. For
this profile to be easily usable by actors which are not security specialists,
we choose to model only basic, essential, generic security concepts.

– To make early evaluations and conflict detection in the requirements mod-
elled with this profile, we define a formal model transformation towards a
formal security verification method using MotOrBAC [9]. This transforma-
tion contains two steps: firstly we reduce the model written in the extended
i* language in order to suppress elements which are not related to security;
secondly, we deduce OrBAC security policies from this reduced model.

To sum up, we propose an MDE based approach which allows a designer non-
specialist in security to model requirements which contain security concerns and
to evaluate the security policies implicit in these requirements.

152 D.M. Arzapalo et al.

The remainder of the paper is organised as follows. Section 2 discusses related
works of model-driven security requirements methods and argues the choices
of i* as requirements method to be extended. Section 3 introduces the OrBAC
model and Sect. 4 introduces the i* metamodel extended with OrBAC’s elements.
Section 5 describes the model transformation between the security requirements
profile and the security formal method (OrBAC model). An example that illus-
trates our proposition is detailed in Sect. 6. Finally, Sect. 7 concludes this paper
and gives future works.

2 Related Works

There are many works deal with security using various modelling languages in
early stages of development systems. Abuse Frames [13], misuse cases [14] and
mal-activity diagrams [15] address security concerns through negative scenarios
executed by attackers. CORAS framework [20], Tropos goal-risk [21] and ISSRM
[22] are based on a risk analysis process. Some goal modelling languages have
been adapted to include security concepts: Secure i* [18], KAOS with anti-goal
models [16], Secure Tropos [17] and GBRAM [19]. To use these referenced works,
it is necessary that security specialists are part of the development team. In
contrast, our approach supports developers who could not be security experts
by deducing automatically security requirements from system requirements.

Some works are closed to our proposal. Mouratidis et al. [25] and Massacci
et al. [23] consider social and technical dimensions to identify security require-
ments. Ledru et al. [24] proposes an approach called KAOS2RBAC to identify
Role-Based Access Control (RBAC) [30] requirements from KAOS requirements.
Graa et al. [26] generate automatically OrBAC security policies from security
and functional goals through KAOS and a risk analysis method. These three
requirement approaches all use concepts dedicated to security, which implies the
need for security specialist to use them. In contrast to this, our approach has
more generic concepts which allow actors, who are not necessarily security spe-
cialists, to use it. Hatebur et al. [27] present a method to systematically develop
UMLsec [4] models from security requirements based on UML. We use i* frame-
work to represent systems requirements in a more expressively way.

The choice of i* metamodel has been performed through an analysis of
security requirement methods corresponding to model-driven and security cri-
teria such as Model/Standard of Development, Prototype, Security requirement,
Threat, Vulnerability, Risk ... [12]. On the other hand, we focus on OrBAC model
rather than RBAC model (as in [23]) because it allows to consider more complex
security rules using notions such as prohibitions, obligations, contexts, hierar-
chies, delegations, concrete entities, etc.

3 The Organization-Based Access Control (OrBAC)

The central entity in OrBAC [3] is the Organization, which can be seen as an
organized group of subjects, playing some roles. OrBAC allows policy designers

A Model-Driven Security Requirements Approach 153

to define a security policy independently of the implementation thanks to the
use of an abstract level and a concrete level. In OrBAC, subject, action and
object, which corresponds to concrete entities, are respectively abstracted into
role, activity and view, which corresponds to abstract entities.

A security policy is defined for and by an organization. This policy is a set
of rules (permissions, prohibitions, obligations or dispensations). The rules only
apply in a specific context. A context is a special condition between user, object
and action that control activation of rules in the access control policy [5]. There
are simple and complex contexts, for example, working-hours and not in holidays
contexts are simple contexts which can be assembled to obtain “a subject has
not to be in holidays and has to be in working-hours” as a complex context.

OrBAC uses predicates to define these rules. A predicate is seen as a property
that a subject has or is characterized by, hence, it is an expression that can be
true. Thus, the OrBAC abstract privilege predicates are used to define security
rules as follows: permission(org, r1, a1, v1, c1), prohibition(org, r1, a1, v1, C1)
predicates are defined to indicate that r1 is allowed/prohibited to perform a1
on v1 at the context c1 for org. And, obligation(org, r1, a1, v1, activationCtx,
violationCtx) compared to the permission and prohibition has two contexts:
activationCtx expresses the condition in which the obligation is activated, and
violationCtx expresses the condition (e.g. a deadline) in which the obligation
is violated. Moreover, obligations are often associated with access control to
express that some actions should be taken before, while or after resource usage.
These obligations are called pre, ongoing and post obligations respectively [8].

The previous predicates are based on the others ones: (i) the OrBAC relevant
predicates are used to indicate that an abstract entity is an relevant element for
an organization, (ii) the OrBAC abstraction predicates are used to assign a con-
crete entity to an abstract entity within an organization: the empower predicate
is used to assign subjects to roles, the use predicate is used to assign objects to
views and the consider predicate is used to assign actions to activities, (iii) and
the OrBAC hold predicate is used to associate a context to an organization.

One of the main advantages of OrBAC is that it can automatically derive
concrete rules from abstract rules. OrBAC also offers the mechanisms of delega-
tion [7] and inheritance [6] to make easier the definition of security policies.

4 The Security Requirements Profile

The specification of system requirements is conducted by adopting an approach
based on RE. There are many RE methods such as use cases, KAOS, Tropos,
NFR, ... and the well-known i*. The i* metamodel was used to extend security
concepts in [18,23,29]. But it is not used to derive automatically access control
policies based on OrBAC. The i* framework does not support all main entities of
OrBAC. In order to derive OrBAC security policies, in this section, we introduce
an extension of i* metamodel with OrBAC concepts.

154 D.M. Arzapalo et al.

4.1 The I* Metamodel

An overview of the i* metamodel is show in Fig. 2. The light elements corre-
spond to the classical i* and the shadow elements correspond to our extension.
An actor is an active entity that has strategic goals and intentionality within the
system, carries out activities, and produces entities to achieve goals by exercising
its knowhow [28]. Actors can be roles and agents. A role captures an abstract
characterization of the behavior of a social actor. An agent is an actor with
concrete manifestations and can play some role.

Fig. 2. The i* metamodel extended with the OrBAC concepts

Intentional elements defined by the i* framework are goals, softgoals, tasks,
and resources. A goal represents the intentional desire of an actor. Goals are
also called hard goals in contrast to softgoals which do not have clear criteria
for deciding whether they are satisfied or not. A task is a set of actions which
the actor needs to perform to achieve a goal. A resource is a physical or an
informational entity used to represent assets.

The metamodel in Fig. 2 also describe the relationships between intentional
elements inside the boundary of actors. Actors have (soft)goals and rely on other
(soft)goals, tasks, and resources to achieve them. Softgoals can be decomposed
into more softgoals using AND/OR that a goal (the end) can be achieved by
performing alternative tasks (the means). Tasks can be decomposed into any
other intentional elements through task decomposition relations. By decompos-
ing a task into sub-elements, one can express that the sub-elements need to
be satisfied or available to have the rootTask performed. Softgoals and other

A Model-Driven Security Requirements Approach 155

intentional elements can contribute either positively or negatively to the other
softgoals. This is expressed by the contribution relations.

4.2 The I* Metamodel Extended with the OrBAC Concepts

In this paper, we present the extension of i* metamodel which is divided into
OrBAC entities, OrBAC predicates and OrBAC additional mechanisms:

OrBAC Entities. In the extended i* metamodel, we add the OrBAC entities
except the organization entity because we consider that each system model corre-
sponds to one organization. In Fig. 2, we can use Role, Task and Resource entities
to represent roles, activities and views respectively. These elements correspond
to the OrBAC abstract entities. Moreover, for the OrBAC concrete entities, we
can use the entity Agent to represent subjects, and we add Objects and Actions
because we do not find entities related to these notions. Remember that using
these abstract entities, we can associate concrete entities to the system.

OrBAC Predicates. For this paper, it is not necessary to include the OrBAC
relevant predicates because we assume that there is only one organization for
each system model, hence all the entities will belong to this “organization”.

For the OrBAC abstraction predicates, in the i*, we can use the play relation
between agents and roles to represent the empower predicate. In the same way,
we add the use relation between objects and resources, and the consider relation
between actions and tasks.

Related to the OrBAC hold predicate, contexts are attached to goals for us,
i.e. a goal is the intentional desire of an actor in a particular context. To rep-
resent contexts, we add the entity Context and the relation hold to associate a
context to a goal. For example, in a medical system, the goal of a physician is
to care patients and the context attached to it is that the patient is under the
responsibility of the physician. We also create the relation IsPartOf to assemble
simple contexts.

On the other hand, we do not create entities to represent the OrBAC abstract
privilege predicates used to define OrBAC security rules because we deduce them
automatically (Sect. 5).

Finally, we add the new relation responsibility which is used to generate some
security rules. In real life, people is responsible of a set of tasks according to roles
that they play within an organization. This scenario is for a usual ambiance
(context). However, the scenarios in unusual contexts can also be part of the
organization’s duty. For example, in the medical system, assistants can be in
charge of managing patients’ appointments in a usual context. Assistants can
also be in charge of consulting of the stock of medicine in an unusual context such
as urgency. We add the notion of responsibility to relate a role (the owner of the
responsibility) to a task (task involved in the responsibility) in a specific context
(Fig. 2). This notion allows to add a responsibility to a role, so-called positive
responsibility (+). However, it is also possible to add negative responsibilities
(-) to roles, thus a role is excluded to perform a task in a particular context.
For example, physicians cannot modify medical records in an audit context.

156 D.M. Arzapalo et al.

OrBAC Additional Mechanisms. The delegation mechanism is beyond the
scope of this paper because this mechanism is closer to an administrative work,
and it is difficult to model. In contrast, we can use the relation IsA of Roles
to represent the inheritance between roles. Then, we add the same relations to
resources and tasks (see Fig. 2).

4.3 Correspondence Between OrBAC Concepts and Concepts
of Our Extended I* Metamodel

Because the i* framework is intended to capture requirements in general, the
i* models do not contain the same information than just that related to secu-
rity, specifically OrBAC model. In Table 1, we show the correspondence between
OrBAC concepts and concepts of our extended i* metamodel. We use the symbol
(a) to distinguish OrBAC concepts added to i* metamodel, and the symbol
(b) to indicate which OrBAC concepts are deduced (see third column in Table 1).

As we are interested in deducing the OrBAC security rules, we should propose
a model transformation between security requirements profile (the extended i*
metamodel) and the security formal method (the OrBAC model, evaluated by
MotOrBAC). Notice that there are concepts of i* metamodel which are not
related to OrBAC (see Table 1). Therefore, we should determine the i* concepts
that be implied on our model transformation (and eliminate the other ones) to
deduce OrBAC security rules.

5 The Model Transformation Between the Security
Requirements Profile and the Security Formal Method

The goal of this section is to present the methodology we propose to deduce
OrBAC security rules from the extended i* metamodel. It is divided into two
activities:

– firstly, we need to reduce/simplify the i* modified meta-model by eliminating
all entities and relations which have no correspondance in the OrBAC meta-
model or are not necessary for our deduction process

– secondly, we analyse the reduced/simplified i* metamodel to identify config-
urations (or patterns) which imply a necessary OrBAC security rule.

The result of this process is the deduced OrBAC security policy (which is a
set of OrBAC security rules) implied in the initial requirements model.

Therefore, this section is divided into two subsections: in the first subsection,
we introduce such a reduction process in which we reduce the extended i* meta-
model to focus specifically on OrBAC security. And, in the second subsection,
we introduce a deduction process to deduce/extract OrBAC security policies.

A Model-Driven Security Requirements Approach 157

Table 1. Correspondence between OrBAC concepts and concepts of our extended i*
metamodel

OrBAC concepts Concepts of our extended i*

OrBAC
entities

Role Role

Activity Task

View Resource

Subject Agent

Action Action (∗)

Object Object (∗)

Context Context (∗)

OrBAC relevant role, relevant Not modelled because we

predicates activity, relevant view consider only one organization

Empower Play

Consider Consider (∗)

Use Use (∗)

Hold Hold (∗)

Permission Deducted rule (∗∗)

Prohibition Deducted rule (∗∗)

Obligation Deducted rule (∗∗)

OrBAC Separation of entities and Not modelled because they

additional Priorization of rules need more information

mechanisms

Delegation Not modelled because it is close to an
administrative notion

Role hierarchies IsA relation between roles

Activity hierarchies IsA relation between tasks (∗)

View hierarchies IsA relation between resources (∗)

x i* Entities: Boundary, Intentional
Element, Goal, SoftGoal, Actor

x i* Relations: Dependency, And/Or
Decomposition, Contribution,
Means-End, Task Decomposition,
Responsibility (∗)

(*) New concept added to i* metamodel
(**) Deducted concept

5.1 I* Metamodel Reduction Process According to Necessary
Conditions

Because i* is a requirements engineering method, its concepts and relations are
on the one hand, more general, and on the other hand, much less rigorous and
formal than those of OrBAC. Therefore, not all of its entities and relations can

158 D.M. Arzapalo et al.

correspond to those of OrBAC (see Table 1). To determine which i* metamodel
entities and relations have no correspondance in the OrBAC metamodel or are
not necessary for our deduction process, we define a reduction process.

This reduction process contains necessary criteria/conditions for the i* meta-
model entities and relations to correspond well to the OrBAC ones. By applying
these criteria/conditions, we obtain a reduced version of the i* metamodel which
both corresponds better to the OrBAC metamodel and enables easier implemen-
tation of the model transformation between the two metamodels.

Criteria. In this section, we present a list of criteria to reduce the extended i*
metamodel in order to preserve/obtain only the necessary entities and relations
used to deduce/extract OrBAC security policies.

(1) Optimisation criterion:
To reduce the number of i* metamodel entities to be processed, some entities
should be eliminated in a such way so that the resulting metamodel is (func-
tionally) similar with the initial metamodel. The similarity notion implies of
course a loss of information, i.e. the entity that will be eliminated no longer
exists in the model. However, for the resulted formal security model, this
should have no impact because these entities do not have direct counter-
parts in the security metamodel.

(2) Tree extraction criterion:
For implementation reasons, to be able to manipulate the i* models, which
are graphs, we need to extract a tree structure.

The main possibilities to extract a tree structure are around the concept
of Task and its composition relation of TaskDecomposition, and around the
concept of SoftGoal and its composition relation of AND/OR Decomposi-
tion. These options are analysed in the next section.

(3) Insufficient information criterion:
Because i* is a requirements engineering method and therefore does not
necessarily elicit rigorous and complete models, there may be information
which is not sufficient to deduce formal security models/rules. We decide to
discard such incomplete information.

Application of Criteria to I* Metamodel. In this section, we describe the
application of the criteria identified in the previous section. For each criterion,
we explain which entities of i* metamodel are implied.

(1) Optimisation criterion:
According to the application of this criterion, we eliminate all the entities
of extended i* we do not identify a direct counter-part in OrBAC. Then we
eliminate the entities SoftGoal, Goal, Intentional Element and Actor using
Table 1. Notice that Boundary is not eliminated. We deduce security rules
using roles, so we need to know their limits to determine the security rules
associated to these roles. These limits are represented by Boundary entities,
so it is important to preserve them.

A Model-Driven Security Requirements Approach 159

Some relations of the extended i* model are not related to OrBAC model:
Dependency, And/Or decomposition, Contribution, Means-end, Task decom-
position and Responsibility. According to the optimization criterion, we
decide to eliminate these relations, except if:
• they can generate security rules
• they relate entities of the reduced model.

As we explained, Responsibility relations imply security properties. Hence,
we should preserve them for the reduced model. Task Decomposition rela-
tions allow to decompose a task into a set of subtasks and resources, etc. If
we eliminate these relations, we can lose security information (for example,
rigths to use resources to perform tasks or subtasks). Therefore, we decide
preserve Task decomposition relations. Finally, if we eliminate Dependency
relations, we eliminate all relations between tasks of different roles. Hence, we
can also lose security information. Thus, we decide to preserve them. In brief,
we preserve the relations Dependency, Task Decomposition and Responsibil-
ity. And, we eliminate And/Or decomposition, Contribution and Means-end.

Notice that if a context is connected to a goal and this goal is eliminated.
Then, this context will be connected to tasks related to this goal.

(2) Tree extraction criterion:
Remember that the main possibilities to extract a tree structure are around
of Task and SoftGoal concepts. As the SoftGoal concept is eliminate apply-
ing the criterion 1, we choose the concept of Task for the tree extraction.

We call “rootTasks” the tasks associated directly to goals (not subgoals).
The rootTasks establish the first level of tree structure. Our deduction process
begins analyzing these tasks.

Every time an i* metamodel entity may be replaced/by-passed with a
Task entity, this should be done.

Therefore, we modify Dependency relations with Resource for Why to
point the Why ends towards Tasks that are decomposed into such Resources.

In the extended i* model, the relation Dependency is associated to Inten-
tional Element. Once Intentional Element is eliminated, the concepts Depen-
dum, Why and How associated to Intentional Element should be associated
to Resource and Task in the reduced model.

(3) Insufficient information criterion:
For us, relations between Tasks and Resources can be used to deduce/
generate possibly security rules. Hence, according to this criterion, we elimi-
nate Resources have no relation to other Tasks. In a similar way, Dependency
relations with Resource for How cannot be used to generate security rules.

Hence, we eliminate these Dependency relations.
The OrBAC rules are composed by contexts. Dependency relations with

Task for How where the task is not associated to any context cannot generate
security rules. Therefore, we eliminate these Dependency relations.

The Reduced I* Metamodel. After applying the previous criteria, we obtain
a reduced i* metamodel, which is depicted in Fig. 3.

160 D.M. Arzapalo et al.

Fig. 3. The simplified/reduced i* metamodel used for the deduction of OrBAC security
policies

Notice that, Task decomposition is associated to two entities: tasks (using
subtask relation) and resources (using resourceFor relation). We add a constraint
to restric the decomposition into only one entity (task decomposition can be
subtask or resourceFor, not both). We use the same idea for Dependency relation
which is associated to two dependum entities (tasks and resources).

In brief, the purpose of this section was to reduce the i* metamodel in order
to preserve/obtain the necessary entities and relations for the deduction process
of OrBAC security rules which will be explained in the next section.

5.2 Deduction Process to Extract/Deduce OrBAC Security Policies

In this section, we present the deduction process which extracts/deduces OrBAC
security rules from system requirements. The main idea is to identify configura-
tions (or patterns) in the simplified/reduced i* metamodel which imply a nec-
essary OrBAC security rule. We base our approach on a previous work [23] in
which the authors deduce RBAC security policies from SI* models.

As a result of the reduction process (Sect. 5.1), the model conforming to the
reduced i* metamodel contains a graph of tasks, tasks (we call them rootTasks)
which are composed of subtasks and ressources (see relations between entities
task, task decomposition and ressource on Fig. 3). From this graph, for each
rootTask, we extract a tree composed of its subtasks and ressources. Then, we
search for relations (ressourceFor in Fig. 3) between a rootTask (and also sub-
task) and a ressource in these trees. These relations imply a security rule, either
a permission, a prohibition or an obligation. We represent our tree extraction
and analysis algorithm as a set of equations.

In i* models, the functionality of a system is established defining the func-
tionality of roles implied in the system. Hence, the deduction of the security
policy of the system is defined as the deduction of security policies for its roles:

A Model-Driven Security Requirements Approach 161

Moreover, roles have boundaries where a set of task and resource entities as
well as a set of task decomposition, dependency and responsibility relations are
defined (see Fig. 3). We analyse these relations to find resourceFor relations:

– Task decompositions and Dependencies use tasks as root entities and why enti-
ties respectively. Moreover, tasks are inside the boundaries of roles, therefore
we infer that security policies for roles are defined as the deduction of security
rules for theirs tasks. However, we distinguish two kinds of tasks: rootTasks
and subTasks. The analyse of the tree structure starts from rootTasks (after
that a recursive equation is called to analyse subTasks).

– Responsibility relations use roles as owner entities, so it implies that secu-
rity policies for roles are defined as the deduction of security rules for their
responsibilities.

Therefore, the security policy of the role is defined as follows:

Security Rules for rootTasks. As we can see in Fig. 3, rootTasks can be
decomposed in subTasks (subTask relation) and resources (resourceFor relation).
In [23], ResourceFor relations are used to define RBAC permissions (a role is
granted to perform a task on a resource). Remember that we add the context
notion which is attached to tasks. Thus, we can infer/assume that roles perform
tasks on resources in specific contexts. Therefore, this inference is used to define
OrBAC security rules.

We analyse and extract OrBAC permissions from the tree structure (root-
Tasks and subTasks) using the same idea presented in [23]. For this, we define
permAccess as the recursive equation to analyse all subTasks in the tree struc-
ture. Thus, secRule(rootTask) is defined as permAccess(rootTask, role, context),
where role and context are associated to the rootTask (see Eq. 1).

In OrBAC, the dependency between security rules is defined using pre, post
and ongoing obligations (see Sect. 3). In particular, a pre-obligation can be seen
as a pre-requirement of a permission. In other words, the granted privilege of
a permission depends on the priviledge of its pre-obligations. In i* models, this
scenario of dependency can be depicted by subtask relations. A subtask relation
stablishes that the fulfilment of the task depends on the fulfilment of its subtasks.
Therefore, resourceFor relations related to tasks can imply OrBAC permission
and resourceFor relations related to subtasks can imply OrBAC pre-obligations.
Thus, we define the equation permAccess (see Eq. 1) as follows:

– If a task is associated to a resource then permAccess is defined as the gen-
eration of one OrBAC permission (OrBAC rule I) using this task and its

162 D.M. Arzapalo et al.

resource. And a set of obligations related to task decompositions (or subtasks)
and dependencies of the task are generated. For this, obligAccess (Eq. 1.1) and
obligAccessDep (Eq. 1.2) are defined.

– Otherwise (the task has no resource), permAccess is defined as the addition
of permissions for its subtasks using the same equation permAccess (as a loop
to analyse all subtasks to define all permission rules).

obligAccess(superTask, subTask, role, context) is defined as follows (Eq. 1.1):

A Model-Driven Security Requirements Approach 163

– If subTask is associated to a resource then obligAccess is defined as the gen-
eration of one OrBAC pre-obligation (OrBAC rule II) where the activation
context is the access request realised by superTask and the violation context
is not to obey the context of the equation (if the subtask is attached to a con-
text we use it). And a set of obligations for the subtasks and dependencies of
the subTask are generated using the same equations obligAccess (Eq. 1.1) and
obligAccessDep (Eq. 1.2) (as a loop to analyse all subtasks and dependencies
to define consecutive pre-obligations).

– Otherwise (subTask has no resource), obligAccess (Eq. 1.1) and obligAccess-
Dep (Eq. 1.2) are called for the subtasks of subTask provoking a loop to find
all pre-obligations. Notice that we use superTask (not subTask) in order to
indicate that the task that called these subtasks is the one associated with
the permission rule (generated above).

obligAccessDep(task, dependum (Eq. 1.2) is defined as the obligation for taskHow
which is the task (How entity) linked to the dependum in the dependency rela-
tion. For this, we use obligAccess (Eq. 1.1) as follows:

Security Rules for Responsibilities. As we mentioned, responsibility rela-
tions add or remove responsibilities for roles in order to perform tasks in unusual
contexts. Unusual contexts can be seen as exceptional scenarios to the normal
duty of the system. In spite of responsibilities being associated to exceptional
scenarios, they are also part of the business of the system. We use them to deduce
security rules using the equation secRule(responsibility) (Eq. 2). Notice that, in
Eq. 2, responsibility relations are positive or negative:

– If the type of responsibility is positive then we define secRule(responsibility)
as the generation of permissions of the task involved in the responsibility. We
reuse permAccess to generate permissions and pre obligations (Eq. 1).

– Otherwise (the type of responsibility is negative), we define secRule(respon-
sibility) as the generation of prohibitions of the task involved in the responsi-
bility (using prohibAccess). prohibAccess (Eq. 2.1) is defined as follows:
• If the involved task is associated to a resource then prohibAccess is defined

as the generation of one OrBAC prohibition (OrBAC rule III) using this
task and its resource. And a set of prohibitions for its subtasks is generated.

• Otherwise (the involved task has not any resource), prohibAccess is defined
as a set of prohibitions for its subtasks (as a loop to analyse all subtasks
to find all prohibition rules).

164 D.M. Arzapalo et al.

Notice that, we only deduce permissions, prohibitions and pre obligations rules.
We know that there are other kinds of obligations (post, ongoing and indepen-
dent resource-control obligations). They are not considered in this paper because
they are more complex to deduce, however they could be part of a future work.

6 Case Study: A Medical System

In this section, we simulate the execution of the model transformation introduced
previously. For this, we use a medical system where we have tried to cover all the
possible cases to deduce security rules (see Fig. 4). Notice that the new entities
and relations added to the i* metamodel are depicted in the second column of
the legend (the grey and blue elements).

In this model, we can distinguish three roles: physician, assistant and phar-
macist. A physician cares patients which are him/her responsibility, an assistant
manages appointments in working-hours and a pharmacist provides medicine in
working-hours.

To care patients, a physician needs to check the patient’s appointment and to
modify the medical record of the patient. After diagnosing the patient, the physi-
cian fulfills the record of duty control. On the other hand, the physician needs to
consult the stock to prescribe the medicine for the patient. To manage appoint-
ments, an assistant needs to assists (helps) a patient to save an appointment for
him/her. To provide medicine, a pharmacist modifies the stock of medicine.

Moreover, physicians are excluded to modify medical records during an audit
context (see the negative responsibility of physician). In the same way, assistants
are allowed to consult medicine in an urgency context (see the positive responsi-
bility of assistant). On the other hand, the subject John plays the role physician,
the action updateFileMR is considered as an implementation of the task modify
MR, and the object GeorgeMedRecord.doc is used by the resource medical record.

A Model-Driven Security Requirements Approach 165

Fig. 4. The reduced Medical System model

6.1 Applying the Reduction Process

According to the reduction process explained in Sect. 5.1, in Fig. 4, we present
the “reduced” model of the medical system.

Notice that goals such as care patients, save appointments and provide
medicine are removed (criterion 1). The contexts which were attached to these
goals point to their rootTasks.

Moreover, the task dependency check prescription is removed because is
related to the goal provide medicine as Why entity (criterion 1).

6.2 Applying the Deduction Process

To deduce security policies we use the equations introduced in Sect. 5.2. Remem-
ber that the security policy of a system is the addition of security policies of it
roles. And, the security policy of a role is a the addition of security rules of its
rootTasks and responsibilities. Hence, we have:

secPol(medSystem) = secPol(physician) + secPol(assistant) + secPol(pharmacist)

where: secPol(physician) = secRule(fulfill record) + secRule(prescribe medicine)

+ secRule((-)responsibility),

secPol(assistant) = secRule(save appointment) + secRule((+)responsibility),

and secPol(pharmacist) = secRule(modify stock).

For secRule(fulfill record) and secRule(prescribe medicine), we use Eq. 1 in the
deduction process (we apply the same equation for all rootTasks of other roles:
save appointment and modify stock):

166 D.M. Arzapalo et al.

secRule(fulfill record) = permAccess(fulfill record, physician, ctx1)
secRule(prescribe medicine) = permAccess(prescribe medicine, physician, ctx1)

For space reasons, we only simulate the execution of the formula permAccess
(fulfill record, physician, ctx1) step by step using Eq. 1. As fulfill record is asso-
ciated to the resource duty control. This formula generates the security rule:
“permission(physician, fulfill record, duty control, ctx1)” (OrBAC rule I). And,
fulfill record has the subTask diagnose patient and no depencies, hence only
obligAccess(fulfill record, diagnose patient, physician, ctx1) is realised (Eq. 1.1).
As diagnose patient is not associated to any resource, the deduction obtains the
subtasks and dependencies for it. Thus:

obligAccess(fulfill record, diagnose patient, physician, ctx1)
= obligAccess(fulfill record, modify MR, physician, ctx1)
+ obligAccessDep(fulfill record, check appointment).?

These two equations are realised as follows:

– For obligAccess(fulfill record, modify MR, physician, ctx1) (Eq. 1.1), as modify
MR is associated to the resource medical record, therefore obligAccess for
modify MR generates the security rule: “obligation(physician, modify MR,
medical record, access request(fulfill record), not ctx1)” (OrBAC rule II) which
means that a physician should modify a medical record when fulfill record
requires it, and the patient is responsibility of the physician.

– For obligAccessDep(fulfill record, check appointment) (Eq. 1.2), as check
appointment is related to the task save appointment of assistant, the equa-
tion obligAccess(fulfill record, save app, assistant, ctx4) is realised. Thus, this
equation generates the security rule: “obligation(assistant, save app, appoint-
ment, access request(fulfill record), not ctx4)” (OrBAC rule II) which means
that an assistant should save the appointment when fulfill record required it
during the working-hours. Notice that save app has the subtask assist patient,
however this subtask has no resources or subtasks, so it does not influence the
generation of security policies.

Therefore, secRule(fulfill record) is composed by three security rules: two
pre obligations and one permission. We employ the same process for secRule
(prescribe medicine) (see Eq. 1), and we obtain two security rules: “permis-
sion(physician, prescribe medicine, prescription, ctx1)”, “obligation(physician,
consult medicine, stock medicine, access request(prescribe medicine), not ctx1)”.

Notice that physician has a negative (-) responsibility associated to the task
modify MR in the audit context (ctx2). To deduce security rules for this respon-
sibility, we use secRule(responsibility) (Eq. 2). As the responsibility is negative,
a set of prohibition (Eq. 2.1) are generated to the task modify MR and its sub-
tasks (in this case there is no subtasks). Thus, the equation prohibAccess(modify
MR, physician, ctx2) generates the security rule: “prohibition(physician, modify
MR, medical record, ctx2)” (OrBAC rule III) which means that a physician is
prohibited to modify medical records in the audit context.

A Model-Driven Security Requirements Approach 167

Therefore, the security policy for the role physician is composed by six
security rules: secRule(fulfill record) and secRule(prescribe medicine) (secu-
rity policy for rootTasks) generate two permissions and three pre obligations.
And secRule(negative responsibility) (security policy for responsibilities) gen-
erates one prohibition. We make the same analysis for the other roles. We
finally obtain the following security policy: perm1:permission (physician, ful-
fill record, duty control, ctx1), oblig1:obligation (physician, modify MR, medical
record, access request(fulfill record), not ctx1), oblig2: obligation (assistant, save
app, appointment, access request(fulfill record), not ctx4), perm2: permission
(physician, prescribe medicine, prescription,ctx1) oblig3: obligation (physician,
consult medicine, stock medicine, access request(prescribe medicine), not ctx1),
prohib1 prohibition (physician, modify MR, medical record, ctx2), prem3: per-
mission (assistant, save app, appointment, ctx4), perm4: permission (assistant,
consult medicine, stock medicine, ctx3), perm5: permission (pharmacist, modify
stock, stock medicine, ctx4).

We use MotOrBAC tool to evaluate our proposition. The idea was to create
a prototype which generates files understood by MotOrBAC. These files contain
the security policies deduced through our proposition. These security rules have
been evaluated using MotOrBAC. In the evaluation of the set of previous security
rules, a set of probable conflicts were detected. For example, there is a possible
conflict between oblig1 and prohib1 when both contexts associated to them are
activated at a same time. These conflicts can be solved using MotOrBAC or in
a more specialized phase (e.g. design or implementation).

7 Conclusions

In this paper we presented an extension of the i* metamodel which allows to
define system requirements more expressively in order to enable a model trans-
formation to deduce access control policies based on OrBAC. In particular, we
extend the i* metamodel with the notions of context, inheritance, responsibility
and concrete entities.

Moreover, because the i* framework is intended to capture requirements
in general, the i* models do not contain the same information than just that
related to OrBAC model. Therefore, we proposed a reduction process in order
to reduce the extended i* metamodel to focus specifically on OrBAC. After that,
we analysed the simplified i* metamodel to identify configurations which imply
OrBAC security rules. We proposed a deduction process (as a set of equations)
using these configurations.

One of the main benefits of this work is allowing designers to define appro-
priate security policies by giving them the possibility to define contexts, inher-
itances, responsibilities and concrete entities such as objects and action not
considered in the i* metamodel. Additionally, we give a matching between sys-
tem requirements and OrBAC concepts.

Another benefit of this work, for us the most important benefit, is the
result of the model transformation (reduction and deduction processes) is the

168 D.M. Arzapalo et al.

deduced OrBAC security policy implied in the initial requirements model. It
allows designers to evaluate early OrBAC security policies in order to detect
and avoid potential problems which can be propagated to later phases of the
systems development.

As perspectives, we must study security rules such as ongoing and post oblig-
ations, and obligations independent of resource-usage to include in our proposi-
tion. Finally, we are looking into implementing the model transformation into a
language like QVT or ATL.

References

1. Anderson, R.: Security Engineering: A Guide to Building Dependable Distributed
Systems. Wiley, New York (2001)

2. Kleppe, A., Warmer, J., Bast, W.: MDA Explained-the Model Driven Architecture:
Practice and Promise. Addison-Wesley, Boston (2003)

3. Miége, A.: Definition of a formal framework for specifying security policies. The
Or-BAC model and extensions, Ph.D. Thesis (2005)

4. Jürjens, J.: UMLsec: extending UML for secure systems development. In: Jézéquel,
J.-M., Hussmann, H., Cook, S. (eds.) UML 2002. LNCS, vol. 2460, pp. 412–425.
Springer, Heidelberg (2002)

5. Cuppens, F., Miège, A.: Modelling contexts in the Or-BAC model. In: 19th Annual
Computer Security Applications Conference, December 2003

6. Cuppens, F., Cuppens-Boulahia, N., Miège, A.: Inheritance hierarchies in the Or-
BAC model and application in a network environment. In: Second Foundations of
Computer Security Workshop (FCS 2004) (2004)

7. Ben Ghorbel, M., Cuppens, F., Cuppens-Boulahia, N., Bouhoula, A.: Managing
delegation in access control models. In: 15th International Conference on Advanced
Computing and Communication (ADCOM 2007), Inde (2007)

8. Elrakaiby, Y., Cuppens, F., Cuppens-Boulahia, N.: Formal enforcement and man-
agement of obligation policies. Data Knowl. Eng. 71(1), 127–147 (2012)

9. Autrel, F., Cuppens, F., Cuppens-Boulahia, N., Coma, C.: MotOrBAC 2: a security
policy tool. In: Third Joint Conference on Security in Networks Architectures and
Security of Information Systems (SARSSI) (2008)

10. Muñante, D., Gallon, L., Aniorté, P.: An approach based on Model-driven Engi-
neering to define Security Policies using the access control model OrBAC. In: The
Eight International Workshop on Frontiers in Availability, Reliability and Security
(FARES) (2013)

11. Muñante, D., Gallon, L., Aniorté, P.: MoDELO: a MOdel-Driven sEcurity poLicy
approach based on Orbac. In: 8ème Conférence sur la Sécurité des Architectures
Réseaux et des Systèmes d’Information (SARSII) (2013)

12. Muñante, D., Chiprianov, V., Gallon, L., Aniorté, P.: A review of security require-
ments engineering methods with respect to risk analysis and model-driven engi-
neering. In: Teufel, S., Min, T.A., You, I., Weippl, E. (eds.) CD-ARES 2014. LNCS,
vol. 8708, pp. 79–93. Springer, Heidelberg (2014)

13. Lin, L., Nuseibeh, B., Ince, D., Jackson, M.: Using abuse frames to bound the scope
of security problems. In: Proceedings of the 12th IEEE International Conference
on Requirements Engineering (RE 2004), pp. 354–355. IEEE Computer Society
(2004)

14. Sindre, G., Opdahl, A.L.: Eliciting security requirements with misuse cases. Requir.
Eng. J. 10(1), 34–44 (2005)

A Model-Driven Security Requirements Approach 169

15. Sindre, G.: Mal-activity diagrams for capturing attacks on business processes.
In: Heymans, P., Sawyer, P. (eds.) REFSQ 2007. LNCS, vol. 4542, pp. 355–366.
Springer, Heidelberg (2007)

16. van Lamsweerde, A.: Elaborating security requirements by construction of inten-
tional anti-models. In: Proceedings of the 26th International Conference on Soft-
ware Engineering, pp. 148–157, 23–28 May 2004

17. Mouratidis, H., Giorgini, P.: Secure tropos: a security-oriented extension of the
tropos methodology. Int. J. Softw. Eng. Knowl. Eng. 17(2), 285–309 (2007)

18. Elahi, G., Yu, E.: A goal oriented approach for modeling and analyzing security
trade-offs. University of Toronto. Technical report (2007)

19. Anton, A.I., Earp, J.B.: Strategies for developing policies and requirements for
secure electronic commerce systems. North Carolina State University. Technical
report (2000)

20. Braber, F., Hogganvik, I., Lund, M.S., Stolen, K., Vraalsen, F.: Model-based secu-
rity analysis in seven steps-a guided tour to the CORAS method. BT Technol. J.
25(1), 101–117 (2007)

21. Asnar, Y., Giorgini, Y.P., Massacci, F., Zannone, N.: From trust to dependability
through risk analysis. In: Proceedings of the International Conference on Availabil-
ity, Reliability and Security (AReS), pp. 19–26. IEEE Computer Society (2007)

22. Mayer, N., Rifaut, A., Dubois, E.: Towards a risk-based security requirements
engineering framework. In: Proceedings of the 11th International Workshop on
Requirements Engineering: Foundation for Software Quality (REFSQ 2005), in
Conjunction with the 17th Conference on Advanced Information Systems Engi-
neering (CAiSE 2005) (2005)

23. Massacci, F., Zannone, N.: A model-driven approach for the specification and
analysis of access control policies. In: Meersman, R., Tari, Z. (eds.) OTM 2008,
Part II. LNCS, vol. 5332, pp. 1087–1103. Springer, Heidelberg (2008)

24. Ledru, Y., Richier, J., Idani, A., Labiadh, M.: From KAOS to RBAC: a case study
in designing access control rules from a requirements analysis. In: 6ème Conf. sur la
Sécurité des Architectures Réseaux et des Systèmes d’Information (SARSSI 2011)
(2011)

25. Mouratidis, H., Jürjens, J., Fox, J.: Towards a comprehensive framework for secure
systems development. In: Martinez, F.H., Pohl, K. (eds.) CAiSE 2006. LNCS, vol.
4001, pp. 48–62. Springer, Heidelberg (2006)

26. Graa, M., Cuppens-Boulahia, N., Autrel, F., Azkia, H., Cuppens, F., Coatrieux, G.,
Cavalli, A., Mammar, A.: Using requirements engineering in an automatic security
policy derivation process. In: Garcia-Alfaro, J., Navarro-Arribas, G., Cuppens-
Boulahia, N., de Capitani di Vimercati, S. (eds.) DPM 2011 and SETOP 2011.
LNCS, vol. 7122, pp. 155–172. Springer, Heidelberg (2012)

27. Hatebur, D., Heisel, M., Jürjens, J., Schmidt, H.: Systematic development of
UMLsec design models based on security requirements. In: Giannakopoulou, D.,
Orejas, F. (eds.) FASE 2011. LNCS, vol. 6603, pp. 232–246. Springer, Heidelberg
(2011)

28. Yu, E.: Modelling strategic relationships for process reengineering. Ph.D. thesis,
University of Toronto (1995)

29. Elahi, G., Yu, E., Zannone, N.: A vulnerability-centric requirements engineering
framework: analyzing security attacks, countermeasures, and requirements based
on vulnerabilities. Requir. Eng. 15(1), 41–62 (2010)

30. Sandhu, J.R., Coyne, E.J., Feinstein, H.J., Youman, C.E.: Role-based access control
models. IEEE Comput. 29, 38–47 (1996)

Optimal Proximity Proofs

Ioana Boureanu1(B) and Serge Vaudenay2

1 Akamai Technologies Limited, EMEA HQ, London, UK
icboureanu@gmail.com

http://people.itcarlson.com/ioana
2 EPFL, Lausanne, Switzerland

http://lasec.epfl.ch

Abstract. Provably secure distance-bounding is a rising subject, yet an
unsettled one; indeed, very few distance-bounding protocols, with formal
security proofs, have been proposed. In fact, so far only two protocols,
namely SKI (by Boureanu et al.) and FO (by Fischlin and Onete), offer
all-encompassing security guaranties, i.e., resistance to distance-fraud,
mafia-fraud, and terrorist-fraud. Matters like security, alongside with
soundness, or added tolerance to noise do not always coexist in the (new)
distance-bounding designs. Moreover, as we will show in this paper, effi-
ciency and simultaneous protection against all frauds seem to be rather
conflicting matters, leading to proposed solutions which were/are sub-
optimal. In fact, in this recent quest for provable security, efficiency has
been left in the shadow. Notably, the tradeoffs between the security and
efficiency have not been studied. In this paper, we will address these
limitations, setting the “security vs. efficiency” record straight.

Concretely, by combining ideas from SKI and FO, we propose sym-
metric protocols that are efficient, noise-tolerant and—at the same time
—provably secure against all known frauds. Indeed, our new distance-
bounding solutions outperform the two aforementioned provably secure
distance-bounding protocols. For instance, with a noise level of 5 %, we
obtain the same level of security as those of the pre-existent protocols,
but we reduce the number of rounds needed from 181 to 54.

1 Introduction

As wireless technologies become more and more pervasive, being used daily in
access control, remote unlocking credit-card payments and beyond, relay attacks
also become a growing threat to the social acceptance of these techniques.
It seems likely that nearly all wireless devices will eventually have to imple-
ment solutions to thwart these types of fraud. To defeat relay attacks, Brands
and Chaum [12] introduced the notion of distance-bounding protocols. Distance
bounding is a special problem of position-based cryptography [13]. Although
there are many challenges to implement it, this can be achieved [11]. These pro-
tocols rely on information being local and incapable of travelling faster than
the speed of light. So, in distance-bounding, an RFID reader can assess when

The full version of this paper is available on [10].

c© Springer International Publishing Switzerland 2015
D. Lin et al. (Eds.): Inscrypt 2014, LNCS 8957, pp. 170–190, 2015.
DOI: 10.1007/978-3-319-16745-9 10

Optimal Proximity Proofs 171

participants are close enough because the round-trip communication time must
have been short enough. The whole idea of distance-bounding is that a prover,
holding a key x, demonstrates that he is close to a verifier (who also knows this
key x). The literature on distance-bounding considers several threat models.

– Distance fraud (DF): a far-away malicious prover tries to illicitly pass the
protocol.

– Mafia fraud [16] (MF): a man-in-the-middle (MiM) adversary between a far-
away honest prover and a verifier tries to exploit the prover’s insights to
make the verifier accept. (This generalizes relay attacks as not only does this
adversary relay, but he may also modify the messages involved.)

– Terrorist fraud [16] (TF): a far-away malicious prover colludes with an adver-
sary to make the verifier accept the adversary’s rounds on behalf of this far-
away prover, in such a way that the adversary gains no advantage to later
pass the protocol on his own.

– Impersonation fraud [3]: An adversary tries to impersonate the prover to the
verifier.

– Distance hijacking [15]: A far-away prover takes advantage of some honest,
active provers (of which one is close) to make the verifier grant privileges for
the far-away prover.

Avoine et al. [1] proposed one of the very first (semi-formal) model. Later, Dürholz
et al. [17] proposed a formal model (herein called the DFKO model) based on
exhaustive lists of impossible traces in protocols. Boureanu et al. [7,9,30] pro-
posed a more complete model (herein called the BMV model) including the notion
of time. Based on all these models, there were several variants and generalizations
of these threats. The model in [7,9] factors all the previously enumerated common
frauds into three possible threats:

– Distance fraud. This is the classical notion, but concurrent runs with many
participants is additionally considered. I.e., it includes other possible provers
(with other secrets) and verifiers. Consequently, this generalized distance fraud
also includes distance hijacking.

– Man-in-the-middle. This formalization considers an attack working in two
phases. During a learning phase, the adversary can interact with many hon-
est provers and verifiers. Then, the attack phase contains a far away honest
prover of given ID and possibly many other honest provers and other verifiers.
The goal of the adversary is to make the verifier accept the proof with ID.
Clearly, this generalizes mafia fraud (capturing relay attacks) and includes
impersonation fraud.

– Collusion fraud. This formalization considers a far-away prover holding x who
helps an adversary to make the verifier accept. This might be in the presence
of many other honest participants. However, there should be no man-in-the-
middle attack stemming from this malicious prover. I.e., one should not extract
from this prover any advantage to (later) run a man-in-the-middle attack.

In Vaudenay [30], the last threat model is replaced by a notion coming from
interactive proofs:

172 I. Boureanu and S. Vaudenay

– Soundness. For all experiment with a verifier V, there exists an extractor such
that the following holds: if this extractor is given as input several views of all
participants which were close to V in several executions and which made him
accept therein, then this extractor reconstructs the secret x. This was further
shown to generalize collusion-fraud resistance [30].

In Sect. 2, we refine these models in a more natural way, including at its basis
a stronger, inner sense of interactive proofs. Indeed, distance-bounding (DB)
should ideally behave like a traditional interactive proof system as it really is a
proof of proximity. In this sense, it must satisfy: 1. completeness (i.e., an honest
prover close to the verifier will certainly pass the protocol); 2. soundness (i.e., if
the verifier accepts the protocol, then we could extract from close-by participants
the information to define a successful prover); 3. security (i.e., no participant
shall be able to extract some information from the honest prover to make the
verifier accept). These properties are similar to what is required in identification
protocols. They differ in that in DB we face the introduction of the notion of
proximity.

More precisely, in the above approach, distance fraud (as in Definition 6)
does not capture distance hijacking anymore, distance hijacking being now cap-
tured by soundness. This makes proofs simpler. To this end, we also formalize in
Definition 8 security without a learning phase, and we extend in Definition 10
the definition of soundness in such a way that the extraction of the secret is no
longer necessary.

There exist many distance-bounding protocols, but nearly all are broken in
some way. The following protocols are all vulnerable to TF [19,24]: Hancke-
Kuhn [21], Singelée-Preneel [28], Munilla-Peinado [25], Kim-Avoine [23], and
Nikov-Vauclair [26]. Kim et al. [24] proved that the return channel of the verifier
(i.e., whether the protocol succeeds or not) allows to do a MiM attack on the
protocol in Tu-Piramuthu [29]. It is also applicable against the protocol in Reid
et al. [27] as shown in Bay et al. [4]. Boureanu et al. [5] demonstrated that the
security arguments of [2,21,24,27] were incorrect by constructing instances satis-
fying the assumptions by the authors and trivially insecure. Finally, Hancke [20]
observed that noisy-resilience in nearly all protocols (including SwissKnife [24])
allowed to mount a TF. So, the problem of making provably secure distance
bounding is of utmost importance. So far, only the SKI protocol [6–9] (built on
the BMV model) and the Fischlin-Onete (FO) protocol [18] (built on the DFKO
model) provide an all-encompassing proven security, i.e., they protect against all
the above threats.

Organization. In Sect. 2, we advance revised security definitions for DB, ren-
dering a more intuitive model, whilst maintaining backward compatibility; we
also prove the latter preservation of results. In Sect. 3, we propose new, secure
DB protocols DB1, DB2, and DB3. Section 3.5 considers the tradeoffs between
security and efficiency, and presents the comparisons made in this sense. Results
for SKI and FO are recalled and revisited in the full paper [10].

Optimal Proximity Proofs 173

Contribution. The contribution of this paper is threefold:

– We build up on SKI [6–9] and FO [18,30] to propose DB1, DB2, and DB3,
three new distance-bounding protocols which outperform both the SKI and
the FO protocols.
For instance, to offer a false acceptance rate of under 1% and false rejection
rate of under 1%, at a noise level of 5% during the rapid bit-exchange, DB1
(with parameter q = 3) requires 14/14/54 rounds for resistance to distance
fraud / mafia fraud / terrorist fraud, respectively. For the same performance,
SKI and FO require 84/48/181 and 84/84/? rounds1, respectively. So, DB1
represents a substantial improvement in terms of efficiency, whilst maintaining
provable security.

– When considering optimality amongst protocols requiring at least τ out of n
correct rounds, no clock for the proer, and a challenge/response set of size q,
we show security as follows:

DF-resistance MF-resistance TF-resistance

DB1 (q > 2) secure, optimal secure, optimal secure

DB2 (q = 2) secure, suboptimal secure, optimal secure

DB3 (q = 2) secure, optimal secure, optimal insecure

– For our security proofs, we build on the BMV model [7,9,30]. In doing so, we
revisit the definition of mafia fraud / man-in-the-middle and the definition of
terrorist fraud / collusion fraud. Thus, we provide a complete set of security
definitions for distance-bounding, capturing the previous notions, but being
in line with the established theory behind interactive proofs.

Useful bounds for noisy communications. Following [7,9], to assert security in
noisy communications, we will make use of the tail of the binomial distribution:

Tail(n, τ, ρ) =
n∑

i=τ

(n

i

)
ρi(1 − ρ)n−i,

We recall that for any ε, n, τ, ρ such that τ
n < ρ − ε, we have Tail(n, τ, ρ) >

1 − e−2ε2n. For τ
n > ρ + ε, we have Tail(n, τ, ρ) < e−2ε2n. This comes from the

Chernoff-Hoeffding bound [14,22].

2 Revised DB Security Model and Proofs

We now refine the security definitions and other tools from the BMV model
[7,9,30]. In this section, we also discuss the links with the original notions.

In this paper, we concentrate on distance-bounding protocols based on sym-
metric cryptography (which is the overwhelmingly prevalent approach in DB).2

1 As discussed herein, FO has an incomparable approach for TF-resistance in which
the number of rounds is not relevant.

2 Our model was recently extended to cover public-key distance-bounding [31,32].

174 I. Boureanu and S. Vaudenay

Definition 1. A (symmetric) distance-bounding protocol is a tuple (K, P, V,B),
constructed of the following: a key domain K; a two-party probabilistic polynomial-
time (PPT) protocol (P (x), V (x)), where P is the proving algorithm, V is the
verifying algorithm, and x is taken from K; a distance bound B. At the end of the
protocol, the verifier V (x) sends a final message OutV . This output denotes that
the verifier accepts (OutV = 1) or rejects (OutV = 0).

Informally, a distance-bounding protocol is complete if executing P (x) ↔ V (x)
on locations within a distance bounded by B makes V (x) accept with over-
whelming probability. The formalism is straightforward with the settings below.

We compare our protocols to any DB protocol that follows what we call the
common structure.

Definition 2 (Common structure).A DB protocol with the common structure
based on parameters (n, τ, numc, numr) has some initialization and verification
phases which do not depend on communication times.3 These phases are separated
by n rounds of timed challenge/response exchanges. This is called the distance
bounding phase. A response is on time if the elapsed time between sending the
challenge and receiving the response is at most 2B. Provers don’t measure time.4

Challenges and responses are in sets of cardinality numc and numr, respectively.
When the protocol follows the specified algorithms but messages during the

distance bounding phase can be corrupted during transmission, we say that the
protocol is τ -complete if the verifier accepts if and only if at least τ rounds have a
correct and on-time response.

One can easily see that nearly all distance-bounding protocols in the literature
fit this definition.

In practice, when the timed phase is subject to noise, we assume that there
is a probability of pnoise that one round of challenge/response is corrupted. The
probability that an honest prover, close to the verifier, passes the protocol is thus
Tail(n, τ, 1 − pnoise). So, with τ

n < 1 − pnoise with a constant gap, the probability
to fail is negligible, due to the Chernoff-Hoeffding bound [14,22].

Participants, Instances, Setup and Locations.

– In a DB protocol, participants can be a prover, a verifier, or adversaries. The
prover and the verifier receive a key x which is randomly selected from the key
space. We adopt a static adversarial model: i.e., at the beginning of the exper-
iment, it is decided whether the prover is malicious or not. Participants have
several instances. An instance has a location. It corresponds to the execution
of a protocol during one session.

– A honest prover runs instances of the algorithm P denoted by P (x). An
instance of a malicious prover runs an arbitrary algorithm denoted by P ∗(x).
P denotes the set of instances of the prover.

3 The verification phase can be interactive or not.
4 Provers have no clock. They are in a waiting state to receive the challenge and loose

the notion of time while waiting.

Optimal Proximity Proofs 175

– The verifier is honest without loss of generality.5 He runs instances of the
algorithm V denoted by V (x). V denotes the set of instances of the verifier.

– Other participants are (without loss of generality) malicious and may run
whatever algorithm, but with no initialized key. The set of such malicious
participants is denoted A. By contrast, a designated, one such instance is
denoted A.

– Locations are elements of a metric space.

Why a Single Identity? Our definition uses a single identity, without loss of
generality. This is because provers or verifiers running the protocol with other
identities (and keys independent of x) could be considered as elements of A.

Definition 3 (DB Experiment). An experiment exp for a distance-bounding
protocol (K, P, V,B) is a setting (P,V,A) with several instances of participants,
at some locations, set up as above, and running an overall PPT sequence.

In the above definition, the notion of experiment implies simultaneously several
different entities: participants, physical locations, algorithms to be run by these
participants and corruption states. As such, when used inside further definitions,
the notion of experiment will implicitly or explicitly, upon the case, quantify over
these entities.

We further assume that communicating from a location to another takes time
equal to the distance. Indeed, no one can violate the fact that communication
is limited by the speed of light. Adversaries can intercept some messages and
replace them by others, but must adhere to the fact that computation is local.

Ideally, one should develop a formal model to define all these. This has actu-
ally been done in the BMV model [7,9]. In this paper, we keep the notions at the
intuitive level, mainly due to space limitations, and since such a formal model
would only be needed to prove the fundamental Lemma 4 below (which is proven
in and adapted from [9, Lemma 1]). We rather take it axiomatically herein.

Lemma 4 (Fundamental Lemma). Assume an experiment in which at some
point a participant V broadcasts a message c, then waits for a response r. We
let E be the event that the elapsed time between sending c and receiving r is at
most 2B. In the experiment, Close is the set of all participants (except V) which
are within a distance of up to B from V, and Far is the set of all participants at
a larger distance. For each user U , we consider his view V iewU just before the
time when U can see the broadcast message c.

We say that a message by U is independent6 from c if it was sent before U
could see c, i.e., if it is the result of applying algorithm U on V iewU , or on a
prefix of it.

There exists an algorithm Algo with the following property. If E holds and
r was sent from a participant in Close, we have r = Algo((V iewU)U∈Close, c, w),
5 A “malicious verifier” running an algorithm V ∗(x) can be seen as a malicious prover

running V ∗(x).
6 we stress that this is a local definition of independence which is unrelated to statis-

tical independence.

176 I. Boureanu and S. Vaudenay

where w is the list of all messages independent from c which are not already in
(V iewU)U∈Close but seen7 by any U ∈ Close. If E holds and r was sent from a
participant in Far, then the message r is independent from c.

This lemma can be summarized as follows: a close-by participant cannot get
online help from far away to answer correctly and in time to the challenge c.

Definition 5 (Distinguished Experiment). We denote by exp(V) an exper-
iment in which we fix a verifier instance V = V (x) from V, which we call
distinguished verifier. Participants which are within a distance of at most B
from a distinguished verifier V are called close-by participants. Others are called
far-away participants.

Participants can move during the experiment, but not faster than the transmis-
sion of information. For simplicity, we assume that far-away participants remain
far away during the experiment.

Definition 6 (α-resistance to distance fraud). We say that a distance-
bounding protocol α-resists to distance fraud if for any distinguished experiment
exp(V) where there is no participant close to V, the probability that V accepts is
bounded by α.

Compared to [9], this definition is simplified and does not capture the notion of
distance hijacking; therein, a far-away malicious P ∗(x) can make V accept by
taking advantage of several honest provers which do not hold x but are close to V.
In [9], some close-by honest participants are allowed in the definition of distance
fraud resistance. However, distance hijacking could generalize to the presence of
any close-by honest participant who is running a protocol (for whatever honest
reason) which could match (by some weird coincidence) the response function of
the malicious prover. This is not captured by the definition of [9]. Nonetheless, in
most of the cases, this bizarre situation can be ignored and we can concentrate on
regular distance frauds. So, we simplified on purpose our Definition 6, excluding
the more corner-case fraud of distance hijacking, as this simplifies the proofs
quite a lot. Nonetheless, distance hijacking and other extensions of classical
frauds will be captured by the notion of soundness, which we introduce below.
Overall, we will treat all threats.

Theorem 7. Given n, τ, numc, numr, a DB protocol following the common struc-
ture cannot8 α-resist to distance fraud for α lower than

Tail

(
n, τ,max

(
1

numc
,

1
numr

))
.

7 “Seen” means either received as being the destinator or by eavesdropping.
8 In [33], a protocol with two bits of challenges and one bit of response achieving

α = Tail(n, τ, 1
3
) is proposed. But it actually works with numr = 3 as it allows

response 0, response 1, and no response.

Optimal Proximity Proofs 177

Proof. We construct a DF following the early-reply strategy : a malicious prover
guesses with probability 1

numc
the challenge ci before it is emitted, and then he

sends the response so that it arrives on time. The rest of the protocol is correctly
simulated (with delay) after receiving the challenges. An incorrect guess would
look like a round which was the victim of noise. So, the attack succeeds with
probability Tail

(
n, τ, 1

numc

)
. We can have a similar attack guessing the response

r and succeeding with probability Tail
(
n, τ, 1

numr

)
. ��

While the above definition protects verifiers against malicious provers, we
need an extra notion to protect the honest prover against men-in-the-middle.
This is as follows.

Definition 8 (β-secure distance-bounding protocol). We say that a DB
protocol is β-secure if for any distinguished experiment exp(V) where the prover
is honest, and the prover instances are all far-away from V, the probability that
V accepts is bounded by β.

Intuitively, this notion protects honest provers from identity theft. It implies that
x cannot be extracted by a malicious participant; this is along the same lines
as in zero-knowledge interactive protocols. This notion of security also captures
resistance to relay attacks, mafia fraud, and man-in-the-middle attacks. The
advantage of Definition 8 over the resistance to man-in-the-middle attacks, as
it was defined in [7,9, Definition 4], is that we no longer need to formalize a
learning phase, although we can easily show we capture these notions as well.
Our definition is therefore simpler.

Theorem 9. Given n, τ, numc, numr, a DB protocol following the common struc-
ture cannot9 be β-secure for β lower than

Tail

(
n, τ,max

(
1

numc
,

1
numr

))
.

Proof. We consider V and a far-away instance of the prover P , and a close-
by MiM A. In the initialization phase and the verification phase, A passively
relays messages between V and P . During the challenge phase, and in the pre-ask
strategy, A guesses the challenge before it is released and asks for the response
to P on time so that he can later on answer to V. Clearly, the attack succeeds
with probability Tail

(
n, τ, 1

numc

)
. We can have a similar attack with a post-ask

strategy where A guesses the response at the same time he forwards the challenge
to P . This succeeds with probability Tail

(
n, τ, 1

numr

)
.10 ��

The definition below is adapted from [30]. One difference is that γ′ is no
longer necessarily 1−negl. It also considers extractors just passing the protocol,
9 Same remark about [33] as in Theorem 7.

10 Since provers loose the notion of time in the challenge phase, pre-ask and post-ask
attacks cannot be detected.

178 I. Boureanu and S. Vaudenay

instead of having to produce the secret; this is clearly more general. Our protocols
herein will make the secret extractable though.

Definition 10 ((γ, γ′,m)-soundness). We say that a DB protocol is (γ, γ′,m)-
sound if for any distinguished experiment exp(V) in which V accepts with
probability at least γ, there exists a PPT algorithm E called extractor, with the
following property. By E running experiment exp(V) several times, in some exe-
cutions denoted expi(V), i = 1, . . . , M , for M of expected value bounded by m,
we have that

Pr [OutV = 1 : E(View1, . . . ,ViewM) ↔ V|Succ1, . . . ,SuccM] ≥ γ′,

where Viewi denotes the view of all close-by participants (except V) and the
transcript seen by V in the run expi(V), and Succi is the event that V accepts in
the run expi(V).

In other words, the extractor impersonates the prover to V.11 In more details,
this means that having V accept in run expi(V) implies the following: a piece of x
was given to the close-by participants and it is stored in Viewi, and that m such
independent pieces, on average, could allow E to impersonate P (x) to V. This
notion is pretty strong as it could offer a guaranty against distance hijacking: a
prover making such attack would implicitly leak his credentials.

3 New Highly Efficient, Symmetric Distance-Bounding
Protocols

In the idea to outperform SKI and FO, we now advance a family of provably
secure symmetric distance-bounding protocols, called DBopt. It includes DB1,
DB2, and DB3. Indeed, we will see herein that DB1 is in fact optimal in terms of
distance-fraud resistance and security with non-binary challenges. The DB2 and
DB3 variants are motivated by the use of binary challenges, which is custom-
ary in distance-bounding designs. Whilst DB2 is suboptimal, it still performs
well, almost always, i.e., better than SKI and FO. DB3 is optimal but not TF-
resistant. The eager reader can directly inspect the performance/security graphs
in Fig. 2, page 187, where we plot the (logs of) fraud-resistance thresholds, i.e.,
− log2 α, − log2 β, and − log2 γ.

3.1 DBopt

We propose DBopt, a new family of symmetric distance-bounding protocols, as
depicted in Fig. 1. It combines ideas taken from SKI [6–9] and the Swiss-Knife
protocol [24] (as used by FO [18]). We use a security parameter s (the length
of the secret x, i.e., x ∈ K = Zs

2) and the following parameters based on s: the

11 Note that cases where there is a close-by prover or a close-by verifier are trivial since
they hold the secret x in their view.

Optimal Proximity Proofs 179

number of rounds n, the length �tag of tag, a threshold τ , the nonce length �nonce,
and a constant q which is a prime power, e.g., q = 2, q = 3, or q = 4. DBopt
follows the common structure with parameters n, τ , and numc = numr = q.

As in SKI, we assume Lμ(x) = (μ(x), . . . , μ(x)) for some function x �→ μ(x),
but μ is not necessarily linear. Concretely, μ is a vector in Zs

2 and map a fixed
injection from Z2 to GF(q). Hence, μ(x) = map(μ · x) maps a bitstring x to a
GF(q)-representation of the bit obtained by the scalar product μ · x. We let
L denote the set of all such possible Lμ mappings (map being fixed). The
function fx maps to different codomains, depending on its inputs: given two
nonces NP and NV , Lμ ∈ L, and b, c ∈ GF(q)n, fx(NP , NV , Lμ, b) ∈ GF(q)n and
fx(NP , NV , Lμ, b, c) ∈ GF(q)�tag .

Verifier Prover
secret: x secret: x

initialization phase

pick Lµ ∈U L, NV ∈U {0, 1} nonce
NP←−−−−−−−−−−−−− pick NP ∈U {0, 1} nonce

select b ∈ GF(q)n

a = fx(NP , NV , Lµ, b)
NV ,Lµ,b−−−−−−−−−−−−−→ a = fx(NP , NV , Lµ, b)

x = Lµ(x) x = Lµ(x)

distance bounding phase
for i = 1 to n

pick ci ∈U GF(q)

start timeri
ci−−−−−−−−−−−−−→ receive ci

receive ri, stop timeri
ri←−−−−−−−−−−−−− ri = φc

i
(ai, xi, bi)

verification phase

receive c , check tag = fx(NP , NV , Lµ, b, c)
c ,tag←−−−−−−−−−−−−− tag = fx(NP , NV , Lµ, b, c)

check #{i; ci = ci , ri and timeri correct} ≥ τ
OutV−−−−−−−−−−−−−→

Fig. 1. The DBopt distance-bounding protocols

During the initialization, the participants exchange some nonces NP , NV ,
some Lμ ∈ L, and a vector b. The vector b could be fixed in the protocol,
but is subject to some constraints as detailed below. V and P compute a =
fx(NP , NV , Lμ, b) and x′ = Lμ(x). In the distance bounding phase, the response
function is a linear function ri = φci(ai, x

′
i, bi) defined by the challenge ci. The

verification checks that the participants have seen the same challenges (based on
the tag computed by tag = fx(NP , NV , Lμ, b, c)), counts the number of rounds
with a correct and timely response, and accepts if there are at least τ of them.

Clearly, the DBopt family is quite open to specific choices for q, map, b, and
φc. We propose the instances DB1, DB2, and DB3. There are some specificities
in each protocol which are summarized in the following table:

180 I. Boureanu and S. Vaudenay

protocol q map b φci

DB1 q > 2 map(u) �= 0 no b used φci(ai, x
′
i, bi) = ai + cix

′
i

DB2 q = 2 map(u) = u Hamming weight n
2

φci(ai, x
′
i, bi) = ai + cix

′
i + cibi

DB3 q ≥ 2 no map used Hamming weight n φci(ai, x
′
i, bi) = ai + cibi

Specifically, DB3 is the simplest protocol and is optimal, but it offers no sound-
ness. DB2 works with binary challenges and responses, but it is not optimal.
DB1 is optimal but needs q ≥ 3 since it requires that map is injective from Z2

to GF(q)∗.
Overall, DBopt is very similar to SKI. Like in SKI, the leak vector x′ is

fundamental for soundness: the vector x′ encodes μ · x, which leaks if the prover
reveals his response function. We added a verification step, as in FO (it actually
comes from the Swiss-Knife protocol [24]). This verification allows to use better
response functions: thanks to the above extra verification, the response function
needs no longer resist men-in-the-middle playing with different challenges on
the sides of P and V , as it was the case in [2,4]. One particularity is that DB1
mandates x′

i 	= 0 so cannot accommodate q = 2. If we want q = 2, we need
for DF-resistance to make sure that ri really depends on ci, by introducing the
vector b in which exactly half of the coordinates are 0. DB2 can be optimized
into DB3 by using ri = ai + ci (so x′ unused and bi = 1 for all i) by sacrificing
soundness.

DBopt is clearly τ -complete following Definition 2.

3.2 DF-Resistance of DB1, DB2, and DB3

Theorem 11 (DF-resistance). The DBopt protocols α-resists to distance
fraud for

– (DB1 and DB3) α = Tail(n, τ, 1
q) which is negligible for τ

n > 1
q + cte;

– (DB2) α = Tail(n
2 , τ − n

2 , 1
2) which is negligible for τ

n > 3
4 + cte.

Due to Theorem 7, DB1 and DB3 are optimal for DF-resistance. DB2 is clearly
not optimal (as DB3 is better with the same q = 2). However, the bound is tight
for DB2 as the DF guessing the response matches the α bound: the malicious
prover always wins the rounds for which x′ = bi (that is: exactly half of the
rounds due to the Hamming weight of b) by sending the response in advance
and passes with probability α = Tail(n

2 , τ − n
2 , 1

2).

Proof. We consider a distinguished experiment exp(V) with no close-by partic-
ipant. Due to the distance, the answer ri to V comes from far away. Thanks
to Lemma 4, ri is independent (in the sense of Lemma 4) from ci. Since ci is
randomly selected when it is sent, ri is statistically independent from ci. For
DB1, since x′

i 	= 0 by construction, ri equals ai + cix
′
i with probability 1

q . The
same goes for DB3. For DB2, thanks to the selection of b, this holds for exactly
half of the rounds: those such that x′

i + bi 	= 0. So, the probability to succeed in
the experiment is bounded as stated. ��

Optimal Proximity Proofs 181

3.3 Security of DB1, DB2, and DB3

As shown in [5], we cannot rely on the PRF assumption alone for DB1 or DB2,
since the secret is used as a key of fx and also outside fx in x′. The circular-
PRF assumption guarantees the PRF-ness of f , even when we encrypt a function
Lμ(x) of the key. We new recall and extend the notion, to accommodate DB1
and DB2.

Definition 12 (Circular PRF). We consider some parameters s, n1, n2, and
q. Given x̃ ∈ {0, 1}s, a function L from {0, 1}s to GF(q)n1 , and a function F from
{0, 1}∗ to GF(q)n2 , we define an oracle Ox̃,F by Ox̃,F (y, L,A,B) = A · L(x̃) +
B · F (y), using the dot product over GF(q). We assume that L is taken from a
set of functions with polynomially bounded representation. Let (fx)x∈{0,1}s be a
family of functions from {0, 1}∗ to {0, 1}n2 . We say that the family f is a (ε, T)-
circular-PRF if for any distinguisher limited to a complexity T , the advantage
for distinguishing Ox,fx

, x ∈U {0, 1}s, from Ox̃,F , x̃ ∈U {0, 1}s, where F is
uniformly distributed, is bounded by ε. We require two conditions on the list of
queries:

– for any pair of queries (y, L,A,B) and (y′, L′, A′, B′), if y = y′, then L = L′;
– for any y ∈ {0, 1}∗, if (y, L,Ai, Bi), i = 1, . . . , � is the list of queries using

this value y, then

∀λ1, . . . , λ� ∈ GF(q)
�∑

i=1

λiBi = 0 =⇒
�∑

i=1

λiAi = 0 (1)

over the GF(q)-vector space GF(q)n2 and GF(q)n1 .

This definition extends the one from [7,9] in the following sense: 1. the function
L (the leak of x) is arbitrary instead of being linear; 2. this arbitrary function
L now requires the first condition i.e., the same F -input implies the same leak
function L. In [7,9], it was shown that the natural construction fx(y) = H(x, y) is
circular-PRF in the random oracle model, with the definition from [7,9]. We can
easily see that the same proof holds with Definition 12. It would be interesting
to make other constructions without random oracles.

Theorem 13 (Security). The DBopt protocols are β-secure for

– (DB1 and DB2) β = Tail(n, τ, 1
q) + r2

2 2−�nonce + (r + 1)ε + r2−�tag when f is a
(ε, T)-circular-PRF (as defined by Definition 12);

– (DB3) β = Tail(n, τ, 1
q) + r2

2 2−�nonce + ε + 2−�tag when f is a (ε, T)-PRF.

There, r is the number of honest instances (of P or V) and T is a complexity
bound on the experiment. β is negligible for τ

n > 1
q + cte, r and T polynomially

bounded, and ε negligible.

Based on that r2

2 2−�nonce +(r +1)ε+ r2−�tag (or the similar term for DB3) can be
made negligible against β, DB1, DB2, and DB3 are optimal for security due to
Theorem 9.

182 I. Boureanu and S. Vaudenay

Proof. We consider a distinguished experiment exp(V) with no close-by P (x),
no P ∗(x), and where V accepts with probability p. We consider a game Γ0 in
which we simulate the execution of exp(V) and succeed if and only if OutV by V
is an acceptance message. Γ0 succeeds with probability p.

First of all, we reduce to the same game Γ1 whose success additionally requires
that for every (NP , NV , Lμ) triplet, there is no more than one instance P (x) and
one instance V (x) using this triplet. Since P (x) is honest and selecting the �nonce-
bit nonce NP at random and the same for V (x) selecting NV , by looking at the
up to r2

2 pairs of P (x)’s or of V (x)’s and the probability that one selection of a
nonce repeats, this new game succeeds with probability at least p − r2

2 2−�nonce .
Then, for DB1 and DB2, we outsource the computation of every ai + cx′

i to
the oracle

Ox,fx
(y, Lμ, A,B) = (A · Lμ(x)) + (B · fx(y))

as in Definition 12, with y = (NP , NV , Lμ, b), A · Lμ(x) = c(Lμ(x))i, and B ·
fx(y) = (fx(y))i. I.e., Ai = cei and Bi = ei, where ei is the vector having
a 1 on its ith component and 0 elsewhere. This can be used with c = c′

i by
P (x) (for computing r′

i) or with c = ci by V (x) (for verifying ri). Similarly, the
computation (by P (x) or V (x)) of tag = fx(y) can be made by several calls
of form Ox,fx

(y, Lμ, 0, B). (We note that the y in this case has incompatible
form with the y in the ri computation.) So, every computation requiring x is
outsourced. Note that queries to the same y must use the same Lμ since this
is part of y. So, the first condition in Definition 12 to apply the circular-PRF
assumption is satisfied. We consider the event E that there exists in the game
some sequence (y, Lμ, Aj , Bj) of queries to Ox,fx

sharing the same (y, Lμ) and
some λj ’s such that

∑
j λjBj = 0 and

∑
j λjAj 	= 0. We need to restrict to the

event ¬E to apply Definition 12. We consider the event E′ that one instance
in V receives a valid tag which was not computed by the prover P (i.e., it was
forged).

Let c′′
i be the value received by V (x) in the verification phase. We assume

that V checks that tag is correct, timeri is correct, and ci = c′′
i , then queries

Ox,fx
(y, Lμ, ciei, ei) only if these are correct. If E happens for some (y, Lμ),

due to the property of Γ1, each i has at most two queries. Since Bj = eij ,∑
j λjBj = 0 yields pairs of values j and j′ such that ij = ij′ = i, Aj = ciei,

Aj′ = c′
iei, Bj = Bj′ = ei, and λj + λj′ = 0. The event E implies that there

exists one such pair such that λjAj + λj′Aj′ 	= 0. So, ci 	= c′
i. But since V only

queries if c′′
i and tag are correct, we have ci = c′′

i 	= c′
i and tag correct. So, V

must have accepted some tag which was not computed by P (x). So, E implies
E′. We now show that Pr[E′] is negligible.

We define Γ2, the variant of Γ1, which in turn requires that E′ does not occur
as an extra condition for success. We let E′

j be the event that tagj , the jth value
tag received by any V (x) in V is forged. Let Γ1,j be the hybrid of Γ1 stopping
right after tagj is received and succeeding if E′

j occurs but not E′
1, . . . , E

′
j−1.

Clearly, since E′
1∪· · ·∪E′

j−1 does not occur and we stop right after reception
of tagj , E cannot occur. (Remember that for E to occur for the first time upon
a query to Ox,fx

, there must be a prior tag which was forged.) So, the conditions

Optimal Proximity Proofs 183

to apply the circular-PRF security reduction in Definition 12 is satisfied in Γ1,j .
We apply the circular-PRF assumption and replace Ox,fx

by Ox̃,F , loosing some
probability ε. We obtain a game Γ2,j . Clearly, Γ2,j succeeds with probability
bounded by 2−�tag because F is random. So, PrΓ1,j [success] ≤ ε + 2−�tag in Γ1,j .

So, Pr[E′] is bounded by the sum of all PrΓ1,j [success], i.e. PrΓ1 [E
′] ≤ rε +

r2−�tag since the number of hybrids is bounded by r. Hence, PrΓ2 [success] ≥
p − r2

2 2−�nonce − rε − r2−�tag .
Now, in the whole game Γ2 where E′ does not occur, we replace Ox,fx

by
Ox̃,F and obtain the simplified game Γ3. We have PrΓ3 [success] ≥ p− r2

2 2−�nonce −
(r + 1)ε − r2−�tag .

It is now easy to analyze the protocol Γ3. Thanks to Lemma 4, the response is
computed based on information from P (x) (w in Lemma 4) which is independent
(in the sense of Lemma 4) from the challenge. Either P (x) was queried with a
challenge before, but this could only match the correct one with probability 1

q

and the adversary would fail with tag otherwise. Or, P (x) leaked nothing about
the response to this challenge, and the answer by the adversary can only be
correct with probability 1

q . In any case, his answer is correct with probability 1
q .

So, Γ3 succeeds with probability up to Tail(n, τ, 1
q).

To sum up, we have p ≤ Tail(n, τ, 1
q) + r2

2 2−�nonce + (r + 1)ε + r2−�tag for DB1
and DB2.

For DB3, we loose r2

2 2−�nonce from Γ0 to Γ1. In Γ1, we apply the full PRF
reduction and loose ε to obtain Γ2 with a random function. We loose 2−�tag more
to assume that tag received by V was not forged in some Γ3. Then, it is easy
to see that either the prover was queried before ci was known, but this will
only succeed if ci was correctly guessed, or it was queries after, but this will only
succeed if the answer ri was correctly guessed. So, Γ3 succeeds with a probability
bounded by Tail(n, τ, 1

q). (Note that DB3 is insecure without the authenticating
tag: the man-in-the-middle can just run the DB phase with the prover, deduce
a, then answer all challenges from the verifier.) ��

3.4 Soundness of DB1 and DB2

Theorem 14 (Soundness of DB1).The DB1 scheme is (γ, γ′, s+2)-sound for
any γ ≥ q

q−1pB and γ′ such that γ′ = (1−γ−1pB)s, where pB = maxa+b≤n pB(a, b)
and

pB(a, b) =
∑

u+v≥τ−a

(
n − a − b

u

)(
b

v

) (
1 − 1

q

)b+u−v (
1
q

)n−a−b−u+v

More precisely, any collusion fraud with a success probability γ ≥ pB

1− 1
q −ε

leaks

one random (μ, μ · x) pair with probability at least 1
q + ε. Assuming pB =

pB(0, 0),12 this compares γ to q
q−1Tail(n, τ, q−1

q).

12 this is actually confirmed by experiment for the data we use.

184 I. Boureanu and S. Vaudenay

For instance, for γ = spB and τ
n > q

q−1 + cte, γ is negligible and γ′ is greater
than a constant.

If we applied the same proof as for SKI from [30, Theorem 14], we would not
get such a good result. We would rather obtain Tail(n

2 , τ − n
2 , q−1

q). So, our proof
of Theorem 14 is substantially improved.

Proof. We consider a distinguished experiment exp(V) where V accepts with
probability p ≥ γ.

The verifier V has computed some a and x′. We apply Lemma 4. We let
Respi(c) be the value of the response ri arriving to V when ci is replaced to c in
the simulation. We show below that we can always compute Respi(c)−Respi(c′)
for any (c, c′) pair from a straightline simulation (i.e., without rewinding). Let
Viewi be the view of close-by participants A until the time before ci arrives,
and wi be the extra information (independent from ci, in the sense of Lemma 4)
arriving from far-away. Due to Lemma 4, we have Respi(c) = Algo(Viewi, c, wi).
So, we can easily compute Respi(c) − Respi(c′) without rewinding. The answer
by a far-away participant is independent from ci, so Respi(c)−Respi(c′) = 0: we
can compute Respi(c) − Respi(c′) as well.

We say that c is correct in the ith round if Respi(c) = ai + cx′
i. We let Ci be

the set of correct c’s for the ith round. We let S be the set of all i’s such that
ci ∈ Ci. Finally, we let R (resp. R′) be the set of all i’s for which #Ci = q (resp.
#Ci ≤ 1). I.e., all c’s are correct in the ith round for i ∈ R and at most one is
correct for i ∈ R′.

By definition, the probability that #S ≥ τ is p ≥ γ. We see that

Respi(c) − Respi(c′)
c − c′ = x′

i

if i ∈ R, for any c 	= c′. If the left-hand side leads to the same value ξi for each
c 	= c′, we say that the round i votes for x′

i = ξi. If the (c, c′) pairs do not lead
to the same value in GF(q), we say that the round i does not vote. So, we can
always compute the vote ξi from the views of close-by participants. The majority
of the available map−1(ξi) shall decode μ · x.

For DB1, we can prove that if the round i votes for some ξi such that ξi 	= x′
i,

then we must have i ∈ R′. Indeed, if round i votes for some ξi and #Ci ≥ 2, it
means that there exist two different challenges c and c′ such that the responses
Respi(c) and Respi(c′) are correct. So, Respi(c) = ai + cx′

i and Respi(c′) =
ai+c′x′

i. The vote ξi is Respi(c)−Respi(c
′)

c−c′ which is thus equal to x′
i. So, an incorrect

vote cannot have two correct challenges: it must be for i ∈ R′. The majority of the
votes does not give x′

i only when #R ≤ #R′. So, we shall bound Pr[#R ≤ #R′].
Let I, I ′ ⊆ {1, . . . , n} such that #I ≤ #I ′ and I ∩ I ′ is empty. Let pB(a, b)

be the probability that at least τ rounds succeed, when we know that a rounds
succeed with probability 1, b rounds succeed with probability 1

q , and the other
succeed with probability 1 − 1

q . We have Pr[#S ≥ τ,R = I,R′ = I ′] = Pr[#S ≥
τ |R = I,R′ = I ′] Pr[R = I,R′ = I ′] and Pr[#S ≥ τ |R = I,R′ = I ′] ≤
pB(#I,#I ′) ≤ pB since we have #I correct rounds for sure and it remains to

Optimal Proximity Proofs 185

pick u correct challenges (out of at most q − 1) among the i 	∈ I ∪ I ′ rounds, and
v correct challenges (out of at most 1) among the i ∈ I ′ rounds, for all u and v
such that u + v ≥ τ − #I. By summing over all choices for I and I ′, we obtain
that Pr[#S ≥ τ,#R ≤ #R′] ≤ pB So, Pr[#R > #R′|#S ≥ τ] ≥ 1 − γ−1pB.
So, when the experiment succeeds, the extracting algorithm gets a random pair
(μ, μ · x) with probability at least 1 − γ−1pB . This is better than just guessing
μ · x when γ > q

q−1pB .
We can do M many such accepting experiments, collect some (μ, μ · x) until

we have s vector μ spanning GF(q)s, and reconstruct x with probability at least
γ′ =

(
1 − γ−1pB

)s. The probability that m samples in GF(q)s do not generate
this space is pm ≤ qs−m (the number of hyperplane, qs −1 times the probability
that the m samples are all in this hyperplane, which is q−1 to the power m). So,
the expected M until we generate the space is bounded by s+

∑
m≥s qs−m ≤ s+2.

Hence, after at most s + 2 iterations on average, we can recover x by solving a
linear system. This defines the extractor.

We can also push the extraction further when 1 − γ−1pB > 1
q by solving

an instance of the Learning Parity with Noise problem (LPN), which would
still be feasible by the practical parameters s. Extraction can also work with
a complexity overhead bounded by O(sj) and a probability of at least γ′ =
Tail(s, s− j, 1−γ−1pB), by finding at most j errors by exhaustive search or LPN
solving algorithms.

The maximum pB = pB(a, b) is always reached for a = b. Indeed, for all the
values plotted in Fig. 2 with n ≥ 6, we saw it was reached for a = b = 0. In this
case, we have pB = pB(0, 0) = Tail(n, τ, q−1

q). ��
Below, we prove that the result is tight for DB1 using q = 3. Whether this it

tight for other q is an open question. Whether it is optimal for protocols following
the common structure is also open.

DB1’s tightness of the soundness proof. To show that the result is tight for
DB1 with q = 3, we mount a terrorist fraud succeeding with probability γ =
Tail(n, τ, q−1

q): let the malicious prover give to the adversary the tables for ci �→
ri + ei(ci) for every round i. For each such i, randomly pick one entry for which
ei(ci) is a random nonzero value and let it be 0 for other, two entries. With such
tables as a response function, the adversary passes the DB phase with probability
γ. (Other phases are done by relaying messages.) Since the verifier accepts with
negligible probability γ, the adversary learns as much as if OutV was always set
to 0.

For q = 3 and each i, based on random ai ∈ GF(q), x′
i ∈ GF(q)∗, and c �→ ei(c)

as distributed above, we can easily see that the distribution of the transmitted
table is independent from x′

i: for x′
i = 1, the table of c �→ ai + cx′

i defined by a
random ai is randomly picked from

(
0
→ 0
1
→ 1
2
→ 2

)
,

(
0
→ 1
1
→ 2
2
→ 0

)
,

(
0
→ 2
1
→ 0
2
→ 1

)
.

186 I. Boureanu and S. Vaudenay

When adding the random table ei(c), it becomes a uniformly distributed random
table among those with an output set of cardinality 2. For x′

i = 2, the table of
ai + cx′

i is randomly picked from
(

0
→ 0
1
→ 2
2
→ 1

)
,

(
0
→ 2
1
→ 1
2
→ 0

)
,

(
0
→ 1
1
→ 0
2
→ 2

)
,

but adding ei(c) leads to the same distribution as for x′
i = 1. So, the above

attack does not leak and is a valid terrorist fraud. Theorem 14 essentially says
that there is no valid terrorist fraud with a larger γ. So, the result is tight for
DB1 with q = 3.

The same proof technique leads to the following result for DB2.

Theorem 15 (Soundness of DB2). For τ
n > 3

4 , the DB2 scheme is (γ, γ′, s+
2)-sound for any γ ≥ 2Tail(n

2 , τ − n
2 , 1

2) and γ′ = (1 − γ−1Tail(n
2 , τ − n

2 , 1
2))s.

Again, it is open whether this is optimal for a protocol with binary challenges.
The bound is pretty tight for DB2: a malicious adversary could leak the ci �→ ri

tables for a random selection of half of the rounds, and leak the table with one
bit flipped for the others. This will not leak x′

i and will pass with probability
γ = Tail(n

2 , τ − n
2 , 1

2).

3.5 Performance Comparisons

Figure 2 plots the resistance of DB1, DB2, and DB3 compared with SKI [6–9]
and FO [18].13 In these figures, we assume a noise level of pnoise = 5% and we
adjust τ in terms of the number of rounds n such that Tail(n, τ, 1−pnoise) ≈ 99%,
for τ -completeness; i.e., we admit a false rejection rate if below 1%. We plot then
− log2 α, − log2 β, and − log2 γ in terms of n, assuming that the residual terms
(such as ε and 2−�tag from the PRF and 2−�nonce from the nonce) can be neglected.
We used the following dominant security parameters:

protocol α β γ

SKI Tail(n, τ, 3/4) Tail(n, τ, 2/3) Tail(n
2
, τ − n

2
, 2/3)

FO Tail(n, τ, 3/4) Tail(n, τ, 3/4) n/a

DB1 Tail(n, τ, 1/q) Tail(n, τ, 1/q) q
q−1

Tail(n, τ, 1 − 1/q)

DB2 Tail(n
2
, τ − n

2
, 1/2) Tail(n, τ, 1/2) Tail(n

2
, τ − n

2
, 1/2)

DB3 Tail(n, τ, 1/2) Tail(n, τ, 1/2) n/a

As we can see, our protocols are better than SKI and FO on all curves.

13 We take the FO protocol as described in [30] since the original one from [18] intro-
duces two counters and has an incorrect parameter pe. The one from [30] has been
shown to provide an optimal expression for pe.

Optimal Proximity Proofs 187

DB3 is not plotted on the third graph since it is not sound. FO has an incom-
parable TF-resistance notion and is not plotted either. TF-resistance therein fol-
lows another philosophy: in order to pass a DB run, the FO protocol always leaks
with a probability γ′ = γ, no matter the number of rounds. Although this is an
interesting idea, the price to pay is a much lower resistance to man-in-the-middle,
as observed in [30].

Since we consider online attacks, security levels of 2−10 or 2−20 should suf-
fice, i.e., better (online) security may be ambitious. We now report the minimal
number of rounds to attain such security:

security level 2−10 security level 2−20

DF security soundness DF security soundness
SKI 84 48 181 SKI 151 91 315
FO 84 84 n/a FO 151 151 n/a
DB1 q = 3 14 14 54 DB1 q = 3 24 24 92
DB1 q = 4 12 12 91 DB1 q = 4 20 20 152
DB2 69 24 79 DB2 123 43 131
DB3 24 24 n/a DB3 43 43 n/a

Interpretation of results. As we can see in the table above, DB1 with q = 4 is
the best choice for distance fraud and security. Unfortunately, its (non-tightly)
proven soundness requires more rounds. DB1 with q = 3 seems to be the best
compromise. But if we want to use binary challenges, we shall choose between
DB2 (suboptimal for DF-resistance) and DB3 (not sound).

0

10

20

30

40

50

60

70

80

0 20 40 60 80 100 120 140

SKI and FO

DB1 q = 3

DB1 q = 4

DB2

DB3

0

10

20

30

40

50

60

70

80

0 20 40 60 80 100 120 140

SKI

FO

DB1 q = 3

DB1 q = 4 DB2 and DB3

0

5

10

15

20

25

0 20 40 60 80 100 120 140

SKI

DB1 q = 3

DB1 q = 4

DB2

Fig. 2. Distance fraud resistance (top left) and security (top right), in equivalent
bitlength, with respect to the number of rounds n. This assumes a τ -completeness
level of 99 % and pnoise = 5 %. The bottom curve gives the soundness level. (Note that
DB3 is not sound and that FO follows another TF-resistance philosophy.)

188 I. Boureanu and S. Vaudenay

4 Conclusion

We provided the provably secure symmetric protocols DB1, DB2, and DB3 which
require fewer rounds than the only two existing, provably secure protocols, SKI
and FO. Prior to this, we have revised the formal model for distance-bounding
protocols in a way which is closer to (the state of the art of) interactive proofs.
We also studied optimality of all provably secure DB protocols, existing and
advanced herein. Some open challenges remain: 1. identify an optimal and sound
protocol for numc = numr = 2; 2. study the optimality of soundness; 3. imple-
ment these protocols.

References

1. Avoine, G., Bingöl, M., Kardas, S., Lauradoux, C., Martin, B.: A framework for
analyzing RFID distance bounding protocols. J. Comput. Secur. 19(2), 289–317
(2011)

2. Avoine, G., Lauradoux, C., Martin, B.: How secret-sharing can defeat terrorist
fraud. In: ACM Conference on Wireless Network Security WISEC 2011, Hamburg,
Germany, pp. 145–156. ACM (2011)

3. Avoine, G., Tchamkerten, A.: An efficient distance bounding RFID authenti-
cation protocol: balancing false-acceptance rate and memory requirement. In:
Samarati, P., Yung, M., Martinelli, F., Ardagna, C.A. (eds.) ISC 2009. LNCS,
vol. 5735, pp. 250–261. Springer, Heidelberg (2009)

4. Bay, A., Boureanu, I., Mitrokotsa, A., Spulber, I., Vaudenay, S.: The Bussard-
Bagga and other distance-bounding protocols under attacks. In: Kuty�lowski, M.,
Yung, M. (eds.) Inscrypt 2012. LNCS, vol. 7763, pp. 371–391. Springer, Heidelberg
(2013)

5. Boureanu, I., Mitrokotsa, A., Vaudenay, S.: On the pseudorandom function
assumption in (secure) distance-bounding protocols. In: Hevia, A., Neven, G. (eds.)
LatinCrypt 2012. LNCS, vol. 7533, pp. 100–120. Springer, Heidelberg (2012)

6. Boureanu, I., Mitrokotsa, A., Vaudenay, S.: Secure and lightweight distance-
bounding. In: Avoine, G., Kara, O. (eds.) LightSec 2013. LNCS, vol. 8162, pp.
97–113. Springer, Heidelberg (2013)

7. Boureanu, I., Mitrokotsa, A., Vaudenay, S.: Practical & provably secure distance-
bounding. J. Comput. Secur. (JCS), IOS Press. Available as IACR Eprint 2013/465
report (2013, to appear). http://eprint.iacr.org/2013/465.pdf

8. Boureanu, I., Mitrokotsa, A., Vaudenay, S.: Towards secure distance bounding. In:
Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp. 55–67. Springer, Heidelberg (2014)

9. Boureanu, I., Mitrokotsa, A., Vaudenay, S.: Practical & provably secure distance-
bounding. In: Proceedings of ISC 2013 (to appear)

10. Boureanu, I., Vaudenay, S.: Optimal proximity proofs. IACR Eprint 2014/693
report (2014). http://eprint.iacr.org/2014/693.pdf

11. Boureanu, I., Vaudenay, S.: Challenges in distance-bounding. IEEE Secur. Priv.
13(1), 41–48 (2015). doi:10.1109/MSP.2015.2

12. Brands, S., Chaum, D.: Distance-bounding protocols (extended abstract). In:
Helleseth, T. (ed.) Advances in Cryptology — EUROCRYPT 1993. LNCS, vol.
765, pp. 344–359. Springer, Heidelberg (1994)

http://eprint.iacr.org/2013/465.pdf
http://eprint.iacr.org/2014/693.pdf
http://dx.doi.org/10.1109/MSP.2015.2

Optimal Proximity Proofs 189

13. Chandran, N., Goyal, V., Moriarty, R., Ostrovsky, R.: Position based cryptogra-
phy. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 391–407. Springer,
Heidelberg (2009)

14. Chernoff, H.: A measure of asymptotic efficiency for tests of a hypothesis based on
the sum of observations. Ann. Math. Stat. 23(4), 493–507 (1952)

15. Cremers, C.J.F., Rasmussen, K.B., Schmidt, B., Čapkun, S.: Distance hijacking
attacks on distance bounding protocols. In: IEEE Symposium on Security and
Privacy S&P 2012, San Francisco, California, USA, pp. 113–127. IEEE Computer
Society (2012)

16. Desmedt, Y.: Major security problems with the “unforgeable” (feige-)fiat-Shamir
proofs of identity and how to overcome them. In: Congress on Computer and
Communication Security and Protection Securicom 1988, Paris, France, pp. 147–
159. SEDEP, Paris (1988)

17. Dürholz, U., Fischlin, M., Kasper, M., Onete, C.: A formal approach to distance-
bounding RFID protocols. In: Lai, X., Zhou, J., Li, H. (eds.) ISC 2011. LNCS, vol.
7001, pp. 47–62. Springer, Heidelberg (2011)

18. Fischlin, M., Onete, C.: Terrorism in distance bounding: modeling terrorist-fraud
resistance. In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-Naini, R. (eds.)
ACNS 2013. LNCS, vol. 7954, pp. 414–431. Springer, Heidelberg (2013)

19. Özhan Gürel, A., Arslan, A., Akgün, M.: Non-uniform stepping approach to RFID
distance bounding problem. In: Garcia-Alfaro, J., Navarro-Arribas, G., Cavalli,
A., Leneutre, J. (eds.) DPM 2010 and SETOP 2010. LNCS, vol. 6514, pp. 64–78.
Springer, Heidelberg (2011)

20. Hancke, G.P.: Distance bounding for RFID: effectiveness of terrorist fraud. In:
Conference on RFID-Technologies and Applications RFID-TA 2012, Nice, France,
pp. 91–96. IEEE (2012)

21. Hancke, G.P., Kuhn, M.G.: An RFID distance bounding protocol. In: Confer-
ence on Security and Privacy for Emerging Areas in Communications Networks
SecureComm 2005, Athens, Greece, pp. 67–73. IEEE (2005)

22. Hoeffding, W.: Probability inequalities for sums of bounded random variables. J.
Am. Stat. Assoc. 58, 13–30 (1963)

23. Kim, C.H., Avoine, G.: RFID distance bounding protocol with mixed challenges
to prevent relay attacks. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS 2009.
LNCS, vol. 5888, pp. 119–133. Springer, Heidelberg (2009)

24. Kim, C.H., Avoine, G., Koeune, F., Standaert, F.-X., Pereira, O.: The Swiss-knife
RFID distance bounding protocol. In: Lee, P.J., Cheon, J.H. (eds.) Information
Security and Cryptology ICISC 2008. LNCS, vol. 5461, pp. 98–115. Springer,
Heidelberg (2009)

25. Munilla, J., Peinado, A.: Distance bounding protocols for RFID enhanced by using
void-challenges and analysis in noisy channels. Wirel. Commun. Mob. Comput. 8,
1227–1232 (2008)

26. Nikov, V., Vauclair, M.: Yet another secure distance-bounding protocol. In: Pro-
ceedings of SECRYPT 2008, Porto, Portugal, pp. 218–221. INSTICC Press (2008)

27. Reid, J., Nieto, J.M.G., Tang, T., Senadji, B.: Detecting relay attacks with timing-
based protocols. In: ACM Symposium on Information, Computer and Communi-
cations Security ASIACCS 2007, Singapore, pp. 204–213. ACM (2007)

28. Singelée, D., Preneel, B.: Distance bounding in noisy environments. In: Stajano,
F., Meadows, C., Capkun, S., Moore, T. (eds.) ESAS 2007. LNCS, vol. 4572, pp.
101–115. Springer, Heidelberg (2007)

190 I. Boureanu and S. Vaudenay

29. Tu, Y.-J., Piramuthu, S.: RFID distance bounding protocols. In: Workshop on
RFID Technology RFID 2007, Vienna, Austria, EURASIP (2007). http://www.
eurasip.org/Proceedings/Ext/RFID2007

30. Vaudenay, S.: On modeling terrorist frauds. In: Susilo, W., Reyhanitabar, R. (eds.)
ProvSec 2013. LNCS, vol. 8209, pp. 1–20. Springer, Heidelberg (2013)

31. Vaudenay, S.: Proof of proximity of knowledge. IACR Eprint 2014/695 report
(2014). http://eprint.iacr.org/2014/695.pdf

32. Vaudenay, S.: Private and secure public-key distance bounding: application to NFC
payment. In: Proceedings of Financial Cryptography 2015 (2015, to appear)

33. Youn, T.-Y., Hong, D.: Authenticated distance bounding protocol with improved
FAR: beyond the minimal bound of FAR. IEICE Trans. Commun. E97–B(5),
930–935 (2014)

http://www.eurasip.org/Proceedings/Ext/RFID2007
http://www.eurasip.org/Proceedings/Ext/RFID2007
http://eprint.iacr.org/2014/695.pdf

Lattice and Public Key
Cryptography

Simpler CCA-Secure Public Key Encryption
from Lossy Trapdoor Functions

Bei Liang1,2,3(B), Rui Zhang1,3, and Hongda Li1,2,3

1 State Key Laboratory of Information Security, Institute of Information
Engineering of Chinese Academy of Sciences, Beijing, China

{liangbei,r-zhang,lihongda}@iie.ac.cn
2 Data Assurance and Communication Security Research Center of Chinese

Academy of Sciences, Beijing, China
3 University of Chinese Academy of Sciences, Beijing, China

Abstract. In STOC’08, Peikert and Waters presented a black-box con-
struction of CCA-secure public key encryption (PKE) scheme from lossy
trapdoor functions (LTDFs) [20], and they mentioned in the paper that
their construction is a hybrid of Naor-Yung [18] and Canetti-Halevi-Katz
[5], since the twin encryption technique and a strongly one-time signa-
ture are simultaneously used. It is well-known that a one-time signature
brings either large ciphertext overhead if built from general assumptions
like one-way functions, or additional computation cost during key gen-
eration/signing if built from number theoretic assumptions.

In this paper, we demonstrate that one can actually remove the one-
time signature from the PW-scheme, and the resulting KEM can also be
proved CCA-secure. However, the resulting KEM is not good enough, in
particular, applying the known parameters choices of [20], one obtains a
session key with length only sub-linear to the security parameter, thus
not a suitable key for subsequent cryptographic tasks. We then to fur-
ther into the analysis and manage to instantiate our KEM with standard
assumptions to obtain a valid key.

Keywords: Lossy trapdoor functions · All-but-one lossy trapdoor
functions · Chosen ciphertext security · KEM

1 Introduction

Chosen ciphertext security (CCA) [2,10,13,18,22,24] is widely accepted as the
standard and proper security requirement for public key encryption (PKE)
schemes. CCA-secure PKE is not only important for data security, it has also
become a useful tools to obtain complex protocols. Historically, only a few con-
structions of CCA-security were known and they can be classified into two major

This research is supported by the National Natural Science Foundation of China
(Grant No. 60970139) and the Strategic Priority Program of Chinese Academy of
Sciences (Grant No. XDA06010702).

c© Springer International Publishing Switzerland 2015
D. Lin et al. (Eds.): Inscrypt 2014, LNCS 8957, pp. 193–206, 2015.
DOI: 10.1007/978-3-319-16745-9 11

194 B. Liang et al.

categories: Naor-Yung (including the universal hash proof system, designated ver-
ifier proof), namely, using proof of “well-formness” [6,18,26], and Canetii-Halevi-
Katz (CHK), namely, transforms from identity/tag-based techniques [3–5].

In STOC’08, Peikert and Waters (PW) [20] introduced a new primitive called
lossy trapdoor functions (LTDFs) and a variant called all-but-one lossy trapdoor
functions (ABO-LTDFs). Combining these two functions, one can perform a
hybrid of NY and CHK techniques to obtain CCA-security. The PW-scheme is
interesting, not only because it admits the first CCA-secure encryption scheme
from lattices, but also helps to understand how Naor-Yung and CHK techniques
work in the scheme.

The PW-scheme mainly consists of two ingredients: lossy trapdoor functions
(LTDFs) and All-But-One lossy trapdoor functions (ABO-LTDFs). An LTDF
f is a public function with two modes of operations: One is the injective mode,
with a suitable trapdoor for f , the entire input x can be efficiently recovered
from f(x). The other is the lossy mode, where f statistically loses a significant
amount of information about its input, i.e., most outputs of f have many pre-
images. An ABO-LTDF g is a further generalization of a LTDF, indexed by a
branch b, which indicates whether g is injective or lossy.

In the “basic” PW-scheme, a ciphertext is (b, c1 = f(x), c2 = g(b, x), c3 =
m⊕h(x)), where x ∈ {0, 1}n and b are sampled uniformly, and h is a randomness
extractor. With the inverse f−1 of f as trapdoor, the decryption algorithm first
recovers x, and checks whether c1 = f(x) and c2 = g(b, x). It aborts if either
check fails, otherwise outputs m = h(x) ⊕ c3. Peikert and Waters addressed
in [20] that the above construction is passively CCA-secure (or CCA1), since
a ciphertext is clearly malleable. They further attach a one-time signature to
the basic scheme, which upgrades its security to full CCA. In this sense, the
PW-scheme also borrows the idea from the CHK-transform [5].

To remark, a one-time signature brings either long ciphertext overhead if con-
structed from one-way functions, or additional computation cost and possibly
additional assumptions if constructed from number-theoretic assumptions, thus
we conclude that if possible, the one-time signature should be removed. Actu-
ally, similar work was motivated for identity-based encryptions (IBEs), such as
[3,4,29,30].

Related Work. Recently, Kiltz, Mohassel, and O’Neill [16] introduced the con-
cept of adaptive trapdoor functions (ATDFs), and showed that ATDFs can be
used to construct CCA-secure PKE schemes while it is weaker than LTDFs in the
sense of black-box separation. In particular, they showed that one can achieve 1-
bit CCA-secure encryption scheme without one-time signature from sufficiently
lossy LTDFs and ABO-LTDFs. Compared with our method, their construction
is rather theoretical and results in only a 1-bit KEM while assuming the under-
lying primitives should be more lossy. We note that is no general methods to
have many-bits CCA-secure KEM without either narrowing the bandwidth or
increasing computation costs. We conjecture the efficiency loss of their construc-
tion actually comes from ATDF as an additional step, which is crucial for their
approach, thus it may not be easy to improve.

Simpler CCA-Secure Public Key Encryption from Lossy Trapdoor Functions 195

We also noticed that in another direction, Lai, Deng and Liu [17] (LDL)
introduced chameleon ABO-LTDFs whose goal was to replace ABO-LTDFs and
strongly unforgeable one-time signature hence improves the ciphertext overhead
of the PW-scheme. In a closer view, the LDL-scheme is no more than an instanti-
ation of a previously known technique for the separable TBE-to-PKE transform
[29], with an observation that the basic PW-scheme is tag-based and satisfies
separability. We note that a chameleon ABO-LTDFs always causes additional
computation costs.

Therefore, the following question arises naturally: Can we remove the one-
time signature from the PW-scheme while avoid chameleon hashing?

Our Motivation and Contribution. In this paper, we answer the above ques-
tion in the affirmative. In particular, we construct a CCA-secure KEM from
LTDFs and ABO-LTDFs solely. We note that Peikert and Waters have men-
tioned in their paper [21] that their basic encryption scheme shown above can
be viewed as a KEM, while h(x) is used as the session key. We remark that
according to the parameters proposed in [20], the resulting session key is only
sub-linear, and cannot be used by any symmetric encryption scheme to obtain
enough security even if assuming a secure key derivation function (KDF).

Temporarily putting this problem aside, we observe that actually, the result-
ing session key h(x) is not “easily malleable”, since the decryption algorithm
actually re-encrypts to check the validity of a ciphertext, which is also fixed, if
the witness x and the branch b are fixed. However, this KEM is not CCA-secure
yet, since it is still malleable.

To improve the above idea, we set b = H(c1), where H is a target collision-
resistant (TCR) hash function. Now the ciphertext becomes (f(x), g(H(c1), x)),
and the session key is h(x). In this way, f and g are then hedged together. Using a
hybrid argument similar to that in [20], we can actually prove the CCA-security
of our KEM. We postpone the detailed proof to later sections. In addition,
by further careful analysis, we show h(x) can be a good key if f and g are
lossy enough. We make some further discussions about the system parameters
and comparisons with previous ones, thus we are able to solve the problem of
key length. It is well-known that together with CCA-secure data encapsulation
mechanism (DEM), one can obtain CCA-secure hybrid PKE [25]. In this way,
we are able to remove the one-time signature scheme from the PW-scheme while
manage to avoid the chameleon hashing [17].

Finally, we remark that our technique is somehow close to BB1-KEM pro-
posed by Boyen, Mei and Waters [4], where a selectively-secure IBE is trans-
formed to a CCA-secure KEM. However, unlike BB1-KEM, our construction is
generic for LTDFs and ABO-LTDFs, while their technique only apply to a few
specific pairing-based IBE schemes.

2 Preliminaries

In this section, we review some useful notations and definitions.

196 B. Liang et al.

Notations. Let N be the set of natural numbers. If M is a set, then |M | denotes
its size and m

R←− M denotes the operation of picking an element m uniformly at
random from M. We denote by λ a security parameter. For notational clarity we
usually omit it as an explicit parameter. PPT denotes probabilistic polynomial
time. Let z ← A(x, y, · · ·) denote the operation of running an algorithm A with
inputs (x, y, · · ·) and output z. Let U� denote uniform distribution on �-bit binary
strings.

We say a function negl(λ) is negligible (in λ) if for λ > k0 and k0 ∈ Z,
negl(λ) < λ−c for any constant c > 0. The statistical distance between two ran-
dom variables X and Y over common domain D is �(X,Y) = 1

2

∑
z∈D |Pr[X =

z] − Pr[Y = z]|. We say that X and Y are statistical indistinguishable if their
statistical distance is negligible. It is obvious that statistical indistinguishability
implies computational indistinguishability.

2.1 Lossy Trapdoor Functions

Define the following quantities as functions of the security parameter: n(λ) =
poly(λ) represents the input length of a function and k(λ) ≤ n(λ) represents
the lossiness of the function. For convenience, we also define the residual leakage
r(λ) = n(λ) − k(λ).

Definition 1 (Lossy Trapdoor Functions). A collection of (n, k)-lossy trap-
door functions is given by a tuple of PPT algorithms (Sinj , Slossy, F ,F−1) having
the following properties.

1. Easy to sample an injective function with trapdoor: Sinj(1λ) outputs (s, t)
where s is a function index and t is its trapdoor, F (s, ·) computes an injective
(deterministic) function fs(·) over the domain {0, 1}n, and F−1(t, ·) computes
f−1

s (·).
2. Easy to sample a lossy function: Slossy(1λ) outputs s where s is a function

index, and F (s, ·) computes a (deterministic) function fs(·) over the domain
{0, 1}n whose image has size at most 2r = 2n−k.

3. Hard to distinguish injective from lossy: The ensembles {s : (s, t) ← Sinj(1λ)}
and {s : s ← Slossy(1λ)} are computationally indistinguishable.

2.2 All-But-One Lossy Trapdoor Functions

The notion of ABO-LTDFs is a richer abstraction of LTDFs. Informally, in
an ABO collection, each function has an extra input called its branch. All of
the branches are injective trapdoor functions (having the same trapdoor value),
except for one branch which is lossy. Let B = {Bλ}λ∈N be a collection of sets
whose elements represent the branches.

Definition 2 (All-But-One Trapdoor Functions). A collection of (n, k)-
all-but-one lossy trapdoor functions with the branch collection B is given by a
tuple of PPT algorithms (Sabo, Gabo, G

−1
abo) having the following properties:

Simpler CCA-Secure Public Key Encryption from Lossy Trapdoor Functions 197

1. Sampling a trapdoor function with given lossy branch: for any b∗ ∈ Bλ,
Sabo(b∗) outputs (s, t), where s is a function index and t is its trapdoor.

2. Evaluation of injective functions: For any b ∈ Bλ distinct from b∗, Gabo(s, b, ·)
computes an injective (deterministic) function gs,b(·) over the domain {0, 1}n,
and G−1

abo(t, b, ·) computes g−1
s,b (·).

3. Evaluation of lossy functions: Gabo(s, b∗, ·) computes a function gs,b∗(·) over
the domain {0, 1}n whose image has size at most 2r = 2n−k.

4. Hidden lossy branch: The ensembles {s : (s, t) ← Sabo(b∗
0)}λ∈N,b∗

0∈Bλ
and

{s : (s, t) ← Sabo(b∗
1)}λ∈N,b∗

1∈Bλ
are computationally indistinguishable.

2.3 Key Encapsulation Mechanism (KEM)

A key encapsulation mechanism KEM consists of the following PPT algorithms.

– A key generation algorithm KEM.Gen that on input 1λ outputs a public/secret
key pair (pk, sk). The public key pk defines a key space Keysp.

– An encryption algorithm KEM.Enc that on input 1λ and a public key pk,
outputs a pair (K,ψ), where K is a key and ψ is a ciphertext.

– A decryption algorithm KEM.Dec that on input 1λ and a secret key sk, a
string (in particular a ciphertext) ψ, outputs either a key K or the special
symbol ⊥.

The CCA-security for KEM is defined by the following game between a chal-
lenger and an adversary A. The challenger runs the key generation algorithm
KEM.Gen to obtain (pk, sk) and gives pk to A. Then A can make decryption
queries about some ciphertexts {ψ} and the challenger responds with KEM.Dec
(sk, ψ). After that A asks for the challenge query. Then the challenger runs

(K∗
0 , ψ∗) R←− KEM.Enc(1λ, pk), K∗

1
R←− Keysp, δ

R←− {0, 1}.

Return the pair (K∗
δ , ψ∗) to A. A still can make decryption queries about

ciphertexts except for ψ∗. At the end of the game, A outputs a bit δ′. Let
AdvIND-CCA

KEM,A (λ) = |Pr[δ = δ′] − 1/2| denote A’s advantage in this game.

Definition 3. We say that KEM is IND-CCA secure if Adv IND-CCA
KEM,A (λ) is neg-

ligible for any PPT adversary A.

2.4 Hash Functions

A family of functions H = {H : D → R} is called pairwise independent, if, for
every distinct x 	= x′ ∈ D and every y, y′ ∈ R,

Prh←H[h(x) = y ∧ h(x′) = y′] = 1/|R|2.
A family of functions H′ = {H : D → R} is called target collision-resistant
(TCR) family, if for any PPT A, AdvTCR

H′,A(λ) is negligible, where

AdvTCR
H′,A(λ) := Pr[x R←− D,H

R←− H′, y ← A(x,H) : x 	= y ∧ H(x) = H(y)].

198 B. Liang et al.

2.5 Extracting Randomness

The min-entropy of a random variable X is defined as H∞(X) = − log(maxx

Pr[X = x]). Dodis, Reyzin and Smith [9] defined average min-entropy of X given
Y to be the logarithm of the average probability of the most likely value of X
given Y :

H̃∞(X|Y) = − log(Ey[2−H∞(X|Y =y)].

They also proved that if Y has 2� possible values and Z is any random variable,
then

H̃∞(X|(Y,Z)) ≥ H̃∞(X|Z) − �.

In addition, we review the following useful lemma:

Lemma 4 ([9]). Let X,Y be random variables such that X ∈ {0, 1}n, and
H̃∞(X|Y) ≥ κ. Let H be a family of pairwise independent hash functions from
{0, 1}n → {0, 1}�. Then for h

R←− H, we have

�(
(Y, h, h(X)), (Y, h, U�)

) ≤ ε,

as long as � ≤ κ − 2 log(1/ε).

3 The Proposed Scheme

In this section, we present our KEM and analyze its security.

3.1 The Proposed CCA-Secure KEM

Let (Sinj , Slossy, F, F−1) be a collection of (n, k)-LTDFs, and let (Sabo, Gabo,
G−1

abo) be a collection of (n, k′)-ABO-LTDFs having branch set B = {0, 1}v. We
also require that (n − k) + (n − k′) ≤ n − κ, for some κ = κ(n) = ω(log n). Let
H be a family of pairwise independent hash functions from {0, 1}n to {0, 1}�,
where ω(log λ) ≤ � ≤ κ − 2 log(1/ε) for some negligible ε = negl(λ). Let H′ be a
family of TCR functions from {0, 1}∗ to {0, 1}v.

Now, we describe our KEM KEM = (KEM.Gen,KEM.Enc,KEM.Dec) as
follows:

– KEM.Gen: takes as input 1λ. Run (s, t) ← Sinj(1λ) and (s′, t′) ← Sabo(1λ, 0v).

Choose h
R←− H and H

R←− H′. Finally, output the public key pk = (s, s′, h,H)
and secret key sk = (t, t′, pk).

– KEM.Enc: takes as input 1λ and pk. Choose x
R←− {0, 1}n and compute

c1 = F (s, x), c2 = Gabo(s′,H(c1), x), and h(x).

Finally, output (K,ψ) = (h(x), (c1, c2)), where K = h(x) is a key and ψ =
(c1, c2) is its ciphertext.

Simpler CCA-Secure Public Key Encryption from Lossy Trapdoor Functions 199

– KEM.Dec: takes as input 1λ, sk and a string (in particular a ciphertext)
ψ. Parse ψ = (c1, c2). If fails, output ⊥ and halt. Otherwise, compute x =
F−1(t, c1) and check whether

c1 = F (s, x) and c2 = Gabo(s′,H(c1), x);

if not, output ⊥ and halt. Finally, output K = h(x).

The correctness of the KEM can be verified easily.

3.2 Security Analysis

Now we turn to the security proof. Formally, we have:

Theorem 5. The KEM given in Sec. 3.1 is CCA-secure assuming that the
LTDF, the ABO-LTDF, the pairwise independent hash functions and the TCR
are secure.

Proof. The proof uses a sequence of games (Game0, Game1, . . . ,Game5) between
a challenger and an adversary A, where Game0 is the standard CCA-game. We
show that for i = 0, · · · , 4, the differences of A’s advantages in Gamei and
Gamei+1 are negligible. Finally, we show that A must have negligible advantage
in Game5. Therefore, we conclude that the KEM is IND-CCA secure.

Before describing the games, we define one global operation in the beginning
of each game: the challenger samples x∗ R←− {0, 1}n which will be used as the
“randomness” to generate the challenge ciphertext ψ∗. We claim this change
to the real IND-CCA game, namely Game0, is harmless, since the view of A
remains identical.

In the following, let Xi denote the event that the adversary wins in Gamei

(i = 0, · · · , 5). Let q denote the total number of decryption queries made by A.

Game0: This game is the standard CCA-game. The challenger samples x∗ R←−
{0, 1}n and runs the key generation algorithm KEM.Gen to obtain (pk, sk) and
gives pk to A. Then A can make queries about ciphertexts {ψ} and the challenger
responds with KEM.Dec(sk, ψ). After that A asks for the challenge query. Then
the challenger runs (using x∗)

(K∗
0 , ψ∗) ← KEM.Enc(1λ, pk), K∗

1
R←− Keysp, δ

R←− {0, 1}.

Return the pair (K∗
δ , ψ∗) to A. A still can make decryption queries about cipher-

texts except for ψ∗. At the end of the game, A outputs a bit δ′. If δ′ = δ, we
call A wins the game. Then we have

AdvIND-CCA
KEM,A (λ) = |Pr[X0] − 1

2
|.

Game1: This game is identical to Game0 except that we make a small mod-
ification to the decryption oracle. When the adversary submits a ciphertext

200 B. Liang et al.

ψ = (c1, c2) satisfying H(c1) = H(c∗
1) for decryption, the challenger immedi-

ately aborts.
Let F denote the event that the adversary A makes decryption queries of

the form ψ = (c1, c∗
1) with H(c1) = H(c∗

1). Then Game0 and Game1 proceed
identically until event F occurs. We have

|Pr[X0] − Pr[X1]| ≤ Pr[F],

by the difference lemma of [26]. If c1 = c∗
1, then we have c2 = Gabo(s′,H(c∗

1), x
∗) =

c∗
2, since c∗

1 = F (s, x∗) is injective, which implies that ψ = ψ∗. Therefore, in
event F , we only need to consider the case c1 	= c∗

1. In this case, we can easily
use A to construct an adversary B who will find a collision of H. The success
probability of B is at least same to that of A’s querying one pair (c1, c∗

1) satisfying
H(c1) = H(c∗

1). Therefore, we have Pr[F] ≤ q · AdvTCR
H′,B(λ). It follows that

|Pr[X0] − Pr[X1]| ≤ Pr[F] ≤ q · AdvTCR
H′,B(λ).

Since H is a TCR function, |Pr[X0] − Pr[X1]| is negligible.
Game2: This game is identical to Game1 except that the ABO function in key
generation algorithm KEM.Gen is chosen to have a lossy branch b∗ = H(c∗

1)
rather than 0v. Formally, in KEM.Gen(1λ), the challenger firstly chooses x∗ R←−
{0, 1}n, H

R←− H′, runs (s, t) ← Sinj(1λ) and computes c∗
1 = F (s, x∗). Then it

replaces (s′, t′) ← Sabo(0v) with (s′, t′) ← Sabo(H(c∗
1)).

A straightforward reduction to hidden lossy branch property of the ABO
trapdoor functions yields

|Pr[X1] − Pr[X2]| = negl(λ).

Game3: This game is identical to Game2 except for another modification to
the decryption oracle. When the adversary submits a ciphertext ψ = (c1, c2)
for decryption, the challenger computes x = G−1

abo(t
′,H(c1), c2) and checks that

whether
c1 = F (s, x) and c2 = Gabo(s′,H(c1), x).

If not, it responds ⊥; else outputs K = h(x).
In both games, when the adversary makes a valid decryption query of the

form ψ = (c1, c2), the challenger checks if c1 = F (s, x) and c2 = Gabo(s,H(c1), x)
for some x. It outputs ⊥ if not. We remark that if H(c1) = H(c∗

1), the decryption
oracle also outputs ⊥. Therefore, F (s, ·) and Gabo(s′,H(c1), ·) are both injec-
tive, and there is a unique x such that (c1, c2) = (F (s, x), Gabo(s′,H(c1), x)). In
Game2, the challenger computes x by F−1(t, c1), while in Game3, one finds x
by computing G−1

abo(t
′,H(c1), c2). Hence,

Pr[X2] = Pr[X3].

Game4: This game is identical to Game3 except that, in KEM.Gen, we replace
the injective function with a lossy one, i.e., let s ← Slossy(1λ). A straightforward

Simpler CCA-Secure Public Key Encryption from Lossy Trapdoor Functions 201

reduction to the indistinguishability of injective functions from lossy functions
of the lossy trapdoor functions collection yields

|Pr[X3] − Pr[X4]| = negl(λ).

Game5: This game is identical to Game4 except for the modification of challenge
query. In particular, the challenger chooses K† R←− Keysp and gives (ψ∗,K†) to
A regardless of the value of δ. Obviously, we have

Pr[X5] =
1
2
,

since now K† is random and irrelevant to ψ∗.

In addition, we have the following lemma (we will give its proof shortly after the
main proof).

Lemma 6. The adversary’s views in Game4 and Game5 are statistically indis-
tinguishable. Hence,

|Pr[X4] − Pr[X5]| = negl(λ).

Therefore, the advantage of A in the game is negligible. It follows that the KEM
is IND-CCA secure, and this completes the proof.

Proof. We observe that, in Game4 and Game5, F (s, ·) and Gabo(s′,H(c∗
1), ·)

are both lossy functions with image sizes at most 2n−k and 2n−k′
. Therefore,

ψ∗ = (c∗
1, c

∗
2) can take at most 2n−k+n−k′ ≤ 2n−κ values. It follows that

H̃∞(x|c∗
1, c

∗
2) ≥ H̃∞(x) − (n − κ) = n − (n − κ) = κ.

Since � ≤ κ − 2 log(1/ε), we have

�(
(c∗

1, c
∗
2, h, h(x)), (c∗

1, c
∗
2, h, r′)

) ≤ ε = negl(λ),

where r′ R←− {0, 1}�. If δ = 1, the views of A in two games are identical; else,
the difference is statistically close. Thus, the adversary’s views in two games are
statistically indistinguishable.

4 Extensions and Discussions

4.1 Obtaining a Longer Session Key

In order to instantiate our scheme, it is necessary to construct a family of LTDFs
and a family of ABO-LTDFs that have enough lossiness so that we can extract
a session key with proper length. We carefully examine the LTDFs appeared in
the literature [12,20,28] and find the following construction [12] which gives the
required property.

202 B. Liang et al.

Table 1. Efficiency comparison for our scheme with previously known CCA-secure
PW-scheme and LDL-scheme. λ is the security parameter. � is the keysize. n is the
length of required randomness. We take into account two cases that the security para-
meters are 80 bits and 128 bits. The ciphertext overheads of our scheme are com-
puted by |F (s, x)| + |Gabo(s, H(c1), x)| + |MAC| = 6λ + 6λ + |MAC|, where F (s, x)
and Gabo(s, H(c1), x) are the LTDF and the ABO-LTDF given in [12], respectively.
Instantiating one-time signature via number-theoretic assumption based schemes will
either introduce additional assumptions and/or computation costs, so we don’t take
into account here. The ciphertext overheads of the LDL-scheme are computed by
|F (s, x)| + |Fch(s′, u, r, x)| + |r| = 6λ + 6λ + | 1

2
λ − 1|, where F (s, x) is the LTDF,

Fch(s′, u, r, x) is the chameleon ABO-LTDF given in [17] under the DCR assumption
and |r| is the size of branches set which is equal to log 2λ/2−1. The ciphertext over-
heads of above three scheme are computed under the DCR assumption. “�” in the
“Online/Offline” column means that the scheme supports the ability of online/offline
processing, whereas “×” means that the scheme does not supports this ability.

λ (bit) � (bit) n (bit) Ciphertext Security Online/

n (bit) overhead (bit) assumption Offline

Our Scheme 80 114 434 1088 d-linear, SMA,
DCR, QR, LWE

�
128 186 704 1696

PW-Scheme 80 114 434 25600 d-linear, SMA,
DCR, QR, LWE

�
128 186 704 65536

LDL-Scheme 80 106 434 999 DCR ×
128 173 434 1599

Theorem 7 ([12]). For any polynomial τ = τ(λ), there exist a collection of
(n, k) = ((λ − 1)τ + λ/2 − 1, (λ − 1)τ − λ/2 − 1)-LTDFs and a collection of
(n, k′) = ((λ − 1)τ + λ/2 − 1, (λ − 1)τ − λ/2 − 1)-ABO-LTDFs with branches
set B = {0, 1, · · · , 2λ/2−1}, provided that the decisional composite residuosity
(DCR) assumption holds.

Then we propose the following parameters for our scheme under the DCR-
assumption. Let τ = 5, ε = 2−λ, κ = k + k′ − n = (λ − 1)τ − 3

2λ − 1 = 7
2λ − 6.

Then,

n =
11
2

λ − 6, � = κ − 2 log(1/ε) =
3
2
λ − 6.

Efficiency comparison for our scheme with previously known CCA-secure PW-
scheme and LDL-scheme is assembled in Table 1.

4.2 CCA-Secure PKE

It is well-known that a CCA-secure PKE scheme can be obtained from a CCA-
secure KEM and a CCA-secure DEM [25]. In Table 1, we use a standard authen-
ticated encryption (one-time pad plus MAC) as the DEM part for practical use.
We note that by applying redundancy-free DEMs [19] (namely, block cipher
operated in certain modes of operation), one can further reduce the ciphertext
overhead as shown in Table 1 by at least λ-bits.

Simpler CCA-Secure Public Key Encryption from Lossy Trapdoor Functions 203

4.3 Comparisons with the PW-Scheme

For completeness, we present the original PW-scheme in Appendix A. In this
scheme, Peikert and Waters used a strongly unforgeable one-time signature
scheme for CCA-security which we manage to avoid. We remark that to obtain
80 bits security, an additional ciphertext overhead is enlarged by the size of a
strongly one-time signature plus a verification key which sums up to approxi-
mately 25600 bits (O(λ2)) [11] and the ciphertext overhead is approximate to
65536 bits for 128 bits security. Certainly, one can use number-theoretic one-time
signature scheme such as DSA or Waters signature [27] etc., but it will either
introduce additional assumptions and/or computation costs.

4.4 Comparisons with the LDL-Scheme

To explain the effectiveness of our methodology, we compare our scheme with
that in [17] introduced by Lai, Deng and Liu (LDL-scheme, reviewed in Appendix
B) since their scheme also removes the strongly unforgeable one-time signature
of the PW-scheme and hence improves ciphertext overhead of the PW-scheme.

The LDL-scheme needs a variation of ABO function named chameleon ABO
function to construct CCA-secure scheme. Chameleon ABO functions are rela-
tively less-studied. Up to now, it seems that the chameleon ABO functions can
only be constructed from homomorphic encryption scheme which needs some
additional properties such as the message space M needs to be a finite field or
commutative ring with multiplicative identity. In [17], Lai et al. only gave a con-
crete construction based on DCR assumption. On the other hand, our scheme
only needs standard ABO-LTDFs which has been extensively studied and can be
constructed based on kinds of assumptions such as DDH [20], LWE [20], d-linear
[12], DCR [12], QR [12], Subgroup Membership Assumption (SMA) [28]. Finally,
the LDL-scheme loses the ability of online/offline processing in the PW-scheme,
while our scheme retains it.

5 Conclusion

In this paper, we demonstrate that one can actually remove the one-time
signature from the PW-scheme, and the resulting KEM can also be proved
CCA-secure. Moreover, we make an analysis about the system parameters and
manage to instantiate our KEM with standard assumptions to obtain a valid
key. We also compare our scheme with the PW-scheme introduced by Peikert
and Waters which used a strongly unforgeable one-time signature scheme for
CCA-security and the LDL-scheme introduced by Lai, Deng and Liu which is
based on chameleon ABO functions for CCA-security.

Acknowledgements. We thank Jingyong Chang for discussion about the details of
the works. We are also grateful to the anonymous reviewers for their helpful comments
and suggestions.

204 B. Liang et al.

A The PW-Scheme

Let (Gen, Sign, V er) be a strongly unforgeable one-time signature scheme where
the public verification keys are in {0, 1}v. Let (Sinj , Slossy, F, F−1) give a col-
lection of (n, k)-lossy trapdoor functions, and let (Sabo, Gabo, G

−1
abo) give a collec-

tion of (n, k′)-ABO lossy trapdoor functions having branches set B = {0, 1}v.
We require that (n − k) + (n − k′) ≤ n − κ, for some κ = κ(n) = ω(log n).
Let H be a universal family of hash functions from {0, 1}n to {0, 1}�, where
0 < � ≤ κ − 2 log(1/ε) for some negligible ε = negl(λ). The message space is
{0, 1}�. The CCA-secure scheme (G, E ,D) is as follows.

– G: takes as input 1λ. Run (s, t) ← Sinj(1λ) and (s′, t′) ← Sabo(1λ, 0v). Choose

h
R←− H. Finally, output the public key pk = (s, s′, h) and secret key sk =

(t, t′, pk).
– E : takes as input 1λ, pk and m ∈ {0, 1}�. It generates one-time signature key

pair (vk, skσ) ← Gen, then choose x
R←− {0, 1}n and compute

c1 = F (s, x), c2 = Gabo(s′, vk, x), c3 = m ⊕ h(x).

Finally, it signs the tuple (c1, c2, c3) using skσ as σ = Sign(skσ, (c1, c2, c3)).
The ciphertext is

c = (vk, c1, c2, c3, σ).

– D: takes as input 1λ, sk = (t, t′, pk) and a ciphertext c = (vk, c1, c2, c3, σ).
It first checks that whether V er(vk, (c1, c2, c3), σ) = 1; if not, it outputs ⊥.
It then computes x = F−1(t, c1), and checks that c1 = F (s, x) and c2 =
Gabo(s′, vk, x); if not, it outputs ⊥. Finally, it outputs m = c3 ⊕ h(x).

B The LDL-Scheme

Let (Sinj , Slossy, F, F−1) be a collection of (n, k)-lossy trapdoor functions, and let
(Sch, Fch, F−1

ch , CLBch) be a collection of (n, k′)-chameleon ABO lossy trapdoor
functions having branches A×B := {Aλ×Bλ}λ∈N. Let H be a universal family of
hash functions from {0, 1}n to {0, 1}�. We also require that (n − k) + (n − k′) ≤
n − κ, for some κ = κ(n) = ω(log n), and 0 < � ≤ κ − 2 log(1/ε) for some
negligible ε = negl(λ). The message space is {0, 1}�. The CCA-secure scheme
(G′, E ′,D′) is as follows.

– G′: takes as input 1λ. Run (s, t) ← Sinj(1λ) and (s′, t′) ← Sch(1λ). Choose

h
R←− H and a collision-resistant hash function H : {0, 1}∗ → Aλ. Finally,

output the public key pk = (s, s′, h,H) and secret key sk = (t, t′, pk).
– E ′: takes as input 1λ, pk and m ∈ {0, 1}�. It choose x

R←− {0, 1}n and r
R←− Bλ,

then compute

c0 = h(x) ⊕ m, c1 = F (s, x), c2 = Fch(s′, u, r, x),

where u = H(c0, c1). Finally, it outputs the ciphertext c = (c0, c1, c2, r).
– D′: takes as input 1λ, sk and a ciphertext c = (c0, c1, c2, r). It computes

x = F−1(t, c1) and u = H(c0, c1). Then check whether c1 = F (s, x) and
c2 = Fch(s′, u, r, x); if not, it outputs ⊥. Finally, it outputs m = c0 ⊕ h(x).

Simpler CCA-Secure Public Key Encryption from Lossy Trapdoor Functions 205

References

1. Abe, M., Cui, Y., Imai, H., Kiltz, E.: Efficient hybrid encryption from ID-based
encryption. Des. Codes Crypt. 54(3), 205–240 (2010)

2. Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among notions of
security for public-key encryption schemes. In: Krawczyk, H. (ed.) CRYPTO 1998.
LNCS, vol. 1462, pp. 26–45. Springer, Heidelberg (1998)

3. Boneh, D., Katz, J.: Improved efficiency for CCA-secure cryptosystems built using
identity-based encryption. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376,
pp. 87–103. Springer, Heidelberg (2005)

4. Boyen, X., Mei, Q., Waters, B.: Direct chosen ciphertext security from identity-
based techniques. In: ACM CCS 2005, pp. 320–329. ACM, New York (2005)

5. Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based
encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol.
3027, pp. 207–222. Springer, Heidelberg (2004)

6. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS,
vol. 1462, pp. 13–25. Springer, Heidelberg (1998)

7. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM J. Comput. 33(1),
167–226 (2003)

8. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002)

9. Dodis, Y., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate strong keys
from biometrics and other noisy data. In: Cachin, C., Camenisch, J.L. (eds.)
EUROCRYPT 2004. LNCS, vol. 3027, pp. 523–540. Springer, Heidelberg (2004)

10. Dolev, D., Dwork, C., Naor, M.: Nonmalleable cryptography. SIAM J. Comput.
30(2), 391–437 (2000)

11. Even, S., Goldreich, O., Micali, S.: On-line/Off-line digital signatures.
J. Cryptology 9(1), 35–67 (1996)

12. Freeman, D.M., Goldreich, O., Kiltz, E., Rosen, A., Segev, G.: More construc-
tions of lossy and correlation-secure trapdoor functions. J. Cryptology 26(1), 39–74
(2013)

13. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2),
270–299 (1984)

14. Hemenway, B., Ostrovsky, R.: On homomorphic encryption and chosen-ciphertext
security. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol.
7293, pp. 52–65. Springer, Heidelberg (2012)

15. Hemenway, B., Ostrovsky, R.: Lossy trapdoor functions from smooth homomorphic
hash proof systems. In: ECCC, vol. 16(127) (2009)

16. Kiltz, E., Mohassel, P., O’Neill, A.: Adaptive trapdoor functions and chosen-
ciphertext security. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110,
pp. 673–692. Springer, Heidelberg (2010)

17. Lai, J., Deng, R.H., Liu, S.: Chameleon all-but-one TDFs and their application to
chosen-ciphertext security. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A.
(eds.) PKC 2011. LNCS, vol. 6571, pp. 228–245. Springer, Heidelberg (2011)

18. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen
ciphertext attacks. In: STOC 1990, pp. 427–437. ACM, New York (1990)

206 B. Liang et al.

19. Phan, D.H., Pointcheval, D.: About the security of ciphers (semantic security and
pseudo-random permutations). In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004.
LNCS, vol. 3357, pp. 182–197. Springer, Heidelberg (2004)

20. Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: STOC
2008, pp. 187–196. ACM, New York (2008)

21. Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. Full ver-
sion of [20]. http://www.cc.gatech.edu/∼cpeikert/pubs/lossy tdf.pdf

22. Rackoff, C., Simon, D.R.: Non-interactive zero-knowledge proof of knowledge and
chosen ciphertext attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576,
pp. 433–444. Springer, Heidelberg (1992)

23. Rosen, A., Segev, G.: Chosen-ciphertext security via correlated products. In:
Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 419–436. Springer, Heidelberg
(2009)

24. Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In: FOCS 1999, pp. 543–553. IEEE Computer Society Press,
Los Alamitos (1999)

25. Shoup, V.: A proposal for an ISO standard for public key encryption (2001). http://
eprint.iacr.org/2001/112

26. Shoup, V.: Sequences of games: a tool for taming complexity in security proofs.
Cryptology ePrint Archive: Report 2004/332 (2004)

27. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg
(2005)

28. Xue, H., Li, B., Lu, X., Jia, D., Liu, Y.: Efficient lossy trapdoor functions based
on subgroup membership assumptions. In: Abdalla, M., Nita-Rotaru, C., Dahab,
R. (eds.) CANS 2013. LNCS, vol. 8257, pp. 235–250. Springer, Heidelberg (2013)

29. Zhang, R.: Tweaking TBE/IBE to PKE transforms with chameleon hash functions.
In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 323–339. Springer,
Heidelberg (2007)

30. Zhang, J., Xie, X., Zhang, R., Zhang, Z.: A generic construction from selective-IBE
to public-key encryption with non-interactive opening. In: Wu, C.-K., Yung, M.,
Lin, D. (eds.) Inscrypt 2011. LNCS, vol. 7537, pp. 195–209. Springer, Heidelberg
(2012)

http://www.cc.gatech.edu/~cpeikert/pubs/lossy_tdf.pdf
http://eprint.iacr.org/2001/112
http://eprint.iacr.org/2001/112

Attacking RSA with a Composed Decryption
Exponent Using Unravelled Linearization

Zhangjie Huang1,2,3, Lei Hu1,2(B), and Jun Xu1,2

1 State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing 100093, China

{zhjhuang,hu,jxu}@is.ac.cn
2 Data Assurance and Communication Security Research Center, Chinese Academy

of Sciences, Beijing 100093, China
3 University of Chinese Academy of Sciences, Beijing 100049, China

Abstract. Recently, Nitaj and Douh presented a new attack on RSA
with a composed decryption exponent. To be specific, they assumed that
the decryption exponent in RSA is of the form d = Md1 +d0 where M is
a known positive integer and d0 and d1 are two suitably small unknown
integers. They gave a lattice-based decryption exponent recovery attack
on this kind of RSA when the exponent d is under a larger bound than
the well-known one N0.292 given by Boneh and Durfee. In this paper,
we reconsider the same problem and present a new attack by using the
unravelled linearization technique proposed by Herrmann and May at
Asiacrypt 2009. Our result is theoretically better than that of Nitaj and
Douh and more importantly, is more efficient in terms of the dimension
of lattice involved in the attack.

Keywords: RSA · Unravelled linearization · Coppersmith’s method ·
Lattice basis reduction · LLL algorithm

1 Introduction

The RSA cryptosystem [15] is currently the most widely used public key cryptosys-
tem. RSA involves a public exponent e and a private exponent d which are related
by the equation ed ≡ 1 (mod φ(N)) where modulus N = pq is the product of
two large primes p and q and φ is Euler’s totient function. Due to the complicated
exponentiation operations in RSA, one tends to use those e and d with some special
properties such as small in size or having low Hamming weight. This may introduce
some security risks and which should be taken into consideration seriously.

There has been a great deal of research on the security of RSA when the
private exponent d is small or some of its bits are exposed. It is a well-known
result that when d < N

1
4 (approximately), d can be recovered by a continued

fraction method from the public information N and e [17]. The result was then
improved to d < N0.292 by Boneh and Durfee [2] using the celebrated method
of Coppersmith [4] for finding small roots of modular polynomial equations.

c© Springer International Publishing Switzerland 2015
D. Lin et al. (Eds.): Inscrypt 2014, LNCS 8957, pp. 207–219, 2015.
DOI: 10.1007/978-3-319-16745-9 12

208 Z. Huang et al.

To study the security of RSA under partial key exposure, Boneh, Durfee and
Frankel presented several attacks on RSA in 1998 [3]. They showed that if d =
Md1 + d0 for known d0 and M ≥ 2

n
4 , they can reconstruct all of d for an n-bit

RSA modulus in polynomial time (in n and e). They also considered attacks
knowing the most significant bits where Md1 (as a whole) is exposed. Some
extended results are given in [1,5].

Unlike the partial key exposure attacks where M and d0 are known, Nitaj and
Douh [14] proposed an attack on RSA under a new assumption that d is of the
form d = Md1 + d0 where M is a known positive integer but d0 and d1 are two
unknown and relatively small integers. To motivate this problem, consider the
following situation. Now that letting d less than N0.292 is insecure, one may
think of using a larger private key d and keeping the cost of decryption/signing
at a reasonable level. For example, one may use d of the form d = 2vd1 + d0,
where d0 and d1 are the least significant part and the most significant part of d
respectively and v is some integer for d0 � 2v. Making d0 and d1 both be small
but d large (larger than N0.292) does not lose much efficiency but Boneh and
Durfee’s small private key attack is no longer applicable for this kind of d. Nitaj
and Douh’s result and our improved result show that one should take care to
use even this kind of d.

Assuming that

e = Nα, M = Nβ , d0 ≤ Nγ and d1 ≤ N δ,

Nitaj and Douh showed that if

δ <
5
4

− γ − 1
4

√
12(α + β − γ) + 3, (1)

then they can factor the modulus N in polynomial time. Their method is a
direct application of the extended strategy of Jochemsz and May [9] for finding
small roots of multivariate polynomials proposed in 2006, which itself is based on
Coppersmith’s method. Under this assumption on d, they concluded that they
can attack RSA for some d whose values exceed N0.292, the well-known bound
of Boneh and Durfee. Some specific values of (α, β, γ, δ) are given in Table 1. As
we can see from the table, the size of d within the bound of the attack, which is
roughly Nβ+δ, can be greater than the bound N0.292.

Following the assumption of Nitaj and Douh on d, we present another lattice-
based attack by using the unravelled linearization technique. The unravelled lin-
earization technique was introduced by Herrmann and May at Asiacrypt 2009
[6] and they used this technique to obtain an elementary proof of Boneh and
Durfee’s bound d < N0.292 and to achieve a better practical performance in
cryptanalysis of RSA with small CRT exponents [7]. We use the same lineariza-
tion as in [7] but in our problem we have to deal with a polynomial with one
more variable. Finally, we are able to gain a similar improvement when applying
the unravelled linearization technique to analyze RSA with a composed private
exponent. We improve the bound (1) to

δ <
7
6

− γ − 1
3

√
6(α + β − γ) + 1. (2)

Attacking RSA with a Composed Decryption Exponent 209

Table 1. Values of δ in terms of α, β and γ. The fourth column represents the values
of δ computed from (1), which is the result given in [14], and the last column denotes
the values of δ computed from (2) (see below), which is the result in this paper.

α (logN (e)) β (logN (M)) γ (logN (d0)) δ (1) (logN (d1)) δ (2) (logN (d1))

1.0 0.5 0.1 0.037 0.044

1.0 0.4 0.1 0.071 0.077

1.0 0.3 0.2 0.043 0.047

1.0 0.3 0.1 0.107 0.112

1.0 0.25 0.25 0.031 0.034

0.75 0.5 0.3 0.001 0.003

0.75 0.4 0.2 0.101 0.103

0.75 0.3 0.2 0.141 0.143

0.75 0.25 0.25 0.133 0.134

The bound (2) is always better than that of Nitaj and Douh in theory and more
importantly our method requires lattices of smaller dimensions compared to the
lattices constructed in [14] for the same parameters (α, β, γ, δ) in practice.

We summarize our result in the following theorem:

Theorem 1. Let N = pq be an RSA modulus with balanced prime factors p and
q, i.e., p and q have the same bit-length. Let e and d be the public exponent and
the private exponent respectively. Assume d is of the form d = Md1 + d0 where
M is a known positive integer and d0, d1 are two unknown integers. Suppose
that e = Nα, M = Nβ, d0 ≤ Nγ and d1 ≤ N δ. Then the modulus N can be
factored in polynomial time if

δ <
7
6

− γ − 1
3

√
6(α + β − γ) + 1,

for sufficiently large N .

The rest of this paper is organized as follows. In Sect. 2 we will give some
basic results on lattices and briefly introduce Coppersmith’s method. In Sect. 3,
we will describe the unravelled linearization technique of Herrmann and May [7]
for analyzing RSA with small private exponents. We will present our analysis on
RSA with composed private exponents in Sect. 4. A comparison between Nitaj
and Douh’s method and ours will be given in Sect. 5.

2 Preliminaries

2.1 Lattices

An m-dimensional lattice L in Z
n (m ≤ n) is defined as the set of all inte-

ger linear combinations of m linearly independent (row) vectors {b1, . . . , bm} in

210 Z. Huang et al.

Z
n. These vectors are called basis vectors, and are often denoted as a matrix:

B = (bT1 , . . . , bTm)T. Then the determinant of L can be computed as det(L) =
√

det(BBT).
Finding the shortest vector in a lattice is generally difficult, which is known as

SVP in lattice theory. The goal of lattice reduction is to find a new lattice basis,
whose basis vectors are short and almost orthogonal. The LLL algorithm [10]
proposed by Lenstra, Lenstra and Lovász is the most famous lattice reduction
algorithm, which returns a reduced basis in polynomial time. There are many
variants of the LLL algorithm, such as the BKZ algorithm by Schnorr [16] and
the L2 algorithm by Nguyen and Stehlé [12]. The proof of the following fact can
be found in [11].

Fact 1 (LLL). Let L be a lattice spanned by the rows of B = (bT1 , . . . , bTm)T.
The LLL algorithm outputs a reduced basis {v1, . . . ,vm} satisfying

‖vi‖ ≤ 2
m(m−1)

4(m−i+1) det(L)
1

m−i+1 , 1 ≤ i ≤ m

in polynomial time in m and in the bit length of the entries of the basis matrix B.

2.2 Coppersmith’s Method

For the use of Coppersmith’s method for finding the small roots of a modular
polynomial equation, the reformulation given by Howgrave-Graham [8] is widely
adopted. In general, Coppersmith’s method consists of three basic steps:

1. Collect a set of polynomials which share the common desired roots modulo
some integer.

2. Construct a lattice basis using these polynomials and then apply the LLL
algorithm on the lattice.

3. Under certain conditions, some integer polynomials sharing the same small
roots will be obtained and one can extract the roots from these integer poly-
nomials using standard numerical methods for solving systems of polynomial
equations.

The following lemma is due to Howgrave-Graham, which states that under
which condition a modular equation holds over the integers. The norm of a
polynomial f(x1, . . . , xn) =

∑
ai1,...,inxi1

1 . . . xin
n is defined as ‖f(x1, . . . , xn)‖ =√∑ |ai1,...,in |2.

Lemma 1 (Howgrave-Graham [8]). Let g(x1, . . . , xn) ∈ Z[x1, . . . , xn] be a
polynomial that consists of at most m monomials. Suppose that

1. g(x(0)
1 , . . . , x

(0)
n) ≡ 0 (mod b) for |x(0)

1 | ≤ X1, . . . , |x(0)
n | ≤ Xn, and

2. ‖g(x1X1, . . . , xnXn)‖ < b√
m

,

then g(x(0)
1 , . . . , x

(0)
n) = 0 holds over the integers.

Attacking RSA with a Composed Decryption Exponent 211

Combining Howgrave-Graham’s lemma with the LLL algorithm, we deduce
that if

2
m(m−1)

4(m−i+1) det(L)
1

m−i+1 <
b√
m

,

then the polynomials corresponding to the shortest i reduced basis vectors satisfy
Howgrave-Graham’s bound. The condition implies

det(L) < 2−m(m−1)
4 (

1√
m

)m−i+1bm−i+1.

As in previous works, we ignore the terms that do not depend on b and simply
check the condition det(L) < bm−i+1, which is called the enabling condition.
In practice, this is convenient when b is large enough. After obtaining enough
equations over the integers, we can solve the systems of equations by computing
the Gröbner basis with respect to the lexicographic monomial ordering under
the following heuristic assumption:

Assumption 1. We can efficiently extract the desired roots by computing the
Gröbner basis of the ideal generated by the polynomials corresponding to the first
few LLL-reduced basis vectors.

3 The Technique of Unravelled Linearization

Before we present our attack on RSA with a composed decryption exponent, we
briefly introduce the usage of unravelled linearization technique in [7], where an
elementary proof of Boneh and Durfee’s bound d < N0.292 was given.

In [7], the authors considered the problem of finding small roots of the two
modular polynomials

f0(x, y) = 1 + x(A + y) mod e,

f̃0(u, x) = u + Ax mod e,

which are related to each other by the linearization relation xy = u − 1. They
constructed a lattice basis using the following polynomials for a fixed integer m
and t ≤ m:

x-shifts: g̃i,k(u, x) = xif̃k
0 em−k, for k = 0, . . . , m and i = 0, . . . , m − k; (3)

y-shifts: h̃j,k(u, x, y) = yj f̃k
0 em−k, for j = 1, . . . , t and k =

⌊m
t

⌋
j, . . . , m. (4)

A lattice basis was constructed by using the coefficient vectors of g̃i,k(uÛ, xX̂)
and h̃j,k(uÛ, xX̂, yŶ) as the basis vectors, where Û , X̂ and Ŷ are the upper
bounds on the size of the roots. If they only use the x-shifts to construct a basis,
the lattice basis is triangular. When adding the y-shifts, every occurrence of
xy in the polynomials h̃j,k is substituted with u − 1. This process changes the
monomials in the polynomials in the y-shifts. For some orderings on the polyno-
mials and on the monomials these polynomials contain, they kept the property

212 Z. Huang et al.

that every newly added polynomial introduces exactly one new monomial that
did not appear in the basis before. Hence, the triangular structure of the basis
matrix was retained, which makes it easy to compute the determinant of the
lattice.

4 New Attack Using Unravelled Linearization

4.1 The Problem

First, we derive the polynomial which will be analyzed by using Coppersmith’s
method from the RSA key equation ed ≡ 1 (mod φ(N)), where φ(N) = (p − 1)
(q − 1). Suppose d = Md1 + d0, we rewrite the key equation as

e(Md1 + d0) = 1 + k(p − 1)(q − 1),
k(N + 1 − (p + q)) − ed0 + 1 = (eM)d1.

for some k. Define the polynomial

f(x, y, z) = x(A + y) + ez + 1, (5)

where A = N +1. The problem is to find the root (x0, y0, z0) = (k,−(p+q),−d0)
of the modular polynomial equation f(x, y, z) = 0 (mod (eM)). Finding the root
(x0, y0, z0) is equivalent to factoring N , since p and q can be computed from
−(p + q) using N = pq easily. For simplicity, we denote eM as Me hereafter.

In order to use the unravelled linearization technique to construct a lattice
basis, we use the same linearization for the polynomial f(x, y, z) as in [7]. Define
the linearization relation xy = u − 1. We get another polynomial

f̄(u, x, z) = u + Ax + ez. (6)

We will use the relation xy = u − 1 when we construct the lattice basis from
some polynomials. Accordingly, we have u0 = x0y0 +1 and also f̄(u0, x0, z0) ≡ 0
mod Me.

Let e = Nα, M = Nβ , d0 ≤ Nγ and d1 ≤ N δ, where γ < β + δ. Then
d = Md1 + d0 < 2Nβ+δ and k = (ed − 1)/φ(N) < (2ed)/N < 4Nα+β+δ−1. For
p < q < 2p in N = pq, it is not hard to see that p + q < 5

√
N/2. Thus, define

X = 4Nα+β+δ−1, Y =
5
√

N

2
, Z = Nγ and U = 10Nα+β+δ− 1

2 ,

we have |x0| < X, |y0| < Y , |z0| < Z and |u0| < U .

4.2 Description of the Attack

Now we present our construction. In our problem, we want to find the small
root of f(x, y, z) = x(A + y) + ez + 1 (resp. f̄(u, x, z) = u + Ax + ez), which
contains one more variable than the polynomial f0(x, y) = 1 + x(A + y) (resp.

Attacking RSA with a Composed Decryption Exponent 213

f̃0(u, x) = u + Ax) considered in [7]. Adapting the polynomials chosen in [7] for
our problem, our polynomials contain two parts, the zx-shifts and the zy-shifts
(see below), similarly. We have to carefully choose the two parts in our method.
We will explain the ideas behind the choice for the polynomials in the remainder
of this section.

Fixing a positive integer m and an integer t ≤ m, whose value will be deter-
mined later, we choose the following polynomials:

zx-shifts: ḡi,j,k(u, x, z) = zjxif̄(u, x, z)k
Mm−k

e ,

for j = m, . . . , 0, k = 0, . . . , m − j and i = 0, . . . , m − j − k; (7)

zy-shifts: h̄j,k,l(u, x, y, z) = zlyj f̄(u, x, z)k−l
Mm−(k−l)

e ,

for j = 1, . . . , t, k =
⌊m

t

⌋
j, . . . , m and l = k, . . . , 0. (8)

Clearly, these polynomials share the same root (u0, x0, y0, z0) modulo Mm
e .

When using these polynomials to form a lattice basis, we order these polynomials
in such a way: the zx-shifts come first and then the zy-shifts. Among the zx-
shifts, we order ḡi,j,k by the indices (i, j, k): the outermost index is j = m, . . . , 0,
then k = 0, . . . , m− j, and the innermost index is i = 0, . . . , m− j −k. Similarly,
among the zy-shifts, we order h̄j,k,l by the indices (j, k, l): the outermost index
is j = 1, . . . , t, then k =

⌊
m
t

⌋
j, . . . , m, and the innermost index is l = k, . . . , 0.

In order to keep the final basis triangular, which will simplify the determi-
nant calculations, we choose the polynomials along with some ordering, such that
every polynomial introduces exactly one new monomial that does not present in
the basis before. The zx-shifts and the zy-shifts we choose satisfy this require-
ment.

Let us look at the zx-shifts first. For any j0 ∈ [0,m], the zx-shifts define a
set of polynomials ḡi,j0,k for k = 0, . . . , m − j0 and i = 0, . . . , m − j0 − k. Note
that, in our construction, we have f̄(u, x, z) = f̃0(u, x) + ez. Thus, we rewrite
ḡi,j0,k as:

ḡi,j0,k = zj0xif̄kMm−k
e = zj0xi(f̃0 + ez)kMm−k

e

= zj0xif̃k
0 Mm−k

e + Mm−k
e xi

k∑

i′=1

(
k

i′

)
ei′

zj0+i′
f̃k−i′
0

︸ ︷︷ ︸
. (9)

Note that the exponents of z in all the monomials in the summation part
of (9) are in [j0 + 1,m]. It is not hard to see that these monomials already
appear in the polynomials ḡi,j,k for j ∈ [j0 + 1,m]. By our ordering on the zx-
shifts, the polynomials ḡi,j,k (for j ∈ [j0 + 1,m]) come before the polynomials
ḡi,j0,k. Therefore, for arbitrary k ∈ [0,m − j0] and i ∈ [0,m − j0 − k], the
polynomial ḡi,j0,k introduces new monomials in the term zj0xif̃k

0 Mm−k
e in (9).

Note that this term is very like the x-shifts in (3) except the powers of z and
the constant factor. The polynomials in the x-shifts meet the requirement that
every polynomial introduces only one new monomial. It follows that the terms

214 Z. Huang et al.

zj0xif̃k
0 Mm−k

e also meet the requirement since they are the polynomials in the
x-shifts each multiplied by zj0 (ignore the constant factors). Consequently, the
zx-shifts meet the requirement.

As for the zy-shifts, we will show how to order the polynomials such that
they meet the requirement. We will focus on the monomials in polynomials,
hence we will omit the constant factors in the zy-shifts for the ease of notation.
We notice that, for arbitrary positive integers a, b and c, the polynomial zaybf̄c

introduces exactly one new monomial zaybuc if we already added the polynomials
za+1ybf̄c−1, zayb−1f̄c−1 and zayb−1f̄c. This can be seen from the following fact,
where f̄ = u + Ax + ez and xy = u − 1:

zaybf̄c

= zayb−1f̄c−1(y(u + Ax + ez))

= zayb−1f̄c−1(yu + Au − A + eyz)

= uzaybf̄c−1 + Auzayb−1f̄c−1 − Azayb−1f̄c−1 + eza+1ybf̄c−1.

It is clear that the monomials in the second term are all in zayb−1f̄c, the monomi-
als in the third term are all in zayb−1f̄c−1, and the monomials in the fourth term
are all in za+1ybf̄c−1. Iterate the same expansion over the first term uzaybf̄c−1

until the exponent of f̄ is zero. At last, we will see that all monomials in zaybf̄c

appear in za+1ybf̄c−1, zayb−1f̄c−1 or zayb−1f̄c except zaybuc. Along with the
zx-shifts, it is not hard to show that the polynomials in the zy-shifts in (8) sat-
isfy the above mentioned requirement. We use the same set of indices (j, k) as
in [7] as shown in (8).

We construct a basis with the coefficient vectors of ḡi,j,k(uU, xX, zZ) and
h̄j,k,l(uU, xX, yY, zZ) as its basis vectors and denote the lattice generated by
the basis as L. When using the zy-shifts, every occurrence of xy is substituted
with u − 1. Figure 1 shows an example of the basis for the parameters m = 2
and t = 1.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z2 z zx zu 1 x x2 u ux u2 z2y zyu yu2

z2M2
e M2

eZ2

zM2
e 0 M2

eZ

zxM2
e 0 0 M2

eZX

zf̄Me eMeZ2 0 AMeZX MeZU

M2
e 0 0 0 0 M2

e

xM2
e 0 0 0 0 0 M2

eX

x2M2
e 0 0 0 0 0 0 M2

eX2

f̄Me 0 eMeZ 0 0 0 AMeX 0 MeU

xf̄Me 0 0 eMeZX 0 0 0 AMeX2 0 MeUX

f̄2 e2Z2 0 2AeZX 2eZU 0 0 A2X2 0 2AUX U2

z2yM2
e 0 0 0 0 0 0 0 0 0 0 M2

eZ2Y

zyf̄Me 0 −AMeZ 0 AMeZU 0 0 0 0 0 0 eMeZ2Y MeZY U

yf̄2 0 −2AeZ 0 2AeZU 0 −A2X 0 −2AU A2UX 2AU2 e2Z2Y 2eZY U Y U2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Fig. 1. Example: the lattice basis for m = 2 and t = 1

Attacking RSA with a Composed Decryption Exponent 215

We then apply the LLL algorithm on the lattice L. In order to extract our
desired root (u0, x0, y0, z0), we expect at least four polynomials which are alge-
braically independent. Since we have known that x0y0 + 1 = u0, we expect the
polynomials corresponding to the first three LLL-reduced basis vectors satisfy
Howgrave-Graham’s condition. We will check the enabling condition det(L) <

M
m(dim(L)−2)
e .
We leave the calculations of the dimension and the determinant of L in

AppendixA. For a given integer m and t = τm, when m grows to infinity, we
substitute the approximate values for X, Y , Z and U into the enabling condition
and obtain
1
24

· (α + β + δ − 1) +
1
8
τ2 · 1

2
+

1
24

(1 + 3τ) · γ +
1
24

(1 + 3τ) · (α + β + δ − 1
2
)

+
1
24

(3 + 5τ) · (α + β) <
1
6
(1 + 2τ) · (α + β),

which leads to
δ <

7
6

− γ − 1
3

√
6(α + β − γ) + 1,

in Theorem 1 and the optimized value of τ is 1
2 − (γ + δ).

5 Experiments

As the bounds (1) and (2) are asymptotic bounds when m tends toward infinity, in
this section we compare the method of constructing lattice in [14] with ours from a
practical point of view. We investigate the dimensions of lattice which are needed
for the two methods for the same parameters (α, β, γ, δ). Table 2 shows the run-
ning times for various parameter settings. In all experiments, we set e full-size,
i.e., e ≈ N . In practice, we found that the reduced lattice bases contain many
more than three polynomials with (u0, x0, y0, z0) as their root. We included all
these polynomials in the basis and we were able to compute the Gröbner basis in
a few seconds. The desired root (u0, x0, y0, z0) was easily seen from the Gröbner
basis and thus Assumption 1 is reasonable. Our experiments were run on a desktop
PC with 1.8 GHz Intel Core i7-4500U CPU and 4 GB RAM.

To derive concrete lattice parameters m and t for a given parameter setting
(α, β, γ, δ), we use the exact formulae to calculate the dimension and determinant
of lattices, like (11) and (12) in AppendixA. As in [13], we use

‖vi‖ ≈ λdim(L) det(L)
1

dim(L) (10)

to approximate the length of vectors in the LLL-reduced basis for L, where vi

is the i-th smallest vector in the LLL-reduced basis for L and the factor λ is an
average factor in practice related to the output quality of the LLL algorithm.
In our experiments, λ (for i = 3) never exceed 1.0 (see Table 2). So it is safe to
ignore the term λdim(L).

For a specific parameter setting (α, β, γ, δ) satisfying (2), we choose values
for m and t in the following steps, such that our attack is achievable and the
dimension of lattice is as small as possible:

216 Z. Huang et al.

Table 2. Parameters and the experimental results

N(bits) α β γ δ Lattice paras & results Lattice paras & results [14]

m t dim LLL (s) λ m t dim LLL (s) λ

1024 1.0 0.30 0.10 0.06 4 1 40 4 0.936 6 1 112 627 0.863

1000 1.0 0.30 0.10 0.07 6 2 113 581 0.955 7 1 156 3082 0.949

1000 1.0 0.35 0.05 0.08 6 2 113 4373 0.881 7 1 156 9358 0.938

1600 1.0 0.35 0.10 0.06 8 2 209 48906 0.983 10 2 418 – –

1000 1.0 0.40 0.08 0.05 7 2 165 22876 0.887 9 2 330 – –

1600 1.0 0.40 0.10 0.04 8 2 209 188768 0.951 10 2 418 – –

1000 1.0 0.45 0.05 0.05 7 2 165 13562 0.789 9 2 330 – –

1000 1.0 0.50 0.08 0.01 7 2 165 7456 0.712 9 2 330 – –

1000 1.0 0.55 0.05 0.01 7 2 165 9244 0.598 9 2 330 – –

1. Choose a positive integer t. We start from one;
2. Solve the inequality det(L)

1
dim(L) < Mm

e for m and choose the smallest posi-
tive integer from the solution if there is one;

3. If the above inequality gives no positive integer solutions, increase t by one
and go to Step 2 again.

We also use this method to calculate the m and t which are needed for the attack
of Nitaj and Douh. The exact expressions for the dimension and the determinant
of lattice for their attack are given in AppendixB, which we extract from [14].

We reimplemented the attack of Nitaj and Douh for some parameters. As
we can see from Table 2, the dimension of lattice that is needed for our attack
is about half of the dimension of lattice in the attack of Nitaj and Douh. And
the running times of the LLL reduction in our method are a few times less than
that of Nitaj and Douh’s method.

Acknowledgements. The authors would like to thank the anonymous reviewers for
their helpful comments and suggestions. The work of this paper was supported by the
National Key Basic Research Program of China (2013CB834203), the National Nat-
ural Science Foundation of China (Grants 61472417), the Strategic Priority Research
Program of Chinese Academy of Sciences under Grant XDA06010702, and the State
Key Laboratory of Information Security, Chinese Academy of Sciences.

A Dimension and Determinant of the Lattice L

The dimension of the lattice L in Sect. 4.2 is

dim(L) = ω =
m∑

j=0

m−j∑

k=0

m−j−k∑

i=0

1 +
t∑

j=1

m∑

k=
m
t �j

k∑

l=0

1. (11)

Attacking RSA with a Composed Decryption Exponent 217

The determinant of L is

det(L) = XsxY syZszUsuMse
e , (12)

where the sx, sy, sz, su and se are as follows:

sx =
m∑

j=0

m−j∑

k=0

m−j−k∑

i=0

i,

sy =
t∑

j=1

m∑

k=
m
t �j

k∑

l=0

j,

sz =
m∑

j=0

m−j∑

k=0

m−j−k∑

i=0

j +
t∑

j=1

m∑

k=
m
t �j

k∑

l=0

l,

su =
m∑

j=0

m−j∑

k=0

m−j−k∑

i=0

k +
t∑

j=1

m∑

k=
m
t �j

k∑

l=0

(k − l),

se =
m∑

j=0

m−j∑

k=0

m−j−k∑

i=0

(m − k) +
t∑

j=1

m∑

k=
m
t �j

k∑

l=0

(m − (k − l)).

For sufficiently large m and t = τm, the above values can be rewritten as:

ω =
1
6
(1 + 2τ)m3 + o(m3), sx =

1
24

m4 + o(m4),

sy =
1
8
τ2m4 + o(m4), sz =

1
24

(1 + 3τ)m4 + o(m4),

su =
1
24

(1 + 3τ)m4 + o(m4), se =
1
24

(3 + 5τ)m4 + o(m4).

B Dimension and Determinant of the Lattice in [14]

Denote the lattice in [14] as L′. For integers m and t, the dimension of L′ is
given as:

dim(L′) =
1
6
(m + 1)(m + 2)(m + 3t + 3), (13)

and the determinant is given as:

det(L′) = X̄nx Ȳ ny Z̄nzMne
e , (14)

218 Z. Huang et al.

where the nx, ny, nz and ne are as follows:

nx =
1
24

m(m + 1)(m + 2)(m + 4t + 3),

ny =
1
12

m(m + 1)(m + 2)(m + 2t + 3),

nz =
1
24

(m + 1)(m + 2)(m2 + 3m + 4tm + 6t2 + 6t),

ne =
1
24

m(m + 1)(m + 2)(3m + 8t + 9),

and X̄, Ȳ and Z̄ are the bound of the roots.

References

1. Blömer, J., May, A.: New partial key exposure attacks on RSA. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 27–43. Springer, Heidelberg (2003)

2. Boneh, D., Durfee, G.: Cryptanalysis of RSA with private key d less than N0.292. In:
Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 1–11. Springer, Heidelberg
(1999)

3. Boneh, D., Durfee, G., Frankel, Y.: An attack on RSA given a small fraction of the
private key bits. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514,
pp. 25–34. Springer, Heidelberg (1998)

4. Coppersmith, D.: Small solutions to polynomial equations, and low exponent RSA
vulnerabilities. J. Cryptology 10(4), 233–260 (1997)

5. Ernst, M., Jochemsz, E., May, A., de Weger, B.: Partial key exposure attacks on
RSA up to full size exponents. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 371–386. Springer, Heidelberg (2005)

6. Herrmann, M., May, A.: Attacking power generators using unravelled linearization:
when do we output too much? In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol.
5912, pp. 487–504. Springer, Heidelberg (2009)

7. Herrmann, M., May, A.: Maximizing small root bounds by linearization and appli-
cations to small secret exponent RSA. In: Nguyen, P.Q., Pointcheval, D. (eds.)
PKC 2010. LNCS, vol. 6056, pp. 53–69. Springer, Heidelberg (2010)

8. Howgrave-Graham, N.: Finding small roots of univariate modular equations revis-
ited. In: Darnell, M. (ed.) Cryptography and Coding. LNCS, vol. 1355, pp. 131–142.
Springer, Heidelberg (1997)

9. Jochemsz, E., May, A.: A strategy for finding roots of multivariate polynomials
with new applications in attacking RSA variants. In: Lai, X., Chen, K. (eds.)
ASIACRYPT 2006. LNCS, vol. 4284, pp. 267–282. Springer, Heidelberg (2006)

10. Lenstra, A., Lenstra, H.W., Lovász, J.L.: Factoring polynomials with rational coef-
ficients. Math. Ann. 261(4), 515–534 (1982)

11. May, A.: New RSA vulnerabilities using lattice reduction methods. Ph.D. thesis,
University of Paderborn (2003)

12. Nguên, P.Q., Stehlé, D.: Floating-point LLL revisited. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 215–233. Springer, Heidelberg (2005)

13. Nguyên, P.Q., Stehlé, D.: LLL on theaverage. In: Hess, F., Pauli, S., Pohst, M.
(eds.) ANTS 2006. LNCS, vol. 4076, pp. 238–256. Springer, Heidelberg (2006)

Attacking RSA with a Composed Decryption Exponent 219

14. Nitaj, A., Douh, M.O.: A new attack on RSA with a composed decryption expo-
nent. Int. J. Crypt. Inf. Secur. (IJCIS) 3(4), 11–21 (2013)

15. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

16. Schnorr, C.: A hierarchy of polynomial time lattice basis reduction algorithms.
Theor. Comput. Sci. 53(23), 201–224 (1987)

17. Wiener, M.: Cryptanalysis of short RSA secret exponents. In: Quisquater, J.-J.,
Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 372–372. Springer,
Heidelberg (1990)

Fully Homomorphic Encryption
with Auxiliary Inputs

Fuqun Wang1,2,3(B) and Kunpeng Wang1,2

1 State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing, China

{fqwang,kpwang}@is.ac.cn
2 Data Assurance and Communication Security Research Center,

Chinese Academy of Sciences, Beijing, China
3 University of Chinese Academy of Sciences, Beijing, China

Abstract. In this paper, we propose the first (leveled) fully homo-
morphic encryption (FHE) that remains secure even when the attacker
is equipped with auxiliary inputs – any computationally hard-to-invert
function of the secret key. It is more general than the tolerance of Berkoff
and Liu’s leakage resilient fully homomorphic encryption, in which the
leakage is bounded by an a priori number of bits of the secret key. Specif-
ically, we first compile the dual of Regev’s public-key encryption scheme
proposed by Gentry, Peikert and Vaikuntanathan in 2008 into a fully
homomorphic encryption using Gentry, Sahai and Waters’ approximate
eigenvector method. We then show that it is CPA (chosen-plaintext-
attack) secure in the presence of hard-to-invert auxiliary inputs, assuming
the hardness of learning with errors (LWE) problem.

Keywords: Fully homomorphic encryption · Leakage resilient cryptog-
raphy · Learning with errors · Auxiliary inputs

1 Introduction

Fully Homomorphic Encryption. The notion of privacy homomorphism
(now called fully homomorphic encryption), which allows anyone to transform
a number of encrypted data Enc(b1),Enc(b2), · · · ,Enc(bt) to a related encrypted
message Enc(f(b1, b2, · · · , bt)) for any circuit f without decrypting them first
and revealing anything about b1, b2, · · · , bt themselves, was proposed by Rivest,
Adleman and Dertouzos [33] in 1978. Until 2009, the first FHE scheme was
constructed by Gentry [19,20]. It soon becomes a hot point of research in cryp-
tography for its prospect and potential in various applications including cloud
computing. A great many FHE schemes have been constructed, e.g., [4,6,7,10–
12,14,21,23,25,27,35] and references therein.

This work is supported in part by the National Nature Science Foundation of China
(Grant No. 61272040 and No. 61379137), and in part by the National Basic Research
Program of China (973 project) (Grant No. 2013CB338001).

c© Springer International Publishing Switzerland 2015
D. Lin et al. (Eds.): Inscrypt 2014, LNCS 8957, pp. 220–238, 2015.
DOI: 10.1007/978-3-319-16745-9 13

FHE with Auxiliary Inputs 221

Since ciphertexts contain errors that increase with homomorphic evaluation
and result in failure of decryption to some extent, all FHEs (including lev-
eled FHEs) need the encrypted secret key to refresh ciphertexts or bootstrap
their (augmented) decryption circuits after several homomorphic operations. As
refreshing or bootstrapping are considerably complex, these FHE schemes are
not easy to understand.

In CRYPTO 2013, Gentry, Sahai and Waters [25] proposed the first leveled
FHE (abbreviated GSW hereafter) without using the encrypted secret key, via
approximate eigenvector trick. Their scheme applies Regev’s public-key encryp-
tion (RPKE) [34] as a cornerstone. Based on GSW, several subsequent works
have been studied swiftly. Brakerski and Vaikuntanathan [12] constructed the
first FHE scheme as secure as LWE-based PKE, relied on the important obser-
vation that the asymmetric nature of matrix multiplication gives rise to a better
trick for manipulating the noise growth. Alperin-Sheriff and Peikert [4] designed
a faster bootstrapping process relied on a compact symmetric-key variant of
GSW, which can bootstrap essentially any LWE-based FHE scheme.

In this work, following the fancy and novel techniques in [4,12,25], we will
principally focus on dual of Regev’s public key encryption proposed by Gentry,
Peikert and Vaikuntanathan [24].

Leakage Resilient Cryptography. Leakage resilient cryptography, which aims
to stand against secret-key leakage attacks, is more advanced than traditional
modern cryptography which is built based on original assumption that secret
key is generated with perfect random bits and can be stored and used perfectly.
There are kinds of models of leakage resilient cryptography: Only Computation
Leaks Information [18,29], Bounded Leakage Model [3,5,30], Bounded Retrieval
Model [1,2], Continual Leakage Model [8,16,26] and Auxiliary Inputs Leakage
[5,15,17].

Bounded leakage resilience allows an adversary to gain a bounded length of
secret key, while auxiliary inputs security means that a scheme remains CPA
secure in the presence of hard-to-invert auxiliary inputs. The latter can be seen
as a generalization of the former in the sense that the auxiliary inputs may be
a output-bounded function. In this paper, for the first time, we adapt the CPA
security in the presence of hard-to-invert auxiliary inputs to fully homomorphic
cryptosystems.

1.1 Motivation and Contribution

Motivation. A large number of traditional cryptosystems (e.g., public key
encryption and digital signature) are proposed and proved to be secure under
side-channel attacks [2,3,5,8,15–17,26,30]. As traditional cryptosystems, fully
homomorphic encryption schemes also need to be designed more securely against
kinds of side-channel attacks. Berkoff and Liu [7] showed that GSW with larger
parameters is bounded adaptive leakage resilience. Their success prompts us to
extend bounded leakage to other leakage models in fully homomorphic cryptog-
raphy. Since a secure scheme with auxiliary inputs has excellent composition

222 F. Wang and K. Wang

property as discussed in [15,17], we will mainly focus on the auxiliary inputs
leakage model in this work. Constructing FHE schemes against other leakage
models, e.g., continual leakage model, is left as an interesting future work.

More specially, conventional wisdom that shows the security of LWE-based
cryptosystems via proving the public key indistinguishable from random, as
explained by Berkoff and Liu [7], is no use to argue that they are yet secure
against (adaptive) bounded memory leakage. The main reason is that the public
key is a function of the secret key and an attacker, when it obtains both keys,
can choose simply a relation function which reveals the relation between them.
As the generalization of bounded memory leakage, auxiliary inputs leakage also
faces this problem.

In 2009, Akavia, Goldwasser and Vaikuntanathan [3] argued that RPKE
with appropriate parameters is bounded memory leakage, by showing directly
the ciphertext indistinguishable from random. Following this, Berkoff and Liu [7]
proved that GSW with larger parameters is also bounded memory leakage. Nat-
urally, we would ask that can we prove that GSW stands against auxiliary inputs
leakage?

We observe that Berkoff and Liu’s techniques for proving the GSW against
the bounded memory leakage are not useful here, because we even do not know
that if RPKE is CPA secure against auxiliary inputs leakage or not to our
knowledge. The crux of the problem is that the secret key is fully determin-
istic information-theoretically given the hard-to-invert auxiliary-input function
of the secret key. So, we can not apply the notion of min-entropy of the secret
key to argue auxiliary inputs leakage.

However, we observe that Dodis, Goldwasser, Kalai, Peikert and
Vaikuntanathan [15] showed that dual of Regev’s PKE with larger parameters
resists against auxiliary inputs leakage, under the hardness of decisional LWE
problem. Following this, we propose an FHE scheme compiling dual of Regev’s
PKE using approximate eigenvector method and argue that it is CPA secure
against auxiliary inputs leakage.

Contribution. Our results are:

– An FHE scheme based on DRPKE: Although it is well known that an
FHE scheme can be obtained from dual of Regev’s public key encryption
(DRPKE) as Brakerski and Gentry-Sahai-Waters mentioned in [10] and [25]
respectively, it has still not appeared in literature to our knowledge. The main
reason (drawback) is that the ciphertext size is larger than that in [10] or [25],
which further reduces the efficiency that is the biggest bottleneck in fully
homomorphic cryptosystems. However, in order to construct an FHE with
auxiliary inputs, we have to present it with more details. Specially, we con-
struct a leveled FHE scheme based on DRPKE, using approximate eigenvector
method proposed by Gentry, Sahai and Waters [25]. Furthermore, the scheme
(without key leakage) can make use of bootstrapping theorems of Brakerski
and Vaikuntanathan [12] or Alperin-Sheriff and Peikert [4] to optimize the
parameters or bootstrap and gain an unbounded FHE.

FHE with Auxiliary Inputs 223

– Leveled FHE against auxiliary inputs leakage: The above scheme with
“normal” parameters is not CPA secure with auxiliary inputs, but we can show
that it is CPA secure against auxiliary inputs leakage via carefully setting the
parameters. As far as we know, it is the first fully homomorphic encryption
with auxiliary inputs as our main contribution in this work. Recall that Berkoff
and Liu [7] argued the first FHE against bounded memory leakage. Our scheme
against auxiliary inputs leakage is closely related to theirs, in the sense that
auxiliary inputs leakage can be seen a more general leakage model as it implies
bounded memory leakage.

Moreover, we note that, although we consider that the GSW scheme (com-
piling the Regev’s PKE) does not stand against auxiliary inputs leakage, we
can design a symmetric-key FHE scheme against auxiliary inputs leakage from
the symmetric variant of Regev’s PKE. The important observation is that LWE
problem itself is secure in the presence of auxiliary inputs, which is argued by
Goldwasser, Kalai, Peikert and Vaikuntanathan [22]. We outline the symmetric-
key FHE against auxiliary inputs leakage in Appendix A.

We also note that our scheme against auxiliary inputs leakage is just a leveled
FHE, meaning that we must set an a priori maximal circuit depth at the time
of key generation. However, we can design an unbounded one, following Berkoff
and Liu’s novel idea, via compiling an unbounded multi-key FHE [27] and a
leveled FHE against auxiliary inputs leakage on-the-fly. However, it is merely an
unbounded FHE with inputs-bounded, since the number of secret keys of LTV
is bounded by M set at the time of key generation. The construction is similar
and thus is omitted. Constructing an unbounded FHE without input-bounded
against auxiliary inputs leakage remains open.

1.2 Organization

We start with background and preliminary in Sect. 2. In Sect. 3, We present
formally a leveled FHE scheme from dual of Regev’s PKE following approximate
eigenvector fashion and discuss concisely its basic property. We argue the new
(slightly modified) leveled FHE is CPA secure against auxiliary inputs leakage
in Sect. 4. In Sect. 5, we conclude this work.

2 Preliminaries

2.1 Notations

We will use the notations below in this work. Let boldface small letters (e.g.,
x,y) denote vectors and boldface capital letters (e.g., A,B) denote matrices.
The i-coordinate of x is written by xi. We use 〈x,y〉 or x ·y to denote the inner
product of two vectors. For any integer q, we define Zq � (−q/2, q/2] ∩ Z. For
arbitary y ∈ Z, we write x = [y]q to denote the unique value x ∈ (−q/2, q/2]
such that x = y (mod q).

224 F. Wang and K. Wang

We use s
$← S to denote that s is drawn from a set S uniformly at random,

and d ← D to denote that d is drawn from the distribution D.
We let λ denote the security parameter in this paper. When we say a neg-

ligible function negl(λ), it means a function that increases slower than λ−c for
any constant c > 0 and any sufficiently large value of λ. When we say an event
happens with overwhelming probability, it means that it occurs with probabil-
ity at least 1 − negl(λ) for some negligible function negl(λ). We use X ≈s Y
to denote statistical indistinguishability and X ≈c Y to denote computational
indistinguishability. We write y = Õλ(x) if y = O(x · polylog(λ)).

2.2 Homomorphism

We now present some definitions related to (fully) homomorphic encryption and
Gentry’s bootstrapping theorem adopted from [11,19]. We only consider bit-
encryption scheme in this work.

Definition 1 (Homomorphic Encryption). A (public-key) homomorphic
encryption scheme HE = (HE.KeyGen,HE.Enc,HE.Dec,HE.Eval) is a quadruple
of PPT algorithms as described below:

– (pk,evk,sk)← HE.KeyGen(1λ): Output a public key pk, a public evaluation key
evk and a secret key sk.

– c ← HE.Encpk(b): For a bit message b ∈ {0, 1}, using the public key pk output
a ciphertext c.

– b ← HE.Decsk(c): Using the secret key sk, decrypt a ciphertext c to a plaintext
b ∈ {0, 1}.

– cf ← HE.Evalevk(f, c1, c2, . . . , ct): Using the public evaluation key evk (and
public parameters), apply an NAND-circuit f : {0, 1}t → {0, 1} to c1, c2, . . . , ct

and output a ciphertext cf .

We remark that, in this work, the circuit f is represented by NAND-gates
over Z2 in order to remain message small and is evaluated gate-by-gate. We
also remark that any boolean circuit can be combined by NAND-gates, because
NAND is a perfect set.

The notion of security we consider in Sect. 3 is CPA security, defined as
follows.

Definition 2 (CPA Security). An HE scheme is CPA secure if for any PPT
attacker A it holds that

ADVHE,A � |Pr[A(pk, evk,HE.Encpk(0)) = 1] − Pr[A(pk, evk,HE.Encpk(1)) = 1]| = negl(λ)

where (pk,evk,sk)← HE.KeyGen(1λ).

Now, we define the homomorphic properties. Remark that the definition of cor-
rectness of a scheme is implied by following homomorphic properties and hence
is omitted.

FHE with Auxiliary Inputs 225

Definition 3 (C-homomorphic or Somewhat homomorphic). Let C =
{Cλ}λ∈Z be a class of NAND-circuits. A scheme HE is C-homomorphic (or
somewhat homomorphic) if for any NAND-circuit f ∈ C, and respective inputs
b1, b2, . . . , bt ∈ {0, 1}, the following holds with overwhelming probability

Pr[HE.Decsk(HE.Evalevk(f, c1, c2, . . . , ct)) 	= f(b1, b2, . . . , bt)] = negl(λ),

where (pk,evk,sk)← HE.KeyGen(1λ) and ci ← HE.Encpk(bi).

Definition 4 (Compactness). An HE scheme is compact if there exists a poly-
nomial g = g(λ) such that the output length of HE.Eval(· · ·) is bounded by g(λ)
bits (regardless of circuit f or the number of inputs).

Definition 5 (Leveled FHE). An HE scheme is a leveled fully homomorphic
encryption if it gets an additional input 1L in the HE.KeyGen algorithm, where
L = poly(λ), and satisfies the definition for a compact, C-homomorphic encryp-
tion scheme, where C is the set of all NAND-circuits of depth ≤ L.

Definition 6 (UnboundedFHE).A homomorphic scheme HE is an unbounded
(or pure) fully homomorphic encryption if it is both compact and homomorphic for
the class of all circuits over Z2.

Note that the main difference between leveled FHE and unbounded FHE is that
the bit length of the evaluation key evk of the former is dependent on the depth
L and that of the latter is not. However, the latter needs additional circular
security assumption under the current state of the art.

Looking ahead, the scheme DRFHE (without key leakage) in Sect. 3 can
be transformed into an unbounded FHE. We move on to define bootstrappable
homomorphic encryption scheme and give bootstrapping theorem, since it is the
only way to obtain an unbounded FHE as far as we know.

Definition 7 (Bootstrappable Homomorphic Encryption Scheme). Let
HE be C-homomorphic, and let fNAND be the augmented decryption function of
the scheme defined as follows

fc1,c2
NAND(sk) = HE.Decsk(c1) NAND HE.Decsk(c2).

Then a C-homomorphic scheme HE is bootstrappable if fc1,c2
NAND ∈ C. Namely, the

scheme enables to evaluate homomorphically its augmented decryption function
fc1,c2
NAND.

Theorem 1 (Bootstrapping Theorem [19,20]). A bootstrappable homomor-
phic encryption scheme that can evaluate homomorphically its augmented decryp-
tion function and is also weakly circularly secure, can be converted into an
unbounded (or pure) fully homomorphic encryption scheme.

226 F. Wang and K. Wang

2.3 Vector Decomposition and Flatten

In homomorphic cryptography, we usually transform a vector into another one
that makes its coefficients smaller and still maintains certain property. Our nota-
tion is mostly adapted from [6,12,25].

Vector Decomposition. Recall that q is an integer.

– BitDecompq(u): This algorithm breaks a vector u ∈ Z
n
q into its bit represen-

tation. Namely, let ui =
∑�log q�

j=0 2j · ui,j , where ui,j ∈ {0, 1}, and output a
longer vector

(u1,�log q�, u1,�log q�−1, . . . , u1,0, . . . , un,�log q�, un,�log q�−1, . . . , un,0) ∈ {0, 1}n·(�log q�+1).

– Powersof2q(v): This algorithm converts a vector v ∈ Z
n
q into a new one as

follows

(2�log q�v1, 2�log q�−1v1, . . . , v1, . . . , 2�log q�vn, 2�log q�−1vn, . . . , vn) ∈ Z
n·(�log q�+1)
q .

Lemma 1. For all u,v ∈ Z
n
q , we have

〈BitDecompq(u),Powersof2q(v)〉 = 〈u,v〉 mod q.

We remark that this easily universalizes to decompositions with respect to
bases other than the powers of two. For simplicity, we only describe bit decom-
position case and often leave the subscript q out when there is no ambiguity in
this paper.

In order to better manage noise increasing under homomorphic evaluation,
Gentry, Sahai and Waters [25] proposed a flattening trick, which is very impor-
tant to construct a leveled FHE without using evaluation key.

Flatten. Let G = g ⊗ In ∈ Z
n×(n·(�log q�+1))
q , where g = (2�log q�, 2�log q�−1, . . . ,

2, 1) and In denotes the n-dimensional identity matrix. We now define the algo-
rithms BitDecomp−1 and Flatten.

– BitDecomp−1
q (u): For u ∈ Z

n·(�log q�+1), output [G · u]q ∈ Z
n
q .

– Flattenq(u): For u ∈ Z
n·(�log q�+1), output BitDecompq(BitDecomp−1

q (u)) ∈
{0, 1}n·(�log q�+1).

Lemma 2. For all u ∈ Z
n·(�log q�+1)
q ,v ∈ Z

n
q , we have

〈Flattenq(u),Powersof2q(v)〉 = 〈u,Powersof2q(v)〉 mod q.

2.4 Gaussian Measures

It is well known that n-dimensional (continuous) Gaussian distribution can be
expressed as the sum of n orthogonal 1-dimensional ones. So we only consider
1-dimensional Gaussian distribution as well as 1-dimensional discrete Gaussian
distribution over the integers in this paper.

FHE with Auxiliary Inputs 227

For any x and any s > 0, let

ρs(x) = e−π|x|2/s2

be a Gaussian function scaled by s. Therefore, we can define continuous Gaussian
distribution Ds is the distribution with probability density function proportional
to ρs, and discrete Gaussian distribution DZ+c,s is the distribution supported on
Z + c for some c ∈ R, whose probability mass function is proportional to ρs.

The following lemma is proved by Brakerski et al. [9]. It means that there
exists an efficient PPT algorithm that samples exactly obeyed any (enough wide)
discrete Gaussian distribution, in contrast to [24,32] where we only can sample
within negligible statistical distance of a discrete Gaussian distribution.

Lemma 3. For c ∈ R, there exists a PPT algorithm �·G that outputs a sample
distributed according to DZ+c,1.

Now, we bound the absolute value of a sum of discrete Gaussian distribution in
following lemmata, which can be found in [12,15].

Lemma 4. If u ← Ds, then with overwhelming probability, |u| < s · ω(
√

log λ).
Similarly, if u ← DZ+c,s, then with overwhelming probability, |u| < max
{s, ω(

√
log λ)} · ω(

√
log λ) = Õλ(s).

Lemma 5. Let r ∈ {0, 1}n, c ∈ R
n be arbitrary and e ← DZ+c,s. Then with

overwhelming probability

|〈r, e〉| ≤ √
n · max{s, ω(

√
log λ)} · ω(

√
log λ) = Õλ(

√
n · s).

Lemma 6. Let c ∈ R
n be arbitrary and e ← DZ+c,s, and let r ∈ {0, 1}n be

dependent on e. Then with overwhelming probability

|〈r, e〉| ≤ n · max{s, ω(
√

log λ)} · ω(
√

log λ) = Õλ(n · s).

We also need lemmata below to argue the scheme in Sect. 4 against auxiliary
inputs leakage.

Lemma 7. Let β > 0 and q ∈ Z. Let x ∈ Z
n and y ← Dn

Z,βq. Then |x · y| ≤
||x||2 · βq · ω(

√
log n) with overwhelming probability over the sample of y.

Lemma 8. Let β > 0, q ∈ Z and x ∈ Z. The statistical distance between the
distribution DZ,βq and DZ,βq + x is at most |x|/βq.

2.5 Learning with Errors (LWE)

The LWE problem was proposed by Regev [34] as a extension of “learning noisy
parities”. In this paper, we will mainly define the decisional learning with errors
(DLWE) and give the relation to intractability of worst-case lattice problems.

Given positive integers n = n(λ) and q = q(λ) ≥ 2, a vector s ∈ Z
n
q , and

a probability distribution χ over Z, let As,χ be the distribution obtained by

choosing uniformly a vector a $← Z
n
q and a noisy term e ← χ, and outputting

(a, [〈a, s〉 + e]q) ∈ Z
n
q × Zq. Now we define DLWE as follows.

228 F. Wang and K. Wang

Definition 8 (DLWE). For n, q, χ defined above and an integer m, the
DLWEn,m,q,χ problem is, given m independent samples, to decide that, with non-
negligible advantage, they are sampling from As,χ for a uniformly random and
secret s ∈ Z

n
q , or from the uniform distribution over Z

n
q × Zq. If there is not

a priori bounded in the number of samples, we write DLWEn,q,χ to denote the
variant where the adversary can get an oracle access to As,χ.

For lattice dimension n and a number d, GapSVPγ is the promise problem of
distinguishing whether a n-dimensional lattice has a vector shorter than d or no
vector shorter than γ · d. SIVPγ is the search problem of finding a set of “short”
vectors with approximate factor γ.

The following two theorems state quantum and classical reductions from
GapSVP or SIVP to DLWEn,q,χ, where χ = DZ,αq for α ∈ (0, 1) (Here we often
write DLWEn,q,α to denote DLWEn,q,χ).

Theorem 2 ([12,28,31,34]). Let q = q(n) ∈ N be either a prime power or a
product of co-prime powers of primes and αq ≥ 2

√
n. If there exists an efficient

algorithm solving DLWEn,q,α problem, we then have that,

– there is an efficient quantum algorithm that solves GapSVPÕ(n/α) and
SIVPÕ(n/α) on any n-dimensional lattice.

– if q ≥ Õ(2n/2), then there is an efficiently classical algorithm for GapSVPÕ(n/α)

on any n-dimensional lattice.

Theorem 3 ([9]). Solving n-dimensional DLWE with poly(n) modulus implies
an equally efficient algorithm to GapSVP or SIVP in dimension

√
n.

2.6 Goldreich-Levin Theorem

Our leveled FHE with auxiliary inputs is heavily relied on the following extended
variant of Goldreich-Levin theorem, which was given by Dodis et al. [15].

Theorem 4 ([15]). Let S be a subset of GF(q) for a prime q and f : Sm →
{0, 1}∗ be an arbitrary function. For all s $← Sm, r $← GF(q)m, u

$← GF(q), if a
distinguisher D runs in time T such that

|Pr[D(r, 〈r, s〉, f(s)) = 1] − Pr[D(r, u, f(s)) = 1]| = δ,

there then exists an algorithm A that runs in time T ′ = T ·poly(m, |S|, 1/δ) such
that

Pr[A(f(s)) = s] ≥ δ3

512 · m · q2
.

2.7 The Auxiliary Inputs Leakage Model for FHE

Definition 9. A fully homomorphic encryption scheme FHE=(FHE.KeyGen,
FHE.Enc, FHE.Dec, FHE.Eval) with plaintext space M = {Mn}n∈N is CPA

FHE with Auxiliary Inputs 229

secure w.r.t. auxiliary inputs leakage from some family of efficiently computable
functions H if for any PPT algorithm A, any function h ∈ H, and any suffi-
ciently large n ∈ N, it holds that

ADVFHE,A,h � |Pr[AIL0(FHE,A, n, h) = 1]−Pr[AIL1(FHE,A, n, h) = 1]| = negl(λ)

where AILb(FHE,A, n, h) is the output of the following game:

1. Setup. The challenger generates (sk, pk) ← FHE.keyGen(1λ) and sends pk to
the adversary.

2. AuxiliaryInputsLeakage. The adversary A chooses a function h ∈ H and sends
it to the challenger. The challenger replies with h(pk, sk).

3. Challenge. The adversary sends m0,m1 to the challenger. The challenger
selects b

$← {0, 1}, computes c ← FHE.Encpk(mb) and sends it to A.
4. Output. The adversary outputs a guess b′ ∈ {0, 1}.

In this paper, we will consider two classes of admissible functions H defined
in [15]. Let k = |sk| (bit length of the secret key). For f(k) ≥ 2−k, we can define
f(k)-hard-to-invert auxiliary inputs function family as follows.

1. Hun(f(k)) = {h : {0, 1}|pk|+|sk| → {0, 1}∗ | for all PPT A, Pr[A(h(pk, sk)) =
sk] ≤ f(k)}

2. Hpk−un(f(k)) = {h : {0, 1}|pk|+|sk| → {0, 1}∗ | for all PPT A, Pr[A(pk, h(pk,
sk)) = sk] ≤ f(k)}
Remark that the former family Hun(f(k)) is the class of polynomial-time

computable functions h, such that given h(pk, sk), no PPT adversary can find
sk with probability better than f(k), while the latter is the function family such
that given (pk, h(pk, sk)), no PPT adversary can find sk with probability better
than f(k).

An FHE scheme is called f(k)-AI-CPA (auxiliary inputs CPA) secure, if it is
CPA secure w.r.t. Hun(f(k)). Similarly, An FHE scheme is called f(k)-wAI-CPA
(weak auxiliary inputs CPA) secure, if it is CPA secure w.r.t. Hpk−un(f(k)).

The following lemma shows that if public key is short, then we can first prove
that an FHE is wAI-CPA secure and then obtain an FHE is AI-CPA secure with
smaller function family.

Lemma 9 ([15]). Let t(k) = |pk| for a scheme FHE. If FHE is f(k)-wAI-CPA
secure, then it is (2−t(k)f(k))-AI-CPA secure.

3 An FHE from DRPKE

First, in Sect. 3.1, we describe a leveled FHE (called DRFHE) derived from
DRPKE, using Gentry-Sahai-Waters’ approximate eigenvector method [25]. We
then show concisely the correctness, security and homomorphism of DRFHE in
Sect. 3.2. In next section, we will show that a variant of DRFHE is secure against
sub-exponentially hard-to-invert auxiliary input functions, assuming the hard-
ness of the LWE problem.

230 F. Wang and K. Wang

3.1 The Scheme: DRFHE

– DRFHE.Setup(1λ, 1L): Select LWE parameters q = q(λ,L), n = n(λ,L),
and χ = DZ,αq such that LWEn,q,χ attains at least 2λ security, where λ
is the security parameter, L is the maximum depth of circuits and χ is
a discrete Gaussian distribution from which the noises are sampled. Select
m = O(n log q) and let prms = (n,m, q, χ),
 = �log q�+1 and N = (m+1) ·
.

– DRFHE.SKGen(prms): Sample a vector t $← {0, 1}m. Let sk = s = (1,−t).
Let v = Powersof2(s).

– DRFHE.PKGen(prms, sk): Choose a matrix A $← Z
n×m
q . Compute u = At.

Set the public key pk = P = (u,A). Note that Ps = 0.
– DRFHE.Enc(pk, b): To encrypt a bit b, choose two matrices R $← Z

N×n
q and

E ← χN×(m+1) and output the ciphertext matrix

C = Flatten(b · IN + BitDecomp(R · P + E)) ∈ {0, 1}N×N .

– DRFHE.DecC, sk): Let c be the second row of C. Output b′ = �[〈c,v〉]q2,
where the rounding function �·2 : Zq → {0, 1} means that it outputs 0 if its
argument is closer to 0 than to 2�−2 modulo q, otherwise outputs 1.

– DRFHE.NAND(C1,C2): Given two ciphertext matrices C1,C2 for two plain-
texts b1, b2, respectively, output FlattenIN − C1 · C2).

– DRFHE.Eval(f,C1,C2, . . . ,Ct): apply an NAND-circuit f : {0, 1}t → {0, 1}
to t ciphertexts C1,C2, . . . ,Ct, and output a ciphertext Cf .

Recall that the evaluator should execute any NAND-circuit gate-by-gate.

Remark 3.1. As the plaintexts involve in the growth of noises when evaluat-
ing homomorphically a circuit, we primarily consider the circuit combined by
NANDs for controlling the plaintext small (the ciphertexts also involve in the
growth of noises and Flatten insures that the entries of ciphertexts are small).
Additionally, DRFHE also enable to evaluate circuits composed of additions and
multiplications as Gentry-Sahai-Waters demonstrated in [25] (using an extended
bit-by-bit decryption procedure for large plaintexts).

3.2 Analysis

Security. In order to show the semantic security of DRFHE under the average-
case DLWE assumption (further under the worst-case GapSVP or SIVP assump-
tion by theorem 2, 3), it suffices to show that (P,C) ≈c (U,V), where U,V are
sampled uniformly at random. As Flatten and BitDecomp are deterministic algo-
rithms, it is sufficient to prove that (P,RP + E) ≈c (U,V). It holds following
the arguments in [24,25] and thus the details are omitted.

Correctness. Now, we estimate the level of noise in fresh ciphertext which is
related with the decryption correctness of DRFHE.

For arbitrarily fresh ciphertext C encrypting b under public-key P, by lemma
1, 2, it is very easy to see that

C · v = b · v + RPs + Es = b · v + Es (mod q)

FHE with Auxiliary Inputs 231

thus, c2 · v = b · v2 + e2 · s. If χ is Õλ(αq)-bounded (it holds with overwhelming
probability by lemma 4), we have |e2 · s| ≤ Õλ((

√
m + 1) · Õλ(αq)) = (

√
m + 1) ·

Õλ(αq) by lemma 5, 6. Since v2 = 2�−2 ≥ q/4, provided (
√

m+1)·Õλ(αq) < q/8,
the correctness of decryption follows.

This results in the following definition about noise magnitude in any cipher-
text C.

Definition 10. We define that Noiseb = ||e||∞ if e ∈ Z
N is the noise vector in a

ciphertext C encrypting b under public-key P such that C ·v = b ·v+e (mod q).

Homomorphism. Below, we argue that DRFHE can decrypt correctly after
operating DRFHE.NAND and DRFHE.Eval for proper parameters.

Lemma 10. For i = 1, 2, let bi ∈ {0, 1}, Ci ∈ {0, 1}N×N and Ei ∈ Z
N×(m+1)

such that Civ = biv+Eis (mod q). we then have with overwhelming probability

Noiseb1NANDb2(DRFHE.NAND(C1,C2)) ≤ Noiseb1(C1) + N · Noiseb2(C2).

In other words, DRFHE.Dec will be correct if (N + 1)(
√

m + 1) · Õλ(αq) < q/8
for fresh Ci.

Proof. Let CNAND = DRFHE.NAND(C1,C2). Then we gain

CNAND · v = Flatten(IN − C1 · C2) · v
= (IN − C1 · C2) · v
= v − C1 · (C2 · v)
= v − C1 · (b2 · v + E2 · s)
= v − b2 · (b1 · v + E1 · s) − C1 · E2 · s
= (1 − b1b2) · v − (b2 · E1 · s + C1 · E2 · s)

Thus, by b2 ∈ {0, 1},C1 ∈ {0, 1}N×N and the definition of Noiseb, we have

Noiseb1NANDb2(CNAND) ≤ Noiseb1(C1) + N · Noiseb2(C2)

which finishes the proof. ��
By successively using lemma 10, it is much easier to get the below lemma, which
states the scheme DRFHE can homomorphically evaluate a depth-L circuit of
NANDs.

Theorem 5. Let n, q, χ be the LWE parameters and bi ∈ {0, 1}, Ci ∈ {0, 1}N×N

and Ei ∈ Z
N×(m+1) such that Civ = biv + Eis (mod q), i ∈ [t] = {1, 2, . . . , t}.

For every depth-L circuit of NANDs f , let Cf ← DRFHE.Eval(f,C1,C2, . . . ,Ct).
If (1 + N)L(

√
m + 1) · Õλ(αq) < q/8, we then have

DRFHE.Dec(Cf , sk) = f(b1, b2, . . . , bt)

with overwhelming probability over the randomness of all algorithms involved.

232 F. Wang and K. Wang

Remark 3.2. As we said in the introduction, the efficiency of DRFHE is mod-
erately lower than GSW. The main reason is that the ciphertext size increases
roughly by a factor O(log2 q) (The ciphertext size of GSW is (n+1)2 log2 q, while
that of DRFHE is (O(n log q) + 1)2 log2 q). However, both DRFHE and GSW has
quasi-additivity of behavior of noises under a sequence of asymmetric homomor-
phic multiplications. So, we can use bootstrapping theorems of Brakerski and
Vaikuntanathan [12] or Alperin-Sheriff and Peikert [4] to bootstrap and gain an
unbounded FHE with polynomial errors.

4 An FHE with Auxiliary Inputs

In this section, we present the leveled fully homomorphic encryption with auxil-
iary inputs (called DRFHEAI) by adjusting the parameters of DRFHE and show
that it is AI-CPA secure under LWE assumption.

4.1 The Scheme: DRFHEAI

We only describe DRFHEAI.Setup and DRFHEAI.Enc because other algorithms
are all as same as those in DRFHE.

– DRFHEAI.Setup(1λ, 1L): Let the integer n = n(λ,L), the prime q ∈ (2nε

, 2·2nε

]
and the integer m = ((n + 3) log q)1/ε where ε, ε ∈ (0, 1). Let
 = �log q� + 1
and N = (m + 1) ·
. Let α = 2

√
n/q and β = 1/(8

√
nq).

– DRFHEAI.Enc(pk, b): To encrypt a bit b, choose two matrices R $← Z
N×n
q and

E = (e,E′), where e ← DN
Z,αq and E′ ← DN×m

Z,βq . Output the ciphertext matrix

C = Flatten(b · IN + BitDecomp(R · P + E)) ∈ {0, 1}N×N .

Remark 4.1. The main differences between DRFHE and DRFHEAI are twofold:
larger m and two encryption noises in the latter scheme. Both of them are set to
show CPA security in the presence of auxiliary inputs leakage. Since the cipher-
text sizes of both schemes are related with m, the ciphertext size of DRFHEAI
increases roughly by a factor O(n log q)2/ε−2 comparing to DRFHE.

Correctness and Homomorphic Property. In this section, we only show
succinctly the correctness and the homomorphic property of DRFHEAI. The
security will be proved in next section.

Since encryption noises E = (e,E′) where e ← DN
Z,αq and E′ ← DN×m

Z,βq ,
for a fresh ciphertext C encrypting b, Noiseb(C) ≤ Õλ(αq) + Õλ(

√
m · βq) =

Õλ(α +
√

mβ) · q by lemma 4, 5, 6. So, DRFHEAI.Dec can decrypt correctly for
Õλ(α +

√
mβ) < 1/8 with overwhelming probability.

Furthermore, after evaluating a depth-L circuit of NANDs, the noise magni-
tude will increase to Õλ(α+

√
mβ) ·q ·(N +1)L. Thus, DRFHEAI.Dec can decrypt

correctly for Õλ(α +
√

mβ) · (N + 1)L < 1/8 with overwhelming probability.

FHE with Auxiliary Inputs 233

4.2 DRFHEAI Against Auxiliary Inputs Leakage

In this section, we show that the scheme DRFHEAI is secure against sub-
exponentially hard-to-invert auxiliary inputs, assuming the hardness of DLWE
problem. In order to show it, we first prove the following lemma.

Lemma 11. Let A $← Z
n×m
q , t $← {0, 1}m, r $← Z

n
q , u = At, e ← DZ,αq,

e′ ← Dm
Z,βq, v

$← Zq, v′ $← Z
m
q , and n,m, q, α, β defined as in our DRFHEAI

scheme. If the DLWEn,m,q,β problem is hard, and for any fixed auxiliary-input
function h, finding t is yet (qn2−mε

)-hard given (A,u, h(A, t)), then,

Greal
Δ= (A,u, r · u + e, rA + e′, h(A, t)) ≈c Gideal

Δ= (A,u, v,v′, h(A, t)).

Proof. We define a sequence of in-between hybrid games Ga,Gb,Gc as follows:

– Ga
Δ= (A,u, (rA + e′) · t + e, rA + e′, h(A, t)), where t $← {0, 1}m.

– Gb
Δ= (A,u,v′ · t + e,v′, h(A, t)), where v′ $← Z

m
q .

– Gc
Δ= (A,u, v + e,v′, h(A, t)), where v

$← Zq.

To show lemma 11, it suffices to show Greal ≈s Ga ≈c Gb ≈c Gc ≈c Gideal. It
follows from several claims below.

Claim 1. Greal ≈s Ga.

Proof. The only difference between games Greal and Ga is that ((rA+ e′) · t+ e)

takes the place of (r · u + e), where t $← {0, 1}m, e ← DZ,αq and e′ ← Dm
Z,βq.

Note that (rA + e′) · t + e = r · u + e′ · t + e. So we only need to show that the
distribution of e′ · t + e is statistically indistinguishable from DZ,αq. Since

e′ ·t/(αq) ≤ ||e′||2 · ||t||2/(αq) ≤ √
m ·βq ·ω(

√
log n)/(αq) ≤ 16 ·√m ·n ·ω(

√
log n)/

√
q,

by lemma 7, is negligible, we gain by lemma 8 that above two distributions are
indistinguishable. The claim follows. ��
Claim 2. Ga ≈c Gb.

Proof. The only difference between games Ga and Gb is that (rA+e′) is replaced

by v′, where v′ $← Z
m
q . By assumption that the DLWEn,m,q,β problem is hard,

the advantage of distinguishing above two distributions is a negligible function
of n. ��
Claim 3. Gb ≈c Gc.

Proof. The only difference between games Gb and Gc is that (v + e) substitutes

(v′ · t + e), where v
$← Zq. Since e only appears in this place, it is sufficient to

show that the distributions below are indistinguishable

G′
b

Δ= (A,u,v′ · t,v′, h(A, t)) ≈c G′
c

Δ= (A,u, v,v′, h(A, t)).

234 F. Wang and K. Wang

This implies that we only need to reduce the work of inverting h to the work of
obtaining a non-negligible distinguishing advantage between G′

b and G′
c. For the

sake of contradiction, assume that the distinguishing advantage between G′
b and

G′
c is δ(n), which is non-negligible for infinitely many n’s.

Since qn+3 = 2−mε

and 512 · m/(δ3 · q) < 1 for large enough n, by theorem
4 (Goldreich-Levin theorem), there exists an algorithm that, given pk = (A,u),
inverts h(A, t) with probability more than

δ3

512 · m · q2
= qn · δ3 · q

512 · m · qn+3
> qn · 2−mε

.

The contradiction follows. ��
Claim 4. Gc ≈c Gideal.
This claim is clear from v

$← Zq and e ← DZ,αq.
It thus holds that Greal ≈s Ga ≈c Gb ≈c Gc ≈c Gideal, which finishes the proof.

��
Now, we show our main theorem.

Theorem 6. Let the parameters n, m, q, α, β be the same as in the leveled fully
homomorphic encryption scheme DRFHEAI presented above. If the DLWEn,m,q,β

problem is hard, then DRFHEAI is 2−mε

-AI-CPA secure (when A is a common
system parameter).

Proof. Note that the length of “user-specific” public-key u is n log q bits, by
lemma 9, it is sufficient to show that DRFHEAI is (qn2−mε

)-wAI-CPA secure.
For any fixed auxiliary-input function h, finding t is yet (qn2−mε

)-hard given
(A,u, h(A, t)). We consider a PPT attacker A with advantage δ = δ(n) =
ADVA,h(n) at playing the AIL game.

Recall that the attacker’s view is (P,Cb, h(P, s)), where Cb is an encryption
of message bit b ∈ {0, 1}. Let C′

b = BitDecomp−1(Cb) = BitDecomp−1(b · IN) +
RP+E. It is sufficient to consider a PPT attacker who plays the AIL game with
C ′

b, because the algorithm BitDecomp−1 is deterministic. Then, a PPT attacker’s
view is actually (P,BitDecomp−1(b ·IN)+RP+E, h(P, s)). Therefore, it suffices

to show (P,RP + E, h(P, s)) ≈c (P,V $← Z
N×(m+1)
q , h(P, s)).

Recall that P = (u,A) where A $← Z
n×m
q , t $← {0, 1}m, u = At, E = (e,E′)

where e ← DN
Z,αq and E′ ← DN×m

Z,βq , and s = (1,−t). So, for v $← Z
N
q and

V $← Z
N×(m+1)
q , we define

GAIL = (A,u,Ru + e,RA + E′, h(A, t)),GIDEAL = (A,u,v,V, h(A, t)).

We will go to show that GAIL ≈c GIDEAL. Recall that random matrix R $←
Z

N×n
q , we can view it as an assemblage of N independent uniformly random

n-vectors ri
$← Z

n
q . Hence,

GAIL = (A,u, {ri · u + ei}i∈[N], {ri · A + e′
i}i∈[N], h(A, t)).

FHE with Auxiliary Inputs 235

We consider a sequence of hybrid games Gi, 0 ≤ i ≤ N, as defined below:

Gi = (A,u, {vj}j≤i, {rj · u + ej}j≥i+1, {vj}j≤i, {rj · A + e′
j}j≥i+1, h(A, t)),

where vj
$← Zq,vj

$← Z
m
q , 1 ≤ j ≤ i.

It is prone to check that G0 = GAIL and GN = GIDEAL. To show theorem 6,
it is sufficient to prove that Gi ≈c Gi+1, for all i, 0 ≤ i ≤ N − 1.

By lemma 11 that presents that for a singleton vector r $← Z
n
q ,

Greal = (A,u, r · u + e, rA + e′, h(A, t)) ≈c Gideal = (A,u, v,v′, h(A, t)),

it suffices to reduce the task of distinguishing between Greal and Gideal to the
task of distinguishing Gi from Gi+1.

The reduction algorithm B that achieves this simulates the view of the
attacker A as follows. Given an input G = (A,u, w,w′, h(A, t), for 1 ≤ j ≤ i,

samples vj
$← Zq,vj

$← Z
m
q , and for i+2 ≤ j ≤ N , samples rj

$← Z
n
q , ej ← DZ,αq,

e′
j ← Dm

Z,βq, and draws up the following distribution

G′ = (A,u, {vj}j≤i, w, {rj ·u+ej}j≥i+2, {vj}j≤i,w′, {rj ·A+e′
j}j≥i+2], h(A, t)).

Thus, the distribution G′ equals to Gi if G = Greal, while the distribution G′

equals to Gi+1 if G = Gideal. It follows that the advantage of B is equal to that
of A. This finishes the proof. ��

5 Conclusions

In this work, we first compiled an FHE scheme from dual of Regev’s PKE, using
approximata eigenvector method. we then argued that it is CPA secure against
auxiliary inputs leakage by carefully selecting the parameters. As far as we know,
it is the first FHE scheme against auxiliary inputs leakage. Since the ciphertext
in this scheme is larger than that in GSW, we consider that it is an important
problem to show that GSW or other efficient FHEs stand against auxiliary inputs
leakage.

Acknowledgement. The authors would like to thank anonymous reviewers for their
helpful comments and suggestions.

A A Symmetric-Key FHE with Auxiliary Inputs

We first recall an important result from [22] which claims that the standard
LWE assumption implies that binary-LWE is secure even in the presence of
hard-to-invert auxiliary inputs.

Lemma 12. ([22] Theorem 5). Set k ≥ log q. Let H be the class of all func-
tions h : {0, 1}n → {0, 1}∗ that are 2−k-hard-to-invert, i.e., given h(s), no PPT
algorithm can find s with probability better than 2−k.

236 F. Wang and K. Wang

For any super-polynomial q = q(λ), any m = poly(n), and any α, β ∈ (0, 1)
such that β/α = negl(λ), it holds that

(A,AT s + e, h(s)) ≈c (A,u, h(s)),

where A $← Z
n×m
q , s $← {0, 1}m, u $← Z

m
q and e ← Dm

Z,αq, assuming the

LWEn′,m,q,β assumption, where n′ � k−ω(log λ)
log q .

The symmetric-key FHE with auxiliary inputs SKFHE is described below.

– SKFHE.Setup(1λ, 1L): Select LWE parameters n = n(λ,L), super-polynomial
q = q(λ,L), and χ = DZ,αq, where λ is the security parameter, L is the maxi-
mum multiplicative depth of circuits and some α ∈ (0, 1). Set
 = �log q� + 1
and m = (n + 1) ·
, and let prms = (n,m, q, χ).

– SKFHE.SKGen(prms): Sample a vector t $← {0, 1}n. Let sk = s = (1,−t). Let
v = Powersof2(s).

– SKFHE.Enc(pk, b): To encrypt symmetrically a bit b ∈ {0, 1}, sample an error

vector e ← Dm
Z,αq and a matrix A $← Z

n×m
q , and output the ciphertext matrix

C = Flatten(b · IN + BitDecomp([At + e||A])) ∈ {0, 1}N×N .

– SKFHE.Dec(C, sk): Let c be the second row of C. Output b′ = �[〈c,v〉]q2,
where the rounding function �·2 : Zq → {0, 1} means that it outputs 0 if its
argument is closer to 0 than to 2�−2 modulo q, otherwise outputs 1.

– SKFHE.NAND(C1,C2): Given two ciphertext matrices C1,C2 for two plain-
texts b1, b2, respectively, output Flatten(IN − C1 · C2).

– SKFHE.Eval(f,C1,C2, . . . ,Ct): apply a NAND-circuit f : {0, 1}t → {0, 1} to
t ciphertexts C1,C2, . . . ,Ct, and output a ciphertext Cf .

Analysis. The scheme SKFHE is essentially as same as the symmetric-key FHE
in [12] except a larger modulus q. So, the correctness and homomorphic property
of SKFHE follow the analysis in [12]. Here, we only show that it is CPA secure
even in the presence of hard-to-invert auxiliary inputs assuming standard LWE
assumption.

Theorem 7. Let prms = (n,m, q, χ) be the parameters of SKFHE described
above. For any k = k(λ) and any function h : {0, 1}n → {0, 1}∗ that is 2−k-hard-
to-invert, if the standard LWEn′,m,q,β assumption is hard where n′ � k−ω(log λ)

log q

and where β satisfies β/α = negl(λ), the scheme SKFHE then is CPA secure
with auxiliary inputs h(s).

In order to show theorem 7, by lemma 12, it is sufficient to prove the following
lemma, which says that the scheme SKFHE is CPA secure against auxiliary
inputs h(s) if (A,AT s + e, h(s)) ≈c (A,u, h(s)) for appropriate parameters.

Lemma 13. Let prms = (n,m, q, χ) be the parameters of SKFHE described
above. For any k = k(λ) and any function h : {0, 1}n → {0, 1}∗ that is 2−k-
hard-to-invert, the scheme SKFHE is CPA secure with auxiliary inputs h(s), if

(A,AT s + e, h(s)) ≈c (A,u, h(s)), where A $← Z
n×m
q , s $← {0, 1}m, u $← Z

m
q

and e ← Dm
Z,αq.

FHE with Auxiliary Inputs 237

Proof. The proof of lemma 13 is similar as the proof of lemma 4 in [22] and
hence is omitted. ��

References

1. Alwen, J., Dodis, Y., Naor, M., Segev, G., Walfish, S., Wichs, D.: Public-key
encryption in the bounded-retrieval model. In: Gilbert, H. (ed.) EUROCRYPT
2010. LNCS, vol. 6110, pp. 113–134. Springer, Heidelberg (2010)

2. Alwen, J., Dodis, Y., Wichs, D.: Leakage-resilient public-key cryptography in the
bounded-retrieval model. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp.
36–54. Springer, Heidelberg (2009)

3. Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous hardcore bits and
cryptography against memory attacks. In: Reingold, O. (ed.) TCC 2009. LNCS,
vol. 5444, pp. 474–495. Springer, Heidelberg (2009)

4. Alperin-Sheriff, J., Peikert, C.: Faster bootstrapping with polynomial error. In:
Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 297–
314. Springer, Heidelberg (2014)

5. Brakerski, Z., Goldwasser, S.: Circular and leakage resilient public-key encryption
under subgroup indistinguishability. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 1–20. Springer, Heidelberg (2010)

6. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: Fully homomorphic encryption
without bootstrapping, pp. 309–325. In: ITCS (2012)

7. Berkoff, A., Liu, F.-H.: Leakage resilient fully homomorphic encryption. In: Lindell,
Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 515–539. Springer, Heidelberg (2014)

8. Brakerski, Z., Kalai, Y.T., Katz, J., Vaikuntanathan, V.: Overcoming the hole in
the bucket: public-key cryptography resilient to continual memory leakage, pp.
501–510. In: FOCS (2010)

9. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classal hardness of
learning with errors, pp. 575–584. In: STOC (2013)

10. Brakerski, Z.: Fully homomorphic encryption without modulus switching from clas-
sical gapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol.
7417, pp. 868–886. Springer, Heidelberg (2012)

11. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE, pp. 97–106. In: FOCS (2011)

12. Brakerski, Z., Vaikuntanathan, V.: Lattice-based FHE as secure as PKE, pp. 1–12.
In: ITCS (2014)

13. Coron, J.-S., Lepoint, T., Tibouchi, M.: Scale-invariant fully homomorphic encryp-
tion over the integers. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp.
311–328. Springer, Heidelberg (2014)

14. Coron, J.-S., Mandal, A., Naccache, D., Tibouchi, M.: Fully homomorphic encryp-
tion over the integers with shorter public keys. In: Rogaway, P. (ed.) CRYPTO
2011. LNCS, vol. 6841, pp. 487–504. Springer, Heidelberg (2011)

15. Dodis, Y., Goldwasser, S., Tauman Kalai, Y., Peikert, C., Vaikuntanathan, V.:
Public-key encryption schemes with auxiliary inputs. In: Micciancio, D. (ed.) TCC
2010. LNCS, vol. 5978, pp. 361–381. Springer, Heidelberg (2010)

16. Dodis Y., Haralambiev K., Lopez-Alt A., Wichs D.: Cryptography against contin-
uous memory attacks, pp. 511–520. In: FOCS (2010)

17. Dodis, Y., Kalai, Y.T., Lovett, S.: On cryptography with auxiliary inputs, pp.
621–630. In: STOC (2009)

238 F. Wang and K. Wang

18. Faust, S., Kiltz, E., Pietrzak, K., Rothblum, G.N.: Leakage-resilient signatures. In:
Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 343–360. Springer, Heidelberg
(2010)

19. Gentry, C.: A Fully homomorphic encryption scheme. Ph.D. thesis, Stanford Uni-
versity (2009). http://crypto.stanford.edu/craig

20. Gentry, C.: Fully homomorphic encryption using ideal lattices, pp. 169–178. In:
STOC (2009)

21. Gentry, C., Halevi, S.: Implementing gentry’s fully-homomorphic encryption
scheme. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 129–
148. Springer, Heidelberg (2011)

22. Goldwasser, S., Kalai, Y.T., Peikert, C., Vaikuntanathan, V.: Robustness of the
learning with errors assumption, pp. 230–240. In: ICS (2010)

23. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: How
to run turing machines on encrypted data. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 536–553. Springer, Heidelberg (2013)

24. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions, pp. 197–206. In: STOC (2008)

25. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 75–92. Springer,
Heidelberg (2013)

26. Juma, A., Vahlis, Y.: Protecting cryptographic keys against continual leakage. In:
Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 41–58. Springer, Heidelberg
(2010)

27. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation
on the cloud via multikey fully homomorphic encryption, pp. 1219–1234. In: STOC
(2012)

28. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237,
pp. 700–718. Springer, Heidelberg (2012)

29. Micali, S., Reyzin, L.: Physically observable cryptography. In: Naor, M. (ed.) TCC
2004. LNCS, vol. 2951, pp. 278–296. Springer, Heidelberg (2004)

30. Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage. In: Halevi,
S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 18–35. Springer, Heidelberg (2009)

31. Peikert, C.: Public key cryptosystems from the worst-case shortest vector problem,
pp. 333–32. In: STOC (2009)

32. Peikert, C.: An efficient and parallel gaussian sampler for lattices. In: Rabin, T.
(ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 80–97. Springer, Heidelberg (2010)

33. Rivest, R., Adleman, L., Dertouzos, M.: On sata banks and privacy homomor-
phisms. In: Foundations of Secure Computation, pp. 169–179 (1978)

34. Regev O.: On Lattices, Learning with Errors, Random Linear Codes, and Cryp-
tography. In: STOC, pp. 84–93 (2005)

35. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic
encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 24–43. Springer, Heidelberg (2010)

http://crypto.stanford.edu/craig

Trapdoors for Ideal Lattices with Applications

Russell W.F. Lai1(B), Henry K.F. Cheung2, and Sherman S.M. Chow1

1 Department of Information Engineering, The Chinese University of Hong Kong,
Sha Tin, New Territories, Hong Kong
{wflai,sherman}@ie.cuhk.edu.hk

2 Department of Systems Engineering and Engineering Management,
The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong

kfcheung@se.cuhk.edu.hk

Abstract. There is a lack of more complicated ideal-lattice-based cryp-
tosystems which require the use of lattice trapdoors, for the reason that
currently known trapdoors are either only applicable to general lattices
or not well-studied in the ring setting. To facilitate the development of
such cryptosystems, we extend the notion of lattice trapdoors of Mic-
ciancio and Peikert (Eurocrypt ’12) into the ring setting with careful
justification. As a demonstration, we use the new trapdoor to construct
a new hierarchical identity-based encryption scheme, which allows us to
construct public-key encryption with chosen-ciphertext security, signa-
tures, and public-key searchable encryption.

Keywords: Ideal lattices · Trapdoors · Identity-based encryption

1 Introduction

Lattice-based cryptography is a promising alternative to create cryptosystems
that are secure even against quantum adversaries. Many powerful primitives
including fully-homomorphic encryption [1–4], homomorphic signatures [5,6],
multilinear map [7], (hierarchical) identity-based encryption [8,9] (which is also
useful for achieving other cryptographic goals like public-key encryption with
chosen-ciphertext security, signatures, and public-key searchable encryption),
and much more can be realized by lattices. Security reductions of some of these
constructions are directly based on the now well-studied (ring-)LWE (learning
with errors) or (ring-)SIS (short integer solutions) problems, which are both as
hard as the corresponding worst-case (ideal) lattice problems.

Hard Lattice Problems. An instance of the LWE problem is defined by a random
n by m integer matrix A and a vector b, where b = ATs + e mod q for some

This work is supported by grants 439713, 14201914 from Research Grants Council
(RGC), and grants 4055018, 4930034 from The Chinese University of Hong Kong.
Sherman Chow is supported by the Early Career Award from RGC. Part of the work
was done while the second author is with Department of Information Engineering.

c© Springer International Publishing Switzerland 2015
D. Lin et al. (Eds.): Inscrypt 2014, LNCS 8957, pp. 239–256, 2015.
DOI: 10.1007/978-3-319-16745-9 14

240 R.W.F. Lai et al.

secret vector s and small noise vector e. The problem is to find the vector s.
As a “dual” problem to LWE, an instance of the SIS problem is defined by the
same random matrix A, where one is asked to find a short vector x so that
Ax = 0 mod q.

The “ring” versions of LWE and SIS, named ring-LWE and ring-SIS respec-
tively, are specific instances of LWE and SIS respectively defined for some struc-
tured matrix A to be explained below.

Ideal Lattices. In ideal lattices, or the so called “ring setting”, the matrix A
above is required to have some additional algebraic structures. One commonly
used example is to interpret each column of A as coefficients of a degree-(n − 1)
polynomial p(x), and require that xp(x) mod (xn + 1) is also contained in some
column of A. In such case, the matrix multiplications by A are equivalent to
polynomial multiplications. We can therefore view each vector v as an element
v in the ring Rq = Zq[x]/〈xn + 1〉, and each n-by-n sub-matrix Ai in A a ring
element ai in Rq. As the (ring-)LWE and (ring-)SIS problems have such simple
forms, the operations performed in the corresponding cryptosystems are rather
efficient.

Due to the algebraic structure of ideal lattices, cryptosystems based on ideal
lattices (with security based on the ring-LWE or ring-SIS assumptions) are more
efficient than their counterparts in general lattices: (1) The size of some para-
meters, which are originally matrices, is reduced by a factor of n, as each n-by-n
sub-matrix is now represented as a ring element; (2) The multiplications of ring
elements in Rq can be implemented on hardware by a variant of Fourier trans-
form [3].

Lattice Trapdoors. For more complicated primitives, a “trapdoor” is generated
together with a random lattice so that, while it is still hard for the adversary to
solve the (ring-)LWE or (ring-)SIS problems, the problems become easily solvable
with the help of the trapdoor.

Initiated by the work of Gentry et al. [10], a (old-type) trapdoor [10,11] of
(the lattice defined by) a matrix A is a short basis of the lattice Λ⊥

q (A), which
contains all the vectors x such that Ax = 0 mod q. Using the trapdoor, one
can sample short vectors x so that Ax = u mod q for any target vector u.
Moreover, the owner of the trapdoor of A can “delegate” the trapdoor of an
extended matrix (A,B) for any matrix B.

Micciancio and Peikert [12] developed a new type of trapdoors for general
lattices which is simpler and more efficient to use when compared to the old
trapdoors. A new-type trapdoor of A is a matrix T with small norm so that

A

[
T
I

]
= HG for some invertible matrix H, which is referred as the tag of the

trapdoor, and a nicely structured matrix G called the primitive matrix, where
the inversions of SIS (also known as “Gaussian sampling”) and LWE involving G
are easy and efficient.1 At the high-level sense, T can be considered as a secret
1 We switch the notation from the original R in [12] to T to avoid clashing of notations

in the later sections.

Trapdoors for Ideal Lattices with Applications 241

transformation from A to G which reduces the originally difficult inversions of SIS
and LWE involving A to the much easier inversions involving G. Notice that the
new-type trapdoors have the additional ability to invert LWE, which is not the
case for the old-type trapdoors. In addition, the size of the new-type trapdoors
is much (at least 4 times) smaller than that of the old-type.

However, despite the increase of efficiency, there is a lack of cryptosystems
in ideal lattices that require the use of trapdoors. One possible reason for this is
that, the trapdoors introduced by Gentry et al. [10] and improved by Alwen and
Peikert [11] are based on general lattices. Stehlé [13] attempted to extend the
trapdoor algorithms to ideal lattices, but the result is based on a non-standard
ideal-LWE assumption which, unlike the ring-LWE assumption, does not have
search-to-decision reduction. Later, Micciancio and Peikert [12] introduced a
new notion of lattice trapdoors which have even greater functionality, namely,
to invert not only SIS but also LWE. More importantly, the new trapdoors can
be translated to the ring setting, as mentioned in [12] but unfortunately without
much details.

Our Contributions. In this work, we extend the trapdoors from Micciancio and
Peikert [12] to the ring setting. As a result, the sizes of the “primitive vectors”,
the public vectors and trapdoors are reduced by a factor of n. As in other recent
cryptosystems [2,3,14] that are based on ring-LWE, we work with the “preferred”
choice of ring R := Z[x]/〈xn +1〉 where n is a power of 2. For such choice of ring
R, the general strategy of transforming the trapdoors to the ring setting is to
interpret each n by n submatrix in the construction of [12] as a ring element in R.
By breaking down elements in R in terms of the “power basis” 1, x, x2, . . . , xn−1,
we show that some of the algorithms in [12] can be reused. We also justify the
correctness of such transformation carefully by replacing certain theorems and
lemmas by those proven in the ring setting.

Finally, we demonstrate the power of the new trapdoors by constructing a
new identity-based encryption (IBE) scheme which improves the IBE scheme
constructed by Agrawal et al. [8] in three aspects, namely, being ideal-lattice-
based, having reduced trapdoor size, and being secure against chosen-ciphertext
attack.

2 Preliminary

Notations. Let λ be the security parameter. Let f(x) = fλ(x) ∈ Z[x] be a
polynomial of degree n = n(λ). Let q = q(λ) ∈ Z be a prime integer, p =
p(λ) ∈ Z

∗
q be relatively prime to q. Let R := Z[x]/〈f(x)〉 and Rq := R/qR. Let

χ be a distribution over the ring R. “|” denotes row concatenation of vectors or
matrices. If S is a set, then x ← S denotes the sampling of a uniformly random
element x from S. If X is a distribution, then x ← X denotes the sampling of
a random element x according to the distribution X. If A is an algorithm, then
x ← A means that x is the output of the algorithm A. To distinguish between
elements, vectors and matrices of Z and R, we follow the notations listed in

242 R.W.F. Lai et al.

Table 1. Notations of elements, vectors and matrices of Z and R

Element Vector Matrix

Integers Z a a A

Ring R a a A

Table 1. We denote the k-by-k identity matrix over R by Ik and the k-by-l zero
matrix over R by 0k×l. Without further specifications, ‖x‖ denotes the L2 norm
of the vector x and is extended naturally to ‖x‖ via the coefficient embedding.

2.1 Lattice Background

Statistical Distance. Let X and Y be two random variables taking values in
some finite set Ω. The statistical distance Δ(X;Y) is defined as

Δ(X;Y) :=
1
2

∑

s∈Ω

|Pr[X = s] − Pr[Y = s]|.

We say that the ensembles of random variables X(λ) and Y (λ) are statistically
close if Δ(X;Y) is a negligible function in λ.

Integer Lattices. We consider three types of integer lattices. For an integer mod-
ulus q, A ∈ Z

n×m
q and u ∈ Z

n
q , define:

Λq(AT) := {x ∈ Z
m : ∃ s ∈ Z

n
q s.t. ATs = x mod q}

Λ⊥
q (A) := {x ∈ Z

m : Ax = 0 mod q}
Λu

q (A) := {x ∈ Z
m : Ax = u mod q}

Note that for any t ∈ Λu
q (A), Λu

q (A) = Λ⊥
q (A) + t is a shift of Λ⊥

q (A).

Ideal Lattices. Correspondingly, we consider three types of ideal lattices. For an
integer modulus q, a ∈ Rk

q and u ∈ Rq, define:

Λq(a) := {x ∈ Rk : ∃ s ∈ Rq s.t. as = x mod q}
Λ⊥

q (aT) := {x ∈ Rk : aTx = 0 mod q}
Λu

q (aT) := {x ∈ Rk : aTx = u mod q}

Note that for any t ∈ Λu
q (aT), Λu

q (aT) = Λ⊥
q (aT) + t is a shift of Λ⊥

q (aT).

Discrete Gaussian. Let L ⊂ Z
n, c ∈ R

n, σ ∈ R
+. Define:

ρσ,c(x) = exp(−π
‖x − c‖2

σ2
) and ρσ,c(L) =

∑

x∈L

ρσ,c(x).

Trapdoors for Ideal Lattices with Applications 243

The discrete Gaussian distribution over L with center c and parameter σ is
defined as

∀x ∈ L,DL,σ,c(x) =
ρσ,c(x)
ρσ,c(L)

.

For c = 0, denote ρσ,0 as ρσ and DL,σ,0 as DL,σ.

Gram-Schmidt Norm. Let T = {t1, . . . , tk} ⊂ R
m be a set of real vectors, and

‖T‖ denotes the L2-norm of the longest vector in T , i.e., ‖T‖ := maxk
j=1 ‖tj‖,

T̃ := {t̃1, . . . , t̃k} denotes the Gram-Schmidt orthogonalization of the vectors
t̃1, . . . , t̃k taken in that order. ‖T̃‖ is called the Gram-Schmidt norm of T .

2.2 Assumptions

The learning with errors (LWE) problem defined by Regev [15] is now a well-
studied hard problem that is as hard as some worst-case lattice hard problems
such as the shortest vector problem (SVP), via either quantum or classical reduc-
tions [15,16]. An LWE instance is defined by a matrix A ∈ Z

n×m
q and a vector

b ∈ Z
m
q . The search version of LWE is to find a secret vector s ∈ Z

n so that
ATs + e = b for some short error vector e ∈ Z

m. The decision version is to
decide whether such a pair of (A, b) comes from the uniform distribution or the
LWE distribution, i.e. ATs + e = b for some short error vector e ∈ Z

m.
To define LWE in the ring setting, namely ring-LWE, A is restricted to have

a certain algebraic structure. We interpret the entries in a column of A as the
coefficients of a degree-(n−1) polynomial p(x), and require that the vector given
by the coefficients of xp(x) mod f(x), for some degree-n polynomial f(x), is also
contained in some column of A. Assuming that m = nk for some integer k, we
can then interpret the i-th n-by-n sub-matrix of A as a ring element ai in Rq,
the vector s as s in R, e as (e1, . . . , ek)T in Rk and b as (b1, . . . ,bk)T in Rk

q .
Multiplications between a sub-matrix of A and the vector s correspond to the
multiplications of the ring elements ai and s. Apparently, the search version of
ring-LWE is then to find s given {ai,bi = ais + ei}k

i=1. The decision version of
ring-LWE is to distinguish the distribution of the given samples from the uniform
distribution. For the detailed definitions and reductions related to ring-LWE, we
refer to the comprehensive work of Lyubashevsky et al. [3,14].

In this work, we further restrict the polynomial f(x) such that f(x) = xn+1,
which is the preferred choice in recent ring-LWE-based cryptosystems [2,3,14]
due to its simplicity. In this case, the ring-LWE assumption has a much simpler
form. This special case is named as polynomial LWE (PLWE) by Brakerski and
Vaikuntanathan [2].

Definition 1 (PLWE assumption [2]). For all λ ∈ N, l = poly(λ), ai,u ← Rq,
ei, s ← χ, the PLWE

(l)
f,q,χ assumption states that the distribution of {(ai,ais +

pei)}l
i=1 is computationally indistinguishable from the distribution of {(ai,ui)}l

i=1.

244 R.W.F. Lai et al.

Theorem 1 [2, Theorem1]. Let λ be the security parameter. Let k ∈ N and let
m = 2�log λ� be a power of two. Let Φm(x) = xn + 1 be the m-th cyclotomic
polynomial of degree n = ϕ(m) = m/2. Let σ ≥ ω(

√
log n) be a real number, and

let q ≡ 1 (mod m) be a prime integer. Let R = Z[x] = 〈Φm(x)〉. Then there is
a randomized reduction from (n2q/r) · (n(l + 1)/ log(n(l + 1)))1/4-approximate
R-SVP to PLWE

(l)
Φm,q,χ where χ = DZn,σ is the discrete Gaussian distribution.

The reduction runs in time poly(n, q, l).

3 Primitive Vectors in Ideal Lattices

Although Micciancio and Peikert [12] mentioned that their trapdoors can be
extended to ideal lattices, they did not explain it in details. In this section, we
first extend their notion of primitive matrices for general lattices to the notion of
primitive vectors (of ring elements) for ideal lattices. We will then show in Sect. 4
how to use the primitive vectors to generate trapdoors for ideal lattices. The
general strategy used in these sections is to interpret each n-by-n submatrices
in the notion of trapdoors for general lattices as ring elements in Rq.

3.1 Construction of Primitive Vectors

Recall from [12] that a matrix G ∈ Z
n×m
q is primitive if its columns generate

all of Zn
q , i.e., G ·Zm = Z

n
q . For some nicely structured primitive matrices, LWE

inversion and Gaussian sampling can be done efficiently. Given such a primitive
matrix, the crux of the trapdoor generation algorithm is to perform a random
transform on the primitive matrix.

As mentioned in [12, Sect. 4.3], the primitive vector g = (1, 2, . . . , 2k−1)T in
Rk

q can be used in the ring setting to replace the previous primitive matrix G by
interpreting the values in the ring Rq instead of Zq. Furthermore, the inversion
and Gaussian sampling algorithms can be obtained in the ring setting as well.

Intuitively, to obtain a primitive vector in the ring setting, we need to find
a primitive matrix (in the general lattices setting) in which each n-by-n sub-
matrix is rotational, i.e., a column is obtained by shifting the previous column
by one entry and adding a negative sign to the first entry. One way is to permute
the columns of the previous primitive matrix G to obtain such a structure. An
example of G is as follows [12]:

G :=

⎡

⎢⎢⎢⎣

. . . gT . . .
. . . gT . . .

. . .
. . . gT . . .

⎤

⎥⎥⎥⎦ , gT =
[
1 2 4 . . . 2k−1

] ∈ Z
1×k
q

We permute columns of G so that identical terms forms n-by-n diagonal
block matrices. As a result, we obtain:

G′ := [In|2In| . . . |2k−1In].

Trapdoors for Ideal Lattices with Applications 245

Since G′ is obtained by permutation of columns of G, G′ is still primitive.
By the same permutation on the basis S of Λ⊥

q (G), we obtain the basis S′ of
Λ⊥

q (G′), where

S′ :=

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

2In q0In

−In 2In q1In

−In q2In

. . .
2In qk−2In

−In qk−1In

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

∈ Z
nk×nk.

The matrices G′ and S′ correspond to the collections of vectors of ring ele-
ments g = (1, 2, . . . , 2k−1)T ∈ Rk

q and (s1, . . . , sk) ∈ Rk×k
q respectively, where

si = (0, . . . , 0, 2,−1, 0, . . . , 0)T for i < k, and sk = (q0, q1, . . . , qk−1)T , where
q =

∑k−1
i=0 2iqi and qi ∈ {0, 1}.

Theorem 2 summarizes the result of primitive vectors in the ring setting, with
explanation deferred to the later subsections.

Theorem 2. For any q =
∑k−1

i=0 2iqi < 2k where qi ∈ {0, 1} and k ≥ 1, there
exists g = (1, 2, . . . , 2k−1)T ∈ Rk

q and S = (s1, . . . , sk) ∈ Rk×k
q (thus gTS =

01×k ∈ Rk
q), such that:

– We have ‖s̃i‖ <
√

5 in the coefficient embedding.
– The storage requirement of g and S are further reduced by a factor of n com-

pared to their counterparts in general lattices.
– Inverting αg(z, e) := gz+e mod q can be performed in quasilinear O(n·logc n)

time for any z ∈ R and any e ∈ q · B−T · [− 1
2 , 1

2)nk, where B can denote
either S or S̃. Moreover, the algorithm is perfectly parallelizable, running in
polylogarithmic O(logc n) time using n processors.

– Preimage sampling for βg(x) = gTx mod q with Gaussian parameter σ ≥
‖S̃‖ · w(

√
log n) can be performed in quasilinear O(n · logc n) time, or parallel

polylogarithmic O(logc n) time using n processors.

3.2 Inversion for Primitive Vectors

Given a PLWE instance b = gz + e, which is equivalent to bi = 2iz + ei

for i = 0, . . . , k − 1, we can expand bi, z and ei in terms of the power basis
1, x, x2, . . . , xn−1 so that the problem is equivalent to solving bij = 2izj + eij

independently for j = 0, . . . , n − 1, where bi =
∑n−1

j=0 bijx
j , z =

∑n−1
j=0 zjx

j and
ei =

∑n−1
j=0 eijx

j . Recombining the terms according to i, the problem becomes
solving bj = gz + ej where g = (1, 2, . . . , 2k−1)T ∈ Z

k
q . Let S = (s1, . . . , sk) be

a basis of Λ⊥
q (gT). Then V = qS−T = (v1, . . . ,vk) is a basis of Λq(g). We can

then use Babai’s nearest plane algorithm to recover z ∈ Zq from b = gz + e:

246 R.W.F. Lai et al.

Algorithm 3. [17] Babai’s Nearest Plane Algorithm
Input: {v1, . . . ,vk} a basis of Λq(g), b.
Output: z and e.

1. Compute Gram-Schmidt basis v∗
1, . . . ,v

∗
k.

2. For j = k → 1:
(a) Compute lj =< bj ,v

∗
j > / < v∗

j ,v
∗
j >.

(b) Set bj−1 = bj − (lj − �lj�)v∗
j − �lj�vj.

3. Return z =
∑k

j=1�lj�cj mod q, e = b − gz, where vj = cjg mod q.

3.3 Gaussian Sampling for Primitive Vectors

We first recall that the goal of Gaussian sampling in [12] is to sample a vector
from Λu

q (G). This can be done by repeating n times of the sampling from Λ
uj
q (gT)

for a desired syndrome uj ∈ Zq, where j = 0, . . . , n − 1.
For the later task, there are two extreme approaches and one hybrid app-

roach. In the one extreme, we first pre-compute a large set of samples from DZk,σ

and bucket them according to the different values of u. The sampling algorithm
simply draws one sample from the appropriate bucket. This approach requires
large storage so that each bucket can be filled with sufficient number of sam-
ples. The other extreme exploits the fact that if q is a power of 2, then we have
the orthogonalized basis S̃k = 2Ik. In this case, there is a simple and efficient
way to perform Babai’s nearest plane algorithm [17]. In this algorithm, we first
pre-compute two large sets of samples from D2Z,σ and D2Z+1,σ. The sampling
algorithm draws each coefficient of x one by one from the appropriate set. This
approach requires less storage space but takes k steps to complete. Naturally,
there is a hybrid approach that pre-computes samples from DZl,σ for some l < k
and fills in the coefficients of x in blocks of l.

To perform Gaussian sampling in the ring setting, we can of course use the
sampling algorithm for general lattices and perform the permutation mentioned
above to the preimage. More formally, recall that our task is to sample a vector of
ring elements x from Λu

q (gT) = {x ∈ Rk : gTx = u mod q} where u ∈ Rq. That
is,

∑k−1
i=0 2ixi = u. By expanding xi in the power basis 1, x, x2, . . . , xn−1, this is

equivalent to
∑k−1

i=0 2ixij = uj for j = 0, 1, . . . , n − 1, where xi =
∑n−1

j=0 xijx
j

and u =
∑n−1

j=0 ujx
j . Thus, we can use the same sampling algorithms for each

equation
∑k−1

i=0 2ixij = uj in the ring setting, since xij and uj are integers
modulo q. However, notice that the reduction of ring-LWE in [2,3,14] requires
that q = 1 mod 2n, which means that q cannot be a power of 2. Therefore,
practically we can only use the first approach for Gaussian sampling in the ring
setting.

4 Trapdoors in Ideal Lattices

Analogous to the trapdoors for general lattices defined in [12], we extend the
notion to the ring setting. This includes the derivation of old-type trapdoors from

Trapdoors for Ideal Lattices with Applications 247

Gentry et al. [10] (Sect. 4.1), the generation of (new-type) trapdoors (Sect. 4.2),
ring-LWE inversion (Sect. 4.3), Gaussian sampling (Sect. 4.4) and trapdoors del-
egation (Sect. 4.5).

Definition 2. Let a ∈ Rl+k
q and g ∈ Rk

q . A g-trapdoor for a is a collection
of linearly independent vectors of ring elements R = (r1, . . . , rk) ∈ Rl×k

q such

that aT

[
R
Ik

]
= hgT , for some non-zero ring element h ∈ Rq. h is referred as

the tag or label of the trapdoor. The qulity of the trapdoor is measured by its
largest singular value s1(R), which is computed as the largest singular value of
the matrix obtained by interpreting R as a matrix in Z

ln×kn
q .

4.1 Derivation of Old Trapdoors

Lemma 1. Let g ∈ Rk
q and S = (s1, . . . , sk) ∈ Rk×k be linearly indepen-

dent with gT si = 0 ∈ Rq for i = 1, . . . , k. Let a ∈ Rl+k
q have trapdoor R =

(r1, . . . , rk) ∈ Rk×k with tag h ∈ Rq. Then the lattice Λ⊥
q (aT) is generated by

Sa =
[

Il R
0k×l Ik

] [
Il 0l×k

W S

]
,

where W ∈ Rk×l is an arbitrary solution to gTW = −h−1aT [Il|0l×k]T mod q.

Moreover, the basis Sa satisfies ‖S̃a‖ ≤ s1

([
Il R

0k×l Ik

])
· ‖S̃‖ ≤ (s1(R) + 1) ·

‖S̃‖, when Sa is orthogonalized in suitable order and interpreted as a matrix in
Z
[(l+k)n]×[(l+k)n] by the coefficient embedding.

Proof. Compared to the derivation in general lattices, the non-trivial part is to
construct a matrix W of ring elements, or equivalently, a matrix W consisting
of k × l blocks of n × n rotational matrices. Otherwise, the rest of the proof
follows the proof of [12, Lemma 5.3]. To construct such a matrix W, let a =
(a1,a2, . . . ,al+k)T ∈ Rl+k

q and let

W =

⎡

⎢⎣
w1,1 . . . w1,l

...
. . .

...
wk,1 . . . wk,l

⎤

⎥⎦

where wi,j ∈ Rq.
Now, gTW = −h−1aT [Il|0l×k]T mod q implies

[1|2| . . . |2k−1]W = [1|2| . . . |2k−1]

⎡

⎢⎣
w1,1 . . . w1,l

...
. . .

...
wk,1 . . . wk,l

⎤

⎥⎦ = −h−1
[
a1 a2 . . . al.

]

248 R.W.F. Lai et al.

This equation implies that for each j = 1, . . . , l, we need to independently
solve

[1|2| . . . |2k−1]

⎡

⎢⎣
w1,j

...
wk,j

⎤

⎥⎦ = −h−1ai ∈ Rq.

By expanding wi,j and aj with respect to the power basis 1, x, x2, . . . , xn−1,
the problem is equivalent to solving the system for each coefficient independently.

�

Although the derivation of the old-type trapdoors for ideal lattices is merely
theoretical, it solves an open problem in [10] which asked how trapdoors can be
generated together with random looking ideal lattices.

4.2 Generation of New Trapdoor

As in [12], the derivation of old trapdoors from the new trapdoors is just a proof
of concept and will not be used in the rest of this work. In this subsection, we
extend their trapdoors for general lattices to our ring version in Algorithm4.

Algorithm 4. ringGenTrapD(a0,h)
Input:

– a vector of ring elements a0 = (a1, . . . ,al)T ∈ Rl
q;

– a non-zero ring element h ∈ Rq;
– a distribution χl×k over Rl×k. (If no particular a0, h are given as input, then

the algorithm may choose them itself, e.g. picking a0 ← Rl
q uniformly, and

setting h = 1.)

Output:

– a vector of ring elements a = (aT
0 ,aT

1)T ∈ Rl+k
q ;

– a trapdoor R = (r1, . . . , rk) ∈ Rl×k with tag h ∈ Rq.

1. Choose a collection of linearly independent vectors of ring elements R =
(r1, . . . , rk) ∈ Rl×k from distribution χl×k,

2. Output a = (aT
0 ,hgT − aT

0 R)T ∈ Rl+k
q and trapdoor R ∈ Rl×k.

Moreover, the distribution of a is close to uniform (either statistically or com-
putationally) as long as the distribution of (aT

0 ,−aT
0 R) is.

The correctness of Algorithm 4 is immediate. To show that the distribution of
(aT

0 ,−aT
0 R) is close to uniform, we need to show that the distribution of aT

0 R
is close to uniform and hence is independent to that of a0, or equivalently the
distribution of aT

0 ri is close to uniform and independent to that of a0 for all i.
As for the trapdoors for general lattices, the uniformity of a can be instantiated
to be either statistical by using a regularity lemma or computational by the
ring-LWE assumption.

Trapdoors for Ideal Lattices with Applications 249

Lemma 2. [3, Sect. 7] (Regularity Lemma) Let ai ← Rq and ri ← χ for i =
1, . . . , l. Then b =

∑l
i=1 airi is within 2−Ω(n) statistical distance to the uniform

distribution over Rq. Moreover, the case where l = 2 corresponds to the normal
form of ring-LWE.

4.3 ring-LWE Inversion from New Trapdoors

Given a trapdoor R for a ∈ Rl+k
q and a PLWE

(l)
f,q,χ instance b = as + e mod q,

the ring-LWE inversion algorithm given in Algorithm5 is to find the solution s
to the instance.

Algorithm 5. ringInvertO(R,a,b)
Input:

– an oracle O for inverting the function αg(s′, e′) when e′ ∈ Rk is suitably
small;

– a vector of ring element a ∈ Rl+k
q ;

– g-trapdoor R ∈ Rl×k for a with tag h;
– vector b = as + e for any s ∈ Rq and suitably small e ∈ Rl+k.

Output: s and e.

1. Get (s′, e′) ← O([RT |Ik]b).
2. return s = h−1s′ and e = b− as (interpreted as a vector in Rl+k with where

each entry has coefficients in [− q
2 , q

2)).

The correctness of Algorithm 5 is indicated by Theorem 6 stated below.

Theorem 6. Suppose that O in Algorithm5 correctly inverts αg(s′, e′) for any
small error vector e′ ∈ Dk

Zn,σ
√

lσ2·ω(log n)+k
. Then for any s ∈ Rq and e ←

χl+k, Algorithm5 correctly inverts αa(s, e) with overwhelming probability over
the choice of e.

Proof. We first show that bT

[
R
Ik

]
gives a correct input to the oracle O.

bT

[
R
Ik

]
= (aT s + eT)

[
R
Ik

]

= aT s
[
R
Ik

]
+ eT

[
R
Ik

]

= s[aT
0 |hgT − aT

0 R]
[
R
Ik

]
+ eT

[
R
Ik

]

= s(aT
0 R + hgT − aT

0 R) + eT

[
R
Ik

]

= gThs + eT

[
R
Ik

]

= gT s′ + eT

[
R
Ik

]

250 R.W.F. Lai et al.

Now we need to show that e′ = eT

[
R
Ik

]
has the appropriate distribution.

Consider

e′
j =

l∑

i=1

eirij +
l+k∑

i=l+1

ei ∀j = 1, . . . , k

where e′
j = j-th component of e′, ei = i-th component of e, rij = ij-th compo-

nent of R. Since each entry of e and R are sampled from χ = DZn,σ, then the
distribution of eirij is statistically close to DZn,σ2·ω(

√
log n) [3, Lemma 8.7]. Hence,

the distribution of e′
j is statistically close to D

Zn,σ
√

lσ2·ω(log n)+k
[3, Lemma 8.6].

Therefore, the distribution of e′ has the correct distribution. �

4.4 Gaussian Sampling from New Trapdoors

Given a trapdoor R for a ∈ Rl+k
q and u = βa(x) = aTx mod q, the Gaussian

Sampling algorithm given in Algorithm7 is to find the solution x to the instance.

Algorithm 7. ringSampleDO(R,a0,h,u, σ)
Input:
Offline phase:

– an oracle O(v) for Gaussian sampling over a desired coset Λv
q (gT) with para-

meter σ, where v ∈ Rq;
– a vector of ring elements a0 ∈ Rl

q;
– a trapdoor R ∈ Rl×k;
– a Gaussian parameter σ.

Online phase:

– a non-zero tag h ∈ Rq defining a = (aT
0 ,hgT −aT

0 R)T ∈ Rl+k
q (h may instead

be provided in the offline phase, if it is known);
– syndrome u ∈ Rq.

Output: A vector x drawn from a distribution statistically close to DΛv
q (a

T
0),σ′

for some Gaussian parameter σ′.
Offline phase:

1. Choose fresh perturbations p1 ← χl
1 and p2 ← χk

2 for some distributions χ1

and χ2 over R.
2. Compute w0 = aT

0 (p1 − Rp2) ∈ Rq and w1 = gTp2 ∈ Rq.

Online phase:

1. Let v ← h−1(u−w0)−w1 = h−1(u−aTp) ∈ Rq, and choose z ← DΛv
q (g

T),σ

by calling O(v).

2. Return x ←
[
p1

p2

]
+

[
R
Ik

]
z.

Trapdoors for Ideal Lattices with Applications 251

Theorem 8. Algorithm7 is correct.

Proof. Let x ← ringSampleDO(R,a0,h,u, σ). Then

aTx = [aT
0 |hgT − aT

0 R]
([

p1

p2

]
+

[
R
Ik

]
z
)

= aT
0 p1 + aT

0 Rz + hgTp2 − aT
0 Rp2 + hgT z − aT

0 Rz

= aT
0 (p1 − Rp2) + hgTp2 + hv

= w0 + hw1 + u − w0 − hw1

= u

Now, consider x =
[
p1

p2

]
+

[
R
Ik

]
z. Since each entry of R and z are sam-

pled from χ = DZn,σ, and each entry of p1 and p2 are sampled from χ1 =
DZn,σ2·ω√

log n and χ2 = D
Zn,σ

√
σ2(k+1)·ω(log n)−1

, respectively, then the distri-

butions of all entries of x are statistically close to χ′ = DZn,σ′ , where σ′ =
σ2

√
k + 1 · ω(

√
log n). [3, Lemma 8.6 & 8.7]. �

4.5 Trapdoors Delegation

Using the trapdoor of a, there is an efficient trapdoor delegation algorithm given
in Algorithm 9 that generates a trapdoor for the vector (aT ,aT

1)T .

Algorithm 9. ringDelTrapO(a′ = (aT ,aT
1)T ,h′, σ)

Input:

– an oracle O for discrete Gaussian sampling over cosets of Λ⊥
q (aT) with para-

meter σ′;
– a vector of ring elements a′ = (aT ,aT

1)T ∈ Rm+k
q ;

– a non-zero ring element h′ ∈ Rq.

Output: a trapdoor R ∈ R(m+k)×k for a′ with tag h′.

– Using O, sample each column of R independently from a discrete Gaussian
with parameter σ′ over the appropriate cosets of Λ⊥

q (aT), so that aTR =
h′gT − aT

1 .

5 INDr-ID-CCA-Secure (H)IBE in Ideal Lattices

5.1 Identity-Based Encryption

Identity-based encryption (IBE) is a generalization of public-key encryption [18].
In an IBE, to encrypt a message to an identity id, the encrypter does not need
to lookup the public key for the intended identity id. Instead, the encryption
algorithm simply takes the public parameters, the identity id and the message
as input and outputs a ciphertext encrypting the message to id. The identity
id obtains its secret key derived from the master secret key through the key
generation algorithm for decrypting all ciphertexts encrypted to id. Formally,
the syntax of IBE is defined as follows.

252 R.W.F. Lai et al.

Definition. An identity-based encryption (IBE) scheme consists of four PPT
algorithms (Setup, Extract, Encrypt, Decrypt). The Setup algorithm outputs a
public parameter PP and a master key MK. Using MK, the Extract algorithm
extracts a secret key SKid for an identity id. Unlike public-key encryption, the
Encrypt algorithm in IBE can encrypt messages directly to an identity id. The
user with identity id uses her secret key SKid to Decrypt a ciphertext.

Hierarchical identity-based encryption (HIBE) is an extension of IBE such
that an identity ID = [id1| . . . |idd] is a hierarchy of identities with depth d.
There is an additional algorithm Derive that inputs a secret key SK[id1|...|idj−1]

in the (j − 1)-th level and an identity ID = [id1| . . . |idj] in the j-th level and
outputs the secret key SKID for identity ID.

Security. In addition to the (adaptive) chosen-plaintext-attack (CPA(2)) secu-
rity or (adaptive) chosen-ciphertext-attack (CCA(2)) security as in public-key
encryption, an (H)IBE scheme should also be secure against chosen-identity-
attack (ID). A weaker security model called selective-identity-attack (sID) is
also considered, where the adversary must choose the identity she is going to
perform CPA(2) or CCA(2) before receiving the public parameter. The indis-
tinguishability (IND) of ciphertexts under the combinations of attacks in the
two sets of variants give us eight security model, namely, IND-ID-CCA(2), IND-
sID-CCA(2), IND-ID-CPA(2) and IND-sID-CPA(2). In [8], a stronger security
guarantee in which the ciphertexts are indistinguishable from random (INDr)
elements in the ciphertext space is considered. This implies both semantic secu-
rity (of the plaintext) and recipient anonymity.

From now on, we will focus on the INDr-ID-CCA security, which is modeled
as a security game between a PPT simulator and a PPT adversary. In this
game, the simulator first generates the public parameters PP and passes them
to the adversary. The adversary is then granted the rights to query the secret
keys SKid for polynomially many identities id of its choice, and the rights to
query the decryption of any ciphertext of its choice. After that, the adversary
issues a challenge message to be encrypted to the identity id∗, whose secret
key has never been queried before. The simulator replies by either encrypting
the challenge message to id∗ or generating a uniformly random ciphertext. The
adversary wins the game if it can guess which among two ways the ciphertext is
generated.

An INDr-ID-CCA2-secure HIBE of depth d can be obtained by combin-
ing an INDr-ID-CPA-secure HIBE of depth d + 1 and a strong one-time signa-
ture scheme [19]. The rough idea is to encrypt the message to the “identity”
[id1|id2| . . . |idd|vk] where vk is the verification key of the one-time signature,
and sign the ciphertext using the one-time signature. In particular, from IBE,
we obtain a CCA2-secure public-key encryption scheme. We will omit the details
here.

Applications. Most earlier (H)IBE schemes are realized by pairings. Readers
can refer to [20,21] for reviews of those. Agrawal et al. proposed a lattice-based
(H)IBE scheme in the standard model [8]. The ciphertext of their scheme can

Trapdoors for Ideal Lattices with Applications 253

be proven to be a random element in the ciphertext space, which implies receipt
anonymity against user attacks. An anonymous IBE can be used to obtain a
public-key searchable encryption scheme [22]. By applying Naor’s transforma-
tion [18], we can also obtain a signature scheme from an IBE scheme.

5.2 Construction

Using the trapdoors for ideal lattices developed above, the CCA-secure public-
key encryption provided in [12] and the INDr-ID-CPA-secure (H)IBE scheme
in [8], we construct an INDr-ID-CCA-secure (H)IBE in ideal lattices. We only
present the basic IBE scheme below, because the HIBE scheme can be obtained
trivially by defining the Derive algorithm of HIBE to be the same as the Extract
algorithm of the basic IBE in our case.

The basic IBE scheme is constructed as follows:

– Setup(1λ)
• Sample a−1 ← Rl

q, a0,a1, . . . ,at ← Rk
q and h ← Rq \ {0}.

• Sample (a,RMK) ← ringGenTrapD(a−1,h).
• Output PP = (a,a0,a1, . . . ,at) and MK = (h,RMK).

– Extract(PP,MK, id)
• Sample hid ← Rq.
• Set aid = a0 +

∑t
i=1 idiai and f id,hid

= (aT ,aT
id)

T .
• Sample Rid ← ringDelTrapO(f id,hid

,hid, σ).
• Output SKid = (hid,Rid).

– Encrypt(PP, id,m ∈ Rk
p)

• Sample h′ ← Rq.
• Set aid,h′ = aid + h′g.
• Sample s ← χ, e0 ← χl+k and Ri ← χl×k for i = 0, 1, . . . , t.
• Set R = R0 +

∑t
i=1 idiRi.

• Set eT
1 = −eT

0 R.
• Compute u = a0s + pe0 and v = aid,h′s + pe1 + m.
• Output CT = (h′,u,v).

– Decrypt(PP, SKid, CT)
• Output ⊥ if h′ = −hid.
• Set f id,(hid+h′) = (aT ,aT

id + h′gT)T = (aT , (hid + h′)gT − aTRid)T .
• Compute (s, e) ← ringInvertO(Rid, f id,(hid+h′), (uT ,vT)T).
• Compute (01×k,mT)T = e mod p.
• Output m.

Theorem 10. By the PLWE
(l)
f,q,χ assumption, the (H)IBE scheme stated above

is INDr-ID-CCA-secure.

Proof. The simulation strategy is a result of combining those from [8,12]. The
simulator is given a PLWE instance (a,b). It chooses the rest of the public
parameters a0, . . . ,at as follows:

254 R.W.F. Lai et al.

– It samples h∗ ← Rq.
– It samples Ri ← χl×k and let aT

i = higT − aTRi, where h0 = 1 − h∗ and
hi ← Rq, for i = 0, . . . , t.

Since the distribution of a is uniform and each entry of Ri is sampled from the
distribution χ, by the regularity lemma (Lemma 2), the distribution of ai is also
uniform for all i.

To answer the queries for secret key of id, it simply returns (hid,Rid) where
hid = 1 +

∑t
i=1 idihi − h∗ and Rid = R0 +

∑t
i=1 idiRi. Note that aT

id = aT
0 +∑t

i=1 idiaT
i = hidgT − aTRid.

It answers the decryption queries (id, CT = (h,u,v)) using the tag hid, the
trapdoor Rid and the Decrypt algorithm. As long as h �= h∗ or −hid �= h∗, the
simulator can still simulate faithfully. Since ai is uniformly random in the view of
the adversary, h∗ and hi are all hidden from the adversary for all i = 0, 1, . . . , t.
Therefore the event −hid = h = h∗ only happens with negligible probability.

Finally, the challenge ciphertext for (id∗,m∗) is generated as (h∗,u∗,v∗)
where u∗ = b and v∗ = (−bTRid∗ + m∗T)T .

Suppose that the (a,b) given in the PLWE instance is uniform, then the
distribution of the challenge ciphertext (h∗,u∗,v∗) is also uniform. Otherwise,
suppose b = as+pe for some s and e sampled from the appropriate distributions,
then

v∗T = −bTRid∗ + m∗T

= −saTRid∗ − peTRid∗ + m∗T

= s(aT
id∗ − hid∗gT) − peTRid∗ + m∗T

By [8, Lemma 24], we have hid∗ = −h∗ with non-negligible probability. In such
case, we have

v∗T = s(aT
id∗ + h∗gT) − peTRid∗ + m∗T

which is distributed identically as valid ciphertexts do. �

6 Concluding Remarks

We detailed how to generate trapdoors for ideal lattices. We then use it to
construct a new (H)IBE scheme. Our scheme has several improvement over that
constructed by Agrawal et al. [8]:

– Our scheme is based on ideal lattices, therefore the size of the public parame-
ters, master key and the identity secret key are reduced by a factor of n.

– Using the new trapdoor delegation algorithm, the size of the identity secret
key grows linearly, rather than quadratically, in the depth of the hierarchy.

– Our scheme is secure against chosen-chiphertext-attack.

Trapdoors for Ideal Lattices with Applications 255

References

1. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC, pp. 169–
178 (2009)

2. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-LWE
and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011.
LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011)

3. Lyubashevsky, V., Peikert, C., Regev, O.: A toolkit for ring-LWE cryptography.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
35–54. Springer, Heidelberg (2013)

4. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 75–92. Springer,
Heidelberg (2013)

5. Boneh, D., Freeman, D.M.: Homomorphic signatures for polynomial functions. In:
Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 149–168. Springer,
Heidelberg (2011)

6. Boneh, D., Freeman, D.M.: Linearly homomorphic signatures over binary fields
and new tools for lattice-based signatures. In: Catalano, D., Fazio, N., Gennaro,
R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 1–16. Springer, Heidelberg
(2011)

7. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
1–17. Springer, Heidelberg (2013)

8. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer,
Heidelberg (2010)

9. Agrawal, S., Boneh, D., Boyen, X.: Lattice basis delegation in fixed dimension and
shorter-ciphertext hierarchical IBE. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol.
6223, pp. 98–115. Springer, Heidelberg (2010)

10. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: STOC, pp. 197–206 (2008)

11. Alwen, J., Peikert, C.: Generating shorter bases for hard random lattices. Theory
Comput. Syst. 48(3), 535–553 (2011)

12. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237,
pp. 700–718. Springer, Heidelberg (2012)

13. Stehlé, D., Steinfeld, R., Tanaka, K., Xagawa, K.: Efficient public key encryption
based on ideal lattices. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912,
pp. 617–635. Springer, Heidelberg (2009)

14. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010)

15. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. J. ACM 56(6), 34:1–34:40 (2009)

16. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness
of learning with errors. In: STOC, pp. 575–584 (2013)

17. Babai, L.: On Lovász’ Lattice Reduction and the Nearest Lattice Point Problem
(Shortened Version). In: Mehlhorn, K. (ed.) STACS 1985. LNCS, vol. 182, pp.
13–20. Springer, Heidelberg (1985)

256 R.W.F. Lai et al.

18. Boneh, D., Franklin, M.K.: Identity-based encryption from the Weil pairing. SIAM
J. Comput. 32(3), 586–615 (2003)

19. Boneh, D., Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from
identity-based encryption. SIAM J. Comput. 36(5), 1301–1328 (2007)

20. Chow, S.S.M.: Removing escrow from identity-based encryption. In: Jarecki, S.,
Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 256–276. Springer, Heidelberg
(2009)

21. Chow, S.S.M.: New privacy-preserving architectures for identity-/attribute-based
encryption. Ph.D. thesis, New York University (2010)

22. Abdalla, M., Bellare, M., Catalano, D., Kiltz, E., Kohno, T., Lange, T., Malone-
Lee, J., Neven, G., Paillier, P., Shi, H.: Searchable encryption revisited: consistency
properties, relation to anonymous IBE, and extensions. J. Cryptol. 21(3), 350–391
(2008)

Block Cipher and Hash Function

Speeding Up the Search Algorithm for the Best
Differential and Best Linear Trails

Zhenzhen Bao(B), Wentao Zhang, and Dongdai Lin

State Key Laboratory of Information Security, Institute of Information Engineering,
Chinese Academy of Sciences, Beijing, China

{baozhenzhen,zhangwentao,ddlin}@iie.ac.cn

Abstract. For judging the resistance of a block cipher to differential
cryptanalysis or linear cryptanalysis it is necessary to establish an upper
bound on the probability of the best differential or the bias of the best
linear approximation. However, getting a tight upper bound is not a triv-
ial problem. We attempt it by searching for the best differential and the
best linear trails, which is a challenging task in itself. Based on some
previous works, new strategies are proposed to speed up the search algo-
rithm, which are called starting from the narrowest point, concretizing
and grouping search patterns, and trialling in minimal changes order
strategies. The efficiency of the resulting improved algorithms allows us
to state that the probability (bias) of the best 4-round differential (linear)
trail in NOEKEON is 2−51 (2−25) and the probability (bias) of the best
10-round (11-round) differential (linear) trail is at most 2−131 (2−71). For
SPONGENT, the best differential trails for certain number of rounds in
the permutation functions with width b ∈ {88, 136, 176, 240} are found.
That allows us to update some results presented by its designers.

Keywords: Differential cryptanalysis · Linear cryptanalysis · Differen-
tial trail · Linear trail · Search algorithm · Optimization · NOEKEON ·
SPONGENT

1 Introduction

Differential cryptanalysis (DC) [1] and linear cryptanalysis (LC) [2] are two of
the most powerful attacks against modern block ciphers in which an adversary
exploits good differentials or good linear approximations. The first step in a
differential or a linear attack consists in finding differentials or linear approx-
imations of the cipher with probabilities or bias as high as possible. In most
cases, differential trails with highest probability and linear approximation trails
with largest bias can be used to estimate the power of the corresponding attack.
Differential (linear) trails consist of a sequence of differences (approximations)
through the rounds of the primitive and those with the highest probability (the
largest bias) are called the best. However, the problem of searching best trails
is not trivial, because of the great cardinality of the set of candidates [3,4].

c© Springer International Publishing Switzerland 2015
D. Lin et al. (Eds.): Inscrypt 2014, LNCS 8957, pp. 259–285, 2015.
DOI: 10.1007/978-3-319-16745-9 15

260 Z. Bao et al.

For many block ciphers, such as AES, NOEKEON and PRESENT, researchers
prefer counting the minimal number of active S-Boxes to get the upper bound of
the best probability (bias) of differential (linear) trails [5–8]. In this method, con-
cepts such as branch number and structures of the linear layer are used. Further-
more, tools using MILP are developed [9]. However, those approaches could only
provide a kind of differential trails without the instantiated actual differences or
without the knowledge of exact probabilities of those trails. Remarkably, authors
of [10] use a variant of Dijkstra’s algorithm which is essentially a breadth-first
search to efficiently find all best truncated differential trails with minimal num-
ber of active S-Boxes and instantiate them with actual differences. This method
is very powerful, however, on one hand, it may fail to find the best differential
trail which does not have the minimal number of active S-Boxes, and on the other
hand it is powerless in the case of bit-oriented ciphers. Specifically, although this
breadth-first approach is in polynomial time in the number of rounds, it is expo-
nential in the state. Thus, for ciphers using large number of small S-Boxes, which
is typically 4 bits wide, and have weak alignment, an intermediate state tends to
large, and a PC cannot store all the intermediate state, that is, we cannot choose a
breadth-first strategy. Thus, we seek for depth-first method to find the best trails.

In 1994, Matsui proposed a branch-and-bound depth-first search algorithm
making it possible to effectively find the best differential trails and linear approx-
imation trails of DES [11]. Unfortunately, his method is not fast enough for some
other cryptosystems like FEAL. Consequently, improvements on Matsui’s algo-
rithm were studied by Moriai et al. [3] and Aoki et al. [12]. The work in [3] was
based on analyzing the dominant factor of search complexity and it introduced
the concept of search patterns in order to reduce unnecessary search candidates.
The authors successfully obtained new results on best linear approximations for
FEAL by applying the proposed search algorithm. In [12], Aoki et al. further
optimized the search algorithm. They presented good results of the search for
the best differential trails of FEAL using a pre-search strategy.

Recently, automatic tools for searching for differential trails in ARX ciphers
are relatively mature [13,14]. One of them [14] is also extended from Matsui’s
algorithm. However, due to the fact that it uses a partial, rather than the full
DDT, their algorithm is not guaranteed to find the best differential trail. To the
best of our knowledge, there is no application of those tools which are designed
for ARX ciphers to Sbox-based ciphers.

For modern Sbox-based ciphers, expanding block size and good diffusion
cause the probabilities of the best trails of very short rounds to be tiny. Generally,
the smaller the probability of a best trail, the longer the time of a search will
be. The heuristic search algorithm described in [4] might be helpful, but could
hardly satisfy the cryptographers to fully estimate the vulnerability of a modern
cipher to DC and LC. For designers who need to repeatedly apply the search
algorithm to their draft ciphers to choose the best possible components and to
decide a proper number of rounds, and for attackers who want to obtain large
sets of trails with probabilities as high as possible and with rounds as many as
possible, it is profitable to further optimize the search algorithm.

Speeding Up the Search Algorithm for the Best Trails 261

In this paper, we focus on this problem and aim to speed up the depth-first
search algorithm for the best actual differential and linear trails.

The target objects are of Sbox-based iterated block cipher [5] in which all
intermediate rounds use the same round transformation. We only consider those
iterated ciphers with round keys being added to the state by means of XOR
operation which is very common in modern block ciphers.

1.1 Our Contributions

We present three new optimization strategies to speed up the search algorithm
for the best trails, which are called starting from the narrowest point, concretizing
and grouping search patterns, and trialling in minimal changes order strategies.

– Starting from the narrowest point is very helpful to reduce complexity to a
great extent by raising the threshold to the candidates at the earliest phases
of the search procedure and maximizing shareable work at those phases.

– Concretizing and grouping search patterns further maximizes the scope of
shared works and collects more information on search patterns to filter out
invalid ones, while keeping the memory requirement appropriate.

– Trialling in minimal changes order utilizes the locality of the nonlinear layer
and the linearity of the linear layer, to tame the brute force search to behave
in a systematical and efficient manner.

Experimental results show that, the first two strategies bring a speed up by a
factor of around 740–2800, which can be seen in Table 2. Considering the profit
brought by the third strategy, the resulting improved algorithm has around 1500–
5000 speedup ratio for the experimental subject.

Our final improved algorithm has been applied to search for the best dif-
ferential and best linear trails in a block cipher named NOEKEON which was
designed by Joan Daemen et al. [6]. The efficiency of the improved algorithm
allows us to find out the best trails, thus to state that probability (bias) of the
best 4-round differential (linear) trail in NOEKEON is 2−51 (2−25). Additionally,
probability (bias) of the best 5-round and 6-round trails are ≤2−65 (≤2−32) and
≤2−80 (= 2−40) respectively. That allows us to claim that the probability (bias)
of the best 10-round (11-round) differential (linear) trail in NOEKEON is at most
2−131 (2−71). The results are summarized in Table 3. Besides, we found out the
longest linear trail holding with bias larger then 2−65, which is a 9-round trail
with bias 2−62. These improved positive results contribute to the estimation of
the security of NOEKEON against differential (linear) cryptanalysis.

We have also used this final improved algorithm to search for the best differ-
ential trails in the permutation functions of SPONGENT, a hash function. We
found out the best differential trails for variants with width b ∈ {88, 136, 176, 240}
for certain number of rounds, and update some results presented by its designers
in [16]. Some of the results are summarized in Table 4.

These strategies are also useful for us to search for the best differential and
best linear trails for other primitives and helpful to search for best multiple
differential (multi-dimensional linear) distinguishers.

262 Z. Bao et al.

By the way, all of the experiments and results in this paper are timed and
obtained on a PC with Intel(R) Core(TM) i5-4570S 2.90 GHz CPU, and 4 GB
RAM, using single-thread program in C.

1.2 Organization

The paper is organized as follows. Some preliminaries and symbolic conventions
are presented in Sect. 2. In Sect. 3, we introduce and briefly discuss three previous
works including Matsui’s algorithm, Moriai et al.’s algorithm and Aoki et al.’s
algorithm. Section 4 establishes our overall strategies and basic principles. The
three optimization strategies starting from the narrowest point, concretizing and
grouping search patterns and trialling in minimal changes order are covered
in Sects. 5–7, which provide the justification and experimental results on the
efficiency. Finally, new results on best trails in a block cipher NOEKEON and in
the permutation functions of a hash function SPONGENT are shown in Sect. 8.
In Sect. 9, we conclude our algorithm and prospect for further improvement.

2 Notations and Preliminaries

For convenience, we will explain the optimization strategies with SPN ciphers
with non-linear layer being a parallel execution of 4 × 4 - S-Boxes in our mind.
While, proposed strategies are also applicable to ciphers of Feistel structure and
with larger S-Boxes.

Because of the duality between the search for the best differential trails and
the search for the best linear trails [11], we will explain the optimization strate-
gies from the perspective of differential.

A more natural way will be used to characterize the power of trails - the
weight of differential trail which is the sum of the weight of round differentials,
where the latter is the negative of its binary logarithm of its probability [15,
Chap. 5].

idr: the input difference of the r-th round differential1

odr: the output difference of the r-th round differential
pr: the probability of the r-th round differential
wr: the weight of the r-th round differential, wr = − log2 pr

w(idr,odr): the weight of the r-th round differential (idr, odr)
wr: the weight of a r-round differential trail, wr =

∑r
i=1 wi, where wi is the

weight of the i-th round differential composing that r-round differential trail
Bwr: the weight of the best r-round differential trail
Bwcr: the candidate of Bwr

ASN: the abbreviation of Number of Active S-Boxes
asnr: ASN at the S-Layer of the r-th round2

1 We index the rounds begin with 1, i.e. 1 ≤ r ≤ n, where n is the number of rounds
of a block cipher.

2 When using the starting from the narrowest point strategy, we index the rounds
relatively to the narrowest point.

Speeding Up the Search Algorithm for the Best Trails 263

3 Previous Works

3.1 Matsui’s Algorithm

Matsui’s algorithm [11] works by induction on the number of rounds n and
derives the best n-round weight Bwn from the knowledge of all best r-round
weight Bwr (1 ≤ r ≤ n − 1). The original search algorithm targets DES. Here,
we summarize Matsui’s algorithm for SPN ciphers. The framework consists of
the recursive procedures described in Algorithm 1. In Algorithm 1, Bwcn holds
the temporary approximation of the value of Bwn. It is an upper bound of Bwn

and improved in a decreasing manner during the search bounded by conditions∑r
i=1 wi +Bwn−r ≤ Bwcn (1 ≤ r ≤ n− 1). When all of the possible paths have

been traversed, Bwcn turns to be the exact value of Bwn.

Algorithm 1. Matsui’s Algorithm

1: Bwcn ← an upper bound of Bwn

2: procedure Round-1

3: for all candidate of od1 do
4: w1 ← minid1 (w(id1,od1))

5: if w1 + Bwn−1 ≤ Bwcn then
6: Round-i(2)

7: end if
8: end for
9: Exit the program

10: end procedure
11: procedure Round-i(r) (2 ≤ r ≤ n)

12: idr ← odr−1

13: if r < n then

14: for all candidate of odr do
15: wr ← w(idr,odr)

16: if
∑r

i=1 wi+Bwn−r ≤ Bwcn then
17: Round-i(r + 1)

18: end if
19: end for
20: else
21: wn ← minodn (w(idn,odn))

22: if
∑n

i=1 wi < Bwcn then
23: Bwcn ←∑n

i=1 wi

24: end if
25: end if
26: end procedure

3.2 Moriai et al.’s Algorithm

Moriai et al.’s program [3] is based on Matsui’s algorithm. The concept of search
patterns was introduced to detecting the unnecessary and impossible search can-
didates.

Definition 1 (Search Pattern [3]). An n-round search pattern used in the
search for the best differential trail is a vector of n values of weights, which
is denoted as W

n = (w1, w2, . . . , wn), where wi is the weight of the i-th round
differential (1 ≤ i ≤ n). Let |Wn| ≡ ∑n

i=1 wi.

Given n and Bwcn which is a lower bound of Bwn, their algorithm first gener-
ates all possible patterns3 using Bwr (1 ≤ r ≤ n− 1). It then examines whether
there is a differential trail fitting one of the patterns. If none of the patterns has
a real trail, another candidate for Bwn is similarly trialled. Their algorithm is
summarized as Algorithm 2. There are two improvements in Algorithm2 com-
pared with Algorithm1. As for the first improvement, knowledge of all weights
3 For simplicity, we sometimes address search patterns with the term patterns.

264 Z. Bao et al.

of best r-round trails is more sufficiently used by observing that ∀r, i (1 ≤ r ≤
n − 1, 1 ≤ i ≤ n − r + 1),

∑i+r−1
j=i wj ≥ Bwr. Thus it can delete more non-

existent candidates. As for the second improvement which targets involutory
ciphers, concept of search patterns is used and patterns are classified into two
equivalent classes, the class which has more candidates is deleted and thus it can
delete duplicate candidates and reduce the computation complexity.

Algorithm 2. Moriai et al.’s Algorithm
1: Bwcn ← a lower bound of Bwn

2: while true do
3: Generate all search patterns (w1, w2, . . . , wn) which make the following hold:

1.
∑n−r

i=1 wi + Bwr ≤ Bwcn, for 1 ≤ r ≤ n − 1

2. ∀r, i (1 ≤ r ≤ n − 1, 1 ≤ i ≤ n − r + 1),
∑i+r−1

j=i wj ≥ Bwr.
4: Discard either search pattern (w1, w2, . . . , wn) or (wn, wn−1, . . . , w1) whichever

has more search candidates.
5: Search the differential trails corresponding to the search patterns as Algorithm 1

with all the inequalities replaced by equalities.
6: if find out a trail then Bwn ← Bwcn and Exit
7: end if
8: Bwcn ← Bwcn + 1
9: end while

3.3 Aoki et al.’s Algorithm

In Algorithm 2 restrictions are merely based on weights of the best, while pat-
terns of the best and patterns of r-round trails which are not the best cannot be
used. Aoki et al.’s [12] considered the patterns themselves. They checked about
the existence of the combined patterns using information about search patterns
of differential trails with various weights by a pre-search strategy. Their algo-
rithm is summarized as Algorithm 3.

Algorithm 3. Aoki et al.’s Algorithm
1: procedure Pre-Search
2: Search r-round (r < n) differential trails with various weights, and compile

information to the extent possible whether or not the search pattern exist for each
round and weight.

3: end procedure
4: procedure Search
5: Do as Algorithm 2, but discard the search patterns which do not exist using the

information from the pre-search phase.
6: end procedure

Speeding Up the Search Algorithm for the Best Trails 265

4 Overall Strategy and Basic Principle in Our Work

Based on the three previous works, our program works by inducting on the num-
ber of rounds n, using concept of the search patterns and doing pre-search. For
n-round cipher, wn is initialized with a lower bound of Bwn and it is increased by
an unit until exceeding the range of weight we considered. During this procedure,
Bwn is determined when the first time an n-round differential trail being found
out. For each temporary value of wn, we generate the corresponding search pat-
tern set using Bwr (1 ≤ r ≤ n− 1) as in Algorithm 2 and using the information
about existence of r-round (1 ≤ r ≤ n − 1) search patterns collected during the
preceding search phases. Within each search pattern set, the search traverses
in a depth first manner. In AppendixA, framework of our search approach is
shown in Algorithm 4. Algorithms 5–8 formalize the search procedure deploying
the starting from the narrowest point, concretizing and grouping search patterns,
and trialling in minimal changes order strategies which will be explained in the
following Sects. 5–7.

5 Starting from the Narrowest Point Strategy

It has been shown in [3] that for Feistel ciphers the complexity of search for the
best n-round trails is dominated by the number of candidates in procedures of
the first two rounds. Similarly, for SPN ciphers, we found that the complexity
of search is dominated by the number of candidates of the first two rounds (i.e.,
the first two layers in the depth-first search procedure). Generally, the number
of candidates of the first two rounds greatly depends on the weight of the first
round, the smaller the weight, the less the number of candidates. Thus, reducing
the number of candidates at the first two layers will be much helpful. In this
section, we propose our first strategy, i.e., starting from the narrowest point
strategy. By using this strategy, the number of candidates at the first two layers
can be reduced greatly.

5.1 Proposal and Justification of the Starting from the Narrowest
Point Strategy

We organize the search patterns using a kind of balance trees, with roots starting
from the narrowest point instead of the first point of the search patterns, see
Definition 2 and Example 1 for clarify.

Definition 2 (Narrowest Point and Relative-Index Form). Given an n-
round search pattern W

n = (w1, w2, . . . , wn), suppose there are k minimal com-
ponents wx1 , wx2 , . . . , wxk

, i.e. wxi
= wmin ≡ min(w1, w2, . . . , wn) for 1 ≤ i ≤ k.

Let nxt(x) ≡
{

x + 1 1 ≤ x ≤ n − 1

n − 1 x = n
, and vmin ≡ min(wnxt(x1), wnxt(x2), . . . , wnxt(xk)

).

Suppose wm is the first component of W
n which satisfies wm = wmin and

wnxt(m) = vmin, we call the index m the narrowest point, and say wm lies

266 Z. Bao et al.

at the narrowest point of W
n. If we index each component wx of W

n with
the relative distance between x and m (i.e., x − m), W

n can be rewritten as
W̆

n = (w̆−m+1, . . . , w̆−1, w̆0, w̆1, . . . , w̆n−m), where w̆x−m = wx. We call W̆
n the

relative-index form of W
n and define the relative index of wx as rix(wx) =

rix(w̆x−m) = x − m, 1 ≤ x ≤ n.

A search pattern W
n is placed at the search tree in its relative-index form W̆

n

as depicted in Fig. 1.

Example 1. Considering a set of search patterns with |W3| = 30 of 3-round
NOEKEON: S ={ (2, 14, 14), (14, 2, 14), (4, 13, 13), (13, 4, 13), (6, 11, 13), (13,
6, 11), (6, 12, 12), (12, 6, 12) }, Fig. 2 depicts two ways to organize the search
patterns in S. In Fig. 2a, search patterns in S are organized from the first point,
and they are organized from the narrowest point in Fig. 2b.

There are three main reasons why starting from the narrowest point strategy can
help to greatly reduce the search complexity:

Fig. 1. Placing a search pattern at the search tree in its relative-index form

20

141

142

40

131

132

60

121

122

111

132

120

61

122

130

61

112

41

132

140

21

142

(a) Organizing from the first points(in-
dex components relative to the round-
index of the first component)

20

141

14−1142

40

131

13−1132

60

121

12−1122

111

13−1132

(b) Organizing from the narrowest points
(index components relative to the round-
index of the narrowest point)

Fig. 2. Organizing the search patterns in Example 1 in two ways. Nodes in trees are
elements representing one-round weights in search patterns. The subscript in each node
represent the index of the point relative to the starting point.

Speeding Up the Search Algorithm for the Best Trails 267

1. Firstly, the range of the minimal value in a search pattern set is narrower
than the range of an arbitrary value. In general, the range of the allowed
minimal value which composes a sum is narrower than the range of the allowed
arbitrary value. Here is a simple example. Assume we need to partition 11 to 4
positive numbers x1, x2, x3, x4, then the smallest number must equal to 1 or 2,
while x1 can be any number between 1 and 8. In our situation, take Example 1
again, for the search pattern set with |W3| = 30 of 3-round NOEKEON, set
of values at the narrowest point is {2, 4, 6}, while set of values at the first
point is {2, 4, 6, 12, 13, 14}. By organizing search patterns from the narrowest
points, more nodes and longer prefix-paths can be shared. From Fig. 2 we can
deduce that sharing is maximized among search patterns by organizing from
the narrowest point:
– There are only 7 nodes at the first two layers of the latter structure Fig. 2b,

while 14 nodes at that of the former Fig. 2a.
– More patterns can share search prefix-pathes in the latter structure Fig. 2b

than in the former Fig. 2a.
2. The second reason which makes the starting from the narrowest point strategy

work better is that the smaller the weight, the less the number of candidate
round differentials. For most block ciphers, the number of candidate round
differentials with larger weight is much more than that with smaller weight.
That is because, for a single S-Box, take the 4×4-bit S-Box of NOEKEON for
example, the number of differential pairs with weight 3 is 72 while the number
of differential pairs with weight 2 is only 24. Moreover, round differentials with
smaller weight usually have less active S-Boxes. In the starting round, the
less the number of active S-Boxes, the less the number of candidate round
differentials. Table 1 shows the explosive increase of number of one-round
candidates with the increase of one-round weight.

3. The third reason is that by starting from the narrowest point, restriction
are more stringent, backtracking in invalid path could arise early. This dues
to the diffusion property within small number of rounds of the cipher. Take
NOEKEON for example and limit the number of active S-Boxes of one round
being less than 18, if the preceding round is with one active S-Box, there are
12 trails4 propagating through the succeeding round, and if the preceding
round is with two active S-Boxes, there are 981 trails. The number of trails
that could propagate through the succeeding round increase explosively with
the increase of the number of active S-Boxes in the preceding round, which
can be seen in [6, Appendix A]. Combining with the fact that number of dif-
ferential pairs with weight 3 is much more than that with weight 2 for active
S-Boxes, smaller weight of the preceding round leads a narrower range of
possible value of weight of the succeeding round, and less number of differen-
tial trails which could propagate through the succeeding rounds. Accordingly,
for a given search pattern, if the search procedure starts from the narrow-
est point, there is much less candidate differential trails within the starting

4 The number is up to rotation equivalence for NOEKEON.

268 Z. Bao et al.

two rounds and to search in the search patterns which do not exist in real-
ity, the workload taken by the search procedure before it being blocked at
some nodes in search trees will be much smaller than that of starting from
an arbitrary point.

Table 1. Numbers of candidates for one-round differential under various weight

w1 2 3 4 5

CN 24 72

(
32

2

)

× 242

(
32

2

)

× 2 × 24 × 72

≈24.58 ≈26.17 ≈218.12 ≈220.71

w1 6 7 8 9

CN

(
32

2

)

× 722

+

(
32

3

)

× 243

(
32

3

)

×3×242 ×72

(
32

3

)

× 3 × 24 × 722

+

(
32

4

)

× 244

(
32

3

)

× 723

+

(
32

4

)

× 4 × 72

× 243

≈226.08 ≈229.20 ≈233.68 ≈237.08

CN : Numbers of one-round candidates.

Suppose there are 32 identical 4 × 4-bit S-Boxes in one round of the cipher and we ignore the

rotation equivalence.

Suppose number of differential pairs with weight 3 is 72 and that with weight 2 is 24 in the

DDT of an S-Box.

5.2 Experimental Results of Starting from the Narrowest Point
Strategy

Table 2 includes the experimental results comparison between search with the
starting from the narrowest point strategy and search without the strategy. It can
be seen that hundreds of speed up ratio are reached by adopting the starting
from the narrowest point strategy from column “Time-First”, column “Time-
Narrowest” and column “Ratio-(F/N)”.

At the end of this section, we would like to point out the following.
When the starting point is the first round, it is sufficient to test only one of

the input difference compatible with each output difference under the first round
weight. Similarly, it is sufficient to test whether there exist one output difference
compatible with the input difference under the weight of the last round. We call
this the free ends equivalent effect.

When the narrowest point is internal round, free ends equivalent effect should
also be considered. There are both forward and backward propagations in branches
of search trees. For the last round of the forward propagation and last round of the
backward propagation, which are the real last round and the first round of the
current n-round cipher respectively, it is sufficient to test only one of the output
differences compatible with the input difference. Besides, similar with the above
discussed free ends equivalent effect, there is a starting point equivalence. Specifi-
cally, when output difference of the starting round is fixed, there are many input

Speeding Up the Search Algorithm for the Best Trails 269

differences of this round compatible with it. However, forward branches need to be
traversed under only one of the compatible input differences of the starting round
instead of all.

6 Concretizing and Grouping Search Patterns Strategy

It has been proved experimentally that the pre-search strategy is very power-
ful to filter out non-existent search patterns. However, as containers of results
of pre-search, search patterns turn to be too abstract to store enough informa-
tion on the underlying trails. To collect more information from preceding search
phases, search patterns should be concretized to a proper extent while keep-
ing the storage requirement appropriate. Thus, we propose the concretizing and
grouping search patterns strategy. Besides, starting point equivalence can exist
among various weights of narrowest point. That equivalence should be further
considered to maximize shareable works at early phases of the procedure which
dominate the search complexity.

6.1 Proposal and Justification of the Concretizing and Grouping
Search Patterns Strategy

Concretizing: First, we append information of possible number of active S-
Boxes at the narrowest point to each search pattern. Thus, a search pat-
tern turns to be several concretized search patterns. For a search pattern
W

n = (w1, . . . , wm, . . . , wn) and its relative-index form W̆
n = (w̆−m+1, . . . ,

w̆0, . . . , w̆n−m), its concretized search patterns are {W̆n} = {(w̆−m+1, . . . ,(
[asn]
w̆0

)
, . . . , w̆n−m)|asn ∈ [asn min, asn max]}where[asn min, asn max]

is the range of possible ASN of round-differential at the narrowest round with
round-weight w̆0.

Grouping: We then group the concretized search patterns according to the
number of active S-Boxes at the narrowest point. For two search patterns
having same possible ASN at the narrowest point:
1. W

n
1 = (w1,1, . . . , w1,m1 , . . . , w1,n) and its relative-index form

W̆
n
1 = (w̆1,−m1+1, . . . , w̆1,0, . . . , w̆1,n−m1), and one of its concretized pat-

tern

W̆n
1 = (w̆1,−m1+1, . . . ,

(
[asn]
w̆1,0

)
, . . . , w̆1,n−m1)

2. W
n
2 = (w2,1, . . . , w2,m2 , . . . , w2,n) and its relative-index form

W̆
n
2 = (w̆2,−m2+1, . . . , w̆2,0, . . . , w̆2,n−m2), and one of its concretized pat-

tern

W̆n
2 = (w̆2,−m2+1, . . . ,

(
[asn]
w̆2,0

)
, . . . , w̆2,n−m2),

270 Z. Bao et al.

Figure 3a depicts the way how we concretize the search patterns by an exam-
ple set of search patterns with |W3| = 35 of 3-round NOEKEON. Figure 3b
depicts the way how we group the search patterns by the same example set of
search patterns taken in Fig. 3a.

Then the search is processed group by group, instead of value by value of
weight starting from the narrowest point. Grouping search patterns in such a
way can bring two advantages.

1. Firstly, more specified knowledge of the search patterns will be learned during
the pre-search phase. Information on allowed number of active S-Boxes at the
narrowest point of a search pattern are stored in memory and can be used to
filter search patterns in later process. For example, in Fig. 3b, search pattern
(16, 6, 13) is included in the tree with [3]5 as the root node. Since a round
differential with weight 6 is possible to have 2 active S-Boxes, (16, 6, 13) should
have been included in the tree with [2] as the root node as well. However,
during the former search of 2-round cipher, we learn that search pattern
(6, 13) does not exist when round differential with weight 6 has 2 active
S-Boxes. Thus, (16, 6, 13) can be deleted in the tree with [2] as the root.
Besides, since the allowed number of active S-Boxes at the narrowest point
are usually small, memory requirement stays appropriate.

2. Secondly, once the search patterns are grouped according to the allowed
number of active S-Boxes and starting from the output difference in the
narrowest point, searches can share the forward propagation prefixes among
different search patterns with various narrowest point weight. For example,
in Fig. 3b search pattern (13, 9, 13), (14, 8, 13), (15, 7, 13) and (16, 6, 13) share
the same prefix ([3], 131) when we search starting from an output difference
with 3 active S-Boxes at the narrowest point.

5 For simplicity, we use the number in square bracket to represent the root node (eg.

[3] is the shortening of

(
[3]

{6, 7, 8, 9}0

)

).

Speeding Up the Search Algorithm for the Best Trails 271

(
[2]
40

)

141

17−1

131

18−1

(
[2]
50

)

141

16−1

131

17−1

(
[2]
60

)

141

15−1

131

16−1

(
[3]
60

)

141

15−1

131

16−1

(
[3]
70

)

141

14−1

131

15−1

(
[3]
80

)

131

14−1

(
[4]
80

)

131

14−1

(
[3]
90

)

131

13−1

(
[4]
90

)

131

13−1

(a) Concretizing search patterns by appending information of possible number of active
S-Boxes at the narrowest point

(
[2]

{4,5,6}0

)

14{4,5,6}
1

17{4}
−116{5}

−115{6}
−1

13{4,5}
1

18{4}
−117{5}

−1

(
[3]

{6,7,8,9}0

)

14{6,7}
1

15{6}
−114{7}

−1

13{6,7,8,9}
1

16{6}
−115{7}

−114{8}
−113{9}

−1

(
[4]

{8,9}0

)

13{8,9}
1

14{8}
−113{9}

−1

(b) Grouping search patterns by number of active S-Boxes at the narrowest point.
Superscript numbers in brace represent the narrowest point weight of the patterns
in which the node belongs to. For example, search pattern (14,8,13) is included

in the branch with
(

[3]
{6,7,8,9}0

)

as the root node, 13{6,7,8,9}
1 as the first layer node,

and 14{8}
−1 as the leaf. It is also included in the branch with

(
[4]

{8,9}0

)

as the root

node, 13{8,9}
1 as the first layer node,and 14{8}

−1 as the leaf.

Fig. 3. Concretizing and grouping search patterns. Number in square bracket appended
at root node of each tree represents the possible number of active S-Boxes at the nar-
rowest point. Subscripts represent indices of the points relative to the starting points.

6.2 Experimental Results of Concretizing and Grouping Search
Patterns

Table 2 summarizes the experimental results comparison between search with
the concretizing and grouping search patterns strategy and searches without the
strategy. Column “Ratio-(N/C)” shows a tens of times speedup ratio. A hundreds
of speedup ratio are achieved combined with the efficiency brought by the first
strategy shown as in column “Ratio-(F/C)”.

7 Trialling in Minimal Changes Order Strategy

Once the set of search patterns is created, to obtain a differential trail, we only
need to simply generate and concatenate round differentials under fixed round
weights, if there exist any. By looking up the differential distribution table (DDT)
of S-Box in the S-Layers and by executing the P-Layers between continuous
rounds on the differences, round differentials can be constructed and connected
to a differential trial. However, for NOEKEON and SPONGENT, execution of the

272 Z. Bao et al.

Table 2. Experimental results comparison between search starting from the first point
(abbr. as “First” or “F”), search starting from the narrowest point (abbr. as “Narrow-
est” or “N”), and search starting from the narrowest point with the concretizing and
grouping search patterns strategy (abbr. as “Concretize” or “C”)

w3 Time (mins) Ratio

First Narrowest Concretize F/N N/C F/C

28 7.43 0.11 0.01 67.55 11.00 743.00

29 8.01 0.98 0.01 8.17 98.00 801.00

30 375.60 1.10 0.44 341.45 2.50 853.64

31 375.88 1.11 0.45 338.63 2.47 835.29

32 2398.50 15.99 0.85 150.00 18.81 2821.76

33 - 16.65 0.91 - 18.30 -

34 - 16.77 1.08 - 15.53 -

35 - 165.54 1.56 - 106.12 -

36 - 172.82 30.97 - 5.58 -

37 - 177.73 33.70 - 5.27 -

Ratio: Ratio between two kinds of time.
Rows are separated by weight of 3-round trails in NOEKEON.
All of the experiments are done with the trialling in minimal
changes order strategy.
Weight range of pre-search information of 2-round cipher is
[8, 31].

P-Layer will become the most costly part of the search process. That is because
executing the P-Layer by looking up big tables which is a more suitable way of
implementation in the case of searching for differential trails, the cost of P-Layer
can be up to 10 times of the cost of generating a new candidate differential at
the S-Layer. What is more, each replacement of candidate differential in a single
S-Box at the S-Layer, calls for the replacement of differential at the P-Layer in
full scope.

We avoid the full execution of the P-Layer considering that there is locality
of individual S-Box within S-Layer and linearity of P-Layer, which makes local
calculation feasible when generate round differentials. Further more, we propose
the trialling in minimal changes order strategy to minimize the number of local
calculation, thus to minimize the cost of generating round differentials. The
following are explicit explanations.

If we can pre-calculate all 128-bit outputs corresponding to local nonzero
inputs (let us take 4-bit for example hereafter) of P-Layer, we can get the output
differences corresponding to the input differences which is locally active by simple
XOR operations instead of the costly execution of P-Layer. Linear operation
(XOR) on 128-bit (256-bit) data can resorting to the SSE and AVX instructions.

P-Layer operations can be further removed completely by planting the above
4 × 128-bit differences tables of P-Layer to the DDT of S-Box. We call each
128-bit SP-Layer output difference caused by a 4-bit (located at a single S-Box)
S-Layer input difference the “128-bit contribution difference” to the 128-bit

Speeding Up the Search Algorithm for the Best Trails 273

round output difference. We generate table of 4-bit input differences and their
128-bit contribution differences which is called contribution differential distribu-
tion table (CDDT).

To minimize the cost of generating new candidate differences, we gener-
ate the new from the old with minimal local changes by removing and adding
128-bit contribution differences which can be done by looking up the CDDT
and by simple XOR instructions. The following shows how we achieve the least
number of looking up table and XOR instructions.

Candidate round differentials are characterized by the weight patterns of
active S-Boxes and indices of their 4-bit candidate differences within each active
S-Box. By weight patterns of active S-Boxes, we mean the possible compositions
of partition one-round weight into weights of active S-Boxes. Take one-round
differential weight as 10 and number of active S-Boxes as 4 for example, weight
patterns of active S-Boxes are (3322),(2323),(2332),(3223),(3232) and (2233),
which are restricted 4-compositions of 10. We then run through all the candi-
date output differences by enumerate the weight patterns of active S-Boxes with
a light algorithm extended from [17] and run through all the indices within each
weight pattern with an algorithm named “Loopless reflected mixed-radix Gray
generation” in [18] to achieve minimal changes and least XOR operations. Gen-
erally, generating a new candidate only cost two XOR-operations. An example
can be seen in Example 2.

Example 2. Following is an example of trialling in minimal changes order strat-
egy. Assume there are 4 active S-Boxes in the round input difference, and input
differences of the four active S-Boxes are 0x2, 0x1, 0x4 and 0x8. We need to run
through all the compatible round output difference with round weight equals
to 10. To minimize the cost, we try the weight patterns of 4 active S-Boxes
(3322),(2323),(2332),(3223),(3232) and (2233) in an order as show in Fig. 4.
Within a weight pattern, take (2233) for example, assume num(0x2, 2) = 3,
num(0x1, 2) = 2, num(0x4, 3) = 3 and num(0x8, 3) = 2, where num(id, w)
denotes the number of candidate output differences given input difference id
and weight w of a single S-Box. We run through candidates by the indices in an
order as shown in Fig. 5.

That bring us at least double times speedup. An intuition understanding for the
trialling in minimal changes order strategy is that, we utilize the small change
effect and large scale effect. Small change effect means that generating the new
from the old might be much cheaper than generate from nothing if the changes
are subtle. Large scale effect means that doing things in large scale can be more
economical and efficient. The cost to systemically finish the whole is much less
than the sum of cost to separately finish each individual.

Fig. 4. An example of trialling weight patterns of active S-Boxes in minimal changes
order. Bold numbers with underbreves are items exchanged from the former weight
pattern. There are only 2 changes at each step.

274 Z. Bao et al.

Fig. 5. An example of trialling candidates within a weight pattern in the mixed-radix
Gray code order. Bold numbers with a underbreve are the unique item changed from
the former.

8 Results on Best Trails of NOEKEON and SPONGENT

8.1 Object Cipher - A Block Cipher NOEKEON

NOEKEON is a self-inverse block cipher with a block and key length of 128-bit.
It is a 16 rounds iterated cipher with a round transformation composed of trans-
formations Theta, Pi1, Gamma, Pi2 and XORing a Working Key. The round
transformation can be split into two parts - nonlinear part Gamma and linear
part Lambda = (Pi1 ◦ Theta ◦ Pi2). Gamma can be specified as the S-layer
which is a parallel execution of 32 4 × 4-bit identical S-Boxes. Lambda can be
seen as the P-layer. A full description of NOEKEON can be found in [6]. By
searching the complete space of 4-round trails (both linear and differential) with
less than 24 active S-Boxes, the designers can guarantee that there are no 4-round
differential (linear) trails with a predicted probability (bias) above 2−48 (2−25).

In this work, by adopting the proposed three optimization strategies and
making use of the symmetry properties, these statements are confirmed and fur-
ther refined. They turn to be as follow: of all 4-round differential (linear) trails,
the best has a probability (bias) equals to 2−51 (2−25). Figure 6 in AppendixB
shows one of the best 4-round differential trails. It takes 21 (1.2) hours to sys-
tematically investigate whether 4-round differential (linear) trails of weight up to
51 (25) exist on the formerly mentioned PC. Table 3 summarizes more results
about differential (linear) trails of NOEKEON we have achieved.

Besides, best 6-round and 9-round linear trails with bias 2−40 and 2−62 are
found out and Fig. 7 in AppendixB shows one of them. The 9-round linear trail is
the longest one holding with bias larger than 2−65. By observing that the internal
part in the best 6-round linear trail is iterative on a 2-round trail which is also
a sub-trail in the best 9-round, a 10-round linear trail with bias 2−68 can be
constructed.

According to the results in Table 3, the probability (bias) of best 10-round
(11-round) differential (linear) trails in NOEKEON is at most 2−131 (2−71). As
mentioned in [6], for a DC attack to exist, there must be a predictable difference
propagation over all but a few rounds with a probability significantly larger
than 2−127, and LC attacks are possible if there are predictable input-output

Speeding Up the Search Algorithm for the Best Trails 275

correlation values (2 times of bias) over all but a few rounds significantly larger
than 2−64, thus we can benefit from these results that exclude classical DC (LC)
attacks on NOEKEON.

8.2 Object Cipher - A Hash Function SPONGENT

SPONGENT is a lightweight hermetic sponge hash function with a PRESENT-
type permutation [16]. There are 13 variants with 11 kinds of permutation
width. In this work, variants with permutation width b ∈ {88, 136, 176, 240} are
considered.

By applying the three proposed optimization strategies, best differential trails
corresponding to the number of rounds in [16, Table 3] are searched. The results
suggest that finding out the unconditional best trails could help to establish more
tight upper bound on the probability of the best differential than that provided
by finding the trails with minimal number of active S-Boxes. New results are

Table 3. Comparison between results from specification of NOEKEON and results
from this work. Entries with ∗ are the updates due to this work. Note that the trails
we found are confirmed to be the best.

#Rounds NOEKEON-differential NOEKEON-linear

Spec. This Spec. This

ASN Prob. ASN Prob. ASN Bias ASN Bias

1 1 2−2 1 2−2 1 2−2 1 2−2

2 4 2−8 4 2−8 4 2−5 4 2−5

3 - - ∗13 ∗2−28 - - ∗13 ∗2−14

4 - ≤2−48 ∗22 ∗2−51 - ≤2−25 ∗21 ∗2−25

5 - - - ∗≤2−65 - - - ∗≤2−32

6 - - - ∗≤2−80 - - ∗33 ∗2−40

Table 4. Comparison between results from specification of SPONGENT and results
from this work. Entries with ∗ are the updates due to this work.

276 Z. Bao et al.

listed in Table 4. Figures 8 and 9 in AppendixB depicts two of the updated
best trails. Besides, longer differential trails are found, which could correct and
update the results listed in [16, Table 4]:

– For variants with b = 88, probability of best 17-round (18-round) differential
trail is 2−86 (2−94), which was found out within 1 min, and shown in Fig. 10
in AppendixB.

– For variants with b = 240, probability of best 44-round differential trail is
2−196, which was found within 1 min. By observing the results up to
44-round, we can conclude the following: Bw6 = 30 and for r ≥ 7, Bwr ={
Bwr−1 + 4 if r is even

Bwr−1 + 5 if r is odd
. An observation is that there is a 2-round itera-

tive trail with weight pattern (4, 5) composing the best trails, as shown in
Fig. 11 in AppendixB.

– For variants with b = 176, best 17-round (18-round) differential trail with
weight 91 (99) was found within 50 min, and shown in Fig. 12 in AppendixB.

9 Conclusion and Future Work

We improved the search algorithm for the best differential and best linear trails
by introducing three optimization strategies. Those strategies reduce the com-
plexity to a great extent by organizing candidate search patterns properly, col-
lecting more information during preceding procedures and trialling in good order,
which allowed us to find out best trails more efficiently. At the end, we briefly
overview future work.

– We trial a search pattern in an order of (w̆0, w̆1, . . . , w̆n−m, w̆−1, . . . , w̆−m+1).
As an anonymous reviewers suggested, it might also be interesting to consider
the order (w̆0, w̆1, w̆−1, w̆2, w̆−2, . . .).

– Experimental result on NOEKEON shows that search patterns that cannot be
filtered out by the information collected in preceding procedures are usually
with fat paunches, while the existing search patterns are usually with narrow
waists. That can be understood considering the diffusion property of the target
cipher. How to use this empirical knowledge to add heuristics to the search
algorithm remains unclear.

– By avoiding detailed properties of the target ciphers, our algorithm is general
to some extent, while remaining space for further improvement by utilizing
more special properties of the object ciphers.

– Strategies proposed in this paper are also helpful to generate all the trails up to
a given weight. Thus, they can be adopted when search for the best multi-
ple differential (multi-dimensional linear) distinguishers. While, we haven’t
adopted them to the case of related-key differential.

Acknowledgement. Many thanks go to the anonymous reviewers for many useful
comments and suggestions. The research presented in this paper is supported by the
National Natural Science Foundation of China (No.61379138), the “Strategic Priority
Research Program” of the Chinese Academy of Sciences (No.XDA06010701).

Speeding Up the Search Algorithm for the Best Trails 277

A Our Search Algorithm

Algorithm 4. Our Search Approach Part 1 - Framework of Our Search App-
roach
1: for n ← 1, RoundN do � n is the current number of round and RoundN

is the total of that considered for the cipher. All of the following variables are global
which can be directly accessed in each procedure. Superscript n on the shoulders of those
variables is changed with the value of n, thus for different values of n, they are different
variables.

2: w ln ← a lower bound for Bwn

3: n wn ← the number of extra values of weights larger than Bwn � Determine
the amount of pre-search information of n-round cipher, there is no pre-search information
of n-round cipher if n wn = −1

4: w un ← 0 � w un will be update as the upper bound for values
of weights at the end of procedure SearchForRounds, and thus [w ln, w un] is the range of
values of wn under which we will completely examine the existence of the search patterns.

5: Bwn ← ∞
6: wn ← w ln � wn is a global temp variable holding current weight of n-round

7: ExistentPatternsn ← ∅ � Trees of existent search patterns under wn ∈ [Bwn, w un]

8: ExistentPatternsCGn ← ∅ � Trees of existent concretized patterns under
wn ∈ [Bwn, w un]

9: SearchPatternsn ← ∅ � Temporary trees of search patterns

10: SearchPatternsCGn ← ∅ � Temporary trees of concretized search patterns
11: SearchForRounds(n)

12: Next-n: � A tag for long jump
13: end for

14: procedure SearchForRounds(n)
15: i ← −1

16: while i ≤ n wn do
17: GenerateSearchPatterns � Generate, filter and formalize search patterns

18: OrganizeSearchPatterns � Concretize and group search patterns
19: SearchFromTheNarrowest � Search in trees of organized search patterns
20: SearchPatternsn ← ∅ � Clear trees of search patterns

21: SearchPatternsCGn ← ∅ � Clear trees of concretized search patterns

22: wn ← wn + 1

23: if Bwn �= ∞ then i ← i + 1
24: end if
25: end while

26: ExistentPatternsn ←gather ExistentPatternsCGn � Gather information on

existence of search patterns W̆n according to the information on existence of corresponding
concretized search patterns W̆n.

27: w un ← Bwn + n wn

28: end procedure

278 Z. Bao et al.

Algorithm 5. Our Search Approach Part 2 - Generate and Filter, Concretize
and Group Search Patterns

29: procedure GenerateSearchPatterns

30: while partition of wn could generate a new n-composition do
31: Partition wn into n components to form a new possible search pattern W

n =

(w1, w2, . . . , wn), which make the following hold:

32: 1. |Wn| =
∑n

i=1 wi = wn,

33: 2.
∑n−r

i=1 wi + Bwr ≤ wn for ∀r (1 ≤ r ≤ n − 1), and

34: 3. wr ≥ Bwr and W
r = (wi, wi+1, . . . , wi+r−1) ∈ ExistentPatternsr if wr ∈

[Bwr, w ur], for ∀r, i (1 ≤ r ≤ n − 1, 1 ≤ i ≤ n − r + 1), where wr =
∑i+r−1

j=i wj .

35: Find the narrowest point of W
n, let it be m. � If the cipher is involution, let

W̄
n = (wn, wn−1, . . . , w1) and w̄m̄ be the narrowest point of W̄n. If wnxt(m) = w̄nxt(m̄), let ˘̄

W
n

be the relative-index form of W̄n, if ˘̄
W

n ∈ SearchPatternsn, discard W
n and continue. Else, if

wnxt(m) > w̄nxt(m̄), discard W
n and W

n ← W̄
n.

36: Turn W
n = (w1, w2, . . . , wn) into its relative-index form W̆

n =

(w̆−m+1, . . . , w̆0, . . . , w̆n−m).

37: SearchPatternsn ←insert W̆
n

38: end while
39: end procedure

40: procedure OrganizeSearchPatterns

41: for all W̆n = (w̆−m+1, . . . , w̆0, . . . , w̆n−m) ∈ SearchPatternsn do
42: asn min ← the minimal possible ASN determined by w̆0

43: asn max ← the maximal possible ASN determined by w̆0

44: for asn ← asn min, asn max do
45: for all r, r̀, (2 ≤ r < n, 1 ≤ r̀ ≤ r) do
46: if w̆0 is at the narrowest point of reduced search pattern

(w̆−r̀+1, . . . , w̆0, . . . , w̆r−r̀) then

47: Let W̆ r ← (w̆−r̀+1, . . . ,
([asn]

w̆0

)
, . . . , w̆r−r̀) and w̆r ←∑r−r̀

i=−r̀+1 w̆i, then

48: if w̆r ∈ [Bwr, w ur] and W̆ r /∈ ExistentPatternsCGr then goto next asn

49: end if
50: end if
51: end for

52: SearchPatternsCGn ←groupingInto W̆n = (w̆−m+1, . . . ,
([asn]

w̆0

)
, . . . , w̆n−m)

53: end for
54: end for
55: end procedure

Speeding Up the Search Algorithm for the Best Trails 279

Algorithm 6. Our Search Approach Part 3 - Search in Trees of Organized
Search Patterns
56: procedure SearchFromTheNarrowest

57: for all rootnode ←
([asn]

{w̆1,0, w̆2,0, . . . , w̆k,0}0
)

∈ SearchPatternsCGn do

58: asn0 ← asn
59: asn min1 ← the allowed minimal ASN determined by the minimal weight of the

first forward rounds succeeding the current rootnode

60: asn max1 ← the allowed maximal ASN determined by the maximal weight of the
first forward rounds succeeding the current rootnode

61: asn min−1 ← the allowed minimal ASN determined by the minimal weight of the
first backward rounds succeeding the forward branches of the current rootnode

62: asn max−1 ← the allowed maximal ASN determined by the maximal weight of
the first backward rounds succeeding the forward branches of the current rootnode

63: while ∃ new candidate round-output-differential od0 do
64: Generate a new od0 with the trailling in minimal changes order strategy, which

makes the following hold:

65: 1. there are asn0 active S-Boxes at the narrowest round, and
66: 2. asn1 ∈ [asn min1, asn max1], where asn1 is ASN at the first succeeding

forward round, which is computed from od0.

67: while ∃ new candidate round-input-differential id0 do
68: Generate a new id0 with the trailling in minimal changes order strategy,

which makes the following hold:

69: 1. id0 is compatible with od0 with w(id0,od0) ∈ {w̆1,0, w̆2,0, . . . , w̆k,0},
70: 2. asn−1 ∈ [asn min−1, asn max−1], where asn−1 is ASN at the first back-

ward round, which is computed from id0.
71: idListAtNarrowestPoint

w(id0,od0) ←insert id0
72: end while

73: if ∃ succeeding forward branches under noder then
74: SearchForward(od0, 1)

75: end if
76: for all w̆i,0 ∈ {w̆1,0, w̆2,0, . . . , w̆k,0} do
77: if ∃ succeeding backward branches with w̆i,0 as the narrowest point under

noder then � For simplicity henceforth, we say branches with w̆i,0 as the narrowest
point if there are nodes carry superscript including w̆i,0 on their shoulders.

78: for all id0 ∈ idListAtNarrowestPointw̆i,0 do

79: SearchBackward(w̆i,0, id0, -1)
80: end for

81: end if

82: end for
83: end while

84: end for

85: end procedure

280 Z. Bao et al.

Algorithm 7. Our Search Approach Part 4 - Search in Forward Branches

86: procedure SearchForward(idr , r)

87: for all noder ← w̆
{w̆1,0,...,w̆j,0}
r ∈ forward branches succeeding the preceding node in

SearchPatternsCGn do
88: if ∃ succeeding forward branches under noder then
89: while ∃ new candidate odr do

90: Generate a new odr with the trailling in minimal changes order strategy,
which makes the following hold:

91: 1. odr is compatible with idr with w(idr,odr) = w̆r,
92: 2. asnr+1 ∈ [asn minr+1, asn maxr+1], where asnr+1 is ASN at the suc-

ceeding forward round, which is computed from odr, and asn minr+1 (or asn maxr+1)
is determined by the minimal (or maximal) weight of nodes on the succeeding forward
branches of noder.

93: SearchForward(odr , r + 1)
94: end while
95: end if

96: if ∃ succeeding backward branches under noder or � succeeding branches under
noder then

97: if ∃ an odr compatible with idr with w(idr,odr) = w̆r then
98: if ∃ succeeding backward branches under noder then

99: for all w̆i,0 ∈ {w̆1,0, . . . , w̆j,0}, 1 ≤ i ≤ j do
100: if ∃ succeeding backward branches with w̆i,0 as the narrowest point

under noder then
101: for all id0 ∈ idListAtNarrowestPointw̆i,0 do

102: SearchBackward(w̆i,0, id0, -1)
103: end for
104: end if

105: end for
106: else
107: if this is the first time get an n-round differential trail then Bwn ← wn

108: end if

109: if n wn = −1 then goto Next-n
110: end if

111: W̆ ←delete SearchPatternsCGn � Delete current concretized search
pattern from trees of concretized search patterns under current wn

112: ExistentPatternsCGn ←insert W̆ � Save current concretized search
pattern to trees of actually existent concretized search patterns under wn ∈ [Bwn, w un]

113: end if
114: end if
115: end if

116: end for

117: end procedure

Speeding Up the Search Algorithm for the Best Trails 281

Algorithm 8. Our Search Approach Part 5 - Search in Backward Branches

118: procedure SearchBackward(w̆i,0, odr, r)

119: for all noder ← w̆
{w̆1,0,...,w̆j,0}
r ∈ backward branches succeeding the preceding node

in SearchPatternsCGn do

120: if w̆i,0 ∈ {w̆1,0, . . . , w̆j,0} then

121: if ∃ succeeding backward branches under noder then

122: while ∃ new candidate idr do

123: Generate a new idr with the trailling in minimal changes order strategy
making the following hold:

124: 1. idr is compatible with odr with w(idr,odr) = w̆r,

125: 2. asnr−1 ∈ [asn minr−1, asn maxr−1], where asnr−1 is ASN at
the succeeding backward round, which is computed from idr, and asn minr−1 (or
asn maxr−1) is determined by the minimal (or maximal) weight of nodes on the suc-
ceeding backward branches of noder.

126: SearchBackward(w̆i,0, idr, r − 1)
127: end while

128: else

129: if ∃ idr compatible with odr with w(idr,odr) = w̆r then

130: if this is the first time get an n-round differential trail then Bwn ← wn

131: end if
132: if n wn = −1 then goto Next-n

133: end if

134: W̆ ←delete SearchPatternsCGn � Delete current concretized search
pattern from trees of concretized search patterns under current wn

135: ExistentPatternsCGn ←insert W̆ � Save current concretized search
pattern to trees of actually existent concretized search patterns under wn ∈ [Bwn, w un]

136: end if
137: end if

138: end if
139: end for
140: end procedure

B Examples of Best Trails

Fig. 6. A best 4-round differential trail with weight 51 in NOEKEON

282 Z. Bao et al.

Fig. 7. A best 6-round linear trail with bias 2−40 in NOEKEON

Fig. 8. A best 15-round differential trial with weight 96 in SPONGENT with b = 136

Fig. 9. A best 10-round differential trial with weight 46 in SPONGENT with b = 176

Speeding Up the Search Algorithm for the Best Trails 283

Fig. 10. A best 17-round differential trial with weight 86 in SPONGENT with b = 88

Fig. 11. A best 44-round differential trial with weight 196 in SPONGENT with b = 240

284 Z. Bao et al.

Fig. 12. A best 18-round differential trial with weight 99 in SPONGENT with b = 176

References

1. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. In:
Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 2–21.
Springer, Heidelberg (1991)

2. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

3. Ohta, K., Moriai, S., Aoki, K.: Improving the search algorithm for the best linear
expression. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 157–170.
Springer, Heidelberg (1995)

4. Collard, B., Standaert, F.-X., Quisquater, J.-J.: Improved and multiple linear
cryptanalysis of reduced round serpent. In: Pei, D., Yung, M., Lin, D., Wu, C.
(eds.) Information Security and Cryptology. LNCS, vol. 4990, pp. 51–65. Springer,
Heidelberg (2008)

5. Daemen, J., Rijmen, V.: The Design of Rijndael - AES - The Advanced Encryption
Standard. Springer, Heidelberg (2002)

6. Daemen, J., Peeters, M., Van Assche, G., Rijmen, V.: Nessie Proposal: The Block
Cipher NOEKEON. Nessie submission (2000)

7. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher.
In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007)

Speeding Up the Search Algorithm for the Best Trails 285

8. Biryukov, A., Nikolić, I.: Automatic search for related-key differential character-
istics in byte-oriented block ciphers: application to AES, Camellia, Khazad and
others. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 322–344.
Springer, Heidelberg (2010)

9. Mouha, N., Wang, Q., Gu, D., Preneel, B.: Differential and linear cryptanalysis
using mixed-integer linear programming. In: Wu, C.-K., Yung, M., Lin, D. (eds.)
Inscrypt 2011. LNCS, vol. 7537, pp. 57–76. Springer, Heidelberg (2012)

10. Fouque, P.-A., Jean, J., Peyrin, T.: Structural evaluation of AES and chosen-key
distinguisher of 9-round AES-128. In: Canetti, R., Garay, J.A. (eds.) CRYPTO
2013, Part I. LNCS, vol. 8042, pp. 183–203. Springer, Heidelberg (2013)

11. Matsui, M.: On correlation between the order of S-boxes and the strength of DES.
In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 366–375. Springer,
Heidelberg (1995)

12. Aoki, K., Kobayashi, K., Moriai, S.: Best differential characteristic search of FEAL.
In: Biham, E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 41–53. Springer, Heidelberg
(1997)

13. Leurent, G.: Construction of differential characteristics in ARX designs application
to skein. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042,
pp. 241–258. Springer, Heidelberg (2013)

14. Biryukov, A., Velichkov, V.: Automatic search for differential trails in ARX ciphers.
In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp. 227–250. Springer,
Heidelberg (2014)

15. Daemen, J.: Cipher and hash function design strategies based on linear and differ-
ential cryptanalysis. Doctoral Dissertation, March 1995, K.U.Leuven (1995)

16. Bogdanov, A., Knezevic, M., Leander, G., Toz, D., Varici, K., Verbauwhede, I.:
SPONGENT: the design space of lightweight cryptographic hashing. IEEE Trans.
Comput. 62(10), 2041–2053 (2013)

17. Ehrlich, G.: Loopless Algorithms for Generating Permutations, Combinations, and
Other Combinatorial Configurations. Journal of the ACM 20(3), 500–513 (1973)

18. Knuth, D.E.: The Art of Computer Programming. Introduction to Combinatorial
Algorithms and Boolean Functions, vol. 4. Addison Wesley, Upper Saddle River
(2008)

The Boomerang Attacks
on BLAKE and BLAKE2

Yonglin Hao(B)

Department of Computer Science and Technology,
Tsinghua Universtiy, Beijing 100084, China

haoyl12@mails.tsinghua.edu.cn

Abstract. In this paper, we study the security margins of hash func-
tions BLAKE and BLAKE2 against the boomerang attack. We launch
boomerang attacks on all four members of BLAKE and BLAKE2, and
compare their complexities. We propose 8.5-round boomerang attacks on
both BLAKE-512 and BLAKE2b with complexities 2464 and 2474 respec-
tively. We also propose 8-round attacks on BLAKE-256 with complexity
2198 and 7.5-round attacks on BLAKE2s with complexity 2184. We ver-
ify the correctness of our analysis by giving practical 6.5-round Type I
boomerang quartets for each member of BLAKE and BLAKE2. Accord-
ing to our analysis, some tweaks introduced by BLAKE2 have increased
its resistance against boomerang attacks to a certain extent. But on the
whole, BLAKE still has higher a secure margin than BLAKE2.

1 Introduction

Cryptographic hash functions (simply referred as hash functions) are playing a
significant role in the modern cryptology. They are indispensable in achieving
secure systems such as digital signatures, message authentication codes and so
on. In the cryptanalysis of hash functions, one of the greatest breakthrough was
made by Wang et al. in 2005 when they successfully launched collision attacks
on widely used hash functions MD5 [1] and SHA-1 [2]. After that, the analytic
methods against hash functions have been greatly improved which threatens
the security of existing hash functions. To cope with this situation, NIST pro-
posed the transition from SHA-1 to SHA-2. Furthermore, NIST also launched the
SHA-3 competition to develop a new hash standard. After years’ analysis, five
proposals entered the final round of SHA-3 and the one named Keccak became
the new SHA-3 standard in 2012 [3].

The BLAKE hash function [4] was one of the five finalists of the SHA-3
competition [5]. Although it was not selected as the SHA-3 standard, along with
the other finalists, BLAKE is assumed to be a very strong hash function with
high security margin and very good performance in software.

BLAKE2 [6] is a new family of hash functions based on BLAKE. According
to [6], the main objective of BLAKE2 is to provide a number of parameters for
use in applications without the need of additional constructions and modes, and
c© Springer International Publishing Switzerland 2015
D. Lin et al. (Eds.): Inscrypt 2014, LNCS 8957, pp. 286–310, 2015.
DOI: 10.1007/978-3-319-16745-9 16

The Boomerang Attacks on BLAKE and BLAKE2 287

also to speed-up even further the hash function to a level of compression rate
close to MD5.

Ever since its proposal, BLAKE has attracted a considerable amount of crypt-
analysis, such as impossible differential attack [7], differential attack [8], colli-
sion, preimage [9] etc. There is also a boomerang distinguisher on BLAKE-32
given by Biryukov et al. in [10] but some incompatible problems were pointed
out by Leurent in [11]. Despite of the incompatibilities, [10] indicates that the
boomerang method may have good efficiency in analyzing the BLAKE family.
Recently, Bai et al. have given the first valid 7-round and 8-round boomerangs
for BLAKE-256 [12].

As to BLAKE2, Guo et al. [13] have given a thorough security analysis of
it. In their paper, they applied almost all the existing attacks on BLAKE to
BLAKE2. According to their results, the tweaks introduced by BLAKE2, if ana-
lyzed separately, reduce the security of the version in some theoretical attacks.
Some cryptanalysis methods manage to reach more rounds for BLAKE2 than
BLAKE. BLAKE seems to have better resistance than BLAKE2 against various
cryptanalysis methods. However, [13] did not evaluate the security margin of the
two hash function families under the boomerang method and this is what we are
going to do in this paper.

The original boomerang attack was introduced by Wagner in 1999 [14] as
a tool for the cryptanalysis of block ciphers. It is an adaptive chosen plaintext
and ciphertext attack utilizing differential cryptanalysis. Later, Kelsey et al. [15]
developed the original version into a chosen plaintext attack called the amplified
boomerang attack. Developments were also made by Biham et al. in [16,17].

During the past few years, the idea of the boomerang attack has been applied
to many hash functions. Biryukov et al. [10] and Lamberger et al. [18] indepen-
dently applied the boomerang attack to BLAKE-32 and SHA-256. The SHA-
256 result was later improved by Biryukov et al. in [19]. Ever after, we saw the
boomerang results on many hash functions such as SIME-512 [20], HAVAL [21],
RIPEMD-128/160 [22], HAS-160 [21], Skein-256/512 [23,24], SM3 [25,26] and
BLAKE-256 [12]. The boomerang attack has become a common tool for analyz-
ing various hash functions.

Our contribution. We reevaluate the boomerang attack on BLAKE-256 in [12]
and apply the method to the keyed permutations of all BLAKE and BLAKE2
members namely BLAKE-256, BLAKE-512, BLAKE2s and BLAKE2b. We con-
struct boomerang distinguishers for 8.5-round keyed permutation of BLAKE-
512 and BLAKE2b (both from round 2.5 to 11). The complexity for attacking
BLAKE-512 is 2464 and that for BLAKE2b is 2474. We also present 7.5-round
attack on BLAKE2s (round 2.5 to 10) with complexity 2184. Besides, we lower
the complexity of the 8-round BLAKE-256 result in [12] from 2200 to 2198 with
slight modification of the differential characteristic. We present our boomerang
results along with previous ones in Table 1. As can be seen, some tweaks intro-
duced by BLAKE2 have surprisingly increased its resistance against boomerang

288 Y. Hao

attacks to a certain extent. But, since BLAKE has more rounds, the secure
margin of BLAKE is still higher than that of BLAKE2.

Table 1. All existing boomerang results on BLAKE and BLAKE2.

Hash function Target Rounds Time Source

BLAKE-256 CF 6 2102 [10]

CF 6.5a 2184

CF 7a 2232

KP 6 211.75

KP 7a 2122

KP 8a 2242

KP 7 237b [12]

KP 8 2200

KP 8 2198 This paper

BLAKE2s KP 7.5 2184 This paper

BLAKE-512 KP 8.5 2464 This paper

BLAKE2b KP 8.5 2474 This paper

KP: Keyed Permutation
CF: Compression Function
a: there are some incompatible problems in their
attacks
b: this is the complexity for the Type III boomerang
while others are of Type I.

Organization of the Paper. In Sect. 2, we briefly introduce the round func-
tions of BLAKE and BLAKE2, and provide the overview of the boomerang
attack. Section 3 describes the way that we deduce the differential characteristics
and the process of building the boomerang distinguishers. Finally, we conclude
our paper in Sect. 4.

2 Preliminary

In the first part of this section, we make a brief introduction of the two families
of hash functions, BLAKE and BLAKE2. Since our boomerang analysis mainly
focus on the keyed permutation of BLAKE and BLAKE2, which excludes the
Initialization and Finalization procedures, we only introduce the round functions
in this section. We refer the readers to [4,6] for information about initialization
and finalization phases. We also give some notations that are used through this
paper.

In the second part of this section, we review the procedure of the boomerang
attack on hash functions and give some definitions that we use in the description
of our attacks.

The Boomerang Attacks on BLAKE and BLAKE2 289

2.1 The Round Functions of BLAKE and BLAKE2

BLAKE and BLAKE2 share many similarities. As the successor of BLAKE,
BLAKE2 has a 32-bit version (BLAKE2s) and a 64-bit version (BLAKE2b),
corresponding to BLAKE-256 and BLAKE-512 of BLAKE respectively. Both
BLAKE and BLAKE2 process 16-word message blocks. However, differences can
be witnessed at every level including internal permutation, compression function,
and hash function construction. Some notations have to be introduced first:

← variable assignment;
+ modular 232 or 264 addition (according to the word length);
− modular 232 or 264 subtraction (according to the word length);
⊕ bitwise exclusive or;
≪ n cyclic shift n bits towards the most significant bit;
≫ n cyclic shift n bits towards the least significant bit;
∧ bitwise AND operation for words.

The Round functions of both BLAKE and BLAKE2 process a state of 16
64-bit or 32-bit words represented by a 4 × 4 matrix as follows:

V =

⎛

⎜⎜⎝

v0 v1 v2 v3

v4 v5 v6 v7

v8 v9 v10 v11

v12 v13 v14 v15

⎞

⎟⎟⎠ .

In the remainder of this paper, we denote the 16-word intermediate state by the
capital letters such as V, TV and M for message block. Single 64-bit or 32-bit
words are denoted by small letters such as v, tv and m for message words. We
also refer to the i-th bit of a word v (i = 0, · · · 31 or 63 from the least significant
to the most significant) as v[i].

Once the state V is initialized, V is processed by several rounds (10, 12,
14, 16 for BLAKE2s, BLAKE2b, BLAKE-256, BLAKE512 respectively) of G
functions, which means computing

G0(v0, v4, v8, v12), G1(v1, v5, v9, v13), G2(v2, v6, v10, v14), G3(v3, v7, v11, v15)
G4(v0, v5, v10, v15), G5(v1, v6, v11, v12), G6(v2, v7, v8, v13), G7(v3, v4, v9, v14)

where Gi(a, b, c, d), i = 0, · · · , 7 differ among BLAKE2s, BLAKE2b, BLAKE-
256, BLAKE512 and are all listed in Table 2. The σr in Step 1 and 5 of the Gi

function in Table 2 belongs to the set of permutations as defined in Table 3. At
round r > 9, the permutation used is σr mod 10 (for example, if r = 11, the
permutation σ11 mod 10 = σ1 is used).

Since we need detailed analysis of the intermediate states, we further break-
down the round functions. We denote the state after r rounds of iterations by V r

(r = 0, 1, · · ·). Then, TV r is acquired after the first 4 steps of G0,··· ,3 and V r+0.5

is computed after G0,··· ,3 are completed. Similarly, we can compute TV r+0.5

290 Y. Hao

Table 2. The Gi Functions of BLAKE-256, BLAKE2s, BLAKE-512, BLAKE2b

Step BLAKE-256 BLAKE2s

1 a = a + b + (mσr(2i) ⊕ cσr(2i+1)) a = a + b + mσr(2i)

2 d = (d ⊕ a) ≫ 16 d = (d ⊕ a) ≫ 16

3 c = c + d c = c + d

4 b = (b ⊕ c) ≫ 12 b = (b ⊕ c) ≫ 12

5 a = a + b + (mσr(2i+1) ⊕ cσr(2i)) a = a + b + mσr(2i+1)

6 d = (d ⊕ a) ≫ 8 d = (d ⊕ a) ≫ 8

7 c = c + d c = c + d

8 b = (b ⊕ c) ≫ 7 b = (b ⊕ c) ≫ 7

Step BLAKE-512 BLAKE2b

1 a = a + b + (mσr(2i) ⊕ cσr(2i+1)) a = a + b + mσr(2i)

2 d = (d ⊕ a) ≫ 32 d = (d ⊕ a) ≫ 32

3 c = c + d c = c + d

4 b = (b ⊕ c) ≫ 25 b = (b ⊕ c) ≫ 24

5 a = a + b + (mσr(2i+1) ⊕ cσr(2i)) a = a + b + mσr(2i+1)

6 d = (d ⊕ a) ≫ 16 d = (d ⊕ a) ≫ 16

7 c = c + d c = c + d

8 b = (b ⊕ c) ≫ 11 b = (b ⊕ c) ≫ 63

from V r+0.5 by applying steps 1,2,3,4 of G4,··· ,7 and further compute V r+1 by
finishing G4,··· ,7. This representation is illustrated as (1) and (2).

G0,··· ,3 : V r
Steps 1,··· ,4

−−−−−−−−→ TV r
Steps 5,··· ,8

−−−−−−−−→ V r+0.5 (1)

G4,··· ,7 : V r+0.5
Steps 1,··· ,4

−−−−−−−−→ TV r+0.5
Steps 5,··· ,8

−−−−−−−−→ V r+1 (2)

In this way, we can refer to any intermediate state word of any round easily.

2.2 The Boomerang Attack

About the boomerang attack on hash functions, we mainly review the known-
related-key boomerang method given in [19]. We consider the compression
function, denoted by CF , as CF (M,K) = E(M,K) + M and that it can be
decomposed into two sub-functions as CF = CF1 ◦ CF0. In this way, we can
start from the middle steps since M and the key K can be chosen randomly
[19,23]. Then we have a backward (top) differential characteristic (β, βk) → α
with probability p for CF−1

0 , and a forward (bottom) differential characteristic
(γ, γk) → δ with probability q for CF1. Finally, we can launch the known-related-
key boomerang attack with these two differential characteristics as follows:

The Boomerang Attacks on BLAKE and BLAKE2 291

Table 3. The definition of σr where r = 0, · · · , 9.

σ0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

σ1 14 10 4 8 9 15 13 6 1 12 0 2 11 7 5 3

σ2 11 8 12 0 5 2 15 13 10 14 3 6 7 1 9 4

σ3 7 9 3 1 13 12 11 14 2 6 5 10 4 0 15 8

σ4 9 0 5 7 2 4 10 15 14 1 11 12 6 8 3 13

σ5 2 12 6 10 0 11 8 3 4 13 7 5 15 14 1 9

σ6 12 5 1 15 14 13 4 10 0 7 6 3 9 2 8 11

σ7 13 11 7 14 12 1 3 9 5 0 15 4 8 6 2 10

σ8 6 15 14 9 11 3 0 8 12 2 13 7 1 4 10 5

σ9 10 2 8 4 7 6 1 5 15 11 9 14 3 12 13 0

1. Choose randomly a intermediate state (X1,K1) and compute (Xi,Ki), i =
2, 3, 4 by X3 = X1 ⊕ β, X2 = X1 ⊕ γ, X4 = X3 ⊕ γ, and K3 = K1 ⊕ βk,
K2 = K1 ⊕ γk, K4 = K3 ⊕ γk.

2. Compute backward from (Xi,Ki) and obtain Pi by Pi = CF−1
0 (Xi,Ki) (i =

1, 2, 3, 4).
3. Compute forward from (Xi,Ki) and obtain Ci by Ci = CF1(Xi,Ki) (i =

1, 2, 3, 4).
4. Check whether P1 ⊕ P3 = P2 ⊕ P4 = α and C1 ⊕ C2 = C3 ⊕ C4 = δ.

It can be deduced that P1 ⊕ P3 = P2 ⊕ P4 = α and C1 ⊕ C2 = C3 ⊕ C4 = δ
hold with probability at least p2 in the backward direction and q2 in the forward
direction. Therefore, the attack succeeds with probability p2q2 when assuming
that the differential characteristics are independent.

According H. Yu et al. in [24], for a n-bit random permutation, there are
three types of boomerang distinguishers:

– Type I: A quartet satifies P1 ⊕ P3 = P2 ⊕ P4 = α and C1 ⊕ C2 = C3 ⊕ C4 = δ
for fixed differences α and δ. In this case, the generic complexity is 2n.

– Type II: Only C1 ⊕ C2 = C3 ⊕ C4 is satisfied (This property is also called
zero-sum or second-order differential collision). In this case, the complexity
for obtaining such a quartet is 2n/3 [27].

– Type III: A quartet satisfied P1 ⊕ P3 = P2 ⊕ P4 and C1 ⊕ C2 = C3 ⊕ C4. In
this case, the best known still takes time 2n/2.

We only study the Type I boomerang distinguisher in this paper. Besides, the
complexity 237 of the 7-round boomerang in [12] is actually the complexity for
a Type III boomerang attack. The Type I complexity for the 7-round attack
should be 22×(1+4+16+1) = 244 according to their methods.

292 Y. Hao

3 The Boomerang Attacks on BLAKE and BLAKE2

In this section, we describe our boomerang attacks on BLAKE and BLAKE2.
We only illustrate our strategies by comparing BLAKE-512 and BLAKE2b while
those of BLAKE-256 and BLAKE2s can be deduced accordingly. Details are
presented in Appendix A.

3.1 Construction of Differential Characteristics

The very first step for the boomerang attack is constructing two differential
characteristics with high probability. Since BLAKE and BLAKE2 are ARX hash
functions (only use three simple operations namely Modular Add “+”, Rota-
tion “≫” and XOR“⊕”), we can use the XOR difference and deduce the
difference linearly by considering the only nonlinear operation “+” as similar
linear operation “⊕”.

The XOR difference in this paper is represented in two forms as follow:

– Hex form: such as Δv = 0x8003 indicates that bits v[0, 1, 15] of the word v
are active (having non-zero XOR difference).

– Numeric form: such as Δv = (15, 1, 0) is equivalent to Δv = 0x8003 in hex
form. Besides, if Δv = 0x0 in hex form, we denoted by Δv = φ in numeric
form.

The numeric form is mainly used to describe the differential characteristics since
it has better outlook and can save some space. But in practice, we use the
hex form to linearly deduce differential characteristics. For example, in the G
function of BLAKE-512, we have

ta = a + b + (mi ⊕ cj)

where cj is constant. Suppose we have acquired the differences Δa, Δb and Δmi,
we can deduce Δta as

Δta = Δa ⊕ Δb ⊕ Δmi.

Once we have determined the difference of the message block ΔM and that of a
intermediate state ΔV r (r = 0, 0.5, 1, · · ·), we can linearly extend the difference
backward and forward.

We construct the two differential characteristics for the boomerang attack,
where the top differential characteristic is from round 2.5 to 6.5 and bottom dif-
ferential difference is from 6.5 to 11. We denote the difference of the top by ΔtV r

(r ∈ [2.5, 6.5]) and that of the bottom by ΔbV r (r ∈ [6.5, 11]). Similarly, the dif-
ference for the message block is denoted as ΔtM in the top characteristic and
ΔbM in the bottom characteristic. The main procedures for our characteristic
construction can be summarized as follows:

The Boomerang Attacks on BLAKE and BLAKE2 293

Import Difference: We first import simple difference to message block ΔbM
(ΔtM) and the intermediate state ΔbV 8 (ΔtV 4).

Linear Extension: After we have determined ΔbM (ΔtM) and ΔbV 8 (ΔtV 4),
we extend the difference backward to round 6.5 (2.5) and forward to round
11 (6.5) to acquire the whole bottom (top) differential characteristic.

Construct the Bottom Differential Characteristic. In order to lower the
complexity, we only import 1-bit differences to both ΔbM and ΔbV 8. The selec-
tion of active bits is based on Observation 1 in [10].

We found that m11 of the 16 message words, namely m0, · · · ,m15, appears
at Step 1 in G2 at round 8 and also appears at Step 5 in G4 at round 9. So, the
first step of our construction is importing 1-bit difference to m11 and v8

2 as

Δbm11 = Δbv8
2 = (63). (3)

In this way, according to Observation 1 in [10], we can pass round 8 and 9
with probability 2−1. Then, we set Δbmi = φ (i ∈ {0, 1, · · · , 15} \ {11}) and
Δbv8

j = φ (j ∈ {0, 1, · · · , 15} \ {2}). Now that ΔbM and ΔbV 8 are settled, we
can linearly extend the difference backward to ΔbV 6.5 and forward to ΔbV 11.
This method can be applied to both BLAKE-512 and BLAKE2b. We present
the bottom characteristics of BLAKE-512 and BLAKE2b as Tables 4 and 5 in
Appendix A respectively.

For BLAKE-256 and BLAKE2s, we can also import difference to ΔbM and
ΔbV 8 as

Δbm11 = Δbv8
2 = (31). (4)

and linearly deduce the whole bottom differential characteristics. The differen-
tial characteristic for BLAKE-256 mounts to round 10.5 and BLAKE2s reaches
round 10 since it only has 10 rounds in total according to [6]. Refer to Tables 6
and 7 in Appendix A for detailed descriptions.

Construct the Top Differential Characteristic. The top differential char-
acteristic starts from ΔtV 2.5 and ends at ΔtV 6.5. The strategy of constructing
the top differential characteristic is similar to that of its bottom counterpart.
We found that m5 appears at Step 1 in G1 at round 4 and also appears at Step
5 in G5 at round 5, so we decide to import the 1-bit difference at m5 and v4

1 .
We assign that

Δtm5 = Δtv4
1 = (y), where y ∈ {0, · · · , 63}. (5)

and that Δbmi = φ (i ∈ {0, · · · , 15}\{5}) and Δbv4
j = φ (j ∈ {0, · · · , 15}\{1}).

Then, we can linearly extend the difference backward and forward. The position
of the active bit y in (5) requires careful selection. In order to avoid incompatible
problems and enhance the efficiency of the attack, y must meet the following
conditions:

294 Y. Hao

1. When linearly extend the difference from ΔtV 4(y) to ΔtV 6.5(y), make sure
that

Δbv6.5
i ∧ Δtv6.5

i (y) = 0x0, for all i ∈ {0, · · · , 15}. (6)

This restriction avoid the contradictions in the intersection part of the two
differential characteristics.

2. (Only for BLAKE-512). Make sure that the constants c10 and c7 satisfies:

c10[y] = ¬c7[y]. (7)

According to the linear extension, we have Δtv3.5
1 = φ. It requires (m5 ⊕

c10)[y] = ¬(m5 ⊕ c7)[y], so (7) must be satisfied.
3. (Only for BLAKE2b). When linearly extend to ΔtV 3.5, Δtv3.5

1 should be
set to

Δtv3.5
1 = Δtm5 + Δtm5

instead of 0x0. Because BLAKE2b omit the use of constant, the difference
can not be eliminated at v3.5

1 .

The available ys satisfying conditions 1 and 2 compose a set X512, and those
satisfying conditions 1 and 3 compose a set X2b. According to our analysis, X512

has 13 elements and X2b has 40 elements. We present X512 and X2b along with the
corresponding top differential characteristics in Tables 8 and 9 in Appendix A.

Using the same method, we can also acquire the available ys for BLAKE-
256 (X256) and BLAKE2s (X2s). We illustrate X256 and X2s along with their
characteristics in Tables 10 and 11 in Appendix A.

3.2 Finding the Boomerang Quartet Using Message
Modification Technique

The goal of our boomerang attack is to find a quartet, denoted by (aV 2.5, bV
2.5,

cV
2.5, dV

2.5), and the message blocks (aM, bM, cM, dM) that satisfies

aV 2.5 ⊕ cV
2.5 = bV

2.5 ⊕ dV
2.5 = ΔtV 2.5 (8)

aM ⊕ cM = bM ⊕ dM = ΔtM (9)

aM ⊕ bM = cM ⊕ dM = ΔbM (10)

and, after 8.5 rounds, the corresponding quartet (aV 11, bV
11, cV

11, dV
11)

satisfies
aV 11 ⊕ bV

11 = cV
11 ⊕ dV

11 = ΔbV 11.

We start by searching for appropriate aV 6.5 and aM . Once aV 6.5 is determined,
bV

6.5, cV
6.5 and dV

6.5 can be settled directly since

aV 6.5 ⊕ cV
6.5 = bV

6.5 ⊕ dV
6.5 = ΔtV 6.5 (11)

aV 6.5 ⊕ bV
6.5 = cV

6.5 ⊕ dV
6.5 = ΔbV 6.5 (12)

The Boomerang Attacks on BLAKE and BLAKE2 295

Once aM is determined, bM , cM and dM can also be determined according to
(9) and (10). The step of finding the quartet is as follows:

1. Construct an intermediate state, denoted by V 6.5, and a message block,
denoted by M , by setting the values of their 16 words randomly.

2. Compute backward to TV 6 and V 6, and forward to TV 6.5, V 7. During the
process, if one of bit conditions, which are deduced from the top and bottom
characteristics, is violated, we can fix it by modifying the words of V 6.5 or
M . This process is called the “message modification”.

3. After all conditions between round 6 and 7 are satisfied, we assign that
aV 6.5 ← V 6.5 and aM ← M . We also assign corresponding values to bV

6.5,
cV

6.5, dV
6.5 according to (11, 12) and to bM , cM , dM according to (9, 10).

4. Having acquired (aV 6.5, bV
6.5, cV

6.5
dV

6.5) and (aM, bM, cM, dM), we com-
pute backward to round 2.5. During the process, we check whether the differ-
ences of the intermediate states conform to the top differential characteristic.
Once a contradiction is detected, go back to 1.

5. Compute forward from round 6.5 to round 11. During the computation, we
check whether differences of the intermediate states conform to the bottom
differential characteristic. Once a contradiction is detected, go back to 1.
Otherwise, output the quartet (aV 11, bV

11, cV
11, dV

11).

Complexity analysis. For all 4 members of BLAKE and BLAKE2, there are
30 conditions in ΔbV 6 → ΔtV 6.5. 29 of them can be fixed using the message
modification technique. All two conditions in ΔtV 6 → ΔtV 5.5 can be fixed as
well. Similarly, all 40 conditions in ΔbV 6.5 → ΔbV 7 and 2 out of 6 conditions in
ΔbV 7 → ΔbV 7.5 can be fixed. Then, we analyze the four members separately as
follows:

BLAKE-512: In the bottom characteristic, there are 4 unfixed conditions in
ΔbV 7 → ΔbV 7.5, 1 in ΔbV 9.5 → ΔbV 10, 24 in ΔbV 10 → ΔbV 10.5 and
138 in ΔbV 10.5 → ΔbV 11, which is 167 in total. In the top characteristics,
the situation is as follows: 1 unfixed condition in ΔtV 4.5 → ΔtV 4, 2 in
ΔtV 4 → ΔtV 3.5, 11 in ΔtV 3.5 → ΔtV 3 and 51 in ΔtV 3 → ΔtV 2.5, which is
65 in total. So, the complexity of the boomerang attack on BLAKE-512 is
2(167+65)×2 = 2464.

BLAKE2b: In the bottom characteristic, there are 4 unfixed conditions in
ΔbV 7 → ΔbV 7.5, 1 in ΔbV 9.5 → ΔbV 10, 24 in ΔbV 10 → ΔbV 10.5 and
124 in ΔbV 10.5 → ΔbV 11, which is 153 in total. The top differential char-
acteristic is slightly different from BLAKE-512 after finishing the procedure
ΔtV 6.5 → ΔtV 4. There are 3 unfixed conditions in ΔtV 4 → ΔtV 3.5, 13
in ΔtV 3.5 → ΔtV 3 and 67 in ΔtV 3 → ΔtV 2.5. So the number of unfixed
conditions in the top characteristic enhances to 1 + 3 + 13 + 67 = 84. The
complexity of the boomerang attack on BLAKE2b is 2(153+84)×2 = 2474.

BLAKE-256: Similar to BLAKE-512, the bottom characteristic of BLAKE-
256, terminated at round 10.5, has 4 + 1 + 24 = 29 unfixed conditions
(ΔbV 6.5 → ΔtV 10.5). For the top characteristic of BLAKE-256, if we choose
the active bit position y = 20 ∈ X256, which is also the case of [12],

296 Y. Hao

there should be 71 unfixed conditions and the complexity of this 8-round
boomerang attack is 2(29+71)×2 = 2200. However, if we choose y = 28 ∈ X256,
1 condition in ΔtV 3 → ΔtV 2.5 can be eliminated and the complexity of the
attack can lower to 2(29+70)×2 = 2198.

BLAKE2s: Similar to BLAKE2b, the bottom characteristic for BLAKE2s, ter-
minated at round 10, has 4+1 = 5 unfixed conditions. The top characteristic
has 88 unfixed conditions. So the complexity of this 7.5-round boomerang
attack for BLAKE2s is 2(5+88)×2 = 2186. Like BLAKE-256, if we choose
y = 28 ∈ X2s, we can eliminate 1 condition in ΔtV 3 → ΔtV 2.5 and lower
the complexity by 22 to 2184.

Practical Verifications. For each member of BLAKE and BLAKE2, we present
a 6.5 round (from round 3.5 to round 10) Type I boomerang quartet based on
our characteristics and present it in Appendix B. In order to show the structural
difference between BLAKE and BLAKE2, we use the examples with the same
message difference, which means: for BLAKE-256 and BLAKE2s, Δtm5 = (28)
(y = 28 ∈ X256

⋂
X2s) and Δbm11 = (31); for BLAKE-512 and BLAKE2b,

Δtm5 = (9) (y = 9 ∈ X512

⋂
X2b) and Δbm11 = (63).

4 Conclusion

In this paper, we compare the security margin of BLAKE and BLAKE2 under
the boomerang attack model. We deduce valid differential characteristics and
present boomerang attacks on keyed permutations of BLAKE-512, BLAKE2b,
BLAKE-256 and BLAKE2s. According to our analysis, the boomerang method
can mount to similar rounds for BLAKE and BLAKE2. For the same number of
rounds, the complexities for attacking BLAKE2 are slightly higher than those
for BLAKE, which indicates that some tweaks introduced by BLAKE2, aiming
at enhancing efficiency and flexibility, have accidentally reinforced the resistance
against the boomerang attack. However, since BLAKE has more rounds than
BLAKE2, the security margin of BLAKE is still higher than that of BLAKE2.
This result is in accordance with the assumptions of the designers.

Acknowledgement. This work has been supported by the National Natural Sci-
ence Foundation of China (Grant No. 61133013) and by 973 Program (Grant No.
2013CB834205).

The Boomerang Attacks on BLAKE and BLAKE2 297

A The Bottom and Top Differential Characteristics
for BLAKE and BLAKE2

Table 4. The bottom characteristic for BLAKE-512. Δbm11 = (63).

r Difference (Numeric Form) Cond r Difference (Numeric Form) Cond

6.5 Δbv6.5
0 = (63, 42, 35, 10, 3) - 10.5 Δbv10.5

0 = (63, 6) 24

Δbv6.5
1 = (63, 31) Δbv10.5

1 = (43, 36, 11)

Δbv6.5
2 = (63, 47, 24, 15) Δbv10.5

2 = (22)

Δbv6.5
3 = (60, 56, 40, 31, Δbv10.5

3 = (54)

24, 10, 8)

Δbv6.5
4 = (60, 56, 47, 40, 35, Δbv10.5

4 = (59, 43, 36, 20, 4)

24, 15, 8)

Δbv6.5
5 = (63, 35, 24, 3) Δbv10.5

5 = (57, 48, 41, 32, 16, 9, 0)

Δbv6.5
7 = (63, 47, 24, 15) Δbv10.5

6 = (59, 36, 11)

Δbv6.5
8 = (63, 47, 31, 15) Δbv10.5

7 = (52, 43, 27, 4)

Δbv6.5
10 = (24) Δbv10.5

8 = (54, 47, 31, 15)

Δbv6.5
11 = (63, 31) Δbv10.5

9 = (59, 52, 27, 20, 4)

Δbv6.5
13 = (63) Δbv10.5

10 = (47, 6)

Δbv6.5
14 = (35, 31, 10) Δbv10.5

11 = (63, 38, 15)

Δbv6.5
15 = (56, 42, 31, 24, 10) Δbv10.5

12 = (54, 47, 15)

7 Δbv7
0 = (63, 24) 40 (40 fixed) Δbv10.5

13 = (59, 52, 27, 20)

Δbv7
1 = (63, 31) Δbv10.5

14 = (6)

Δbv7
2 = (63) Δbv10.5

15 = (63, 38)

Δbv7
4 = (63, 24) 11 Δbv11

0 = (63, 57, 48, 41, 22, 16, 13, 9, 6) 138

Δbv7
5 = (63, 31) Δbv11

1 = (63, 61, 59, 43, 38, 34,

Δbv7
5 = (63, 31) 22, 13, 11, 2)

Δbv7
8 = (63) Δbv11

2 = (54, 52, 50, 27, 18, 11, 6, 4)

Δbv7
9 = (63, 47, 31, 15) Δbv11

3 = (61, 59, 54, 50, 36, 20, 18, 13, 4)

Δbv7
10 = (63) Δbv11

4 = (59, 57, 55, 39, 34, 23, 9, 7, 2)

Δbv7
13 = (47, 15) Δbv11

5 = (59, 50, 27, 14, 2)

Δbv7
14 = (63, 31) Δbv11

6 = (55, 39, 34, 32, 23, 20, 11, 7, 2, 0)

7.5 Δbv7.5
2 = (63) 6 (2 fixed) Δbv11

7 = (59, 55, 39, 36, 32, 25, 23,

Δbv7.5
8 = (63) 20, 16, 11, 9, 7, 4)

Δbv7.5
13 = (63, 31) Δbv11

8 = (54, 47, 36, 34, 31, 27, 20, 15,

11, 2)

8 Δbv8
2 = (63) 0 Δbv11

9 = (61, 45, 43, 34, 20, 6, 4, 2)

· · · φ 0 Δbv11
10 = (61, 38, 32, 25, 22, 6, 0)

Δbv11
11 = (61, 50, 45, 43, 38, 31, 18)

Δbv11
12 = (63, 61, 50, 47, 45, 43, 31, 27,

22, 18, 11)

10 Δbv10
0 = (63) 1 Δbv11

13 = (54, 52, 34, 20, 2)

Δbv10
5 = (36) Δbv11

14 = (61, 59, 45, 43, 38, 36, 34,

Δbv10
10 = (47) 22, 11, 6, 4, 2)

Δbv10
15 = (47) Δbv11

15 = (61, 48, 47, 41, 22, 16, 9, 6)

298 Y. Hao

Table 5. The bottom characteristic for BLAKE2b. Δbm11 = (63).

r Difference (Numeric Form) Cond r Difference (Numeric Form) Cond

6.5 Δbv6.5
0 = (63, 62, 54, 30, 22) - 10.5 Δbv10.5

0 = (63, 7) 24

Δbv6.5
1 = (63, 31) Δbv10.5

1 = (56, 48, 24)

Δbv6.5
2 = (63, 47, 23, 15) Δbv10.5

2 = (23)

Δbv6.5
3 = (62, 55, 46, 39, 31, 23, 7) Δbv10.5

3 = (55)

Δbv6.5
4 = (55, 47, 46, 39, 23,

22, 15, 7)

Δbv10.5
4 = (56, 48, 32, 16, 8)

Δbv6.5
5 = (63, 54, 23, 22) Δbv10.5

5 = (57, 41, 33, 25, 17, 9, 1)

Δbv6.5
7 = (63, 47, 23, 15) Δbv10.5

6 = (48, 24, 8)

Δbv6.5
8 = (63, 47, 31, 15) Δbv10.5

7 = (56, 40, 16, 0)

Δbv6.5
10 = (23) Δbv10.5

8 = (55, 47, 31, 15)

Δbv6.5
11 = (63, 31) Δbv10.5

9 = (40, 32, 16, 8, 0)

Δbv6.5
13 = (63) Δbv10.5

10 = (47, 7)

Δbv6.5
14 = (62, 31, 22) Δbv10.5

11 = (63, 39, 15)

Δbv6.5
15 = (62, 55, 31, 30, 23) Δbv10.5

12 = (55, 47, 15)

7 Δbv7
0 = (63, 23) 40 (40 fixed) Δbv10.5

13 = (40, 32, 8, 0)

Δbv7
1 = (63, 31) Δbv10.5

14 = (7)

Δbv7
2 = (63) Δbv10.5

15 = (63, 39)

Δbv7
4 = (63, 23) 11 Δbv11

0 = (63, 41, 33, 23, 17, 15,

9, 7, 1)

124

Δbv7
5 = (63, 31) Δbv11

1 = (56, 48, 39, 24, 23, 16, 15, 8)

Δbv7
8 = (63) Δbv11

2 = (55, 40, 32, 24, 16, 7)

Δbv7
9 = (63, 47, 31, 15) Δbv11

3 = (63, 55, 48, 16, 15, 8, 0)

Δbv7
10 = (63) Δbv11

4 = (49, 48, 16, 8, 1)

Δbv7
13 = (47, 15) Δbv11

5 = (50, 40, 16, 8, 0)

Δbv7
14 = (63, 31) Δbv11

6 = (57, 49, 48, 33, 32, 25,

7.5 Δbv7.5
2 = (63) 6 (2 fixed) 24, 17, 16, 1)

Δbv7.5
8 = (63) Δbv11

7 = (57, 48, 41, 32, 24, 17,

16, 8, 1)

Δbv7.5
13 = (63, 31) Δbv11

8 = (55, 47, 40, 32, 31,

24, 16, 15)

8 Δbv8
2 = (63) 0 Δbv11

9 = (63, 56, 48, 47, 32, 7)

· · · φ 0 Δbv11
10 = (63, 57, 49, 39, 25, 23, 7)

Δbv11
11 = (63, 56, 47, 39, 32, 31, 0)

10 Δbv10
0 = (63) 1 Δbv11

12 = (56, 40, 32, 31, 24, 23, 0)

Δbv10
5 = (48) Δbv11

13 = (55, 48, 32, 16, 0)

Δbv10
10 = (47) Δbv11

14 = (63, 56, 47, 39, 24, 23, 8, 7)

Δbv10
15 = (47) Δbv11

15 = (63, 47, 41, 33, 23, 9, 7, 1)

The Boomerang Attacks on BLAKE and BLAKE2 299

Table 6. The bottom characteristic for BLAKE-256. Δbm11 = (31).

r Difference (Numeric Form) Cond r Difference (Numeric Form) Cond

6.5 Δbv6.5
0 = (31, 22, 18, 6, 2) - 8 Δbv8

2 = (31) 0

Δbv6.5
1 = (31, 15) · · · φ 0

Δbv6.5
2 = (31, 23, 11, 7) 10 Δbv10

0 = (31) 1

Δbv6.5
3 = (30, 27, 19, 15, 11, 6, 3) Δbv10

5 = (16)

Δbv6.5
4 = (30, 27, 23, 19, 18, 11, 7, 3) Δbv10

10 = (23)

Δbv6.5
5 = (31, 18, 11, 2) Δbv10

15 = (23)

Δbv6.5
7 = (31, 23, 11, 7) 10.5 24

Δbv6.5
8 = (31, 23, 15, 7)

Δbv6.5
10 = (11) Δbv10.5

0 = (31, 3)

Δbv6.5
11 = (31, 15) Δbv10.5

1 = (20, 16, 4)

Δbv6.5
13 = (31) Δbv10.5

2 = (11)

Δbv6.5
14 = (18, 15, 6) Δbv10.5

3 = (27)

Δbv6.5
15 = (27, 22, 15, 11, 6) Δbv10.5

4 = (28, 20, 16, 8, 0)

7 Δbv7
0 = (31, 11) 40 (40 fixed) Δbv10.5

5 = (29, 25, 21, 17, 13, 5, 1)

Δbv7
1 = (31, 15) Δbv10.5

6 = (28, 16, 4)

Δbv7
2 = (31) Δbv10.5

7 = (24, 20, 12, 0)

Δbv7
4 = (31, 11) Δbv10.5

8 = (27, 23, 15, 7)

Δbv7
5 = (31, 15) Δbv10.5

9 = (28, 24, 12, 8, 0)

Δbv7
8 = (31) Δbv10.5

10 = (23, 3)

Δbv7
9 = (31, 23, 15, 7) Δbv10.5

11 = (31, 19, 7)

Δbv7
10 = (31) Δbv10.5

12 = (27, 23, 7)

Δbv7
13 = (23, 7) Δbv10.5

13 = (28, 24, 12, 8)

Δbv7
14 = (31, 15) Δbv10.5

14 = (3)

7.5 Δbv7.5
2 = (31) 6 (2 fixed) Δbv10.5

15 = (31, 19)

Δbv7.5
8 = (31)

Δbv7.5
13 = (31, 15)

Table 7. The bottom characteristic for BLAKE2s. Δbm11 = (31).

r Difference (Numeric Form) Cond r Difference (Numeric Form) Cond

6.5 - 7 Δbv7
0 = (31, 11) 40 (40 fixed)

Δbv7
1 = (31, 15)

Δbv7
2 = (31)

Δbv6.5
0 = (31, 22, 18, 6, 2) Δbv7

4 = (31, 11)

Δbv6.5
1 = (31, 15) Δbv7

5 = (31, 15)

Δbv6.5
2 = (31, 23, 11, 7) Δbv7

8 = (31)

Δbv6.5
3 = (30, 27, 19, 15, 11, 6, 3) Δbv7

9 = (31, 23, 15, 7)

Δbv6.5
4 = (30, 27, 23, 19, 18, 11, 7, 3) Δbv7

10 = (31)

Δbv6.5
5 = (31, 18, 11, 2) Δbv7

13 = (23, 7)

Δbv6.5
7 = (31, 23, 11, 7) Δbv7

14 = (31, 15)

Δbv6.5
8 = (31, 23, 15, 7) 7.5 Δbv7.5

2 = (31) 6 (2 fixed)

Δbv6.5
10 = (11) Δbv7.5

8 = (31)

Δbv6.5
11 = (31, 15) Δbv7.5

13 = (31, 15)

Δbv6.5
13 = (31) 8 Δbv8

2 = (31) 0

Δbv6.5
14 = (18, 15, 6) · · · φ 0

Δbv6.5
15 = (27, 22, 15, 11, 6) 10 Δbv10

0 = (31) 1

Δbv10
5 = (16)

Δbv10
10 = (23)

Δbv10
15 = (23)

300 Y. Hao

Table 8. The top characteristic for BLAKE-512. Message difference is Δtm5 = (y)
where y ∈ X512

X512 = {5, 9, 18, 20, 22, 29, 34, 38, 41, 45, 48, 52, 54}
r Difference (Numeric Form) Cond

2.5 Δtv2.5
0 = (y + 32) 51

Δtv2.5
1 = (y + 48, y + 25, y + 16)

Δtv2.5
2 = (y + 41, y + 25, y + 11, y + 9, y + 61, y + 57)

Δtv2.5
3 = (y + 43, y + 36, y + 25, y + 11, y + 4)

Δtv2.5
4 = (y + 36, y + 4)

Δtv2.5
5 = (y)

Δtv2.5
6 = (y + 48, y + 25, y + 16, y)

Δtv2.5
7 = (y + 48, y + 41, y + 36, y + 32, y + 25, y + 16, y + 9, y, y + 61, y + 57)

Δtv2.5
8 = (y + 48, y + 32, y + 16, y)

Δtv2.5
9 = (y + 25)

Δtv2.5
10 = (y + 32, y + 16)

Δtv2.5
11 = (y + 48, y + 32, y + 16)

Δtv2.5
12 = (y + 32)

Δtv2.5
13 = (y + 48, y + 36, y + 32, y + 16, y + 11, y)

Δtv2.5
14 = (y + 43, y + 25, y + 11, y + 57)

Δtv2.5
15 = (y + 48)

3 Δtv3
0 = (y + 32, y) 11

Δtv3
3 = (y + 25)

Δtv3
4 = (y + 32, y)

Δtv3
7 = (y + 25, y)

Δtv3
8 = (y + 48, y + 32, y + 16, y)

Δtv3
11 = (y)

Δtv3
12 = (y + 48, y + 16)

Δtv3
15 = (y)

3.5 Δtv3.5
11 = (y) 2

Δtv3.5
12 = (y + 32, y)

4 Δtv4
1 = (y) 1

· · · φ 2 (2 fixed)

6 Δtv6
1 = (y) 30 (29 fixed)

Δtv6
6 = (y + 37)

Δtv6
11 = (y + 48)

Δtv6
12 = (y + 48)

6.5 Δtv6.5
0 = (y, y + 55) -

Δtv6.5
1 = (y + 7, y)

Δtv6.5
2 = (y + 44, y + 37, y + 12)

Δtv6.5
3 = (y + 23)

Δtv6.5
4 = (y + 53, y + 44, y + 37, y + 28, y + 5)

Δtv6.5
5 = (y + 44, y + 37, y + 21, y + 5, y + 60)

Δtv6.5
6 = (y + 49, y + 42, y + 33, y + 17, y + 10, y + 1, y + 58)

Δtv6.5
7 = (y + 37, y + 12, y + 60)

Δtv6.5
8 = (y + 48, y + 39, y + 16, y)

Δtv6.5
9 = (y + 48, y + 32, y + 16, y + 55)

Δtv6.5
10 = (y + 53, y + 28, y + 21, y + 5, y + 60)

Δtv6.5
11 = (y + 48, y + 7)

Δtv6.5
12 = (y + 48, y + 39, y)

Δtv6.5
13 = (y + 48, y + 16, y + 55)

Δtv6.5
14 = (y + 53, y + 28, y + 21, y + 60)

Δtv6.5
15 = (y + 7)

The Boomerang Attacks on BLAKE and BLAKE2 301

Table 9. The top characteristic for BLAKE2b. Message difference is Δtm5 = (y) where
y ∈ X2b

X2b = {0, 1, 2, 3, 4, 8, 9, 10, 11, 12, 16, 17, 18, 19, 20, 24, 25, 26, 27,

28, 32, 33, 34, 35, 36, 40, 41, 42, 43, 44, 48, 49, 50, 51, 52, 56, 57, 58, 59, 60}
r Difference (Numeric Form) Cond

2.5 Δtv2.5
0 = (y + 32) 67

Δtv2.5
1 = (y + 48, y + 24, y + 16, y + 1)

Δtv2.5
2 = (y + 47, y + 40, y + 33, y + 24, y + 8, y + 1, y + 63, y + 56)

Δtv2.5
3 = (y + 31, y + 25, y + 24, y + 23, y + 63, y + 55)

Δtv2.5
4 = (y + 25, y + 23, y + 1, y + 55)

Δtv2.5
5 = (y)

Δtv2.5
6 = (y + 48, y + 24, y + 16, y)

Δtv2.5
7 = (y + 48, y + 47, y + 40, y + 33, y + 32, y + 24, y + 23,

y + 16, y + 8, y + 1, y, y + 56)

Δtv2.5
8 = (y + 49, y + 48, y + 33, y + 32, y + 17, y + 16, y + 1, y)

Δtv2.5
9 = (y + 24, y + 1)

Δtv2.5
10 = (y + 32, y + 16)

Δtv2.5
11 = (y + 48, y + 32, y + 16, y + 1)

Δtv2.5
12 = (y + 33, y + 32, y + 1)

Δtv2.5
13 = (y + 49, y + 48, y + 32, y + 23, y + 17, y + 16, y, y + 63)

Δtv2.5
14 = (y + 31, y + 24, y + 1, y + 63, y + 56)

Δtv2.5
15 = (y + 48)

3 Δtv3
0 = (y + 32, y) 13

Δtv3
1 = (y + 1)

Δtv3
3 = (y + 24)

Δtv3
4 = (y + 32, y)

Δtv3
7 = (y + 24, y)

Δtv3
8 = (y + 48, y + 32, y + 16, y)

Δtv3
9 = (y + 1)

Δtv3
11 = (y)

Δtv3
12 = (y + 48, y + 16)

Δtv3
13 = (y + 33, y + 1)

Δtv3
15 = (y)

3.5 Δtv3.5
1 = (y + 1) 3

Δtv3.5
11 = (y)

Δtv3.5
12 = (y + 32, y)

4 Δtv4
1 = (y) 1

· · · φ 2 (2 fixed)

6 Δtv6
1 = (y) 30 (29 fixed)

Δtv6
6 = (y + 49)

Δtv6
11 = (y + 48)

Δtv6
12 = (y + 48)

(Continued)

302 Y. Hao

Table 9. (Continued)

X2b = {0, 1, 2, 3, 4, 8, 9, 10, 11, 12, 16, 17, 18, 19, 20, 24, 25, 26, 27,

28, 32, 33, 34, 35, 36, 40, 41, 42, 43, 44, 48, 49, 50, 51, 52, 56, 57, 58, 59, 60}
r Difference (Numeric Form) Cond

6.5 Δtv6.5
0 = (y, y + 56) -

Δtv6.5
1 = (y + 8, y)

Δtv6.5
2 = (y + 49, y + 25, y + 57)

Δtv6.5
3 = (y + 24)

Δtv6.5
4 = (y + 49, y + 41, y + 17, y + 1, y + 57)

Δtv6.5
5 = (y + 49, y + 33, y + 17, y + 9, y + 57)

Δtv6.5
6 = (y + 42, y + 34, y + 26, y + 18, y + 10, y + 2, y + 58)

Δtv6.5
7 = (y + 49, y + 25, y + 9)

Δtv6.5
8 = (y + 48, y + 40, y + 16, y)

Δtv6.5
9 = (y + 48, y + 32, y + 16, y + 56)

Δtv6.5
10 = (y + 41, y + 33, y + 17, y + 9, y + 1)

Δtv6.5
11 = (y + 48, y + 8)

Δtv6.5
12 = (y + 48, y + 40, y)

Δtv6.5
13 = (y + 48, y + 16, y + 56)

Δtv6.5
14 = (y + 41, y + 33, y + 9, y + 1)

Δtv6.5
15 = (y + 8)

Table 10. The top characteristic for BLAKE-256. Message difference is Δtm5 = (y)
where y ∈ X256.

X256 = {20, 28}
r Difference (Numeric Form) Cond

2.5 Δtv2.5
0 = (y + 16) 54/53a

Δtv2.5
1 = (y + 8, y + 24, y + 12)

Δtv2.5
2 = (y + 7, y + 4, y + 31, y + 28, y + 20, y + 12)

Δtv2.5
3 = (y + 7,y + 3, y + 23, y + 19, y + 12)

Δtv2.5
4 = (y + 3, y + 19)

Δtv2.5
5 = (y)

Δtv2.5
6 = (y + 8, y, y + 24, y + 12)

Δtv2.5
7 = (y + 8, y + 4, y, y + 31, y + 28, y + 24, y +

20, y + 19, y + 16, y + 12)

Δtv2.5
8 = (y + 8, y, y + 24, y + 16)

Δtv2.5
9 = (y + 12)

Δtv2.5
10 = (y + 8, y + 16)

Δtv2.5
11 = (y + 8, y + 24, y + 16)

Δtv2.5
12 = (y + 16)

Δtv2.5
13 = (y + 8, y + 7, y, y + 24, y + 19, y + 16)

Δtv2.5
14 = (y + 7, y + 28, y + 23, y + 12)

Δtv2.5
15 = (y + 24)

(Continued)

The Boomerang Attacks on BLAKE and BLAKE2 303

Table 10. (Continued)

X256 = {20, 28}
r Difference (Numeric Form) Cond

3 Δtv3
0 = (y, y + 16) 14

Δtv3
3 = (y + 12)

Δtv3
4 = (y, y + 16)

Δtv3
7 = (y, y + 12)

Δtv3
8 = (y + 8, y, y + 24, y + 16)

Δtv3
11 = (y)

Δtv3
12 = (y + 8, y + 24)

Δtv3
15 = (y)

3.5 Δtv3.5
11 = (y) 2

Δtv3.5
12 = (y, y + 16)

4 Δtv4
1 = (y) 1

· · · φ 2 (2 fixed)

6 Δtv6
1 = (y) 30 (29 fixed)

Δtv6
6 = (y + 17)

Δtv6
11 = (y + 24)

Δtv6
12 = (y + 24)

6.5 Δtv6.5
0 = (y, y + 28) -

Δtv6.5
1 = (y + 4, y)

Δtv6.5
2 = (y + 5, y + 21, y + 17)

Δtv6.5
3 = (y + 12)

Δtv6.5
4 = (y + 1, y + 25, y + 21, y + 17, y + 13)

Δtv6.5
5 = (y + 9, y + 1, y + 29, y + 21, y + 17)

Δtv6.5
6 = (y+6, y+2, y+30, y+26, y+22, y+18, y+14)

Δtv6.5
7 = (y + 5, y + 29, y + 17)

Δtv6.5
8 = (y + 8, y, y + 24, y + 20)

Δtv6.5
9 = (y + 8, y + 28, y + 24, y + 16)

Δtv6.5
10 = (y + 9, y + 1, y + 29, y + 25, y + 13)

Δtv6.5
11 = (y + 4, y + 24)

Δtv6.5
12 = (y, y + 24, y + 20)

Δtv6.5
13 = (y + 8, y + 28, y + 24)

Δtv6.5
14 = (y + 9, y + 29, y + 25, y + 13)

Δtv6.5
15 = (y + 4)

a: If y = 28, the condition v2.5
3 [y+3] = ¬v2.5

4 [y+3] in ΔtV 3 →
ΔtV 2.5 can be eliminated.

304 Y. Hao

Table 11. The top characteristic for BLAKE2s. Message difference is Δtm5 = (y)
where y ∈ X2s.

X2s = {0, 4, 8, 12, 16, 20, 24, 28}
r Difference (Numeric Form) Cond

2.5 Δtv2.5
0 = (y + 16) 68

Δtv2.5
1 = (y + 8, y + 1, y + 24, y + 12)

Δtv2.5
2 = (y + 7, y + 4, y + 1, y + 31, y + 28, y + 20, y + 17, y + 12)

Δtv2.5
3 = (y + 7, y + 3, y + 23, y + 19, y + 13, y + 12)

Δtv2.5
4 = (y + 3, y + 1, y + 19, y + 13)

Δtv2.5
5 = (y)

Δtv2.5
6 = (y + 8, y, y + 24, y + 12)

Δtv2.5
7 = (y + 8, y + 4, y + 1, y, y + 31, y + 28, y + 24, y + 20,

y + 19, y + 17, y + 16, y + 12)

Δtv2.5
8 = (y + 9, y + 8, y + 1, y, y + 25, y + 24, y + 17, y + 16)

Δtv2.5
9 = (y + 1, y + 12)

Δtv2.5
10 = (y + 8, y + 16)

Δtv2.5
11 = (y + 8, y + 1, y + 24, y + 16)

Δtv2.5
12 = (y + 1, y + 17, y + 16)

Δtv2.5
13 = (y + 9, y + 8, y + 7, y, y + 25, y + 24, y + 19, y + 16)

Δtv2.5
14 = (y + 7, y + 1, y + 28, y + 23, y + 12)

Δtv2.5
15 = (y + 24)

3 Δtv3
0 = (y, y + 16) 16

Δtv3
1 = (y + 1)

Δtv3
3 = (y + 12)

Δtv3
4 = (y, y + 16)

Δtv3
7 = (y, y + 12)

Δtv3
8 = (y + 8, y, y + 24, y + 16)

Δtv3
9 = (y + 1)

Δtv3
11 = (y)

Δtv3
12 = (y + 8, y + 24)

Δtv3
13 = (y + 1, y + 17)

Δtv3
15 = (y)

3.5 Δtv3.5
1 = (y + 1) 3

Δtv3.5
11 = (y)

Δtv3.5
12 = (y, y + 16)

4 Δtv4
1 = (y) 1

· · · φ 2 (2 fixed)

(Continued)

The Boomerang Attacks on BLAKE and BLAKE2 305

Table 11. (Continued)

X2s = {0, 4, 8, 12, 16, 20, 24, 28}
r Difference (Numeric Form) Cond

6 Δtv6
1 = (y) 30 (29 fixed)

Δtv6
6 = (y + 17)

Δtv6
11 = (y + 24)

Δtv6
12 = (y + 24)

6.5 Δtv6.5
0 = (y, y + 28) -

Δtv6.5
1 = (y + 4, y)

Δtv6.5
2 = (y + 5, y + 21, y + 17)

Δtv6.5
3 = (y + 12)

Δtv6.5
4 = (y + 1, y + 25, y + 21, y + 17, y + 13)

Δtv6.5
5 = (y + 9, y + 1, y + 29, y + 21, y + 17)

Δtv6.5
6 = (y + 6, y + 2, y + 30, y + 26, y + 22, y + 18, y + 14)

Δtv6.5
7 = (y + 5, y + 29, y + 17)

Δtv6.5
8 = (y + 8, y, y + 24, y + 20)

Δtv6.5
9 = (y + 8, y + 28, y + 24, y + 16)

Δtv6.5
10 = (y + 9, y + 1, y + 29, y + 25, y + 13)

Δtv6.5
11 = (y + 4, y + 24)

Δtv6.5
12 = (y, y + 24, y + 20)

Δtv6.5
13 = (y + 8, y + 28, y + 24)

Δtv6.5
14 = (y + 9, y + 29, y + 25, y + 13)

Δtv6.5
15 = (y + 4)

a: If y = 28, the condition v2.5
3 [y + 3] = ¬v2.5

4 [y + 3] in ΔtV 3 → ΔtV 2.5 can be
eliminated.

B 6.5-Round Examples for BLAKE and BLAKE2

The main difference between BLAKE-256 and BLAKE2s (BLAKE-512 and
BLAKE2b) is at Δtv3.5

1 , where Δtv3.5
1 = (29) for BLAKE-2s (Δtv3.5

1 = (10)
for BLAKE-2b) and φ for BLAKE-256 (BLAKE-512). We specifically empha-
size this part with bold dark format.

306 Y. Hao

Table 12. Example for 6.5-round BLAKE-256 with y = 28 ∈ X256

⋂
X2s.

Table 13. Example for 6.5-round BLAKE2s with y = 28 ∈ X256

⋂
X2s.

The Boomerang Attacks on BLAKE and BLAKE2 307

Table 14. Example for 6.5-round BLAKE-512 with y = 9 ∈ X512

⋂
X2b.

308 Y. Hao

Table 15. Example for 6.5-round BLAKE2b with y = 9 ∈ X512

⋂
X2b.

The Boomerang Attacks on BLAKE and BLAKE2 309

References

1. Wang, X., Yu, H.: How to break MD5 and other hash functions. In: Cramer, R.
(ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005)

2. Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the full SHA-1. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)

3. Bertoni, G., Daemen, J., Peeters, M., Assche, G.: The keccak reference. Submission
to NIST (Round 3) 13 (2011)

4. Aumasson, J.P., Henzen, L., Meier, W., Phan, R.C.W.: SHA-3 proposal blake.
Submission to NIST (2008)

5. Chang, S.j., Perlner, R., Burr, W.E., Turan, M.S., Kelsey, J.M., Paul, S., Bassham,
L.E.: Third-round report of the SHA-3 cryptographic hash algorithm competition.
Citeseer (2012)

6. Aumasson, J.-P., Neves, S., Wilcox-O’Hearn, Z., Winnerlein, C.: BLAKE2:
Simpler, smaller, fast as MD5. In: Jacobson, M., Locasto, M., Mohassel, P.,
Safavi-Naini, R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 119–135. Springer,
Heidelberg (2013)

7. Aumasson, J.-P., Guo, J., Knellwolf, S., Matusiewicz, K., Meier, W.: Differential
and invertibility properties of BLAKE. In: Hong, S., Iwata, T. (eds.) FSE 2010.
LNCS, vol. 6147, pp. 318–332. Springer, Heidelberg (2010)

8. Dunkelman, O., Khovratovich, D.: Iterative differentials, symmetries, and message
modification in blake-256. In: ECRYPT2 Hash Workshop, vol. 2011 (2011)

9. Ji, L., Liangyu, X.: Attacks on round-reduced blake. Technical Report, Citeseer
(2009)

10. Biryukov, A., Nikolić, I., Roy, A.: Boomerang attacks on BLAKE-32. In: Joux, A.
(ed.) FSE 2011. LNCS, vol. 6733, pp. 218–237. Springer, Heidelberg (2011)

11. Leurent, G.: Arxtools: A toolkit for arx analysis. In: The Third SHA-3 Candidate
Conference (2012)

12. Bai, D., Yu, H., Wang, G., Wang, X.: Improved boomerang attacks on round-
reduced sm3 and blake-256 (2013). http://eprint.iacr.org/

13. Guo, J., Karpman, P., Nikolić, I., Wang, L., Wu, S.: Analysis of BLAKE2.
In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp. 402–423. Springer,
Heidelberg (2014)

14. Wagner, D.: The boomerang attack. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol.
1636, pp. 156–170. Springer, Heidelberg (1999)

15. Kelsey, J., Kohno, T., Schneier, B.: Amplified boomerang attacks against reduced-
round MARS and serpent. In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp.
75–93. Springer, Heidelberg (2001)

16. Biham, E., Dunkelman, O., Keller, N.: The rectangle attack - rectangling the ser-
pent. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 340–357.
Springer, Heidelberg (2001)

17. Biham, E., Dunkelman, O., Keller, N.: Related-key boomerang and rectangle
attacks. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 507–525.
Springer, Heidelberg (2005)

18. Lamberger, M., Mendel, F.: Higher-order differential attack on reduced SHA-256.
IACR Cryptology ePrint Archive 2011, 37 (2011)

19. Biryukov, A., Lamberger, M., Mendel, F., Nikolić, I.: Second-order differential
collisions for reduced SHA-256. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011.
LNCS, vol. 7073, pp. 270–287. Springer, Heidelberg (2011)

http://eprint.iacr.org/

310 Y. Hao

20. Mendel, F., Nad, T.: Boomerang distinguisher for the SIMD-512 compression func-
tion. In: Bernstein, D.J., Chatterjee, S. (eds.) INDOCRYPT 2011. LNCS, vol. 7107,
pp. 255–269. Springer, Heidelberg (2011)

21. Sasaki, Y., Wang, L., Takasaki, Y., Sakiyama, K., Ohta, K.: Boomerang distin-
guishers for full HAS-160 compression function. In: Hanaoka, G., Yamauchi, T.
(eds.) IWSEC 2012. LNCS, vol. 7631, pp. 156–169. Springer, Heidelberg (2012)

22. Sasaki, Y., Wang, L.: Distinguishers beyond three rounds of the RIPEMD-128/-
160 compression functions. In: Bao, F., Samarati, P., Zhou, J. (eds.) ACNS 2012.
LNCS, vol. 7341, pp. 275–292. Springer, Heidelberg (2012)

23. Leurent, G., Roy, A.: Boomerang attacks on hash function using auxiliary differ-
entials. In: Dunkelman, O. (ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 215–230.
Springer, Heidelberg (2012)

24. Yu, H., Chen, J., Wang, X.: The boomerang attacks on the round-reduced skein-
512. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp. 287–303.
Springer, Heidelberg (2013)

25. Kircanski, A., Shen, Y., Wang, G., Youssef, A.M.: Boomerang and slide-rotational
analysis of the SM3 hash function. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012.
LNCS, vol. 7707, pp. 304–320. Springer, Heidelberg (2013)

26. Bai, D., Yu, H., Wang, G., Wang, X.: Improved boomerang attacks on SM3. In:
Boyd, C., Simpson, L. (eds.) ACISP. LNCS, vol. 7959, pp. 251–266. Springer,
Heidelberg (2013)

27. Wagner, D.: A generalized birthday problem. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 288–304. Springer, Heidelberg (2002)

Second Preimage Analysis of Whirlwind

Riham AlTawy and Amr M. Youssef(B)

Concordia Institute for Information Systems Engineering, Concordia University,
Montréal, Québec, Canada

youssef@ciise.concordia.ca

Abstract. Whirlwind is a keyless AES-like hash function that adopts
the Sponge model. According to its designers, the function is designed to
resist most of the recent cryptanalytic attacks. In this paper, we evaluate
the second preimage resistance of the Whirlwind hash function. More pre-
cisely, we apply a meet in the middle preimage attack on the compression
function which allows us to obtain a 5-round pseudo preimage for a given
compression function output with time complexity of 2385 and memory
complexity of 2128. We also employ a guess and determine approach to
extend the attack to 6 rounds with time and memory complexities of 2496

and 2112, respectively. Finally, by adopting another meet in the middle
attack, we are able to generate n-block message second preimages of the
5 and 6-round reduced hash function with time complexity of 2449 and
2505 and memory complexity of 2128 and 2112, respectively.

Keywords: Cryptanalysis ·Hash functions ·Meet in the middle · Second
preimage attack · Whirlwind

1 Introduction

Building a cryptographic primitive based on an existing component model has a
very important advantage other than the possibility of sharing optimized compo-
nents in a resource constrained environment. Namely, the advantage of adopting
a model that has took its fair share of cryptanalysis and is still going strong. Con-
sequently, the new primitive is expected to inherit most of the good qualities and
the underlying features. The Advanced Encryption Standard (AES) wide trail
strategy [8] has proven solid resistance to standard differential and linear attacks
over more than a decade. This fact has made AES-like primitives an attractive
alternative to dedicated constructions. Besides the ISO standard Whirlpool [21],
we have seen a strong inclination towards proposing AES-like hash functions
during the SHA-3 competition [20] (e.g., the SHA-3 finalists Grøstl [9] and JH
[28], and LANE [12]). Additionally, Stribog [16] the new Russian hash standard,
officially known as GOST R 34.11-2012 [1], is also among the recently proposed
AES-like hash functions. This shift in the hash functions design concepts is due
to the fact that Wang et al. attacks [26,27] are most effective on Add-Rotate-
Xor (ARX) based hash functions where one can find differential patterns that
propagate with acceptable probabilities. Moreover, these attacks take advantage
c© Springer International Publishing Switzerland 2015
D. Lin et al. (Eds.): Inscrypt 2014, LNCS 8957, pp. 311–328, 2015.
DOI: 10.1007/978-3-319-16745-9 17

312 R. AlTawy and A.M. Youssef

of the weak message schedules of most of ARX-designs. Hence, using message
modification techniques [27], significant reduction in the attack complexity can
be achieved.

Whirlwind is a keyless AES-like hash function that adopts the Sponge model
[7]. It is proposed by Baretto et al. in 2010 as a response to the recent cryptan-
alytic attacks that have improved significantly during the SHA-3 competition.
Sharing the designers of Whirlpool, Whirlwind design is inspired by Whirlpool
and takes into account the recent development in hash function cryptanalysis,
particularly the rebound attack [17]. In fact, the designers add more security
features as a precaution against possible improvements. The most important fea-
tures are adopting an extended Sponge model where the compression function
operates on 2n-bit state and outputs an n-bit chaining value, and employing
16 × 16-bit Sboxes. Using large Sboxes aims to decrease the probability of a
given differential trail. Unlike Whirlpool, the Whirlwind compression function
has no independent mixing of the chaining value. In the latter, the chaining
value is processed independently and mixed with the message state at an XOR
transformation. The presence of the key schedule has been exploited as an addi-
tional degree of freedom by cryptanalysts. Consequently, it has contributed to
many improvements of the inbound phase of the rebound attack [14,18]. These
improvements have enabled the attack to cover more rounds. Accordingly, for the
designers of Whirlwind, eliminating both the key schedule and the interaction
between the message and the compression function output via the feedforward,
and employing large Sboxes, limit both the effect and scope of the rebound
attack to a great extent. However, from our perspective, some of these features
made one of our meet in the middle (MitM) pseudo preimage attacks on the
compression function easier and with lower complexity than that on Whirlpool
[29]. More precisely, with the absence of the key schedule, using large Sboxes
and the output truncation has enabled us to find an execution separation such
that the matching probability can be balanced with the available forward and
backward starting values as will be discussed in Sects. 4 and 5.

Aoki and Sasaki proposed the meet in the middle preimage attack [5] fol-
lowing the work of Laurent on MD4 [15]. Afterwards, the first MitM preimage
attack on the AES block cipher in hashing modes was proposed by Sasaki in FSE
2011 [22]. He applied the attack on Whirlpool and a 5-round pseudo preimage
attack on the compression function was presented and used for a second preim-
age attack on the whole hash function in the same work. In the sequel, Wu et al.
[29] formalized the approach and employed a time-memory trade off to improve
the time complexity of the 5-round attack on the Whirlpool compression func-
tion. Moreover, they applied the MitM pseudo preimage attack on Grøstl and
adapted the attack to produce pseudo preimages of the reduced hash function.
Afterwards, a pseudo preimage attack on the 6-round Whirlpool compression
function and a memoryless preimage attack on the reduced hash function were
proposed in [24]. Finally, AlTawy and Youssef, combined MitM pseudo preimages
of the compression function of Stribog with a multicollision attack to generate
preimages of the reduced hash function [2].

Second Preimage Analysis of Whirlwind 313

In this work, we investigate the security of Whirlwind and its compression
function, assessing their resistance to the MitM preimage attacks. Employing
the partial matching and initial structure concepts [22], we present a pseudo
preimage attack on the compression function reduced to 5 out of 12 rounds.
More precisely, we present an execution separation for the compression function
that balances the forward and backward starting values with the correspond-
ing matching probability [29]. Furthermore, we employ a guess and determine
approach [24] to guess parts of the state. This approach helps in maintaining
partial state knowledge for one more round. Consequently, we are able to extend
the attack by one more round. In spite of the compression function truncated
output, the proposed 6-round execution separation maximizes the overall prob-
ability of the attack by balancing the chosen number of starting values and the
guess size. Finally, we show how to generate n-block messages second preimages
of the Whirlwind hash function using the presented pseudo preimage attacks
on the compression function.

The rest of the paper is organized as follows. In the next section, the descrip-
tion of the Whirlwind hash function along with the notation used throughout the
paper are provided. A brief overview of the MitM preimage attack and the used
approaches are given in Sect. 3. Afterwards, in Sects. 4 and 5, we provide detailed
description of the attacks and their corresponding complexity. In Sect. 6, we show
how second preimages of the hash function are generated using the attacks pre-
sented in Sects. 4 and 5. Finally, the paper is concluded in Sect. 7.

2 Whirlwind Description

Whirlwind [6] is a keyless AES-like hash function that adopts a Sponge-like
model. The function employs a 12-round compression function which operates
on 1024-bit state. The internal state is represented by an 8 × 8 matrix S of
16-bit (word) elements where each element is indexed by its position in row i
and column j. ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S0,0 S0,1 S0,2 S0,3 S0,4 S0,5 S0,6 S0,7

S1,0 S1,1 S1,2 S1,3 S1,4 S1,5 S1,6 S1,7

S2,0 S2,1 S2,2 S2,3 S2,4 S2,5 S2,6 S2,7

S3,0 S3,1 S3,2 S3,3 S3,4 S3,5 S3,6 S3,7

S4,0 S4,1 S4,2 S4,3 S4,4 S4,5 S4,6 S4,7

S5,0 S5,1 S5,2 S5,3 S5,4 S5,5 S5,6 S5,7

S6,0 S6,1 S6,2 S6,3 S6,4 S6,5 S6,6 S6,7

S7,0 S7,1 S7,2 S7,3 S7,4 S7,5 S7,6 S7,7

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

An element Si,j can be seen as 4 × 1 matrix of 4-bit nibbles.

Si,j =

⎡

⎢⎢⎣

Si,j,0,0

Si,j,0,1

Si,j,1,0

Si,j,1,1

⎤

⎥⎥⎦ .

314 R. AlTawy and A.M. Youssef

Accordingly, each row of the state matrix S is in fact 4 × 8 4-bit nibble matrix.
The reason for the switch between the 16-bit elements and the 4-bit nibbles
is due to the fact that the adopted round transformations operate on different
fields (GF (216) and GF (24)). More precisely, the round function updates the
state by applying the following four transformations:

– γ: A nonlinear bijective mapping over GF (216). This substitution layer works
on the 16-bit elements where it replaces each 16-bit element by its multiplica-
tive inverse over GF (216) and zero is replaced by itself.

– θ: A linear transformation that mixes rows. It works by applying the linear
transformations λ0 and λ1 on the 4-bit nibble elements. Hence, if each state
row is 4 × 8 4-bit nibble matrix, the updated row is:

θ(Si) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

λ0(Si,∗,0,0) = Si,∗,0,0 · M0

λ1(Si,∗,0,1) = Si,∗,0,1 · M1

λ1(Si,∗,1,0) = Si,∗,1,0 · M1

λ0(Si,∗,1,1) = Si,∗,1,1 · M0,

where ∗ denotes the column index, M0 = dyadic(0x5, 0x4, 0xA, 0x6, 0x2, 0xD,
0x8, 0x3), M1 = dyadic(0x5, 0xE, 0x4, 0x7, 0x1, 0x3, oxF, 0x8), and dyadic(m)
denotestheMDSdyadicmatrixM correspondingtothesequencemoverGF (24),
i.e., Mi,j = mi⊕j . Nevertheless, θ inherits the optimal diffusion properties of its
underlying transformations. However, these transformations cannot be directly
applied on elements of GF (216) through simple matrix multiplication as this
requires the use of a linearized polynomial.

– τ : A transposition layer where the 16-bit 8 × 8 matrix is transposed.
– σr: A linear transformation where that 16-bit state is XORed with a round

dependant constant state Cr.

As depicted in Fig. 1, the compression function φ(h,m) operates on 512-bit mes-
sage block m and 512-bit chaining value h, both represented by 8×4 matrices of
16-bit elements. The internal state S is initialized such that its first four columns
are set to h and the last four columns are set to m. The state is then updated
by applying the four transformations for twelve rounds. Finally, the last four
columns of the last state are truncated and the input chaining value h is XORed
with the first four columns of the last state to generate the compression function
output.

Whirlwind employs a finalization step. More precisely, after processing all the
message blocks, an extra compression function call with a null message block is
adopted. If the desired output size is log2(N) bits, the output of the finalization
step is then reduced modulo N . Whirlwind also uses an adaptable initialization
value where the IV used to process the first message block depends on the
desired reduction value N . To compute the initial value h0, the reduction value
is converted to an 8 × 4 matrix, thus h0 = φ(0, N). To compute the hash of a
given message M , it is first padded by 1 followed by zeros to obtain a bit string
whose length is an odd multiple of 256, and finally with the 256-bit right justified

Second Preimage Analysis of Whirlwind 315

Fig. 1. The compression function φ.

binary representation of |M |. The padded message is then divided into t 512-bit
blocks: m0,m1, ...mt−1. Finally, the message blocks are processed as follows:

h0 = φ(0, N),
hi = φ(hi−1,mi−1), for i = 1, 2, ..., t,

ht+1 = φ(ht, 0).

The output H(M) is equal to ht+1 mod N . For further details, the reader is
referred to [6,25].

2.1 Notation

Let S be (8 × 8) 16-bit state denoting the internal state of the function. The
following notation is used in our attacks:

– Si: The message state at the beginning of round i.
– SU

i : The message state after the U transformation at round i, where U ∈
{γ, θ, τ, σr}.

– Si[r, c]: A word at row r and column c of state Si.
– Si[row r]: Eight words located at row r of state Si.
– Si[col c]: Eight words located at column c of state Si.

3 MitM Preimage Attacks

Given a compression function CF that processes a chaining value h and a message
block m, a preimage attack on CF is defined as follows: given h and x, where x
is the compression function output, find m such that CF (h,m) = x. However,
in a pseudo preimage attack, only x is given and one must find h and m such
that CF (h,m) = x. The effect of a pseudo preimage attack on the compression
function by itself is not important. However, these attacks can be used to build a
preimage or second preimage attacks on the whole hash function [19]. As demon-
strated in Sect. 6, pseudo preimages of the Whirlwind compression function can
be utilized to compose an n-block second preimages of the hash function.

The main concept of the proposed MitM attacks is to divide the attacked
execution rounds at the starting point into two independent executions that pro-
ceed in opposite directions (forward and backward chunks). The two executions

316 R. AlTawy and A.M. Youssef

must remain independent until the point where matching takes place. To main-
tain the independence constraint, each execution must depend on a different set
of inputs, e.g., if only the forward chunk is influenced by a change in a given
input, then this input is known as a forward neutral input. Consequently, all
of its possible values can be used to produce different outputs of the forward
execution at the matching point. Accordingly, all neutral inputs for each execu-
tion direction attribute for the number of independent starting values for each
execution. Hence, the output of the forward and the backward executions can
be independently calculated and stored at the matching point. Similar to all
MitM attacks, the matching point is where the outputs of the two separated
chunks meet to find a solution from both the forward and backward directions
that satisfies both executions. While for block ciphers, having a matching point
is achieved by employing both the encryption and decryption oracles, for hash
function, this is accomplished by adopting the cut and splice technique [5] which
utilizes the employed mode of operation. In other words, given the compression
function output, this technique chains the input and output states through the
feedforward as we can consider the first and last states as consecutive rounds.
Subsequently, the overall attacked rounds behave in a cyclic manner and one can
find a common matching point between the forward and backward executions
and consequently can also select any starting point.

The MitM preimage attack has been applied to MD4 [5,10], MD5 [5], HAS-
160 [11], and all functions of the SHA family [3,4,10]. The attack exploits the
fact that all the previously mentioned functions are ARX-based and operate
in the Davis-Mayer (DM) mode, where the state is initialized by the chain-
ing value and some of the expanded message blocks are used independently in
each round. Thus, one can determine which message blocks affect each execu-
tion for the MitM attack. However, several AES-like hash functions operate in
the Miyaguchi-Preneel mode, where the input message is fed to the initial state
which undergoes a chain of successive transformations. Consequently, the pro-
cess of separating independent executions becomes relatively more complicated.
Cryptanalysts are forced to adopt a pseudo preimage attack when the compres-
sion function operates in Davis-Mayer mode. This is due to the fact that the main
execution takes place on a state initialized by the chaining value. Subsequently,
using the cut and splice technique enforces changes in the first state through the
feedforward. Additionally, even if function operates in the Miyaguchi-Preneel
mode, attempting a MitM preimage attack usually generates pseudo preimages
when the complexity of finding a preimage is higher than the available degrees of
freedom in the message. Consequently, the chaining value is utilized as a source of
randomization to satisfy the number of multiple restarts required by the attack.
As a result, we end up with a pseudo preimage rather than a preimage of the
compression function output.

This class of attacks has witnessed significant improvements since its incep-
tion. Most of these attacks aim to make the starting and matching points span
over more than one round transformation and hence increase the number of the
overall attacked rounds. More precisely, the initial structure approach [22,23]

Second Preimage Analysis of Whirlwind 317

provides the means for the starting point to cover a few successive transforma-
tions where words in the states belong to both the forward and backward chunks.
Although neutral words of both chunks are shared within the initial structure,
independence of both executions is achieved in the rounds at the edges of the ini-
tial structure. Additionally, the partial matching technique [5] allows only parts
of the state to be matched at the matching point. This method is used to extend
the matching point further and makes use of the fact that round transformations
may update only parts of the state. Thus the remaining unchanged parts can
be used for matching. This approach is highly successful in ARX-based hash
functions which are characterized by the slow diffusion of their round update
functions and so some state variables remain independent in one direction while
execution is in the opposite direction. The unaffected parts of the states at each
chunk are used for partial matching at the matching point. However, in AES-
like hash functions, full diffusion is achieved after two rounds and this approach
can be used to extend the matching point of two states for a limited number of
transformations. Once a partial match is found, the inputs of both chunks that
resulted in the matched values are selected and used to evaluate the remain-
ing undetermined parts of the state at the matching point to check for a full
state match. Figure 2 illustrates the MitM preimage attack approaches for the
Whirlwind compression function. The red and blue arrows denote the forward
and backward executions on the message state, respectively. S0 is the first state
initialized by h and m and St is the last attacked state.

Fig. 2. MitM preimage attack techniques customized for Whirlwind operation (Color
figure online).

In the next section, we apply the techniques discussed in this section to
generate a 5-round pseudo preimage of the Whirlwind compression function.

4 A Pseudo Preimage of the 5-Round Compression
Function

To proceed with the attack, we first need to separate the two execution chunks
around the initial structure. More precisely, we divide the five attacked rounds of
execution into a 2-round forward chunk and a 2-round backward chunk around
a starting point (initial structure). The proposed chunk separation is shown

318 R. AlTawy and A.M. Youssef

in Fig. 3. Our choices of forward and backward starting values in the initial
structure determine the complexity of the attack. Specifically, we try to balance
the number starting values in each direction and the number of known words
at the matching point at the end of each chunk. The total number of starting
values in both directions should produce candidate pairs at the matching point
to satisfy the matching probability. For further clarification, we first explain
how the initial structure is constructed. The main idea is to have maximum
state knowledge at the start of each execution chunk. This can be achieved by
choosing several words as neutral so that the number of corresponding output
words of the θ and θ−1 transformations at the start of both chunk that are
constant or relatively constant is maximized. A relatively constant word is a
word at the state directly after the initial structure whose value depends on the
value of the neutral words in one execution direction but remains constant from
the opposite execution perspective. The initial structure for the 5-round MitM
preimage attack on the compression function of Whirlwind is shown in Fig. 4.

Following Fig. 4, our aim is to have five constants in the three lowermost rows
in state d and determine the available values of the corresponding blue rows that
make them hold. The values of the three lowermost blue rows are the available

Fig. 3. Chunk separation for a 5-round MitM pseudo preimage attack the compression
function. BSV: Backward starting value, FSV: Forward starting value, MV: Matching
value (Color figure online).

Second Preimage Analysis of Whirlwind 319

Fig. 4. Initial structure used in the attack on the 5-round compression function (Color
figure online).

backward starting values. For each row, we randomly choose the five constant
words in d[row 7] and then determine the values of blue words in c[row 7] so
that after applying θ on c[row 7], the chosen values of the five constants hold.
Since the linear mapping is applied on the 4-bit nibbles, we need twenty constant
nibbles in d[row 7]. This can be achieved by maintaining twenty variable nibbles
in c[row 7] to solve a system of twenty equations when the other twelve nibbles
are fixed. Accordingly, for any of the last three rows in state c, we can randomly
choose any three blue words and compute the remaining five so that the output
of θ maintains the previously chosen five constant words at d[row 7]. To this end,
we have nine free (blue) words, three for each row in state c. Thus the number
of backward starting values is 2144 which means that we can start the backward
execution by 2144 different starting values and hence 2144 different output values
at the matching point Sθ

3 . Similarly, we choose 32 constant words in state a
and for each row in state b we randomly choose four red nibbles and compute
the other sixteen red nibbles such that after the θ−1 transformation we get the
predetermined constants at each row in a. However, the value of the four shaded
blue words in each row of state a depends also on the three blue words in the
rows of state b. We call these bytes relative constants because their final values
cannot be determined until the backward execution starts and these values are
different for each backward execution iteration. Specifically, their final values are
the predetermined constants acting as an offset XORed with the corresponding
blue nibbles multiplied by M−1

0 or M−1
1 coefficients. In the sequel, we have eight

free words (one for each row in b) which means 2128 forward starting value and
hence 2128 different input values to the matching point Sγ

3 .
As depicted in Fig. 3, the forward chunk starts at Sθ

1 and ends at Sγ
3 which is

the input state to the matching point. The backward chunk starts at Sγ
0 and ends

after the feedforward at Sθ
3 which is the output state of the matching point. The

red words are the neutral ones for the forward chunk and after choosing them
in the initial structure, all the other red words can be independently calculated.
White words in the forward chunk are the ones whose values depend on the
neutral words of the backward chunk which are the blue words in the initial
structure. Accordingly, their values are undetermined, i.e., these words cannot be

320 R. AlTawy and A.M. Youssef

evaluated until a partial match is found. Same rationale applies to the backward
chunk and the blue words. Grey bytes are constants which can be either the
compression function output or the chosen constants in the initial structure.

To find the pseudo preimage of the given compression function output, we
have to find a solution that satisfies both executions. This takes place at the
matching point where we match the partial state output from the forward exe-
cution at Sγ

3 with the full state (due to truncation) output from the backward
execution at Sθ

3 through the θ transformation. As depicted in Fig. 3, at the
matching point, in each row we have knowledge of five words from the forward
execution and four words from the backward execution. Since the linear mapping
is performed on 4-bit nibbles, we can form sixteen 4-bit linear equations using
twelve 4-bit unknowns and match the resulting forward and backward values
through the remaining four 4-bit equations. More precisely, we use the follow-
ing equation to compute the first 4-bit nibble row in the first state row b0,j,0,0

through the linear transformation λ0 given the 4-bit nibble input row a0,j,0,0.
For ease of notation, we denote the first 4-bit nibble in a word located in the
first row and column j as aj (i.e., a0,j,0,0 = aj). We use a similar notation for b.

[
a0 a1 a2 a3 a4 a5 a6 a7

]

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0x5 0x4 0xA 0x6
0x4 0x5 0x6 0xA
0xA 0x6 0x5 0x4
0x6 0xA 0x4 0x5
0x2 0xD 0x8 0x3
0xD 0x2 0x3 0x8
0x8 0x3 0x2 0xD
0x3 0x8 0xD 0x2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
[
b0 b1 b2 b3

]

Because we are evaluating the first 4-bit nibble in the output words and the
four rightmost column of the output state are truncated, we only use half of
the dyadic matrix M0. In the above equation, we use the overline to denote the
unknown first 4-bit nibbles at the first row words. More precisely, there are three
unknown nibbles a2, a3, and a4 in the input and all the nibbles in the output
are known. Accordingly, given the λ0 transformation linear matrix M0, we can
form four linear equations to compute b0, b1, b2, and b3. Then we evaluate the
values of the three unknown nibbles a2, a3, and a4 from three out of the four
equations and substitute their values in the remaining one. With probability
2−4 the right hand side of the remaining equation is equal to the corresponding
known backward nibble. Hence, the matching size per 4-bit nibble row is 24

and since we have four 4-bit nibble rows per word row, the matching size is 216

for state row, Thus, the matching probability for the whole state is 2−128. The
choice of the number of forward and backward starting values directly affects
the matching probability as their number determines the number of red and blue
words at a given state row at the matching point. If the number of blue and red
words are not properly chosen at the initial structure, we can reach no matching
value. More precisely, we cannot have a matching value if the total number of
red and blue words in a given row at the matching point is less than or equal to
eight. In what follows we summarize the attack steps:

Second Preimage Analysis of Whirlwind 321

1. We randomly choose the constants in states Sθ
1 and Sγ

0 at forward and back-
ward output of the initial structure.

2. For each forward starting value fwi in the 2128 forward starting values at Sγ
0 ,

we evaluate the forward matching value fmi at Sγ
3 and store (fwi, fmi) in a

lookup table T .
3. For each backward starting value bwj in the 2144 backward starting values in

Sγ
1 , we evaluate the backward matching value bmj at Sθ

3 and check if there
exists an fmi = bmj in T . If found, then these solutions partially match
through the linear transformations and the full match should be checked
using the matched starting points fwi and bwi. If a full match exists, then
output the chaining value and the message Mi, else go to step 1.

To minimize the attack complexity, the number of the starting values of both
execution and the matching value must be kept as close as possible to each other.
In the chunk separation shown in Fig. 3, the number of forward and backward
starting values, and the matching values are 2128, 2144, and 2128, respectively. To
further explain the complexity of the attack, we consider the attack procedure.
After step 2, we have 2128 forward matching values at Sγ

3 and we need 2128

memory to store them. At the end of step 3, we have 2144 backward matching
values at Sθ

3 . Accordingly, we get 2128+144 = 2272 candidate pairs for partial
matching. Since the probability of a partial match is 2−128, we expect 2144 pairs
to partially match. The probability that a partially matching pair results in a
full match is the probability that the matching forward and backward starting
values generates the three unknown columns in Sγ

3 equal to the ones that resulted
from the partial match. This probability is equal to 224×16 = 2−384. As we have
2144 partially matching pairs, we expect 2144−384 = 2−240 pairs to fully match.
Thus we need to repeat the attack 2240 times to get one fully matching pair.
The time complexity for one repetition of the attack is 2128 for the forward
computation, 2144 for the backward computation, and 2144 to test if the partially
matching pairs fully match. Consequently, the overall complexity of the attack
is 2240(2128 + 2144 + 2144) ≈ 2385 time and 2128 memory.

5 Extending the Attack by One More Round

The wide trail strategy adopted by Whirlwind implies that one unknown word
leads to a full unknown state after two rounds. Consequently, in the previous
5-round attack, the matching point is chosen exactly two rounds away from the
initial structure in each direction. Attempting to go one more round in either
directions always fails because at the end of each chunk execution the state has
undetermined bytes at each row. Consequently, applying the linear transforma-
tion θ to such state results in a full loss of state knowledge and matching cannot
be achieved. To maintain partial state knowledge, we adopt a guess and deter-
mine approach [24]. Hence, we can probabilistically guess some of the undeter-
mined row words in the state before the linear transformation in either direction.
Thus, we maintain knowledge of some state rows after the linear transformation
θ which are used for matching. Due to truncation and the large size of Sboxes, we

322 R. AlTawy and A.M. Youssef

have to carefully choose both starting values in the initial structure to minimize
the number of guessed words as much as possible and to result in an acceptable
number of correctly guessed matching pairs. The proposed chunk separation for
the 6-round MitM pseudo preimage attack is shown in Fig. 5. In order to be able
extend the attack by one extra round in the forward direction, we guess the six
unknown words (yellow words) in state Sγ

4 . As a result, we can reach state Sγ
5

with three determined columns where the matching takes place.

Fig. 5. Chunk separation for a 6-round MitM pseudo preimage attack on the com-
pression function. BSV: Backward starting value, FSV: Forward starting value, MV:
Matching value (Color figure online).

The chosen separation and guessed values maximize the attack probability
by carefully selecting the forward, backward, and guessed bit values. We aim to
increase the number of starting forward values and keep the number of backward
and matching values as close as possible and larger than the number of guessed

Second Preimage Analysis of Whirlwind 323

values. For our attack, the chosen number for the forward and backward starting
values, and the guessed values are 216, 2128, and 296, respectively. Setting these
parameters fixes the number of matching values to 2128. In what follows, we give
an overview of the attack procedure and complexity based on the above chosen
parameters:

1. We first start by randomly choosing the constants in Sγ
1 and Sθ

2 at the edges
of the initial structure.

2. For each forward starting value fwi and guessed value gi in the 216 forward
starting values and the 296 guessed values, we compute the forward matching
value fmi at Sγ

5 and store (fwi, gi, fmi) in a lookup table T .
3. For each backward starting value bwj in the 2128 backward starting values,

we compute the backward matching value bmj at Sθ
5 and check if there exists

an fmi = bmj in T . If found, then a partial match exists and the full match
should be checked using the matched forward, guessed, and backwards start-
ing values fwi, gi, and bwi. If a full match exists, then we output the chaining
value hi and the message mi, else go to step 1.

The complexity of the attack is evaluated as follows: after step 2, we have
216+96 = 2112 forward matching values which need 2112 memory for the look up
table. At the end of step 3, we have 2128 backward matching values. Accordingly,
we get 2112+128 = 2240 partial matching candidate pairs. Since the probability of
a partial match is 2−128 and the probability of a correct guess is 2−96, we expect
2240−128−96 = 216 correctly guessed partially matching pairs. Due to truncation,
we are interested only in the uppermost four rows at the matching point. More
precisely, we want the partially matching starting value to result in the correct
values on the twenty four unknown words in both Sγ

4 and Sθ
4 that make the

blue and red words hold. The probability that the latter condition takes place
is 224×−16 = 2−384. Consequently, the expected number of fully matching pairs
is 2−368 and hence we need to repeat the attack 2368 times to get a full match.
The time complexity for one repetition is 2112 for the forward computation, 2128

for the backward computation, and 216 to check that partially matching pairs
fully match. The overall complexity of the attack is 2368(2112+2128+216) ≈ 2496

time and 2112 memory.

6 Second Preimage of the Hash Function

In this section, we show how the previously presented pseudo preimage attacks
on the Whirlwind compression function can be utilized to generate second preim-
ages for the whole hash function. The last two compression function calls in the
Whirlwind hash function differ than the previous ones, hence they are considered
a final step in the execution of the function. In this step, the first compression
function call operates on the padded message, and the state of the second com-
pression function call is initialized by the chaining value and an 8 × 4 all zero
message. Accordingly, attempting to use our pseudo preimage attacks to invert

324 R. AlTawy and A.M. Youssef

the final compression function call does not result in the expected all zero mes-
sage and if extended can rarely satisfy the correct padding. Consequently, using
these attacks to generate preimages does not work. However, if we can get the
correct chaining values for the last two compression function calls such that
when both the correct padding and null message are used we get the target
compression function output, then we can use our pseudo preimage attack to
get the right messages. This requirements can be fulfilled if we consider a second
preimage attack. When one attempts a second preimage attack, one is given a
hash function H that operates with an initial value IV and a message block
m. Then, one must find m′ such that HIV (m) = HIV (m′). When we consider
a second preimage attack, using the give message m, we can know exactly the
input chaining values for the last two compression function calls such that we
get the desired hash function output. We only need to find another equal length
message m′ that is, given the IV , generates the chaining value required by the
padding compression function call. Our attack is an n-block second preimage
attack (n ≥ 2) where given an n-block message m, we generate another n-block
message m′ such that both messages hash to the same value. More precisely, to
build m′, we copy the finalization step of m and use our pseudo preimage attacks
along with another meet in the middle attack to search for m′. For illustration,
we are using 2-block messages to describe our attack. As depicted in Fig. 6, the
attack is divided into three stages:

Fig. 6. Second preimage attack on the hash function.

1. Given a 2-block message m = m0‖m1 and the truncation value N , we compute
the adaptable initialization vector H0 = φ(0, N), compose the padding message
m2 = 1‖0500‖1‖010, andhashmandget thedesiredH(m).Thisprocess is shown

Second Preimage Analysis of Whirlwind 325

in the upper hash function execution in Fig. 6. To begin building m′, we copy
the last compression function calls with there chaining values. Specifically, we
consider H2 to be the output of the compression function call operating on the
second block m′

1 of the massage we are searching for.
2. In this stage, given H2, we produce 2p pseudo preimages for the second mes-

sage block compression function call. The output of this step is 2p pairs of a
candidate chaining value H ′

1 and a candidate second message block m′
1. We

store these resulting candidate pairs (H ′
1,m

′
1) in a table T .

3. To this end, we try to search for the first message block m′
0 such that using the

initial vector H0, φ(H0,m
′
0) produces one of the chaining values H ′

1 in the table
T . In the sequel, we randomly choose m′

0, compute H ′
1 and check if it exists in T .

As T contains 2p entries, it is expected to find a match after 2512−p evaluations
of the following compression function call with random m′

0 each time:

H ′
1 = φ(H0,m

′
0)

Once a matching H ′
1 value is found in T , the chosen m′

0 is the first message
block and the corresponding m′

1 is the second message block such that m′ =
m′

0‖m′
1 and H(m) = H(m′).

The time complexity of the attack is evaluated as follows: we need 2p×
(complexity of pseudo preimage attack) in stage 2, and 2512−p evaluations of
one compression function call for the MitM attack at stage 3. The memory
complexity for the attack is as follows: 2p states to store the pseudo preim-
ages for the MitM in stage 2, in addition to the memory complexity of the
pseudo preimage attack on the compression function which is 2128 or 2112 for the
5-round or 6-round compression function. Since the time complexity is highly
influenced by p, we have chosen p = 64 for the 5-round attack and p = 8 for
the 6-round attack to obtain the maximum gain. Accordingly, 2-block second
preimages for 5-round Whirlwind hash function are produced with a time com-
plexity of 264+385 + 2512−64 ≈ 2449 and memory complexity of 2128 + 264 ≈ 2128.
The time complexity for the 6-round attack is 28+496 + 2512−8 ≈ 2505 and the
memory complexity is 2112 + 28 ≈ 2112.

7 Conclusion

In this paper, we have analyzed Whirlwind and its compression function with
respect to preimage attacks. We have shown that with a carefully balanced chunk
separation, pseudo preimages for the 5-round reduced compression function are
generated. Additionally, we have adopted a guess and determine technique and
we were able to extend the 5-round attack by one more round. Finally, using
another MitM attack, we utilized the compression function pseudo preimage
attacks to produce 5 and 6-round hash function n-block second preimages.

Whirlwind is proposed to improve the Whirlpool design. While, the new
improvements limit the extent of rebound attacks significantly, they do not con-
sider MitM preimage attacks. It should be noted that the elimination of the

326 R. AlTawy and A.M. Youssef

compression function key schedule and using large Sboxes in the same time
made our attacks possible. Indeed, with the large state, the chosen constants in
the initial structure are enough to satisfy the number of restarts required by the
attack complexity. On the other hand, for Whirlpool, the available freedom in
the internal state only cannot by itself fulfill the attack complexity. Also, while
the adopted truncation and feedforward prohibit interaction between the input
message block and the output state thus limiting the ability of difference can-
cellation, it enhanced the full matching probability, particularly, if we can have
full state knowledge at one side of the matching point like our 5-round attack.
It is interesting to note that if the adopted model follows the exact Sponge con-
struction where the message is XORed to the internal state and truncation is
performed in the finalization step, thus the compression function always main-
tains a state larger than the hash function output size, our compression func-
tion attacks would not work. It should also be noted that the switch between
GF (216) and GF (24) in different round transformations does not only alleviate
potential concerns regarding algebraic attacks but also enhances the resistance of
the function to integral attacks [13]. More precisely, the integral properties that
are preserved by the substitution layer are shared independently among nibbles
by the following linear transformation for the span of one round only. Finally,
we know that the presented results do not directly impact the practical secu-
rity of the Whirlwind hash function. However, they are first steps in the public
cryptanalysis of its proposed design concepts with respect to second preimage
resistance.

Acknowledgment. The authors would like to thank the anonymous reviewers for
their valuable comments and suggestions that helped improve the quality of the paper.
This work is supported by the Natural Sciences and Engineering Research Council of
Canada (NSERC) and Le Fonds de Recherche du Québec - Nature et Technologies
(FRQNT).

References

1. The National Hash Standard of the Russian Federation GOST R 34.11-2012. Rus-
sian Federal Agency on Technical Regulation and Metrology report (2012). https://
www.tc26.ru/en/GOSTR34112012/GOST R 34 112012 eng.pdf

2. AlTawy, R., Youssef, A.M.: Preimage attacks on reduced-round stribog. In:
Pointcheval, D., Vergnaud, D. (eds.) AFRICACRYPT. LNCS, vol. 8469, pp. 109–
125. Springer, Heidelberg (2014)

3. Aoki, K., Guo, J., Matusiewicz, K., Sasaki, Y., Wang, L.: Preimages for step-
reduced SHA-2. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
578–597. Springer, Heidelberg (2009)

4. Aoki, K., Sasaki, Y.: Meet-in-the-middle preimage attacks against reduced SHA-0
and SHA-1. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 70–89.
Springer, Heidelberg (2009)

5. Aoki, K., Sasaki, Y.: Preimage attacks on one-block MD4, 63-step MD5 and more.
In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381, pp.
103–119. Springer, Heidelberg (2009)

https://www.tc26.ru/en/GOSTR34112012/GOST_R_34_112012_eng.pdf
https://www.tc26.ru/en/GOSTR34112012/GOST_R_34_112012_eng.pdf

Second Preimage Analysis of Whirlwind 327

6. Barreto, P., Nikov, V., Nikova, S., Rijmen, V., Tischhauser, E.: Whirlwind: a new
cryptographic hash function. Des. Codes Crypt. 56(2–3), 141–162 (2010)

7. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On the indifferentiability
of the sponge construction. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol.
4965, pp. 181–197. Springer, Heidelberg (2008)

8. Daemen, J., Rijmen, V.: The Design of Rijndael: AES- The Advanced Encryption
Standard. Springer, Berlin (2002)

9. Gauravaram, P., Knudsen, L.R., Matusiewicz, K., Mendel, F., Rechberger, C.,
Schläffer, M., Thomsen, S.S.: Grøstl a SHA-3 candidate. NIST submission (2008)

10. Guo, J., Ling, S., Rechberger, C., Wang, H.: Advanced meet-in-the-middle preim-
age attacks: first results on full tiger, and improved results on MD4 and SHA-2. In:
Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 56–75. Springer, Heidelberg
(2010)

11. Hong, D., Koo, B., Sasaki, Y.: Improved preimage attack for 68-step HAS-160.
In: Lee, D., Hong, S. (eds.) ICISC 2009. LNCS, vol. 5984, pp. 332–348. Springer,
Heidelberg (2010)

12. Indesteege, S.: The Lane hash function. Submission to NIST (2008). http://www.
cosic.esat.kuleuven.be/publications/article-1181.pdf

13. Knudsen, L.R., Wagner, D.: Integral cryptanalysis. In: Daemen, J., Rijmen, V.
(eds.) FSE 2002. LNCS, vol. 2365, pp. 112–127. Springer, Heidelberg (2002)

14. Lamberger, M., Mendel, F., Rechberger, C., Rijmen, V., Schläffer, M.: Rebound dis-
tinguishers: results on the full whirlpool compression function. In: Matsui, M. (ed.)
ASIACRYPT 2009. LNCS, vol. 5912, pp. 126–143. Springer, Heidelberg (2009)

15. Leurent, G.: MD4 is not one-way. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086,
pp. 412–428. Springer, Heidelberg (2008)

16. Matyukhin, D., Rudskoy, V., Shishkin, V.: A perspective hashing algorithm. In:
RusCrypto (2010). (in Russian)

17. Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.S.: The rebound attack:
cryptanalysis of reduced Whirlpool and Grøstl. In: Dunkelman, O. (ed.) FSE
2009. LNCS, vol. 5665, pp. 260–276. Springer, Heidelberg (2009)

18. Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.S.: Rebound attacks on the
reduced Grøstl hash function. In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol.
5985, pp. 350–365. Springer, Heidelberg (2010)

19. Menezes, A.J., Van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryp-
tography. CRC Press, Boca Raton (2010)

20. NIST. Announcing request for candidate algorithm nominations for a new crypto-
graphic hash algorithm (SHA-3) family. Federal Register, vol. 72(212) November
2007. http://csrc.nist.gov/groups/ST/hash/documents/FR Notice Nov07.pdf

21. Rijmen, V., Barreto, P.S.L.M.: The Whirlpool hashing function. NISSIE submis-
sion (2000)

22. Sasaki, Y.: Meet-in-the-middle preimage attacks on AES hashing modes and an
application to whirlpool. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 378–
396. Springer, Heidelberg (2011)

23. Sasaki, Y., Aoki, K.: Finding preimages in full MD5 faster than exhaustive search.
In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 134–152. Springer,
Heidelberg (2009)

24. Sasaki, Y., Wang, L., Wu, S., Wu, W.: Investigating fundamental security require-
ments on whirlpool: improved preimage and collision attacks. In: Wang, X., Sako,
K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 562–579. Springer, Heidelberg
(2012)

http://www.cosic.esat.kuleuven.be/publications/article-1181.pdf
http://www.cosic.esat.kuleuven.be/publications/article-1181.pdf
http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf

328 R. AlTawy and A.M. Youssef

25. Tischhauser, E.W.: Mathematical aspects of symmetric-key cryptography. Ph.D.
thesis, Katholieke Universiteit Leuven, May 2012. http://www.cosic.esat.kuleuven.
be/publications/thesis-201.pdf

26. Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the full SHA-1. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)

27. Wang, X., Yu, H.: How to break MD5 and other hash functions. In: Cramer, R.
(ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005)

28. Wu, H.: The hash function JH (2011). http://www3.ntu.edu.sg/home/wuhj/
research/jh/jh-round3.pdf

29. Wu, S., Feng, D., Wu, W., Guo, J., Dong, L., Zou, J.: (Pseudo) Preimage attack on
round-reduced Grøstl hash function and others. In: Canteaut, A. (ed.) FSE 2012.
LNCS, pp. 127–145. Springer, Heidelberg (2012)

http://www.cosic.esat.kuleuven.be/publications/thesis-201.pdf
http://www.cosic.esat.kuleuven.be/publications/thesis-201.pdf
http://www3.ntu.edu.sg/home/wuhj/research/jh/jh-round3.pdf
http://www3.ntu.edu.sg/home/wuhj/research/jh/jh-round3.pdf

Boomerang Attack on Step-Reduced SHA-512

Hongbo Yu(B) and Dongxia Bai

Department of Computer Science and Technology, Tsinghua University,
Beijing 100084, China

yuhongbo@mail.tsinghua.edu.cn, baidx10@mails.tsinghua.edu.cn

Abstract. SHA-2 (SHA-224, SHA-256, SHA-384 and SHA-512) is hash
function family issued by the National Institute of Standards and Tech-
nology (NIST) in 2002 and is widely used all over the world. In this work,
we analyze the security of SHA-512 with respect to boomerang attack.
Boomerang distinguisher on SHA-512 compression function reduced to
48 steps is proposed, with a practical complexity of 251. A practical
example of the distinguisher for 48-step SHA-512 is also given. As far as
we know, it is the best practical attack on step-reduced SHA-512.

Keywords: SHA-512 · Hash functions · Boomerang attack

1 Introduction

Cryptographic hash functions play an important role in modern cryptology. In
2005, many notable hash functions, including MD5 and SHA-1, were broken by
Wang et al. [32,33]. Since these breakthrough results, many cryptographers have
been convinced that these widely used hash functions can no longer be considered
secure. Hash functions have been the target in lots of cryptanalytic attacks and
cryptanalysis against hash functions has been improved significantly. People not
only evaluate the three classical security requirements (preimage resistance, 2nd
preimage resistance and collision resistance), but also consider all properties
different from the expectation of a random oracle, such as (semi-) free-start
collisions, near-collisions, boomerang distinguishers, etc. This is an important
progress of the cryptanalysis for hash functions, since the security margin can
be measured.

In recent years, the SHA-3 competition [23] organized by NIST has attracted
more attention from the cryptographic community. However, as commonly used
algorithms in many applications, SHA-2 still deserves much detailed analysis to
get a good view on its security. In this paper, we present boomerang attack on
the reduced-step SHA-512.

Hongbo Yu is Supported by 973 program (No. 2013CB834205), the National Natural
Science Foundation of China (Nos. 61133013 and 61373142), the Tsinghua University
Initiative Scientific Research Program (No. 20111080970).

c© Springer International Publishing Switzerland 2015
D. Lin et al. (Eds.): Inscrypt 2014, LNCS 8957, pp. 329–342, 2015.
DOI: 10.1007/978-3-319-16745-9 18

330 H. Yu and D. Bai

Related Work. In the last few years, the security of SHA-256/512 against
several attacks has been discussed in many papers. In [12] Isobe and Shibutani
presented preimage attacks on SHA-256 and SHA-512 reduced to 24 steps. It
was improved by Aoki et al. to 43-step SHA-256 and 46-step SHA-512 in [1].
Then Guo et al. gave advanced meet-in-the-middle preimage attacks on 42-step
SHA-256/512 [10]. Later Khovratovich et al. applied biclique to preimages and
extended attacks to 45 steps on SHA-256 and 50 steps on SHA-512 [15]. Note
that all these attacks only slightly faster than generic attack complexity 2256.

With respect to collision resistance, Mendel et al. presented the first collision
attack on SHA-256 reduced to 18 steps in [21]. Then in [25] Nikolić and Biryukov
improved the collision techniques and constructed a practical collision for 21
steps and a semi-free-start collision for 23 steps of SHA-256. This was later
extended to 24 steps on SHA-256 and SHA-512 by Sanadhya and Sarkar [26], and
Indesteege et al. [11]. Then Mendel et al. improved the semi-free-start collisions
on SHA-256 from 24 to 32 steps and gave a collision attack for 27 steps, which
are all practical [19]. The best known collision attacks on SHA-256 so far are
semi-free-start collisions for 38 and collisions for 31 out of 64 steps by Mendel
et al. in [20]. Recently, Eichlseder et al. presented semi-free-start collisions for
SHA-512 on up to 38 steps in [8]. Compared with the preimage attacks, all these
attacks have practical complexities.

At the rump session of Eurocrypt 2008, Yu and Wang presented non-
randomness of SHA-256 reduced to 39 steps [34], and gave a practical example
of 33 steps. In [11], Indesteege et al. show nonrandom behavior of the SHA-
256 compression function in the form of free-start near-collisions for up to 31
steps. In [17], Lamberger and Mendel gave a second-order differential collision
on 46 steps of SHA-256 compression function. Later, Biryukov et al. extended
the result in [17] by one round and presented a practical attack on 47 steps of
SHA-256 in [7] in which the application of the attack strategy to SHA-512 was
discussed, but no detailed differentials and example were given.

Our Contribution. In this work, the boomerang attack is used to show non-
random properties for 48 (out of 80) steps of SHA-512 and an example of a
confirming quartet is given. To the best of our knowledge, this is the best prac-
tical attack on reduced SHA-512. The summary of previous results and ours on
SHA-512 are given in Table 1.

Outline. The structure of this paper is as follows. We give a short description
of SHA-512 in Sect. 2. Section 3 summaries boomerang attack on hash functions.
Then we present our boomerang attack on 48-step SHA-512 in Sect. 4. Finally,
a conclusion of the paper is given in Sect. 5.

2 Description of SHA-2

The SHA-2 (SHA-224, SHA-256, SHA-384 and SHA-512) hash function family is
standardized by the National Institute of Standards and Technology (NIST), and

Boomerang Attack on Step-Reduced SHA-512 331

Table 1. Summary of the attacks on SHA-512

Attack type Target Steps Time Source

Preimage attack HF 24 2480 [12]

HF 42 2501 [1]

HF 46 2511.5

HF 42 2494.6 [10]

HF 50 2511.5 [15]

Pseudo-preimage attack HF 24 2480 [12]

HF 46 2509 [1]

HF 57 2511 [15]

Collision HF 24 253 [11]

HF 24 222.5 [26]

Semi-free-start collision HF 38 240.5 [8]

Boomerang attack CF 48 251 Sect. 4

adopts the Merkle-Damg̊ard structure [22]. This section gives a short description
of SHA-512. A complete specification can be found in [24].

SHA-512 is an iterated hash function that processes 1024-bit input message
blocks and produces a 512-bit hash value. The compression function of SHA-512
consists of a message expansion function and a state update function.

The message expansion function splits the 1024-bit message block into 16
words mi, i = 0, . . . , 15, and expands them into 80 64-bit message words wi as
follows:

wi =
{

mi, 0 ≤ i ≤ 15,
σ1(wi−2) + wi−7 + σ0(wi−15) + wi−16, 16 ≤ i ≤ 79,

where the functions σ0(X) and σ1(X) are given by

σ0(X) = (X ≫ 1) ⊕ (X ≫ 8) ⊕ (X � 7),
σ1(X) = (X ≫ 19) ⊕ (X ≫ 61) ⊕ (X � 6).

The state update function updates 8 64-bit chaining values vi = (ai, bi, . . . , hi)
in 80 steps using the 64-bit word wi as follows:

t1 = hi + Σ1(ei) + F1(ei, fi, gi) + ki + wi,

t2 = Σ0(ai) + F0(ai, bi, ci),
ai+1 = t1 + t2, bi+1 = ai, ci+1 = bi, di+1 = ci,

ei+1 = di + t1, fi+1 = ei, gi+1 = fi, hi+1 = gi,

where ki is a step constant and the function F0, F1, Σ0, Σ1 are defined as follows:

F0(X,Y,Z) = (X ∧ Y) ⊕ (Y ∧ Z) ⊕ (X ∧ Z),
F1(X,Y,Z) = (X ∧ Y) ⊕ (¬X ∧ Z),
Σ0(X) = (X ≫ 28) ⊕ (X ≫ 34) ⊕ (X ≫ 39),
Σ1(X) = (X ≫ 14) ⊕ (X ≫ 18) ⊕ (X ≫ 41).

332 H. Yu and D. Bai

After 80 steps, the final hash value is computed by adding the output values
to the initial state variables.

3 Boomerang Distinguishers of Hash Functions

The boomerang attack was introduced by Wagner in 1999 [31] against block
ciphers. It treats the cipher as a cascade of two sub-ciphers, and uses short dif-
ferentials in each sub-cipher. These differentials are combined in an adaptive
chosen plaintext and ciphertext attack to exploit properties of the cipher that
has high probability. Then Kelsey et al. [14] further developed it into a cho-
sen plaintext attack called the amplified boomerang attack, and later it was
developed by Biham et al. [4] into the rectangle attack. In [5], Biham et al. com-
bined the boomerang (and the rectangle) attack with related-key differentials
and proposed the related-key boomerang and rectangle attacks, which use the
related-key differentials instead of the single-key differentials.

In recent years, the idea has been applied to hash functions as part of the new
and useful hash function results. The first application presented in [13] used the
idea of boomerang attack for the message modification technique in the collision
attack for SHA-1. However, we note that this work does not build a boomerang
property for a hash function to distinguish the hash functions from a random
oracle, but only use the boomerang attack as a neutral bits tool for message mod-
ifications. The standard applications of boomerang attack to hash function were
independently proposed by Biryukov et al. on BLAKE [6] and Lamberger and
Mendel on the SHA-2 family [17]. In their works, the boomerang attacks are stan-
dalone distinguishers and work in the same way as for block ciphers - by producing
the quartet of plaintexts and ciphertexts (input chaining values and output chain-
ing values). Boomerang distinguishers have also been applied to SIMD-512 [18],
HAVAL [27], RIPEMD [28], HAS-160 [29], Skein [9,35] and SM3 [3,16].

Let H be the compression function of a hash function, H0 and H1 be two
sub-ciphers: H = H1 ◦ H0. The boomerang attack for a compression function
can be summarized as follows.

– Choose a random chaining value v(1) and a message w(1), compute v(2) =
v(1) + β, v(3) = v(1) + γ, v(4) = v(3) + β and w(2) = w(1) + βw, w(3) = w(1) +
γw, w(4) = w(3) + βw. We get a quartet S = {(v(i), w(i))|i = 1, 2, 3, 4}.

– Compute backward from the quartet S using H−1
0 to obtain the initial values

IV1, IV2, IV3 and IV4.
– Compute forward from the quartet S using H1 to obtain the output values

h1, h2, h3 and h4.
– Check whether IV2 − IV1 = IV4 − IV3 = α and h3 − h1 = h4 − h2 = δ are

fulfilled.

The complexity of the boomerang attack is summarized in [9,35] as follows.

– Type I: A quartet satisfies IV2−IV1 = IV4−IV3 = α and h3−h1 = h4−h2 = δ
for fixed α and δ. In this case, the generic complexity is 2n where n is the size
of hash value.

Boomerang Attack on Step-Reduced SHA-512 333

– Type II: Only h3 − h1 = h4 − h2 are required. This property is also called a
second-order differential collision in [7]. In this case, the complexity for obtain-
ing such a quartet is 2n/3 using Wagner’s generalized birthday attack [30].

– Type III: A quartet satisfies IV2 − IV1 = IV4 − IV3 and h3 − h1 = h4 − h2.
This property is also called a zero-sum distinguisher in [2]. In this case, the
best known attack still takes time 2n/2.

4 The Boomerang Attack on Reduced SHA-512

In this section, we apply the boomerang attack to the SHA-512 compression
function reduced to 48 steps. The basic idea of our attack is to connect two
short differential paths in a quartet. The first step of our attack is to find two
short differentials with high probabilities and the middle connection part in the
middle does not contain any contradictions. Secondly, we derive the sufficient
conditions for the messages and chaining variables for the steps in the middle.
Thirdly, we satisfy the conditions in the middle steps by modifying the chaining
variables and the message words. Finally, after the message modification, we
search the right quartets that pass the verification of the distinguisher.

4.1 Step-Reduced Differential Paths

As shown in Tables 2 and 3, we present the two differential paths used to construct
the boomerang distinguisher on 48-step SHA-512, where the top differential path
is from step 23 to 1, and the bottom one is from step 24 to 48. To describe the dif-
ferential paths, we utilize the XOR difference Δa = a⊕a′, and Δa : i(1 ≤ i ≤ 64)
is used to denote that the i-th bit of a is different from the i-th bit of a′, and the
rest of the bits of a and a′ are the same.

We start from the middle states of the distinguisher quartet S, and the differ-
ences of the message words wi and the chaining variables v23 = (a23, b23, . . . , h23)
of the top differential path are selected as follows:

– Δw7 : 64,Δw22 : 56, 57, 63,Δwi = 0(0 ≤ i ≤ 21, i �= 7), if the top path has
the differences in message words with this form, 18 steps (step 22 to 5) can be
passed with probability 1 so that the path of this type has higher probability
than any other ones not following this strategy.

– Δa23 : 56, 63,Δe23 : 56, 63, these differences are decided by the choice of
differences of the message words above. In order to cancel the differences of
message words, we derive the differences of all these chaining variables.

Now for the bottom differential path, we choose the differences as follows:

– Δw23 : 41,Δw32 : 41,Δw47 : 33, 40,Δwi = 0(24 ≤ i ≤ 46, i �= 32), thus we
can pass 14 steps (step 33 to 46) for free similarly.

– Δb23 : 2, 7, 13, 23, 27, 64,Δc23 : 41, Δe23 : 5, 13,Δf23 : 2, 7,Δg23 : 41,Δh23 =
Σ1(Δe23), according to the differences of message words above and also con-
sidering the compatibility with the top differential path in the middle steps,
the differences of chaining variables in the bottom path can be derived with
some sufficient conditions given in part of Tables 6 and 7.

334 H. Yu and D. Bai

Table 2. The top differential path used for boomerang attack on SHA-512.

Step Δwi Δa Δb Δc Δd Δe Δf Δg Δh

64 23, 25, 30,
36, 46, 50

0 0 28, 36 25, 30

1 64 23, 46,
50

28, 36

2 64 23, 46,
50

3 64 23, 46, 50

4 64 23, 46, 50

5 64

6 64

7 64

8 64

9-22

23 56, 57, 63 56, 63 56, 63

Table 3. The bottom differential path used for boomerang attack on SHA-512.

Step Δwi Δa Δb Δc Δd Δe Δf Δg Δh

23 33, 40 2, 7, 13, 23,

27, 64

41 5, 13 2, 7 41 Σ1(Δe23)

24 41 2, 7, 13, 23,

27, 64

41 5, 13 2, 7 41

25 41 2, 7, 13, 23,

27, 64

5, 13 2, 7

26 41 23, 27,

64

5, 13

27 41 23, 27,

64

28 41 23, 27,

64

29 41 23, 27, 64

30 41

31 41

32 41

33 41

34-47

48 33, 40 33, 40 0 0 0 33, 40 0 0 0

4.2 Message Differences

Let w
(1)
i and w

(2)
i (0 ≤ i ≤ 15) be two 1024-bit messages whose differences are

shown in Table 2. In order to carry out the message modification in the middle
steps (steps 23–32), we also need to determine the specific differences w

(1)
i ⊕w

(2)
i

(23 ≤ i ≤ 32).

Boomerang Attack on Step-Reduced SHA-512 335

For convenience, let Δw
(1,2)
i denote the XOR difference of w

(1)
i and w

(2)
i .

According to the message expansion, we can compute the message differences
Δw

(1,2)
i , (22 ≤ i ≤ 47) as follows.

Δw
(1,2)
22 = (σ1(w

(1)
20) + w

(1)
15 + σ0(w

(1)
7) + w

(1)
8) ⊕ (σ1(w

(2)
20) + w

(2)
15 + σ0(w

(2)
7) + w

(2)
8)

Δw
(1,2)
23 = (σ1(w

(1)
21) + w

(1)
16 + σ0(w

(1)
8) + w

(1)
9) ⊕ (σ1(w

(2)
21) + w

(2)
16 + σ0(w

(2)
8) + w

(2)
9)

. . . = . . .

Δw
(1,2)
47 = (σ1(w

(1)
45) + w

(1)
40 + σ0(w

(1)
32) + w

(1)
31) ⊕ (σ1(w

(2)
45) + w

(2)
40 + σ0(w

(2)
32) + w

(2)
31)

Since σ0(w
(1)
7)⊕σ0(w

(2)
7) = σ0(Δw

(1,2)
7) = 0x4180000000000000 and Δw

(1,2)
22

= 0x4180000000000000. The first equation holds if

w
(1)
22,56 = w

(1)
7,57 ⊕ w

(1)
7,63 ⊕ w

(1)
7,64, (1)

w
(1)
22,57 = w

(1)
7,58 ⊕ w

(1)
7,64 ⊕ w

(1)
7,1, (2)

w
(1)
22,63 = w

(1)
7,64 ⊕ w

(1)
7,9. (3)

In the same way, we set the differences Δw
(1,2)
i (23 ≤ i ≤ 32) in the Table 4

and deduce the sufficient conditions on w(1) in Table 6 to meet the message
expansion. Because we don’t need to fulfill the message modifications in steps
34 to 48, the message differences Δw

(1,2)
i in these steps can keep free.

For the bottom path, the message differences Δw
(1,3)
i , Δw

(2,4)
i (22 ≤ i ≤ 47)

are set in Table 3. In order to get w
(3)
47 − w

(1)
47 = w

(4)
47 − w

(2)
47 , according to the

message expansion

w47 = w31 + σ0(w32) + w40 + σ1(w45),

Table 4. Message differences in steps 23 to 33.

i Δw(1,2) Δw(1,3)

22 4180000000000000 0000008100000000

23 8000000000000000 0000010000000000

24 0502081000000002 0

25 0200100000000004 0

26 2804080001020010 0

27 1008000002000020 0

28 00825520891408a1 0

29 c184220110080140 0

30 0504804080200408 0

31 0001008000400800 0

32 2ab100a291089050 0000010000000000

336 H. Yu and D. Bai

the following three equations must be satisfied.

w
(1)
32,41 ⊕ w

(1)
32,48 ⊕ w

(1)
32,47 = w

(2)
32,41 ⊕ w

(2)
32,48 ⊕ w

(2)
32,47 (4)

w
(1)
32,34 ⊕ w

(1)
32,41 ⊕ w

(1)
32,40 = w

(2)
32,34 ⊕ w

(2)
32,41 ⊕ w

(2)
32,40 (5)

w
(1)
32,35 ⊕ w

(1)
32,42 ⊕ w

(1)
32,41 = w

(2)
32,35 ⊕ w

(2)
32,42 ⊕ w

(2)
32,41 (6)

The message difference Δw
(1,2)
32 we selected in Table 4 happens to meet the

Eqs. (4)–(6). Otherwise, we can adjust it.
Extend the messages w

(3)
i and w

(4)
i (22 ≤ i ≤ 47) in the backward direction.

If we want to get Δw
(1,3)
i = Δw

(2,4)
i (0 ≤ i ≤ 22), the following three equations

must be satisfied.

w
(3)
22,56 = w

(3)
7,57 ⊕ w

(3)
7,63 ⊕ w

(3)
7,64 (7)

w
(3)
22,57 = w

(3)
7,58 ⊕ w

(3)
7,64 ⊕ w

(3)
7,1 (8)

w
(3)
22,63 = w

(3)
7,64 ⊕ w

(3)
7,9 (9)

4.3 Message Modification

Here message modification technique [33] can be used to modify the message
words and chaining variables to satisfy the conditions of the middle steps to
significantly improve the complexity of our attack.

For the middle steps (23 to 33) of the boomerang distinguisher, by modifying
some certain message words and chaining variables, we can fulfill all the condi-
tions of one side and part of conditions of the other side of the bottom path.
After the message modification, the conditions of step 23 in the top differential
path can hold with probability 1, and the conditions of steps 24 to 33 in the
bottom can hold with probability at least 2−40.

4.4 Sketch of the Attack

We divide our attack into two phases: the first phase is to find the right message
words w

(1)
22 , . . . , w

(1)
32 and chaining variables v

(1)
23 so that the bottom paths of both

sides in steps 23 to 33 hold; the second phase is to search w
(1)
17 , . . . , w

(1)
21 so that

we can find a distinguisher quart. The sketch of attack is as follows.

1. Randomly select eleven 64-bit message words w
(1)
i (22 ≤ i ≤ 32), and a 512-

bit chaining variables v
(1)
23 = (a(1)

23 , b
(1)
23 , . . . , h

(1)
23). Modify the messages w

(1)
i

(22 ≤ i ≤ 32) to meet the conditions in Table 6. Compute v
(1)
i (23 ≤ i ≤ 33).

Modify v
(1)
23 and w

(1)
i (22 ≤ i ≤ 32) so that v

(1)
i (24 ≤ i ≤ 33) satisfy all the

conditions in Table 7.
2. Let w

(2)
i = w

(1)
i ⊕ Δw

(1,2)
i , w

(3)
i = w

(1)
i ⊕ Δw

(1,3)
i , w

(4)
i = w

(2)
i ⊕ Δw

(1,3)
i

(22 ≤ i ≤ 32). The message differences Δw
(1,2)
i and Δw

(1,3)
i are defined in

Table 4. Compute v
(j)
i (j = 2, 3, 4; 23 ≤ i ≤ 33). Check whether v

(1)
33 ⊕ v

(3)
33 =

v
(2)
33 ⊕ v

(4)
33 = 0. If yes, goto the next step. Otherwise, go back to step 1.

Boomerang Attack on Step-Reduced SHA-512 337

Table 5. Example of a quart satisfying H(IV (3), M (3)) − H(IV (1), M (1)) −
H(IV (4), M (4)) + H(IV (2), M (2)) = 0 for 48 steps of the SHA-512 compression func-
tion.

IV (1) d51d68d22cd614bb ad109f079123bc43 3e30194750de9356 b934d669f648b886

2788083c8af206a4 f53a6844e79ca3ff 83333924f0fb45ee aeca4ed80990f3c1

IV (2) 551d68d22cd614bb ad109f079123bc43 be30194750de9356 3936f6621588b886

a788083c8af206a4 753a4844e79ca3ff 0333591cf87b45ee 2ec84edfead0f3c1

IV (3) 3ca41aa7cc2ed702 d28a0787d13ece62 aaa0ccee378c5884 45960268826fa783

126c152e3ed3c3d8 90227712dcb66469 c96f7308aa86be3c 5adecf0ca7c8cff9

IV (4) bca41aa7cc2ed702 d28a0787d13ece62 2aa0ccee378c5884 c5982260a1afa783

926c152e3ed3c3d8 10225712dcb66469 496f9300b206be3c dadccf148908cff9

M(1) 7897cf7f1c02fa18 c0e30c69c197577d f6016b4df4a5101b 44cf12bc7c5f7f89

d28a43112a41160f a481e26554edd575 8a4f5ecd8ee90f42 0c10896df299f0a3

8bd715591505422b 82f9e09643a6f94e 8ae783224a988778 d858b794e8b95a4a

d98d2e211f08b5e3 3185a2321c2013d0 493b7695ecb8bc63 40dde2bb03f050f7

M(2) 7897cf7f1c02fa18 c0e30c69c197577d f6016b4df4a5101b 44cf12bc7c5f7f89

d28a43112a41160f a481e26554edd575 8a4f5ecd8ee90f42 8c10896df299f0a3

8bd715591505422b 82f9e09643a6f94e 8ae783224a988778 d858b794e8b95a4a

d98d2e211f08b5e3 3185a2321c2013d0 493b7695ecb8bc63 40dde2bb03f050f7

M(3) 2ec928b5e9b2bae2 da67703373f8f947 c4c2b463d9c34453 a4d359b70a54809d

829416361d1acc84 49208682435343aa 8a4c7b5efe34b2e8 d6bcd7d0a70c5663

ef5a6123cadba871 a134d5cebfae6e21 e32944037719f06e 81033c0b86b9f18e

9d4d5849a78a6aa9 4634d6dd6a193ca7 783f014e5106c88e bcd2f996a68b63f7

M(4) 2ec928b5e9b2bae2 da67703373f8f947 c4c2b463d9c34453 a4d359b70a54809d

829416361d1acc84 49208682435343aa 8a4c7b5efe34b2e8 56bcd7d0a70c5663

ef5a6123cadba871 a134d5cebfae6e21 e32944037719f06e 81033c0b86b9f18e

9d4d5849a78a6aa9 4634d6dd6a193ca7 783f014e5106c88e bcd2f996a68b63f7

3. Select five 64-bit message words w
(1)
i (17 ≤ i ≤ 21) randomly. Let w

(2)
i =

w
(1)
i (17 ≤ i ≤ 21). Compute w

(1)
i and w

(2)
i (33 ≤ i ≤ 47, 0 ≤ i ≤ 16) in

forward and backward directions separately. Let w
(3)
i = w

(1)
i and w

(4)
i = w

(2)
i

when 33 ≤ i ≤ 37. Compute w
(3)
i and w

(4)
i when 38 ≤ i ≤ 47 and 0 ≤ i ≤ 21

by the message expansion.
4. Compute v

(j)
22 , v

(j)
21 , . . . , v

(j)
0 (j = 1, 2, 3, 4) in backward direction and v

(j)
34 ,

v
(j)
35 , . . . , v

(j)
48 (j = 1, 2, 3, 4) in forward direction. Check whether v

(2)
0 − v

(1)
0 =

v
(4)
0 − v

(3)
0 and v

(2)
48 − v

(1)
48 = v

(4)
48 − v

(3)
48 . If yes, output w

(j)
i (j = 1, 2, 3, 4;

0 ≤ i ≤ 15) and v
(j)
1 (j = 1, 2, 3, 4). Otherwise, go to step 3.

4.5 Complexity of the Attack

Based on the two differential paths and the message modification technique, we
construct a 48-step boomerang distinguisher for SHA-512 compression function.

338 H. Yu and D. Bai

The middle steps (23 to 33) of the boomerang distinguisher hold with probability
2−40. Besides, the probability of steps 22 to 1 of the top differential path is
about 2−45 and for steps 34 to 48 of the bottom path is 1. The probability of
the message expansion is 2−6. Hence, the complexity of the 48-step attack is
240 + 245 × 26 ≈ 251 if we only get a zero-sum distinguisher, while the generic
one is 2256.

The practical complexity of our attack leads to a practical boomerang distin-
guisher on up to 48-step compression function of SHA-512, and we are able to
find its corresponding boomerang quartets. An example of 48-step boomerang
distinguisher for SHA-512 compression function is given in Table 5.

5 Conclusion

In this work, we propose two step-reduced differential paths with high proba-
bilities of SHA-512 and build a boomerang distinguisher for the compression
function of SHA-512 up to 48 steps out of 80 steps with practical complexity
251, and the example of boomerang quartet is aslo presented. Our attack is the
best practical result on SHA-512 to date.

Appendix

Table 6. The message conditions in w
(1)
22 − w

(1)
32 .

Message Conditions

w
(1)
22 w

(1)
22,15 = w

(1)
22,14, w

(1)
22,44 = w

(1)
22,43 ⊕ w

(1)
22,35 ⊕ w

(1)
22,34 ⊕ w

(1)
22,15 ⊕ w

(1)
22,14,

w
(1)
22,48 = w

(1)
22,47 ⊕ w

(1)
22,14 ⊕ w

(1)
22,15 ⊕ w

(1)
22,6 ⊕ w

(1)
22,5, w

(1)
22,57 = w

(1)
22,56 ⊕ 1

w
(1)
23 w

(1)
23,41 = w

(1)
22,33 ⊕ w

(1)
23,34 ⊕ w

(1)
23,40,

w
(1)
23,42 = w

(1)
23,40 ⊕w

(1)
23,35 ⊕w

(1)
23,34 ⊕1, w

(1)
23,48 = w

(1)
23,40 ⊕w

(1)
23,41 ⊕w

(1)
23,47 ⊕1

w
(1)
24 w

(1)
24,2 = w

(1)
22,21 ⊕ w

(1)
22,63 ⊕ w

(1)
22,8, w

(1)
24,37 = w

(1)
22,57 ⊕ w

(1)
22,35 ⊕ w

(1)
22,44,

w
(1)
24,37 = w

(1)
22,57 ⊕ w

(1)
22,35 ⊕ w

(1)
22,44, w

(1)
24,44 = w

(1)
22,63 ⊕ w

(1)
22,41 ⊕ w

(1)
22,50,

w
(1)
24,50 = w

(1)
22,6 ⊕ w

(1)
22,48 ⊕ w

(1)
22,57, w

(1)
24,57 = w

(1)
22,12 ⊕ w

(1)
22,54 ⊕ w

(1)
22,63,

w
(1)
24,59 = w

(1)
22,15 ⊕ w

(1)
22,57

w
(1)
25 w

(1)
25,3 = w

(1)
23,22 ⊕ w

(1)
23,64 ⊕ w

(1)
23,9, w

(1)
25,45 = w

(1)
23,64 ⊕ w

(1)
23,42 ⊕ w

(1)
23,51,

w
(1)
25,58 = w

(1)
23,13 ⊕ w

(1)
23,55 ⊕ w

(1)
23,64

w
(1)
26 w

(1)
26,5 = w

(1)
24,24 ⊕ w

(1)
24,2 ⊕ w

(1)
24,11, w

(1)
26,18 = w

(1)
24,37 ⊕ w

(1)
24,15 ⊕ w

(1)
24,24,

w
(1)
26,25 = w

(1)
24,44 ⊕ w

(1)
24,22 ⊕ w

(1)
24,31, w

(1)
26,44 = w

(1)
24,63 ⊕ w

(1)
24,41 ⊕ w

(1)
24,50,

w
(1)
26,51 = w

(1)
24,6 ⊕ w

(1)
24,48 ⊕ w

(1)
24,57, w

(1)
26,60 = w

(1)
24,15 ⊕ w

(1)
24,57,

w
(1)
26,62 = w

(1)
24,17 ⊕ w

(1)
24,59

w
(1)
27 w

(1)
27,6 = w

(1)
25,25 ⊕ w

(1)
25,3 ⊕ w

(1)
25,12, w

(1)
27,26 = w

(1)
25,45 ⊕ w

(1)
25,23 ⊕ w

(1)
25,32,

w
(1)
27,52 = w

(1)
25,7 ⊕ w

(1)
25,49 ⊕ w

(1)
25,58,

w
(1)
27,57 = w

(1)
27,19 ⊕ w

(1)
27,39 ⊕ w

(1)
27,6 ⊕ w

(1)
24,44 ⊕ 1, w

(1)
27,61 = w

(1)
25,16 ⊕ w

(1)
25,58

(Continued)

Boomerang Attack on Step-Reduced SHA-512 339

Table 6. (Continued)

w
(1)
28 w

(1)
28,1 = w

(1)
26,20 ⊕ w

(1)
26,62 ⊕ w

(1)
26,7, w

(1)
28,6 = w

(1)
26,25 ⊕ w

(1)
26,3 ⊕ w

(1)
26,12,

w
(1)
28,8 = w

(1)
26,27 ⊕ w

(1)
26,5 ⊕ w

(1)
26,14, w

(1)
28,12 = w

(1)
26,31 ⊕ w

(1)
26,9 ⊕ w

(1)
26,18,

w
(1)
28,19 = w

(1)
26,38 ⊕ w

(1)
26,16 ⊕ w

(1)
26,25, w

(1)
28,21 = w

(1)
26,40 ⊕ w

(1)
26,18 ⊕ w

(1)
26,27,

w
(1)
28,25 = w

(1)
26,44 ⊕ w

(1)
26,22 ⊕ w

(1)
26,31, w

(1)
28,28 = w

(1)
26,47 ⊕ w

(1)
26,25 ⊕ w

(1)
26,34,

w
(1)
28,32 = w

(1)
26,51 ⊕ w

(1)
26,29 ⊕ w

(1)
26,38, w

(1)
28,38 = w

(1)
26,57 ⊕ w

(1)
26,35 ⊕ w

(1)
26,44,

w
(1)
28,41 = w

(1)
26,60 ⊕ w

(1)
26,38 ⊕ w

(1)
26,47, w

(1)
28,43 = w

(1)
26,62 ⊕ w

(1)
26,40 ⊕ w

(1)
26,49,

w
(1)
28,45 = w

(1)
26,64 ⊕ w

(1)
26,42 ⊕ w

(1)
26,51, w

(1)
28,47 = w

(1)
26,2 ⊕ w

(1)
26,44 ⊕ w

(1)
26,53,

w
(1)
28,50 = w

(1)
26,5 ⊕ w

(1)
26,47 ⊕ w

(1)
26,56, w

(1)
28,56 = w

(1)
26,11 ⊕ w

(1)
26,53 ⊕ w

(1)
26,62

w
(1)
29 w

(1)
29,7 = w

(1)
27,26 ⊕ w

(1)
27,4 ⊕ w

(1)
27,13, w

(1)
29,9 = w

(1)
27,28 ⊕ w

(1)
27,6 ⊕ w

(1)
27,15,

w
(1)
29,14 = w

(1)
22,56 ⊕ w

(1)
24,59, w

(1)
29,15 = w

(1)
22,57 ⊕ w

(1)
27,59 ⊕ 1,

w
(1)
29,20 = w

(1)
27,39 ⊕ w

(1)
27,17 ⊕ w

(1)
27,26, w

(1)
29,21 = w

(1)
22,63 ⊕ w

(1)
24,2 ⊕ w

(1)
29,8 ⊕ 1,

w
(1)
29,29 = w

(1)
27,48 ⊕ w

(1)
27,26 ⊕ w

(1)
27,35, w

(1)
29,33 = w

(1)
27,52 ⊕ w

(1)
27,30 ⊕ w

(1)
27,39,

w
(1)
29,42 = w

(1)
27,61 ⊕ w

(1)
27,39 ⊕ w

(1)
27,48, w

(1)
29,43 = w

(1)
22,56 ⊕ w

(1)
24,37 ⊕ w

(1)
29,34,

w
(1)
29,44 = w

(1)
22,56 ⊕ w

(1)
29,34 ⊕ w

(1)
29,43 ⊕ w

(1)
22,57 ⊕ w

(1)
29,35 ⊕ 1,

w
(1)
29,46 = w

(1)
27,1 ⊕ w

(1)
27,43 ⊕ w

(1)
27,52, w

(1)
29,47 = w

(1)
22,56 ⊕ w

(1)
24,50 ⊕ w

(1)
29,5,

w
(1)
29,48 = w

(1)
22,56 ⊕ w

(1)
29,6 ⊕ w

(1)
22,57 ⊕ w

(1)
29,5 ⊕ w

(1)
29,47,

w
(1)
29,50 = w

(1)
24,44 ⊕ w

(1)
29,41 ⊕ w

(1)
22,63, w

(1)
29,51 = w

(1)
27,6 ⊕ w

(1)
27,48 ⊕ w

(1)
27,57,

w
(1)
29,54 = w

(1)
24,57 ⊕ w

(1)
29,12 ⊕ w

(1)
22,63, w

(1)
29,55 = w

(1)
24,57 ⊕ w

(1)
29,13 ⊕ w

(1)
27,19 ⊕ w

(1)
27,61 ⊕ 1,

w
(1)
29,56 = w

(1)
22,56, w

(1)
29,57 = w

(1)
22,57,

w
(1)
29,58 = w

(1)
29,6 ⊕ w

(1)
29,48 ⊕ w

(1)
29,57 ⊕ w

(1)
29,7 ⊕ w

(1)
29,49 ⊕ 1, w

(1)
29,63 = w

(1)
22,63,

w
(1)
29,64 = w

(1)
27,19 ⊕ w

(1)
27,61

w
(1)
30 w

(1)
30,4 = w

(1)
28,23 ⊕ w

(1)
28,1 ⊕ w

(1)
28,10, w

(1)
30,11 = w

(1)
28,30 ⊕ w

(1)
28,8 ⊕ w

(1)
28,17,

w
(1)
30,22 = w

(1)
28,41 ⊕ w

(1)
28,19 ⊕ w

(1)
28,28, w

(1)
30,32 = w

(1)
28,51 ⊕ w

(1)
28,29 ⊕ w

(1)
28,38,

w
(1)
30,33 = w

(1)
30,11 ⊕ w

(1)
30,20 ⊕ w

(1)
30,32 ⊕ w

(1)
30,10 ⊕ w

(1)
30,19 ⊕ 1,

w
(1)
30,39 = w

(1)
28,58 ⊕ w

(1)
28,36 ⊕ w

(1)
28,45,

w
(1)
30,42 = w

(1)
25,45 ⊕ w

(1)
25,3 ⊕ w

(1)
30,22 ⊕ w

(1)
30,9 ⊕ w

(1)
28,6 ⊕ w

(1)
28,48 ⊕ w

(1)
28,57,

w
(1)
30,45 = w

(1)
30,23 ⊕ w

(1)
30,32 ⊕ w

(1)
30,44 ⊕ w

(1)
30,22 ⊕ w

(1)
30,31 ⊕ 1,

w
(1)
30,48 = w

(1)
28,3 ⊕ w

(1)
28,45 ⊕ w

(1)
28,54, w

(1)
30,51 = w

(1)
28,6 ⊕ w

(1)
28,48 ⊕ w

(1)
28,57,

w
(1)
30,52 = w

(1)
30,30 ⊕ w

(1)
30,39 ⊕ w

(1)
30,51 ⊕ w

(1)
30,29 ⊕ w

(1)
30,38,

w
(1)
30,54 = w

(1)
30,32 ⊕ w

(1)
30,41 ⊕ w

(1)
30,51 ⊕ w

(1)
30,29 ⊕ w

(1)
30,38 ⊕ 1,

w
(1)
30,57 = w

(1)
28,12 ⊕ w

(1)
28,54 ⊕ w

(1)
28,63, w

(1)
30,59 = w

(1)
28,14 ⊕ w

(1)
28,56,

w
(1)
30,64 = w

(1)
25,3 ⊕ w

(1)
30,22 ⊕ w

(1)
30,9 ⊕ 1

w
(1)
31 w

(1)
31,12 = w

(1)
29,31 ⊕ w

(1)
29,9 ⊕ w

(1)
29,18, w

(1)
31,23 = w

(1)
29,42 ⊕ w

(1)
29,20 ⊕ w

(1)
29,29,

w
(1)
31,40 = w

(1)
29,59 ⊕ w

(1)
29,37 ⊕ w

(1)
29,46, w

(1)
31,49 = w

(1)
29,4 ⊕ w

(1)
29,46 ⊕ w

(1)
29,55

w
(1)
32 w

(1)
32,5 = w

(1)
30,24 ⊕ w

(1)
30,2 ⊕ w

(1)
30,11, w

(1)
32,7 = w

(1)
30,26 ⊕ w

(1)
30,4 ⊕ w

(1)
30,13,

w
(1)
32,13 = w

(1)
30,33 ⊕ w

(1)
30,11 ⊕ w

(1)
30,20, w

(1)
32,16 = w

(1)
30,35 ⊕ w

(1)
30,13 ⊕ w

(1)
30,22,

w
(1)
32,20 = w

(1)
30,39 ⊕ w

(1)
30,17 ⊕ w

(1)
30,26, w

(1)
32,25 = w

(1)
30,45 ⊕ w

(1)
30,23 ⊕ w

(1)
30,32,

w
(1)
32,29 = w

(1)
30,48 ⊕ w

(1)
30,26 ⊕ w

(1)
30,35, w

(1)
32,32 = w

(1)
30,51 ⊕ w

(1)
30,29 ⊕ w

(1)
30,38 ⊕ 1,

w
(1)
32,34 = w

(1)
30,51 ⊕ w

(1)
30,29 ⊕ w

(1)
30,38 ⊕ 1, w

(1)
32,38 = w

(1)
30,57 ⊕ w

(1)
30,35 ⊕ w

(1)
30,44,

w
(1)
32,40 = w

(1)
30,59 ⊕ w

(1)
30,37 ⊕ w

(1)
30,46, w

(1)
32,47 = w

(1)
23,47 ⊕ 1,

w
(1)
32,49 = w

(1)
30,4 ⊕ w

(1)
30,46 ⊕ w

(1)
30,55, w

(1)
32,53 = w

(1)
30,8 ⊕ w

(1)
30,50 ⊕ w

(1)
30,59,

w
(1)
32,54 = w

(1)
30,9 ⊕ w

(1)
30,51 ⊕ w

(1)
30,60, w

(1)
32,56 = w

(1)
30,11 ⊕ w

(1)
30,53 ⊕ w

(1)
30,62,

w
(1)
32,58 = w

(1)
27,58, w

(1)
32,60 = w

(1)
30,15 ⊕ w

(1)
30,57, w

(1)
32,62 = w

(1)
30,17 ⊕ w

(1)
30,59

340 H. Yu and D. Bai

Table 7. The conditions of chaining variables in the middle steps.

Steps Conditions

23 a
(1)
23,56 = w

(1)
22,56 ⊕ 1, a

(1)
23,62 = w

(1)
22,63 ⊕ a

(1)
23,3 ⊕ w

(1)
22,56 ⊕ a

(1)
23,4 ⊕ a

(1)
23,57,

a
(1)
23,63 = w

(1)
22,63

b
(1)
23,41 = a

(1)
23,41

c
(1)
23,2 = a

(1)
23,2, c

(1)
23,7 = a

(1)
23,7, c

(1)
23,13 = a

(1)
23,13, c

(1)
23,23 = a

(1)
23,23,

c
(1)
23,27 = a

(1)
23,27, c

(1)
23,63 = b

(1)
23,63 ⊕ 1, c

(1)
23,64 = a

(1)
23,64

e
(1)
23,13 = b

(1)
23,13 ⊕ 1, e

(1)
23,56 = w

(1)
22,56 ⊕ 1, e

(1)
23,63 = w

(1)
22,63

f
(1)
23,2 = b

(1)
23,2 ⊕ 1, f

(1)
23,7 = b

(1)
23,7 ⊕ 1

g
(1)
23,41 = c

(1)
23,41, g

(1)
23,63 = f

(1)
23,63

24 a
(1)
24,2 = b

(1)
24,2, a

(1)
24,7 = b

(1)
24,7, a

(1)
24,13 = b

(1)
24,13, a

(1)
24,23 = b

(1)
24,23,

a
(1)
24,27 = b

(1)
24,27, a

(1)
24,41 = b

(1)
24,41, a

(1)
24,63 = a

(1)
23,63 ⊕ 1, a

(1)
24,64 = b

(1)
24,64

e
(1)
24,2 = 1, e

(1)
24,5 = 0, e

(1)
24,7 = 1, e

(1)
24,13 = 0

25 a
(1)
25,41 = h

(1)
24,41, a

(1)
25,36 = a

(1)
25,30 ⊕ h

(1)
24,41 ⊕ h

(1)
25,2 ⊕ 1,

a
(1)
25,46 = a

(1)
25,35 ⊕ h

(1)
24,41 ⊕ h

(1)
25,7 ⊕ 1, a

(1)
25,52 = a

(1)
25,47 ⊕ h

(1)
24,41 ⊕ d

(1)
25,13

e
(1)
25,5 = 1, e

(1)
25,13 = 0, e

(1)
25,23 = f

(1)
25,23 ⊕ 1, e

(1)
25,27 = f

(1)
25,27, e

(1)
25,64 = f

(1)
25,64

26 e
(1)
26,23 = d

(1)
25,23, e

(1)
26,27 = d

(1)
25,27, e

(1)
26,41 = c

(1)
26,41,

e
(1)
26,46 = e

(1)
26,23 ⊕ e

(1)
26,19 ⊕ e

(1)
23,5 ⊕ 1, e

(1)
26,54 = e

(1)
26,31 ⊕ e

(1)
26,27 ⊕ e

(1)
23,13 ⊕ 1,

e
(1)
26,64 = e

(1)
26,37 ⊕ e

(1)
26,41 ⊕ e

(1)
26,23 ⊕ g

(1)
26,23 ⊕ 1

27 e
(1)
27,23 = 0, e

(1)
27,27 = 0, e

(1)
27,64 = 0

a
(1)
27,41 = b

(1)
27,41

28 e
(1)
28,23 = 1, e

(1)
28,27 = 1, e

(1)
28,41 = f

(1)
28,41, e

(1)
28,64 = 1

29 e
(1)
29,41 = d

(1)
28,41, e

(1)
29,45 = e

(1)
29,41 ⊕ e

(1)
29,4 ⊕ h

(1)
29,27 ⊕ 1,

e
(1)
29,18 = e

(1)
29,14 ⊕d

(1)
28,41 ⊕h

(1)
29,64 ⊕1, e

(1)
29,64 = e

(1)
29,37 ⊕d

(1)
28,41 ⊕h

(1)
29,23 ⊕1

30 e
(1)
30,41 = 0

31 e
(1)
31,41 = 1

References

1. Aoki, K., Guo, J., Matusiewicz, K., Sasaki, Y., Wang, L.: Preimages for step-
reduced SHA-2. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
578–597. Springer, Heidelberg (2009)

2. Aumasson, J.-P., Meier, W.: Zero-sum Distinguishers for Reduced Keccak-f and for
the Core Functions of Luffa and Hamsi (2009). http://131002.net/data/papers/
AM09.pdf

3. Bai, D., Yu, H., Wang, G., Wang, X.: Improved boomerang attacks on SM3. In:
Boyd, C., Simpson, L. (eds.) ACISP 2013. LNCS, vol. 7959, pp. 251–266. Springer,
Heidelberg (2013)

4. Biham, E., Dunkelman, O., Keller, N.: The rectangle attack - rectangling the ser-
pent. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 340–357.
Springer, Heidelberg (2001)

http://131002.net/data/papers/AM09.pdf
http://131002.net/data/papers/AM09.pdf

Boomerang Attack on Step-Reduced SHA-512 341

5. Biham, E., Dunkelman, O., Keller, N.: Related-key boomerang and rectangle
attacks. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 507–525.
Springer, Heidelberg (2005)

6. Biryukov, A., Nikolić, I., Roy, A.: Boomerang attacks on BLAKE-32. In: Joux, A.
(ed.) FSE 2011. LNCS, vol. 6733, pp. 218–237. Springer, Heidelberg (2011)

7. Biryukov, A., Lamberger, M., Mendel, F., Nikolić, I.: Second-order differential
collisions for reduced SHA-256. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011.
LNCS, vol. 7073, pp. 270–287. Springer, Heidelberg (2011)

8. Eichlseder, A., Mendel F., Schläffer, M.: Branching heuristics in differential colli-
sion search with applications to SHA-512. In: FSE 2014 (accepted paper)

9. Leurent, G., Roy, A.: Boomerang attacks on hash function using auxiliary differ-
entials. In: Dunkelman, O. (ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 215–230.
Springer, Heidelberg (2012)

10. Guo, J., Ling, S., Rechberger, C., Wang, H.: Advanced meet-in-the-middle preim-
age attacks: first results on full tiger, and improved results on MD4 and SHA-2. In:
Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 56–75. Springer, Heidelberg
(2010)

11. Indesteege, S., Mendel, F., Preneel, B., Rechberger, C.: Collisions and other non-
random properties for step-reduced SHA-256. In: Avanzi, R.M., Keliher, L., Sica,
F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 276–293. Springer, Heidelberg (2009)

12. Isobe, T., Shibutani, K.: Preimage attacks on reduced tiger and SHA-2. In:
Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 139–155. Springer, Heidelberg
(2009)

13. Joux, A., Peyrin, T.: Hash functions and the (amplified) boomerang attack.
In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 244–263. Springer,
Heidelberg (2007)

14. Kelsey, J., Kohno, T., Schneier, B.: Amplified boomerang attacks against reduced-
round MARS and serpent. In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978,
pp. 75–93. Springer, Heidelberg (2001)

15. Khovratovich, D., Rechberger, C., Savelieva, A.: Bicliques for preimages: attacks on
Skein-512 and the SHA-2 family. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549,
pp. 244–263. Springer, Heidelberg (2012)

16. Kircanski, A., Shen, Y., Wang, G., Youssef, A.M.: Boomerang and slide-rotational
analysis of the SM3 hash function. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012.
LNCS, vol. 7707, pp. 304–320. Springer, Heidelberg (2013)

17. Lamberger, M., Mendel, F., Higher-Order Differential Attack on Reduced SHA-
256. Cryptology ePrint Archive: Report 2011/037 (2011)

18. Mendel, F., Nad, T.: Boomerang distinguisher for the SIMD-512 compression func-
tion. In: Bernstein, D.J., Chatterjee, S. (eds.) INDOCRYPT 2011. LNCS, vol. 7107,
pp. 255–269. Springer, Heidelberg (2011)

19. Mendel, F., Nad, T., Schläffer, M.: Finding SHA-2 characteristics: searching
through a minefield of contradictions. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 288–307. Springer, Heidelberg (2011)

20. Mendel, F., Nad, T., Schläffer, M.: Improving local collisions: new attacks on
reduced SHA-256. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013.
LNCS, vol. 7881, pp. 262–278. Springer, Heidelberg (2013)

21. Mendel, F., Pramstaller, N., Rechberger, C., Rijmen, V.: Analysis of step-reduced
SHA-256. In: Robshaw, M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 126–143. Springer,
Heidelberg (2006)

22. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryp-
tography. CRC Press, Boca Raton (1997)

342 H. Yu and D. Bai

23. National Institute of Standards and Technology: Announcing Request for Candi-
date Algorithm Nominations for a New Cryptographic Hash Algorithm (SHA-3)
Family. Federal Register 27(212), 62212–62220 (2007)

24. National Institute of Standards and Technology: FIPS PUB 180–3: Secure Hash
Standard. Federal Information Processing Standards Publication 180–3, U.S.
Department of Commerce, October 2008

25. Nikolić, I., Biryukov, A.: Collisions for step-reduced SHA-256. In: Nyberg, K. (ed.)
FSE 2008. LNCS, vol. 5086, pp. 1–15. Springer, Heidelberg (2008)

26. Sanadhya, S.K., Sarkar, P.: New collision attacks against up to 24-step SHA-2.
In: Chowdhury, D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT 2008. LNCS, vol.
5365, pp. 91–103. Springer, Heidelberg (2008)

27. Sasaki, Y.: Boomerang distinguishers on MD4-family: first practical results on full
5-Pass HAVAL. In: Miri, A., Vaudenay, S. (eds.) SAC 2011. LNCS, vol. 7118, pp.
1–18. Springer, Heidelberg (2012)

28. Sasaki, Y., Wang, L.: 2-Dimension Sums: Distinguishers Beyond Three Rounds of
RIPEMD-128 and RIPEMD-160, February 2012. http://eprint.iacr.org/2012/049.
pdf

29. Sasaki, Y., Wang, L., Takasaki, Y., Sakiyama, K., Ohta, K.: Boomerang distin-
guishers for full HAS-160 compression function. In: Hanaoka, G., Yamauchi, T.
(eds.) IWSEC 2012. LNCS, vol. 7631, pp. 156–169. Springer, Heidelberg (2012)

30. Wagner, D.: A generalized birthday problem. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 288–303. Springer, Heidelberg (2002)

31. Wagner, D.: The boomerang attack. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol.
1636, pp. 156C–169. Springer, Heidelberg (1999)

32. Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the full SHA-1. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)

33. Wang, X., Yu, H.: How to break MD5 and other hash functions. In: Cramer, R.
(ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005)

34. Wang, X., Yu, H.: Non-randomness of 39-step SHA-256. Presented at rump session
of EUROCRYPT (2008)

35. Yu, H., Chen, J., Wang, X.: The boomerang attacks on the round-reduced skein-
512. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp. 287–303.
Springer, Heidelberg (2013)

http://eprint.iacr.org/2012/049.pdf
http://eprint.iacr.org/2012/049.pdf

Collision Attack on 4-Branch, Type-2 GFN
Based Hash Functions Using Sliced Biclique

Cryptanalysis Technique

Megha Agrawal, Donghoon Chang, Mohona Ghosh(B),
and Somitra Kumar Sanadhya

Indraprastha Institute of Information Technology, Delhi (IIIT-D), Delhi, India
{meghaa,donghoon,mohonag,somitra}@iiitd.ac.in

Abstract. In this work, we apply the sliced biclique cryptanalysis tech-
nique to show 8-round collision attack on a hash function H based
on 4-branch, Type-2 Generalized Feistel Network (Type-2 GFN). This
attack is generic and works on 4-branch, Type-2 GFN with any para-
meters including the block size, type of round function, the number of
S-boxes in each round and the number of SP layers inside the round
function. We first construct a 8-round distinguisher on 4-branch, Type-2
GFN and then use this distinguisher to launch 8-round collision attack
on compression functions based on Matyas-Meyer-Oseas (MMO) and
Miyaguchi-Preneel (MP) modes. The complexity of the attack on 128-
bit compression function is 256. The attack can be directly translated
to collision attack on MP and MMO based hash functions and pseudo-
collision attack on Davies-Meyer (DM) based hash functions. When the
round function F is instantiated with double SP layer, we show the first
8 round collision attack on 4-branch, Type-2 GFN with double SP layer
based compression function. The previous best attack on this structure
was a 6-round near collision attack shown by Sasaki at Indocrypt’12. His
attack cannot be used to generate full collisions on 6-rounds and hence
our result can be regarded the best so far in literature on this structure.

Keywords: Sliced biclique cryptanalysis · Hash functions · Collision
attack · Generalized Feistel Network · Double SP layer

1 Introduction

Feistel structure is one of the basic building blocks of block ciphers and block
ciphers based constructions. A Feistel network divides the input message into two
sub-blocks (or two branches). Generalized Feistel Networks (GFN) are variants of
Feistel networks with more than two branches, i.e., a k-branch GFN partitions
the input message into k sub-blocks. They are sometimes favored over tradi-
tional Feistel scheme due to their high parallelism, simple design and suitability
for low cost implementations. Many types of generalized Feistel schemes have
been proposed and studied by researchers, e.g., unbalanced Feistel network [26],
c© Springer International Publishing Switzerland 2015
D. Lin et al. (Eds.): Inscrypt 2014, LNCS 8957, pp. 343–360, 2015.
DOI: 10.1007/978-3-319-16745-9 19

344 M. Agrawal et al.

alternating Feistel Network [2], type-1, type-2 and type-3 Feistel network [34]
etc. Type-2, GFN in particular has seen wide adoption in well known block
ciphers such as RC6 [23], SHAvite3 [3], CLEFIA [28], HIGHT [13] etc. Secu-
rity analysis of generalized Feistel network [4,11,27,30,32] has been an active
area of research for past many years. In fact, a comprehensive study done by
Bogdanov et al. in [6] suggests that Type-2 GFN and its variants are more robust
and secure against differential and linear cryptanalysis as compared to Type-1
GFN. Hence, we choose Type-2 GFN (shown in Fig. 1) as the basis for our study.

⊕F ⊕F

B1 B2 B3 B4

Fig. 1. 4 branch, Type-2 Gener-
alized Feistel Structure with right
cyclic shift.

S1

S2

Sn

S1

S2

Sn

PP

K1 K2

Fig. 2. Double SP Function.

Biclique cryptanalysis technique has garnered considerable interest amongst
cryptographic community in the past couple of years. This approach, which is a
variant of meet-in-the-middle attack, was first introduced by Khovratovich et al.
in [16] for preimage attack on hash functions Skein and SHA-2. The concept was
taken over by Bogdanov et al. [5] to successfully cryptanalyze full round AES
and has been subsequently adopted to break many other block ciphers such
as ARIA [33], SQUARE [19], TWINE [7], HIGHT [12], PRESENT [1] etc. All
these biclique related attacks are carried out under the “unknown key settings”
where the key used is unknown to the attacker and the main motive is to recover
the secret key. However, this may not always be the case. Particularly, in the
case of block cipher based hash modes such as Matyas-Meyer-Oseas (MMO) and
Miyuguchi-Preneel (MP), initial vector IV (which acts as the key to the under-
lying block cipher) is a fixed public constant assumed to be known apriori to the
attacker. Such scenarios are called “known key settings” in the attack model.
Under such conditions, the aim of the attacker is to find a property which dis-
tinguishes known key instantiations of target block cipher from random permu-
tations [17,20]. These settings are considered much stronger from the attacker’s
point of view since he unwillingly loses some degree of freedom reducing chances
of carrying out actual generic attacks such as finding full collisions. Until recently,
most of the collision attacks on hash functions under MMO and MP modes were
restricted to variants of generic attack such as pseudo-collisions [18] and near
collisions [29]. In [15], Khovratovich used biclique technique to mount actual
collision and preimage attacks on Grøstl and Skein under known key settings.
He proposed a variant of classical biclique technique used in [5] to carry out his
attack. He termed this variant as sliced biclique technique (details of which are

Collision Attack on 4-Branch, Type-2 GFN Based Hash Functions 345

discussed in Sect. 3.3). Though the results of this work are quite interesting, yet
they have not been studied further. Although the security of GFN have been
studied earlier under known key settings [8,9,14,24,25], all these previous stud-
ies have utilized rebound attack technique [21] for their cryptanalysis. These
factors motivated us to investigate the use of sliced biclique framework to study
Type-2, GFN based constructions under known key settings.

It is generally desired that round function F inside a generalized Feistel
network should provide good diffusion and confusion properties. This is often
realized by implementing F as a substitution-permutation network (nonlinear S-
box transformation followed by linear permutation) as part of the round function
design. There is a general belief that increasing the number of active S-boxes
provides more security against certain attacks. In [6], Bogdanov and Shibutani
stressed on the importance of double SP (substitution-permutation) layers in
the round function of Feistel networks as opposed to the single SP layer in the
traditional design. They analyzed several designs such as single SP, double SP,
SPS (substitution-permutation-substitution) and multiple SP layers and showed
that double SP (shown in Fig. 2) layer achieves maximum security with respect
to proportion of active S-boxes in all S-boxes involved against differential and
linear cryptanalysis. They especially compared double SP structure with sin-
gle SP and showed that for Type-1 and Type-2 GFNs, proportion of linearly
and differentially active S-boxes in double SP instantiations is 50 % and 33 %
higher respectively as compared to the single SP instantiation. Their research
advocated a possibility of designing more efficient and secure block cipher based
constructions using double SP layer. In [24], Sasaki presented a 7-round distin-
guisher attack on 4-branch, type-2 GFN with double SP layer and a 6-round
near collision attack on the compression function based on the same structure.
Kumar et al. [8] further improved the distinguishing attack on 4-branch, type-2
GFN with double SP layer by showing a 8-round distinguisher for the same.
However, the form of truncated differential trails followed in [8,24] cannot be
used to launch collision attack when the above GFN structure is instantiated in
compression function modes under known key settings.

Our Contributions. The main contributions of this work are as follows:

1. We apply sliced biclique technique to construct a 8-round distinguisher on
4-branch, Type-2 Generalized Feistel Network.

2. We use the distinguisher so constructed to demonstrate a 8-round collision
attack on 4-branch, Type-2 GFN based compression functions (in MMO and
MP mode) under known key settings with a complexity of 256 (on 128-bit
hash output). The attack can be directly translated to collision attacks on
MMO and MP mode based hash functions and pseudo-collision attacks on
Davies-Meyer (DM) mode based hash functions.

3. When the round function F is instantiated with double SP layer, we demon-
strate the first 8-round collision attack on 4-branch, Type-2 GFN with double
SP layer.

346 M. Agrawal et al.

4. We investigate CLEFIA which is a real world-implementation of 4-branch,
Type-2 GFN and demonstrate an 8-round collision attack on CLEFIA based
hash function with a complexity of 256.

The paper is organized as follows. In Sect. 2 we give the notations used in
our paper followed by Sect. 3 which explains the important preliminaries. In
Sect. 4, we present our distinguishing attack on 8 rounds of 4 branch, Type-2
GFN under fixed key settings. We use this distinguishing attack to show collision
attack on 4-branch, Type-2 GFN based compression function in Sect. 5 followed
by extension of this attack to hash functions in Sect. 6. Finally in Sect. 7, we
summarize and conclude our work. The collision attack on CLEFIA based hash
function is discussed in AppendixA.

2 Notation

We consider 4-branch, type-2, generalized Feistel network for our attack. Fol-
lowing notation is followed in the rest of the paper.

N : Input message size (in bits)
n : Message word size (in bits) which is input to each branch, i.e.,

n = N/4
$R : Round R

$Rp : pth word in round R. Each round has 4 words corresponding to 4
partitions of 4-branch GFN, i.e., 1 ≤ p ≤ 4

$Rl
p : lth block of word p in round R

3 Preliminaries

In this section, we give a brief overview of the key concepts used in our crypt-
analysis technique to facilitate better understanding.

3.1 Type-2 Generalized Feistel Network (GFN) Instantiated
with Double SP Layer

One round of Type-2 GFN is shown in Fig. 3. A GFN with 4 branches divides the
input B into four equal parts [B1, B2, B3, B4]. A round of Type-2 GFN with left
cyclic shift outputs [F (B1) ⊕ B2, B3, F (B3) ⊕ B4, B1] for some keyed nonlinear
function F [6]. On the other hand, a round of Type-2 GFN with right cyclic shift
outputs [F (B3)⊕B4, B1, F (B1)⊕B2, B3] (shown in Fig. 1) for round function F .

The round transformation function F when defined by non-linear S-box layer
followed by a permutation layer P exhibits substitution permutation structure.
The permutation P is generally implemented using standard MDS matrix [22,31].

Collision Attack on 4-Branch, Type-2 GFN Based Hash Functions 347

⊕F ⊕F

B1 B2 B3 B4

Fig. 3. 4-branch, Type-2, Generalized Feistel Network with left cyclic shift.

If this SP structure is applied twice one after another then it is called double
SP, as shown in Fig. 2. Few reasons favoring double SP over single SP function
are as follows [6]:

– The second S-box in double SP provides larger number of active S boxes when
differential and linear attacks are applied.

– The second permutation layer in double SP structure limits the differential
effect, i.e., number of differential trails resulting in same differential is smaller
as compared to round function having single permutation layer.

3.2 t-bit Partial Target Preimage Attack

Let the output of a hash function H with initial chaining value IV and message
M be denoted by h, i.e., h = H(IV , M). In this attack, when the attacker is
given t-bits of h, his aim is to find a message M ′ such that the hash output h′ =
H(IV , M ′) matches these t-bits of h and at the same positions. The other bits
of hash output H(IV , M ′) are generated randomly.

3.3 Sliced Biclique Cryptanalysis

In this section, we describe sliced biclique cryptanalysis technique to show preim-
age attack on hash function. Later, we use this preimage attack to launch col-
lision attack. We consider MMO mode for our explanation. In the MMO mode
H = EIV (M) ⊕ M , where IV is the initial chaining value acting as the key
for the block cipher E, M is the message and H is the hash value produced.
Since we assume IV to be public and hence known to the attacker, the cipher E
becomes a simple permutation, i.e., H = E(M) ⊕ M . Sliced biclique technique
can then be applied for preimage search as follows.

The attacker first selects an internal intermediate state Q and partitions the
full state space into sets of size 22d represented as Qi,j for some suitable range of
i and j. Each set is defined by its base state Q0,0 which is randomly selected by
the attacker. Let f be a sub-permutation within E which maps Qi,j to another
set of intermediate states Pi,j , i.e., Qi,j −→

f
Pi,j . These Qi,j and Pi,j are obtained

using 2d Δi and ∇j differentials as follows:

348 M. Agrawal et al.

1. Q0,0 −→
f

P0,0 (base computation),

2. Qi,0 = Q0,0 ⊕ Δi,
3. Qi,0 −→

f
Pi,0,

4. Q0,j = Q0,0 ⊕ ∇j ,
5. Q0,j −→

f
P0,j ,

6. Qi,j = Qi,0 ⊕ ∇j ,
7. Pi,j = P0,j ⊕ Δi, where 0 ≤ i, j ≤ 2d − 1.

It has been shown in [15] that Qi,j −→
f

Pi,j forms a biclique, if Δi and ∇j trails

are non-interleaving, i.e., they do not share any active non-linear component
between them.1 The parameter d is called the dimension of the biclique. Each
Q0,0 defines one biclique structure consisting of 22d intermediate states.

To find a valid preimage M , the attacker then applies meet-in-the-middle
(MITM) technique in the rest of the rounds. In the MITM stage, the attacker
chooses an internal state v ∈ {E \f} and computes its value both in the forward
direction as a function of P (denoted as −→vi,j) and in the backward direction as
a function of Q (denoted as ←−vi,j) respectively for every (i, j) pair. This process
is shown in Fig. 4.

Qi,j Pi,j v−→vi,j ←−vi,j

IV E(M)

←−vi,j
f

Fig. 4. Biclique Attack.

To compute ←−v in the backward direction, the value of E(M) is required (as
shown in Fig. 4) which can be easily calculated by E(M) = H ⊕ M . To reduce
the complexity of the attack, the attacker tries to choose the state v such that
in the forward direction it only depends on j and in the backward direction it
only depends on i, i.e., states Qi,j and Pi,j form a sliced biclique if the following
conditions hold [15]2:

∀i, j : −→vi,j = −→v0,j ,

∀i, j : ←−vi,j = ←−vi,0.

Let −→v0,j = −→vj and ←−vi,0 = ←−vi . Finally, the attacker checks if:

∃i, j : −→vj = ←−vi .
1 It is not necessary for independent biclique/sliced biclique attack to have Δ and ∇

differentials start from distinct ends of the subcipher. The only requirement that is
essential is that both trails should be non-interleaving.

2 In the traditional biclique key recovery attack in [5], this special restriction on v is
not required.

Collision Attack on 4-Branch, Type-2 GFN Based Hash Functions 349

If such an (i, j) pair exists, the corresponding Qi,j becomes the preimage candi-
date. If not, then the attacker picks up another set of states with different base
value Q0,0 and repeats the whole procedure.

Complexity of the attack. The sliced biclique attack comprises of 2 phases -
biclique construction phase and MITM phase. Let the block cipher E consist of y
rounds and the number of rounds covered in the biclique phase be x. This implies
the number of rounds covered in the MITM phase is y − x = z. For each set of
messages, in the biclique phase, since all Δi
= ∇j and Δi trails are independent
of ∇j trails, the construction of biclique is simply reduced to computation of Δi

and ∇j trails independently which requires no more than 2.2d computations of
f , i.e.,

Complexity of biclique phase = 2d × x

y
+ 2d × x

y
= 2d+1 × x

y
.

Similarly, in the MITM phase, the attacker needs to call each of −→vj and ←−vi
for 2d times, i.e., a total of 2d+1 times. Let the number of rounds covered in the
forward and backward direction be a and b respectively. Hence,

Complexity of MITM phase = 2d × a

y
+2d × b

y
= 2d × a + b(= z)

y
= 2d × y − x

y
.

It is now easy to check that the overall complexity of sliced biclique preimage
attack for one set of messages does not require more than 2d full computations
of E, i.e.,

Total Complexity = 2d+1 × x

y
+ 2d × y − x

y
= 2d × (1 +

x

y
) ≈ 2d since, x � y.

If m bicliques are constructed, then the total cost is m×2d. For further reading on
sliced biclique and classical bicliques one can refer to [15] and [5,16] respectively.

4 Distinguishing Attack on 4-Branch, Type-2
GFN Based Permutation Using Sliced Biclique
Cryptanalysis Technique

In this section, we present a 8-round distinguisher on permutation Ek (where k
is the key) which is a 8-round, 4-branch, Type-2 Generalized Feistel Network.
We assume that the S-box layer has good differential property and the P-layer
implements standard MDS matrix.3 We also assume that the key k (that is IV in
the overlying hash function construction) is a fixed constant. The distinguishing
property used by the distinguisher is as follows:

3 In this line of work, implementation of P-layer as a standard MDS matrix having
optimal branch number is believed to be a good design choice [6,14,24,25].

350 M. Agrawal et al.

Distinguishing Property. Let Ek be a block cipher with message size N =
128-bits. The aim of the adversary is to collect 216 (plaintext, ciphertext) pairs
such that the XOR of the lower 16 bits of the third word in the plaintext and
the lower 16 bits of the third word in the ciphertext (where each word is of size
32-bits) is always a 16-bit constant value chosen by the attacker, i.e.,

(plaintext)23 ⊕ (ciphertext)23 = constant (1)

where, —constant— = 16-bits.4

In case of random permutation. When Ek is a random permutation, the
probability that any (plaintext, ciphertext) pair satisfies the desired property
(as mentioned in Eq. 1) is approximately 2−16. This means that the expected
time complexity to generate one such (plaintext, ciphertext) pair is 216. Hence,
expected time complexity to generate 216 such (plaintext, ciphertext) pairs is 232.

In case of E instantiated with 4-branch, Type-2, GFN. For the illustra-
tion of our attack, we consider N =128-bit and n = 32-bit each. The attacker
first chooses a random base value Q0,0 (as discussed in Sect. 3.3). Let Δi =
(0̄0̄ | i0̄ | 0̄0̄ | 0̄0̄) and ∇j = (0̄0̄ | 0̄j | 0̄0̄ | 0̄0̄) where (0 ≤ i, j ≤ 216 − 1) be
the Δ and ∇ differences injected in Round 4. Here each 0̄ represents 016. The
propagation of Δi trail (marked as ‘—’ in green) and ∇j trail (marked as ‘-’ in
red) is shown in Figs. 5 and 6 respectively. In these figures, the four words shown
in each round are the corresponding inputs to four branches at each round. In
∇j trail, the attacker first injects the given j difference in $42

2 word only. As
the ∇j trail propagates as shown in Fig. 6, $41 and $44 words are subsequently
affected. The dimension of this biclique is d=16.

It is easy to check that Δi and ∇j trails are independent and do not share
any non-linear components (shown in Fig. 7) between them in rounds 4 and 5.

⊕ ⊕F F

⊕ ⊕F F

R4

R5

⊕ ⊕F F

R6

i

Fig. 5. Δi difference injection in Round 4 and its propagation (Color figure online).

4 Here (plaintext)23 denotes second block of third word of plaintext as described in
Sect. 2. The term (ciphertext)23 can be understood similarly.

Collision Attack on 4-Branch, Type-2 GFN Based Hash Functions 351

Thus, a 2-round biclique (consisting of 22d = 232 messages) is formed where
the biclique covers rounds $4 and $5. Now the aim of the attacker is to find
a matching variable v which only depends on Δi trail in one direction and ∇j

trail in the other direction (as discussed in Sect. 3.3). Hence, from round 6 only
∇j trail is propagated in the forward direction and from round 3 only Δi trail
is propagated in the backward direction (as shown in Fig. 8). At the end of
8th round it can be seen that $12

3 (marked in yellow in Fig. 8) in the backward
direction is not affected by Δi trail (i.e., will be affected by ∇j trail only) and
$82

3 (marked in yellow in Fig. 8) in the forward direction remains unaffected by
∇j trail (i.e., will be affected by Δi trail only). Through feed forward operation,
16 bits of $12

3 can then be matched with 16 bits of $82
3. Hence, in this attack we

choose $82
3 to be our matching variable v and —v— = 16 which is denoted by t.

⊕ ⊕F F

⊕ ⊕F F

R4

R5

⊕ ⊕F F

R6

j

Fig. 6. ∇j difference injection in Round 4 and its propagation (Color figure online).

⊕ ⊕F F

⊕ ⊕F F

R4

R5

⊕ ⊕F F

R6

j
i

Fig. 7. 2-round biclique placed in Round 4 - 5.

352 M. Agrawal et al.

⊕ ⊕F F

⊕ ⊕F F

⊕ ⊕F F

⊕ ⊕F F

⊕ ⊕F F

⊕ ⊕F F

⊕ ⊕F F

⊕ ⊕F F

⊕
H

Depends on Depends on
i trail j trail

v

Δ
i
trail

∇
j
trail

$1

$2

$3

$4

$5

$6

$7

$8

Fig. 8. Matching in 8 rounds of 4-branch Type-2 GFN with right cyclic shift (Color
figure online).

Collision Attack on 4-Branch, Type-2 GFN Based Hash Functions 353

Once the matching variable v is obtained, as mentioned above, through our
biclique attack, 22d = 232 (plaintext, ciphertext) pairs are generated in a set.
Out of these 22d (plaintext, ciphertext) pairs, there exists 22d−t = 216 (plaintext,
ciphertext) pairs which match on matching variable v. In other words, if we XOR
the lower 16 bits of the third word in the plaintext and the lower 16 bits of the
third word in the ciphertext (i.e., at positions $12

3 and $82
3 respectively).

Equation 1 will always be satisfied. These 216 (plaintext, ciphertext) pairs
will be generated with a computational complexity of 2d = 216 (as discussed
in § 3.3) which is lower than the computational complexity of 232 in case of
random permutation. Hence, a valid distinguisher for E when instantiated with
4-branch, Type-2, GFN is constructed.

Similarly, our attack can be applied to messages of other sizes as well. In
Table 1, we report the complexity values for our distinguisher attack on message
inputs of different size.

Table 1. Complexity values for our distinguishing attack on message inputs of different
size. Here N represents the input message size in bits and #(P-C) pairs represent the
number of plaintext-ciphertext pairs needed for our attack. The number of plaintext-
ciphertext pairs depends on the size of matching variable v.

N n #(P-C) pairs Complexity of our
attack

Complexity of random
permutation

64 16 28 28 216

256 64 232 232 264

512 128 264 264 2128

5 Collision Attack on 4-Branch, Type-2, GFN Based
Compression Function

The distinguisher constructed in the previous section can be used to launch col-
lision attack on 4-branch, Type-2, GFN based compression function as described
below. Here the compression function is assumed to be in MMO mode and the
output is assumed to be of N = 128-bits.

– The attacker first chooses a t-bit constant of his choice.
– In the above attack, the attacker then finds a matching variable v, where

—v— ≤ t. In our attack, —v— = t = 16 bits.
– There are 22d = 232 messages in a biclique set. Out of these 22d messages,

only 22d−t messages will match on v. This means that out of 232 messages
only 216 messages will survive the MITM phase.

– In other words, it can be said that the attacker has generated 216 t-bit partial
target preimages with these t-bits equal to an arbitrarily chosen constant
selected in first step.

354 M. Agrawal et al.

– These 216 t-bit partial target preimages collide on t = 16 bits. Hence, if the
attacker generates 2(N−t)/2 such preimages which collide on t-bits, there exists
a colliding pair with high probability which collide on the remaining N −t bits
as well. Thus, the attacker will generate 2(128−16)/2 = 256 such t-bit partial
target preimages to obtain a collision on complete hash output H with high
probability.

– Now, one sliced biclique generates 216 t-bit partial target preimages. Hence,
to generate 256 such preimages, the attacker needs to construct 256−16 =
240 sliced bicliques (or, 2(N−t)/2−(2d−t) bicliques where, 2(N−t)/2 = 256 and
2(2d−t) = 216).

Complexity of the collision attack . Since the computational complexity of
performing sliced biclique attack once is 2d = 216 (as discussed in Sect. 3.3),
hence computational complexity of running sliced biclique attack 240 times is
240 × 216 = 256. Therefore, given IV , the complexity to find a pair of messages
(M , M ′) such that CF(IV , M) = CF(IV, M ′), when CF (i.e., compression
function) is instantiated with 8-rounds of 4-branch type-2 GFN is 256 (< 264

brute-force attack). Here, compression function output is of 128-bits size. In
general, the complexity of the attack is given by the following formula:

Complexity = 2
(N−t)

2 −(2d−t) × 2d.

For the purpose of illustration, we show the cost of our attack for various
message sizes in Table 2.

Table 2. Complexity values for our collision attack on message inputs of different size.
Here N represents the input message size in bits, n represents the branch word size in
bits and t represents the size of matching variable v in bits. In our attack d = t always.

N n t Rounds Complexity of Brute force

our attack complexity

64 16 8 8 228 232

128 32 16 8 256 264

256 64 32 8 2112 2128

512 128 64 8 2224 2256

Since we need to store all partial preimages to find the colliding pair, memory
required is of the order of 256 (for 128-bit output). However, it is mentioned in [15]
that memoryless equivalents of these attacks do exist. In Appendix A, we show
the collision attack on CLEFIA which is a real world implementation of 4-branch,
Type-2, GFN.

Collision Attack on 4-branch Type-2 GFN with Double SP layer . The
above attack technique is generic and independent of the internal F-function

Collision Attack on 4-Branch, Type-2 GFN Based Hash Functions 355

Table 3. Comparison of our results with previous cryptanalytic results on 4-branch,
Type-2, GFN with double SP layer.

Rounds Attack type Reference

6 Near collisions [24]

7 Distinguishing [24]

8 Distinguishing [8]

8 Distinguishing This work, § 4

8 Full collisions This work, § 5

structure. Hence, if we instantiate the round function F with double SP-layer,
the above attack can be directly translated to 8-round collision attack on 4-
branch, Type-2 GFN with double SP layer based compression function with a
complexity of 256. This betters the 6-round near collision attack on the same
structure shown by Sasaki in [24]. In Table 3 we compare our result with the
previous cryptanalysis results on 4-branch, Type-2 GFN with double SP layer.

As discussed above, since the attack technique is generic, presence of multiple
SP layers in the round function F does not provide any extra resistance against
sliced biclique attack as compared to double SP layer. In fact, in our collision
attack neither the attack complexity nor the the number of rounds attacked
change if double SP layer is replaced by multiple SP layers. This is in contrast
to attacks such as rebound attacks [21], where the number of SP layers inside
the round function F influence the number of rounds attacked [8,9,14,24,25] in
Generalized Feistel Networks.

6 Collision Attack on Hash Functions

In this attack, given the IV, the aim of the attacker is to find a pair of mes-
sages (M , M ′) such that H(M) =H(M ′). To do so, the attacker first finds two

M1 M2

H(M)IV E E
h1

M ′
1

M2

H(M’)IV E E
h1

Fig. 9. Collision Attack.

356 M. Agrawal et al.

messages M1 and M ′
1 which collide to same hash value h1 using collision attack

technique described in Sect. 5 with a complexity of 256. Now he concatenates
any message M2 with M1 and M ′

1 (as shown in Fig. 9) such that H(M1‖M2) =
H(M ′

1‖M2). Message M2 can also be chosen such that it satisfies padding restric-
tions (where length of input message is appended at the end) if required. In this
way, collision attack can be carried out on 4-branch, Type-2, GFN with dou-
ble SP layer based hash function with a complexity of 256. Since we assume
known key settings (i.e., key part to the underlying block cipher is known to the
attacker), hence this attack can be used to generate collisions in MP and MMO
based hash functions but pseudo collisions in DM based hash functions.

7 Conclusions

In this work, we apply the sliced biclique technique to show collision attack on
8-rounds of 4-branch, type-2 GFN. When it is instantiated with double SP layer,
we present the first 8-round collision on 4-branch, type-2 GFN with double SP
layer. It would be interesting to apply sliced biclique technique to attack other
potential targets. One possible extension can be to apply this attack technique
on 2-branch, Type-2 GFN such as Shavite-3 etc.

Acknowledgements. The authors would like to thank the anonymous reviewers for
their valuable comments as it helped in improving the quality of the paper.

A 8-Round Collision Attack on CLEFIA Based
Compression Function

In this section, we investigate CLEFIA which is a real world-implementation of
4-branch, Type-2 GFN. In the attacks discussed in Sects. 4 and 5, we considered
4-branch, Type-2 GFN with double SP layer where right cyclic shift is applied
on the message sub-blocks at the end of each round. This was done to facilitate
direct comparison with previous results [8,24] on the same structure. However
in [34], Type-2 GFN’s have been defined with left cyclic shift and is followed
in all the practical implementations of Type-2 GFN structure - e.g., RC6 [23],
CLEFIA [28], HIGHT [13] etc. Yet, similar attack procedure (as discussed in
Sect. 5) can be applied on CLEFIA but with different Δi and ∇j trails. CLEFIA
is a 128-bit block cipher and supports three key lengths - 128-bit, 192-bit and
256-bit. The number of rounds correspondingly are 18, 22 and 26. Here, in this
section, we examine CLEFIA with 128-bit keysize.5 WK0 and WK1 represent

5 The attack works on other key sizes as well since key is constant under known key
settings.

Collision Attack on 4-Branch, Type-2 GFN Based Hash Functions 357

the whitening keys at the start of the cipher. Each round has two 32-bit round
keys RK2i−2 and RK2i−1 (where, 1 ≤ i ≤ 18).

⊕ ⊕F F

⊕ ⊕F F

R4

R5

RK7RK6

RK8 RK9

i

Fig. 10. Δi difference
injection in Round 4 and
its propagation (Color
figure online)

⊕ ⊕F F

⊕ ⊕F F

R4

R5

RK7RK6

RK8 RK9

j

Fig. 11. ∇j difference
injection in Round 5 and
its propagation (Color
figure online)

⊕ ⊕F F

⊕ ⊕F F

R4

R5

RK7RK6

RK8 RK9

i

j

Fig. 12. 1-round biclique
placed in Round 4

In this attack, let Δi = (i0̄ | 0̄0̄ | 0̄0̄ | 0̄0̄) be the Δ difference injected in
Round 4 and ∇j = (0̄0̄ | j0̄ | 0̄0̄ | 0̄0̄) be the ∇ difference injected in Round 5
where (0 ≤ i, j ≤ 216 − 1). Here each 0̄ represents 016. The attacker first chooses
a random base value Q0,0 and then injects the Δi and ∇j differences accordingly.
The propagation of Δi trail (marked as ‘—’ in green) and ∇j trail (marked as ‘-’
in red) is shown in Figs. 10 and 11 respectively. The dimension of this biclique is
d=16. It is easy to check that Δi and ∇j trails are independent and do not share
any non-linear components (shown in Fig. 12) between them in round 4. Thus a
1-round biclique (consisting of 22d = 232 messages) is formed in $4 round.

From round 5 only ∇j trail is propagated in the forward direction and from
round 3 only Δi trail is propagated in the backward direction (as shown in
Fig. 13). At the end of 8th round it can be seen that $12

3 (marked in yellow in
Fig. 13) in the backward direction is not affected by Δi trail and $82

3 (marked
in yellow in Fig. 13) in the forward direction remains unaffected by ∇j trail.
Through feed forward operation, 16 bits of $12

3 can then be matched with 16 bits
of $82

3. Hence, in this attack we choose $82
3 to be our matching variable v. The

steps of collision attack for CLEFIA are exactly the same as discussed in Sects. 5
and 6. Therefore, we can generate collisions in 8-rounds of CLEFIA based hash
function with a complexity of 256.

358 M. Agrawal et al.

⊕

R1

⊕F F

⊕

R2

⊕F F

⊕ ⊕F F

⊕ ⊕F F

⊕ ⊕F F

R3

R4

R5

⊕ ⊕F F

⊕ ⊕F F

⊕ ⊕F F

R6

R7

R8

⊕ ⊕WK0 WK1
RK0 RK1

RK2 RK3

RK4 RK5

RK7RK6

RK8 RK9

RK11RK10

RK12 RK13

RK14 RK15

Depends on i trail Depends on j trailv

Δ
i
trail

∇
j
trail

⊕

B
iclique

H

Fig. 13. Matching in 8 rounds of CLEFIA (Color figure online)

Collision Attack on 4-Branch, Type-2 GFN Based Hash Functions 359

References

1. Abed, F., Forler, C., List, E., Lucks, S., Wenzel, J.: Biclique cryptanalysis of
PRESENT, LED, And KLEIN. Cryptology ePrint Archive, Report 2012/591
(2012). http://eprint.iacr.org/2012/591

2. Anderson, R.J., Biham, E.: Two practical and provably secure block ciphers:
BEARS and LION. In: Gollmann [10], pp. 113–120

3. Biham, E., Dunkeman, O.: The SHAvite-3 Hash Function. Submission to NIST
SHA-3 competition. www.cs.technion.ac.il/orrd/SHAvite-3/

4. Bogdanov, A.: On the differential and linear efficiency of balanced Feistel networks.
Inf. Process. Lett. 110(20), 861–866 (2010)

5. Bogdanov, A., Khovratovich, D., Rechberger, C.: Biclique cryptanalysis of the full
AES. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp.
344–371. Springer, Heidelberg (2011)

6. Bogdanov, A., Shibutani, K.: Generalized Feistel networks revisited. Des. Codes
Cryptogr. 66(1–3), 75–97 (2013)

7. Çoban, M., Karakoç, F., Boztaş, Ö.: Biclique cryptanalysis of TWINE. In:
Pieprzyk, J., Sadeghi, A.-R., Manulis, M. (eds.) CANS 2012. LNCS, vol. 7712,
pp. 43–55. Springer, Heidelberg (2012)

8. Chang, D., Kumar, A., Sanadhya, S.: Security analysis of GFN: 8-round distin-
guisher for 4-branch type-2 GFN. In: Paul, G., Vaudenay, S. (eds.) INDOCRYPT
2013. LNCS, vol. 8250, pp. 136–148. Springer, Heidelberg (2013)

9. Dong, L., Wenling, W., Shuang, W., Zou, J.: Known-key distinguishers on type-1
Feistel scheme and near-collision attacks on its hashing modes. Front. Comput.
Sci. 8(3), 513–525 (2014)

10. Gollmann, D. (ed.): FSE 1996. LNCS, vol. 1039. Springer, Heidelberg (1996)
11. Hoang, V.T., Rogaway, P.: On generalized Feistel networks. In: Rabin, T. (ed.)

CRYPTO 2010. LNCS, vol. 6223, pp. 613–630. Springer, Heidelberg (2010)
12. Hong, D., Koo, B., Kwon, D.: Biclique attack on the full HIGHT. In: Kim, H. (ed.)

ICISC 2011. LNCS, vol. 7259, pp. 365–374. Springer, Heidelberg (2012)
13. Hong, D., et al.: HIGHT: a new block cipher suitable for low-resource device. In:

Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 46–59. Springer,
Heidelberg (2006)

14. Kang, H., Hong, D., Moon, D., Kwon, D., Sung, J., Hong, S.: Known-key attacks
on generalized Feistel schemes with SP round function. IEICE Trans. 95–A(9),
1550–1560 (2012)

15. Khovratovich, D.: Bicliques for permutations: collision and preimage attacks in
stronger settings. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol.
7658, pp. 544–561. Springer, Heidelberg (2012)

16. Khovratovich, D., Rechberger, C., Savelieva, A.: Bicliques for preimages: attacks
on Skein-512 and the SHA-2 family. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol.
7549, pp. 244–263. Springer, Heidelberg (2012)

17. Knudsen, L.R., Rijmen, V.: Known-key distinguishers for some block ciphers. In:
Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 315–324. Springer,
Heidelberg (2007)

18. Li, J., Isobe, T., Shibutani, K.: Converting meet-in-the-middle preimage attack
into pseudo collision attack: application to SHA-2. In: Canteaut, A. (ed.) FSE
2012. LNCS, vol. 7549, pp. 264–286. Springer, Heidelberg (2012)

19. Mala, H.: Biclique cryptanalysis of the block cipher SQUARE. Cryptology ePrint
Archive, Report 2011/500 (2011). http://eprint.iacr.org/2011/500

http://eprint.iacr.org/2012/591
www.cs.technion.ac.il/orrd/SHAvite-3/
http://eprint.iacr.org/2011/500

360 M. Agrawal et al.

20. Mendel, F., Peyrin, T., Rechberger, C., Schläffer, M.: Improved cryptanalysis of
the reduced Grøstl compression function, ECHO permutation and AES block cipher.
In: Jacobson Jr., M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol.
5867, pp. 16–35. Springer, Heidelberg (2009)

21. Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.S.: The rebound attack:
cryptanalysis of reduced whirlpool and Grøstl. In: Dunkelman, O. (ed.) FSE 2009.
LNCS, vol. 5665, pp. 260–276. Springer, Heidelberg (2009)

22. Rijmen, V., Daemen, J., Preneel, B., Bosselaers, A., De Win, E.: The cipher
SHARK. In: Gollmann [10], pp. 99–111

23. Rivest, R.L., Robshaw, M.J. B., Yin, Y.L.: RC6 as the AES. In: AES Candidate
Conference, pp. 337–342 (2000)

24. Sasaki, Y.: Double-SP is weaker than Single-SP: rebound attacks on Feistel ciphers
with several rounds. In: Galbraith, S., Nandi, M. (eds.) INDOCRYPT 2012. LNCS,
vol. 7668, pp. 265–282. Springer, Heidelberg (2012)

25. Sasaki, Y., Yasuda, K.: Known-key distinguishers on 11-round Feistel and collision
attacks on its hashing modes. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp.
397–415. Springer, Heidelberg (2011)

26. Schneier, B., Kelsey, J.: Unbalanced Feistel networks and block cipher design. In:
Gollmann, D. (ed.) FSE 1996. LNCS, vol. 1039, pp. 121–144. Springer, Heidelberg
(1996)

27. Shirai, T., Shibutani, K.: Improving immunity of feistel ciphers against differential
cryptanalysis by using multiple MDS matrices. In: Roy, B., Meier, W. (eds.) FSE
2004. LNCS, vol. 3017, pp. 260–278. Springer, Heidelberg (2004)

28. Shirai, T., Shibutani, K., Akishita, T., Moriai, S., Iwata, T.: The 128-Bit blockci-
pher CLEFIA (extended abstract). In: Biryukov, A. (ed.) FSE 2007. LNCS, vol.
4593, pp. 181–195. Springer, Heidelberg (2007)

29. Su, B., Wu, W., Wu, S., Dong, L.: Near-collisions on the reduced-round compression
functions of skein and BLAKE. In: Heng, S.-H., Wright, R.N., Goi, B.-M. (eds.)
CANS 2010. LNCS, vol. 6467, pp. 124–139. Springer, Heidelberg (2010)

30. Suzaki, T., Minematsu, K.: Improving the generalized Feistel. In: Hong, S., Iwata,
T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 19–39. Springer, Heidelberg (2010)

31. Vaudenay, S.: On the need for multipermutations: cryptanalysis of MD4 and
SAFER. In: Preneel, B. (ed.) FSE 1994. LNCS, vol. 1008, pp. 286–297. Springer,
Heidelberg (1995)

32. Wenling, W., Zhang, W., Lin, D.: Security on generalized Feistel scheme with SP
round function. Int. J. Netw. Secur. 3(3), 215–224 (2006)

33. Chen, S.Z., Xu, T.M.: Biclique attack of the full ARIA-256. Cryptology ePrint
Archive, Report 2012/011 (2012). http://eprint.iacr.org/2012/011

34. Zheng, Y., Matsumoto, T., Imai, H.: On the construction of block ciphers prov-
ably secure and not relying on any unproved hypotheses. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 461–480. Springer, Heidelberg (1990)

http://eprint.iacr.org/2012/011

Rig: A Simple, Secure and Flexible Design
for Password Hashing

Donghoon Chang, Arpan Jati, Sweta Mishra(B), and Somitra Kumar Sanadhya

Indraprastha Institute of Information Technology, Delhi (IIIT-D), Delhi, India
{donghoon,arpanj,swetam,somitra}@iiitd.ac.in

Abstract. Password Hashing, a technique commonly implemented by a
server to protect passwords of clients, by performing a one-way transfor-
mation on the password, turning it into another string called the hashed
password. In this paper, we introduce a secure password hashing frame-
work Rig which is based on secure cryptographic hash functions. It pro-
vides the flexibility to choose different functions for different phases of
the construction. The design of the scheme is very simple to implement
in software and is flexible as the memory parameter is independent of
time parameter (no actual time and memory trade-off) and is strictly
sequential (difficult to parallelize) with comparatively huge memory con-
sumption that provides strong resistance against attackers using multiple
processing units. It supports client-independent updates, i.e., the server
can increase the security parameters by updating the existing password
hashes without knowing the password. Rig can also support the server
relief protocol where the client bears the maximum effort to compute
the password hash, while there is minimal effort at the server side. We
analyze Rig and show that our proposal provides an exponential time
complexity against the low-memory attack.

Keywords: Password · Password hashing · GPU attack · Cache-timing
attack · Client-independent update · Server-relief technique

1 Introduction

A password is a secret word or string of characters which is used by a principal to
prove her identity as an authentic user to gain access to a resource. Being secret,
passwords cannot be revealed to other users of the same system. In order to
ensure the confidentiality of the passwords even when the authentication data is
somehow leaked from the server, passwords are never stored in clear, but trans-
formed into an illegible form and then stored. Specifically, ‘Password Hashing’ is
the technique which performs a one-way transformation on a password and turns
it into another string, called the ‘hashed’ password. Strong password protection,
i.e., a technique of password hashing that makes brute force attack on password
guessing infeasible, either in software or by using GPUs (Graphics Processing
Unit), is essential to protect the user security and identity. Thus any working
password hashing scheme should be resistant to brute force attack.
c© Springer International Publishing Switzerland 2015
D. Lin et al. (Eds.): Inscrypt 2014, LNCS 8957, pp. 361–381, 2015.
DOI: 10.1007/978-3-319-16745-9 20

362 D. Chang et al.

Password hashing is an active topic of interest in cryptography community
and a competition on password hashing is going on [1]. Currently, the signif-
icant constructions for password hashing are PBKDF2 [10], Bcrypt [12] and
Scrypt [11]. All of these do not satisfy most of the necessary requirements men-
tioned at the competition page [1]. PBKDF2 (NIST standard) consumes very
less memory as it was mainly designed to derive keys from a seed (password).
Bcrypt uses fixed memory (4 KB) for its implementation. Scrypt is not simple
(different internal modules) and not flexible (time and memory parameters are
dependent) and susceptible to cache timing attack (discussed in Sect. 5).

Specifically, the rate at which an attacker can guess passwords is a key factor
in determining the strength of the password hashing scheme. Current require-
ments [1] for a secure password hashing scheme are the following:

– The construction should be slow to resist password guessing attack but should
have a fast response time to prove the authenticity of the user.

– It should have a simple design and should be easy to implement (coding,
testing, debugging, integration), i.e., the algorithm should be simple in the
sense of clarity and concise with less number of internal components and
primitives.

– It should be flexible and scalable, i.e., if memory and time are not depen-
dent then one would be able to scale any of the parameters to get required
performance.

– Cryptographic security [1]: The construction should behave as a random func-
tion (random-looking output, one-way, collision resistant, immune to length
extension, etc.).

– Resistant to GPU attack: A typical GPU has lots of processing cores but
has limited amount of memory for each single core. It is quite efficient for an
attacker to utilize all the available processing cores with limited memory to
run brute-force attack over the password choices. Use of comparatively huge
memory per password hash by the password hashing construction can restrict
the use of GPU. Therefore, the design should have large memory consumption
to force comparatively slow and costly hardware implementation that can
resist the GPU attack.

– Leakage Resilience: The construction should protect against information
extraction from physical implementation, i.e., the scheme should not leak
information about the password due to cache timing or memory leakage, while
supporting any length of password.

– The construction should have the ability to transform an existing hash to a
different cost setting (client independent update, explained in Sect. 5) without
knowledge of the password.

– It is good if the construction provides server relief technique where the client
performs most of the computations for password hashing and the server puts
minimal effort with minimal use of resources, to reduce the load of the server.
This property needs a secure protocol to maintain the security of the hash
computation (discussed in Sect. 5).

Rig: A Simple, Secure and Flexible Design for Password Hashing 363

The most challenging threat faced by any password hashing scheme is the
existence of cheap, massively parallel hardware such as Graphics Processing
Units (GPUs), Application-Specific Integrated Circuits (ASICs) and Field-
Programmable Gate Arrays (FPGAs). Using such efficient hardware, an adver-
sary with multiple computing units can easily try multiple different passwords
in parallel. To prevent such attempts we need to slow down password hash com-
putation and ensure that there is little parallelism in the design. One way to
achieve this is to use a ‘Sequential memory-hard’ algorithm, a term first intro-
duced with the design of ‘Scrypt’ [11], a password hashing scheme. The main
design principle of Scrypt is that it asymptotically uses almost as many memory
locations as it uses operations to slow down the password-hash computation.
Memory is relatively expensive, so, a typical GPU or other cheap massively-
parallel hardware with lots of cores can only have a limited amount of memory
for each single core. Hence an attacker with access to such hardware will still not
be able to utilize all the available processing cores due to the lack of sufficient
memory and will be forced to have an (almost) sequential implementation of the
password hashing scheme.

In this document we propose Rig, a password hashing scheme which aims
to address the above mentioned requirements. Rig is based on cryptographic
(secure) hash functions and is very simple to implement in software. It is flexible
as the memory parameter is independent of time parameter (no actual time and
memory trade-off) and is strictly sequential (difficult to parallelize) with com-
paratively huge memory consumption that provides strong resistance against
attackers using multiple processing units. It supports client-independent pass-
word hash up-gradation without the need of the actual password. This feature
helps the server to increase the security parameters to calculate the password
hash to reduce the constant threats of technological improvements, specifically
in the field of hardware. Rig provides protection against the extraction of infor-
mation from cache-timing attack and prevents denial-of-service attack if imple-
mented to provide server-relief technique. We analyze Rig and show that our
proposal provides an exponential time complexity against memory-free attack.
It gives the flexibility to choose different functions for different phases of the
construction and we denote the general construction of Rig as Rig [H1, H2, H3].
In this work we provide two variants of Rig [H1, H2, H3]. A strictly sequential
variant, Rig [Blake2b, BlakeCompress, Blake2b] and the other variant, Rig [Bla-
keExpand, BlakePerm, Blake2b] which improves the performance by performing
memory operations in larger chunks.

The rest of the document is organised as follows. In Sect. 2 we present the
important preliminaries necessary for understanding the specification. This is
followed by the introduction of significant hardwares used as attack platform
in Sect. 3. The specification and design rationale of the scheme are presented
in Sects. 4 and 5 respectively. Subsequently, the implementation aspects and
performance analysis are presented in Sects. 6 and 7. Finally, in Sects. 8 and 9,
we provide the security analysis of the scheme and the conclusions of the paper
respectively.

364 D. Chang et al.

2 Preliminaries

The techniques used in our construction are discussed below.

– Binary 64-bit mapping: It is a 64-bit binary representation of the decimal
value. The binary number

an−12n−1 + an−22n−2 + · · · + a0

is denoted as an−1an−2 · · · a0 where ai ∈ {0, 1} and n is the number of digits
to the left of the binary (radix) point. In our construction we use n = 64 and
we denote binary64(x) for 64-bit binary representation of the value x.

– Bit reversal permutation [7,9] (br): It is implemented to permute the
indices of an array of n = 2k elements where k ∈ N. We explain the steps of
the permutation through Algorithm 1 below.

The example of a bit reversal permutation applied on an array of m = 23

elements where k = 3 and indices are 0, 1, · · · , 7 is given below.
br[000, 001, 010, 011, 100, 101, 110, 111]= [000, 100, 010, 110, 001, 101, 011, 111]
= br[0], br[1], br[2], br[3], · · · , br[7].

Algorithm 1. Bit reversal permutation (br)

Input: Indices of an array A of n = 2k elements where k ∈ N and
indices are: 0, 1, 2, · · · , n − 1

Output: Permuted indices of array A as: br[0], br[1], br[2], · · · , br[n − 1]
1 for i = 0 to n − 1

2 (i)bink = ik−1ik−2 · · · i1i0 =
∑k−1

j=0 2jij
3 � (i)bink = k-bit binary representation of value i

4 br[i] =
∑k−1

j=0 2jik−1−j

5 return br[0], br[1], br[2], · · · , br[n − 1]

3 Attack Platforms: Significant Hardwares

According to Moore’s Law [13], the number of transistors on integrated circuits
doubles approximately every two years. This has indeed been the case over the
history of computing hardware. Following this law, hardware is becoming more
and more powerful with time. This happens to be the most prominent threat
for existing password hashing schemes. Consequently, there is a need to raise
the cost of brute force attack by controlling the performance of the massively
parallel hardware available.

An important electronic circuit, Graphics Processing Unit (GPU), and
their highly parallel structure makes them more effective than general-purpose
CPUs for algorithms where processing of large blocks of data is done in parallel.
An Application-Specific Integrated Circuit (ASIC), is an integrated circuit
(IC) which can be customized with memory chips to implement a dedicated
design. An ASIC can not be altered after final design hence the designers need
to be certain of their design when it is implemented in ASIC. On the other hand,

Rig: A Simple, Secure and Flexible Design for Password Hashing 365

Field Programmable Gate Arrays (FPGAs) are programmable integrated
circuits and consist of an array of logic elements together with an interconnected
network and memory chips, providing high-performance. A designer can test her
design on an FPGA before implementing it on an ASIC.

Both ASIC and FPGAs can be configured to perform password hashing with
highly optimized performance. The cost of implementation on FPGA is cheaper
than ASICs if the number of units of the hardware required is small. Therefore,
one can easily use parallel FPGAs to increase the rate of password guessing.
RIVYERA FPGA cluster is an example of a very powerful and cost optimized
hardware. It can hash 3,56,352 passwords per second by using PBKDF2 (NIST
standard, Password Based Key Derivation Function 2) with SHA-512 and 512-bit
derived key length [6]. This high performance is possible on the FPGA because
PBKDF2 does not consume high memory for password hashing. Comparing
FPGAs with GPUs (Graphics processing units), the authors of [6] provide results
of the same implementation on 4 Tesla C2070 GPUs as 1,05,351 passwords per
second. ASIC is better than FPGA purely on performance in terms of number
of hashes per second. However, FPGA is preferable when cost is considered with
the speed of hashing. Following Moore’s law, the speed of hardware is likely to
increase by almost a factor of two in less than two years. However, as processor
speeds continue to outpace memory speeds [8], the gap between processor and
memory performance increases by about 50 % per year [4]. Thus, there is a need
to minimize the effects of such high performance hardware. Hence, we need a
password hashing algorithm which consumes comparatively large memory to
prevent parallel implementation.

4 Specification

Our construction is described in Fig. 1. Following is the step-by-step description
of Algorithm 2 which explains our construction Rig.

1. First we need to fix the following parameters:
– pwd = The user password of any length.
– s = The salt value of any length.
– n= The number of iterations required to perform iterative transformation

phase.
– mc= The memory count from which the memory-cost is defined as: m =

2mc , i.e., m denotes the number of items to be stored in the memory. The
value of m is updated as: mi+1 = 2 × mi at each round.

– r= The number of rounds for the setup phase followed by iterative trans-
formation phase and output generation phase.

– l= The output length of the password hash.
– t= The number of bits retained from hash output after truncation. Used

with a function trunct(x) = x � (|x| − t), where x is the hash output.

2. Initialization Phase: We map the parameters, namely the values: password
length pwdl, salt length sl, n and the output length, l to a 64-bit binary value

366 D. Chang et al.

using binary64 mapping. We create the value x as the concatenation (||) of
the above mentioned parameters as

x = pwd ‖ binary64(pwdl) ‖ s ‖ binary64(sl) ‖ binary64(n) ‖ binary64(l)

and compute H1(x) = α where H1 is the underlying hash function. We use α
for further calculations in the setup phase.

3. Setup Phase: We initialize h0 with the value of π after the decimal point.
We take as many digits of π as desired to ensure that |h0| = |α|. The values
h0 and α are used to initialize two arrays k and a and further m − 1 values
of the arrays are iteratively calculated as shown in the Fig. 1. First t-bits of
each hash output are stored in the array k.

The large number of calls to the underlying hash function are guaranteed
to have different inputs by the use of different counter values. H2 denotes the
underlying hash function.

H2 H2

H2H2

H3 h∗

1 2

(m + 1) (m + 2)

k[1]

H2H2

(2m + 1) (2m + 2)

H2H2 H2

(nm + 1) (nm + 2) (n + 1)m

k[0] k[m-1]

((n + 1)m + 1)

∗Note: :Shows first t−bit truncation and value depends on implementation.
k[br[i]] : is the ith index of array k obtained from bit reversal permutation

k[2]

α

t t t t
h0

t t t t

tt t t

t t t t

t

i=1

i=2

i= n

s||m

a[0] a[1] a[m-1]

a[0] a[1]

a[0]

a[0]

a[1]

a[1] a[m-1]

H2

H2a[m-1]

H2a[m-1]

m

2m

3m

H2
H2

H2

H2

H2

Initialization phase:

Iterative Transformation
phase:

Setup
Phase:

Output generation phase:
output of each round

α α

k[br[0]] k[br[1]] k[br[2]]
k[br[m − 1]]

k[br[m − 1]]

k[br[m − 1]]

k[br[2]]

k[br[2]]

k[br[0]]

k[br[0]]

k[br[1]]

k[br[1]]

H2

H1x αH1

for round= 1, m = 2mc

k[0] k[1]

k[1]k[0]

k[2]

k[2]

k[m-1]

k[m-1]

x = pwd ‖ binary64(pwdl) ‖ s ‖ binary64(sl) ‖ binary64(n) ‖ binary64(l)

Fig. 1. Graphical representation of the proposed construction.

Rig: A Simple, Secure and Flexible Design for Password Hashing 367

4. Iterative Transformation Phase: This phase is designed to make constant
use of the stored array values and to update them. Here we modify each
element of the arrays a and k, n-times where n is the number of iterations.

Array a is accessed sequentially where values of array k are accessed using
bit reversal permutation explained in Algorithm 1. We denote the index of
array k obtained applying bit-reversal permutation as: br[j], 0 ≤ j ≤ m − 1.

5. Output Generation Phase: After execution of the setup phase and itera-
tive transformation phase sequentially, we calculate one more hash, denoted
by H3 to get the output of each round. If round = 1, this output is considered
as the password hash.

Note: The output is an l-bit value. The algorithm stores the output as the
hashed password. Our construction allows for storing a truncated portion of
the hash output as well. If this is desired we can take one of the following two
approaches.

(a) The user may run the complete algorithm as described above and trun-
cate the final output after r rounds to the desired length. This approach
does not support client-independent update.

(b) To support client-independent updates the user can choose a length for
truncation which is sufficient to claim brute-force security. Then append
some constant value, we suggest the hexadecimal value of π after first
64-bytes of decimal point. Take as many digits as desired to make the
output length of each round equal to the length of α of the setup phase.
So this way one can reduce the storage requirement for password hashes
at the server.

Rig. A password hashing scheme
Algorithm 2. Rig [H1, H2, H3] Construction

Input: Password (pwd), Password length (pwdl), Salt (s), Salt length (sl), No. of iterations (n),
Memory count (mc), No. of bits to be retained from hash output of the setup phase (t),
Output length (l), No. of rounds (r)

Output: l-bit hash value hr
∗ obtained after r rounds

1 � Initialization phase: generates α from password
2 Initialize: a random salt (s) of atleast 16-bytes, number of iterations (n),

value of memory count mc where m = 2mc , value t
3 x = pwd ‖ binary64(pwdl) ‖ s ‖ binary64(sl) ‖ binary64(n) ‖ binary64(l) � concatenation: ‖
4 α = H1(x) � H1 : underlying hash function
5 for round 1 to r
6 � Initialization of Setup phase: Creates two arrays k and a

where |k| = |a| = m where m = 2(round−1) × 2mc

7 h0 = initialized with the value of π after decimal, and |h0| = |α|
8 a[0] = α ⊕ h0, k[0] = trunct(h0)
9 for i = 1 to m

10. hi = H2(i ‖ a[i − 1] ‖ k[i − 1]) � H2 : underlying hash function
11 if i �= m
12 a[i] = α ⊕ hi
13 k[i] = trunct(hi) � retains the first t−bits of the hash output
14 � Initialization of Iterative Transformation phase
15 for i = 1 to n
16 for j = 1 to m
17 a[j − 1] = a[j − 1] ⊕ h{im+j−1}
18 br[j − 1] = index value of array k obtained using

bit reversal permutation
19 � initialize a temporary array |ktemp| = |k|
20 ktemp[j − 1] = k[br[j − 1]]⊕ trunct(him+j−1)
21 him+j = H2((im + j) ‖ a[j − 1] ‖ ktemp[j − 1])
22 k = ktemp
23 � Output generation phase
24 hround

∗ = (H3((n + 1)m + 1) ‖ h(n+1)m ‖ s ‖ binary64(m))
25 if round < r
26 α = hround

∗

368 D. Chang et al.

5 Design Rationale

Existing password hashing schemes are not simple and do not fulfill the nec-
essary requirements as discussed in Sect. 1. We have tried to design a solution
which overcomes the known disadvantages of existing schemes (PBKDF2 [10],
Bcrypt [12] and Scrypt [11]). The primary concerns against existing proposals
are their complex design and their inefficiency to prevent hardware threats. We
have tried to strengthen our design by considering the necessary requirements
as mentioned in Sect. 1.

1. Initialization Phase: We have used concatenation of password, salt, 64-bit
value of pwdl, sl, n and l as input to increase the size of input. This resists
brute force dictionary attack.

2. Setup Phase: In this phase we initialize h0 with π, as we want to have a
random sequence and π is not known to have any pattern in the sequence
of digits after the decimal point. We generate the values that are required
to be stored and repeatedly accessed throughout the remaining phases. This
ensures that a large memory requirement criteria for a password hashing
scheme is satisfied which neutralizes the threat of using recent technological
trends, such as GPUs, ASICs etc. We use different counter values for each
hash computation to make all hash inputs different. This reduces collisions
and hence makes the output different.

For array k there is a flexibility to vary the bit storage by taking first t-bits
of the hash output where t is taken to be close to the hash-length but not
equal to the hash-length. This fulfills the demand of huge memory while at
the same time ensures sequential hash calculation and forces an attacker to
compute the hash at run-time thus slowing him down. Further, it also allows
to extend the scope of implementation in that a low memory device may
keep very few bits of the hash values stored but may increase the number of
iterations. This ensures that Rig can be implemented in resource constrained
devices.

3. Iterative Transformation Phase: To make the storage requirement com-
pulsary, this phase progresses sequentially, accessing and updating all stored
values at each iteration. Here again, we use different counters for hash input
for the same reason as mentioned above. In this phase the memory access
pattern is made password independent to reduce the chance of cache timing
attack which we have explained later in this section.

4. Output Generation Phase: This is the last phase of each round. We reuse
the salt value as input to make the collision attack difficult.

Apart from that the output of each round can be truncated to a desired
length. This is optionally mentioned to handle the situations when it is
required to reduce the server storage per password.

The other important criteria taken into account in the design of the scheme are
the following:

5. Simplicity and Flexibility: Symmetry (as setup phase and iterative trans-
formation phase follows similar structure) in the design of Rig enhances the

Rig: A Simple, Secure and Flexible Design for Password Hashing 369

overall clarity of the scheme. An earlier password hashing scheme Scrypt [11]
uses PBKDF2 (internally calls HMAC-SHA256) and ROMix (internally calls
BlockMix and uses Salsa20/8). Unlike Scrypt, Rig uses only a single primi-
tive (a cryptographically secure hash function). This makes our scheme easier
to understand and easy to implement (coding, testing, debugging and inte-
gration).

In our scheme the memory parameter is independent of the time param-
eter. This flexibility in design choice allows a user to scale any of these
parameters to get the required performance. On the other hand we have
the flexibility for the choice of the functions H1, H2 and H3 (see Fig. 1),
but proper selection of the primitives are required to maintain the overall
design properties and security. Therefore there can be multiple variants of
Rig aimed at different implementations or scenarios.

6. Random Output: Our scheme calls a hash function repeatedly. We use
different counters for each of these hash calls to ensure that no input to the
hash function is repeated. The security of Rig relies on the prevention of
preimage and collision attacks against the underlying hash function. Use of
any state-of-the-art hash function (e.g. any finalist of SHA-3 competition)
ensures the security of our scheme. We use Blake2b [3] in demonstrating
the performance of our scheme later in this paper, although any other hash
function could easily be used instead.

With the property of different input, different output and same input,
same output, our scheme mimics the Random Oracle Model. This provides
theoretical justification of the security of Rig.

7. Client-independent Update [7]: Our design supports client independent
update, i.e., server can increase the security parameter without knowing the
password. This is possible if we fix the value of n (number of iterations) and
increase the number of rounds r. Each round of the algorithm doubles the
memory consumption m from the previous round and hence increases the
security parameter. This is possible because the output of each round can
be treated as the value α at the next round and then can easily follow the
Algorithm 2 to produce the output of the next round. The idea of client
independent update of the security parameter m is fulfilled by the following
way. The value of m is updated at each next round i + 1 (say) from its
previous round i as: mi+1 = 2 × mi.

The overall procedure is: output of each round is the input to the next.
Each round gives full hash maintaining all requirements of a good password
hashing technique. By increasing the number of rounds, the scheme increases
the required memory and time hence increases the security parameter with-
out the interference of the client.

8. Resistance Against Cache-timing Attack: In our construction, to access
the memory which is stored in an array k, we use bit-reversal permutation,
which is independent of the password used. If a password dependent permu-
tation is used and if the array can be stored in the cache while accessing
the values, an attacker can trace the access pattern observing the time dif-
ference in each access of the array index. This helps the adversary to filter

370 D. Chang et al.

the passwords that follows similar memory access pattern and to make a
list of feasible passwords. Therefore, a password hashing scheme should have
password-independent memory access patterns and to follow this require-
ment we use bit reversal permutation as in [7].

9. Server-relief Hashing: Current requirement of a password hashing tech-
nique is that it should be slow and should demand comparatively large
memory to implement. But this requirement may put extra load on server.
Therefore we need a protocol to divide the load between the client and the
server. The idea is provided in [7] and our construction supports this prop-
erty following the protocol as mentioned below:

First the authentication server provides the salt to the client. The client
performs the initialization phase, setup phase and iterative transformation
phase (see Algorithm 2), and sends the end result to the server. The server
computes the output generation phase and produces the final hash. This way
we can easily reduce the load of the server.

Note: In this case, an attacker acting as a client, can repeatedly send some
random data without following the computations of the proposed algorithm
to the server. Here, the attacker can easily get the access with a correct
guess. But, the complexity of the random guess will be equivalent to the
brute-force complexity i.e. 2n, where n is the output length of the underlying
hash function. Therefore this can not be a feasible attack.

6 Implementation Aspects

This proposed construction for password hashing can be implemented efficiently
on a wide range of processors. However, the same implementation will require
huge number of computations if dedicated hardware such as ASIC or FPGA is
used with limited memory.

Our design allows the flexibility to utilize less storage with increased number
of calculations if we retain few bits of the intermediate hash computation after
truncation and increase the number of iterations n. This way, Rig can be efficient
on low memory devices.

We designed Rig to have a highly flexible structure. By changing the func-
tions H1, H2 and H3 (see Fig. 1) we can completely change the overall design
properties. From side channel resistance to GPU or ASIC/FPGA resistance,
any property can be achieved by the proper selection of the above primitives.
Therefore there can be multiple variants aimed at different implementations
or scenarios. As mentioned before, we describe the general construction of Rig
as Rig [H1,H2,H3], where we can design/choose the functions H1, H2, H3 for
implementing different variants of Rig.
We have designed and implemented two versions of Rig as follows:

1. Rig [Blake2b, BlakeCompress, Blake2b]. This variant is strictly sequen-
tial. Full Blake2b is used for H1 and H3 while the first round of the com-
pression function of Blake2b is used for H2 (and we call it BlakeCompress).

Rig: A Simple, Secure and Flexible Design for Password Hashing 371

We have removed the constants in the ‘G’ function of Blake2b as suggested
by the Blake authors in [3] to improve the overall performance. This version
does a large number of random reads and writes and as a result it is strictly
bounded by memory latency.

2. Rig [BlakeExpand, BlakePerm, Blake2b]. This variant is designed to
improve the performance by performing memory operations in larger chunks.
The functions H1 and H2 are parallelized internally and the idea of handling
larger chunk size improves the performance significantly without changing the
overall sequential nature and memory-hardness of Rig. It also makes this vari-
ant of Rig much more difficult to execute efficiently in GPUs and FPGA/ASIC
(explained in Sects. 6.4 and 6.5). We implemented the functions H1 as ‘Bla-
keExpand’ and H2 as ‘BlakePerm’. These functions are explained later. The
function H3 uses full Blake2b.

6.1 Design of Rig [Blake2b, BlakeCompress, Blake2b]

This strictly sequential variant follows the general construction of Rig as ex-
plained in Sect. 4. The functions H1 and H3 implements Blake2b (full hash). The
function H2 is implemented using first round of Blake2b compression function.

6.2 Design of Rig [BlakeExpand, BlakePerm, Blake2b]

The optimized variant of Rig uses an expansion function BlakeExpand to expand
the state and a compression function BlakePerm to compress the state. Full
Blake2b is used to hash the output state after the iterative-transformation phase
to obtain the final hash. The design aspects are described below.

6.2.1 Design of the BlakeExpand Expansion Function. The Blake-
Expand function is a very simple function which expands the input x to a
fixed size of 8KiB. The function BlakeExpand is an instantiation of H1. The
input x passes through 128 individual instances of Blake2b (full hash) each
appended by a counter as xi = x ‖ i, for 0 ≤ i ≤ 127 and produces the output
α = α0 ‖ α1 ‖ · · · ‖ α127 where each αi is of length 512 bits, i.e., 64 bytes. This
construction ensures that the output of the function is random and the random-
ness depends solely on the cryptographic strength of Blake2b. Since this function
needs to be executed only once, it has negligible impact on the performance of
the overall Rig construction.

6.2.2 Design of BlakePerm Function. We provide the design considera-
tions for the function BlakePerm before the description of the design.

Design Considerations for BlakePerm Function. The DRAM memory
latency is the limiting factor for the entire design of Rig. Initialization and copy-
ing data takes over 70 percent of the total run-time. In order to improve the
overall performance one trivial optimization would be to increase the size of

372 D. Chang et al.

chunks in which the read and write operations are performed. The latest high
performance processor offerings from Intel and AMD influenced many of the
design decisions as they would be the most common target platform. There are
several design considerations like:

– L1 Cache Size. This is one of the major factors because the L1 cache has the
lowest latency of around 1–1.5 ns (as few as 3 clocks). Therefore it is important
that the work piece (chunk) fits within this size for high performance in case
of a compute intensive task.

– L1/L2/L3 Cache Line Size. A typical modern processor has cache line
size of 64 bytes. Therefore working in multiple of 64 bytes with preferably
aligned memory access is the best strategy. The problem with working with
other non-multiple sizes is that there would be a lot of extra accesses and split
loads and stores, which will dramatically reduce performance in computation
intensive tasks. The Blake2b compression function nicely fits this requirement
as it compresses 128 bytes to 64 bytes. The only other requirement is an
implementation detail for setting the proper aligned memory access while
memory allocation. As a result, in our implementation we have zero split
load/stores.

– DRAM Latency. The memory latency is the primary limiting factor in
algorithms having random reads and writes. DRAM generally has latency
values of 250+ clock cycles. One strategy to get around this problem would
be to perform reads and writes in larger chunks. If the chunk size is large
enough, the performance hit due to latency can become significantly small.
We tested against various sizes from 2 KiB to 64 KiB and observed that 16 KiB
is a good size; and it also fits the L1 cache. We have, as a result chosen chunk
size of 16 KiB for the H2 function.

Design of the BlakePerm Function. The BlakePerm function is a compres-
sion function which compresses 16 KiB of data to 8 KiB. It is a two step function
as described below.

1. Compression. It compresses the data using a single round Blake2b compres-
sion function. A single such compression function compresses 128 bytes to
64 bytes, as a result we need 128 such functions to compress 16 KiB to 8 KiB.

2. Permutation. A permutation layer is needed to mix the compressed data so
that the bit-relations are spread evenly among the output bits over several
rounds. Even though, any random permutation can be chosen in such a sce-
nario, a permutation of the form: output Oi = (Ii×A+B) mod C was chosen,
where 0 ≤ Ii ≤ 1023. The values A = 109, B = 512 and C = 1024 were chosen
carefully after a series of experiments and diffusion tests. The permutation
works on words of 8 bytes at a time, as a result the total addresses would be
8192/8 = 1024. The value B = 512 is the number by which the overall per-
mutation is cyclically rotated, it is half of the total size. The value of A is the
most critical, even though the only requirement for a permutation is that A
should be co-prime with C. The value of A strongly affects the overall charac-
teristics and it needs to be carefully selected. It takes around 5 rounds for all

Rig: A Simple, Secure and Flexible Design for Password Hashing 373

the output bits to be fully affected by a single change in the input data. Since
H2 function is sequentially applied hundreds of times, the function BlakePerm
produces complete avalanche and is cryptographically strong.

6.3 Parallelization

The design of Rig is sequential and therefore it is impossible to parallelize the
overall implementation. As a result we chose to parallelize the H1 and H2 func-
tions. The most critical function which affects the performance of the overall
design is the H2 function. The optimized variant Rig [BlakeExpand, BlakePerm,
Blake2b] takes an input of 16 KiB and compresses it using 128 Blake2b com-
pression functions. These 128 operations can be done in parallel to improve
the performance without affecting the overall sequential nature of Rig. H1 can
similarly be parallelized but it has negligible effect on the overall performance.

6.4 GPU Resistance

We designed Rig to have side-channel resistance, in pursuit of which we had
to choose password-independent memory access patterns. Such memory-access
patterns are harder to protect against GPU attacks. Modern GPUs have very
strict requirements for memory accesses and very small cache sizes per core, as
a result small random reads and writes dramatically reduce performance.

While designing H2 of Rig [BlakeExpand, BlakePerm, Blake2b], we chose a
permutation which causes reads and writes at significantly varying distances.
Combined with the bit-reversal permutation used in Rig at the iterative trans-
formation phase, the overall design is hard to parallelize efficiently.

As the H2 function is pluggable, a new function can be easily added which
performs small password-dependent memory accesses and make the design signif-
icantly GPU resistant. But, any such function would break the strict side-channel
resistance.

6.5 ASIC/FPGA Resistance

The Rig construction is strictly sequential and is therefore non-parallelizable.
The compression function H2 (BlakePerm) as explained above, can be paral-
lelized. But, the size of the inputs and outputs (16 KiB to 8 KiB) which needs
128 parallel instances of Blake2b compression function is too large for imple-
mentations with a large number of simultaneous Rig instances.

Even though there can be a lot of possibilities of implementations with
varying numbers of compression functions, the overall space requirement still
remains high.

The biggest problem in case of ASIC resistance would however come from
the memory latency and bandwidth of the DRAM needed for storage of the
extremely large state (several hundred megabytes to a few gigabytes). Even
though the compression functions consume less power because of their simplicity,

374 D. Chang et al.

the latency and very high memory bandwidth requirements would make paral-
lel implementations on ASIC prohibitively expensive. For example, for a single
instance of Rig [BlakeExpand, BlakePerm, Blake2b] having n = 4 (5 memory
passes), and 1 GiB of state, the bandwidth on a standard PC exceeds 7.37 GiB/s
as shown in Table 2.

7 Performance Analysis

The reference implementation of Rig has been done in C language on an Intel
Core i7-4770 CPU with 16 GB RAM at 2400 MHz. For the implementation of the
first round of the compression function of Blake2b1 for the function H2, we use
AVX2 instructions. Specifically these AVX2 instructions are used to parallelize
the implementation of first round G-function of Blake2b. The following Tables (1
and 2) show the performance figure in terms of ‘memory hashing speed’ and
‘DRAM bandwidth’ for different values of parameter n (number of iterations).

 0

 2

 4

 6

 8

 10

 12

 0 200 400 600 800 1000 1200

T
im

e
in

 s
ec

on
ds

Memory usage in MB

Scrypt
Rig(n=2)
Rig(n=4)
Rig(n=6)

Fig. 2. Performance of Rig (at different value of n) and Scrypt.

7.1 Suggested Parameters

The performance figures provided in Tables 1 and 2 show that, as expected, the
memory hashing speed for Rig [BlakeExpand, BlakePerm, Blake2b] is signifi-
cantly higher than that of the strictly sequential variant.

Due to the wide spectrum of possible uses it is very difficult to suggest opti-
mal values for parameters which suits every possible implementation scenario.
However, we can suggest values for common applications. For the parameter
‘n’ (number of iterations) we suggest values higher than 3. This means that
one should have at least four passes over memory (including setup phase). For
some scenarios this may be increased to make low memory attacks prohibitively
expensive.
1 The idea of using reduced-round Blake2b is inspired from [2,5].

Rig: A Simple, Secure and Flexible Design for Password Hashing 375

Table 1. Performance of RIG [Blake2b, BlakeCompress, Blake2b]

Table 2. Performance of RIG [BlakeExpand, BlakePerm, Blake2b]

376 D. Chang et al.

The memory count value (mc) would depend strongly on the requirement and
the actual use-case. For a server client architecture where the clients are expected
to have enough free RAM, the value can be set to use few tens of megabytes to a
few hundred megabytes. In a mobile environment, this can be further reduced to
allow for clients with smaller memories. In the case the algorithm is to be used
as a proof-of-work test, large memory requirements of a few gigabytes combined
with a large ‘n’ value can be set. It is important to keep ‘n’ high (as high as
6–10) in case the overall memory cost is very small.

The performance of Scrypt (with suggested parameters [11]) and the results
from Table 2 are depicted in Fig. 2. The graph shows the memory processing
rate when consumable memory to compute the password hash is fixed. The
comparison shows that the memory consumption of Scrypt is comparatively
small with time. Scrypt takes approximately 6 seconds for 512 MB memory
while Rig at n = 2 and n = 4 takes approximately 0.389 seconds and 0.613
seconds respectively.

8 Security Analysis

Rig satistifies the basic requirement of a non-invertible design for password hash-
ing because of the following reasons: (i) the iterative use of underlying primitive,
the (secure) cryptographic hash function and (ii) the initial hashing of password
with random salt and other parameters and the final use of salt with chaining
data. This makes recovering password from the hashed output quite challenging.

Another important point is the simple, sequential and symmetric design of
the scheme. The simplicity makes it easy to understand and sequential design
makes the parallel implementation hard and prevents significant speed up by the
use of multiple processing units.

Flexibility of the design and the independence of the selection of memory
parameter from time parameter makes it unique from existing constructions.

8.1 Resistance Against Low Memory Attack

Attacker’s Approach: An attacker running multiple instances of Rig may try
to do the calculations using smaller part of the memory (low memory) or almost
no-memory (memory-free) to reduce the memory cost per password guess. This
approach may allow parallel implementations of independent password guesses,
utilizing almost all the available processing cores. This may not give advantage
over single password hash computation but may increase the overall through-
put of password guessing as compared to the legitimate implementation of the
algorithm. Next we explain how feasible the low-memory or memory-free attack
approach is, from the attacker’s point of view.

Attack Scenario Varying the Required Storage Values: We emphasize
that the goal of analyzing the complexity of low memory attack is to show the
approximate impact on the overall processing cost to implement the algorithm
Rig. Our construction needs to store two arrays a and k as shown in Fig. 1.

Rig: A Simple, Secure and Flexible Design for Password Hashing 377

Therefore we try to compute the time complexity when most of these array values
are not stored. The cost of calculation for the values of array a are dominated
by the cost of array k. Therefore, for the simplicity of the evaluation we consider
the calculation cost for array k.

To vary the required storage at each iteration, we assume that we store t
consecutive values, 0 ≤ t ≤ m − 1, of both the arrays at iterative transfor-
mation phase. This assumption is without loss of generality as we can easily
calculate the index value of array k from the bit reversal permutation explained
in Sect. 2. We also store the hash chaining values after each iteration.

Effect of Bit-Reversal Permutation on Low Memory Scenario: We use
the bit-reversal permutation to shuffle the access of the array k. The effect of
this yields exponential complexity for the low memory scenario. This is because
at every step we update the values of array k and each updated value depends
on all previous values. Let at iteration i, 1 ≤ i ≤ n, k[j], 0 ≤ j ≤ m − 1, is the
required value that is not stored. Then we need to compute the value k[j] at all
previous i − 1 iterations and as the access was not sequential, it is difficult to
calculate the exact complexity. Hence, we compute the expected time complexity
of a password hashing for memory constrained scenario.

Low Memory Attack Complexity: The algorithm Rig can be computed
with time complexity O((n + 1)mr) and space complexity O(m) where 2m is
the required number of stored values, n is the number of iterations used and r
is the number of rounds. An attacker using reduced memory storage (i.e., 0 to
m − 2 stored values) will require a time complexity of O(r × mn+1) for a single
password computation.

The detailed analysis of the low memory attack complexity can be found in
the full version of the paper uploaded on Cryptology eprint archive.

8.2 Resistance Against Collision Attack

In the design of Rig (see Fig. 3) we define three different functions, H1, H2 and
H3. The input of H1 is x where x is the concatenation of password, 64-bit value
of password length, salt, 64-bit value of salt length, 64-bit value of n (number of
iterations) and 64-bit value of the output length of password hash. The output
of H1 is α. The function H2 signifies the repetitive computation of function H2

at setup phase and iterative transformation phase (see Fig. 1) and generates the
output c which is the output of iterative transformation phase. Therefore the
inputs of H2 are α, mc and n, where mc is the number of memory count and
n, the number of iterations used. Finally H3 takes the concatenation of a 64-bit
value which is the function of mc and n, output of H2, the value salt and 64-bit
value of 2mc and produces the output of password hash. Here we are considering
round r = 1 (w.l.o.g). This is because, different values of round, say r and r′

implies collision of H3.

Theorem 1. Collision for Rig means

i. collision for H1, or

378 D. Chang et al.

Input x = pwd||binary64(pwdl)||s||binary64(sl)||binary64(n)||binary64|l|
s = Salt, mc=memory count
n = no. of iterations

x
H1

α

cH2

(mc, n)

H3 h∗

(mc, n)

s||2mc

Fig. 3. Rig[H1, H2, H3](x, mc, n, s), where H2 signifies repetitive use of H2.

ii. collision for H2 when α �= α′ and (mc, n) = (m′
c, n

′) for two different
password hash computations, where mc = m′

c = the memory count and
n = n′ = number of iterations, or

iii. collision for H3.

Proof. We analyse the collision of Rig with five possible cases as shown in Fig. 4.
Specifically, we include all possible conditions that results in collision of H1 or
collision of H2 or collision of H3 which implies the overall collision of Rig.

CaseI. Collision Rig [H1,H2,H3] if (s,mc, n) = (s′,m′
c, n

′) =⇒ Collision H1:
The construction of Rig is such that if we get collision at H1 for two
different inputs say, x and x′ and if (s,mc, n) = (s′,m′

c, n
′) then it

implies collision of H2 which implies collision at H3, i.e., collision of
Rig [H1,H2,H3].

CaseII. Collision Rig [H1,H2,H3] if (s,mc, n) = (s′,m′
c, n

′) and α �= α′ =⇒
Collision H2: For two different inputs x, x′ if α �= α′ then collision of
H2 =⇒ collision of H3 when (s,mc, n) = (s′,m′

c, n
′) for respective

inputs.
CaseIII. Collision Rig [H1,H2,H3] if (s,mc, n) = (s′,m′

c, n
′), α �= α′ and c �= c′

=⇒ Collision H3: For two different inputs x, x′ if α �= α′ and c �= c′ and
if (s,mc, n) = (s′,m′

c, n
′) then collision Rig [H1,H2,H3] =⇒ collision

H3, i.e., collision is due to H3.
CaseIV. Collision Rig [H1,H2,H3] if (s,mc, n) �= (s′,m′

c, n
′) =⇒ Collision H3:

For two different inputs x, x′ if α �= α′ and c �= c′ and if (s,mc, n) �=
(s′,m′

c, n
′) then collision Rig [H1,H2,H3] =⇒ collision H3.

CaseV. Collision Rig [H1,H2,H3] if x = x′ and mc �= m′
c =⇒ Collision H3:

For two different password hash calculations if mc �= m′
c for the same

input x then collision of Rig [H1,H2,H3] is for collision at H3.

Therefore these five cases describe how collisions of Rig implies collision of H1

or H2 or H3. Hence Rig is collision resistant if H1 or H2 or H3 are collision
resistant. �	
The implementations of the provided variants are expected to be secure against
collision attack. The detailed analysis is included in the full version of the paper
uploaded on Cryptology eprint archive at https://eprint.iacr.org/2015/009.pdf.

https://eprint.iacr.org/2015/009.pdf

Rig: A Simple, Secure and Flexible Design for Password Hashing 379

H1

H1

H2

H2

c

c′

H3

H3

h∗

h∗′

h∗

h∗′x′

x

h∗

h∗′

CaseIII: Collision Rig[H1, H2, H3] if (s, m, n) = (s′, m′, n′),
α �= α′ and c �= c′ ⇒ collision of H3

h∗

h∗′

h∗

h∗′

CaseV: Collision Rig[H1, H2, H3] if x = x′

and mc �= m′
c ⇒ collision of H3

(m′
c, n)

α′

α H1

H1

H2

H2

c

c′

H3

H3
x′

x

(m′
c, n)

α′

α

H1

H1

H2

H2

c

c′

H3

H3
x′

x

α′

α H1

H1

H2

H2

c

c′

H3

H3
x′

x

(m′
c, n)

α′

α

H1

H1

H2

H2

c

c′

H3

H3
x′

x

(m′
c, n)

α

(s, m, n) = (s′, m′, n′)

s||2mc

s||2mc

s||2m′
c

CaseIV: Collision Rig[H1, H2, H3] if (s, m, n) �= (s′, m′, n′),
α �= α′ and c �= c′ ⇒ collision of H3

(mc, n)

(m′
c, n)

(mc, n)

(m′
c, n)

(mc, n)

(mc, n)

(mc, n)

α′

s||2m′
c

s||2mc

s||2mc

s||2m′
c

s||2mc

s||2m′
cs||2m′

c

(mc, n)

(mc, n)

(mc, n)

(mc, n)

(mc, n)

(m′
c, n)

CaseII: Collision Rig[H1, H2, H3] if (s, mc, n) = (s′, m′
c, n

′)
and α �= α′ ⇒ collision of H2

CaseI: Collision Rig[H1, H2, H3] if (s, mc, n) = (s′, m′
c, n

′)
⇒ collision of H1 ,

(m′
c, n)

(m′
c, n)

(m′
c, n)

Note: Symbol is used to show that values above
and below the image in each box are different and
symbol to show that the values are same.
Symbol denotes the implication relation.

Fig. 4. Five cases showing collisions for Rig [H1, H2, H3].

8.3 Resistance Against Cache-Timing Attack

As discussed in Sect. 5, our construction accesses array k (see Sect. 4) using a bit
reversal permutation which is password independent. Hence cache timing attack
is not possible on our costruction. Further, since the only primitive used in our
scheme is a secure hash function, the security of our scheme can be formulated
in terms of the security of the underlying hash function. With the current state-
of-the-art we have the possibility of using SHA-3 implementation, or even any
of the other finalists of SHA-3 competition, which are resilient to side-channel
attacks. Thus our scheme resists cache timing attacks.

8.4 Resistance Against Denial-of-Service Attack

In computing, a denial-of-service (DoS) attack is an attempt to make a machine
or network resource unavailable to its intended users. This is possible by making
the server busy injecting lots of request for some resource consuming calculation.
It is quite easy if the server uses some slow password hashing technique for
authentication. To handle such situations, the server-relief technique can provide
some relief to the server from heavy calculations as the client will do the heavy
part of the algorithm. This way we can reduce the chances of DoS attacks with
slow password hashing schemes.

380 D. Chang et al.

9 Conclusions

In this work, we have proposed a secure password hashing scheme Rig based
on cryptographic hash functions. Besides supporting necessary and commonly
used features of a password hashing scheme, Rig also supports client-independent
updates and server relief technique. The flexibility in the choice of the two impor-
tant parameters (memory count and number of iterations) enhances the scope of
its implementation. Rig can be implemented in various software and hardware
platforms including resource constraint devices.

Acknowledgments. We would like to thank the anonymous reviewers of Inscrypt
and the contributors to the PHC mailing list (specially Bill Cox) whose comments
helped improve the paper significantly.

References

1. Password Hashing Competition (PHC) (2014). https://password-hashing.net/
index.html

2. Almeida, L.C., Andrade, E.R., Barreto, P.S.L.M., Simpĺıcio, Jr., M.A.: Lyra:
Password-Based Key Derivation with Tunable Memory and Processing Costs.
IACR Cryptology ePrint Archive 2014:30 (2014)

3. Aumasson, J.-P., Neves, S., Wilcox-O’Hearn, Z., Winnerlein, C.: BLAKE2: Sim-
pler, smaller, fast as MD5. In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-
Naini, R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 119–135. Springer, Heidelberg
(2013)

4. Carvalho, C.: The gap between processor and memory speeds. In: Proceedings of
IEEE International Conference on Control and Automation (2002)

5. Daemen, J., Rijmen, V.: A new MAC construction ALRED and a specific instance
ALPHA-MAC. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557,
pp. 1–17. Springer, Heidelberg (2005)

6. Dürmuth, M., Güneysu, T., Kasper, M., Paar, C., Yalcin, T., Zimmermann, R.:
Evaluation of standardized password-based key derivation against parallel process-
ing platforms. In: Foresti, S., Yung, M., Martinelli, F. (eds.) ESORICS 2012. LNCS,
vol. 7459, pp. 716–733. Springer, Heidelberg (2012)

7. Forler, C., Lucks, S., Wenzel, J.: The Catena Password Scrambler, Submission to
Password Hashing Competition (PHC) (2014)

8. Gray, J., Shenoy, P.: Rules of Thumb in Data Engineering. Technical Report, MS-
TR-99-100, Microsoft Research, Advanced Technology Division. December 1999,
Revised March 2000

9. Lengauer, T., Tarjan, R.E.: Upper and lower bounds on time-space tradeoffs. In:
Proceedings of the 11h Annual ACM Symposium on Theory of Computing, April
30 – May 2, 1979, Atlanta, Georgia, USA, pp. 262–277 (1979)

10. Burr, W., Turan, M.S., Barker, E., Chen, L.: NIST: Special Publication 800–132,
Recommendation for Password-Based Key Derivation. Computer Security Division
Information Technology Laboratory. http://csrc.nist.gov/publications/nistpubs/
800-132/nist-sp800-132.pdf

https://password-hashing.net/index.html
https://password-hashing.net/index.html
http://csrc.nist.gov/publications/nistpubs/800-132/nist-sp800-132.pdf
http://csrc.nist.gov/publications/nistpubs/800-132/nist-sp800-132.pdf

Rig: A Simple, Secure and Flexible Design for Password Hashing 381

11. Percival, C.: Stronger key derivation via sequential memory-hard functions.
In: BSDCon (2009). http://www.bsdcan.org/2009/schedule/attachments/87
scrypt.pdf

12. Provos, N., Mazières, D.: A future-adaptable password scheme. In: USENIX Ann-
ual Technical Conference, FREENIX Track, pp. 81–91. USENIX (1999)

13. Schaller, R.R.: Moore’s law: past, present, and future. IEEE Spectrum, June 1997

http://www.bsdcan.org/2009/schedule/attachments/87_scrypt.pdf
http://www.bsdcan.org/2009/schedule/attachments/87_scrypt.pdf

Authentication and Encryption

Efficient Hardware Accelerator for AEGIS-128
Authenticated Encryption

Debjyoti Bhattacharjee1(B) and Anupam Chattopadhyay2

1 Indian Statistical Institute, Kolkata, India
debjyoti08911@gmail.com

2 School of Computer Engineering, NTU, Singapore, Singapore
anupam@ntu.edu.sg

Abstract. Security of transaction is of paramount importance in mod-
ern world of ubiquitous computing and data movement. To provide a
framework of standard authenticated encryption techniques, CAESAR
contest has been announced recently. Multiple entries in this contest
are based on AES, which has been also, a popular choice as a prim-
itive for authenticated encryption in the past. In this paper, we per-
form in-depth study of efficient hardware implementation for AES-based
AEGIS-128 authenticated encryption, a prominent entry in the CAESAR
contest. Through a complete study of possible throughput-area improve-
ment techniques, we report multiple design points ranging from a high
throughput of 121.07 Gbps design to a low-area implementation of 18.72
KGE, using commercial synthesis flows and 65 nm ASIC technology. We
believe our results will serve as important design metric for the CAESAR
contest as well as for efficient AEGIS-128 deployment.

1 Introduction

AEGIS is an authenticated encryption algorithm in the currently ongoing
CAESAR [4] competition. AEGIS-128 processes 80-byte state vector in a single
state update operation as shown in the Fig. 1 of the algorithm. Each state update
uses 5 AES rounds in parallel to update the 80-byte state.

Among nearly 50 entries reported to CAESAR, nearly 1/5th are based
on AES [1]. Besides this current contest, high-performance and area-efficient
AES-based authenticated encryption schemes have been reported in the litera-
ture [2,3]. This makes AEGIS an important candidate in the current portfolio
of CAESAR. Furthermore, no attacks on AEGIS have been reported so far,
though this is not true for all AES-based authenticated encryption schemes,
e.g., ALE [3,20]. In this paper, we study AEGIS for efficient implementations
from the perspective of area and throughput. The key computational block, i.e.,
the state update is studied closely via theoretical analyses to reveal potential
improvement options. Whenever possible, we resort to the rich literature of effi-
cient AES implementation [5,10] to gain maximum improvement.

The rest of the paper is organized as following. In the Sect. 2, the potential
throughput improvement and area minimization techniques are discussed from a
c© Springer International Publishing Switzerland 2015
D. Lin et al. (Eds.): Inscrypt 2014, LNCS 8957, pp. 385–402, 2015.
DOI: 10.1007/978-3-319-16745-9 21

386 D. Bhattacharjee and A. Chattopadhyay

Fig. 1. AEGIS StateUpdate128 operation block diagram

theoretical perspective. Section 3 discusses the hardware implementation based
on these analyses. The experimental results are reported and benchmarked with
other authenticated encryption implementations in the Sect. 4. Section 5 con-
cludes the paper with outline of future works. To make the paper self-contained,
the AEGIS algorithm is briefly reviewed in the Appendix A.

2 Theoretical Analysis of AEGIS for Improving
Cycle-per-Byte

We analyze the performance of AEGIS-128 from a theoretical perspective with
respect to cycles-per-byte (cpb). Let msglen and adlen be the length of plaintext
and associated data respectively. We assume 128-bit tag generation by AEGIS-
128. Let n be the number of clock cycles required for completing one StateUp-
date128 (kindly refer to Appendix A for details) operation. Thus, we need

– 10 StateUpdate128 operations for initialization
– �adlen

128 � number of StateUpdate128 operations for processing associated data
– �msglen

128 � number of StateUpdate128 operations for encryption
– 7 StateUpdate128 operations for finalization.

Therefore the cpb of AEGIS-128 for encryption of msglen-bits of plaintext
and processing adlen-bits of associated data with tag generation is

cpb = n(10 + �adlen

128
� + �msglen

128
� + 7)/(

msglen

8
) (1)

2.1 Pipelining

We analyze pipelining as a method to improve on the throughput of the AEGIS-
128 implementation. Based on the optimized AES implementations, the AES
round operation is split into four pipeline stages, namely SBOX, SR, MC and
ARK. SBOX stage performs AES-SubBytes operation using Rijndael S-box,
SR stage performs AES-ShiftRows step, MC stage performs AES-MixColumns

Efficient Hardware Accelerator for AEGIS-128 Authenticated Encryption 387

step and ARK stage performs AES-AddRoundKey step. The choice of num-
ber of pipeline stages to be four is governed by two factors. First, this enables
splitting the effective critical path of the design into approximately four equal
subparts, thereby, theoretically we can effectively increment the maximum oper-
ating frequency 4× in comparison to the non pipelined implementation of the
algorithm. Second, the aforementioned four-stage distribution does not cause
any data dependency and therefore, stalls are avoided. We refrain from using a
5-stage pipeline due to the extra burden of pipeline registers, which will con-
tribute significantly to the area of the design. The scheduling of pipeline is
discussed in detail in the Sect. 3. For processing the first 128-bit part of the
current state, the architecture requires for 4 clock cycles for initial loading of the
pipeline. For processing the consecutive 128-bit part of the state, a single clock
cycle is required. Therefore, cycle per byte can be calculated as follows.

1. Initialization = 4+4+9×5 = 53 clock cycles (Initial 8 clock cycles are required
for the first StateUpdate128, and each of the consecutive StateUpdate128
operations require 5 cycles.).

2. Processing of authenticated data = 5 × �adlen
128 � clock cycles.

3. Encryption = 5 × �msglen
128 � clock cycles.

4. Finalization = 5 × 7 = 35 clock cycles.

Therefore cpb with pipelined architecture is

cpbpipe = (88 + 5(�adlen

128
� + �msglen

128
�))/msglen

8
(2)

The corresponding area required for implementation of the architecture can
be approximated as following.

areapipe = (Around +Apipeline register +Astate register +Anext state register), (3)

where Around is the area required for one AES round, Apipeline register is the area
needed for the pipeline registers. By efficient implementation of AES, area of
Around can be reduced. For low-area AEGIS design, we focused on the reduction
of the state registers , Astate register and Anext state register which are individually
of size 80-bytes. The optimizations are discussed in the following Sect. 3.

2.2 Parallelism

AEGIS-128 algorithm offers the possibility of processing the entire 80-byte state in
parallel by using 5 AES-Round cores in parallel. The parallel architecture thereby
offers a very high throughput. It requires a single clock cycle to complete the Sta-
teUpdate128 operation.

The throughput of parallel architecture can be derived as follows.

1. Initialization = 10 clock cycles
2. Processing of authenticated data = �adlen

128 � clock cycles

388 D. Bhattacharjee and A. Chattopadhyay

3. Encryption = �msglen
128 � clock cycles

4. Finalization = 7 clock cycles

The cpb of parallel architecture is thus

cpbparallel = (17 + �adlen

128
� + �msglen

128
�)/msglen

8
(4)

The area projection of the parallel architecture is

areaparallel = (5 × Around + Astate register) (5)

Though, the parallelization increases the combinational logic by requiring
5 AES round operations, the state registers can be reduced significantly. The
updated state can be directly written to the current state register as shown in
Fig. 9.

2.3 Unrolling

We can unroll the design for obtaining a even lower cpb in comparison to the
parallel architecture mentioned in Sect. 2.2. Let n be the unroll factor. Then we
can compute the cpb as follows. In one clock cycle, n StateUpdate128 opera-
tions can be completed. Total number of StateUpdate128 operations required
is snum = 10 + �adlen

128 � + �msglen
128 � + 7. Therefore total number of clock cycles

required till finalization is given as � snum
n �. Hence, we have the following.

cpbunrolled = �snum
n

�/msglen

8
(6)

The area projection of the unrolled architecture is

areaunrolled = n × (5 × Around + Astate register) (7)

Thus, the area-efficiency (η) can be determined as following.

ηarea
unrolled =

throughputunrolled
areaunrolled

=
n × msglen

8

n × (5 × Around + Astate register)
= ηarea

parallel

(8)
The area efficiency ηarea

unrolled of this design is same as that of the parallel
architecture ηarea

parallel. Since we do not gain on area-efficiency in comparison to the
parallel architecture mentioned in Sect. 2.2, we did not implement the unrolled
architecture.

3 Accelerator Implementation of AEGIS-128

Based on the theoretical analysis, the accelerator is implemented for meeting
different design constraints. The theoretical guidelines for improving cpb are
used, while possibilities for reducing the storage are explored. We could achieve

Efficient Hardware Accelerator for AEGIS-128 Authenticated Encryption 389

Fig. 2. Top-level Structure of AEGIS-128 core

the projected cpb for all the optimization possibilities. For all the design variants,
the same top-level structure, as shown in the Fig. 2 is maintained.

For all the designs, the current 80-byte state is stored in 128-bit registers,
denoted as Si, where 0 ≤ i ≤ 4. The next state is represented by Si′, where
0 ≤ i ≤ 4. The next state is represented by NSi, where 0 ≤ i ≤ 4. It should
be noted that Si represents the 80-byte state of AEGIS-128 and should not be
confused with the 128-bit state registers Si.

Fig. 3. Base implementation of AEGIS-128 core

3.1 Base Implementation

In this implementation, a single AES Round is executed in a clock cycle pro-
cessing 128-bit of current state. It takes input from the state registers S0 · · · S4
depending on the last 128-bit state processed by the AES Round. It takes 5 clock
cycles to complete a single StateUpdate128 operation.The architecture is shown
in Fig. 3. We have not shown the control logic and signals in the architecture

390 D. Bhattacharjee and A. Chattopadhyay

diagrams for clarity. Also, the 5-input exclusive OR gates for tag generation is
skipped.

In this design two next state registers - NS0 and NS1 are used. Initially,
128-bit state S4 is processed and stored in NS0. Then state S0 is processed
and saved in register NS1. In the next clock cycle,the register NS0 is saved to
register S0 and state S1 is processed and the result is saved to register NS0. In
the following clock cycle, the register NS1 is saved to register S1 and state S2 is
processed and the result is saved to register NS1. Then, S3 is processed and the
result is directly written to state register S4, and the next state registers NS0
and NS1 are written to state registers S2 and S3 respectively. By this simple
optimization, 3 out of 5 next state registers can be optimized away.

3.2 Design Points for Area Optimization

Design A01

It is often necessary to have cryptographic hardware accelerators to run on low
power devices with strict constraints on the area available. In order to serve such
scenarios, we implemented a very compact AEGIS design A01 shown in Fig. 4.
We used the Canright’s implementation [5] of SBOX to process 8 bits of state at
a time. It requires 16 clock cycles to load the SBOX result of a 128-bit state Si
to the sixteen 8-bit registers R0· · · R15. In each clock cycle, the entire chain of
registers R0 to R15 is shifted to the left and the output of the SBOX is loaded to
the register R15. We then perform shift rows operation in 1 clock cycle, since it
just involves data shuffling among the registers. In the next 4 consecutive clock
cycles, we left shift the registers column-wise, shifting out the registers [R0, R4,
R8, R12], which serves as input to mix columns logic block. This produces a
32-bit output in each clock cycle which is loaded back to the register column[R3,
R7, R11, R15]. After completion of the mix column step, add round key(ARK)
step is executed 8-bit at a time thereby requiring 16 clock cycles to complete
update of the 128-bit state Si.

We implemented an optimization to reduce the number of 128-bit registers
necessary to store the next state. When S0 is updated to obtain S

′
1, we store S

′
1

in register NSO. Now when we update S1, the result is stored to register NS0
while the content of register NS0 is loaded to register S1 in parallel. Similarly, in
the next two clock cycle, S2 and S3 are updated respectively. During the clock
cycle, in which S4 is updated, the result of update i.e. S0′ is stored directly to
register S0 and the value of register NS0 is saved to the register S4. The number
of clock cycles required by state update operation is reduced, by performing ARK
on the contents of 8-bit register R0, left shift by one the entire chain of registers
R1 to R15, and loading the 8-bit SBOX result from processing the next 128-bit
state to the register R15 in a single clock cycle. Hence, the SBOX operation and
ARK operation can be performed in parallel. Thereby, only for the first 128-bit
state update, we require 16+1+4+16 = 37 clock cycles and for all the following
128-bit state update, 1 + 4 + 16 = 21 clock cycles are required.

Efficient Hardware Accelerator for AEGIS-128 Authenticated Encryption 391

Fig. 4. Design A01

Design AO2

Design A02 implements the AEGIS algorithm using a 4-stage pipeline as shown
in Fig. 5. The pipelined implementation improves on the maximum operating
frequency of the AEGIS core over the base implementation. The design has the
operations substitution-bytes, shift-rows, mix-columns and add-round-key in the
stages SBOX, SR, MC and ARK respectively. A01 has a 128-bit datapath. Each
stage requires a single clock cycle to process its input. The order in which the
128-bit state Si is processed is shown in Fig. 6. If the first state processed in a
StateUpdate128 operation is Si, then in the next StateUpdate128 operation, the
first state to be processed is S(i+1)%5. Such an ordering of processing the states
eliminates the possibility of any pipeline stalls due to data dependencies. The
first StateUpdate128 operation requires 8 (4 clock cycles to fill the pipeline and
process S0 and then next 4 clock cycles for states S1, S2, S3, S4) clock cycles.
Subsequent StateUpdate128 operations requires 5 clock cycles to complete.

392 D. Bhattacharjee and A. Chattopadhyay

Fig. 5. Design A02

3.3 Design Points for Throughput Optimization

Design TO1

In order to achieve a higher throughput, we designed T01, which is equipped
with two parallel pipelines. The design T01 has 3 pipeline stages namely SBOX,
SR+MC,ARK as shown in Fig. 7. The first stage has substitution box, the second
stage has shift row and mix column operation together and the third stage has
the add round key operation. Each of these stages has 2 identical functional
units for processing these operations, in order to allow processing of two 128-bit
states in parallel. With two parallel units, there is a possibility of stalls due
to data dependencies. In order to avoid this, the number of pipeline stages is
reduced so as to minimize the time for which the units remains idle due to data
dependencies. The schedule in which the data is fed to the pipeline is shown in
Fig. 8. During the update of the first four 128-bit part of the state, we achieve
100 % hardware utilization by processing two 128-bit in parallel. For the 5th

128-bit of the state, due to data dependency, we can start processing only one
128-bit state and therefore one of the pipelined Round functional unit remains
idle.

For the first StateUpdate128 operation, S0, S1 is processed in the first 3
clock cycles, S2, S3 get processed by the next clock cycle, and S5 is completely
processed in the next clock cycle. Thereafter, it requires 3 clock cycles to com-
plete one StateUpdate128 operation. For obtaining the maximum utilization of
the hardware, we suggest to use the following schedule for processing the states
Si. During the first stage of StateUpdate128 operation, if Si and Si + 1 are
processed, then during the first stage of the next StateUpdate operation, states
Si + 1 and Si + 2 are to be processed. The schedule is depicted in Fig. 8. This
implementation provides a throughput improvement of 1.44× in comparison to
the implementation A02 while having a corresponding area increase of 1.4×.

Efficient Hardware Accelerator for AEGIS-128 Authenticated Encryption 393

Fig. 6. Pipeline Schedule of design AO2

Design TO2

In order to push the throughput even further, we designed the high performance
AEGIS-128 hardware accelerator TO2 shown in Fig. 9. Five Round operations
process the entire 80-byte state S in parallel in a single clock cycle. This imple-
mentation directly writes back the updated state value into the state registers,
without the need for any intermediate register and has greatly reduced control
logic when compared to the other implementations. It requires a single clock
cycle for the StateUpdate128 operation to complete in this implementation.

4 Results and Benchmarkings

At first, we report the performances of the different design points explained in
the previous sections. This is coupled with a comparison with the software imple-
mentation performance, reported by the authors [19]. Next, we report CAESAR
entries, where performance data is available. It is expected that all the CAESAR
entries will go through a detailed, fair benchmarking process in terms of their
hardware performance1. However, not all the entries have reported hardware/-
software performance figures yet. Moreover, performance reported at diverse
technology nodes and PVT corners make the process of comparison extremely
daunting. Finally, AEGIS performance is compared to the latest hardware imple-
mentation results of authenticated encryption modes of AES. As detailed in a
recent analysis for CAESAR entries’ competitiveness [9], we perform the com-
parison with AES-CCM and AES-GCM modes’ implementations.

The hardware accelerators have been implemented with Language for Instruc-
tion Set Architecture (LISA) [6], which allows a cycle-accurate description to be
modeled using high-level languages. Part of the design uses block cipher construc-
tions, for which the tool reported in [8] is used. Synopsys Processor Designer [18]
1 We are happy to share the RTL implementation to inquisitive researchers for this

purpose.

394 D. Bhattacharjee and A. Chattopadhyay

Fig. 7. Design TO1

tool was used to generate register-transfer level (RTL) implementation for the
accelerators. We generated timing-optimized and area-optimized RTL automat-
ically from the high-level description. High-level design entry allowed multiple
design iterations within a short span of time. On the other hand, possibility to
include RTL code directly in the high-level description kept the scope for low-
level optimizations where needed. The circuits have been synthesized and eval-
uated with Synopsys Design Compiler, version H-2013.03-SP1 using the 65-nm
CMOS Faraday technology library. For power estimation, switching activity files
are back-annotated from gate-level simulation. Detailed performance results are
presented in Table 1. Throughput, Area (indicated by KGE), area-efficiency, total
power (in mW) and energy-efficiency (joule/bit) are the performance metrics
used to evaluate the performance of the accelerators. Unless mentioned other-
wise, a message length of 1024 bytes for calculating throughput.

The performance of AEGIS-128 hardware accelerators in cycles per byte is
shown in Table 2. The data is also plotted graphically in Fig. 10. The cycles per
byte for design AO1 are relatively high when compared to other designs,hence
are not shown in the plot.The prime reason is due to the fact that AO1 is a
highly area optimized design. Considering high throughput, we have been able
to achieve very low cpb values of 0.07 for message length of 4096 bytes for
design TO2.

It can be noted that, in comparison to the software performance of AEGIS-
128, reported for processors with special instruction sets for AES [19], each one
of our hardware accelerators are faster, except the area-optimized design AO1.
For 4096-byte messages, the performance of our designs - base implementation,

Efficient Hardware Accelerator for AEGIS-128 Authenticated Encryption 395

Fig. 8. Pipeline Schedule for design T01

Fig. 9. Architecture of Design TO2

Table 1. Performance of AEGIS-128 architectures

Design Optimization Clock Area Throughput Efficiency Total Energy

frequency (KGE) (Gbps) (Gbps/ power efficiency

(MHz) kGE) (mW) (pJ/bit)

Base Speed 915 59.34 17.04 0.29 74.41 4.07

implementation Area 915 57.01 17.04 0.30 64.65 1.06

AO1 Speed 1435 20.55 1.35 0.07 21.96 15.17

Area 1410 18.72 1.32 0.07 21.58 15.17

AO2 Speed 2010 60.88 37.44 0.61 33.08 0.82

Area 1962 56.65 36.55 0.65 34.21 0.87

TO1 Speed 1725 88.91 53.55 0.60 28.33 0.49

Area 1700 84.71 52.77 0.62 28.33 0.50

TO2 Speed 1300 172.72 121.07 0.70 232.75 1.79

Area 1300 172.72 121.07 0.70 232.75 1.79

396 D. Bhattacharjee and A. Chattopadhyay

Table 2. Performance of AEGIS architectures in cycles per byte

Design Message length

64B 128B 256B 512B 1024B 4096B

Base implementation 1.64 0.98 0.64 0.48 0.40 0.33

Area optimization

AO1 33.06 19.66 12.95 9.60 7.93 6.67

AO2 1.69 1.00 0.66 0.48 0.40 0.33

Throughput optimization

TO1 1.03 0.61 0.40 0.29 0.24 0.20

TO2 0.33 0.20 0.13 0.10 0.08 0.07

Software implementation

AEGIS(EA)[19] 3.37 1.99 1.30 0.96 0.8 0.66

AO2, TO1 and TO2 are better than the software performance [19] of the AEGIS-
128 implemented. The designs - base implementation, AO2, TO1 and TO2 are
faster by 2×, 2×, 3.3× and 9.4× respectively in comparison to the software
implementation. The AEGIS-128 hardware implementation TO2 is faster than
all the software implementations of the CAESAR entries [4].

Fig. 10. Cycles per byte vs message length for AEGIS-128 architectures

We highlight the key points of the performance results. At first, we would
like to state that design AO1 has the lowest area of about 18 kGE, among all
the designs of AEGIS-128. By sharing of resources, we are able to reduce the
area like using a single SBOX unit to process 8-bits of state in a clock cycle.
Similarly, we used a single unit for mix column for processing 32-bits in a clock
cycle.

Efficient Hardware Accelerator for AEGIS-128 Authenticated Encryption 397

The design AO2 has a very similar area in comparison to the BASE implemen-
tation. Due to pipelining, the maximum operating frequency of A02 is at least
1.88× more than the base implementation, resulting in a improved throughput
which 2.14× of that of BASE implementation.

The design TO1 is the most energy efficient design for AEGIS-128 with an
energy efficiency of 0.50 pJ/bit. It has a throughput of 1.4× of the design AO2.
The reason for this value to be lower than 2 is due to the fact, the data depen-
dencies prohibits the full utilization of both the pipelined Round cores at all the
times.

The design TO2 has the highest performance in comparison of to rest of the
designs. It achieves a maximum throughput of 121.07 Gbps at 1300 MHz. This
design also achieves the highest efficiency with respect to area with a value of
0.7 Gbps/kGE. The prime reason being the fully parallel cores required the least
amount of control circuitry leading to savings in area and with all the 5 Round
cores running in parallel without any data dependencies, it is able to achieve
highest throughput.

4.1 Reported Performance Results of CAESAR Entries

We summarize the known implementations and their results without drawing
any hard comparisons.

– ICEPOLE v1 [11]: ICEPOLE implementation reported a throughput of about
42 Gbps and 38.78 Gbps for implementation using Xilinx Virtex 6 and Altera
Stratix IV FPGA.

– Minalpher v1 [15]:
1. Minealpher High Speed Core: The area and timing optimized cores have a

throughput of 6.1 Gbps and 9.9 Gbps respectively with an area efficiency
of 426.37 Mbps/kGE and 596.16 Mbps/kGE respectively.

2. Minalpher Low-area coprocessor: The area and timing optimized cores have
an area of 2.81 KGE and 3.36 KGE respectively at 45 nm technology node.

– SCREAM &iSCREAM [7]: SCREAM-10(2R/cycle) offers the maximum
throughput of 5.19 Gbps with an area of 17292μm2 KGE while SCREAM-
10(1R/cycle) offers throughput of 4.74 Gbps with an area of 12951μm2.
iSCREAM-12(2R/cycle) offers the maximum throughput of 4.41 Gbps with
an area of 17024 μm2 while iSCREAM-12(1R/cycle) offers throughput of
3.79 Gbps with an area of 13375μm2. Both the implementations are reported
for 65 nm technology node. In the same technology node, for the sake of a very
approximate reference, the smallest area for our AEGIS-128 implementation
takes 23961 μm2 with a throughput of 1.32 Gbps.

4.2 Comparison with AES-based Authenticated Encryption
Schemes

Two recently reported efficient hardware implementations for AES-GCM and
AES-CCM authenticated encryptions have following performance figures.

398 D. Bhattacharjee and A. Chattopadhyay

– AES-GCM [12]: AES-GCM required 20.5 KGE area and has a throughput of
2.62 Gbps using 90 nm technology node. In comparison to AES-GCM,.

– AES-CCM [13]: AES-CCM implementation with the highest throughput offers
maximum throughput of 12.35 Gbps and has 875 KGE area using 65 nm tech-
nology node.

In contrast, AEGIS-128 lowest area implementation has 18.72 KGE with a
throughput of 1.32 Gbps and the highest throughput of AEGIS-128 architecture
is 121.07 Gbps with an area of 172.72 KGE. Clearly, AEGIS-128 offers signifi-
cantly higher throughput than that could be achieved with AES variants. It can
be noted that, the speed achievable with AEGIS is considerably higher than that
reported in accelerator implementations for prominent block/stream ciphers in
recent times [14,16,17]. At the same time, for a low-area implementation, AEGIS
offers a very competitive solution.

5 Conclusion

In this paper, we performed a detailed implementation study of AEGIS authen-
ticated encryption algorithm. The optimizations for throughput and area are
derived from a theoretical analysis. Subsequently, diverse design points with vari-
ous performance metrics, e.g., area, throughput, area-efficiency, energy-efficiency
and power are proposed. These design points are implemented using a high-level
design platform and their pre-layout implementation reports using an ASIC tech-
nology library are reported. The implementation results are shown to be com-
petitive in terms of area and significantly superior in terms of throughput, when
compared with state-of-the-art authenticated encryption protocols.

A AEGIS-128

We briefly describe the AEGIS-128 algorithm [19]. AEGIS-128 uses a 128-bit
key and 128-bit initialization vector to encrypt and authenticate a message.
The associated data length and plain text length are less than 264 bits. The
authentication tag length is less than or equal to 128-bits. The use of 128-bit
tag length is strongly recommended.

The state update function StateUpdate128 of AEGIS-128 updates a 80-
byte state Si using a 16-byte message block mi. StateUpdate128 is stated in
Algorithm 1. The block diagram of StateUpdate128 function is shown in Fig. 1.
The function Round is an AES encryption round as shown in Fig. 11.

A.1 Encryption and Generation of Tag of AEGIS-128

AEGIS-128 has 4 phases for encryption. We describe each phase concisely. We
use the same notations that are defined in the original paper with the description
of AEGIS-128 [19].

Efficient Hardware Accelerator for AEGIS-128 Authenticated Encryption 399

Algorithm 1. StateUpdate128 function of AEGIS-128
1: function StateUpdate128(Si , mi)
2: Si+1,0 = Round(Si,4, Si,0

⊕
mi)

3: Si+1,1 = Round(Si,0, Si,1)
4: Si+1,2 = Round(Si,1, Si,2)
5: Si+1,3 = Round(Si,2, Si,3)
6: Si+1,4 = Round(Si,3, Si,4)
7: return Si+1

8: end function

Fig. 11. Round function used by StateUpdate128

1 Initialization of AEGIS-128
Initialization of AEGIS-128 consists of loading the key and IV into the state,
and running the cipher for 10 steps with the key and IV being used as message.

S−10,0 = K128

⊕
IV 128

S−10,1 = const1
S−10,2 = const0
S−10,3 = K128

⊕
const0

S−10,4 = K128

⊕
const1

for i = −10 to −1
{

i f (i%2==0)
mi = K128

else
mi = K128

⊕
IV 128

Si+1 = StateUpdate128 (Si ,mi)
}

2 Processing the Authenticated Data
The associated data AD is used to update the state. If the last associated
data block is not a full block, use 0 bits to pad it to 128 bits, and the padded
full block is used to update the state. Note that if adlen = 0, the state will
not be updated.

Si+1 = StateUpdate128 (Si ,ADi)
}

400 D. Bhattacharjee and A. Chattopadhyay

3 Encryption of Plaintext Data
If the last plaintext block is not a full block, use 0 bits to pad it to 128 bits,
and the padded full block is used to update the state. But only the partial
block is encrypted. Note that if msglen = 0, the state will not get updated,
and there is no encryption.

= 0 to v−1 {
Ci = Pi

⊕
Su+i,1

⊕
Su+i,4

⊕
(Su+i,2&Su+i,3)

Su+i+1 = StateUpdate128 (Su+i ,ADi)
}

4 Finalization
After encrypting all the plaintext blocks, we generate the authentication tag
using seven more steps. The length of the associated data and the length of
the message are used to update the state.

Let tmp = Su+v,3

⊕
(adlen||msglen) ,

where adlen and msglen are r epre s en ted as 64−b i t i n t e g e r s .
for i = u + v to u + v + 6

Si+1 = StateUpdate128 (Si ,tmp)

T ′ =
⊕4

i=0 Su+v+7,i

The authentication tag T consists of the first t bits of T ′.

A.2 Decryption and Verification of AEGIS-128

The exact values of key size, IV, size, and tag-size should be known to the
decryption and verification processes. The decryption starts with the initializa-
tion and the processing of authenticated data. Then the ciphertext is decrypted
as follows:

– If the last ciphertext block is not a full block, decrypt only the partial cipher-
text block. The partial plaintext block is padded with 0 bits, and the padded
full plaintext block is used to update the state.

– For i = 0 to v − 1, Perform decryption and update the state.

The finalization in the decryption process is the same as that in the encryp-
tion process. It is emphasized that if the verification fails, the ciphertext and the
newly generated authentication tag should not be given as output; otherwise,
the state of AEGIS-128 is vulnerable to known-plaintext or chosen-ciphertext
attacks (using a fixed IV).

Efficient Hardware Accelerator for AEGIS-128 Authenticated Encryption 401

References

1. Announcing the ADVANCED ENCRYPTION STANDARD (AES). Federal Infor-
mation Processing Standards Publication 197. United States National Institute of
Standards and Technology (NIST). 26 November 2001

2. Bogdanov, A., Lauridsen, M.M., Tischhauser, E.: AES-Based Authenticated
Encryption Modes in Parallel High-Performance Software. https://eprint.iacr.org/
2014/186.pdf. Accessed on 27 July 2014

3. Bogdanov, A., Mendel, F., Regazzoni, F., Rijmen, V., Tischhauser, E.: ALE: AES-
based lightweight authenticated encryption. In: Moriai, S. (ed.) FSE 2013. LNCS,
vol. 8424, pp. 447–466. Springer, Heidelberg (2014)

4. CAESAR Submissions. http://competitions.cr.yp.to/caesar.html
5. Canright, D., Batina, L.: A very compact “perfectly masked” S-Box for AES. In:

Bellovin, S.M., Gennaro, R., Keromytis, A.D., Yung, M. (eds.) ACNS 2008. LNCS,
vol. 5037, pp. 446–459. Springer, Heidelberg (2008)

6. Chattopadhyay, A., Meyr, H., Leupers, R.: LISA: a uniform ADL for embed-
ded processor modelling, implementation and software toolsuite generation. In:
Mishra, P., Dutt, N. (eds.) Processor Description Languages, pp. 95–130. Morgan
Kaufmann, Boston (2008)

7. Grosso, V., Leurent, G., Standaert, F., Varici, K., Durvaux, F., Gaspar, L., Kerck-
hof, S.: SCREAM & iSCREAM Side-Channel Resistant Authenticated Encryption
with Masking. http://competitions.cr.yp.to/round1/screamv1.pdf. Accessed on 12
July 2014

8. Khalid, A., Hassan, M., Chattopadhyay, A., Paul, G.: RAPID-FeinSPN: a rapid
prototyping framework for feistel and SPN-based block ciphers. In: Bagchi, A., Ray,
I. (eds.) ICISS 2013. LNCS, vol. 8303, pp. 169–190. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-45204-813

9. Kim, H., Kim, K.: Who can survive in CAESAR competition at round-zero? In: The
31th Symposium on Cryptography and Information Security Kagoshima, Japan,
21–24 January 2014

10. Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the limits: a
very compact and a threshold implementation of AES. In: Paterson, K.G. (ed.)
EUROCRYPT 2011. LNCS, vol. 6632, pp. 69–88. Springer, Heidelberg (2011)

11. Morawiecki, P., Gaj, K., Homsirikamol, E., Matusiewicz, K., Pieprzyk, J.,
Rogawski, M., Srebrny, M., Wojcik, M.: ICEPOLE v1. http://competitions.cr.yp.
to/round1/icepolev1.pdf. Accessed on 12 July 2014

12. Mozaffari-Kermani, M., Reyhani-Masoleh, A.: Efficient and high-performance par-
allel hardware architectures for the AES-GCM. IEEE Trans. Comput. 61(8), 1165–
1178 (2012)

13. Nguyen, D.K., Lanante, L., Ochi, H.: High throughput resource saving hardware
implementation of AES-CCM for robust security network. J. Autom. Control Eng.
1(3), 250–254 (2013)

14. Paul, G., Chattopadhyay, A.: Designing stream ciphers with scalable data-widths:
a case study with HC-128. Springer J. Crypt. Eng. 4(2), 135–143 (2014). doi:10.
1007/s13389-014-0071-0

15. Sasaki, Y., Todo, Y., Aoki, K., Naito, Y., Sugawara, T., Murakami, Y., Matsui,
M., Hirose, S.: Minalpher v1. http://competitions.cr.yp.to/round1/minalpherv1.
pdf. Accessed on 12 July 2014

16. Sen Gupta, S., Chattopadhyay, A., Khalid, A.: Designing integrated accelerator
for stream ciphers with structural similarities. Crypt. Commun. Discrete Struct.
Boolean Funct. Sequences 5(1), 19–47 (2013). doi:10.1007/s12095-012-0074-6

https://eprint.iacr.org/2014/186.pdf
https://eprint.iacr.org/2014/186.pdf
http://competitions.cr.yp.to/caesar.html
http://competitions.cr.yp.to/round1/screamv1.pdf
http://dx.doi.org/10.1007/978-3-642-45204-8 13
http://competitions.cr.yp.to/round1/icepolev1.pdf
http://competitions.cr.yp.to/round1/icepolev1.pdf
http://dx.doi.org/10.1007/s13389-014-0071-0
http://dx.doi.org/10.1007/s13389-014-0071-0
http://competitions.cr.yp.to/round1/minalpherv1.pdf
http://competitions.cr.yp.to/round1/minalpherv1.pdf
http://dx.doi.org/10.1007/s12095-012-0074-6

402 D. Bhattacharjee and A. Chattopadhyay

17. Sen Gupta, S., Chattopadhyay, A., Sinha, K., Maitra, S., Sinha, B.P.: High per-
formance hardware implementation for RC4 stream cipher. IEEE Trans. Comput.
62(4), 730–743 (2012)

18. Synopsys Processor Designer. http://www.synopsys.com/systems/blockdesign/
processordev/pages/default.aspx

19. Wu, H., Preneel, B.: AEGIS: a fast authenticated encryption algorithm. In: Lange,
T., Lauter, K., Lisoněk, P. (eds.) SAC 2013. LNCS, vol. 8282, pp. 185–202.
Springer, Heidelberg (2014)

20. Wu, S., Wu, H., Huang, T., Wang, M., Wu, W.: Leaked-state-forgery attack against
the authenticated encryption algorithm ALE. In: Sako, K., Sarkar, P. (eds.) ASI-
ACRYPT 2013, Part I. LNCS, vol. 8269, pp. 377–404. Springer, Heidelberg (2013)

http://www.synopsys.com/systems/blockdesign/processordev/pages/default.aspx
http://www.synopsys.com/systems/blockdesign/processordev/pages/default.aspx

Fully Collusion-Resistant Traceable Key-Policy
Attribute-Based Encryption with Sub-linear

Size Ciphertexts

Zhen Liu1(B), Zhenfu Cao2, and Duncan S. Wong1

1 City University of Hong Kong, Hong Kong SAR, China
zhenliu7-c@my.cityu.edu.hk, duncan@cityu.edu.hk

2 East China Normal University, Shanghai, China
zfcao@sei.ecnu.edu.cn

Abstract. Recently a series of expressive, secure and efficient Attribute-
BasedEncryption(ABE)schemes,both inkey-policyflavorandciphertext-
policy flavor, have been proposed. However, before being applied into
practice, these systems have to attain traceability of malicious users. As
the decryption privilege of a decryption key in Key-Policy ABE (resp.
Ciphertext-Policy ABE) may be shared by multiple users who own the
same access policy (resp. attribute set), malicious users might tempt to
leak their decryption privileges to third parties, for financial gain as an
example, if there is no tracing mechanism for tracking them down. In this
work we study the traceability notion in the setting of Key-Policy ABE,
and formalize Key-Policy ABE supporting fully collusion-resistant black-
box traceability. An adversary is allowed to access an arbitrary number
of keys of its own choice when building a decryption-device, and given
such a decryption-device while the underlying decryption algorithm or
key may not be given, a blackbox tracing algorithm can find out at
least one of the malicious users whose keys have been used for building
the decryption-device. We propose a construction, which supports both
fully collusion-resistant blackbox traceability and high expressivity (i.e.
supporting any monotonic access structures). The construction is fully
secure in the standard model (i.e. it achieves the best security level that
the conventional non-traceable ABE systems do to date), and is efficient
that the fully collusion-resistant blackbox traceability is attained at the
price of making ciphertexts grow only sub-linearly in the number of users
in the system, which is the most efficient level to date.

Keywords: Attribute-based encryption · Key-policy · Blackbox
traceability · Efficiency

1 Introduction

Attribute-based encryption (ABE), as a promising tool for fine-grained access
control on encrypted data, has attracted much attention since its introduction
by Sahai and Waters [25] in 2005, and work has been done to achieve better
c© Springer International Publishing Switzerland 2015
D. Lin et al. (Eds.): Inscrypt 2014, LNCS 8957, pp. 403–423, 2015.
DOI: 10.1007/978-3-319-16745-9 22

404 Z. Liu et al.

expressivity, security and efficiency, in both key-policy flavor [1,7,10,14,22–24,28]
and ciphertext-policy flavor [6,9,11,15,16,22,24,27]. Due to their high expressiv-
ity of access policy and efficient one-to-many encryption, both Key-Policy ABE
(KP-ABE) and Ciphertext-Policy ABE (CP-ABE) have extensive applications.
For example, in a KP-ABE system (CP-ABE proceeds the other way around),
each private key is associated with an access policy over descriptive attributes
issued by an authority, each ciphertext is associated with an attribute set speci-
fied by the encryptor, and if and only if the attribute set of a ciphertext satisfies
the access policy, the private key can decrypt the ciphertext. In a pay-TV sys-
tem the television broadcaster can encrypt the broadcast using the descriptive
attributes, such as the name of the program (“The Big Bang Theory”), the
genre (“drama”), the season, the episode number, the year, the month, etc. And
a subscriber may determine and pay for his subscribing policy, such as “(The
Big Bang Theory OR Criminal Minds) AND 2014”.

Recently, the expressivity, security and efficiency of ABE have been relatively
well developed. The KP-ABE systems in [14,22] and the CP-ABE systems in
[15,16,22]1 are highly expressive (i.e. supporting any monotonic access struc-
tures), fully secure in the standard model, and satisfactorily efficient. However,
to apply these systems into practice, the traceability of malicious users is needed.
In an ABE system in general, as a decryption privilege could be possessed by
multiple users who own the same access policy (in KP-ABE) or attribute set
(in CP-ABE), malicious users might tempt to leak their decryption privileges to
third parties, for financial gain as an example, if there is no tracing mechanism
for finding these malicious users out. For example, both user Alex with access
policy “(The Big Bang Theory OR Criminal Minds) AND 2014” and user Bob
with access policy “(The Big Bang Theory OR CSI) AND 2014” might be the
malicious user who builds and sells a decryption blackbox that can decrypt the
ciphertexts generated under attributes {The Big Bang Theory, 2014}.

While all the aforementioned ABE systems suffer from this problem, some
recent attempts [13,17–20,26,29] have been made to achieve traceability. Specif-
ically, there are two levels of traceability: (1) given a well-formed decryption
key, a Whitebox tracing algorithm can find out the original key owner; and
(2) given a decryption-device while the underlying decryption algorithm or key
may not be given, a Blackbox tracing algorithm, which treats the decryption-
device as an oracle, can find out at least one of the malicious users whose keys
have been used for building the decryption-device. Furthermore, a system is
said to support fully collusion-resistant blackbox traceability if an adversary can
access an arbitrary number of keys (in other words, when an arbitrary number
of malicious users collude) when building the decryption-device, and is said to
support t-collusion-resistant blackbox traceability, if an adversary is restricted
from getting more than t decryption keys when building the decryption-device.
While the Blackbox Traceable CP-ABE scheme in [19] is highly expressive, fully
secure in the standard model, and efficient in achieving fully collusion-resistant

1 Reference [14] is the full version of [15], where [15] proposed expressive, fully secure
and efficient CP-ABE schemes, [14] further proposed an expressive, fully secure and
efficient KP-ABE scheme additionally.

Fully Collusion-Resistant Traceable KP-ABE with Sub-linear Overhead 405

Table 1. Comparison with existing traceable KP-ABE schemes

Adaptively Highly Fully collusion-resistant Overhead for

secure expressive traceable traceability

[29] × √ × O(log K)

[26] × × × O(t2 log K + log(1/ε))a

[13] × √ √
O(K)

This paper
√ √ √

O(
√K)

aReference [26] is only t-collusion-resistant traceable and the large overhead
O(t2 log K + log(1/ε)) makes the scheme impractical. Furthermore, to achieve fully
collusion-resistant traceability (i.e., t = K, the number of users in the system), the
overhead of the scheme will be O(K2 log K + log(1/ε)). ε is the probability of error
that a colluder is not traced.

blackbox traceability at the expense of overhead sub-linear in the number of
users, there is no traceable KP-ABE scheme achieving comparable expressivity,
security and efficiency. In particular, (1) the blackbox traceability of [29] is 1-
collusion-resistant (i.e. cannot resist collusion attack); (2) Reference [26] only
supports single threshold policy and t-collusion-resistant blackbox traceability;
(3) the fully collusion-resistant blackbox traceable predicate encryption scheme
in [13] implies an expressive KP-ABE scheme (at the cost of converting mono-
tonic access structure into DNF, which will result in larger ciphertext size), but
the overhead for traceability is linear in the number of users; and (4) all the
schemes in [13,26,29] are only selectively secure.

1.1 Our Results

In this paper, we first formalize the fully collusion-resistant blackbox traceabil-
ity notions for expressive KP-ABE, then we formalize a simpler primitive called
Augmented KP-ABE and show that a secure Augmented KP-ABE can be directly
transformed into a Traceable KP-ABE. With such a transformation, to obtain a
fully collusion-resistant blackbox traceable KP-ABE scheme, we propose an Aug-
mented KP-ABE construction, implying a traceable KP-ABE construction that
is fully secure in the standard model, highly expressive in supporting any mono-
tonic access structures, and efficient in achieving fully collusion-resistant blackbox
traceability at the expense of having the ciphertext size be sub-linear in the num-
ber of users in the system. In Table 1 we compare our traceable KP-ABE scheme
with existing traceable KP-ABE schemes in literature.

Paper Organization. In Sect. 2 we formalize the fully collusion-resistant black-
box traceability notions for expressive KP-ABE. Then in Sect. 3, we propose
a primitive called Augmented KP-ABE and define its security notions using
message-hiding and index-hiding games, and show that an Augmented KP-ABE
with message-hiding and index-hiding properties implies a secure KP-ABE with
traceability. Finally in Sect. 4, we propose a concrete construction of Augmented
KP-ABE and prove its message-hiding and index-hiding properties in the stan-
dard model.

406 Z. Liu et al.

2 KP-ABE with Traceability

We first review the definition of KP-ABE which is based on conventional (non-
traceable) KP-ABE (e.g. [10,14]) with the exception that in our ‘functional’
definition, we explicitly assign and identify users using unique indices, and let
K be the number of users in a KP-ABE system. Then we introduce the fully
collusion-resistant traceability definition against attributes-specific decryption
blackbox, which reflects most practical applications.

2.1 KP-ABE

Before defining KP-ABE system, we first provide some background about access
policy in the context of KP-ABE.

Definition 1 (Access Structure). [2] Let U = {a1, a2, . . . , an} be a set of
attributes. A collection A ⊆ 2U is monotone if ∀B,C : B ∈ A and B ⊆ C imply
C ∈ A. An access structure (resp., monotone access structure) is a collection
(resp., monotone collection) A of non-empty subsets of U , i.e., A ⊆ 2U \{∅}. The
sets in A are called authorized sets, and the sets not in A are called unauthorized
sets. Also, for an attribute set S ⊆ U , if S ∈ A then we say S satisfies the access
structure A, otherwise we say S does not satisfy A.

Unless stated otherwise, by an access structure we mean a monotone access
structure for the rest of this paper.

For simplicity, for a positive integer, for example n, we use the notation [n] to
denote the set {1, 2, . . . , n}. A Key-Policy ABE (KP-ABE) scheme consists of
the following four algorithms:

Setup(λ,U ,K) → (PP,MSK). The algorithm takes as input a security parameter
λ ∈ N, the attribute universe (i.e., the set of attributes) U , and the number
of users K in the system, it outputs a public parameter PP and a master
secret key MSK.

KeyGen(PP,MSK,A) → SKk,A. The algorithm takes as input PP, MSK, and an
access structure A, and outputs a private key SKk,A, which is assigned and
identified by a unique index k ∈ [K].

Encrypt(PP, M,S) → CTS . The algorithm takes as input PP, a message M ,
and an attribute set S ⊆ U , and outputs a ciphertext CTS . S is implicitly
included in CTS .

Decrypt(PP, CTS ,SKk,A) → M or ⊥. The algorithm takes as input PP, a cipher-
text CTS associated with an attribute set S, and a private key SKk,A. If
S satisfies A, the algorithm outputs message M , otherwise it outputs ⊥
indicating the failure of decryption.

Correctness. For all access structures A ⊆ 2U \ {∅}, k ∈ [K], S ⊆ U , and mes-
sages M : if (PP,MSK) ← Setup(λ,U ,K), SKk,A ← KeyGen(PP,MSK,A), CTS ←
Encrypt(PP,M, S), and S satisfies A, we have Decrypt(PP, CTS ,SKk,A) = M .

Fully Collusion-Resistant Traceable KP-ABE with Sub-linear Overhead 407

Security. The security of the above KP-ABE scheme is defined using the follow-
ing message-hiding game, which is a typical semantic security game and is based
on that for conventional KP-ABE [10,14] security against adaptive adversaries,
except that each key is explicitly identified by a unique index.

GameMH. The message-hiding game is defined between a challenger and an adver-
sary A as follows:

Setup. The challenger runs Setup(λ,U ,K) and gives the public parameter
PP to A.

Phase 1. For i = 1 to Q1, A adaptively submits (index, access structure) pair
(ki,Aki

) to the challenger, and the challenger responds with SKki,Aki
.

Challenge. A submits two equal-length messages M0,M1 and an attribute
set S∗. The challenger flips a random coin b ∈ {0, 1}, and sends CTS∗ ←
Encrypt(PP,Mb, S

∗) to A.
Phase 2. For i = Q1 + 1 to Q, A adaptively submits (index, access structure)

pair (ki,Aki
) to the challenger, and the challenger responds with SKki,Aki

.
Guess. A outputs a guess b′ ∈ {0, 1} for b.

A wins the game if b′ = b under the restriction that S∗ does not satisfy any
of the queried access structures Ak1 , . . . ,AkQ

. The advantage of A is defined as
MHAdvA = |Pr[b′ = b] − 1

2 |.
Definition 2. A K-user KP-ABE scheme is secure if for all probabilistic
polynomial time (PPT) adversaries A the advantage MHAdvA is a negligible
function of λ.

It is worth noticing that: (1) although the index of each user private key is assigned
by the KeyGen algorithm, to capture the security that an attacker can adaptively
choose keys to corrupt, the above security model allows the adversary to specify
the index when he makes a key query, i.e., for i = 1 to Q, the adversary submits
(index, access structure) pair (ki,Aki

) to query a private key for access structure
Aki

, and the challenger will assign ki to be the index of the private key, where
Q ≤ K, ki ∈ [K], and ki
= kj ∀1 ≤ i
= j ≤ Q (this is to guarantee that each
user/key can be uniquely identified by an index); and (2) for ki
= kj we do not
require Aki

= Akj
, i.e., different users/keys may have the same access structure.

We remark that these two points apply to the rest of the paper.

Remark: Compared with a conventional (non-traceable) KP-ABE [10,14], the
above definition has the same Encrypt and Decrypt functionality, and almost the
same Setup and KeyGen with only slight differences: predefining the number of
users K in Setup and assigning each user a unique index k ∈ [K]. Presetting the
number of users is indeed a tradeoff but is also a necessary cost for achieving
blackbox traceability. We stress that in practice, this should not incur much
concern, and all the existing blackbox traceable systems (e.g. [4,5,8,13,19,26])
have the same setting. Also being consistent with the conventional definition of
KP-ABE, the user indices are not used in normal encryption (i.e. the encryptors
do not need to know the indices of any users in order to encrypt) and different

408 Z. Liu et al.

users (with different indices) may have the same access policy. In summary, a
secure KP-ABE system defined as above has all the appealing properties that a
conventional KP-ABE system [10,14] has, that is, fully collusion-resistant secu-
rity, fine-grained access control on encrypted data, and efficient one-to-many
encryption. The unique index of each user/private key is to uniquely identify
the users and allow the traceability.

2.2 KP-ABE Traceability

An attributes-specific decryption blackbox D in the setting of KP-ABE is viewed
as a probabilistic circuit that can decrypt ciphertexts generated under some
specific attribute set. In particular, an attributes-specific decryption blackbox D
is described with an attribute set SD and a non-negligible probability value ε
(i.e. ε = 1/f(λ) for some polynomial f), and this blackbox D can decrypt the
ciphertexts generated under SD with probability at least ε. Such an attributes-
specific decryption blackbox reflects most practical scenarios. In particular, once
a decryption blackbox is found being able to decrypt some ciphertext with non-
negligible probability (regardless of how this is found, for example, an explicit
description of the blackbox’s decryption ability is given, or the law enforcement
agency finds some clue), we can regard it as an attributes-specific decryption
blackbox with the corresponding attribute set (which is associated to the cipher-
text).2 And for a decryption blackbox, if multiple attribute sets are found that
corresponding ciphertexts can be decrypted by this blackbox with non-negligible
probability, we can regard the blackbox as multiple attributes-specific decryption
blackboxes, each with a different attribute set.

We now define a tracing algorithm against an attributes-specific decryption
blackbox as follows.

TraceD(PP, SD, ε) → KT ⊆ [K]. This is an oracle algorithm that interacts with an
attributes-specific decryption blackbox D. By given the public parameter PP, an
attribute set SD, and a probability value ε, the algorithm runs in time polynomial
in λ and 1/ε, and outputs an index set KT ⊆ [K] which identifies the set of
malicious users. Note that ε has to be polynomially related to λ, i.e. ε = 1/f(λ)
for some polynomial f .

The following tracing game captures the notion of fully collusion-resistant
traceability against attributes-specific decryption blackbox. In the game, the
adversary targets to build a decryption blackbox D that can decrypt ciphertexts
generated under some attribute set SD with non-negligible probability. The trac-
ing algorithm, on the other side, is designed to extract the index of at least one
of the malicious users whose decryption keys have been used for constructing D.

2 Note that in the setting of predicate encryption [12], which can informally be
regarded as a KP-ABE system with attribute-hiding property, the decryption black-
box [13] is also modeled similarly, i.e., the tracing algorithm takes as input an
attribute I and a decryption blackbox D that decrypts ciphertexts associated with
the attribute I.

Fully Collusion-Resistant Traceable KP-ABE with Sub-linear Overhead 409

GameTR. The tracing game is defined between a challenger and an adversary
A as follows:

Setup. The challenger runs Setup(λ,U ,K) and gives the public parameter
PP to A.

Key Query. For i = 1 to Q, A adaptively submits (index, access structure)
pair (ki,Aki

) to the challenger, and the challenger responds with SKki,Aki
.

Decryption Blackbox Generation. A outputs a decryption blackbox D asso-
ciated with an attribute set SD and a non-negligible probability value ε.

Tracing. The challenger runs TraceD(PP, SD, ε) to obtain an index set KT ⊆ [K].

Let KD = {ki|1 ≤ i ≤ Q} be the index set of keys corrupted by the adversary.
We say that the adversary A wins the game if the following conditions hold:

1. Pr[D(Encrypt(PP,M, SD)) = M] ≥ ε, where the probability is taken over
the random choices of message M and the random coins of D. A decryption
blackbox satisfying this condition is said to be a useful attributes-specific
decryption blackbox.

2. KT = ∅, or KT
⊆ KD, or (SD does not satisfy Akt
∀kt ∈ KT).

We denote by TRAdvA the probability that adversary A wins this game.

Remark: For a useful attributes-specific decryption blackbox D, the traced KT

must satisfy (KT
= ∅) ∧ (KT ⊆ KD) ∧ (∃kt ∈ KT s.t. SD satisfies Akt
)

for traceability. (1) (KT
= ∅) ∧ (KT ⊆ KD) captures the preliminary trace-
ability that the tracing algorithm can extract at least one malicious user and
the coalition of malicious users cannot frame any innocent user. (2) (∃kt ∈
KT s.t. SD satisfies Akt

) captures strong traceability that the tracing algo-
rithm can extract at least one malicious user whose private key enables D to
have the decryption ability of decrypting ciphertexts generated under SD. We
refer to [13,19] on why strong traceability is desirable.

Definition 3. A K-user KP-ABE scheme is traceable if for all PPT adversaries
A the advantage TRAdvA is negligible in λ.

We say that a K-user KP-ABE scheme is selectively traceable if we add an Init
stage before Setup where the adversary commits to the attribute set SD.

We emphasize that we are modelling public traceability, namely, the Trace
algorithm does not need any secrets and anyone can perform the tracing from the
public parameters only. Also note that we are modelling a stateless (resettable)
decryption blackbox – the decryption blackbox is just an oracle and maintains
no state between activations.

3 Augmented KP-ABE

Following the routes of [19] where CP-ABE’s traceability is discussed, instead of
constructing a traceable KP-ABE directly, we define a simpler primitive called

410 Z. Liu et al.

AugmentedKP-ABE(orAugKP-ABEfor short) and its securitynotions (message-
hiding and index-hiding) first, then we show that an AugKP-ABE with message-
hiding and index-hiding properties can be transformed to a secure KP-ABE with
traceability. In Sect. 4, we propose an AugKP-ABE construction and prove its
message-hiding and index-hiding properties in the standard model.

3.1 Definitions of Augmented KP-ABE

An Augmented KP-ABE (AugKP-ABE) has four algorithms: SetupA, KeyGenA,
EncryptA, and DecryptA. The setup algorithm SetupA and key generation algo-
rithm KeyGenA are the same as that of KP-ABE in Sect. 2.1. The encryption
algorithm EncryptA takes one more parameter k̄ ∈ [K + 1] as input, and is
defined as follows.

EncryptA(PP,M, S, k̄) → CTS . The algorithm takes as input PP, a message M ,
an attribute set S ⊆ U , and an index k̄ ∈ [K + 1], and outputs a ciphertext
CTS . S is included in CTS , but the value of k̄ is not.

The decryption algorithm DecryptA is also defined in the same as that of the KP-
ABE in Sect. 2.1. However, the correctness definition is changed to the following.

Correctness. For all access structures A ⊆ 2U \{∅}, k ∈ [K], S ⊆ U , k̄ ∈ [K+1],
and messages M : if (PP,MSK) ← SetupA(λ,U ,K), SKk,A ← KeyGenA(PP,MSK,
A), CTS ← EncryptA(PP,M, S, k̄), and (S satisfies A) ∧ (k ≥ k̄), we have
DecryptA(PP, CTS ,SKk,A) = M .

Remark: Note that during decryption, as long as S satisfies A, the decryption
algorithm outputs a message, but only when k ≥ k̄, the output message is equal
to the correct message, that is, if and only if (S satisfies A) ∧ (k ≥ k̄), can
SKk,A correctly decrypt a ciphertext under (S, k̄). If we always set k̄ = 1, the
functions of AugKP-ABE are identical to that of KP-ABE. In fact, the idea
behind transforming an AugKP-ABE to a blackbox traceable KP-ABE, that we
will show shortly, is to construct an AugKP-ABE with index-hiding property,
and then always sets k̄ = 1 in normal encryption, while using k̄ ∈ [N + 1] to
generate ciphertexts for tracing.

Security. We define the security of AugKP-ABE in the following three games.

GameAMH1
. The first game, a message-hiding game denoted by GameAMH1

, is similar
to GameMH except that the Challenge phase is

Challenge. A submits two equal-length messages M0,M1 and an attribute
set S∗. The challenger flips a random coin b ∈ {0, 1}, and sends CTS∗ ←
EncryptA(PP,Mb, S

∗, 1) to A.

A wins the game if b′ = b under the restriction that S∗ cannot satisfy any
of the queried access structures Ak1 , . . . ,AkQ

. The advantage of A is defined as
MHA

1AdvA = |Pr[b′ = b] − 1
2 |.

GameAMHK+1
. The second game, a message-hiding game denoted by GameAMHK+1

,
is similar to GameMH except that the Challenge phase is

Fully Collusion-Resistant Traceable KP-ABE with Sub-linear Overhead 411

Challenge. A submits two equal-length messages M0,M1 and an attribute
set S∗. The challenger flips a random coin b ∈ {0, 1}, and sends CTS∗ ←
EncryptA(PP,Mb, S

∗,K + 1) to A.

A wins the game if b′ = b. The advantage of A is defined as MHA
K+1AdvA =

|Pr[b′ = b] − 1
2 |.

Definition 4. A K-user Augmented KP-ABE scheme is message-hiding if for
all PPT adversaries A the advantages MHA

1AdvA and MHA
K+1AdvA are negligible

functions of λ.

GameAIH. The third game, called index-hiding game, requires that for any attribute
set S∗ ⊆ U , no adversary can distinguish between an encryption using (S∗, k̄)
and one using (S∗, k̄+1) without a private key SKk̄,Ak̄

where S∗ satisfies Ak̄. The
game takes as input a parameter k̄ ∈ [K] which is given to both the challenger
and the adversary A. The game proceeds as follows:

Setup. The challenger runs SetupA(λ,U ,K) and sends PP to A.
Key Query. For i = 1 to Q, A adaptively submits (index, access structure)

pair (ki,Aki
) to the challenger, and the challenger responds with SKki,Aki

.
Challenge. A submits a message M and an attribute set S∗. The challenger

flips a random coin b ∈ {0, 1}, and sends CTS∗ ← EncryptA(PP,M, S∗, k̄+ b)
to A.

Guess. A outputs a guess b′ ∈ {0, 1} for b.

A wins the game if b′ = b under the restriction that none of the queried pairs
{(ki,Aki

)} can satisfy (ki = k̄) ∧ (S∗ satisfies Aki
). The advantage of A is

defined as IHAAdvA[k̄] = |Pr[b′ = b] − 1
2 |.

Definition 5. A K-user Augmented KP-ABE scheme is index-hiding if for all
PPT adversaries A the advantages IHAAdvA[k̄] for k̄ = 1, . . . ,K are negligible
functions of λ.

We say that an Augmented KP-ABE scheme is selectively index-hiding if in
GameAIH we add an Init stage before Setup where the adversary commits to the
challenge attribute set S∗.

3.2 Reducing Traceable KP-ABE to Augmented KP-ABE

Let ΣA = (SetupA,KeyGenA, EncryptA,DecryptA) be an AugKP-ABE, define
Encrypt(PP,M, S) = EncryptA(PP,M, S, 1), then Σ = (SetupA,KeyGenA,Encrypt,
DecryptA) is a KP-ABE derived from ΣA.

Theorem 1. If ΣA is message-hiding in GameAMH1
, then Σ is secure.

Proof. Note that Σ is a special case of ΣA where the encryption algorithm always
sets k̄ = 1. Hence, GameMH for Σ is identical to GameAMH1

for ΣA, which implies
that MHAdvA for Σ in GameMH is equal to MHA

1AdvA for ΣA in GameAMH1
, i.e.,

if ΣA is message-hiding in GameAMH1
, then Σ is secure.

412 Z. Liu et al.

Now we construct a tracing algorithm Trace for Σ and show that if ΣA is message-
hiding in GameAMHK+1

and (selectively) index-hiding, then Σ (equipped with
Trace) is (selectively) traceable against attributes-specific decryption blackbox.

TraceD(PP, SD, ε) → KT ⊆ [K]: Given an attributes-specific decryption black-
box D associated with an attribute set SD and probability ε > 0, the tracing
algorithm works as follows:3

1. For k = 1 to K + 1, do the following:
(a) The algorithm repeats the following 8λ(K/ε)2 times:

i. Sample M from the message space at random.
ii. Let CTSD ← EncryptA(PP,M, SD, k).
iii. Query oracle D on input CTSD , and compare the output of D with M .

(b) Let p̂k be the fraction of times that D decrypted the ciphertexts correctly.
2. Let KT be the set of all k ∈ [K] for which p̂k − p̂k+1 ≥ ε/(4K). Then output

KT as the index set of the private decryption keys of malicious users.

Note that the running time of Trace is cubic in K. It can be made (almost)
quadratic using binary search instead of a linear scan.

Theorem 2. If ΣA is message-hiding in GameAMHK+1
and index-hiding (resp.

selectively index-hiding), then Σ is traceable (resp. selectively traceable).

Proof. In the proof sketch below, we show that if the attributes-specific decryp-
tion blackbox output by the adversary is a useful one then the traced KT will sat-
isfy (KT
= ∅)∧(KT ⊆ KD)∧(∃kt ∈ KT s.t. SD satisfies Akt

) with overwhelming
probability, which implies that the adversary can win the game GameTR only with
negligible probability, i.e., TRAdvA is negligible. The selective case is similar.

Let D be the attributes-specific decryption blackbox output by the adversary,
and SD be the attribute set describing D. Define

pk̄ = Pr[D(EncryptA(PP,M, SD, k̄)) = M],

where the probability is taken over the random choice of message M and the
random coins of D. We have that p1 ≥ ε and pK+1 is negligible (for simplicity
let pK+1 = 0). The former follows from the fact that D is useful, and the latter
is because ΣA is message-hiding in GameAMHK+1

. Then there must exist some
k ∈ [K] such that pk − pk+1 ≥ ε/(2K). By the Chernoff bound it follows that
with overwhelming probability, p̂k − p̂k+1 ≥ ε/(4K). Hence, we have KT
= ∅.

For any k ∈ KT (i.e., p̂k − p̂k+1 ≥ ε
4K), we know, by Chernoff, that with over-

whelming probability pk −pk+1 ≥ ε/(8K). Clearly (k ∈ KD)∧ (SD satisfies Ak)
since otherwise, D can be directly used to win the index-hiding game for ΣA.
Hence, we have (KT ⊆ KD) ∧ (SD satisfies Ak ∀k ∈ KT).

3 The tracing algorithm uses a technique based on that in broadcast encryption by
[4,5,8].

Fully Collusion-Resistant Traceable KP-ABE with Sub-linear Overhead 413

4 An Efficient Augmented KP-ABE Scheme

We now propose an AugKP-ABE scheme which can be considered as combin-
ing the KP-ABE scheme of [14] and the traitor tracing scheme of [8]. We stress
that this work is not a trivial combination of the two schemes, which may result
in insecure or inefficient schemes, as discussed in [19]. The proposed AugKP-
ABE scheme is highly expressive in supporting any monotonic access structures,
and is efficient with ciphertext size O(

√K + |S|), where K is the number of
users in the system and S is the attribute set of the ciphertext. We prove that
the scheme is adaptively message-hiding and selectively index-hiding in the stan-
dard model. Combining this AugKP-ABE scheme with the result in Sect. 3.2, we
obtain a fully secure and highly expressive KP-ABE scheme which is simultane-
ously selectively traceable, and for a fully collusion-resistant blackbox traceable
system the resulting KP-ABE scheme achieves the most efficient level to date,
with overhead linear in

√K.

4.1 Preliminaries

Linear Secret-Sharing Schemes. As shown in [2], any monotonic access struc-
ture can be realized by a linear secret sharing scheme.

Definition 6 (Linear Secret-Sharing Schemes (LSSS)). [27] A secret
sharing scheme Π over attribute universe U is called linear (over Zp) if

1. The shares for each attribute form a vector over Zp.
2. There exists a matrix A called the share-generating matrix for Π. The matrix

A has l rows and n columns. For i = 1, . . . , l, the ith row Ai of A is labeled
by an attribute ρ(i)(ρ is a function from {1, . . . , l} to U). When we consider
the column vector v = (s, r2, . . . , rn), where s ∈ Zp is the secret to be shared
and r2, . . . , rn ∈ Zp are randomly chosen, then Av is the vector of l shares
of the secret s according to Π. The share λi = (Av)i, i.e., the inner product
Ai · v, belongs to attribute ρ(i).

Also shown in [2], every LSSS as defined above enjoys the linear reconstruction
property, which is defined as follows: Suppose that Π is an LSSS for access
structure A. Let S ∈ A be an authorized set, and I ⊂ {1, . . . , l} be defined as
I = {i : ρ(i) ∈ S}. There exist constants {ωi ∈ Zp}i∈I such that if {λi} are valid
shares of a secret s according to Π,

∑
i∈I ωiλi = s. Furthermore, these constants

{ωi} can be found in time polynomial in the size of the share-generating matrix
A. For any unauthorized set, no such constants exist. In this paper, as of previous
work, we use an LSSS matrix (A, ρ) to express an access structure associated to
a private decryption key.

Composite Order Bilinear Groups [3]. Let G be a group generator algo-
rithm, which takes a security parameter λ and outputs (p1, p2, p3,G,GT , e) where
p1, p2, p3 are distinct primes, G and GT are cyclic groups of order N = p1p2p3,
and e : G × G → GT is a map such that: (1) (Bilinear) ∀g, h ∈ G, a, b ∈

414 Z. Liu et al.

ZN , e(ga, hb) = e(g, h)ab, (2) (Non-Degenerate) ∃g ∈ G such that e(g, g) has
order N in GT . Assume that group operations in G and GT as well as the bilin-
ear map e are computable in polynomial time with respect to λ. Let Gp1 , Gp2

and Gp3 be the subgroups of order p1, p2 and p3 in G respectively. These sub-
groups are “orthogonal” to each other under the bilinear map e: if hi ∈ Gpi

and
hj ∈ Gpj

for i
= j, e(hi, hj) = 1 (the identity element in GT).

Complexity Assumptions. The message-hiding property of our AugKP-ABE
scheme will be based on three assumptions (Assumptions 1, 2 and 3 in [15])
that are used by [14,15] to achieve full security of their ABE schemes, and the
index-hiding property will be based on two assumptions (the Decision 3-Party
Diffie-Hellman Assumption and the Decisional Linear Assumption) that are used
by [8] to achieve traceability in the setting of broadcast encryption. We refer to
[8,15] for the details of these assumptions.

Notations. Suppose the number of users K in the system equals m2 for some
m.4 We arrange the users in an m × m matrix and uniquely assign a tuple (i, j)
where 1 ≤ i, j ≤ m, to each user. A user at position (i, j) of the matrix has
index k = (i− 1) ∗m+ j. For simplicity, we directly use (i, j) as the index where
(i, j) ≥ (̄i, j̄) means that ((i > ī) ∨ (i = ī ∧ j ≥ j̄)). The use of pairwise notation
(i, j) is purely a notational convenience, as k = (i− 1) ∗m+ j defines a bijection
between {(i, j)|1 ≤ i, j ≤ m} and [K]. For a given vector v = (v1, . . . , vd), by
gv we mean the vector (gv1 , . . . , gvd). Furthermore, for gv = (gv1 , . . . , gvd) and
gw = (gw1 , . . . , gwd), by gv · gw we mean the vector (gv1+w1 , . . . , gvd+wd), i.e.
gv · gw = gv+w, and by ed(gv, gw) we mean

∏d
k=1 e(gvk , gwk), i.e. ed(gv, gw) =∏d

k=1 e(gvk , gwk) = e(g, g)(v·w) where (v · w) is the inner product of v and w.
Given a bilinear group order N , one can randomly choose rx, ry, rz ∈ ZN , and
set χ1 = (rx, 0, rz), χ2 = (0, ry, rz), χ3 = χ1 × χ2 = (−ryrz,−rxrz, rxry).
Let span{χ1,χ2} be the subspace spanned by χ1 and χ2, i.e. span{χ1,χ2} =
{ν1χ1 + ν2χ2|ν1, ν2 ∈ ZN}. We can see that χ3 is orthogonal to the subspace
span{χ1,χ2} and Z

3
N = span{χ1,χ2,χ3} = {ν1χ1 + ν2χ2 + ν3χ3|ν1, ν2, ν3 ∈

ZN}. For any v ∈ span{χ1,χ2}, we have (χ3 · v) = 0, and for random v ∈ Z
3
N ,

(χ3 · v)
= 0 happens with overwhelming probability.

4.2 AugKP-ABE Construction

SetupA(λ,U ,K = m2) → (PP,MSK). Let G be a bilinear group of order N =
p1p2p3 (3 distinct primes, whose size is determined by λ), Gpi

the subgroup
of order pi in G (for i = 1, 2, 3), and g, f ∈ Gp1 , g3 ∈ Gp3 the genera-
tors of corresponding subgroups. The algorithm randomly chooses exponents
α ∈ ZN , {αi, ri, zi ∈ ZN}i∈[m], {cj ∈ ZN}j∈[m], {ax ∈ ZN}x∈U . The pub-
lic parameter PP includes the description of the group and the following

4 If the number of users is not a square, we add some “dummy” users to pad to the
next square.

Fully Collusion-Resistant Traceable KP-ABE with Sub-linear Overhead 415

elements:
(
g, f, E = e(g, g)α, {Ei = e(g, g)αi , Gi = gri , Zi = gzi}i∈[m],

{Hj = gcj }j∈[m], {Ux = gax}x∈U
)
.

The master secret key is set to MSK = (α, {αi, ri}i∈[m], {cj}j∈[m], g3). In
addition, a counter ctr = 0 is included in MSK.

KeyGenA(PP,MSK, (A, ρ)) → SK(i,j),(A,ρ). A is an l×n LSSS matrix and ρ maps
each row Ak of A to an attribute ρ(k) ∈ U . It is required that ρ would
not map two different rows to the same attribute5. The algorithm first sets
ctr = ctr + 1 and computes the corresponding index in the form of (i, j)
where 1 ≤ i, j ≤ m and (i − 1) ∗ m + j = ctr. Then it randomly chooses
u = (σi,j , u2, . . . , un) ∈ Z

n
N , w2, . . . , wn ∈ ZN , and {ξk ∈ ZN , Rk,1, Rk,2 ∈

Gp3}k∈[l]. Let w = (α,w2, . . . , wn), the algorithm outputs a private key
SK(i,j),(A,ρ) =

(
(i, j), (A, ρ), Ki,j ,K

′
i,j ,K

′′
i,j , {Ki,j,k,1, Ki,j,k,2}k∈[l]

)
where

Ki,j = gαigricj fσi,j , K ′
i,j = gσi,j , K ′′

i,j = Z
σi,j

i ,

{Ki,j,k,1 = f (Ak·u)g(Ak·w)U ξk

ρ(k)Rk,1, Ki,j,k,2 = gξkRk,2}k∈[l].

EncryptA(PP,M, S, (̄i, j̄)) → CTS . The algorithm randomly chooses

π, κ, τ, s1, . . . , sm, t1, . . . , tm ∈ ZN , vc, w1, . . . ,wm ∈ Z
3
N .

In addition, the algorithm randomly chooses rx, ry, rz ∈ ZN , and sets χ1 =
(rx, 0, rz), χ2 = (0, ry, rz), χ3 = χ1 × χ2 = (−ryrz,−rxrz, rxry). Then it ran-
domly chooses vi ∈ Z

3
N ∀i ∈ {1, . . . , ī},vi ∈ span{χ1,χ2} ∀i ∈ {̄i + 1, . . . , m},

and creates a ciphertext 〈S, (Ri,R
′
i, Qi, Q

′
i, Q

′′
i , Ti)m

i=1, (Cj ,C
′
j)

m
j=1, P, {Px}x∈S〉

as follows:

1. For each i ∈ [m]:

– if i < ī: it randomly chooses ŝi ∈ ZN , and sets

Ri = gvi , R′
i = gκvi ,

Qi = gsi , Q′
i = fsiZti

i fπ, Q′′
i = gti , Ti = E ŝi

i · Eπ.

– if i ≥ ī: it sets

Ri = Gsivi
i , R′

i = Gκsivi
i ,

Qi = gτsi(vi·vc), Q′
i = fτsi(vi·vc)Zti

i fπ, Q′′
i = gti ,

Ti = M · E
τsi(vi·vc)
i · Eπ.

5 This restriction is inherited from the underlying KP-ABE scheme [14], and can be
removed with the techniques in [14] similarly, with some loss of efficiency. The similar
restriction in CP-ABE has been efficiently eliminated recently by Lewko and Waters
in [16], but fully secure KP-ABE scheme without this restriction is not proposed yet.

416 Z. Liu et al.

2. For each j ∈ [m]:

– if j < j̄: it randomly chooses μj ∈ ZN , and sets
Cj = H

τ(vc+μjχ3)
j · gκwj , C ′

j = gwj .
– if j ≥ j̄: it sets Cj = Hτvc

j · gκwj , C ′
j = gwj .

3. It sets P = gπ, {Px = Uπ
x }x∈S .

DecryptA(PP, CTS ,SK(i,j),(A,ρ)) → M or ⊥. For a ciphertext CTS = 〈S, (Ri,R
′
i,

Qi, Q
′
i, Q′′

i , Ti)m
i=1, (Cj ,C

′
j)

m
j=1, P, {Px}x∈S〉 and a private decryption key

SK(i,j),(A,ρ) =
(
(i, j), (A, ρ), Ki,j ,K

′
i,j , K ′′

i,j , {Ki,j,k,1, Ki,j,k,2}k∈[l]

)
, if S

does not satisfy (A, ρ), the algorithm outputs ⊥, otherwise it

1. computes constants {ωk ∈ ZN} such that
∑

ρ(k)∈S ωkAk = (1, 0, . . . , 0), then
computes

DP =
∏

ρ(k)∈S

(e(Ki,j,k,1, P)
e(Ki,j,k,2, Pρ(k))

)ωk =
∏

ρ(k)∈S

(
e(f (Ak·u)g(Ak·w), gπ)

)ωk

= e(f, g)πσi,j e(g, g)απ.

2. computes

DI =
e(Ki,j , Qi) · e(K ′′

i,j , Q
′′
i)

e(K ′
i,j , Q

′
i)

· e3(R′
i,C

′
j)

e3(Ri,Cj)
.

3. computes M = Ti/(DP · DI) as the output message.

Correctness. Assume the ciphertext is generated from message M ′ and encryp-
tion index (̄i, j̄), we have

DI =

{
E

τsi(vi·vc)
i /e(g, f)πσi,j , : (i > ī) or (i = ī ∧ j ≥ j̄)

E
τsi(vi·vc)
i /

(
e(g, f)πσi,j e(g, g)risicjτμj(vi·χ3)

)
, : (i = ī ∧ j < j̄).

Thus, we have (1) if (i > ī) ∨ (i = ī ∧ j ≥ j̄), then M = M ′; (2) if i = ī ∧ j < j̄,
then M = M ′ · e(g, g)τsiricjμj(vi·χ3); (3) if i < ī, then M has no relation with
M ′. The correctness details can be found in the full version [21].

4.3 AugKP-ABE Security

The following Theorems 3 and 4 show that our AugKP-ABE construction in
Sect. 4.2 is message-hiding, and Theorem 5 shows that our construction is selec-
tively index-hiding.

Theorem 3. Suppose that Assumptions 1, 2, and 3 in [15] hold. Then no PPT
adversary can win GameAMH1

with non-negligible advantage.

Fully Collusion-Resistant Traceable KP-ABE with Sub-linear Overhead 417

Proof. The structure of the KP-ABE portion of our AugKP-ABE is similar to
that of the KP-ABE in [14], the proof of Theorem 3 is also similar to that of
[14]. Here we prove the theorem by reducing the message-hiding property of our
AugKP-ABE scheme in GameAMH1

to the security of the KP-ABE in [14]. The
proof details are provided in the full version [21].

Theorem 4. No PPT adversary can win GameAMHK+1
with non-negligible advan-

tage.

Proof. The argument for the message-hiding property in GameAMHK+1
is very

straightforward since an encryption to index K + 1 = (m + 1, 1) contains no
information about the message. The simulator simply runs actual SetupA and
KeyGenA algorithms and encrypts the message Mb by the challenge attribute set
S∗ and index (m + 1, 1). Since for all i = 1 to m, the values of Ti = E ŝi

i · Eπ

contains no information about the message, the bit b is perfectly hidden and
MHA

K+1AdvA = 0.

Theorem 5. Suppose that the Decision 3-Party Diffie-Hellman Assumption and
the Decisional Linear Assumption hold (referring to [8] for the details of the two
assumptions). Then no PPT adversary can selectively win GameAIH with non-
negligible advantage.

Proof. Theorem 5 follows Lemmas 1 and 2 below.

Lemma 1. If the Decision 3-Party Diffie-Hellman Assumption holds, then for
j̄ < m no PPT adversary can selectively distinguish between an encryption to
(̄i, j̄) and an encryption to (̄i, j̄ + 1) in GameAIH with non-negligible advantage.

Proof. The proof of this lemma explores the techniques of combining a traitor
tracing scheme and a KP-ABE scheme. When the adversary queries a private key
with the index (̄i, j̄), the game restriction implies that the corresponding access
structure must not be satisfied by the challenge attribute set S∗. In other words,
we have to use a restriction on “attributes and access structure” to prove the
index-hiding property on “index”, which are very uncorrelated structures. The
ciphertext components Zti

i (in Q′
i) and Q′′

i = gti work like a “transmission gear”
to intertwine the two structures, securely combining the tracing part (fτsi(vi·vc)

for i ≥ ī and fsi for i < ī) and the KP-ABE part (fπ) together. The proof is
given in Appendix A.

Lemma 2. Suppose that the Decision 3-Party Diffie-Hellman Assumption and
the Decisional Linear Assumption hold. Then for 1 ≤ ī ≤ m no PPT adversary
can selectively distinguish between an encryption to (̄i,m) and one to (̄i + 1, 1)
in GameAIH with non-negligible advantage.

Proof. Similar to the proof of Lemma 6.3 in [8], to prove this lemma we define
the following hybrid experiments: H1: Encrypt to (̄i, j̄ = m); H2: Encrypt to
(̄i, j̄ = m + 1); and H3: Encrypt to (̄i + 1, 1). Lemma 2 follows Claims 1 and 2
below.

418 Z. Liu et al.

Claim 1. If the Decision 3-Party Diffie-Hellman Assumption holds, then no
PPT adversary can selectively distinguish between experiment H1 and H2 with
non-negligible advantage.

Proof. The proof is identical to that of Lemma 1.

Claim 2. Suppose that the Decision 3-Party Diffie-Hellman Assumption and
the Decisional Linear Assumption hold. Then no PPT adversary can distinguish
between experiment H2 and H3 with non-negligible advantage.

Proof. The indistinguishability of H2 and H3 can be proven using the similar
proof to that of Lemma 6.3 in [8], which was used to prove the indistinguisha-
bility of similar hybrid experiments for their Augmented Broadcast Encryption
(AugBE) scheme. We will prove Claim 2 by a reduction from our AugKP-ABE
scheme to the AugBE scheme in [8, Sect. 5.1]. The proof details are provided in
the full version [21].

5 Conclusion

We proposed an expressive and efficient KP-ABE scheme that simultaneously
supports fully collusion-resistant (and public) blackbox traceability and high
expressivity (i.e. supporting any monotonic access structures). The scheme is
proven fully secure in the standard model and selectively traceable in the stan-
dard model. Compared with the most efficient conventional (non-traceable) KP-
ABE schemes in the literature with high expressivity and full security, our scheme
adds fully collusion-resistant blackbox traceability with the price of adding only
O(

√K) elements in the ciphertext and public key. Instead of directly build-
ing a traceable KP-ABE scheme, we constructed a simpler primitive called
Augmented KP-ABE, and showed that an Augmented KP-ABE scheme with
message-hiding and index-hiding properties is sufficient for constructing a secure
KP-ABE scheme with fully collusion-resistant blackbox traceability.

Acknowledgment. The work described in this paper was supported in part by the
Research Grants Council of the HKSAR, China, under Project CityU 123511, in part
by the National Natural Science Foundation of China under Grant 61161140320, Grant
61371083, and Grant 61373154, and in part by the Prioritized Development Projects,
Specialized Research Fund for the Doctoral Program of Higher Education of China,
under Grant 20130073130004.

A Proof of Lemma 1

Proof. Suppose there exists a PPT adversary A that can selectively break the
index-hiding game for (̄i, j̄) with advantage ε. We build a PPT algorithm B to
solve a Decision 3-Party Diffie-Hellman problem instance as follows.

B receives a Decision 3-Party Diffie-Hellman problem instance from the chal-
lenger as (g,A = ga, B = gb, C = gc, T). The problem instance will be given

Fully Collusion-Resistant Traceable KP-ABE with Sub-linear Overhead 419

in the subgroup Gp1 of prime order p1 in a composite order group G of order
N = p1p2p3, i.e., g ∈ Gp1 , a, b, c ∈ Zp1 , B is given the factors p1, p2, and p3, and
its goal is to determine whether T = gabc or a random element from Gp1

6.

Init. A gives B the challenge attribute set S∗ ⊆ U .

Setup. B chooses random exponents

η, α ∈ ZN , {αi ∈ ZN}i∈[m], {ri, z′
i ∈ ZN}i∈[m]\{ī}, {cj ∈ ZN}j∈[m]\{j̄},

r′̄
i, zī, c′̄

j ∈ ZN , {ax ∈ ZN}x∈S∗ , {a′
x ∈ ZN}x∈U\S∗ .

B gives A the following public parameter PP:

g, f = Cη, E = e(g, g)α, {Ei = e(g, g)αi}i∈[m],

{Gi = gri , Zi = Cz′
i}i∈[m]\{ī}, {Hj = gcj }j∈[m]\{j̄}, Gī = Br′̄

i , Zī = gzī , Hj̄ = C
c′̄

j ,

{Ux = gax}x∈S∗ , {Ux = Ca′
x}x∈U\S∗ .

Note that B implicitly chooses rī, zi(i ∈ [m] \ {̄i}), cj̄ , ax(x ∈ U \ S∗) ∈ ZN

such that

br′̄
i ≡ rī mod p1, cz′

i ≡ zi mod p1 ∀i ∈ [m] \ {̄i}, cc′̄
j ≡ cj̄ mod p1,

ca′
x ≡ ax mod p1 ∀x ∈ U \ S∗.

Key Query. To respond to a query from A for ((i, j), (A, ρ)) where A is an l×n
matrix:

– If (i, j)
= (̄i, j̄): B randomly chooses u = (σi,j , u2, . . . , un) ∈ Z
n
N , w2, . . . ,

wn ∈ ZN and {ξk ∈ ZN , Rk,1, Rk,2 ∈ Gp3}l
k=1. Let w = (α,w2, . . . , wn),

B creates a private key SK(i,j),(A,ρ) =
(
(i, j), (A, ρ), Ki,j ,K

′
i,j ,K

′′
i,j , {Ki,j,k,1,

Ki,j,k,2}l
k=1

)
as

Ki,j =

⎧
⎪⎨

⎪⎩

gαigricj fσi,j , : i
= ī, j
= j̄

gαiBr′̄
icj fσi,j , : i = ī, j
= j̄

gαiCric
′̄
j fσi,j , : i
= ī, j = j̄.

K ′
i,j = gσi,j , K ′′

i,j = Z
σi,j

i ,

{Ki,j,k,1 = f (Ak·u)g(Ak·w)U ξk

ρ(k)Rk,1, Ki,j,k,2 = gξkRk,2}l
k=1.

– If (i, j) = (̄i, j̄): B randomly chooses σ ′̄
i,j̄

, u′
2, . . . , u

′
n, w2, . . . , wn ∈ ZN , {ξk ∈

ZN}k∈[l] s.t. ρ(k)∈S∗ , {ξ′
k ∈ ZN}k∈[l] s.t. ρ(k)/∈S∗ , {Rk,1, Rk,2 ∈ Gp3}l

k=1. Let
u′ = (0, u′

2, . . . , u
′
n),w = (α,w2, . . . , wn). As (A, ρ) cannot be satisfied by S∗

6 The situation is similar to that of the proof in [4,5] in the sense that the challenge
is given in a subgroup of a composite order group and the factors are given to the
simulator. Actually, Lewko and Waters [16] use this case explicitly as an assumption,
i.e. the 3-Party Diffie-Hellman Assumption in a Subgroup.

420 Z. Liu et al.

(since (i, j) = (̄i, j̄)), B can efficiently find a vector u′′ = (u′′
1 , u′′

2 , . . . , u′′
n) ∈ Z

n
N

such that u′′
1 = 1 and Ak · u′′ = 0 for all k such that ρ(k) ∈ S∗. Implicitly

setting σī,j̄ ∈ ZN , u ∈ Z
n
N , {ξk ∈ ZN}k∈[l] s.t. ρ(k)/∈S∗ as

σ ′̄
i,j̄ − br′̄

ic
′̄
j/η ≡ σī,j̄ mod p1, u = u′ + σī,j̄u

′′,

ξ′
k + br′̄

ic
′̄
j(Ak · u′′)/a′

ρ(k) ≡ ξk mod p1 ∀k ∈ [l] s.t. ρ(k) /∈ S∗,

B creates a private key SK(̄i,j̄),(A,ρ) =
(
(̄i, j̄), (A, ρ), Kī,j̄ ,K

′̄
i,j̄

,K ′′̄
i,j̄

, {Kī,j̄,k,1,

Kī,j̄,k,2}l
k=1

)
as:

Kī,j̄ = gαīfσ′̄
i,j̄ , K ′̄

i,j̄ = gσ′̄
i,j̄ B−r′̄

ic
′̄
j/η, K ′′̄

i,j̄ = (gσ′̄
i,j̄ B−r′̄

ic
′̄
j/η)zī ,

{Ki,j,k,1 = f (Ak·u′)g(Ak·w)U ξk

ρ(k)Rk,1, Ki,j,k,2 = gξkRk,2}ρ(k)∈S∗ ,

{Ki,j,k,1 = f (Ak·u′)+σ′̄
i,j̄(Ak·u′′)g(Ak·w)U

ξ′
k

ρ(k)Rk,1,

Ki,j,k,2 = gξ′
kBr′̄

ic
′̄
j(Ak·u′′)/a′

ρ(k)Rk,2}ρ(k)/∈S∗ .

Challenge. A submits a message M . B randomly chooses

π′, τ ′, s1, . . . , sī−1, s
′̄
i, sī+1, . . . , sm, t′1, . . . , t

′̄
i−1, t̄i, t

′̄
i+1, . . . , t

′
m ∈ ZN ,

w1, . . . ,wj̄−1,w
′̄
j , . . . ,w

′
m ∈ Z

3
N .

B randomly chooses rx, ry, rz ∈ ZN , and sets χ1 = (rx, 0, rz), χ2 = (0, ry, rz),
χ3 = χ1 × χ2 = (−ryrz,−rxrz, rxry). Then B randomly chooses

vi ∈ Z
3
N ∀i ∈ {1, . . . , ī}, vi ∈ span{χ1,χ2} ∀i ∈ {̄i + 1, . . . , m},

vc,p ∈ span{χ1,χ2}, vc,q = ν3χ3 ∈ span{χ3}.

B sets the value of π, κ, τ, sī, ti(i ∈ [m] \ {̄i}) ∈ ZN , vc ∈ Z
3
N , {wj ∈ Z

3
N}m

j=j̄
by

implicitly setting

vc = a−1vc,p + vc,q, π′ − aτ ′s′̄
i(vī · vc,q) ≡ π mod p1,

b ≡ κ mod p1, abτ ′ ≡ τ mod p1, s′̄
i/b ≡ sī mod p1,

t′i + ηaτ ′s′̄
i(vī · vc,q)/z′

i ≡ ti mod p1 ∀i ∈ {1, . . . , ī − 1},

t′i − ηbτ ′si(vi · vc,p)/z′
i + ηaτ ′s′̄

i(vī · vc,q)/z′
i ≡ ti mod p1 ∀i ∈ {̄i + 1, . . . , m},

w′̄
j − cc′̄

jτ
′vc,p ≡ wj̄ mod p1,

w′
j − acjτ

′vc,q ≡ wj mod p1 ∀j ∈ {j̄ + 1, . . . , m}.

B creates a ciphertext 〈S∗, (Ri,R
′
i, Qi, Q

′
i, Q

′′
i , Ti)m

i=1, (Cj ,C
′
j)

m
j=1, P, {Px}x∈S∗〉:

1. For each i ∈ [m]:

– if i < ī: it randomly chooses ŝi ∈ ZN , then sets

Ri = gvi , R′
i = Bvi , Qi = gsi , Q′

i = fsiZ
t′
i

i fπ′
, Q′′

i = gt′
iAητ ′s′̄

i(vī·vc,q)/z′
i ,

Ti = E ŝi
i · e(gα, g)π′ · e(gα, A)−τ ′s′̄

i(vī·vc,q).

Fully Collusion-Resistant Traceable KP-ABE with Sub-linear Overhead 421

– if i = ī: it sets

Ri = gr′̄
is

′̄
ivī , R′

i = Br′̄
is

′̄
ivī ,

Qi = gτ ′s′̄
i(vī·vc,p)Aτ ′s′̄

i(vī·vc,q), Q′
i = Cητ ′s′̄

i(vī·vc,p)Z
tī
i fπ′

, Q′′
i = gtī ,

Ti = M · e(gαi , Qi) · e(gα, g)π′ · e(gα, A)−τ ′s′̄
i(vī·vc,q).

– if i > ī: it sets

Ri = grisivi , R′
i = Brisivi ,

Qi = Bτ ′si(vi·vc,p), Q′
i = Z

t′
i

i fπ′
, Q′′

i = gt′
iB−ητ ′si(vi·vc,p)/z′

iAητ ′s′̄
i(vī·vc,q)/z′

i ,

Ti = M · e(gαi , Qi) · e(gα, g)π′ · e(gα, A)−τ ′s′̄
i(vī·vc,q).

2. For each j ∈ [m]:

– if j < j̄: it randomly chooses μ′
j ∈ ZN and implicitly sets the value of μj

such that (ab)−1μ′
jν3 − ν3 ≡ μj mod p1, then sets

Cj = Bcjτ ′vc,p · gcjτ ′μ′
jvc,q · Bwj , C ′

j = gwj .

– if j = j̄: it sets Cj = T c′̄
jτ ′vc,q · Bw′

j , C ′
j = gw′̄

j · C−c′̄
jτ ′vc,p .

– if j > j̄: it sets Cj = Bcjτ ′vc,p · Bw′
j , C ′

j = gw′
j · A−cjτ ′vc,q .

3. It sets P = gπ′
A−τ ′s′̄

i(vī·vc,q), Px = (gπ′
A−τ ′s′̄

i(vī·vc,q))ax ∀x ∈ S∗.

If T = gabc, then the ciphertext is a well-formed encryption to the index (̄i, j̄).
If T is randomly chosen, say T = gr for some random r ∈ Zp1 , the ciphertext is
a well-formed encryption to the index (̄i, j̄ + 1) with implicitly setting μj̄ such
that (r

abc − 1)ν3 ≡ μj̄ mod p1.

Guess. A outputs a guess b′ ∈ {0, 1} to B, then B outputs this b′ to the chal-
lenger as its answer to the Decision 3-Party Diffie-Hellman game.

Note that the distributions of the public parameter, private keys and challenge
ciphertext are same as the real scheme, B’s advantage in the Decision 3-Party
Diffie-Hellman game will be exactly equal to A’s advantage in selectively break-
ing the index-hiding game.

References

1. Attrapadung, N., Libert, B., de Panafieu, E.: Expressive key-policy attribute-based
encryption with constant-size ciphertexts. In: Catalano, D., Fazio, N., Gennaro, R.,
Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 90–108. Springer, Heidelberg
(2011)

2. Beimel, A.: Secure schemes for secret sharing and key distribution. Ph.D. thesis,
Israel Institute of Technology, Technion, Haifa, Israel (1996)

3. Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In:
Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg
(2005)

422 Z. Liu et al.

4. Boneh, D., Sahai, A., Waters, B.: Fully collusion resistant traitor tracing with short
ciphertexts and private keys. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS,
vol. 4004, pp. 573–592. Springer, Heidelberg (2006)

5. Boneh, D., Waters, B.: A fully collusion resistant broadcast, trace, and revoke
system. In: ACM Conference on Computer and Communications Security, pp. 211–
220 (2006)

6. Cheung, L., Newport, C.C.: Provably secure ciphertext policy ABE. In: ACM Con-
ference on Computer and Communications Security, pp. 456–465 (2007)

7. Garg, S., Gentry, C., Halevi, S., Sahai, A., Waters, B.: Attribute-based encryption
for circuits from multilinear maps. In: Canetti, R., Garay, J.A. (eds.) CRYPTO
2013, Part II. LNCS, vol. 8043, pp. 479–499. Springer, Heidelberg (2013)

8. Garg, S., Kumarasubramanian, A., Sahai, A., Waters, B.: Building efficient fully
collusion-resilient traitor tracing and revocation schemes. In: ACM Conference on
Computer and Communications Security, pp. 121–130 (2010)

9. Goyal, V., Jain, A., Pandey, O., Sahai, A.: Bounded ciphertext policy attribute
based encryption. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp.
579–591. Springer, Heidelberg (2008)

10. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: ACM Conference on Computer and
Communications Security, pp. 89–98 (2006)

11. Herranz, J., Laguillaumie, F., Ràfols, C.: Constant size ciphertexts in threshold
attribute-based encryption. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010.
LNCS, vol. 6056, pp. 19–34. Springer, Heidelberg (2010)

12. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. In: Smart, N.P. (ed.) EUROCRYPT 2008.
LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008)

13. Katz, J., Schröder, D.: Tracing insider attacks in the context of predicate encryp-
tion schemes. In: ACITA (2011). https://www.usukita.org/node/1779

14. Lewko, A.B., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure
functional encryption: attribute-based encryption and (hierarchical) inner product
encryption. IACR Cryptol. ePrint Arch. 2010, 110 (2010)

15. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure func-
tional encryption: attribute-based encryption and (Hierarchical) inner product
encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–
91. Springer, Heidelberg (2010)

16. Lewko, A., Waters, B.: New proof methods for attribute-based encryption: achiev-
ing full security through selective techniques. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 180–198. Springer, Heidelberg (2012)

17. Li, J., Huang, Q., Chen, X., Chow, S.S.M., Wong, D.S., Xie, D.: Multi-authority
ciphertext-policy attribute-based encryption with accountability. In: ASIACCS,
pp. 386–390 (2011)

18. Li, J., Ren, K., Kim, K.: A2BE: accountable attribute-based encryption for abuse
free access control. IACR Cryptol. ePrint Arch. 2009, 118 (2009)

19. Liu, Z., Cao, Z., Wong, D.S.: Blackbox traceable CP-ABE: how to catch people
leaking their keys by selling decryption devices on ebay. In: ACM Conference on
Computer and Communications Security, pp. 475–486 (2013)

20. Liu, Z., Cao, Z., Wong, D.S.: White-box traceable ciphertext-policy attribute-based
encryption supporting any monotone access structures. IEEE Trans. Inf. Forensics
Secur. 8(1), 76–88 (2013)

https://www.usukita.org/node/1779

Fully Collusion-Resistant Traceable KP-ABE with Sub-linear Overhead 423

21. Liu, Z., Cao, Z., Wong, D.S.: Fully collusion-resistant traceable key-policy
attribute-based encryption with sub-linear size ciphertexts. IACR Cryptol. ePrint
Arch. 2014, 676 (2014). http://eprint.iacr.org/2014/676

22. Okamoto, T., Takashima, K.: Fully secure functional encryption with general rela-
tions from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010)

23. Ostrovsky, R., Sahai, A., Waters, B.: Attribute-based encryption with non-
monotonic access structures. In: ACM Conference on Computer and Communi-
cations Security, pp. 195–203 (2007)

24. Rouselakis, Y., Waters, B.: Practical constructions and new proof methods for
large universe attribute-based encryption. In: ACM Conference on Computer and
Communications Security, pp. 463–474 (2013)

25. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.)
EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

26. Wang, Y.T., Chen, K.F., Chen, J.H.: Attribute-based traitor tracing. J. Inf. Sci.
Eng. 27(1), 181–195 (2011)

27. Waters, B.: Ciphertext-policy attribute-based encryption: an expressive, efficient,
and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi,
A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011)

28. Waters, B.: Functional encryption for regular languages. In: Safavi-Naini, R.,
Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 218–235. Springer,
Heidelberg (2012)

29. Yu, S., Ren, K., Lou, W., Li, J.: Defending against key abuse attacks in KP-
ABE enabled broadcast systems. In: Chen, Y., Dimitriou, T.D., Zhou, J. (eds.)
SecureComm 2009. LNICST, vol. 19, pp. 311–329. Springer, Heidelberg (2009)

http://eprint.iacr.org/2014/676

Integrating Ciphertext-Policy Attribute-Based
Encryption with Identity-Based Ring Signature
to Enhance Security and Privacy in Wireless

Body Area Networks

Changji Wang1,3(B), Xilei Xu2,3, Yuan Li2,3, and Dongyuan Shi2,3

1 National Pilot School of Software,
Yunnan University, Kunming 650500, China

wchangji@gmail.com
2 School of Information Science and Technology,

Sun Yat-sen University, Guangzhou 510275, China
3 Guangdong Key Laboratory of Information Security Technology,

Sun Yat-sen University, Guangzhou 510275, China

Abstract. The technology of wireless body area network (WBAN) has
attracted intensive attention in recent years. For widespread deploy-
ment of WBANs, security and privacy issues must be addressed prop-
erly. Recently, Hu et al. proposed a fuzzy attribute-based signcryption
scheme with the aim to provide security and privacy mechanisms in
WBANs. In this paper, we first show Hu et al.’s scheme cannot achieve
the claimed security properties. In particular, an adversary is capable
of generating private keys for any set of attributes. Then we introduce
a new cryptographic primitive named ciphertext-policy attribute-based
ring signcryption (CP-ABRSC) by integrating the notion of ciphertext-
policy attribute-based encryption with identity-based ring signature. We
give formal syntax and security definitions for CP-ABRSC and present
a provable secure CP-ABRSC scheme from bilinear pairings. Finally, we
propose a novel access control framework for WBANs by exploiting CP-
ABRSC scheme, which can not only provide semantic security, unforge-
ability and public authenticity, but also can provide participants privacy
and fine-grained access control on encrypted health data.

Keywords: Fuzzy identity-based signcryption · Identity-based ring
signature · Ciphertext-policy attribute-based encryption · Wireless body
area network

1 Introduction

With the development of the modern society, the health care is attracting more and
moreattention,whichtriggers the introductionofnovel technology-drivenenhance-
ments to current health care practices. Among them, a new type of network archi-
tecture, generallyknownaswirelessbodyareanetwork (WBAN) is consideredasan
c© Springer International Publishing Switzerland 2015
D. Lin et al. (Eds.): Inscrypt 2014, LNCS 8957, pp. 424–442, 2015.
DOI: 10.1007/978-3-319-16745-9 23

Integrating CP-ABE with IBRS to Enhance Security and Privacy in WBANs 425

appropriate way for monitoring the body, which is made feasible by novel advances
on lightweight, small-size, ultra-low-power, and intelligent monitoring wearable
sensors [22].

WBAN can be utilized in diverse applications such as physiological and med-
ical monitoring, human computer interaction, education and entertainment [7].
We illustrated a typical application of WBANs in the healthcare domain in
Fig. 1, which allows inexpensive and continuous health monitoring with real-time
updates of medical records through the Internet. The implanted intelligent phys-
iological sensors in the human body will collect various vital signals (e.g., body
temperature, blood pressure, heart rate, etc.) in order to monitor the patient’s
health status no matter their location, and these collected signals will be trans-
mitted wirelessly to a controller (a mobile computing device like a PDA or smart
phone). This device will transmit all information in real time or in non-real time
to the third party remote server (e.g., health cloud server) to be stored, and
these information will be shared by the patient’s primary doctor, physicians and
any other who needs to acquire the essential information for the patient’s health.
If an emergency is detected, the physicians will immediately inform the patient
through the computer system by sending appropriate messages or alarms.

Fig. 1. Illustration of a typical WBAN for health care application

Unlike conventional sensor networks, WBANs deal with medical information,
which has stringent requirements for security and privacy [14]. For widespread
deployment of WBANs, security requirements such as fine-grained access con-
trol, participants privacy, data authenticity, confidentiality and non-repudiation
must be addressed properly. Recently, Hu et al. [6] introduced a novel secu-
rity mechanism in WBANs named fuzzy attribute-based signcryption (FABSC)
without rigorous syntax and security definitions, and they presented a FABSC
scheme by combining Sahai and Waters’ fuzzy identity-based encryption scheme
[18] with Yang et al.’s fuzzy identity-based signature scheme [25].

In this paper, we first point out there are several mistakes in Hu et al.’s
scheme [6], and show that Hu et al.’s scheme does not hold the claimed security

426 C. Wang et al.

properties. In particular, an adversary can impersonate the key issuing authority
and generate private keys for any set of attributes, thus totally break Hu et al.’s
scheme. Then we introduce a new cryptographic primitive named ciphertext-
policy attribute-based ring signcryption (CP-ABRSC) scheme by integrating
the notion of ciphertext-policy attribute-based encryption scheme with identity-
based ring signature scheme, and give formal syntax and security definitions for
CP-ABRSC scheme. We propose a concrete CP-ABRSC scheme from bilinear
pairings, and prove that the proposed construction is semantic security, existen-
tial unforgeability and strong anonymity. Finally, we present a secure, privacy-
protected and fine-grained access control framework for WBANs by exploiting
CP-ABRSC scheme, which can not only ensure data authenticity, confidentiality
and non-repudiation, but also can provide participants privacy and fine-grained
access control on encrypted health data.

1.1 Related Work

Identity-Based Ring Signature. To provide anonymity for signers, Rivest
et al. [17] first introduced the concept of ring signature in 2001, where a user can
anonymously signs a message on behalf of a group of spontaneously conscripted
users including the actual signer. Any verifier can be convinced that the message
has been signed by one of the members in this group, but the actual signer
remains unknown. Herranz and Sáez [11] first generalized some forking lemmas
useful to prove the security of a family of digital signature schemes to the ring
signatures’ scenario. Both Rivest et al.’s ring signature scheme and Herranz and
Sáez’s ring signature scheme rely on general certificate-based public-key setting.

To simplify certificate management in tradition public key infrastructure,
Shamir [21] first introduced the concept of identity-based cryptography, in which
the public key of a user can be publicly computed from his recognizable iden-
tity information, such as a complete name, an e-mail address. While the corre-
sponding private key is generated by a trusted third party named as private key
generator (PKG), and the private key is transferred from the PKG to the user
through a secure channel. The first identity-based signature (IBS) scheme was
constructed by Shamir [21] based on the RSA algorithm, while the first practical
and secure identity-based encryption (IBE) scheme was proposed by Boneh and
Franklin [4] from bilinear pairings. Since then, many IBE and IBS schemes based
on the bilinear pairings were presented.

Zhang and Kim [26] first extended the concept of ring signature to the
identity-based setting and proposed an ID-based ring signature (IBRS) scheme.
Herranz and Sáez [12] improved Zhang and Kim’s IBRS scheme and proved that
the improved IBRS scheme is secure under the CDH assumption in the random
oracle model. Chow et al. [5] proposed a more efficient IBRS scheme, which only
takes two pairing operations for any group size, and the generation of the sig-
nature involves no pairing computations at all. Chow et al. also proved their
IBRS scheme is secure under the CDH assumption in the random oracle model.
The proof technique both in [5,12] is to apply the forking lemma for generic ring
signature schemes [11].

Integrating CP-ABE with IBRS to Enhance Security and Privacy in WBANs 427

Attribute-Based Encryption. Attribute-based encryption (ABE) was first
introduced by Sahai and Waters [18] with the aim to provide an error-tolerant IBE
that uses biometric identities. ABE can be viewed as an extension of the notion of
IBE in which user identity is generalized to a set of descriptive attributes instead
of a single string specifying the user identity. Compared with IBE, ABE has sig-
nificant advantage as it achieves flexible one-to-many encryption instead of one-
to-one, it is envisioned as a promising tool for addressing the problem of secure
and fine-grained data sharing and decentralized access control [10].

According to access policy is associated with the ciphertext or private key, ABE
can be divided into two categories: key-policy ABE (KP-ABE) and ciphertext-
policy ABE (CP-ABE).

In a KP-ABE system, ciphertexts are labeled by the sender with a set of
descriptive attributes, while users’ private key are issued by the trusted attribute
authority captures an policy that specifies which type of ciphertexts the key can
decrypt. The first KP-ABE construction was provided by Goyal et al. [10], which
was very expressive in that it allowed the access policies to be expressed by
any monotonic formula over encrypted data. The system was proved selectively
secure under the BDH assumption. Later, Ostrovsky et al. [16] proposed a KP-
ABE scheme where private keys can represent any access formula over attributes,
including non-monotone ones.

In a CP-ABE system, when a sender encrypts a message, they specify a spe-
cific access policy in terms of access policy over attributes in the ciphertext,
stating what kind of receivers will be able to decrypt the ciphertext. Users pos-
sess sets of attributes and obtain corresponding attribute private keys from the
attribute authority. Such a user can decrypt a ciphertext if his attributes satisfy
the access policy associated with the ciphertext. The first CP-ABE scheme was
proposed by Bethencourt et al. [3], but its security was proved in the generic
group model. Waters [24] proposed a more expressive and efficient CP-ABE
scheme, the size of a ciphertext depending linearly on the number of attributes
involved in the specific policy for that ciphertext.

Signcryption. Encryption and signature are two basic cryptographic primitives
to achieve confidentiality and authenticity. Zheng [27] first proposed the concept
of signcryption, which can perform digital signature and public key encryption
simultaneously in a single logical step with the cost in terms of both commu-
nication and computation significantly lower than sign-then-encrypt approach.
Beak et al. [1] first gave the formal security notions for signcryption scheme
via semantic security against adaptive chosen ciphertext attack and existential
unforgeability against adaptive chosen message attack.

Malone-Lee [15] extended the concept of signcryption to the identity-based set-
tings. Malone-Lee’s work spurred a great deal of research on identity-based sign-
cryption(IBSC),manyIBSCschemesandIBSCschemeswithadditionalproperties
havebeenproposed. In a conventional IBSCscheme, themessage is hiddenand thus
the validity of the signcrypted ciphertext can be verified only after the unsigncryp-
tion process. Thus, a third party will not be able to verify whether the signcrypted
ciphertext is valid or not. Selvi et al. [19] first proposed an IBSC scheme with public

428 C. Wang et al.

verifiability, which allows any one to verify the validity of signcrypted ciphertext
without the knowledge of the message. To provide anonymity for the signcrypting
party, Huang et al. [13] first introduced the concept of identity-based ring signcryp-
tion (IBRSC) scheme by combining the concept of IBRS and IBSC together. In an
IBRSC scheme, a user can signcrypt a message along with the identities of a set of
potential signcrypting parties (including the signcrypting party himself) without
revealing which user in the set has actually produced the signcrypted ciphertext.
IBRSC is very useful to protect privacy and authenticity of a collection of users who
are connected through an ad hoc network.

Gagné et al. [9] first introduced the notion of attribute-based signcryption
(ABSC), and proposed a threshold ABSC scheme where the access structure
of user is limited in threshold structure and fixed when the user requests his
attribute-based private key. Later, Emura et al. [8] proposed a dynamic thresh-
old ABSC scheme, where access structures of the signcrypting party can be
updated flexibly without re-issuing his attribute-based private key. Wang et al.
[23] showed that both Gagné et al. threshold ABSC scheme and Emura et al.
dynamic threshold ABSC scheme are not secure.

1.2 Paper Organization

The rest of the paper is organized as follows. We introduce some preliminaries in
Sect. 2. We present security analysis of Hu et al.’s FABSC scheme in Sect. 3. We
give formal syntax and security definitions of CP-ABRSC in Sect. 4, and describe
our CP-ABRSC construction in Sect. 5. We present a secure, privacy-protected
and fine-grained access control framework for WBANs by applying CP-ABRSC
scheme in Sect. 6. Finally, we conclude the paper in Sect. 7.

2 Preliminaries

We denote by κ the system security parameter. If S is a set, we denote by x
$← S

the operation of picking an element x uniformly at random from S.

2.1 Bilinear Group Generator and Complexity Assumptions

Definition 1 (Bilinear Group Generator). A bilinear group generator G is
an algorithm that takes as input a security parameter κ and outputs a bilinear
group (p,G1,G2, ê, g), where G1 and G2 are cyclic groups of prime order p, g
is a generator of G1, and ê: G1 ×G1 → G2 is a bilinear map with the following
properties:

– Bilinearity: For g1, g2
$← G1 and a, b

$← Z∗
p, we have ê(ga

1 , gb
2) = ê(g1, g2)ab.

– Non-degeneracy: There exists g1, g2 ∈ G1 such that ê(g1, g2) �= 1.
– Computability: There is an efficient algorithm to compute ê(g1, g2) for all

g1, g2 ∈ G1.

Integrating CP-ABE with IBRS to Enhance Security and Privacy in WBANs 429

Definition 2 (CDH Assumption). The computational Diffie-Hellman ass-
umption in a prime p order group G states that, given (g, ga, gb), there is no prob-
abilistic polynomial-time (PPT) adversary A can compute gab with non-negligible

advantage, where g
$← G and a, b

$← Z∗
p.

Definition 3 (q-DBDHE Assumption). The decisional q-parallel bilinear
Diffie-Hellman exponent assumption in a prime order bilinear group (p,G1,G2,

ê, g) generated by G(1κ) states that, given X
$← G2 and

y = g, gs, gx, . . . , g(x
q), g(x

q+2), . . . , g(x
2q)

∀1≤j≤q gs·bj , gx/bj , . . . , g(x
q/bj), g(x

q+2/bj), . . . , g(x
2q/bj)

∀1≤k≤q, k �=j gx·s·bk/bj , . . . , g(x
q·s·bk/bj),

there isnoPPTadversaryAcandecidewhetherX = ê(g, g)xq+1s withnon-negligible

advantage, where x, s, b1, . . . , bq
$← Zp.

2.2 Access Structure and Secret Sharing Schemes

Let P = {P1,P2, . . . ,Pn} be a set of parties. A collection A ⊆ 2P is monotone
if for any set of parties B and C, we have that if B ∈ A and B ⊆ C then
C ∈ A. An access structure (respectively, monotone access structure) is a collec-
tion (respectively, monotone collection) A ⊆ 2P \ {∅}. The sets in A are called
the authorized sets, and the sets not in A are called the unauthorized sets [24].

In our context, the role of the parties is taken by the attributes. Thus, the
access structure A will contain the authorized sets of attributes. We restrict
our attention to monotone access structures. If a set of attributes ω satisfies an
access structure A, we denote it as A(ω) = 1.

A (t, n)-threshold scheme is a method of sharing a secret s ∈ Zp, which is
chosen by the dealer (denoted by D), among a set of n participants P, in such
a way that any t participants can compute the value of s, but no group of t − 1
participants can do so. Shamir [20] proposed a threshold secret sharing scheme
by using polynomial interpolation, which is described as follows.

– D chooses randomly a polynomial f(x) ∈ Zp[x] of degree t − 1 with f(0) = s,
i.e. f(x) = s +

∑t−1
j=1 ajx

j mod p, where s ∈ Zp is the secret to be shared.
– D assigns every participant Pi with a unique random element αi ∈ Z∗

p.
– D computes si = f(αi) for 1 ≤ i ≤ n and gives the secret share si to Pi

through a private channel.

Now a group S ⊂ P of at least t participants, i.e. |S| ≥ t, can recover the
secret s by using the following formula.

f(x) =
∑

Pi∈S

Δαi,S(x)f(αi) =
∑

Pi∈S

Δαi,S(x)si, where

Δαi,S(x) =
∏

Pi∈S,k �=i

x − αk

αi − αk
mod p.

430 C. Wang et al.

On the other hand, it can be proved that if the subset B ⊆ P such that
|B| < t could not get any information about the polynomial f(x).

Definition 4 (Linear Secret Sharing Scheme). A SSS Π for an access struc-
ture A over a set of n participants P is called linear over Zp if

– The shares for each participant form a vector over Zp.
– There exists a share-generating matrix M�×n for Π. For all 1 ≤ i ≤ �, we

let the function ρ defined the party labeling row i of M�×n as ρ(i). When we
consider the column vector v = (s, r2, . . . , rn)ᵀ, where s ∈ Zp is the secret to

be shared, and r2, . . . , rn
$← Zp, then α = M�×nv is the vector of � shares of

the secret s according to Π. The share αi = (M�×nv)i belongs to party ρ(i).

Beimel [2] showed that every LSSS according to the above definition enjoys
linear reconstruction property: Suppose that Π is a LSSS for the access structure
A. Let S ∈ A be any authorized set. Define I = {i|ρ(i) ∈ S} ⊂ {1, 2, . . . , �}. If
{λi} are valid shares of any secret s according to Π, then there exist constants
{wi ∈ Zp}i∈I satisfying that ∑

i∈I

wiλi = s,

where these constants {wi} can be found in time polynomial in the size of M�×n.
For unauthorized sets, no such constants {wi} exist.

3 Security Analysis of Hu et al. FABSC Scheme

3.1 Review of Hu et al. FABSC Scheme

In Hu et al. FABSC scheme [6], a user’s identity consists of n attributes, and the
access structure of a user may be designated as ‘d out of n attributes’, which
allows the user to obtain the data from the WBAN controller when the user has
at least d attributes possessed by the data. For each identity, they specify an
error-tolerance d. Hu et al. FABSC scheme is described as follows.

– Setup: The PKG performs as follows.
1. Run G(1κ) → (p,G1,G2, ê, g), set the universe Ω = {ai}n

i=1 where ai ∈
Z∗

p, and let N be the set {1, 2, . . . , n + 1}.
2. Choose a cryptographic secure hash function H : G2 × {0, 1}32 → G1.

Note that the hash function H is not clearly defined in [6].

3. Pick y
$← Z∗

p and g2
$← G1, compute g1 = gy and U = ê(g1, g2).

4. Select t1, t2, . . . , tn+1
$← G1, and define a function T (x) as

T (x) = gxn

2

n+1∏

i=1

t
Δi,N(x)
i .

Integrating CP-ABE with IBRS to Enhance Security and Privacy in WBANs 431

5. Select I ′ $← Zp and Ii
$← Zp, and compute v′ = gI′

and vi = gIi for 1 ≤ i ≤
m. Note that I ′ is mistakenly written as I ′ $← G1 in [6].

6. Set the master key msk = y, and the public system parameters mpk =
(Ω, p,G1,G2, ê, g, g1, g2, t1, . . . , tn+1, v

′, v1, . . . , vm, U,H).

– KeyGen: The PKG generates attribute-based private keys for a user with a
set Id ⊆ Ω of identity attributes as follows.
1. Select a d − 1 degree polynomial q(x) $← Zp[x] such that q(0) = y.

2. Pick r1, r2, . . . , r|Id|
$← Zp, and compute Di = g

q(i)
2 T (i)ri and di = g−ri

for ai ∈ Id.
3. Set the private key sets corresponding to the set Id of identity attributes

as KId = {Di, di}ai∈Id.
The private keys of a controller with identity attributes IdC are denoted as

KIdC
= {DC,i, dC,i}ai∈IdC

= {g
qC(i)
2 T (i)rC,i , g−rC,i}ai∈IdC

,

where qC(x) $← Zp[x] is a d − 1 degree polynomial such that qC(0) = y,

and rC,i
$← Zp for all ai ∈ IdC . Note that they are mistakenly written as

KIdC
= {DC , dC} = {g

qC(i)
2 T (i)rC , g−rC } in [6]. Similarly, the private keys of

a doctor Victor with identity attributes IdV are denoted as

KIdV
= {DV,i, dV,i}ai∈IdV

= {g
qV (i)
2 T (i)rV,i , g−rV,i}ai∈IdV

,

where qV (x) $← Zp[x] is a d − 1 degree polynomial such that qV (0) = y,

and rV,i
$← Zp for all ai ∈ IdV . Note that they are mistakenly written as

KIdV
= {DV , dV } = {g

qV (i)
2 T (i)rV , g−rV } in [6].

– Signcrypt: The signcryption algorithm is run by the controller with identity
attributes IdC for a message M , where the message can be represented as an
m-bit element in the group G2, i.e., M = (μ1, . . . , μm). The algorithm pro-
duces a signcrypted ciphertext E encrypted with identity attributes Id′ and
signed with identity attributes IdC . Denote by tt ∈ {0, 1}32 a time stamp and
by θ a predefined time limit for message decryption. The controller performs
the following steps.
1. Select r1, r2, . . . , rm

$← Zp, and compute t =
∑m

i=1 ri, M̃ = H(M‖tt),
E1 = M · U t, E2 = g−t, E3,i = T (i)t for ai ∈ Id′. Note that these
r1, r2, . . . , rm will not be used in the rest of the signcrypt algorithm, so
t ← ∑m

i=1 ri is equivalent to chooses t
$← Zp. And E3,i for ai ∈ Id′ are

mistakenly written as E3 = {T (i)t} in [6].
2. For ai ∈ IdC , compute S1,i = DC,i · (v′ ∏m

j=1 v
μj

j M̃)t = g
qC(i)
2 T (i)rC,i ·

(v′ ∏m
j=1 v

μj

j M̃)t and S2,i = dC,i = g−rC,i . Note that S1,i and S2,i are

mistakenly written as S1 = g
qC(i)
2 T (i)rC · (v′ ∏m

j=1 v
μj

j M̃)t and S2 = g−rC

in [6].

432 C. Wang et al.

3. Set the signcrypted ciphertext

E = (E1, E2, {E3,i}ai∈Id′ , tt, Id′, {S1,i}ai∈IdC
, {S2,i}ai∈IdC

, IdC).

Note that E is mistakenly written as (E1, E2, E3, S1, S2, tt, Id′) in [6].

– Designcrypt: The designcryption algorithm is run by a receiver Victor with
identity attributes IdV , which is described as follows.
1. Upon receiving signcrypted ciphertext E, Victor checks the current time

tt. If |tt − tt| ≤ θ, Victor sets S = Id′ ∩ IdV , and computes

M ′ = E1 ·
∏

ai∈S

(
ê(dV,i, E3,i)
ê(DV,i, E2)

)Δi,S(0), M̃ ′ = H(M ′||tt)

2. Check whether the following equation holds or not.

U =
∏

ai∈IdC

[ê(S1,i, g) · ê(S2,i, T (i)) · ê(E2, v
′

m∏

j=1

v
μj

j M̃ ′)]Δi,IdC
(0).

Note that the above equation is mistakenly written in [6] as

U =
∏

i∈S

[ê(S1, g) · ê(S2, T (i)) · ê(E2, v
′

m∏

j=1

v
μj

j M̃ ′)]Δi,S(0).

3. If it holds, it represents M ′ is valid and outputs M = M ′. Otherwise, it
represents M ′ is invalid and asks the controller to resend the message.

3.2 Security Analysis of Hu et al.’s FABSC Scheme

Theorem 1. Hu et al.’s FABSC scheme can not resist private key forgery attack.
i.e., an adversary can impersonate the trusted key server and generate private keys
for any set of attributes, thus totally break Hu et al.’s FABSC scheme.

Proof. Suppose an adversary A who acts as a signcrypting party with identity
consists of 4 attributes, i.e., IDC = {a1, a2, a3, a4} and the threshold is set as
d = 2. The adversary can get the value Di = g

q(i)
2 T (i)ri such that q(0) = y for

ai ∈ IDC . Since d = 2, if A can cancel T (i)ri from Di, then A can use {D1,D2},
{D1,D3}, {D1,D4}, {D2,D3} and {D2,D4} to compute gy

2 .
For simplicity, let Ti = T (i)ri and Δij = Δai,{ai,aj}(0). Note that Δij is not

necessarily equal to Δji. The adversary can get:

X1 = gy
2T1

r1Δ12T2
r2Δ21 , X2 = gy

2T1
r1Δ13T r3Δ31

3

X3 = gy
2T1

r1Δ14T4
r4Δ41 , X4 = gy

2T2
r2Δ23T r3Δ32

3

X5 = gy
2T2

r2Δ24T4
r4Δ42 , X6 = gy

2T3
r3Δ34T r4Δ43

4

Integrating CP-ABE with IBRS to Enhance Security and Privacy in WBANs 433

Let Δ1,1 = Δ12 − Δ13, Δ1,2 = Δ12 − Δ14, Δ2,1 = Δ21 − Δ23 and Δ2,2 =
Δ21 − Δ24. Then A can compute:

Y1 =
X1

X2
= T

Δ1,1
1 TΔ21

2 T−Δ31
3 , Y2 =

X1

X3
= T

Δ1,2
1 TΔ21

2 T−Δ41
4

Y3 =
X1

X4
= TΔ12

1 T
Δ2,1
2 T−Δ32

3 , Y4 =
X1

X5
= TΔ12

1 T
Δ2,2
2 T−Δ42

4

Furthermore, let Δ1,3 = Δ1,1 − Δ1,2, Δ1,4 = Δ1,1Δ32 − Δ12Δ31 �= 0, Δ1,5 =
Δ1,2Δ42−Δ12Δ41, Δ2,3 = Δ21Δ32−Δ2,1Δ31, Δ2,3 = Δ21Δ32−Δ2,1Δ31, Δ2,4 =
Δ21Δ42 − Δ2,2Δ41 and Δ2,5 = Δ2,2Δ1,5 − Δ2,4Δ1,4 �= 0, then A can compute:

Z1 =
Y1

Δ32

Y3
Δ31

= T1
r1Δ1,4T2

r2Δ2,3 , Z2 =
Y2

Δ42

Y4
Δ41

= T1
r1Δ1,5T2

r2Δ2,4

Z3 =
Z1

Δ1,5

Z2
Δ1,4

= T2
r2Δ2,5 , Z4 = Z2

1
Δ2,4 = T

r1Δ1,5/Δ2,4
1 T r2

2

Next, A can find

T r2
2 = Z

Δ−1
2,5

3 , T r1
1 = [

Z2

T
r2Δ2,4
2

]Δ
−1
1,5 ⇒ gy

2 =
X1

T r1Δ12
1 T r2Δ21

2

A can generate the private key sets KId = {Di, di}ai∈Id corresponding to
identity attributes Id ⊂ Ω as follows.

– Choose αd−1, · · · , α1
$← Z∗

q and r1, r2, . . . , r|Id|
$← Zp.

– For all ai ∈ Id, compute

Di = g
αd−1id−1

2 g
αd−2id−2

2 · · · gα1i
2 gy

2T (i)ri

= g
αd−1id−1+αd−2id−2···+αi+y
2 T (i)ri = g

q(i)
2 T (i)ri

di = g−ri

– Set the private key sets corresponding to identity attributes Id as KId =
{Di, di}ai∈Id.

Thus, A is capable of generating private keys for any set of attributes with
the help of gy

2 , and the forged private key sets and the actual private key sets
generated by the trusted party corresponding to identity attributes Id are com-
putationally indistinguishable, i.e., they have the same probability distributions.
Thus Hu et al. FABSC scheme is completely broken.

This completes the proof.

4 Syntax and Security Definitions of CP-ABRSC Scheme

A CP-ABRSC scheme can be defined by the following six PPT algorithms:

434 C. Wang et al.

– Setup: The probabilistic setup algorithm is run by the trusted PKG. It takes
as input a security parameter κ. It outputs the public system parameters mpk,
and the master key msk which is known only to the PKG.

– IBKeyGen: The probabilistic identity-based private key generation algo-
rithm is run by the PKG. It takes as input the public parameters mpk, the
master key msk, a user identity ID submitted by a user U . It outputs the
corresponding identity-based private key skID.

– ABKeyGen: The probabilistic attribute-based private key generation algo-
rithm is run by the PKG. It takes as input the public parameters mpk, the
master key msk, and a set ω of attributes owned by a user U . It outputs an
attribute private key dkω corresponding to the set ω of attributes.

– Signcrypt: The probabilistic signcrypt algorithm is run by a signcrypting
party. It takes as input the public parameters mpk, a message msg, an ad-hoc
group of ring members U = {U1,U2, . . . ,Un} with corresponding identities
ID = {IDi}n

i=1, the signcrypting party’s identity-based private key skIDs with
IDs ∈ ID, and an access structure A over the universe of attributes. It out-
puts a signcrypted ciphertext C. Note that A and ID are contained in the
signcrypted ciphertext.

– PubVerify: The deterministic public verifiability algorithm is run by any
outside receivers. It takes as input the public parameters mpk, a signcrypted
ciphertext C. It outputs a bit b which is 1 if the signcrypted ciphertext C
is generated by a certain member in the group U, or 0 if the signcrypted
ciphertext C is not generated by any member in the group U.

– UnSigncrypt: The deterministic unsigncryption algorithm is run by a receiver.
It takes as input the public parameters mpk, a signcrypted ciphertext C,
the receiver’s attribute-based private key dkω. It outputs the message msg if
A(ω) = 1 and IDs ∈ ID. Otherwise it outputs a reject symbol ⊥.

The set of algorithms must satisfy the following consistency requirement:

Setup(1κ) → (mpk,msk),msg
$← {0, 1}∗, IDs

$← ID,

IBKeyGen(mpk,msk, IDs) → skIDs ,ABKeyGen(mpk,msk,ω) → dkω,

If A(ω) = 1 and SignCrypt(mpk, ID, skIDs
,A,msg) → C,

Then UnSignCrypt(mpk, dkω, ID,A, C) = msg holds.

The property of indistinguishability under chosen plaintext attack (IND-
CPA) is considered a basic requirement for provably secure public key encryption
schemes. For CP-ABRSC, we define IND-CPA in the selective model by the fol-
lowing game between an adversary A and a challenger C.

– Init: A declares the access structure A
∗ that he wishes to be challenged upon.

– Setup: C runs the setup algorithm on input a security parameter κ, gives
public parameters mpk to A, while keeps the master key msk secret.

– Phase 1: A is allowed to issue the following queries adaptively.

Integrating CP-ABE with IBRS to Enhance Security and Privacy in WBANs 435

• Singing private key queries on identity IDi. C runs IBKeyGen(mpk,
msk, IDi) and sends skIDi

back to A.
• Decrypting private key queries on a set ωi of attributes. If A

∗(ωi) �= 1,
then C runs ABKeyGen(mpk,msk,ωi) and sends dkωi

back to A. Oth-
erwise, C rejects the request.

– Challenge: A submits two equal length messages msg0 and msg1, a set ID∗ =
{ID∗

i }n
i=1 of identities to C. The challenger then flips a random coin b and

picks an identity ID∗
i

$← ID∗. Finally, C sends the corresponding signcrypted
ciphertext C∗ to A by running skID∗

i
← IBKeyGen(mpk,msk, ID∗

i) and
C∗ ← Signcrypt(mpk, ID∗, skID∗

i
,A∗,msgb).

– Phase 2: Phase 1 is repeated.
– Guess: A outputs a guess b′ of b.

The advantage of A is defined as AdvA(κ) = Pr[b′ = b] − 1
2 .

Definition 5. A CP-ABRSC scheme is said to be IND-CPA secure in the selec-
tive model if AdvA(κ) is negligible in the security parameter κ.

Remark 1. The above security model deals with insider security, since the adver-
sary is assumed to have access to the private key of a signcrypting party who
belong to ring members U∗ chosen for the challenge phase. This means that the
confidentiality is preserved even if a signcrypting party’s private key is compro-
mised.

The property of existential unforgeability against adaptive chosen message and
identity attack (EUF-CMIA) is considered a basic requirement for provably
secure IBRS schemes. For CP-ABRSC, we define EUF-CMIA by the following
game played between an adversary A and a challenger C.

– Setup: Same as in the above IND-CPA game.
– Find: A is allowed to issue the following queries adaptively.

• Singing private key queries on identity IDi. C gets skIDi
by running

IBKeyGen(mpk,msk, IDi), and sends skIDi
back to A.

• Decrypting private key queries on set of attributes ωi. C gets dkωi
by

running ABKeyGen(mpk,msk,ωi), and sends dkωi
back to A.

• Signcrypt queries on (msg, ID,A). C picks an identity IDi
$← ID, gets

signcrypted ciphertext C by running skIDi
= IBKeyGen(mpk,msk, IDi)

and C = Signcrypt(mpk, ID, skIDi ,A,msg), and sends C back to A.
– Forgery: Finally, A produces a new triple (C∗, ID∗,A∗). The only restric-

tion is that (ID∗,A∗) does not appear in the set of previous signcryption
queries during find stage and each of signing private keys in ID∗ is never
returned by any singing private key queries. A wins the game if PubVerify
(mpk,C∗, ID∗,A∗) = 1.

The advantage of A is defined as the probability that it wins.

Definition 6. A CP-ABRSC scheme is said to be EUF-CMIA secure if no poly-
nomially bounded adversary A has non-negligible advantage in the above game.

436 C. Wang et al.

Remark 2. The above security model deals with insider security since the adver-
sary is assumed to have access to the private key of the receiver used for gen-
eration of the signcrypted ciphertext C∗. This means that the unforgeability is
preserved even if a receiver’s private key is compromised.

Definition 7. A CP-ABRSC scheme is publicly verifiable if given a signcrypted
ciphertext C along with ID and A, anyone can verify that C is a valid signcryp-
tion by some member with identity IDs ∈ ID to receivers specified by the access
structure A, without knowing any decryption private key dkω such that A(ω) = 1.

Definition 8. A CP-ABRSC scheme is strong anonymous if for any signcrypt-
ing party group U of ns members with identities ID, any message msg and
signcrypted ciphertext C, the probability to identify the actual signcrypting party
is not better than a random guess, i.e., an adversary outputs the identity of
actual signcrypting party with probability 1/ns if he is not a member of U, and
with probability 1/(ns − 1) if he is a member of U.

5 Our CP-ABRSC Construction

The proposed CP-ABRSC construction is described as follows.

– Setup: The PKG first defines the universe Ω = {atri}n
i=1 of attributes, runs

bilinear group generator G(1κ) → (p,G1,G2, ê, g), chooses x
$← Z∗

p, y
$← Z∗

p,

and hi
$← G1 for 1 ≤ i ≤ n, computes h = gx and Y = ê(g, g)y. The

PKG also picks two cryptographic hash functions H1 : {0, 1}∗ → G1 and
H2 : {0, 1}∗ → Z∗

p, sets the master secret key msk = (x, gy), and publishes
system parameters mpk = (p,G1,G2, ê, g,Ω, h1, . . . , hn, h, Y,H1,H2).

– IBKeyGen: Given an identity IDi, the PKG sets user’s public key gIDi
=

H1(IDi) ∈ G1, computes the corresponding private key skIDi
= gx

IDi
, then

sends the signing private key skIDi
to the user via a secure channel.

– ABKeyGen: Given a set ω ⊆ Ω of attributes owned by a user, the PKG
first chooses t

$← Z∗
p, computes K = gygxt, L = gt, and Ki = ht

i for all
atri ∈ ω. The PKG then sets the corresponding attribute private key dkω =
(K,L, {Ki}attri∈ω), and sends dkω to the user via a secure channel.

– Signcrypt: Let U be an ad-hoc group of ns members with identities ID =
{IDi|1 ≤ i ≤ ns} including the actual signcrypting party with identity IDj

where 1 ≤ j ≤ ns. To signcrypt a message msg ∈ G2 on behalf of the group
U under a LSSS access structure (M�×n, ρ), the signcrypting party chooses

s, y2, . . . , yn, r1, . . . , r�
$← Z(n+�)

p , sets v = (s, y2, . . . , yn)ᵀ, computes C ′ =
msg · ê(g, g)sy, C ′′ = gs, λi = Mi · v, Ci = gxλih−ri

ρ(i) and Di = gri for i = 1 to
�, where Mi is the vector corresponding to the i-th row of the share-generating
matrix M�×n. For all 1 ≤ i �= j ≤ ns, the signcrypting party chooses gi

$← G1,
compute hi = H2(C ′‖(M�×n, ρ)‖ID‖gi), gj = gs

IDj
/
∏ns

i=1, i �=j gig
hi

IDi
, hj = H2

Integrating CP-ABE with IBRS to Enhance Security and Privacy in WBANs 437

(C ′‖(M�×n, ρ)‖ID‖gj), σ1 = sk
hj+s
IDj

, g̃ =
∏n

i=1 gi and σ2 = H2(msg‖g̃‖Y s).
Finally, the signcrypting party outputs the following ring signcrypted cipher-
text

C = (C ′, C ′′, {Ci,Di}�
i=1, {gi}ns

i=1, σ1, σ2, ID, (M�×n, ρ)).

– PubVerify: Any receiver can check the validity of the signcrypted ciphertext
C against a set ID of identities. For 1 ≤ i ≤ ns, any receiver can compute
hi = H2(C ′‖(M�×n, ρ)‖ID‖gi), and check the equation ê(h,

∏n
i=1(gig

hi

IDi
)) =

ê(g, σ1). It outputs 1 if the equation holds, or 0 if the equation does not hold.

– UnSigncrypt: Upon receiving the signcrypted ciphertext C, the receiver uses
his decryption private key dkω corresponding to the set ω of attributes to
recover and verify the signcrypted ciphertext as follows.
1. Determine whether the set ω of attributes satisfy the access structure A

described by (M�×n, ρ). If not, the receiver rejects the signcrypted cipher-
text C.

2. For 1 ≤ i ≤ ns, compute hi = H2(C ′‖(M�×n, ρ)‖ID‖gi), and check

ê(h,
n∏

i=1

gig
hi

IDi
) ?= ê(g, σ1).

If the equation does not hold, reject the signcrypted ciphertext C.
3. Define I = {i|ρ(i) ∈ ω} ⊂ {1, 2, . . . , �}. Let {wi ∈ Zp} be a set of con-

stants such that if {λi} are valid shares of y according to (M�×n, ρ), then∑
i∈I wiλi = y. Note there could potentially be different ways of choosing

the wi values to satisfy this.
4. The receiver computes

V =
ê(C ′′,K)∏

i∈I(ê(Ci, L)ê(Di,Kρ(i)))wi
, msg′ =

C ′

V
, g̃ =

ns∏

i=1

gi

5. Check σ2
?= H2(msg′‖g̃‖V). If it holds, the receiver accepts and outputs

the message msg. Otherwise, rejects and outputs error symbol ⊥.

Theorem 2. The proposed CP-ABRSC construction is correct.

Proof. The correctness can be verified as follows.

ê(h,

ns∏

i=1

gig
hi

IDi
) = ê(gx,

ns∏

i=1,i �=j

(gig
hi

IDi
gjg

hj

IDj
) = ê(gx, g

s+hj

IDj
)

= ê(g, g
x(s+hj)
IDj

) = ê(g, sk
s+hj

IDj
) = ê(g, σ1)

V =
ê(C ′′,K)∏

i∈I(ê(Ci, L)ê(Di,Kρ(i)))wi
=

ê(gs, gxt)ê(gs, gy)∏
i∈I(ê(gλix, gt)ê(h−ri

ρ(i), g
t)ê(gri , ht

ρ(i)))
wi

=
ê(gs, gxt)ê(gs, gy)
ê(gx, gt)

∑
i∈I λiwi

= ê(g, g)sy = Y s

msg′ =
C ′

V
=

msg · Y s

Y s
= msg

438 C. Wang et al.

Theorem 3. The proposed CP-ABRSC scheme satisfies strong anonymity.

Proof. Since s
$← Z∗

q and gi
$← G1 for 1 ≤ i �= j ≤ n are generated uniformly

at random. All components of C except σ1 do not contain any identity infor-
mation bound to them. Thus, we only need to check whether σ1 = sk

hj+s
IDj

will
leak information about the actual signcrypting party. Anyone can compute gs

IDj

according to gs
IDj

= gj

∏
i�=j gig

hi

IDi
, and tries to determine whether a user with

identity IDk is the actual signcrypting party by verifying the following equation:

ê(gk

ns∏

i=1, i �=k

gig
hi

IDi
, h) · ê(ghk

IDk
, h) ?= ê(σ1, g)

The above equation holds for all 1 ≤ k ≤ ns as

ê(gk

ns∏

i=1, i �=k

gig
hi

IDi
, h) · ê(ghk

IDk
, h) = ê(gs

IDk
, h) · ê(ghk

IDk
, h)

= ê(gs+hk

IDk
, gx) = ê(gx(s+hk)

IDk
, g) = ê(sks+hk

IDk
, g) = ê(σ1, g)

Thus, we conclude that even an adversary with unbounded computing power
hasnoadvantage in identifying theactual signcryptingpartyover randomguessing.

Theorem 4. The proposed CP-ABRSC construction is IND-CPA secure in the
selective model under the q-DBDHE assumption.

Proof. We omit the proof here due to page limitation and will be given in the
full version of this paper.

Theorem 5. The proposed CP-ABRSC construction is EUF-CMIA secure in
the adaptive model under the CDH assumption.

Proof. We omit the proof here due to page limitation and will be given in the
full version of this paper.

6 Application of CP-ABRSC Scheme in WBAN

In this section, we present a secure, privacy-protected and fine-grained access
control framework for WBANs by exploiting CP-ABRSC scheme. Figure 2 illus-
trates the proposed framework for WBANs, which involves five participants:

– One hospital authority (HA) who acts as the PKG. HA is responsible for gen-
erating system public parameters, issuing signing private keys for controllers
based on their identities and decryption private keys for healthcare providers
based on their attributes (credentials).

– Multiple wearable or implanted sensors, which can sense and process vital
signs (heart rate, blood pressure, oxygen saturation, activity) or environmen-
tal parameters (location, temperature, humidity, light), and transfer the rel-
evant data to the corresponding controller.

Integrating CP-ABE with IBRS to Enhance Security and Privacy in WBANs 439

– Multiple controllers who aggregate information from sensors and ultimately
convey the information about health status across existing networks to the
medical server. Each controller can be uniquely identified by the registered
patient’s identity who owns the controller, and obtained its signing private
key from the HA that bind it to the claimed identity.

– One central medical server (such as a cloud storage server maintained by a
cloud service provider) who keeps personal health information of registered
users and provides various services to the users and healthcare providers. We
consider honest but curious medical server as those in [13,20]. That means the
server will try to find out as much secret information in the stored personal
health information as possible, but they will honestly follow the protocol in
general. The server may also collude with a few malicious users in the system.
On the other hand, some users will also try to access personal health infor-
mation beyond their privileges. For example, a pharmacy may want to obtain
the prescriptions of patients for marketing and boosting its profits. To do so,
they may even collude with other users.

– Multiple healthcare providers (include doctors, nurses, researchers etc.) who
may access the patients’ health information and provide health services.
Healthcare providers are identified by their attributes and obtain their decryp-
tion private keys that bind them to claimed attributes from the HA. For exam-
ple, a physician would receive “Hospital A, Chief Physician, Master of Internal
Medicine, Division Director, Cardiovascular Medicine” as her attributes from
the HA.

Fig. 2. Application of CP-ABRSC Scheme in BAN

Sensors in and around the body collect the vital signals of the patient continu-
ously and transmit the collected signals to the corresponding controller regularly.
The controller aggregates the received signals and signcrypts the aggregated
information msg as follows.

440 C. Wang et al.

– Choose a group of identities ID = {IDi}ns
i=1 that includes the controller’s own

identity IDj where 1 ≤ j ≤ ns.
– Generate an access policy (M�×n, ρ) based on attributes of authorized health-

care providers. For example, a policy may look like “(Organization = Hospital
A ∨ Organization = Hospital B) ∧ (Specialty = Internal Medicine) ∧ (Pro-
fession = Physician)”. Here controllers specify their own privacy policies to
prevent the medical server and unauthorized users from learning the contents
of corresponding patients’ health data.

– Run the Signcrypt algorithm to get the signcrypted ciphertext C with the
controller’s private key, the aggregated health information msg, identities ID
and access policy (M�×n, ρ) as input.

The controller uploads the signcrypted ciphertext C along with identities
ID and access policy (M�×n, ρ) to the medical server. The medical server can
verify the signcrypted ciphertext C by running the PubVerify algorithm. Since
the signcrypted ciphertext C is actually signed by the controller on the CP-ABE
ciphertext using Chow et al. IBRS scheme [5], data authenticity and unforge-
ability, anonymity for controller (includes untraceability and unlinkability) are
achieved.

The healthcare providers can download the signcrypted health information
C that contained the access policy A described as (M�×n, ρ) from the medi-
cal server, and they can open C only if they have suitable attribute-based pri-
vate keys dkω where A(ω) = 1. Since the signcrypted ciphertext C is actually
encrypted by the controller using Waters CP-ABE scheme [24], data confidential-
ity, anonymity for medical personnel and fine-grained access control on encrypted
medical data are achieved.

7 Conclusion

In this paper, we showed that Hu et al.’s fuzzy attribute-based signcryption
scheme can not resist the private key forgery attack. The reason is that the pri-
vate key structure have some redundant information. Then we introduce a new
cryptographic primitive named ciphertext-policy attribute-based ring signcryp-
tion (CP-ABRSC) by integrating the notion of ciphertext-policy attribute-based
encryption with identity-based ring signature, we give formal syntax and security
definitions for CP-ABRSC and present a CP-ABRSC construction from bilin-
ear pairings. We also propose a novel access control framework for WBAN by
exploiting CP-ABRSC scheme, which can not only provide semantic security,
unforgeability and public authenticity, but also can provide participants privacy
and fine-grained access control on encrypted health data.

Acknowledgment. This research is jointly funded by National Natural Science Foun-
dation of China (Grant No. 61173189) and Innovative Research Team Project in
Yunnan University.

Integrating CP-ABE with IBRS to Enhance Security and Privacy in WBANs 441

References

1. Baek, J., Steinfeld, R., Zheng, Y.: Formal proofs for the security of signcryption. In:
Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 80–98. Springer,
Heidelberg (2002). http://dx.doi.org/10.1007/3-540-45664-3 6

2. Beimel, A.: Secure schemes for secret sharing and key distribution. Ph.D. thesis,
Israel Institute of Technology, Technion, Haifa, Israel (1996)

3. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: IEEE Symposium on Security and Privacy, 2007, SP 2007, pp. 321–334,
May 2007

4. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001).
http://dx.doi.org/10.1007/3-540-44647-8 13

5. Chow, S.S.M., Yiu, S.-M., Hui, L.C.K.: Efficient identity based ring signature. In:
Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp.
499–512. Springer, Heidelberg (2005). http://dx.doi.org/10.1007/11496137 34

6. Chunqiang, H., Nan, Z., Hongjuan, L., Xiuzhen, C., Xiaofeng, L.: Body area net-
work security: a fuzzy attribute-based signcryption scheme. IEEE J. Sel. Areas
Commun. 31(9), 37–46 (2013)

7. Cordeiro, C., Fantacci, R., Gupta, S., Paradiso, J., Smailagic, A., Srivastava, M.:
Body area networking: technology and applications. IEEE J. Sel. Areas Commun.
27(1), 1–4 (2009)

8. Emura, K., Miyaji, A., Rahman, M.S.: Toward dynamic attribute-based sign-
cryption (poster). In: Parampalli, U., Hawkes, P. (eds.) ACISP 2011. LNCS,
vol. 6812, pp. 439–443. Springer, Heidelberg (2011). http://dx.doi.org/10.1007/
978-3-642-22497-3 32

9. Gagné, M., Narayan, S., Safavi-Naini, R.: Threshold attribute-based signcryption.
In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 154–171.
Springer, Heidelberg (2010). http://dx.doi.org/10.1007/978-3-642-15317-4 11

10. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Proceedings of the 13th ACM Con-
ference on Computer and Communications Security, CCS 2006, pp. 89–98. ACM,
New York (2006). http://doi.acm.org/10.1145/1180405.1180418

11. Herranz, J., Sáez, G.: Forking lemmas for ring signature schemes. In: Johansson,
T., Maitra, S. (eds.) INDOCRYPT 2003. LNCS, vol. 2904, pp. 266–279. Springer,
Heidelberg (2003). http://dx.doi.org/10.1007/978-3-540-24582-7 20

12. Herranz, J., Sáez, G.: New identity-based ring signature schemes. In: López, J.,
Qing, S., Okamoto, E. (eds.) ICICS 2004. LNCS, vol. 3269, pp. 27–39. Springer,
Heidelberg (2004). http://dx.doi.org/10.1007/978-3-540-30191-2 3

13. Huang, X., Susilo, W., Mu, Y., Zhang, F.: Identity-based ring signcryption schemes:
cryptographic primitives for preserving privacy and authenticity in the ubiquitous
world. In: 19th International Conference on Advanced Information Networking and
Applications, 2005, AINA 2005, vol. 2, pp. 649–654, March 2005

14. Li, M., Yu, S., Guttman, J.D., Lou, W., Ren, K.: Secure ad hoc trust initialization
and key management in wireless body area networks. ACM Trans. Sen. Netw. 9(2),
18:1–18:35 (2013). http://doi.acm.org/10.1145/2422966.2422975

15. Malone-Lee, J.: Identity-based signcryption. Cryptology ePrint Archive, Report
2002/098 (2002). http://eprint.iacr.org/

16. Ostrovsky, R., Sahai, A., Waters, B.: Attribute-based encryption with non-
monotonic access structures. In: Proceedings of the 14th ACM Conference on

http://dx.doi.org/10.1007/3-540-45664-3_6
http://dx.doi.org/10.1007/3-540-44647-8_13
http://dx.doi.org/10.1007/11496137_34
http://dx.doi.org/10.1007/978-3-642-22497-3_32
http://dx.doi.org/10.1007/978-3-642-22497-3_32
http://dx.doi.org/10.1007/978-3-642-15317-4_11
http://doi.acm.org/10.1145/1180405.1180418
http://dx.doi.org/10.1007/978-3-540-24582-7_20
http://dx.doi.org/10.1007/978-3-540-30191-2_3
http://doi.acm.org/10.1145/2422966.2422975
http://eprint.iacr.org/

442 C. Wang et al.

Computer and Communications Security, CCS 2007, pp. 195–203. ACM, New York
(2007). http://doi.acm.org/10.1145/1315245.1315270

17. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001).
http://dx.doi.org/10.1007/3-540-45682-1 32

18. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.)
EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005).
http://dx.doi.org/10.1007/11426639 27

19. Selvi, S.S.D., Sree Vivek, S., Pandu Rangan, C.: Identity based public verifi-
able signcryption scheme. In: Heng, S.-H., Kurosawa, K. (eds.) ProvSec 2010.
LNCS, vol. 6402, pp. 244–260. Springer, Heidelberg (2010). http://dx.doi.org/
10.1007/978-3-642-16280-0 17

20. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979).
http://doi.acm.org/10.1145/359168.359176

21. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985). http://dx.doi.org/10.1007/3-540-39568-7 5

22. Ullah, S., Higgins, H., Braem, B., Latre, B., Blondia, C., Moerman, I., Saleem, S.,
Rahman, Z., Kwak, K.: A comprehensive survey of wireless body area networks. J.
Med. Syst. 36(3), 1065–1094 (2012). http://dx.doi.org/10.1007/s10916-010-9571-3

23. Wang, C.J., Huang, J.S., Lin, W.L., Lin, H.T.: Security analysis of Gagne et al’.s
threshold attribute-based signcryption scheme. In: 2013 5th International Confer-
ence on Intelligent Networking and Collaborative Systems (INCoS), pp. 103–108,
September 2013

24. Waters, B.: Ciphertext-policy attribute-based encryption: an expressive, efficient,
and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi,
A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011).
http://dx.doi.org/10.1007/978-3-642-19379-8 4

25. Yang, P., Cao, Z., Dong, X.: Fuzzy identity based signature with applica-
tions to biometric authentication. Comput. Electr. Eng. 37(4), 532–540 (2011).
http://www.sciencedirect.com/science/article/pii/S0045790611000589

26. Zhang, F., Kim, K.: ID-based blind signature and ring signature from pairings.
In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 533–547. Springer,
Heidelberg (2002). http://dx.doi.org/10.1007/3-540-36178-2 33

27. Zheng, Y.: Digital signcryption or how to achieve cost(signature & encryption)
� cost(signature) + cost(encryption). In: Kaliski Jr, B.S. (ed.) CRYPTO 1997.
LNCS, vol. 1294, pp. 165–179. Springer, Heidelberg (1997). http://dx.doi.org/
10.1007/BFb0052234

http://doi.acm.org/10.1145/1315245.1315270
http://dx.doi.org/10.1007/3-540-45682-1_32
http://dx.doi.org/10.1007/11426639_27
http://dx.doi.org/10.1007/978-3-642-16280-0_17
http://dx.doi.org/10.1007/978-3-642-16280-0_17
http://doi.acm.org/10.1145/359168.359176
http://dx.doi.org/10.1007/3-540-39568-7_5
http://dx.doi.org/10.1007/s10916-010-9571-3
http://dx.doi.org/10.1007/978-3-642-19379-8_4
http://www.sciencedirect.com/science/article/pii/S0045790611000589
http://dx.doi.org/10.1007/3-540-36178-2_33
http://dx.doi.org/10.1007/BFb0052234
http://dx.doi.org/10.1007/BFb0052234

Elliptic Curve

Parallelized Software Implementation of Elliptic
Curve Scalar Multiplication

Jean-Marc Robert1,2(B)

1 Team DALI, Université de Perpignan, Perpignan, France
2 LIRMM, UMR 5506, Université Montpellier 2 and CNRS, Montpellier, France

jean-marc.robert@univ-perp.fr

Abstract. Recent developments of multicore architectures over various
platforms (desktop computers and servers as well as embedded systems)
challenge the classical approaches of sequential computation algorithms,
in particular elliptic curve cryptography protocols. In this work, we deploy
different parallel software implementations of elliptic curve scalar multi-
plication of point, in order to improve the performances in comparison
with the sequential counter parts, taking into account the multi-threading
synchronization, scalar recoding and memory management issues. Two
thread and four thread algorithms are tested on various curves over prime
and binary fields, they provide improvement ratio of around 15 % in com-
parison with their sequential counterparts.

Keywords: Elliptic curve cryptography · Parallel algorithm · Efficient
software implementation

1 Introduction

Elliptic curve cryptography (ECC) is widely used in a large number of protocols:
secret key exchanges, asymmetric encryption-decryption, digital signatures. . .
The main operation in these protocols is the scalar multiplication (ECSM) defined
as k ·P where P is a point of order r on an elliptic curve E(Fq) and k ∈ [0, r[is an
integer. The scalar multiplication is computed with Double-and-add approaches
which consist of sequences of several hundreds of doublings and additions of curve
points. It is thus a costly operation which might be implemented efficiently.

In this paper we consider parallel approaches for software implementation
of scalar multiplication. There are two versions of the Double-and-add scalar
multiplication: the left-to-right and the right-to-left depending on the way the
bits of k are scanned. On the one hand, the left-to-right version cannot be paral-
lelized due to the strong dependence of the consecutive doublings and additions.
On the other hand, the right-to-left version is easier to parallelize: this was
noticed by Moreno and Hasan in [15]. Indeed, in [15], the authors provide an
algorithm consisting in one thread producing the points 2iP through consec-
utive doublings, which are then consumed by a second thread performing all
the necessary additions. They did not provide any implementation results of
c© Springer International Publishing Switzerland 2015
D. Lin et al. (Eds.): Inscrypt 2014, LNCS 8957, pp. 445–462, 2015.
DOI: 10.1007/978-3-319-16745-9 24

446 J.-M. Robert

their approach. In practice this can be challenging to implement efficiently the
synchronizations between the two threads.

When the elliptic curve is defined over a binary field F2m , a formula exists
(cf. [5,12]) which computes efficiently the halving of a point, i.e., 1

2P . This makes
possible to perform the scalar multiplication through a sequence of halvings and
additions of points. This can be used to parallelize the scalar multiplication into
two totally independent threads: one thread performing a halve-and-add scalar
multiplication and a second thread performing a double-and-add. This approach
has been implemented by Taverne et al. in [20] showing a significant speed-up
compared to non-parallelized versions.

In this paper we first explore the implementation of the two threads par-
allel approach of Moreno and Hasan [15]. Specifically, we analyze three differ-
ent strategies to perform synchronization between both threads: using signals,
mutexes or busy-waiting approaches, we propose a synchronization strategy
based on this analysis. We also study the best approach for the coding of the
integer k: this impacts the number of additions and post-computations, i.e., the
work load of the thread performing the additions.

We then investigate a four thread parallelization of the scalar multiplication
in E(F2m). This approach combines the Double/halve-and-add algorithm of [20]
with the approach of Moreno and Hasan.

We provide experimental results for two curves defined over a prime field
p = 2255 − 19 and for the two binary elliptic curves B409 and B233 recom-
mended by NIST in [18]. Our experimental results show that the parallelized
scalar multiplication is up to 15 % faster than their non-parallelized counter-
parts (depending on the curve type and the field size).

The remaining of the paper is organized as follows: in Sect. 2 we review basic
definitions of elliptic curve and scalar multiplication algorithms. In Sect. 3, we
present our implementation approaches of scalar multiplication. We then provide
in Sect. 4 the experimental results and comparisons with the state of the art. We
end the paper in Sect. 5 with some concluding remarks.

2 Background on Elliptic Curve Scalar Multiplication

In this section, we briefly review basic results concerning elliptic curve and their
use in cryptography. For further details on this matter we refer the reader to [9].
An elliptic curve over a finite field E(Fq) is the set of point (x, y) ∈ F

2
q satisfying

a smooth curve equation of degree 3 in x and y plus a point at infinity O.
A group law can be defined using the so-called chord-and-tangent approach,
providing formulas in terms of point coordinates which compute doubling 2P and
addition P +Q in the group. The element O is the neutral element of the group.
Cryptographic protocols are based on the intractability of the discrete logarithm
problem: given a generator of the group P and a point Q, compute k such that
Q = kP . The most costly operation involved in most ECC protocols is the
scalar multiplication: given P ∈ E(Fq) and an integer k, the scalar multiplication
consists in computing kP = P + P + · · · + P (k times). The elliptic curves used

Parallelized Software Implementation of ECSM 447

in practice are defined either over prime field Fp with p prime or over binary
field F2m . In the remainder of this section, we briefly review explicit formulas
and algorithms for scalar multiplication over these two fields.

2.1 Scalar Multiplication over Prime Field

Weierstrass Elliptic Curve. An elliptic curve E over a prime field Fp is
generally defined by a short Weierstrass equation:

E : y2 = x3 + ax + b, (a, b) ∈ F
2
p.

Then, in this case, addition and doubling on E(Fp) works as follows: let P1 =
(x1, y1), P2 = (x2, y2), P3 = (x3, y3), be three points of E such that P3 = P1+P2,
then we have:

{
x3 = λ2 − x1 − x2,
y3 = λ(x1 − x3) − y1,

where

{
λ = y2−y1

x2−x1
if P1 �= P2,

λ = 3x2
1+a
2y1

+ x1 if P1 = P2.

Jacobi Quartic Curves over Prime Field. This curve was suggested by
Billet et al. in [4]. The curve equation of E is:

y2 = x4 − 3
2
θx2 + 1, θ ∈ Fp.

For such curve, the addition and doubling formulas are unified. Let P1 = (x1, y1),
P2 = (x2, y2), P3 = (x3, y3), be three points of E such that P3 = P1 + P2, then
we have:

{
x3 = (x1y2 + y1x2)/(1 − (x1x2)2),
y3 = ((1 + (x1x2)2)(y1y2 + 2ax1x2) + 2x1x2(x2

1 + x2
2))/(1 − (x1x2)2)2.

The Jacobi Quartic curve is isomorphic to the following Weierstrass elliptic
curve:

y2 = x3 + ax + b where a = (−16 − 3θ2)/4 and b = −θ3 − aθ.

Elliptic Curve Point Operations. The most expensive field operation is the
inversion which roughly requires several tens of field multiplications. In order
to avoid such operation, additions and doublings utilize projective coordinate
system. In our implementation, we consider two systems: the Jacobian coordinate
where the point (X : Y : Z) corresponds to the affine point (X/Z2, Y/Z3) and
the XXY ZZ coordinate system where the point (X : XX : Y : Z : ZZ)
corresponds to the affine point (X/Z, Y/ZZ) with XX = X2 and ZZ = Z2.
Explicit formulas for addition and doubling in these systems can be found in [1]

The resulting complexities are shown in Table 1, which shows that the com-
plexities of the Jacobi Quartic curve operations are better than for the Weier-
strass equation case. Moreover, based on the elliptic curve formula database in
[1], the Jacobi Quartic curves provide the most efficient point operation among
all known curves and formulas. This is the reason why we used such curve and
these formulas in our implementations.

448 J.-M. Robert

Table 1. Weierstrass curve and Jacobi Quartic curve point operations, M = multipli-
cations, S = squaring, R = field reduction.

Complexity comparison for: Weierstrass with Jacobi Quartic curve

point operations Jacobian coord with XXY ZZ coord

Doubling 4M + 4S + 8R 3M + 4S + 7R

Mixed addition 9M + 3S + 12R 6M + 3S + 9R

Full projective addition 13M + 2S + 15R 7M + 4S + 11R

Scalar Multiplication Algorithm. The basic method to compute a scalar
multiplication consists in scanning the bits ki of k =

∑t−1
i=0 ki ·2i and performing

a sequence of doubling followed by an addition when ki = 1. This approach is
described in Algorithm 1.

In order to reduce the number of additions, the non adjacent form (NAF)
and the window non adjacent form (W-NAF) recoding of the scalar are well-
known methods, which reduce the number of non zero digit representing the
scalar. In the binary scalar representation, half of the digits are either zero or
one on average. In the NAF representation, one uses three digits instead of two:
k =

∑t
i=0 ki · 2i with ki ∈ {−1, 0, 1} and there are only t/3 non zero digits ki on

average.
The W-NAF representation extends this concept by using more digits: k =∑t

i=0 ki · 2i with ki ∈ {−(2w−1 − 1), . . . ,−5,−3 − 1, 0, 1, 3, 5, . . . , (2w−1 − 1)}.
The number of non zero digits is now t/(w + 1) on average. Algorithm 1 can be
adapted to use k recoded as NAF or W-NAF. The complexities of the resulting
scalar multiplication are given in Table 2.

Table 2. Complexity comparison between binary, NAF and W-NAF scalar represen-
tation in terms of t the bit length of the scalar.

Nb. of doublings Nb. of additions

Double-and-add t− 1 t/2

NAF Double-and-add t t/3

W-NAF Double-and-add t t/(w + 1) + 2w−2 − 1

The reader may refer to [8] for further details and algorithms to compute
NAF and W-NAF representation.

2.2 Elliptic Curve Scalar Multiplication over Binary Field

An elliptic curve E over a binary field F2m is the set of points P = (x, y) ∈ F
2
2m

satisfying the following equation:

E : y2 + xy = x3 + ax2 + b, (a, b) ∈ F
2
2m .

Parallelized Software Implementation of ECSM 449

Algorithm 1. Left-to-Right Double-

and-add
Require: k = (kt−1, . . . , k1, k0), P ∈ E(F2m)
Ensure: Q = k · P
1: Q ← O
2: for i from t − 1 downto 0
3: Q ← 2 · Q
4: if ki = 1 then
5: Q ← Q + P
6: endif
7: endfor
8: return (Q)

Algorithm 2. Right-to-left Halve-

and-add
Require: P ∈ E(F2m) of order r and k an
integer in [0, r[
Ensure: Q = k · P
1: Compute k′ = 2t · k mod r =

∑t
i=0 k′

i2
i

with t = �log2(r)� + 1
2: Q ← O
3: for i from t downto 0
4: if ki = 1 then
5: Q ← Q + P
6: endif
7: P ← P/2
8: endfor
9: return (Q)

Let P1 = (x1, y1), P2 = (x2, y2), P3 = (x3, y3), be three points of E such that
P3 = P1 + P2, then we have:

{
x3 = λ2 + λ + x1 + x2 + a,
y3 = (x1 + x3)λ + x3 + y1,

where

⎧
⎨

⎩

λ = y1+y2
x1+x2

if P1 �= P2,

λ = y1
x1

+ x1 if P1 = P2.
(1)

Elliptic Curve Scalar Multiplication with Halving. It was noticed by
Knudsen in [12] that over a binary field, halving of points is possible in case of
points of odd order since 2 admits an inverse modulo the order of the point. In
other words, point halving is the reciprocal operation of point doubling: given
Q = (u, v) ∈ E(F2m), one looks for P = (x, y) ∈ E(F2m), P �= −P such as
Q = 2 · P . Based on Eq. (1), we know that x, y, u and v satisfy the following
relations:

λ = x + y/x (2)
u = λ2 + λ + a (3)
v = x2 + u(λ + 1) (4)

Consequently, in order to compute P , we first have to solve Eq. (3) to get
λ (which means solve λ2 + λ = u + a), then, Eq. (4) gives x =

√
v + u(λ + 1),

and finally, Eq. (2) gives y = λx + x2. The reader may refer to Knudsen in [12]
and Fong et al. in [5] for further details. In practice, this can be implemented
efficiently and has roughly the same cost as two field multiplications (see [20]).

The Double-and-add method can be modified into a Halve-and-add scalar
multiplication. Preliminary, we need to change the scalar. Assuming the point
P to be multiplied is of odd order r, we compute k′ = 2t · k mod r =

∑t
i=0 k′

i2
i

with t = �log2(r)� + 1. Then, we have k ≡ k′/2t ≡ ∑t
i=0 k′

i2
i−t mod r and the

scalar multiplication can be computed as follows:

k · P = (k′
t + k′

t−1 · 2−1 + . . . + k′
02

−t) · P.

This can be computed as a sequence of halvings and additions as shown in
Algorithm 2.

450 J.-M. Robert

Cost of Elliptic Curve Point Operations. Over a field of characteristic 2,
and in order to avoid the inversions during the computation, which is the most
expensive field operation again, one may use projective coordinate systems. The
most interesting systems are the Lopez-Dahab (LD, as shown in [8]) and the
Kim-Kim (KK, see [11]) projective coordinate systems. With such point repre-
sentation, the addition and doubling operations do not include any inversion as
shown in Table 3, and the whole scalar multiplication is computed with a sig-
nificant speed-up. Table 3 shows that the complexities of KK are slightly better
and then, when possible, we give the preference to the KK coordinate system.

Table 3. Elliptic curve point operations, M = multiplications, S = squaring, SR =
square root, QS = quadratic solver, R = reduction.

Point operation Coord. system Cost

Doubling LD 4M + 4S + 8R

Mixed addition LD 9M + 4S + 13R

Projective addition LD 13M + 4S + 17R

Doubling KK 4M + 5S + 7R

Mixed addition KK 8M + 4S + 9R

Halving Affine 1M + 1SR + 1R + 1QS

3 Strategies for Parallel Implementation of Scalar
Multiplication

In this section, after a quick review of the implementation strategies used for the
field operations, we expose how we elaborate the parallelized algorithm, taking
into account all the constraints for such concurrent programming.

The platform used for the experimentations is an Optiplex 990 DELL�, with
a Linux 12.04 operating system. The processor is an Intel core i7�-2600 Sandy
Bridge 3.4 GHz. This processor owns four physical cores, which corresponds to
the maximum thread number of our implementations. The code is written in C
language and compiled with gcc version 4.6.3.

3.1 Field Implementation Strategies

Prime Field Implementation Strategies. We considered the prime field Fp,
with p = 2255 − 19, which was introduced by Bernstein in [2]. To compute the
field operations, we reused the publicly available code of Adam Langley in [13].
Based on our experiments, the code of Langley is significantly more efficient com-
pared to low level functions of the GMP library [6] for the considered field. In
the code of Adam Langley a field element is stored in a table of five 64 bit words,
each word containing only 51 bits. This allows a better management of carries in

Parallelized Software Implementation of ECSM 451

field addition and subtraction operations. The field multiplications and squar-
ings are performed in two steps, which are multiprecision integer multiplication
(respectively squaring) and a modular reduction of integer of 510 bit size (less
than p2) into field element of size 255 bits (reduction modulo p). The multipreci-
sion integer multiplications and squarings are computed with the schoolbook
method. The squaring operation is optimized with the usual trick which reduces
the number of word multiplications. The reduction modulo p = 2255 − 19 of
510 bit size integer consists in multiplying by 19 the 255 most significant bits
and adding the result to the 255 least significant bits. An inversion of a field
element is computed using the Itoh-Tsujii method [10]: a−1 ≡ ap−2 mod p,
and the exponentiation to p − 2 is performed with a sequence of squarings and
multiplications.

Binary Field Implementation Strategies. Our implementations deal with
NIST recommended fields F2233 = F[x]/(x233 +x74 +1) and F2409 = F[x]/(x409 +
x87+1). Concerning the binary polynomial multiplication, we apply a small num-
ber of recursions of the Karatsuba algorithm. The Karatsuba algorithm breaks
the m bit polynomial multiplication into several 64 bit polynomial multiplica-
tions. Such 64 bit multiplications are computed with the PCLMUL instruction,
available on Intel Core i7 processors. Due to the special form of the irreducible
polynomials, the reduction is done with a small number of shifts and bit-wise
XORs. We compute the field inversion with the Itoh-Tsujii algorithm, that is
a sequence of field multiplications and multisquarings performed with look-up
table. For field squaring, square root and quadratic solver (needed in halvings),
we also use a look-up table method, which is the fastest way according to our
tests.

Remark 1. The use of Karatsuba for binary fields and schoolbook method for
the prime field is due to the relative cost of word addition compared to word
multiplication and to carry managements on our platform. Indeed, integer word
additions and multiplications have roughly the same cost (1 vs 2 cycles). The use
of Karatsuba algorithm for Fp decreases the number of word multiplications, but,
in counter part, it increases the number of additions and carry managements.
For binary field the relative cost of addition (bit-wise XOR) and multiplications
(PCLMUL instruction) is more important: 1 cycle vs 10 cycles. In this case
Karatsuba is efficient to decrease the timing of a field multiplication.

3.2 Parallelization

The left-to-right Double-and-add algorithm (see Algorithm 1 page 449) does not
allow any parallelization of the computations, due to the read-after-write depen-
dency inside each loop iteration, between step 5 (addition) and step 3 (doubling).
It is necessary to use the right-to-left variant of this algorithm (see Algorithm 3)
which allows the parallelization. Indeed Algorithm 3 can be parallelized into two
threads as follows:

452 J.-M. Robert

– A producer-thread performing the sequence of doublings generating the points
2iP .

– An addition-thread accumulating the points generated by the producer-thread.

In the sequential case, the left-to-right Double-and-add algorithm (Algorithm 1)
is better, because the point addition in step 5 can use a mixed coordinate addi-
tion. This is faster than the projective addition used in the right-to-left version
in step 4 (Algorithm 3). We will see that this penalty is overcome in most of the
cases, thanks to the parallelization.

The Halve-and-add algorithm (Algorithm 2 page 449) can also be parallelized
with two threads. Indeed, since the computation in step 7 of Algorithm 2 only
depends on the same step in the previous loop iteration (read-after-write depen-
dency), the sequence of halvings (step 7) can be performed in a separate thread
(the producer-thread) and the addition in an addition-thread which accumulates
the points generated by the producer-thread.

Algorithm 3. Right-to-left Double-and-add
Require: k = (kt−1, . . . , k1, k0), P ∈ E(Fq)
Ensure: Q = k · P
1: Q ← O
2: for i from 0 to t − 1 do
3: if ki = 1 then
4: Q ← Q + P
5: end if
6: P ← 2 · P
7: end for
8: return (Q)

Synchronization Between Threads. Both parallelization (right-to-left
Double-and-add, Algorithm 3 and Halve-and-add, Algorithm 2) are classical
producer-consumer configurations.

The safest way to guarantee absolute correct computation is to use a strong
synchronization device, processing the computation by small batches: the
producer-thread computes and stores a small batch of point doublings/halvings,
sends a signal in order to trigger the addition computation in the addition-thread
only concerning the batch in shared memory. In parallel, the producer-thread
goes on with the next batch and the addition-thread waits the end of each batch
before processing the corresponding additions (in the way described by Mueller
in [16] or by Tannenbaum in [19]). In our case, on the one hand, the batch
size has to be small to compute the maximum of additions in parallel. But on
the other hand, if the batches are too small, the synchronization cost would
increase, due to the bigger number of synchronization signals to manage. This
is especially true as the granularity of doublings/halvings and additions (several
hundreds of processor clock cycles) is too small in comparison with the cost of
synchronization barriers and signals.

Parallelized Software Implementation of ECSM 453

The three following methods can be used to synchronize the two threads:

– mutex. A mutex is a mutual exclusion lock provided by the pthread library
used to synchronize threads. When a thread holds a mutex, another thread,
trying to take it, is locked, waiting for the releasing of the mutex from the
first thread. Mutexes are generally used to protect critical sections of code.
The cost of a lock or an unlock is about 150–200 processor clock cycles, which
is almost negligible.

– signals: they are used in the inter-thread and inter-process communication.
A thread waiting for a signal is put in a sleeping state until another thread
sends the corresponding signal. Then, the thread wakes up and goes on run-
ning. The sleeping state allows savings of resources which are then available
for another process. In our experience and on our platform, the cost to send
a signal is about 2000 clock cycles.

– busy-waiting: this method consists in using a shared flag (in the global mem-
ory) and use it to keep the addition-thread in a busy-waiting loop while waiting
for the producer-thread to output the next point and modify the flag. The
main drawback of this method is to waste processor resources.

According to our experiments, signals are too costly compared to the two
other techniques. The busy-waiting and mutex techniques almost give the same
results in terms of performance, although the mutex method is slightly better in
some cases. Thus we decided to use exclusively mutexes.

Proposed Synchronization Method. Our strategy was to avoid the use of
mutex synchronization as much as possible. We chose to use only one single
mutex: at the very beginning of the computation the mutex keeps the addition-
thread in an inactive state while a first batch of doublings or halvings is com-
puted by the producer-thread. At the end of the computation of this batch, the
producer-thread releases the mutex and pursues the whole sequence of doubling
without performing any further locking on the mutex. This approach is depicted
in Fig. 1.

The correctness of the final result depends on the size of the first batch of
points before the mutex releasing, which ensures that the writings of the point
stored in shared memory by the doubling thread precedes the reading of the
same point by the addition thread. If this batch is too small and in case of long
sequence of zeros in the binary or NAF scalar representation, one can meet a
violation of the read-after-write dependency, and the computation is not correct.
To avoid this configuration, we carefully tuned this batch size in order to have
the error rate as close as possible to zero. In our test results shown below, this
error rate is limited to less than 1 %. This is a compromise chosen in order to
limit the first batch of doublings/halvings size, and to get the best performances.
But at this step, such an error rate remains unacceptable.

In order to eliminate these errors, we added a test on the addition-thread.
In the producer-thread, we used a variable which is stored in global memory
as the loop counter. This allows to check if the addition processed uses a point

454 J.-M. Robert

Launches

Thread 2

takes the Mutex
and computes the additions

computes and stores

doublings/halvings
the remaining

stores the final result

and terminates.
in shared memory

Tries to

take the Mutex

Thread 2

starts

computes and stores

doublings/halvings
a batch of

sends the
final result

waits the
end of Thread 2

Thread 2

releases the Mutex

Takes the Mutex

END

START

Thread 1
(producer)

(consumer)

time

Fig. 1. Synchronization and thread processing for our ECSM implementation

which has already been computed by the producer-thread, i.e. the read-after-
write dependency is ensured. The cost of this test is almost negligible, although
the use of a global memory counter is not totally free. When an error is detected
(that is to say a read-after-write dependency violation), we break the addition-
thread loop, and launch a sequential computation of k · P . Due to the small
error rate, the cost of this rescue computation, which frequency is near zero, is
negligible on average.

Algorithm 4 presents an algorithmic formulation in the case of Right-to-left
Double-and-add scalar multiplication of this approach, including the elimination
of the error computations due to a synchronization failure.

Impact of Scalar Recoding. In the sequential case, it is a useful technique
to recode the scalar using NAF and W-NAF to speed-up the computation (as
previously mentioned in Subsect. 2.1 page 447). In the parallel algorithms, the
situation is different. Indeed, the NAF and W-NAF recodings reduce the num-
ber of additions performed by the addition-thread. This fact can be seen when
analyzing the amount of computations performed by the two threads. We can
evaluate this amount using the results given Table 2 and Table 1 in the case of
curves over E(Fp), and using the results given Table 2 and Table 3 in the case of
curves over E(F2m). For simplicity we assumed that S = 0.8M in Fp and that a
squaring and square root are negligible in F2m and that the cost of a quadratic
solver is roughly 1M . The resulting complexities are given in Table 4.

Table 4, we remark that, generally, the amount of computation of the addition-
thread is larger than the producer-thread for the binary coding. When using
the NAF recoding the amount of computation of the two threads are roughly
the same. Finally, the use of W-NAF makes the amount of computation of the

Parallelized Software Implementation of ECSM 455

Table 4. Complexity of the two threads for a t-bit scalar coded in binary, NAF and
W-NAF, in multiplication number.

Recoding Double-and-add over Fp Double-and-add over F2m Halve-and-add over F2m

Producer- Addition- Post- Producer- Addition- Post- Producer- Addition- Post-

thread thread comp thread thread comp thread thread comp

binary 6.2tM 5.1tM 0 4tM 6.5tM 0 2tM 4tM 0

NAF 6.2tM 3.4tM 0 4tM 4.33tM 0 2tM 2.66tM 0

W-NAF 6.2tM 2.04tM 33M 4tM 2.6tM 39M 2tM 1.6tM 39M

(w = 4)

addition-thread significantly smaller than the producer thread. This means that
when using W-NAF recoding, the addition-thread progresses faster and even
would have to wait for the producer-thread to output new points. But in any
case, the addition-thread terminates after the producer-thread. Moreover in the
W-NAF case, the post-computations delay the output of the results after the
end of the producing process, since in the parallel algorithms, this final recon-
struction cannot be done before the end of the parallelized additions.

These remarks are confirmed by the chronogram given in Fig. 2 which shows
the different timings required by each thread related to the recoding used for the
execution of the parallelized halve-and-add for scalar multiplication in E(F2233).
This fact leads us to opt for the NAF recoding for our implementations.

In addition to this choice, and in order to improve the performances, we imple-
ment a variable initial batch size of doublings/halvings in the producer-thread.
Indeed, the number of additions performed by the addition-thread depends on
the Hamming weight of the NAF representation of the scalar (i.e. the non-zero
digits). As stated previously, a read-after-write dependency violation can appear
if this batch is too small. But if the Hamming weight of the scalar is higher, the
risk of this dependency violation is lower, and the batch size can be reduced in
this case. This improvement applies only when the addition-thread has roughly
the same running time as the producer thread. This concerns the Double-and-add
approach over Fp and F2m but not the Halve-and-add approach (cf. Table 4).

When possible, we use the variable initial batch size in the producer-thread.

3.3 Four-Thread Parallel Version over Binary Elliptic Curve

Over binary field, the parallelization proposed by Taverne et al. in [20] splits the
scalar multiplication into two independent threads. Specifically, they split the
t-bit scalar k = k1 + k2 where k1 and k2 are as follows

k = (k′
t2

t−� + . . . + k′
�)︸ ︷︷ ︸

k1

+ (k′
�−12

−1 + . . . + k′
02

−�)
︸ ︷︷ ︸

k2

. (5)

In general � is close to t/2 and represents the length of the Halve-and-add subkey.
Then the computations can be parallelized into one thread computing k1P with
the Double-and-add algorithm and a second thread computing k2P with the
Halve-and-add algorithm.

456 J.-M. Robert

Fig. 2. Chronogram of the halve-and-add computation with binary, NAF and W-NAF
scalar representation over B233

We propose to combine the approach of Taverne et al. with the paralleliza-
tion approach discussed in Subsect. 3.2. This results in a four-thread algorithm:
the partial scalar multiplication k1P is computed with the parallel two-thread
algorithm // Double-and-add and k1P is computed with the parallel two-thread
algorithm // Halve-and-add. This four-thread approach is shown in Fig. 3. This
approach increases the level of parallelization, but it also requires additional
thread launching and management. Therefore, this algorithm works better on
large fields, as it will be shown in the next section.

Fig. 3. Four-thread algorithm.

Our implementations of the four-thread of Fig. 3 use the following strategies
for thread launching and synchronization:

Parallelized Software Implementation of ECSM 457

Algorithm 4. Parallel Double-and-add Elliptic Curve Scalar Multiplication
Require: scalar k, P ∈ F2m .
Ensure: kP .

(Barrier)

Compute Doublings (producer-thread)

1: D[0] ← P

2: for glblMmry.i = 1 to initBtchSze do
3: //Doubling LD projective

D[glblMmry.i] ← D[glblMmry.i − 1] × 2
4: end for
5: signal to thread addition
6: for glblMmry.i = initBtchSze + 1

to M − 1 do
7: //Doubling LD projective

D[glblMmry.i] ← D[glblMmry.i − 1] × 2
8: end for

Compute Additions (addition-thread)

9: Q ← O
10: Wait for signal from thread Doubling

11: for i = 0 to M − 1 do
12: if i > glblMmry.i − 1 then
13: launch rescue computation (Q ← kP)
14: break
15: end if
16: if ki = 1 then
17: //Full LD projective addition

Q ← Q + D[i]
18: end if
19: end for

(Barrier)
20: return Q

– The threads are launched in this order: (1) theHalve-and-add producer-thread,
which launches (2) theDouble-and-add producer-thread which launches (3) the
Halve-and-add addition-thread which finally launches (4) the Double-and-add
addition-thread.

– The recoding of the scalar is done by (3) the Halve-and-add addition-thread
before launching (4) the Double-and-add addition-thread.

– Due to the delay of thread launching and key recoding computation, it is not
necessary to use mutexes with initial batch size of halvings or doublings of
points for each producer-thread.

– In order to eliminate computation errors due to synchronization failure, we
use the same method as the one described Subsect. 3.2. Thus, we have two
global memory counters, one for the doubling producer-thread and one for
the halving producer-thread. Each addition-thread compare its own counter
with the global counter of its corresponding, and launches a partial rescue
computation if a synchronization dependency violation is detected.

4 Timings

The platform used for the experimentations is an Optiplex 990 DELL�, with a
Linux 12.04 operating system. The processor is an Intel Core i7�-2600 Sandy
Bridge 3.4 GHz, which owns four physical cores. The code is written in C lan-
guage, compiled with gcc version 4.6.3. The Hyperthreading� BIOS and also
the Turbo-boost� options have been deactivated on our platform in order to
measure the performances as accurately as possible.

Since the operating system has the possibility to preempt the resources in
order to launch another task, we avoid such difficulties by choosing to run our

458 J.-M. Robert

Table 5. Timings (in clock cycles)

codes in a recovery mode shell. But we noticed that the codes generally run
well in normal operating system conditions too, although perturbations may be
observed in a few cases.

We give the parameters of the curves used in the experimentation in
Appendix:

– Appendix A.1 for the B233 and B409 binary field curves;
– Appendix A.2 for the Weierstrass prime field curve;
– Appendix A.3 for the Jacobi-Quartic prime field curve.

Table 5 shows the results of the proposed parallel strategies for scalar mul-
tiplication implementations. The above timings include the error detection and
correction due to erroneous thread synchronization.

The performances are measured using one hundred batches of 2000 com-
putations, each batch with a different random scalar. The minimum value of
each batch is considered and the average value gives the performance. With this
measurement process, we take into account the variations due to the different
Hamming weights of the scalars.

For each case we provide the detailed duration of each thread. We notice
that, generally, the overall computation finishes around several tens of thousands
cycles after the producer-thread. These timings might correspond to the delayed
start of the addition-thread (due to the initial batch size of points computed by
the producer thread) and the synchronization and thread management time. For
the four-thread versions, the given value � corresponds to the scalar bit size of

Parallelized Software Implementation of ECSM 459

Table 6. Performance comparison with the state of the art

Scalar multiplication Curve Security Processor Method Cycles

E(Fp) Hamburg [7] Montgomery 126 Intel core i7 SB Montgomery ladder 153000

Langley [13] Curve25519 128 Intel core i7 SB Montgomery ladder 229000a

Bernstein [2,3] Curve25519 128 Intel core i7 SB Montgomery ladder 194000

Longa et al. [14] jac256189 128 Intel core 2 Duo WNAF D&A 337000

Longa et al. [14] ted256189 128 Intel core 2 Duo WNAF D&A 281000

This work jac25519 128 Intel core i7 SB //NAF D&A 184048

E(F2m) Ngre et al. [17] B233 112 Intel core i7 SB WNAF D-H&A 98000

Taverne et al. [20] B233 112 Intel core i7 SB WNAF D-H&A 102000

This work B233 112 Intel core i7 SB //NAF H&A 2 th. 126639

Ngre et al. [17] B409 192 Intel core i7 SB WNAF D-H&A 347000

Taverne et al. [20] B409 192 Intel core i7 SB WNAF D-H&A 358000

This work B409 192 Intel core i7 SB //NAF D-H&A

4 th.

324395

a compiled and run on our platform.

the Halve-and-add computation (cf. Eq. (5)). We have evaluated the overhead
due to error management due to wrong error synchronization and it represents,
in average, roughly 2–6% of the overall computation time.

Concerning the results over F2233 , we remark that the four-thread version is
not competitive. This might be due to the synchronization and thread creation
and management cost. Furthermore, the speed-ups with the two thread versions
are not very important.

Over F2409 , the situation is different since the four-thread version is now
better: it requires 324395 clock cycles whereas the two-thread parallel W-NAF
Double/halve-and-add necessitates 347000 clock cycles (6.6 % improvement). The
speed-ups provided by the two-thread versions is also more important: between
15 % (Double-and-add case) and 19.5 % (Halve-and-add case).

Concerning the results over Fp, we first notice that a scalar multiplication
over a Jacobi Quartic is faster than over a Weierstrass curve. This corroborates
the complexities of the curve operations shown in Table 1. We also notice that the
tested two-thread parallelization provides performance improvements of around
15 %–17 % compared to the NAF sequential Double-and-add approach.

Comparison. We give in Table 6 some published results in the literature. Over,
Fp, the work of Longa is on Intel Core 2 with p = 2256 − 189 and Hamburg is
over a Sandy Bridge with p = 2252 − 2232 − 1 and has smaller key. The other
works deal with the same processor and on the same fields as the one considered
in this paper. We can see that, in the case of E(F2233) our two-thread approach
is not competitive with best know results. In the cases of E(F2409), the proposed
approach improves by 9.4% the previous best known timings reported in [20].
Finally, the timing provided in [7] is better than the timing obtain by our method,
but Hamburg uses a slightly smaller field and key size. On the other hand, we
improve the best known results for curve defined for a 128 bit security level.

460 J.-M. Robert

5 Conclusion

In this work, we have considered parallelized software implementations of scalar
multiplication kP over E(F2m) and E(Fp). We first have considered the par-
allelization suggested by Moreno et Hasan in [15] which splits the right-to-left
scalar multiplication into two threads: one producer-thread computing 2iP or
2−iP for i = 1, . . . , t and one addition-thread which accumulates these points
to compute kP . We have proposed a lightweight approach for thread synchro-
nization. In addition, in order to avoid remaining computation errors due to
dependency violation, we proposed a low cost checking method of the synchro-
nization between threads with a rescue computation. We have also evaluated
the best approach for the scalar recoding in this context. In the special case of
E(F2m) we have combined this approach to the parallelized Double/halve-and-
add approach of [20]. The experimental results show that these parallelization
techniques provide some speed-up on elliptic curve scalar multiplication compu-
tations compared to previously best known implementations. Indeed, over prime
field and binary fields, in most cases the parallelization provides an improvement
of roughly 15 % on the computation time.

Acknowledgement. We would like to thank Christophe Nègre for his valuable and
helpful comments.

This work has been suported by a PHD grant from PAVOIS project (ANR 12 BS02
002 01).

A Appendix: Curve Parameters

A.1 Elliptic Curves over Binary Field

The curve equation is:

y2 + xy = x3 + x2 + b where b ∈ F2m .

The parameters are for B233:

a = 1,
h = 2,

f(x) = x233 + x74 + 1,
b = 0x00000066 647ede6c 332c7f8c 0923bb58 213b333b 20e9ce42 81fe115f 7d8f90ad,
r = 0x00000100 00000000 00000000 00000000 0013e974 e72f8a69 22031d26 03cfe0d7.

where the order of the curve is n × h. For B409 we have:

a = 1,
h = 2,

f(x) = x409 + x87 + 1,
b = 0x0021a5c2 c8ee9feb 5c4b9a75 3b7b476b 7fd6422e f1f3dd67 4761fa99 d6ac27c8

a9a197b2 72822f6c d57a55aa 4f50ae31 7b13545f,

r = 0x01000000 00000000 00000000 00000000 00000000 00000000 000001e2 aad6a612

f33307be 5fa47c3c 9e052f83 8164cd37 d9a21173.

Parallelized Software Implementation of ECSM 461

A.2 Weierstrass Curve over Prime Field

The curve equation is:

y2 = x3 − 3x + b where b ∈ Fp.

The parameters are:

p = 2255 − 19
b = 0x1d09bac9ffe9e7f8284aed0442552779bcdef2e62b9cb1d568513fa798b94003

r = 0x800000000000000000000000000000012c18945a05ad7f2edf026258ea5288ef

r is the prime order of P .

A.3 Jacobi Quartic Curve over Prime Field

The curve equation is:

y2 = x4 − 3
2
θx2 + 1, θ ∈ Fp.

The parameters are:

θ = 0x1731beeea2156180446f9e5ab64af78d4ed3e0eb68d5070c10ef2468b910d5f7

number of points:
h × r = 0x800000000000000000000000000000002672bdbb41f31390c5527cab6e282744

= 4 · 0x20000000000000000000000000000000099caf6ed07cc4e431549f2adb8a09d1

The Jacobi Quartic curve is isomorphic to the following Weierstrass elliptic
curve:

y2 = x3 + ax + b

where: a = (−16 − 3θ2)/4 and b = −θ3 − aθ. Hence, in our case:

a = 0xc500be2450246d16c114830a5d1aef9c2b80c567b4fd87562c69db659713ad2,

b = 0xa38f53e5d27462dcdada9a78b9eac482ef06e855af92ca704060c551a9a5854.

References

1. Explicit formula database (2014). http://www.hyperelliptic.org/EFD/index.html
2. Bernstein, D.J.: Curve25519: new Diffie-Hellman speed records. In: Yung, M.,

Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 207–
228. Springer, Heidelberg (2006)

3. Bernstein, D.J., Lange, T. (eds): eBACS: ECRYPT Benchmarking of Cryptograhic
Systems (2012). http://bench.cr.yp.to/. Accessed 25 May 2014

4. Billet, O., Joye, M.: The Jacobi model of an elliptic curve and side-channel analysis.
In: Fossorier, Marc P.C., Høholdt, Tom, Poli, Alain (eds.) AAECC 2003. LNCS,
vol. 2643, pp. 34–42. Springer, Heidelberg (2003)

http://www.hyperelliptic.org/EFD/index.html
http://bench.cr.yp.to/

462 J.-M. Robert

5. Fong, K., Hankerson, D., López, J., Menezes, A.: Field inversion and point halving
revisited. IEEE Trans. Comput. 53(8), 1047–1059 (2004)

6. Granlund, T., The GMP Development Team: GNU MP: The GNU Multiple Pre-
cision Arithmetic Library, 5.0.5 edition (2012). http://gmplib.org/

7. Hamburg, M.: Fast and compact elliptic-curve cryptography. Technical report,
Cryptology ePrint Archive, Report 2012/309 (2012). http://eprint.iacr.org/

8. Hankerson, D., Hernandez, J.L., Menezes, A.: Software implementation of elliptic
curve cryptography over binary fields. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000.
LNCS, vol. 1965, pp. 1–24. Springer, Heidelberg (2000)

9. Hankerson, D., Menezes, A., Vanstone, S.: Guide to Elliptic Curve Cryptography.
Springer, New York (2004)

10. Itoh, T., Tsujii, S.: A fast algorithm for computing multiplicative inverses in
GF(2m) using normal bases. Inf. Comput. 78(3), 171–177 (1988)

11. Kim, K.H., Kim, S.I.: A new method for speeding up arithmetic on elliptic curves
over binary fields. D.P.R. of Korea, Technical report, National Academy of Science,
Pyongyang(2007)

12. Knudsen, E.W.: Elliptic scalar multiplication using point halving. In: Lam, K.-Y.,
Okamoto, E., Xing, C. (eds.) ASIACRYPT 1999. LNCS, vol. 1716, pp. 135–149.
Springer, Heidelberg (1999)

13. Langley, A.: C25519 code (2008). http://code.google.com/p/curve25519-donna/
14. Longa, P., Gebotys, C.: Efficient techniques for high-speed elliptic curve cryptog-

raphy. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp.
80–94. Springer, Heidelberg (2010)

15. Moreno, C., Hasan, M.A.: SPA-resistant binary exponentiation with optimal exe-
cution time. J. Cryptographic Eng. 1(2), 87–99 (2011)

16. Mueller, F.: A library implementation of POSIX threads under UNIX. In: USENIX
Winter, pp. 29–42 (1993)

17. Nègre, C., Robert, J.-M.: Impact of optimized field operations AB, AC and AB +
CD in scalar multiplication over binary elliptic curve. Technical report hal-
00724785, HAL, July 2014

18. Gallagher, P., Furlani, C.: Digital Signature Standard (DSS). In: FIPS Publica-
tions, vol. FIPS 186-3, p. 93. NIST (2009)

19. Tannenbaum, A.S.: Modern Operating Systems (2009). http://www.freewebs.com/
ictft/sisop/Tanenbaum Chapter2.pdf

20. Taverne, J., Faz-Hernández, A., Aranha, D.F., Rodŕıguez-Henŕıquez, F.,
Hankerson, D., López, J.: Speeding scalar multiplication over binary elliptic curves
using the new carry-less multiplication instruction. J. Cryptographic Eng. 1(3),
187–199 (2011)

http://gmplib.org/
http://eprint.iacr.org/
http://code.google.com/p/curve25519-donna/
http://www.freewebs.com/ictft/sisop/Tanenbaum_Chapter2.pdf
http://www.freewebs.com/ictft/sisop/Tanenbaum_Chapter2.pdf

A Note on Diem’s Proof

Song Tian1,2,3(B), Kunpeng Wang1, Bao Li1, and Wei Yu1(B)

1 State Key Laboratory of Information Security,
Institute of Information Engineering,

Chinese Academy of Sciences, Beijing, China
{szts1987,yuwei 1 yw}@163.com

2 Data Assurance and Communication Security Research Center,
Chinese Academy of Sciences, Beijing, China

3 University of Chinese Academy of Sciences, Beijing, China

Abstract. Semaev’s summation polynomials are suggested to be used
to construct Index Calculus for elliptic curves over extension fields. The
complexity of the proposed algorithm was first studied by Diem with the
help of Weil restriction and intersection theory. The key ingredient is to
analyse the probability that a uniformly distributed point has an isolated
decomposition over the factor base. Following his tactics, we present his
result in a simple manner by recourse to the theory of function fields and
generic resultant.

Keywords: Summation polynomial · Elliptic curve · Discrete logarithm
problem · Index Calculus

1 Introduction

Let G be a finite group and g an element of G. Given h ∈ 〈g〉, the smallest
nonnegative integer r with h = gr is called the discrete logarithm of h with
respect to the base g.

It is well known that Index Calculus yields algorithms to compute discrete
logarithms in the multiplicative groups of finite prime fields and the Jacobians
of hyperelliptic curves over finite fields which are faster than generic algorithms.
This method can be divided into two stages: construct a linear system and solve
this system. To obtain a linear system, we need first define a factor base which
is a set of some special elements of the group, then check whether a randomly
chosen element can be written as a sum of elements of the factor base, and if such
a representation exists, it is added to the linear system. This is repeated until
enough equations are collected. In 2004, Semaev [5] studied the possibility of a
similar method for elliptic curves over finite prime fields. In his work, Semaev
did not give an efficient algorithm because the probability of decomposing a
randomly chosen element into a combination of elements of the factor base is

This work is supported in part by National Research Foundation of China under
Grant No. 61272040, 61379137, and in part by National Basic Research Program of
China (973) under Grant No. 2013CB338001.

c© Springer International Publishing Switzerland 2015
D. Lin et al. (Eds.): Inscrypt 2014, LNCS 8957, pp. 463–471, 2015.
DOI: 10.1007/978-3-319-16745-9 25

464 S. Tian et al.

not good. However, summation polynomials he introduced in [5] become a useful
tool for solving the discrete logarithm problem in elliptic curves over extension
fields. With summation polynomials, Gaudry [3] and Diem [2] independently
proposed more efficient algorithms. Gaudry’s results depend crucially on some
un-proven assumptions about the probability of success for a given point to
be decomposed as a sum of elements in factor base. In [2], Diem proved these
assumptions and gave an algorithm for solving the discrete logarithm problem
in elliptic curves with proven complexity. The proofs of his results, which are
hard to read, are mainly of theoretical interest.

The principal aim of this note is to present Diem’s proof in the technical
paper [2] in a simpler way. For simplicity, elliptic curves are defined throughout
over finite fields of odd characteristic. The factor base defined in this note is
essentially the same as that in [2], which is closely connected to some curve on
the Weil restriction of the elliptic curve. The lower bound on the cardinality of
the factor base is obtained by function field approach instead of properties of
Weil restriction functor. The core of [2] is to give a lower bound on the probability
that a uniformly distributed point has an isolated decomposition. This can be
done by exploiting the trick of generic resultant twice. It is the second use of
generic resultant that replaces all computations in Chow ring in [2].

This note is organized as follows. In Sect. 2, we give the definition of the
factor base of Diem’s attack and discuss its cardinality. In Sect. 3, we study the
probability of obtaining a linear equation from summation polynomial.

2 Factor Base

In this section, we give another form of the factor base in [2] and make an
estimate of its size via some facts from algebraic function field theory. For reader’s
convenience, these facts are listed in appendix.

Let k = Fq be a finite field of odd characteristic, K/k a field extension of odd
degree n and σ the Frobenius automorphism of K/k. Let E/K be an elliptic
curve given by Weierstrass equation

y2 = f(x), f(x) ∈ K[x].

Assume that E/K satisfies the following condition(the Condition 2.7 in [2]):
there exists a point T ∈ P

1(k̄) such that T, σ(T), · · · , σn−1(T) are all distinct and
T is the only branch point of π = x|E : E → P

1 in set {T, σ(T), · · · , σn−1(T)}.
By following lemma, we can choose λ ∈ K uniformly at random until the elliptic
curve y2 = f(x + λ) satisfies this condition.

Lemma 1 ([2, Lemma 2.10]). Let x1, x2, x3 ∈ k̄. If λ follows the uniform dis-
tribution on K, then the probability that λ satisfies

(x1 − λ)qi �∈ {x1 − λ, x2 − λ, x3 − λ}(∀i : 1 ≤ i ≤ n − 1)

is greater than 1
3 .

A Note on Diem’s Proof 465

Proof. For t = 1, 2, 3, we see that (x1 − λ)qi

= xt − λ if and only if λqi − λ =
xqi

1 −xt. Since the map ρi : K → K,λ 	→ λqi −λ is k-linear, we have #ρ−1
i (xqi

1 −
xt) = #kerρi ≤ qgcd(i,n). Hence the number of the λ’s that do not satisfy the
condition is at most 3

∑n−1
i=1 qgcd(i,n)(≤ 3(n − 1)q

n
2). For (q, n) = (3, 3), (3, 5),

the probability in question is ≥ 1 − 3
∑n−1

i=1 qgcd(i,n)

qn > 1
3 . For (q, n) �= (3, 3), (3, 5),

the probability is

≥ 1 − 3(n − 1)
q

n
2

≥ min{1 − 3(3 − 1)
53/2

, 1 − 3(7 − 1)
37/2

} >
1
3
.

��
Under above condition, the factor base of Diem’s attack becomes

B = {(x, y) ∈ E(K) : x ∈ k} ∪ {∞}.

We need fix some notations before giving a lower bound of the size of B. Let K̄
be an algebraic closure of K, K(E) the function field of E. Fix a separable closure
K(x)sep of K(x) which contains K(E) and K̄(x). Let σ(x) = x. Then the Galois
group of K(x)/k(x) is generated by σ, which can extend to an automorphism σ̃ of
K(x)sep. Let F ′ be the composition of fields K(E), σ̃(K(E)), · · · , σ̃n−1(K(E)).
Then [F ′ : K(x)] = [K̄F ′ : K̄(x)] = 2n, and the genus g(F ′) of F ′ is at most
2n(n − 1) + 1 by Abhyankar’s Lemma and Hurwitz genus formula.

Choose σ̃ of order n(see [1] for its existence) and denote by F the fixed
field of σ̃ in F ′. Let y0 be a root of y2 − f(x) ∈ K(x)[y] in K(E). Then for
i = 1, 2, · · · , n − 1, yi = σ̃(yi−1) is a root of y2 − σi(f) ∈ K(x)[y] in σ̃i(K(E)).
Since the order of σ̃ is n, σ̃(yn−1) = y0. For j = (j0, j1, · · · , jn−1) ∈ {0, 1}n, let

zj = zj(y0, y1, · · · , yn−1) = (−1)j0y0 + (−1)j1y1 + · · · + (−1)jn−1yn−1.

Then the minimal polynomial of y0 + y1 + · · · + yn−1 over K(x) is g(t) =∏
j∈{0,1}n(t − zj). Since [F : k(x)] = 2n and y0 + y1 + · · · + yn−1 ∈ F , it

follows that
F = k(x, y0 + y1 + · · · + yn−1).

If L/K ′ is a function field with constant field K ′, by Place(L/K ′, 1) we mean
the set of places of degree 1 of L/K ′. Since F ′/F is a constant field extension,
any D ∈ Place(F/k, 1) has only one extension D′ in F ′/K, which is of degree
1 and denoted by D′|D. It is obvious that D′ ∩ K(E) ∈ Place(K(E)/K, 1),
D′∩k(x) = D∩k(x) ∈ Place(k(x)/k, 1). Since the elements of Place(K(E)/K, 1)
correspond to the K-rational points of E, we have a map

ϕ : Place(F/k, 1) → B,D 	→ D′ ∩ K(E).

Proposition 2. ϕ is injective.

Proof. Let τ ∈Gal(F ′/K(x)) such that τ(yi) = −yi for i = 0, 1, · · · , n − 1. Then
τ(F) = F .

466 S. Tian et al.

Let D ∈ Place(F/k, 1) and D′ = ConF ′/F (D). It is sufficient to show

1. If τ(D) = D, then {Di ∈ Place(F/k, 1) : Di|D ∩ k(x)} = {D};
2. If τ(D) �= D, then {Di ∈ Place(F/k, 1) : Di|D ∩ k(x)} = {D, τ(D)} and

ϕ(D) �= ϕ(τ(D)).

If τ(D) = D, then τ(D′) = D′. Since #{g ∈ Gal(F ′/K(x)) : g(D′) = D′} =
e(D′|D′ ∩ K(x)) ≤ 2, we have {g ∈ Gal(F ′/K(x)) : g(D′) = D′} = {Id, τ}. If
there was a D0 ∈ {Di ∈ Place(F/k, 1) : Di|D ∩ k(x)} other than D, then there
would be a g ∈ Gal(F ′/K(x)) such that g(D′) = D′

0 = ConF ′/F (D0). For such
a g, we would have g−1σ̃gσ̃−1(D′) = g−1σ̃g(D′) = g−1σ̃(D′

0) = g−1(D′
0) = D′

and g−1σ̃gσ̃−1|K(x) = Id, so g−1σ̃gσ̃−1 = Id or τ . Now let g(yi) = εiyi, εi ∈
{1,−1}(0 ≤ i ≤ n − 1). If g−1σ̃gσ̃−1 = Id, then it would follow from σ̃g(yi) =
gσ̃(yi) that g is Id or τ , and we have a contradiction. If g−1σ̃gσ̃−1 = τ , then
we would have from σ̃g(yi) = gτ σ̃(yi) that εi = −εi+1 mod n. Again we have a
contradiction.

Now assume that τ(D) �= D. Since τ ∈ Aut(F/k(x)), we have τ(D)|D ∩ k(x)
and deg(τ(D)) = f(τ(D)|D ∩ k(x)) = f(D|D ∩ k(x)) = 1. Hence, ConF ′/F

(τ(D)) = τ(D′) �= D′.
We claim that D′ ∩ σ̃i(K(E)) �= τ(D′) ∩ σ̃i(K(E)) for i = 0, 1, · · · , n − 1.

If it did not hold for some i, then there would be a g ∈ Gal(F ′/σ̃i(K(E)))
such that g(τ(D′)) = D′. A similar argument as above shows that gσ̃g−1σ̃−1

is different from Id and gτ . Therefore we would have {Id, gτ, gσ̃g−1σ̃−1} ⊂
{h ∈ Gal(F ′/K(x)) : h(D′) = D′}, which is contrary to the fact that #{h ∈
Gal(F ′/K(x)) : h(D′) = D′} = e(D′|D′ ∩ K(x)) ≤ 2.

The above claim says that D′ ∩ K(x) has two extensions in σ̃i(K(E)) for
each i, which implies that e(D′|D′ ∩ k(x)) = 1. So e(D|D′ ∩ k(x)) = 1. By the
Theorem 3.8.3 of [7], the fixed field of {h ∈ Gal(F ′/k(x)) : h(D′) = D′} in F ′ is
F , hence we have {h ∈ Gal(F ′/k(x)) : h(D′) = D′} =< σ̃ >.

If there was a D0 ∈ P (F/k, 1) other than D, τ(D) such that D0|D ∩ k(x),
then we would have a g ∈ Gal(F ′/K(x)) such that g(D′) = ConF ′/F (D0). Hence,
gσ̃g−1(D′) = D′. Note that gσ̃g−1|K(x) = σ, so we have gσ̃g−1 = σ̃, and this
implies that g = Id or τ , which is impossible.

Proposition 3. Let log2 q ≥ 5n. Then #B ≥ q+1
2 .

Proof. It follows from the above proposition that

#B ≥ #Place(F/k, 1)

≥ q + 1 − 2g(F) · q
1
2

≥ q + 1 − n · 2n+2 · q
1
2 .

Since n · 2n+2 · q 1
2 ≤ 2

n
2 · 2n+2 · q 1

2 = 2
3n+4

2 q
1
2 , we have #B ≥ q+1

2 provided that
log2 q ≥ 5n.

A Note on Diem’s Proof 467

3 Isolated Decomposition

The method to generate linear equations is to solve systems of multivariate poly-
nomial equations over Fq which are constructed from summation polynomials
by restriction of scalars. If the algebraic set defined by the associated system is
not finite, then the algorithm used to find a point of the algebraic set may fail.
Hence the next step is to find out what can guarantee that the algebraic set is a
finite set, or in other words, of dimension 0. To this end, we need the Bezout’s
theorem in multiprojective space (P1)m and the theory of generic resultant for
multihomogeneous polynomials.

3.1 The Bezout’s Theorem and the Generic Resultant

Let us recall that the closed algebraic subvariety of (P1)m is given by

Z({Hj(X1 : Y1; · · · ;Xm : Ym) : 1 ≤ j ≤ t}),

where the polynomial Hj is homogeneous in each of the m sets {X1, Y1}, · · · ,
{Xm, Ym} of variables. Then the Bezout’s theorem in (P1)m (cf. [6, Chap.IV])
can be stated as follows.

Proposition 4. Let Z(H1, · · · ,Hm) be a closed algebraic subvariety of (P1)m,
and degHj = (dj,1, · · · , dj,m) for j = 1, 2, · · · ,m. Then the intersection number
of effective divisors H1, · · · ,Hm is

H1 · · · Hm =
∑

τ∈Sm

m∏

j=1

dj,τ(j),

where Sm is the symmetric group of degree m.

Let A = (a1, · · · , ar) ∈ N
r
+. We set

MA = {Xu1
1 Y v1

1 Xu2
2 Y v2

2 · · · Xur
r Y vr

r : ui, vi ∈ N, ui + vi = ai,∀i : 1 ≤ i ≤ r}.

For i = 1, 2, · · · , r + 1, fix some Ai = (ai,1, · · · , ai,r) ∈ N
r
+ and let Ci,w be an

indeterminate for each w ∈ MAi
. Then we have the ith generic multihomogeneous

polynomial
Gi =

∑

w∈MAi

Ci,ww.

It is of multidegree Ai over the polynomial ring k[{Ci,w : w ∈ MAi
, i = 1, · · · ,

r + 1}]. The properties of generic resultant we need are given in the following
proposition(cf. [2, Proposition 4.8]).

468 S. Tian et al.

Proposition 5

1. There is an irreducible polynomial Res ∈ k[{Ci,w : w ∈ MAi , i = 1, · · · , r + 1}]
with the following property: For all field extensions k′/k and homogeneous
polynomials H1, · · · ,Hr+1 ∈ k′[X1, Y1, · · · ,Xr, Yr] of degrees A1, · · · , Ar+1,
the zero set of {H1, · · · ,Hr+1} is not empty if and only if Res(H1, · · · ,Hr+1)=
0, where Res(H1, · · · ,Hr+1) is obtained by substituting the coefficients of
H1, · · · ,Hr+1 for the generic coefficients.

2. For each i = 1, · · · , r +1, Res is homogeneous in the coefficients of Gi and of
degree (Perm(B1), · · · ,Perm(Br+1)). Here Perm(Bi) is the permanent of the
matrix Bi = (al,j)1≤l,j≤r,l �=i.

3.2 Probability of Isolated Decomposition

We adopt Diem’s definition of summation polynomial. Dehomogenization of the
polynomial with respect to Y1, · · · , Ym is Semaev’s summation polynomial. As
indicated in [2], these polynomials can be calculated by interpolation.

Definition 6. For each integer m ≥ 2, the mth summation polynomial of E/K
is an irreducible multihomogeneous polynomial Sm(X1 : Y1;X2 : Y2; · · · ;Xm :
Ym) ∈ K[X1, Y1,X2, Y2, · · · ,Xm, Ym], which has the property that for any P1,· · ·,
Pm ∈ E(K̄), Sm(π(P1), π(P2), · · · , π(Pm)) = 0 if and only if there exist ε1,
· · · , εm ∈ {±1} such that ε1P1 + · · · + εmPm = ∞. The multidegree of Sm is
degSm = (2m−2, 2m−2, · · · , 2m−2).

Let P ∈ E(K). Let {b1, · · · , bn} be a k-base of K. Then there are S
(1)
n+1, · · · ,

S
(n)
n+1 ∈ k[X1, Y1, · · · ,Xn, Yn] such that

Sn+1(X1 : Y1; · · · ;Xn : Yn;π(P)) =
n∑

i=1

S
(i)
n+1bi.

If the algebraic set Z(S(1)
n+1, · · · , S

(n)
n+1) ⊆ (P1)n is zero-dimensional, then

Rojas’s algorithm([4]) is suggested by Diem to find all k-rational points.

Definition 7. An n-tuple (P1, · · · , Pn) ∈ E(K)n is called a decomposition of P
if P1+· · ·+Pn = P and π(Pi) ∈ P

1(k) for i = 1, · · · , n. A decomposition is called
isolated if (π(P1), · · · , π(Pn)) is an isolated point of the associated algebraic set
Z(S(1)

n+1, · · · , S
(n)
n+1) in (P1)n.

Let Q1, · · · , Qn ∈ P
1(k). If Sn+1(Q1, · · · , Qn, π(P)) = 0, then for i = 0, 1,

· · · , n − 1, we have σi(Sn+1)(Q1, · · · , Qn, σi(π(P))) = 0. Therefore the point
(Q1, · · · , Qn, π(P), σ(π(P)), · · · , σn−1(π(P))) is on the algebraic set

V = Z(H1, · · · ,Hn) ⊂ (P1)n × (P1)n,

where

Hj = σj−1(Sn+1(X1,1 : Y1,1; · · · ;X1,n : Y1,n;X2,j : Y2,j))

A Note on Diem’s Proof 469

is obtained from Sn+1(X1,1 : Y1,1; · · · ;X1,n : Y1,n;X2,j : Y2,j) by applying the
σj−1 to the coefficients for 1 ≤ j ≤ n.

Let Pr1, Pr2, Pr1,i be the maps defined by

Pr1 : V −→ (P1)n

(X1,1 : Y1,1; · · · ;X2,n : Y2,n) 	−→ (X1,1 : Y1,1; · · · ;X1,n : Y1,n),
P r2 : V −→ (P1)n

(X1,1 : Y1,1; · · · ;X2,n : Y2,n) 	−→ (X2,1 : Y2,1; · · · ;X2,n : Y2,n),
P r1,i : (P1)n−→ P

1

(X1,1 : Y1,1; · · · ;X1,n : Y1,n) 	−→ (X1,i : Y1,i).

Denote by VQ the preimage of point Q = (Q1, · · · , Qn) under Pr2. Then for the
point Q = (π(P), σ(π(P)), · · · , σn−1(π(P))), we have

VQ
∼= Z({Hj(X1,1 : Y1,1; · · · ;X1,n : Y1,n;σj−1(π(P))) : j = 1, · · · , n})

= Z({S
(j)
n+1(X1,1 : Y1,1; · · · ;X1,n : Y1,n) : j = 1, · · · , n}),

where the isomorphism is given by the restriction of Pr1. From Proposition 4,
we see that #VQ ≤ n! · 2n(n−1) if dimVQ = 0.

The next lemma, due to Diem, deals with the problem for which Q the
dimension of VQ is zero. We include his proof here.

Lemma 8. There exists a multihomogeneous polynomial C ∈ K[X2,1, Y2,1, · · · ,
X2,n, Y2,n] of degree (n! · 2n(n−1), · · · , n! · 2n(n−1)) such that VQ is not zero-
dimensional only if Q is a point of Z(C) in (P1)n.

Proof. For each i = 1, · · · , n, regarding H1, · · · ,Hn as polynomials in K[X1,i,
Y1,i,X2,1, Y2,1, · · · ,X2,n, Y2,n][X1,1, Y1,1, · · · ,X1,i−1, Y1,i−1,X1,i+1, Y1,i+1, · · · ,
X1,n, Y1,n], we have a resultant Ri ∈ K[X1,i, Y1,i,X2,1, Y2,1, · · ·,X2,n, Y2,n]. Since
dimV = dim(P1)n = n, Ri is not trivial and of degree (n! · 2n(n−1), (n − 1)! ·
2n(n−1), · · · , (n−1)! ·2n(n−1)) by Proposition 5. Note that VQ is non-zero dimen-
sional if and only if Pr1,i(VQ) = P

1 for some i, which means that Ri(X1,i :
Y1,i;Q) ≡ 0. Fix some non-zero coefficient Ci ∈ K[X2,1, Y2,1, · · · ,X2,n, Y2,n]
of Ri ∈ K[X2,1, Y2,1, · · · ,X2,n, Y2,n][X1,i, Y1,i] for each i = 1, · · · , n, then the
product of polynomials C1, · · · , Cn gives a polynomial C in the statement.

We can use the trick of resultant a second time. Then the computations in
Chow ring in [2] can be avoided.

Lemma 9. Let G ∈ K[X1,1, Y1,1, · · · ,X1,n, Y1,n] be the resultant of H1, · · · ,
Hn, C with respect to the variables X2,1, Y2,1, · · · ,X2,n, Y2,n. Then G has degree
(n · n! · 22n(n−1), · · · , n · n! · 22n(n−1)).

Let H = Gσ(G) · · · σn−1(G) ∈ k[X1,1, Y1,1, · · · ,X1,n, Y1,n]. Then the number of
k-rational points of H is at most n3 · n! · 22n(n−1) · (q + 1)n−1, which can be
proved by induction on n and the fact that a univariate polynomial of degree d
over Fq has at most d roots in Fq(cf. [2, Lemma 4.27]).

470 S. Tian et al.

For point (P1, · · · , Pn) ∈ Bn, if H(π(P1), · · · , π(Pn)) �= 0, then it follows

from Proposition 5 that point (π(P1), · · · , π(Pn), σ0(π(−
n∑

i=1

Pi)), · · · , σn−1

(π(−
n∑

i=1

Pi))) is not a zero of C, which implies that VQ is zero-dimensional

for point Q = (σ0(π(−
n∑

i=1

Pi)), · · · , σn−1(π(−
n∑

i=1

Pi))).

From above discussion, all points in the set {P ∈ E(K) : (π(P), σ(π(P)), · · · ,
σn−1(π(P))) ∈ Pr2(α(Bn) − α(Bn) ∩ H(k))} have isolated decompositions,

where α(Bn) is the set formed by points (π(P1), · · · , π(Pn), σ0(π(−
n∑

i=1

Pi)), · · · ,

σn−1(π(−
n∑

i=1

Pi))) with (P1, · · · , Pn) ∈ Bn, and H is regarded as a polynomial

in k[X1,1, Y1,1, · · · ,X1,n, Y1,n,X2,1, Y2,1, · · · ,X2,n, Y2,n]. To get a lower bound on
the number of these points, we have

#(α(Bn) − α(Bn) ∩ H(k)) ≥ 1
2n

#Bn − #α(Bn) ∩ H(k)

≥ 1
2n

· (
q + 1

2
)n − n3 · n! · 22n(n−1) · (q + 1)n−1

(if log2 q ≥ 5n),

hence

#Pr2(α(Bn) − α(Bn) ∩ H(k)) ≥ 1
n! · 2n(n−1)

#(α(Bn) − α(Bn) ∩ H(k))

≥ (q + 1)n−1

n! · 2n(n+1)
· (q + 1 − n! · n3 · 22n2

).

Let ε > 0. Since n! · n3 · 22n2
< 2(2+ε)n2−1 holds for sufficiently large n,

it follows that (q+1)n−1

n!·2n(n+1) · (q + 1 − n! · n3 · 22n2
) ≥ qn

n!·2n2+n+1 ≥ 2qn− 1
2 , provided

that log2 q ≥ (2 + ε)n2 and n is large enough. This leads to the following result.

Proposition 10. Let ε > 0. For n large enough and log2 q ≥ (2 + ε)n2, if P
follows the uniform distribution on E(K), then the probability that P has an
isolated decomposition is not less than q− 1

2 .

Appendix: Galois Extensions of Function Fields

Here, we give the notations and facts from algebraic function theory that are
used in Sect. 2.

Definition 11. Let L2/K2 be an algebraic extension of function field L1/K1,
and let D1, D2 are places of L1/K1, L2/K2 respectively. If D1 ⊆ D2, then D2

is called an extension of D1 and denoted by D2|D1.

If D2|D1, then D1 = D2 ∩ F1. Any place D1 of L1/K1 has only finitely many
extensions in L2. If L2/L1 is a Galois extension and D2,1,D2,2, · · · ,D2,r are
all extensions of D1 in L2, then the Galois group Gal(L2/L1) acts transitively
on the set {D2,1,D2,2, · · · ,D2,r} and the ramification indices e(D2,i|D1) of D2,i

over D1 are equal.

A Note on Diem’s Proof 471

Definition 12. Let L2/K2 be an algebraic extension of function field L1/K1,
D1 a place of L1/K1. We define

ConL2/L1(D1) =
∑

D2|D1

e(D2|D1)D2.

If L2/L1 is a constant field extension, then L2/L1 is unramified and the degree
of divisor is invariant under ConL2/L1 .

Lemma 13 (Abhyankar’s Lemma). Let L′/L be a finite separable extension
of function fields. Let L′ = L1L2 be the composition of intermediate fields L ⊂
L1, L2 ⊂ L′, and let D be a place of L with extensions D1, D2, D′ in L1, L2,
L′. Assume that there exists i such that gcd(e(Di|D),Char L) = 1. Then

e(D′|D) = lcm{e(D1|D), e(D2|D)}.

Lemma 14 ([7, Theorem3.8.3]). Let L′/L be a Galois extension of function
fields, D a place of L with an extension D′ in L′. Let M be an intermediate field
of L′/L, DM = D′ ∩ M . Denote by Z(D′|D) the fixed field of GZ(D′|D) = {g ∈
Gal(L′/L) : g(D′) = D′} in L′. Then

(1) The order of GZ(D′|D) is e(D′|D)f(D′|D).
(2) M ⊆ Z(D′|D) if and only if e(DM |D) = f(DM |D) = 1.
(3) M ⊇ Z(D′|D) if and only if D′ is the only extension of DM in L′.

References

1. Diem, C.: The GHS attack in odd characteristic. J. Ramanujan Math. Soc. 18(1),
1–32 (2003)

2. Diem, C.: On the discrete logarithm problem in elliptic curves. Compos. Math.
147(01), 75–104 (2011)

3. Gaudry, P.: Index calculus for abelian varieties of small dimension and the elliptic
curve discrete logarithm problem. J. Symb. Comput. 44(12), 1690–1702 (2009)

4. Rojas, J.M.: Solving degenerate sparse polynomial systems faster. J. Symb. Comput.
28(1), 155–186 (1999)

5. Semaev, I.: Summation polynomials and the discrete logarithm problem on elliptic
curves, February 2004). http://eprint.iacr.org/2004/031

6. Shafarevich, I.R.: Basic algebraic geometry. 1: Varieties in projective space (Transl.
from the Russian by M. Reid.), 2nd, rev. and exp. edn. (1994)

7. Stichtenoth, H.: Algebraic Function Fields and Codes, vol. 254. Springer, New York
(2009)

http://eprint.iacr.org/2004/031

Cryptographic Primitive
and Application

Stand-by Attacks on E-ID Password
Authentication

Lucjan Hanzlik(B), Przemys�law Kubiak, and Miros�law Kuty�lowski

Faculty of Fundamental Problems of Technology,
Wroc�law University of Technology, Wroc�law, Poland

{lucjan.hanzlik,przemyslaw.kubiak,miroslaw.kutylowski}@pwr.edu.pl

Abstract. We show that despite the cryptographic strength of the pass-
word authentication, we cannot exclude an attack by an adversary that
penetrates the reader device at some moment, but apart from this is pas-
sive and manipulates neither the reader nor the microcontroller of the
identity document. So even the most careful examination and certification
of the smart cards and the readers cannot prevent attacks of this kind. We
present concrete attack scenarios for PACE-GM, PACE-IM and SPEKE
protocols.

We show that the weaknesses can be easily and effectively eluded
via changing a few implementation details on the side of the reader. Our
second contribution is that immunity against the attacks can be tested
by the operator of the reader, thus replacing costly and unreliable certi-
fication process of black box devices.

Our more general contribution is to draw attention on hidden
penetration attacks and to show that effective countermeasures are
possible.

Keywords: Massive surveillance · Temporary penetration attack · Pri-
vacy · Tracing · Wireless communication · Personal identity card · Pass-
word authentication · PACE · SPEKE · Verifiability · Certification

1 Introduction

The traditional approach to create secure systems is to design a strong cryp-
tographic scheme, preferably with a formal security proof, and to implement
it in accordance to a widely accepted methodology. While the cryptographic
schemes are today relatively mature, the weak point of the final product is usu-
ally the implementation process. The end product is often regarded as secure, if
the scheme is implemented exactly as described at the abstract level. However,
the idealized high level abstraction may disregard many crucial issues. Moreover,
we make strong assumptions concerning security of the system components and
trustworthiness of some actors of the process. Widespread usage of black box

Partially supported by National Science Centre, HARMONIA 4 Programme, DEC-
2013/08/M/ST6/00928.

c© Springer International Publishing Switzerland 2015
D. Lin et al. (Eds.): Inscrypt 2014, LNCS 8957, pp. 475–495, 2015.
DOI: 10.1007/978-3-319-16745-9 26

476 L. Hanzlik et al.

solutions makes it even worse – in most cases we blindly believe declarations of
the providers or, at best, certificates issued by the third parties.

Recently, it became evident that this approach is quite näıve. The cases such
as alleged eavesdropping on Chancellor Merkel’s cell phone by US agencies as
well as revelations of Edward Snowden indicate that the scope of gathering data
in a hidden way may be much larger than openly admitted. At the moment the
arguments based on reputation of the system providers (who “would not dare
to play in this way fearing to loose their reputation”) are not that convincing as
before.

Almost all attacks on cryptographic security systems are not breaking crypto-
graphic mechanisms. Instead, the attackers take advantage of ill-designed systems
that make room for penetration despite the strength of cryptographic protocols.
Unlike design of cryptographic algorithms, integration of a cryptographic system
is usually an ad hoc process, where an independent review is quite limited and
serves more marketing purposes than assuring the system’s properties. In fact, it
seems that there is no implementation methodology that would provide guaran-
tees comparable with the security level of cryptographic algorithms. Moreover,
cryptographic systems may be designed to guard against most attackers, but at
the same time may deliberately enable penetration by certain parties. There are
many possibilities to make it work [15], but the problems are downscaled by deci-
sion makers. Fortunately, it seems that the cryptographic community starts to be
concerned about these critical security issues [4].

In the current situation it is a great challenge to design solutions that are
arguably secure not only in an idealized world, but also in the practical sense.
Among others, they should guard against manufacturers, system providers and
other presumably trustworthy parties. Unfortunately, there are quite a few designs
of this kind. Many lessons can be learnt from the state-of the-art of e-voting
schemes. It took many years of painful mistakes until the concept of verifiable
E2E (end-to-end) systems became widely accepted. Currently, no party partici-
pating in the voting process and no hardware or software component should be
blindly trusted. Moreover, verification of the claimed security properties are not
delegated to third parties.

This paper is devoted to these problems in the area of personal identity
documents and illegal tracing personal traffic. We show that a lot of care is
necessary during deployment of these systems and that security of the system
is not guaranteed by the current standards. We also define threat model that
should be used for such systems, especially if they fall into category of Internet
of Things.

1.1 Personal Identity Documents and Password Authentication

Personal identity documents are frequently equipped with a cryptographic micro-
controller. For the reasons such as chip durability and user’s convenience a wire-
less radio channel is chosen for the communication with the microcontroller. For
example, wireless communication is used for biometric passports standardized
by the ICAO organization. The price paid is lack of a direct control over the

Stand-by Attacks on E-ID Password Authentication 477

microcontroller: it can be activated by any reader without the consent of the
document’s owner, who might be even unaware about the interaction. In coun-
tries like UK and USA this leads to social resistance against introduction of
personal identity documents, despite of rapidly growing scale of identity theft
criminality.

Password Authentication. Password authentication should prevent activa-
tion of an electronic identity document without the consent of its owner. More
specifically, it should guarantee achieving the following goals:

– A session can be established only when the reader presents a proof to the
microcontroller showing that the reader knows the owner’s password.

– It must be infeasible to derive the password from a transcript of communica-
tion between the reader and the microcontroller.

– A reader that is unaware about the password should not be able to learn it
more efficiently than by trying the passwords one by one in separate commu-
nication sessions with the microcontroller. (Of course, due to limited entropy
of the passwords that can be memorized by a user, a malicious reader having
an electronic identity document in its range for a long time can perform a
brute force attack.)

Deployment of Password Authentication. There is a growing interest on
password authentication for electronic identity documents as a replacement for
PIN based authentication. A large number of password authentication protocols
have been designed by the academic community and the industry. However, the
most important step might be an amendment to Commission Decision C(2006)
2909 by the European Commission. According to it a password authentication
protocol must be implemented by the EU countries by December 31, 2014 for
biometric passports. Furthermore, PACE v2 protocol [11] is to be used.

PACE has been designed by the German federal authority BSI [6] and later
adopted by ICAO (International Civil Aviation Organization) as a component
of Supplemental Access Control (SAC), which is a de facto new standard for
electronic travel documents. Probably, due to availability of software and hard-
ware products, integration with other protocols necessary for electronic identity
documents, privacy “by-design” features, and the status of de facto standard,
PACE has a great advantage to become dominant on the market. The strong
position of PACE can be also attributed to the support of German and French
authorities and the industry.

Due to the reasons mentioned above, in this paper we focus our attention on
PACE protocols (both Integrated Mapping and General Mapping versions). We
also discuss the former protocol SPEKE [12] covered by an US patent. (Note
that PACE has not been developed in order to improve some security features
of SPEKE, the main target was to avoid the US patent.)

478 L. Hanzlik et al.

Security of Password Authentication. Just like PACE and SPEKE, many
advanced password authentication protocols are integrated with key exchange
protocols and known under the name password-based authenticated key exchange
(PAKE). Defining a relevant security model for them is an uneasy task.
The problem is to create a clear model that would capture all relevant attack
scenarios and potential threats. In order to be useful, the model must be simple
enough to enable a short and clear but still rigorously formal security proof.
These two goals are in some sense contradictory and frequently lead to oversim-
plifications.

So far there is an abundance of security models for authentication protocols.
They are based on abstract games describing protocol executions in which the
adversary is challenged to return some protected information. The major effort
was to formulate a game that would cover all or almost all potential attack
scenarios. An example of this approach is the CK-model [8] which allows to create
security proofs in a generic way. Unfortunately, it has turned out that many
issues require model extensions and models such as eCK [14] and its variants
have been introduced.

The CK-model framework has also been adapted to the PAKE protocols.
Abdalla et al. [1] introduce a real-or-random game between the adversary and
the challenger in which the adversary is allowed, among others, to ask oracles to
reveal the secret password. The adversary is not allowed to ask for the internal
state of the user (e.g. the used random numbers). However, such attack scenar-
ios seem to be realizable in the real world. Recently, the cryptographic commu-
nity becomes more aware about these threats. For example, the paper [4] from
CRYPTO’2014 shows that we have to take into account malicious implementa-
tions that are indistinguishable from the honest ones. We go beyond that: we are
talking about indistinguishability of honest and dishonest actors in a system.

Let us mention that some formal proofs concerning the PACE protocol have
been published (see e.g. [5]). Interestingly, they appeared long after presenting
the protocol and including them in a de facto German standard. Moreover, some
features have not been covered by the initial proofs (see e.g. the privacy issues
[10]). This might be an evidence that making decisions about cryptographic
protocols for the real world applications is much more complicated than the
theoretically oriented and abstract process proposed by the academic community.

1.2 Adversary Model

The traditional approach of cryptographers is to assume that some secrets are
never stolen by the adversaries: protocol designers implicitly assume that the
secrets are stored safely in secure hardware devices and/or are effectively pro-
tected by their owners. Failure to fulfill these assumptions is usually treated as a
problem outside the scope of a cryptographic design. Consequently, it is expected
that the problem will be solved by implementation engineers, legal rules, etc.

There are many reasons why this approach is likely to fail in practice. First,
a secure hardware device is a myth. There is a race between the manufacturers
designing protection mechanisms and the attackers developing technologies to

Stand-by Attacks on E-ID Password Authentication 479

break them. Both the protection mechanisms and the attack methods are con-
fidential and we may only guess what is the current state-of-the-art, especially
when talking about technology available for the most powerful players. Second,
many actors in the system can be tempted to create trapdoors or simply use
confidential knowledge in order to circumvent security mechanisms. The pur-
pose is not necessarily evil, it can be motivated by the issues of the national
security. The cases like installing the trapdoors by Swiss reputable company
CRYPTO AG should learn us that these situations are not hypothetical. The
recently revealed scope of massive surveillance (also against political allies) con-
firms that the opportunities created by over-optimistic cryptographic design can
be exploited.

Even if knowledge about the possibilities to create cryptographic trapdoors
is available to the public for over two decades (see e.g. [15]), only recently it has
started to attract enough attention.

Hidden Penetration Attacks. We consider systems consisting of two kinds of
components: black boxes and white boxes. The contents of a white box is visible
to its owner, the black box components can only be used in the way described by
the protocol. For example, typical black boxes are the components implementing
secret keys and PRNGs.
In this paper we consider the following model of an adversary attacking a system Z:

– at some moment of the lifecycle of Z the adversary succeeds to penetrate the
resources of Z,

– during the penetration phase the adversary learns the contents of both: the
white boxes and black boxes of Z,

– the adversary leaves no trace of the attack in Z. So the adversary cannot
change the contents of white boxes. The adversary can change the contents of
black boxes provided that no change of their behavior can be later detected
by inspection of Z – both by reading white boxes and observing Z during its
runtime. (So the program code can be changed only if it is in the black box.
Note that in this case the model reduces to the one from [4].)

– during the penetration phase the adversary does not start any irregular activ-
ity in Z (like e.g., running own code in a way observable for third parties),

– apart from the data gathered during the penetration phase, the adversary
may passively gather all messages exchanged over the public channels (e.g.
over a radio channel).

So we consider a hidden adversary – just as for a good surveillance system.
The goal of the adversary is to gain confidential data known to the system

after or before the penetration. This includes in particular the passwords entered
to a reader during execution of password authentication protocols.

The hidden penetration attack model covers a number of practical situations:
e.g. breaking into a system and its “secure components”, physical leakage that can
be measured only occasionally, or installing a weak or known seed to a PRNG.

480 L. Hanzlik et al.

In some cases the penetration phase is not really an attack but merely mis-
use of obligations. For example, a manufacturer or a provider of cryptographic
equipment may store copies of the private keys pre-installed in the devices. Theo-
retically, even the possibility of creating the copies should be excluded. In reality,
even the legal rules admit such services as storing copies of secret signing keys
of the customers [9, Annex II, point 4]!

Unfortunately, may be with a few exceptions real world systems are not
designed to be immune against the adversary defined above. Many “black box”
security arguments fail under this new view and many devastating attacks might
emerge in practice.

Immunity Against Hidden Penetration Attacks. We feel that providing
immunity against penetration attacks cannot be left to the non-cryptographic
mechanisms for the sheer reason that there is no idea how to do it effectively.
In contrast to the replacement attacks, no audit or certification procedure can
help, as long as the adversary leaves really no traces in the system attacked.

In our opinion the right way to deal with this problem is to design crypto-
graphic mechanisms in a way that eliminates hidden penetration attacks or at
least makes them difficult in practice.

1.3 Problems with Randomness

Choosing elements at random is one of the standard components of crypto-
graphic protocols. Theoretically, there are many sources of physical randomness
that can be used as external sources of true random numbers. However, there are
many problems concerning this approach. So far the industrial practice focuses
on detection of sources that have stochastic properties far from uniform distri-
bution – see e.g. the suite of NIST randomness tests. However, the test results
never guarantee that the generator’s output is really unpredictable by an exter-
nal observer. Last not least, the generator may contain undetectable hardware
Trojans [3].

A pseudorandom number generator (PRNG) may be a good solution to these
problems. The output of the PRNG might be provably indistinguishable from
an ideal random source, while the circuitry of the generator can be checked
against its specification. In many cases hybrid solutions are proposed: a truly
random source is replaced by an output of a PRNG which involves input from a
random source with some number of entropy bits. In this way we hope to combine
advantages of a good PRNG and of a source of physical randomness despite its
limited quality.

The main advantages of PRNG are: a low cost, possibility to implement on
low-end devices and verifiability. On the downside, a PRNG offers no security
when the adversary learns its internal state. Since a PRNG is deterministic,
the adversary can compute all future outputs delivered by the PRNG once its
internal state becomes known.

Stand-by Attacks on E-ID Password Authentication 481

Certification Framework and Password Authentication for Inspection
Systems. The Common Criteria Framework can be used to analyze and define
security properties necessary in concrete applications. Protection Profiles (PP)
list these properties, their role is to provide sufficient conditions for security
guarantees against realistic threats. However, if a PP neglects some issues, then a
device fulfilling this PP might be insecure despite conformance with the Common
Criteria requirements.

An exemplary Protection Profile (PP) [7] of the Inspection System (IS)
defines security features of the terminals used for document inspection, that
is, the readers interacting with biometric passports. Among others, [7] states the
properties of randomness used. According to Sect. 6.1.2.4, “The Target of Eval-
uation Security Functionality shall provide a mechanism to generate random
numbers that meet the functionality class K4 (...) with at least 64 bit entropy
for the seed”. According to [13, page 8], the class AIS20 K4 is comparable with
the class DRG.3, and on page 70 of [13] we see that the generator from the class
DRG.3 does not have to contain re-seed/seed update/refresh functionalities. As
refers to the entropy, the document [13] defines entropy source as “A component,
device or event that generates unpredictable output values which, when captured
and processed in some way, yields discrete values (usually, a bit string) con-
taining entropy (Examples: electronic circuits, radioactive decay, RAM data of
a PC, API functions, user interactions).”. In particular, a True Random Num-
ber Generator (TRNG) is not required as a necessary entropy source for the
PRNG. Moreover, PP [7] does not require it either. Consequently, the source
of randomness could be a deterministic PRNG with a random seed with suffi-
cient entropy and uploaded by a trusted party. As this is admitted by the PP,
we should not expect that the electronic identification documents are equipped
with better solutions: the rules of public procurements effectively eliminate such
solutions due to the unit price factor.

1.4 Overview of the Rest of the Paper

In the rest of the paper we discuss in detail the problem of hidden penetration
attacks for real world examples of password authentication. Our main goal is
to draw attention to the problems neglected so far and to show that slightly
reshaping the protocols on the implementation level can significantly improve
the situation. Perhaps, this is the last moment to discuss such details, since
after large scale deployment it will be hard to revert the design decisions.

In Sect. 2 we present hidden penetration attacks against PACE-GM, PACE-
IM and SPEKE. The target of the hidden penetration attack are the readers
and not the personal identity documents. Afterwards a passive adversary may
derive the passwords used by the documents executing PACE or SPEKE and
consequently trace the document owners. Note that the passive adversary might
use a tiny electronic bug attached to a (genuine) inspection terminal.1

1 The cases of spying PIN numbers with tiny cameras attached to ATM machines
should serve as a warning that this in not only a hypothetical situation.

482 L. Hanzlik et al.

In Sect. 4 we propose a simple but generic countermeasure based on additional
exponentiation using a fixed secret. The method works for any Diffie-Hellman-like
key agreement and mitigates many hidden penetration attacks against the read-
ers. One of the main advantages is that the new component can be a plug-in
device from a different provider and that its behavior can be easily tested (unlike
a PRNG). The modified protocol does not intertwine the PRNG secret and the
new secret in a way that knowing the first gives the second while observing
the traffic.

2 Attacks

2.1 Attack on PACE-GM

Protocol Description. First let us recall a specification of the PACE protocol
with the general mapping. We do not attempt to explain the rationale of the
protocol and refer the reader to the original papers. Our primary goal is to show
the problem and an effective solution (Table 1).

Attack Scenario. For the attack we make the following assumptions:

– the readers consists of white boxes, with the exception of the PRNG, which
are implemented as black boxes,

– the attacker performs the hidden penetration attack on all readers produced
by a given manufacturer, and get the seeds installed there,

– the attacker can install a passive device recording the (encrypted) commu-
nication at the place where authentication protocol is executed between the
readers and the identification documents; we call this device a shadow reader,

– at some moment the shadow reader may deliver the recorded sessions to the
adversary.

We do not assume that the attacker has any control over readers deployment -
they are out of control once they are sold and delivered to the customer. On the
other hand, installing a shadow reader might be quite realistic. It can be easily
left in an automatic booth entered for control by hundreds of people.

Now we describe the offline analysis on the protocol transcript performed by
an adversary.

Step 1: Finding ID of the reader:
The first message sent by the reader is YB = gyB , where yB comes, according
to our assumptions, from the PRNG installed in the reader. In particular, it
does not depend on the password.

The offline analysis considers each seed installed in the readers and makes
trial computations deriving the exponent yB and checks against YB . For
efficiency, these computations can be done once by the adversary. For each
result u of the PRNG the adversary stores the seed and the number of steps
in a hash table based dictionary, where the address of the entry is based on

Stand-by Attacks on E-ID Password Authentication 483

Table 1. PACE protocol, GM version

the hash value computed for gu. The database need not to be particularly
large concerning the limited number of devices produced and a relatively low
usage rate.

Note that once the ID of the reader is found, the adversary also learns what
is the current step number of the PRNG. This enables to derive quickly its
next outputs.

484 L. Hanzlik et al.

Step 2: Finding h:
As h = Y yB

A , it can be immediately derived from yB found in the Step 1
and from YA known from the transcript of the communication between the
reader and the ID document.

Step 3: Reconstruction of K:
Since the adversary can find the next output from the PRNG after yielding
yB, the adversary learns y′

B . So in particular the adversary can reconstruct
K as Y ′

A
y′

B . Then he follows the steps of the protocol in order to derive the
session keys.

Step 4: Reconstruction of ĝ:
The adversary computes ĝ as (Y ′

B)(y
′
B)−1modq

. Furthermore, he computes S :=
ĝ/h. Note that according to the protocol, we have S = gs.

Step 5: Deriving the password:
For each password π, the adversary computes sπ := DEC(Hash(0||π), z) and
tests whether S = gsπ . If the equality holds, then with a high probability
the password has been guessed correctly.

Complexity of the offline analysis (apart from the precomputation) is quite
low. Step 5 is a brute force search, but there is only a limited number of possi-
bilities due to the low entropy of the passwords.

The attack complexity is reduced by the fact that deriving the session key
and deriving the password are in some sense separated in PACE. This is an
interesting situation, since such a separation makes the protocol stronger from
another point of view (inability to test correctness of the password until the very
end of the protocol execution).

2.2 Attack on PACE-IM

In the description above, Encoding is a function specified in the standard. It
maps the elements to points of an elliptic curve (Table 2).

Attack Scenario. For the attack we make the same assumptions as in Sect. 2.1.
The offline analysis performed by the adversary consists of the following steps:

Step 1: Finding ID of the reader:
The first message sent by the reader is β which is the output of the PRNG.
In particular, it does not depend on the password and other parameters.

The offline analysis considers each seed installed in the readers and makes
trial computations deriving β. As for the previous attack, a precomputation
may decrease complexity of this phase.

Note that once the ID of the reader is found, the adversary also learns
what is the current step number of the PRNG. Thereby, the next output of
the PRNG can be derived.

Step 2: Finding Z:
Once the state of the PRNG is recovered, the adversary knows y and can
compute Z := y · X.

Stand-by Attacks on E-ID Password Authentication 485

Table 2. PACE protocol, Integrated Mapping version

Step 3: Reconstruction of Ĝ:
The adversary computes Ĝ := y−1 · Y .

Step 4: Deriving the password:
For each possible password π, the adversary computes sπ := DEC(π, z) and
tests whether Ĝ = Encoding(Hash(sπ, β)). If the equality holds, then with
a high probability the password has been guessed correctly.

As in the previous attack, the complexity is low apart from the Step 1 which
depends on the number of readers installed and the time with no supervision.
However, now it is even easier to transmit some data in the outputs as β observed
by the attacker is directly the output of the generator. In case of PACE-GM it
was harder, as no output of the generator is presented directly.

2.3 Attack on SPEKE

Protocol Description. First we recall the design of SPEKE password authen-
tication protocol (Table 3).

486 L. Hanzlik et al.

Table 3. SPEKE protocol

Attack Scenario. The assumptions concerning the attack scenario are the same
as in Sect. 2.1.

Step 1: Finding ID of the reader:
In case of SPEKE finding identity of the reader by a passive eavesdropper
is problematic. However, the adversary can easily find it in an active way.
The adversary may appear just once with a legitimate ID document, enter
the correct password and observe the message YB sent by the reader. As the
correct password is entered by the adversary, he knows also the parameter g
used by the reader. Afterwards, the adversary may analyze the transcript of
the communication with his ID document in order to match the parameter
YB from the protocol transcript with gu, where u is the potential output of
the PRNG generator.

Step 2: Reconstruction of K:
After Step 1, the identity of the reader is known, but not the step number of
the reader at the moment when the communication session is recorded. For
each step number the adversary computes the output u of the PRNG and
computes a candidate for K as Y u

A . Then the adversary decrypts the messages
exchanged between the reader and the ID document using a candidate key
K. When the plaintexts obtained make sense, the guess u for yB might be
regarded as correct.

Step 3: Reconstruction of g:
The adversary computes g as (YB)(yB)−1 mod q.

Step 4: Deriving the password:
For each password π, the adversary checks if g = (Hash(π))2 mod p. Thanks
to the pseudorandomness of the hash function Hash, the correct password is
likely to be the only one password fulfilling this equality.

Stand-by Attacks on E-ID Password Authentication 487

2.4 Tracing Threats

Once the adversary learns the password of an ID document, he may deploy
the readers that activate the ID documents in their range, trying the known
passwords. Any successful attempt (i.e. an attempt with the correct password)
results in detection of an ID document. Note that a failed attempt is not recorded
by the ID document as they are passive and do not create transaction logs.
A shadow reader can be hidden, for example, in a hotel elevator used by the
guests.

Thereby we see that a mechanism used for privacy protection turns out to be
a simple and effective tool for tracing the holders of ID documents - violating the
main principle of privacy protection. Of course, the attack can be prevented by
electromagnetic shielding the identity document. In case of biometric passports
the cover pages may be used for this purpose (as in the US biometric passports),
however this makes automatic border control slower (preferably, the traveller
should lay down the passport unopened on the reader). For ID-1 ISO/IEC 7810
identification cards a protective case would be necessary – which is somewhat
inconvenient for the document holders.

3 Trusted Exponentiation Strategy

Our goal is an implementation strategy for building readers so that we get a
system with the following features:

1. the readers can still communicate with any document executing the original
protocol in exactly the same way,

2. the attacks described in Sect. 2 do not work anymore,
3. a user can effectively check whether the reader is following the particular

implementation strategy preventing the attacks from Sect. 2.

The proposed changes are on the low level of the protocol design and simple
enough to be practical. Their main achievement is that there is no need to trust
(unconditionally) the hardware manufacturers.

3.1 Naive Protection Strategies

In this section we present simple solutions that protect against the attacks pre-
sented in Sect. 2.

To start with, one could argue that we can reset the seed using new entropy.
Our PRNG would, on demand, compute a new seed using the bits outputted by
a true random number generator (TRNG). In the literature such a generator is
called hybrid random number generator. However, we have no assurance that the
generator really uses the new random bits. Instead, it may compute a determin-
istic function (unknown to an adversary) on the old seed to produce a new one.
There is no way to test that this is not the case whenever the device follows the
black box design principle.

488 L. Hanzlik et al.

The second solution is that one could enable a way to seed the generator
post-production so that the manufacturer will not know the seed. However, if
the generator uses some bits of a TRNG as input, then we cannot distinguish
if our seed was really set. On the other hand, if the generator is a pure PRNG,
then we cannot be certain that at some point someone will re-seed our PRNG
(since, for security reasons we do not retain the seed, we cannot verify that).

The simplest solution is just to use a TRNG as our generator. Beside the
fact that it is hard to distinguish if the output comes from such a generator or
a PRNG, TRNG degrade over time and it is also hard to prove that under all
conditions the output of the TRNG is still unpredictable.

In all cases the proposed solutions are simple, but as shown they do not
cover point 3 of the above list of requirements. Namely, the participants of the
protocol have no assurance that the protection was indeed used.

3.2 Deriving Random Exponents

In almost all cases the protocols presented above have used the random elements
as exponents in the following steps of the Diffie-Hellman key exchange:

step 1. choose r < q at random,
step 2. compute U := V r,
step 3. present U to the other party involved in the protocol.

Furthermore, the number r will never be used again except for deriving the
shared key via exponentiation:

step . . . given an element W obtained from the other party compute L := W r

after step . . . use L as a shared value with the other party of the protocol.

We propose an architecture composed of two components: a PRNG (or a true
RNG) and an Exponentiation Unit (ExpU) holding a private key. Each ExpU holds
a secret key x installed separately. The idea is that instead of using the exponent
r from the PRNG unit, the protocol uses r ·x mod q, where q is the prime order
of the group used for the computations. Note that if r has uniform probability
distribution in Z

∗
q , then the same applies for r · x mod q. So we may rewrite the

above steps as follows:

Implementation with Exponentiation Unit

step 1. obtain r from a PRNG,
step 2. compute U ′ := V r,
step 2A. send U ′ to ExpU and get back U := (U ′)x,
step 3. present U to the other party involved in the protocol.

For the additional steps of the protocol:

step . . . given an element W obtained from the other party compute L′ := W r,
step . . . A. send L′ to ExpU and get back L := (L′)x,
after step . . . A use L as a shared value with the other party of the protocol.

Stand-by Attacks on E-ID Password Authentication 489

Note that the above procedure never produces the random element r·x mod q
despite the fact that it is implicitly used by the protocol. So in particular there
is no way to leak this ephemeral secret from the device. Of course, if V x is
known (as the reader’s public key), then the Steps 2 and 2 A can be executed
alternatively as U := (V x)r (however, this is not possible for deriving L).

The ExpU is intended to be a separate hardware unit that holds a private
key x and given an input M it outputs Mx. This could be a smart card with an
interface restricted to a single operation of raising to power x. As the smart cards
using asymmetric algorithms based on the Discrete Logarithm Problem must
perform exponentiations, obtaining such a smart card is possible by restricting
and adjusting the code executed by the smart card. Similarly, it could be a
standard cryptographic co-processor, again with restricted functionalities.

3.3 Control Mechanism

While the protocols described so far should provide a good security level, the
main problem is to make sure that they are really executed in the way described.
So in particular, one can pretend that an implementation is based on an ExpU
and in fact execute the protocol in the standard way. This is possible, since the
outputs given to the other participant of the protocol have exactly the same
probability distribution. However, we may include an additional procedure that
enables to detect that ExpU is not used. On the side of the other protocol par-
ticipant there are the following changes:

– One of two modes of execution must be used: the regular mode or the control
mode. If the regular mode is used, then the execution is just as described by
the authentication scheme.

– In the control mode:
• after obtaining U from Step 3 request r from the reader,
• check that U = Xr, where X = V x is the public key of the ExpU,
• terminate the protocol execution after the check.

Remark 1. The control procedure is based on the fact that the reader must
provide U = Xr where r is known. Then the shared Diffie-Hellman value L
equals W rx, where W is given by the verifier. Therefore, the reader must be able
to raise W r to the power x. However, as W is a random challenge given after
committing to r via U , the probability distribution of W r is uniform as well.
Therefore, to proceed with the protocol execution the reader has to be able to
raise random elements to power x.

The above code can be executed if V is a fixed generator and therefore X
can be declared in advance by the reader. If this is not the case, then the control
mechanism is slightly different. In case of the protocol PACE it will be based on
the following property of V :

V = Gx·z·a+b, where a, b are known to the verifier, z is known to the
reader, and X = Gx is the public key of ExpU.

490 L. Hanzlik et al.

The control procedure requires also knowledge of X̃ = Gx2
. It runs as follows:

– after obtaining U = V rx from Step 3 request r and z from the reader,
– check whether U = X̃rza · Xrb,
– terminate the protocol execution after the check.

Obviously, if the protocol is correctly executed by the reader, then

X̃rza · Xrb = Gx2rza+xrb = (Gxza+b)rx = V rx = U.

Remark 2. Let us note that it is possible to get X̃ from the ExpU unit. Namely,
for the public key X we may take a random element k, compute Xk and feed it to
the ExpU. (The ExpU cannot refuse Xk as it has uniform probability distribution.)
The result returned is S = Xkx = Gx2k. So it suffices to compute Sk−1modq

to
get X̃.

3.4 Key Update Mechanism

The mechanisms based on the secrets stored in the hardware components can
be trusted as long as the adversary has no advantage over the user(s) of the
device. The solution based on ExpU has the advantage that one can effectively
control whether the device is really using the key x corresponding to the declared
control public key X = Gx, but still the adversary may know x and thereby
perform the attacks such as described in Sect. 2. This may occur in particular,
if the key x is preinstalled in the device. In order to defer such problems we
propose the following simple procedure:

Initialization: the manufacturer chooses a secret x at random and preinstalls
it in the ExpU; the corresponding public key X = Gx is retained for control
purposes. The ExpU stores two keys: the permanent key x (it could be for
instance hardwired by storing it in the ROM memory) and an update key
y, which is initially set to 1. The key y is stored in a non-volatile memory.

Key update: a user can execute the update procedure at any time. He has
to choose an update key k and upload it to ExpU. The ExpU should then
perform the operation y := y · k. At the same time, the public key used for
the control purposes should be updated as follows: X := Xk.

Note that the control public key equals Gxy where x is set by the manufacturer
and y is set by the party operating the device. In this way no party knows the
exponent xy and it suffices that at least one party chooses its component at
random.

Remark 3. Note that it seems to be impossible to propose a generic way to
update a PRNG in a similar way. After updating the seed, in general there is no
way to find any properties of the PRNG output that would convince the user
that the update has been performed in the way intended by the user. Therefore,
a malicious device can cheat the user about the update and perform it in a way
convenient for the attacker.

Stand-by Attacks on E-ID Password Authentication 491

3.5 Security Features

We may claim that a protocol where the exponent is derived in the way proposed
is as secure as the original protocol with random exponents, provided that the
random number generator is secure and the secret key is secure. However, we
claim more: the protocol is secure if the random number generator is secure, but
the key x gets exposed.

Proposition 1. If there is an attack against a protocol with the implementation
using ExpU, where the secret key x from the ExpU is leaked, then there is an attack
against the original protocol.

Proof (sketch). The proposition follows easily by the observation that there is a
one-to-one relation between the protocol executions of the original scheme and
the modified scheme based on the ExpU implementation. Namely, we have to
replace each random exponent r from the original scheme by r/x mod q and
recompute all intermediate values. ��
One may ask what happens if the PRNG is attacked, as discussed in Sect. 2.
Of course, the answer depends on the details of the scheme. However, an imple-
mentation with the ExpU holding a secret key x offers for instance the following
advantages:

– If the device computes (hr)x where h and r are known to the adversary (r is
the output of the PRNG and h is the parameter obtained from the other
protocol participant in clear text), then it is infeasible for the adversary to
derive (hr)x, if the discrete logarithm of h is unknown. Thereby, the adversary
cannot reconstruct (hr)x, while its counterpart in the regular implementation
(i.e. hr) can be easily derived.

– Given u, v, r′ as well as h, r and hrx, it is infeasible for the adversary to
decide whether v = ur′x. Thereby, it might be infeasible to decide whether
two executions involve the same device.

In this extended abstract we skip a formal security proof for the ExpU imple-
mentations for protocols PACE-IM, PACE-GM and SPEKE presented in the
next section.

4 Secure Password Authentication with Trusted
Exponentiation

In this section we specify how to implement the proposed changes to password
authentication protocols discussed in Sect. 2.

Modified PACE-GM. The solution proposed in Sect. 3 can be almost directly
implemented for PACE with General Mapping. By u := ExpU(v) we will denote
the result of a call with parameter v to the secure Exponentiation Unit of a device.
That is, if the ExpU holds a secret key x, then returned value u equals vx (Table 4).

492 L. Hanzlik et al.

Table 4. Modified PACE protocol, General Mapping version

Note that the modified protocol executes three more exponentiations on the
side of the reader and four more exponentiations on the side of the card. The
average time of point multiplication (elliptic curve equivalence of exponentiation)
on modern Java Cards is about 100 ms. This concerns 256-bit curves which
provide a decent security level of 128 bits (according to NIST [2]). Thus, the
execution time on the side of the smart card may increase by about half of a
second.

Stand-by Attacks on E-ID Password Authentication 493

Table 5. Modified PACE protocol, Integrated Mapping version

Modified PACE-IM. In case of PACE-IM the ExpU operates on the elliptic
curves and performs multiplications with the secret scalar (Table 5).
Note that the modification increases the number of multiplications with a scalar
by three on each side.

Modified SPEKE. In case of SPEKE modification is based directly on the
method from Sect. 3.
Note that the modification increases the number of exponentiations by two on
each side (Table 6).

494 L. Hanzlik et al.

Table 6. Modified SPEKE protocol

5 Final Remarks

The attacks described in this paper are really simple and easy to execute unless
strict (and expensive) organizational countermeasures are implemented. The
lesson learnt from this particular example should be that we can talk about really
secure cryptographic protocols when we consider them as a complete solution,
with all its (potentially dishonest) actors and life-cycle of the system components.
On the other hand, we have tried to convince that sometimes an improvement
can be achieved with simple cryptographic means without substantial changes
in the high level description of the cryptographic protocols. This is yet another
evidence that for security products the devil is in the detail.

Acknowledgment. We would like to thank an anonymous reviewer for remarks on
security model for real world computations. Some valuable comments are incorporated
almost literally. We also thank INSCRYPT PC chairs for many helpful suggestions.

References

1. Abdalla, M., Fouque, P.-A., Pointcheval, D.: Password-based authenticated key
exchange in the three-party setting. In: Vaudenay, S. (ed.) PKC 2005. LNCS,
vol. 3386, pp. 65–84. Springer, Heidelberg (2005)

2. Barker, E.B., Barker, W.C., Burr, W.E., Polk, W.T., Smid, M.E.: Sp 800–57.
Recommendation for Key Management, part 1: General (revised). Technical report,
Gaithersburg, MD, United States (2007)

Stand-by Attacks on E-ID Password Authentication 495

3. Becker, G.T., Regazzoni, F., Paar, C., Burleson, W.P.: Stealthy dopant-level hard-
ware Trojans: extended version. J. Crypt. Eng. 4(1), 19–31 (2014)

4. Bellare, M., Paterson, K.G., Rogaway, P.: Security of symmetric encryption against
mass surveillance. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I.
LNCS, vol. 8616, pp. 1–19. Springer, Heidelberg (2014). Also IACR Cryptology
ePrint Archive 2014, 438 (2014)

5. Bender, J., Fischlin, M., Kügler, D.: Security analysis of the PACE key-agreement
protocol. In: Samarati, P., Yung, M., Martinelli, F., Ardagna, C.A. (eds.) ISC 2009.
LNCS, vol. 5735, pp. 33–48. Springer, Heidelberg (2009)

6. BSI: Advanced Security Mechanisms for Machine Readable Travel Documents 2.11.
Technische Richtlinie TR-03110-3 (2013)

7. Bundesamt für Sicherheit in der Informationstechnik: Common Criteria Protec-
tion Profile for Inspection Systems (IS), BSI-CC-PP-0064 (2010). https://www.
commoncriteriaportal.org/files/ppfiles/pp0064b pdf.pdf

8. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use
for building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001.
LNCS,Canetti, R., Krawczyk vol. 2045, pp. 453–474. Springer, Heidelberg (2001)

9. European Parliament and the Council: Regulation (EU) no 910/2014 on Elec-
tronic Identification and Trust Services for Electronic Transactions in the Inter-
nal Market and Repealing Directive 1999/93/EC (2014). http://eur-lex.europa.eu/
legal-content/EN/TXT/HTML/?uri=CELEX:32014R0910&from=EN

10. Hanzlik, L., Krzywiecki, �L., Kuty�lowski, M.: Simplified PACE|AA protocol. In:
Deng, R.H., Feng, T. (eds.) ISPEC 2013. LNCS, vol. 7863, pp. 218–232. Springer,
Heidelberg (2013)

11. ISO/IEC JTC1 SC17 WG3/TF5 for the International Civil Aviation Organization:
Supplemental Access Control for Machine Readable Travel Documents. Technical
report version 1.02, March 08 (2011)

12. Jablon, D.P.: Extended password key exchange protocols immune to dictionary
attacks. In: WETICE, pp. 248–255. IEEE Computer Society (1997)

13. Killmann, W., Schindler, W.: A proposal for functionality classes for random num-
ber generators (2011). https://www.bsi.bund.de/SharedDocs/Downloads/DE/
BSI/Zertifizierung/Interpretationen/AIS 20 Functionality classes for random
number generators e.pdf

14. LaMacchia, B.A., Lauter, K., Mityagin, A.: Stronger security of authenticated key
exchange. IACR Cryptology ePrint Archive 2006, 73 (2006)

15. Young, A.L., Yung, M.: Malicious Cryptography - Exposing Cryptovirology. Wiley,
New York (2004)

https://www.commoncriteriaportal.org/files/ppfiles/pp0064b_pdf.pdf
https://www.commoncriteriaportal.org/files/ppfiles/pp0064b_pdf.pdf
http://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32014R0910&from=EN
http://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32014R0910&from=EN
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_20_Functionality_classes_for_random_number_generators_e.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_20_Functionality_classes_for_random_number_generators_e.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_20_Functionality_classes_for_random_number_generators_e.pdf

Stegomalware: Playing Hide and Seek
with Malicious Components

in Smartphone Apps

Guillermo Suarez-Tangil(B), Juan E. Tapiador, and Pedro Peris-Lopez

Department of Computer Science, Universidad Carlos III de Madrid,
Avda. Universidad 30, 28911 Leganes, Madrid, Spain

guillermo.suarez.tangil@uc3m.es,

{jestevez,pperis}@inf.uc3m.es

Abstract. We discuss a class of smartphone malware that uses stegano-
graphic techniques to hide malicious executable components within their
assets, such as documents, databases, or multimedia files. In contrast
with existing obfuscation techniques, many existing information hiding
algorithms are demonstrably secure, which would make such stegomal-
ware virtually undetectable by static analysis techniques. We introduce
various types of stegomalware attending to the location of the hidden
payload and the components required to extract it. We demonstrate its
feasibility with a prototype implementation of a stegomalware app that
has remained undetected in Google Play so far. We also address the
question of whether steganographic capabilities are already being used
for malicious purposes. To do this, we introduce a detection system for
stegomalware and use it to analyze around 55 K apps retrieved from both
malware sources and alternative app markets. Our preliminary results are
not conclusive, but reveal that many apps do incorporate steganographic
code and that there is a substantial amount of hidden content embedded
in app assets.

Keywords: Smartphone security · Malware · Steganography ·
Obfuscation

1 Introduction

Malware for smartphones has rocketed over the last few years. Such a phe-
nomenon is intimately related to the popularity of smartphone platforms and
the substantial rise in the number of apps available for download in online mar-
kets. While these two facts have contributed to create new business models and
reshape the way we communicate, malware writers have taken advantage of the
possibilities offered by smartphones for spying on the user’s activities, stealing
his identity, or committing fraud, among other malicious activities [30].

Thwarting malware attacks in smartphones is still a formidable challenge. On
the one hand, battery-powered smartphones do not possess enough computing
c© Springer International Publishing Switzerland 2015
D. Lin et al. (Eds.): Inscrypt 2014, LNCS 8957, pp. 496–515, 2015.
DOI: 10.1007/978-3-319-16745-9 27

Stegomalware: Playing Hide and Seek with Malicious Components 497

capabilities to constantly check for attempts of executing malicious operations.
Furthermore, distinguishing what is malware from what is not is far from being
easy. In any case, the most common distribution strategy for smartphone mal-
ware is still the use of both official and unofficial markets [25]. Attackers simply
upload malicious apps to the market, sometimes using a stolen identity, and
users get infected by just downloading and installing the app.

In the case of official markets, operators are generally concerned about the
security of the software they distribute. To address malware attacks, most mar-
kets implement a revision process that presumably includes various security
checkings [15]. Malware writers are constantly seeking ways of evading detection.
For instance, in the so-called update attacks, the app just contains a “hook” that,
once installed in the user’s device, downloads and executes a malicious payload
from a external server pretending to be a required update of the app.

Smartphone malware is becoming increasingly stealthy and recent specimens
are relying on advanced code obfuscation techniques to evade detection by secu-
rity analysts [24]. For example, DroidKungFu has been one of the major Android
malware outbreaks. It started on June 2011 and has already spanned over at least
six variants. DroidKungFu has been mostly distributed through official or alter-
native markets by piggybacking the malicious payload into a variety of legitimate
applications. The malicious payload with DroidKungFu’s actual capabilities is
encrypted into the app’s assets folder and decrypted at runtime using a key
placed within a local variable belonging to a specific class module. GingerMas-
ter is another representative example of smartphone malware that deliberately
tries to hide itself. In this case, the main payload is stored as PNG and JPEG
pictures in the asset folder. Such files are loaded as regular pictures by a special
hook within the app and then interpreted as code.

Examples such as the two described above do not abound yet but are becom-
ing increasingly common. In the case of traditional platforms such as PCs, mal-
ware writers have made use of obfuscation techniques for decades, ranging from
simple packing algorithms to using more sophisticated polymorphic and meta-
morphic engines (see [16] for an excellent overview). Such techniques transform
malicious code to make it difficult to understand, analyze, and detect by static
analysis.

1.1 Contributions

Motivated by the increasingly creative ways used by smartphone malware to
hide malicious components and evade detection, we pose the question of how
information hiding techniques could be used by malware writers to achieve the
same purpose. Contrarily to the ad hoc—and, in many cases, sloppy—measures
seen today to obfuscate malicious components, modern information hiding tech-
niques could provide a simple yet theoretically robust way of hiding executable
pieces in assets such as pictures, databases, multimedia files, etc. To the best of
our knowledge, this is the first paper that looks into this issue.

498 G. Suarez-Tangil et al.

In summary, in this paper we make the following contributions:

1. We describe a class of smartphone malware that uses steganographic tech-
niques to hide malicious executable components within an app’s assets. We
call this “stegomalware” and argue that steganographic algorithms provide
malware writers with a mechanism for hiding malicious payloads more secure
than obfuscation techniques currently in use.

2. We discuss various architectures for stegomalware depending on the location
of the asset with hidden capabilities and the algorithm required to extract it.

3. We show that current app markets may be vulnerable to stegomalware. In
particular, we describe a prototype implementation of a stegomalware sample
for Android platforms that is available for download in Google Play and has
remained undetected so far.

4. We introduce a detection system for stegomalware that combines steganalysis
techniques with the detection of steganographic algorithms in the app code.

5. Using an implementation of our stegomalware detection system, we address
the question of whether steganographic capabilities are being already used
for malicious purposes. We analyze around 55 K apps retrieved from both
malware sources and alternative app markets. Even though our preliminary
results are not conclusive, we found that many apps do incorporate stegano-
graphic code and that there is a substantial amount of hidden content embed-
ded in app assets.

2 Information Hiding Techniques and Related Work

In this section, we provide a brief background on information hiding techniques,
including some formal definitions, common stegosystems, and techniques to
detect the presence of hidden information. Because of their popularity, we will
focus our discussion on stegosystems that hide information in pictures. We will
revisit this point later and discuss alternative stegosystems for the type of mal-
ware discussed in this paper. Interested readers can find good introductions to
this discipline in [13,17,19]. Finally, we briefly review the literature related to
malware in smartphones.

2.1 Stegosystems

Modern steganography studies techniques to hide the presence of information
by embedding secret messages within other, seemingly harmless digital objects.
According to the standard terminology of information hiding [18], the original
object used to hide information is called the covertext, whereas the same object
after embedding the secret message is called the stegotext. The embedding pro-
cess depends on a key and the adversary (known as the warden) is generally
assumed to know everything but the key.

Formally, a symmetric1 stegosystem is a triple of probabilistic polynomial-
time algorithms (SK,SE,SD) with the following properties [3]:
1 This definition can be naturally extended to public-key stegosystems [3].

Stegomalware: Playing Hide and Seek with Malicious Components 499

– The key generation algorithm SK takes a security parameter n as input and
returns a stegokey sk.

– The steganographic encoding algorithm SE takes as input the security param-
eter n, the stegokey sk, and a message m ∈ {0, 1}l and outputs a stegotext c
belonging to the covertext space C. The algorithm may access the distribution
of C if needed.

– The steganographic decoding algorithm SD takes as input the security param-
eter n, the stegokey sk, and an element c ∈ C, and outputs either a message
m ∈ {0, 1}l or a special symbol ⊥ denoting that no message is embedded in c.

A stegosystem must be reliable, i.e., the probability that

SD(1n, sk,SE(1n, sk,m)) �= m (1)

must be negligible in n for all messages m and all stegokeys sk. Informally speak-
ing, the security of a stegosystem is related to the probability that an adversary
detects the presence of an embedded message. Thus, a secure stegosystem is one
in which covertexts and stegotexts are indistinguishable. This notion can be for-
mally established as a distinguishability experiment similar to those common in
the field of provable security. In turn, this gives rise to various notions for secure
stegosystems, including perfect security, statistical security, and computational
security (see [3] for further details).

Apart from their security, there are other aspects of practical relevance for
stegosystems. One is their capacity, defined as the maximum number of secret
bits that can be securely embedded. In most practical stegosystems there is a
trade-off between security and capacity, so the longer the embedded message,
the more distinguishable the stegotext becomes. Another relevant property is
the robustness of the stegosystem. Informally speaking, robustness measures the
amount of distortions that a stegotext can endure until recovering the embedded
message becomes impossible. This is a key property for applications such as
watermarking and fingerprinting, where the focus may not be on hiding the
presence of some embedded mark, but on preventing an adversary from removing
it without degrading the quality of the data object.

2.2 Common Steganographic Algorithms

A variety of stegosystems have been proposed for embedding data in all sorts
of digital sources, including text file formats, compiled code, images, audio,
and video. There are, in fact, few digital formats where some opportunity for
steganography has not been identified. Stegosystems for multimedia objects—
and, in particular, for images—are among the most popular schemes because of
the high embedding capacity offered by digital pictures and the proliferation of
images in Internet. Thus, most papers in this field have concentrated on JPEG
images, although the underlying ideas and algorithms are generally applicable
to other formats as well.

The JPEG image format is based on taking the discrete cosine transform
(DCT) of 8 × 8-pixel blocks of the image, producing 64 DCT coefficients. Once

500 G. Suarez-Tangil et al.

quantized, the least-significant bits (LSB) of each coefficient are modified to
embed hidden messages. Note that the modification of a single DCT coefficient
affects all 64 pixels in the block. We next describe four popular JPEG stegosys-
tems that use some form of LSB embedding in the frequency domain (see [4] for
a recent survey).

Jsteg Proposed by Derek Upham, this is one of the earliest stegosystems for
JPEG images [27]. Jsteg replaces the LSB of the DCT coefficients by the
secret message bits, skipping those coefficients with the values 0 or 1. The
image is scanned sequentially and the algorithm does not support random bit
selection. The key, if any, is used to encrypt the message before embedding.
Jsteg-shell is a popular Windows front-end for Jsteg that encrypts the
message with RC4.

JPHide This is a stegosystem proposed by Allan Latham that supports com-
pression of the secret message and encryption with Blowfish. The algorithm
is also based on replacing the LSB of the DCT coefficients but does not do it
sequentially. Instead, it uses a fixed table to determine which coefficient will
be changed next. Furthermore, a pseudorandom number generator (PRNG)
is used to skip some of them, where the probability of skipping changes
depending on how many bits have been embedded already and how many
are left. JPHide can also use the second LSB in some cases.

OutGuess This is yet another JPEG stegosystem using LSB encoding in the DCT
coefficients. Contrarily to the two previous algorithms, OutGuess chooses
the coefficients randomly using a PRNG initialized with a user-provided
password. The content is also encrypted using RC4 with the same password
used for the PRNG.

F5 Developed by Andreas Westfeld, F5 can be seen as an evolution of the
stegosystems described above. It introduces a number of novel ideas, includ-
ing the use of a matrix encoding to reduce the number of necessary changes
and a permutative straddling to uniformly spread out the modifications over
the whole covertext. F5 reduces the propagation of steganographic informa-
tion over the carrier medium. This feature makes F5 robust against certain
distortions such as resizes or rotations. Full details are available in [29].

2.3 Steganalysis

Steganographic encoding algorithms leave traces on the stegotexts as a conse-
quence of the alterations required to embed the message. Such traces are instru-
mental in facilitating detection, i.e., distinguishing whether an object has or
has not embedded information. This is the main goal of a passive warden, i.e.,
an adversary who can read objects and must determine if a secret communica-
tion is taking place. Note that a correct detection defeats the main purpose of
steganography, which is hiding the very presence of a communication. In general,
exposing the content of such a secret communication is another problem entirely.

Contrarily to passive wardens, an active warden is not concerned with detect-
ing secret communications, but with destroying them. Active warden techniques

Stegomalware: Playing Hide and Seek with Malicious Components 501

introduce deliberate modifications in all digital objects in the hope that any
potential hidden content would be rendered unusable. In some domains, this is
just too costly and some form of sampling must be performed.

In what follows, by steganalysis we will refer to the process of distinguishing
whether an object has or has not hidden information. A steganalytic technique
is often presented in the form of distinguisher, this being a test that returns
some measure of the likelihood of the input sample having embedded infor-
mation. Steganalytic techniques can be classified according to various criteria.
A targeted distinguisher focuses on the artifacts produced by one specific algo-
rithm and, therefore, can only detect if that algorithm has been used. Contrarily,
a blind (or universal) distinguisher identifies statistical alterations caused by any
steganographic encoding algorithm [7]. An example of a blind steganalysis is the
χ2-attack, based on applying a χ2 test to compare the distributions of adjacent
DCT coefficients, which is similar in images with hidden data embedded [20].
Fridrich et al. provide in [9,10] an overview of feature-based steganalysis for
JPEG images and its implications for future designs of stegosystems.

There are a number of freely available implementations of the main stegan-
alytic techniques proposed so far, including:

Stegdetect [20] is a popular and free steganalytic tool. It includes a number
of distinguishers to detect the presence of hidden data in images and is able
to identify the method used during embedding process. Stegdetect is the
de facto tool used by security and forensic practitioners due to its excellent
capabilities and its free and open nature. A recent study by Khalind et al.
[14] has revisited its features and warned about the implications of its false
positive ratio.

VSL (Virtual Steganographic Laboratory) [8] is a suite of steganalytic
techniques that includes some of the most popular techniques, including
RS-Analysis (a distinguishing algorithm for LSB methods) and a blind ste-
ganalysis technique based on Support Vector Machines.

SSS (Simple Steganalysis Suite) [2] is another publicly available implemen-
tation of various image steganalytic techniques, including χ2-attack and var-
ious histogram-based tests.

2.4 Thwarting Malware in Smartphones

A substantial amount of recent work has addressed the problem of analyzing
malware in smartphones using a variety of techniques [6,25]. Static analysis
techniques are well known in traditional malware detection and have recently
gained popularity as efficient mechanisms for market protection [1,26]. However,
current static techniques fail to identify malicious components when they are
obfuscated or embedded separately from the code (e.g., hidden into an image)
[12,22]. Approaches based on dynamic code analysis [11] are promising, but cur-
rent works [6,21,23] only provide an holistic understanding of the behavior of an
app. This feature challenges the identification of malware using steganography.

502 G. Suarez-Tangil et al.

More recent approaches focus on detecting hidden functionality within com-
ponents of an app [24]. Although this technique has shown to be promising, it
requires a non-negligible overhead derived from the dynamic execution of every
app analyzed. As regards the various ways to hide or locate hidden code in apps
using steganography and steganalysis, to the best of our knowledge this is the
first work addressing this issue in smartphones.

3 Stegomalware

This section introduces the idea of an app that uses a stegosystem to hide a mali-
cious component within its assets and then extracts and executes it dynamically.
We then discuss various architectures for such a stegomalware and describe a
prototype implementation for Android platforms that is available for download
in Google Play and has remained undetected so far.

3.1 Hiding Malicious Code in App Assets

Malware developers can use steganographic capabilities to hide malicious com-
ponents within an app resources. Such resources depend on the particular app
and may include images, audio, video, databases, and text files in a variety of
formats (e.g., plain text, XML, and HTML). Practical stegosystems for all these
digital objects have been proposed, some of them with a reasonable security
level. Moreover, there is a variety of freely available implementations of such
stegosystems that are exceedingly simple to use within an app.

The main goal pursued by an attacker who uses a stegosystem to securely
embed a piece of malicious code into an app resource is to evade detection, partic-
ularly static analysis based approaches implemented by market operators. Hiding
malicious components may also difficult malware analysis, as the payload will
be located in places that security analysts could overlook. More importantly, the
piece of malicious code is not accessible to analysis. This is a key difference—and
a substantial advantage for malware writers—with respect to traditional mal-
ware obfuscation techniques: after obfuscation, malicious code may be difficult
to recognize, but it is still somewhere in the app. In contrast, in a stegomalware
specimen the malicious component is revealed at execution time only. Thus, it
will not match any signature even if the search includes the asset where it is
hidden.

A stegomalware contains the following three basic components:

– A stegotext R, this being one of the app assets. R is the result of embedding a
malicious payload p with a steganographic encoding algorithm SE using some
stegokey.

– A stegokey sk required to extract p from R. In case of using a symmetric
stegosystem, sk is the stegokey that was used to embed p in R.

– A steganographic decoding algorithm SD needed to recover p from R using sk.

Stegomalware: Playing Hide and Seek with Malicious Components 503

These three elements (R, sk,SD) can be packaged together and distributed
with the app, or dynamically retrieved at runtime from an external server. Based
on this, we next describe three architectural choices for stegomalware. This list
does not intend to be exhaustive and more complex variants are possible.

3.2 Type 0: Autonomous Stegomalware

One simple choice is to have all the stego material (R, sk,SD) distributed with the
app. The asset R is the less problematic of the three, as it can just be put in the asset
folder with the remaining resources. The algorithm SD must be part of the code
assets so the app can invoke it to retrieve p. The stegokey sk must be part of the app
too, either hardcoded as a variable somewhere in the code, or else distributed in
some other asset (e.g., a text file, a database, etc.). Note that sk is not necessarily a
random string, as many stegosystems accept alphanumeric passwords from which
subsequent keying material is derived.

This type of stegomalware is fully autonomous and does not depend on a
remote infrastructure to achieve its goals (see Table 1). This, however, comes at
a price: the presence of R, sk, and SD may facilitate detection. We will discuss
this issue in more detail later in Sect. 4.

Table 1. Three variants of stegomalware and their activation procedures.

Type Locally Available Remotely Available Activation

Type 0 R, sk, and SD nothing 1. Get sk and R from the app resources

2. Recover the payload: p = SD(sk,R)

3. Execute p

Type I l and SD R and sk 1. Get URL l from the app resources

2. Connect to l and retrieve (R, sk)

3. Recover the payload: p = SD(sk,R)

4. Execute p

Type II l and SD R and sk 1. Get URL l from the app resources

2. Connect to l and retrieve (R, sk, SD)

3. Recover the payload: p = SD(sk,R)

4. Execute p

3.3 Type I: Stegoupdate Attacks

A more flexible alternative to Type 0 stegomalware consists of retrieving the ste-
gotext R remotely during activation. This allows for using different malicious pay-
loads depending on the attacker’s goals, the particular target, etc. The app must
necessarily contain the decoding algorithm SD and possibly sk, although it is gen-
erally more convenient to have sk associated with the particular R and, therefore,
also dynamically downloaded. This variant introduces the need for incorporating
into the app the location (e.g., an URL) of the external server from where (R, sk)

504 G. Suarez-Tangil et al.

will be fetched. The activation procedure is quite simple (see Table 1) and involves
fetching R and sk, extracting p locally, and then executing it.

This type of stegomalware can be seen as a variant of the classical update
attacks [30] in which the malicious payload is downloaded embedded into an
innocuous-looking object. This would evade detection schemes based on moni-
toring update traffic and preventing the execution of downloaded code.

3.4 Type II: Agnostic Stegomalware

In a more radical setting, the app could be totally agnostic of the stegosystem
used to embed the payload. Thus, after activation the app would connect to a
remote site and download R, sk, and SD. The decoding algorithm would be then
used to extract the malicious payload from R.

The key idea here is not to distribute SD within the app, so even a detailed
code analysis would not raise any suspicion. This idea admits some minor vari-
ations. For example, R and sk might actually be part of the app, so the update
engine just downloads SD and uses it to extract the malicious payload. Simi-
larly, in a collusion scenario, the app could pass R and sk on to another app in
the same device that implements SD. This second app would first extract the
payload and pass it back to the original app (e.g., by putting it in shared space)
or just execute it.

3.5 A Proof-of-Concept Implementation

We implemented a prototype of a simple autonomous stegomalware (Type 0)
for Android platforms. The app is named LikeImage and contains a malicious
payload embedded into an image that is part of the app resources (see Fig. 1). In
execution time, the payload is extracted from the image and executed dynami-
cally. We used an open source Java implementation2 of F5 for JPEG images as
the underlying stegosystem. Figure 2 shows the original image and the one that
is actually distributed with the app after embedding the payload. As expected,
both images look exactly the same.

The malicious payload is a Java JAR library compiled in Dalvik Executable
(DEX) Format. Figure 3 shows a fragment of the main class. The payload con-
tains an update engine that requests instructions from a remote Command
&Control (C&C) server in the form of a second payload that might change
depending on the interests of the attacker and the target device. This second
payload is then retrieved, dynamically loaded, and executed in the user device.
Initially, the update component used in our first demonstration was programmed
to exfiltrate the IMEI of the device. The app was submitted to Google Play in
early June 2014 and passed all security controls. At the time of this writing, it
is still available in the market3, although our C&C server has been instructed to
always return an innocuous payload and the app was modified to leak nothing
from the device.
2 https://code.google.com/p/f5-steganography.
3 https://play.google.com/store/apps/details?id=es.uc3m.cosec.likeimage.

https://code.google.com/p/f5-steganography
https://play.google.com/store/apps/details?id=es.uc3m.cosec.likeimage

Stegomalware: Playing Hide and Seek with Malicious Components 505

Fig. 1. Our stegomalware app (LikeImage).

Fig. 2. Asset used by our stegomalware proof-of-concept.

506 G. Suarez-Tangil et al.

Fig. 3. Code snippet of the malicous payload.

4 Searching for Stegomalware in the Wild

After the ideas introduced in previous sections, we next describe our efforts so
far to find out if malware with steganographic capabilities is already in the wild.
Our focus has been on types 0 and I, and we have only searched for apps using
image or audio (mp3) stegosystems. With this in mind, we built a detector whose
operating principle revolves around three main ideas:

1. Detect the presence of capabilities to execute dynamically loaded code. This
is essential to transfer control to any downloaded or extracted payload.

2. Identify assets that are suspect of containing embeddedmessages (steganalysis).
3. Identify steganographic decoding algorithms in the app code.

In the remaining of this section we describe the experimental setting used in
our study and discuss the main results obtained so far.

4.1 Experimental Setting

Our study is based on a dataset composed of around 54 K apps retrieved from
two different sources (see Table 2). On the one hand, we downloaded around
31 K apps from Aptoide4 (AP), a distributed marketplace for Android apps.
Contrarily to popular markets such as Google Play, in Aptoide there is not a
centralized repository for apps, but each user manages their own “store”. On the
other hand, we retrieved around 22 K Android malware samples from a popular
virus repository: VirusShare5 (VS).

We implemented a detection framework for Android apps in Java and Python.
The detector makes use of several open source tools that allows us to extract
static information from Android apps and unpackage their resources [5]. It also
relies on existing open-source implementations of various steganalytics tools,
such as those described in Sect. 2.3. Finally, we also integrated some parts
4 http://www.aptoide.com/.
5 http://www.virusshare.com/.

http://www.aptoide.com/
http://www.virusshare.com/

Stegomalware: Playing Hide and Seek with Malicious Components 507

Table 2. App sources used in our experimentation.

Source #Apps Type

Aptoide (AP) 31,935 Presumably goodware

VirusShare (VS) 22,707 Known malware

Total 54,642

of the implementation of Anagram [28], an anomaly-based intrusion detection
system for application-layer traffic based on n-gram analysis and Bloom filters.
As explained in detail later, this is used as the basis for a detector of stegano-
graphic code.

4.2 Step 1: Selecting Apps with Payload Execution Capability

The first component in our detection framework identifies apps containing the
capability to execute payloads. For instance, Android provides a runtime environ-
ment that allows apps to dynamically load libraries. Detecting such capabilities
may help to discard those apps that make use of a stegosystem for purposes
other than hiding a malicious payload (e.g., to check a watermark).

In our current implementation, we pay special attention to apps with one or
more of the following features:

– Native code, i.e., apps that contain components using native-code languages
such as C and C++.

– Dynamic code, i.e. apps that contain functions to dynamically load executable
code or libraries.

– Reflection code, i.e., apps that attempt to dynamically inspect other fragments
of code at runtime.

We assign a “code execution score” SC to each app A based on this. Specifically:

SC(A) = snative + sdynamic + sreflection (2)

where sx is a factor measuring the risk of having code of type x. We exper-
imentally determined such factors to be snative = 0.1, sdynamic = 0.2, and
sreflection = 0.5.

We computed the score defined in Eq. (2) for all apps in our dataset. The
results are shown in the Venn diagrams provided in Fig. 4. We discovered that
3,605 apps in the AP dataset (around 11 %) contain some form of advanced code.
Similarly, our analysis over the VS dataset reported 1,855 samples (around 8 %)
with advanced code. It can also be observed that reflection code is the most com-
mon operation, as it appears in 4,239 and 1,834 apps in AP and VS, respectively.

508 G. Suarez-Tangil et al.

Fig. 4. Number of apps containing native, dynamic, and reflection code in our dataset.

4.3 Step 2: Flagging Suspicious Assets

Our second contributing factor to the overall detection score is related to the
presence of hidden information embedded in the app assets. When analyzing the
distribution of potential stegotexts in our dataset, we observed that many apps
contain a large number of images. For instance, several apps contained over 5 K
images each. Additionally, we also found that audio files are less common. In our
subsequent analysis, we limited the search for stegotexts to JPEG images and
MP3 audio files.

We use Stegdetect to determine if a given candidate is likely to contain
a hidden payload within any of its image or audio files. Stegdetect admits
as input a sensitivity threshold ranging between 0.1 and 10 that is used by
the underlying distinguishers. The higher this threshold is, the more sensitive
the test. Furthermore, the output provides a confidence level in the detection
of hidden messages that takes 3 possible values: low confidence (*), medium
confidence (**), and high confidence (***).

As in the first step above, we computed a numerical score with each app
summarizing the likelihood of having embedded information in its contents. This
“steganalysis score” SH is computed as:

SH(A) = max
{

1,
∑

c∈R(A)

conf(c)
3

}
(3)

where R(A) is the set of potential stegotexts in the app (i.e., its resources/as-
sets) and conf(c) ∈ {1, 2, 3} is the confidence level returned by Stegdetect, or
0 in the case that no distinguisher returns true.

Table 3 summarizes the experimental results obtained and shows the number
of images matching each steganographic method for a relatively low sensitivity

Stegomalware: Playing Hide and Seek with Malicious Components 509

value (1.0). There is an extremely high number of matches. Specifically,
Stegdetect reports matches for more than 20 K images distributed in approx-
imately 3 K apps in the case of AP, and almost 10 K images over 2 K apps for
VS. In terms of embedding algorithms, JPHide seems to be the most popular
steganographic tool used with about 85 % the matches for both AP and VS apps.
These results will be further discussed later when analyzing individual apps.

Table 3. Number of matches per steganographic tool/method (JPHide, OutGuess,
JSteg, F5, appended, camouflage, and alpha-channel) and confidence (*, **, and
***) for all samples retrieved from Aptoide (AP) and VirusShare (VS).

4.4 Step 3: Identifying Steganographic Code

A common factor between Type 0 and Type I stegomalware is the presence of a
steganographic decoding algorithm SD in the app code required to extract the
malicious payload from the stegotext (asset). Determining if a piece of compiled
code includes some unknown function SD is not straightforward. We approached
this problem statistically using N -gram analysis as follows:

1. For each candidate steganographic decoding algorithm SD that we wish to
detect, we create a simple app with just one class that uses SD.

2. We extract from the compiled app all N -grams. To do this, the app is treated
as a stream of bytes and a sliding window of length N is passed through it.
To efficiently store all N -grams, we relied on the Bloom filter implementation
used in Anagram [28] for a content-based anomaly detector.

3. In detection mode, we extract all N -grams from a candidate app and check
how many of them are found in the content filter associated with SD. The
more the number of hits, the more likely the app contains an implementation
of SD identical to that used to generate the content filter.

We generated content filters for various Java open-source steganographic
tools, including all stegosystems enumerated in Sect. 2. We experimented with
different values of N and noticed that for N < 10 it generates too many false
positives, while too high values (i.e., N > 50) results in a very ineffective detec-
tor. Thus, for each candidate algorithm SD we created 5 different models, one
for each N = {10, 20, 30, 40, 50}.

As with the two previous factors, we associate with each app a score quan-
tifying the likelihood of the app containing one of the steganographic decoding

510 G. Suarez-Tangil et al.

algorithms SD modeled in our content filters. The score is computed in two steps.
First, for each algorithm SD and each value of N we compute a normality score
by counting the fraction of N -grams of the app A that are found in the content
filter:

SS(A,SD, N) =
#Hits

|A| − N + 1
(4)

The score SA(A,SD) for algorithm SD is then computed as the average score
for the five values of N . Finally, the overall score for the app SS(A) is just
the average score for all algorithms SD. In our experimentation, we determined
that a good practice is filtering out those algorithms whose score SS(A,SD) is
lower than a given threshold (around 0.6 for our datasets). This is the approach
followed in the results reported next.

Figure 5 shows the score distribution computed for those apps that had
one or more of the code execution features described in Sect. 4.2. The score
is extremely low for most of them, suggesting that they do not contain traces
of steganographic algorithms—at least, not the ones for which we have a con-
tent filter. There are, however, a reduced number of apps that seem to contain
steganographic-like operations, with scores ranging from 0.2 to almost 0.6. The
majority of these apps come from the AP dataset.

Anomaly Score

F
re

qu
en

cy

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0
10

00
20

00
30

00

Fig. 5. Distribution of SS(A).

Note that we have not considered the scenario where an attacker uses mul-
tiple SD algorithms at the same time. Although our implementation reports
the average anomaly score per SD, we could easily extend it to evaluate all SD
together.

Stegomalware: Playing Hide and Seek with Malicious Components 511

4.5 Putting It All Together

The three separate scores introduced above can be combined into a single value
to measure the likelihood of an app containing stegomalware. We propose using
the following score:

S(A) = SS(A)1−SH(A)·SC(A) (5)

For instance, an app containing dynamic and reflection code, for which the SD
detection score is 0.6, and with one picture with hidden content with confidence
100 % (***) is assigned a score of 0.61−(1.0·0.7) = 0.858.

The rationale behind expression (5) is to have a power-law score where the
basis is determined by the likelihood of detecting a steganographic decoding
algorithm in the app. If one is reasonably sure of the fact that the app has
steganographic capabilities, then the base score is raised to a factor that considers
the existence of code execution capabilities and the output of steganalysis over
the app’s assets. In doing so, we pursue to reduce the effects of the high false
positive ratio of current steganalysis techniques.

4.6 Main Findings

Table 4 shows the top 10 specimens with the highest score in the AP and
VS datasets. In VS there is only three samples with a score higher than 0.5,
whereas in Aptoide more than 200 samples present such higher scores. For a
reference value, our stegomalware demo app LikeImage has an associated score
of 0.641−(1·0.7) = 0.738.

Table 4. Top 10 scores for specimens from Aptoide and VirusShare. The score of our
stegomalware PoC app Likeimage is shown as a reference.

Rank Aptoide VirusShare

1 0.767 0.746

2 0.734 0.731

3 0.725 0.584

4 0.724 0.068

5 0.701 0.068

6 0.699 0.068

7 0.699 0.067

8 0.697 0.067

9 0.695 0.067

10 0.695 0.066

Our PoC Likeimage: 0.738

We carried out some manual inspection of the top scored apps from both
Aptoide and VirusShare. We next summarize our main findings:

512 G. Suarez-Tangil et al.

Fig. 6. Fragment of the Stegdetect report on various images extracted from a VS
sample. The app produced over 70 hits.

– Most of the inspected apps are definitely not stegomalware as defined
in this paper, but many of them behave very much like it.

We found various cases of apps manipulating images through operations
very similar to those used by some LSB encoding algorithms. For instance,
several apps use some algorithms contained in the Apache Commons Imag-
ing library6, including Huffman coding for constructing minimum-redundancy
codes, which is used by some steganographic tools.

– A huge amount of apps contain images that clearly have embedded
information.

For example, Fig. 6 shows a fragment of the report on a VS sample with
more than 70 (***) hits. However, to the best of our understanding, such
hidden messages are never extracted during the app execution. We did not try
to break the password by brute force and recover the embedded messages, but
the headers used by the encoding algorithms are recognizable. Interestingly,
many of these apps use cryptographic functions either to obfuscate payloads
piggybacked together with the app (in the case of VS apps), or else as part of
the legitimate function of the app (in some AP apps).

Such a large amount of images with hidden content suggest two different
conclusions. Firstly, many apps might contain stegotexts for purposes other
than stegomalware as defined in this paper. Some form of watermarking or
other copyright protection techniques is a natural explanation, but they might
have other uses. Secondly, even though Provos and Honeyman [19] report
a very low percentage of false positives for Stegdetect, a recent study by
Khalind et al. [14] suggests that it depends on the chosen sensitivity and that
it can be quite high in some cases. Thus, it may be the case that a fraction of
those images do not actually have any embedded information.

– We found many cases of apps that use näıve methods to hide their
malicious components.

6 http://commons.apache.org/proper/commons-imaging/.

http://commons.apache.org/proper/commons-imaging/

Stegomalware: Playing Hide and Seek with Malicious Components 513

Fig. 7. Examples of methods found in various apps to hide malicious components.

For instance, the sample with identifier

f0f65bd7287cf 83bfabcd22cbf6a0c8c

from VS simply stores the payload in a file called data.png. At runtime it uses
several methods, including one with the suspicious name:

cn.bighead.utils.Encoding.covert2Url(covert)

to extract the required components. Figure 7 shows additional examples of
suspicious operations used to conceal malicious information.

5 Conclusions and Future Work

In this paper, we have introduced and discussed the notion of stegomalware,
a class of malware attacks using information hiding techniques to evade detection
and hinder the task of security analysts. We have argued that this is a far more
powerful capability than traditional obfuscation techniques currently observed
in most smartphonne malware samples, such as disguising the malicious payload
as an image or audio file by simply faking the file extension, or putting it at
the end of another asset. We have introduced different architectural choices for
smartphone stegomalware and demonstrated its viability with a proof-of-concept
app that has remained undetected in the Google Play market for nearly 4 months
so far.

In an attempt to check whether something similar to our notion of stego-
malware is actually being used, we have proposed a detection framework that
combines evidences gathered from the use of code execution capabilities, the
presence of hidden messages detected by steganalysis, and the identification of
steganographic decoding algorithms in an app’s code. We have applied our detec-
tor to a dataset of around 55 K apps comprising both known malware and apps
gathered from an alternative market.

514 G. Suarez-Tangil et al.

Unfortunately, the preliminary results of our search for stegomalware in the
wild are not conclusive. However, our study so far has produced a few interesting
conclusions. For example, we have found that a substantial amount of apps do
have assets with hidden information. Furthermore, many goodware apps such
as games, productivity, and e-health tools incorporate steganographic decoding
algorithms. We do not claim that such apps are stegomalware as defined in this
paper, since there are many legitimate uses of steganography (e.g., intellectual
property protection). Nevertheless, we believe this issue deserves more attention.
In particular, we recommend market operators to include steganalysis and other
forms of stegomalware detection among their analysis techniques.

Our work can be extended in a number of ways. For instance, the detec-
tion framework implemented so far only includes image and audio steganogra-
phy. There are stegosystems for many other digital objects that are often found
among an app’s resources, such as XML and HTML documents, databases, and
other multimedia files. We will incorporate appropriate distinguishers and con-
tent filters to our prototype to check such assets.

Acknowledgements. We are very grateful to the anonymous reviewers for construc-
tive feedback and insightful suggestions that helped to improve the quality of the orig-
inal manuscript. This work was supported by the MINECO grant TIN2013-46469-R
(SPINY: Security and Privacy in the Internet of You).

References

1. Arp, D., Spreitzenbarth, M., Hübner, M., Gascon, H., Rieck, K.: Drebin: effective
and explainable detection of android malware in your pocket. In: Proceedings of
Network and Distributed System Security Symposium (NDSS), February 2014

2. Bastien, F.: Sss - simple steganalysis suite (Visited 2014). https://code.google.
com/p/simple-steganalysis-suite/

3. Cachin, C.: Digital steganography. In: van Tilborg, H.C.A. (ed.) Encyclopedia of
Cryptography and Security, pp. 159–164. Springer, US (2005)

4. Cheddad, A., Condell, J., Curran, K., Mc Kevitt, P.: Digital image steganography:
survey and analysis of current methods. Signal Process. 90(3), 727–752 (2010)

5. Desnos, A., et al.: Androguard: Reverse engineering, malware and goodware anal-
ysis of android applications (Visited December 2013), https://code.google.com/p/
androguard

6. Egele, M., Scholte, T., Kirda, E., Kruegel, C.: A survey on automated dynamic
malware-analysis techniques and tools. ACM Comp. Surv. 44(2), 1–42 (2012)

7. Farid, H., Siwei, L.: Detecting hidden messages using higher-order statistics and
support vector machines. In: Petitcolas, F.A.P. (ed.) IH 2002. LNCS, vol. 2578,
pp. 340–354. Springer, Heidelberg (2002)

8. Forczmanski, P., Wegrzyn, M.: Open virtual steganographic laboratory. In: Interna-
tional Conference on Advanced Computer Systems (ACS-AISBIS) (2009). http://
vsl.sourceforge.net/

9. Fridrich, J.: Feature-based steganalysis for JPEG images and its implications for
future design of steganographic schemes. In: Fridrich, J. (ed.) IH 2004. LNCS, vol.
3200, pp. 67–81. Springer, Heidelberg (2004)

https://code.google.com/p/simple-steganalysis-suite/
https://code.google.com/p/simple-steganalysis-suite/
https://code.google.com/p/androguard
https://code.google.com/p/androguard
http://vsl.sourceforge.net/
http://vsl.sourceforge.net/

Stegomalware: Playing Hide and Seek with Malicious Components 515

10. Fridrich, J., Goljan, M., Hogea, D.: New methodology for breaking steganographic
techniques for JPEGs. In: International Society for Optics and Photonics Electronic
Imaging 2003, pp. 143–155 (2003)

11. Gao, J., Bai, X., Tsai, W.T., Uehara, T.: Mobile application testing: a tutorial.
Computer 47(2), 46–55 (2014)

12. Huang, H., Zhu, S., Liu, P., Wu, D.: A framework for evaluating mobile app
repackaging detection algorithms. In: Huth, M., Asokan, N., Čapkun, S., Flechais,
I., Coles-Kemp, L. (eds.) TRUST 2013. LNCS, vol. 7904, pp. 169–186. Springer,
Heidelberg (2013)

13. Johnson, N.F., Jajodia, S.: Exploring steganography: seeing the unseen. Computer
31(2), 26–34 (1998)

14. Khalind, O.S., Hernandez-Castro, J.C., Aziz, B.: A study on the false positive rate
of Stegdetect. Digit. Invest. 9(3), 235–245 (2013)

15. Oberheide, J., Miller, C.: Dissecting the android bouncer. In: SummerCon (2012)
16. O’Kane, P., Sezer, S., McLaughlin, K.: Obfuscation: the hidden malware. IEEE

Secur. Priv. 9(5), 41–47 (2011)
17. Petitcolas, F.A., Anderson, R.J., Kuhn, M.G.: Information hiding-a survey. Proc.

IEEE 87(7), 1062–1078 (1999)
18. Pfitzmann, B.: Information hiding terminology. In: Anderson, R. (ed.) IH 1996.

LNCS, vol. 1174, pp. 347–350. Springer, Heidelberg (1996)
19. Provos, N., Honeyman, P.: Hide and seek: an introduction to steganography. IEEE

Secur. Priv. 1(3), 32–44 (2003)
20. Provos, N., Honeyman, P.: Detecting steganographic content on the internet. Tech-

nical report, Center for Information Technology Integration University of Michigan
(2001)

21. Rastogi, V., Chen, Y., Enck, W.: AppsPlayground: automatic security analysis of
smartphone applications. In: Proceedings of the Third ACM Conference on Data
and Application Security and Privacy CODASPY ’13, pp. 209–220. ACM, New
York (2013)

22. Rastogi, V., Chen, Y., Jiang, X.: Droidchameleon: evaluating android anti-malware
against transformation attacks. In: Proceedings of the 8th ACM SIGSAC Sympo-
sium on Information, Computer and Communications Security ASIA CCS ’13,
pp. 329–334. ACM, New York (2013)

23. Shabtai, A., Tenenboim-Chekina, L., Mimran, D., Rokach, L., Shapira, B., Elovici,
Y.: Mobile malware detection through analysis of deviations in application network
behavior. Comput. Secur. 43, 1–18 (2014)

24. Suarez-Tangil, G., Tapiador, J.E., Lombardi, F., Pietro, R.D.: Thwarting Obfus-
cated malware via differential fault analysis. IEEE Comput. 47(6), 24–31 (2014)

25. Suarez-Tangil, G., Tapiador, J.E., Peris, P., Ribagorda, A.: Evolution, detection
and analysis of malware for smart devices. IEEE Commun. Surv. Tutorials 16(2),
961–987 (2014)

26. Suarez-Tangil, G., Tapiador, J.E., Peris-Lopez, P., Blasco, J.: Dendroid: a text
mining approach to analyzing and classifying code structures in android malware
families. Expert Syst. Appl. 41(1), 1104–1117 (2014)

27. Upham, D.: Jsteg (1997). http://www.tiac.net/users/korejwa/jsteg.htm
28. Wang, K., Parekh, J.J., Stolfo, S.J.: Anagram: a content anomaly detector resistant

to mimicry attack. In: Advances in Intrusion Detection. pp. 226–248 (2006)
29. Westfeld, A.: F5-A steganographic algorithm. In: Moskowitz, I.S. (ed.) IH 2001.

LNCS, vol. 2137, p. 289. Springer, Heidelberg (2001)
30. Zhou, Y., Jiang, X.: Dissecting android malware: characterization and evolution.

In: IEEE Symposium on Security and Privacy. pp. 95–109 (2012)

http://www.tiac.net/users/korejwa/jsteg.htm

A Lightweight Security Isolation Approach
for Virtual Machines Deployment

Hongliang Liang(&), Changyao Han, Daijie Zhang,
and Dongyang Wu

Beijing University of Posts and Telecommunications, Beijing, China
{hliang,changyao}@bupt.edu.cn

Abstract. Cloud computing has changed the way of IT services; virtualization
technology is the foundation of it, which directly affects the security and reli-
ability of the cloud computing platform. From the point of virtualization tech-
nology security, we study to integrate mandatory access control mechanism into
virtual machines deployment to control resources available for virtual machines,
design and implement a lightweight MAC-based strong isolation and migration
approach between virtual machines. Experiments show that our method is
effective in isolation and migration, and with less performance overload.

Keywords: Virtualization � Hypervisor � Isolation � Migration � Mandatory
access control

1 Introduction

Cloud computing cause a profound impact on the way of IT resources management and
utilization. Providers can easily adjust the allocation of resources and services archi-
tecture, such as Amazon AWS [1], Microsoft Azure [2] and Google Cloud Platform
[3]. So customers can require resources according to their own need. With the rapid
development of cloud computing services, Cloud computing customers are increas-
ingly concerned about their services security. However, traditional well-known pro-
tection methods are not well suited. Physical isolation achieves security protection
through spatial separation between networks or computer equipment. Firewalls
establish security gateway between Internet and Intranet to audit network traffic packets
to implement security isolation. Intrusion detection systems can be deployed to monitor
the health of the network and systems, attempting to detect a variety of attacks, so new
security mechanisms are needed for layering, clustering and adjusting cloud computing
infrastructure [4].

In this paper, we study to utilize the Linux kernel’s Mandatory Access Control
(MAC) [5] security mechanism to secure virtual machines deployments, provide strong
isolation between guest virtual machines (VM), thus securing cloud computing plat-
form at the infrastructure level.We make the following contributions in this paper:

First, we design and implement a lightweight secure isolation method for virtual
machines deployment. We integrate mandatory access control mechanism into libvirt to
control resources available to guests VM, implementing strong isolation between
guests VM.

© Springer International Publishing Switzerland 2015
D. Lin et al. (Eds.): Inscrypt 2014, LNCS 8957, pp. 516–529, 2015.
DOI: 10.1007/978-3-319-16745-9_28

Second, we design and implement a trusted channel mechanism to secure virtual
machines migration. We introduce security label in socket communication to ensure
VM migration secure.

The remainder of this paper is organized as follows. Section 2 describes our
motivation. Section 3 presents the design method. Implementation is detailed in Sect. 4.
We evaluate the system in Sect. 5, including isolation, migration, and performance.
Section 6 describes related work. We conclude in Sect. 7.

2 Virtualization Security Analysis

According to different demand, Virtualization technology can be divided into processes
virtualization, server virtualization, network virtualization and storage virtualization.
We focus on server virtualization in the paper. As the basis for cloud computing,
virtualization technology enables customers to deploy multiple virtual machines on a
single hardware, which are managed by the virtual machine monitor (hypervisor) [7].

Virtual machine monitor can be divided into two types:

Type I: Monitor runs directly on the host physical hardware, providing customers with
virtual machines runtime environment, such as Xen [8], VMWare ESXi [9].

Type II: Monitor runs on the host operating system as an application program, such as
QEMU/KVM [10], VirtualBox [11].

Virtual machine monitor is a privileged program, which deploys multiple guest
virtual machines on the same hardware, and isolates each guest virtual machines.
Isolation protection reduces the security threats from attackers and malicious programs,
however, virtualization environment faces new attacks, for example, the virtualization
layer between host system/hardware and virtual machines is becoming the new attack
target. An attacker could exploit the vulnerability of hypervisor to attack virtualization
platform, host and other virtual machines on the same platform, causing serious threats,
as shown in Fig. 1.

hypervisor

kernel

hardware

VM1 VM2

Fig. 1. Virtualization platform security threats

A Lightweight Security Isolation Approach for Virtual Machines Deployment 517

Therefore, the security isolation is growing the focus of virtualization security
researchers and attackers. Attackers use virtual machine escape and other attack
methods to threat the reliability of virtualization isolation [12]. At the same time, some
research projects, such as HyperSentry [13], HyperSafe [14], CloudVisor [15], aim to
reinforce the hypervisor, which undoubtedly increase the complexity of hypervisor
software, thus cause potential security threat. Another research projects (NOVA [16],
NoHype [17], etc.) split the privileged function of virtualization layer and reduce the
risk of threats, while involve big change to existing virtualization solutions. sHype
[18], sVirt [19] integrate MAC mechanism to enhance hypervisor security but are
complex. Our major idea is inspired by sHype and sVirt.

In this paper, we will use the host system’s security mechanisms to enhance the
security of isolation in type II virtualization environment. Our method directly uses
Linux kernel existing MAC security mechanism to reinforce isolation, without making
any change to hypervisor software. we utilize Linux kernel’s SMACK [6] module to
implement lightweight MAC-based security isolation for virtual machines deployment.

3 Design Overview

Mandatory access control is a kind of system security mechanism, and is implemented in
Linux kernel based on Linux Security Module (LSM) [20] framework. Typically, we can
useMACmechanism to control subject (such as process) access to the object (such as file or
other process). Access control to processes in host system and isolation to virtual machines
deployed in cloud platform is similar. For example, different guest virtual machines run as
the processes of host system, and need to be controlled to access image files and other
resources on host. Therefore, we use host system’s MAC mechanism to reinforce isolation
protection between virtual machine processes. When deploying and running virtual
machines, different virtual machine processes will be controlled to only access their own
corresponding image files and related resources, thus achieving strong isolation.

Our system is built on QEMU/KVM hypervisor in Linux, to use Linux’s SMACK
module to reinforce the isolation of guest virtual machines, controlling resources
available to guests. In virtual machines deployment, we mark each guest virtual machine
process with unique SMACK security label, and its corresponding image file and
resources are marked with the same label, therefore the guest process can only access the
guest image file and resources with the same security label, as shown in Fig. 2.

We implement and add SMACK security driver into the virtualization management
library libvirt [21]. SMACK security driver is in charge of linking libvirt with SMACK
module in kernel. Through integrating SMACK-based mandatory access control
mechanism and implementing trusted migration channel into the virtual machines
deployment management, we can guarantee the security of isolation and easy to deploy
features, thus improving the security of virtualization-based cloud computing platform.

4 Implementation

In this section, first, we add SMACK security driver into libvirt, described in Sect. 4.1.
Second, we present how to integrate SMACK mandatory access control mechanism

518 H. Liang et al.

into virtual machines deployment in Sect. 4.2. Finally, we describe the implementation
of SMACK-labelled trusted migration channel in Sect. 4.3.

4.1 SMACK Security Driver Module for Libvirt

Libvirt is a virtualization management library, which supports a variety of hypervisors
by integrating back-end drivers, including QEMU/KVM, Xen, etc. Libvirt provides a
set of API and users can build tools to manage virtual machines, such as virsh, virt-
manager.

Libvirt consists of various driver modules. In order to integrate SMACK mandatory
access control into virtual machines deployment, we design to add SMACK security
driver module into libvirt. In virtual machines deployment, SMACK security driver
module will work with other driver modules such as hypervisor driver, storage driver to
manage SMACK label, as shown Fig. 3.

We implement SMACK security driver for libvirt to support SMACK kernel
module. Below we describe the main functions implementation of SMACK security
driver, including security label generation, process label management, image files label
management and socket label management.

Security label generation. When using libvirt to deploy virtual machines, different
guest virtual machines are assigned with different security labels, so we construct
SMACK label (of ASCII strings type) based on the UUID of each virtual machine. In
libvirt, a guest virtual machine’s configuration is stored in the structure _virDomain-
Def, whose member uuid [VIR_UUID_BUFLEN] saves the UUID of the virtual

hypervisor

libvirt

kernel

SMACK

hardware

image1 image2

* *

VM1 * VM2*

Fig. 2. MAC-based security isolation (* represents SMACK security label)

A Lightweight Security Isolation Approach for Virtual Machines Deployment 519

machine, we constructed virtual machine SMACK label through adding UUID with
SMACK_PREFIX, namely SMACK_PREFIX_UUID. SmackGenSecurityLabel()
implements the function.

Process label management. Linux system provides /proc/PID/attr interface to get/set
process security attributes. The content of /proc/PID/attr/current interface is the security
label of process PID and the process can set its own security label via writing security
label to the interface. In SMACK security driver, we implement SmackSet-
SecurityProcessLabel() and SmackSetSecurityChildProcessLabel() function to set
process security labels. SmackSetSecurityProcessLabel() calls smack_set_label_for_
self() function to directly write security label to /proc/PID/attr/current interface. When a
process creates a child process, the security label of parent process and child process
are consistent by default, SmackSetSecurityChildProcessLabel() function is used to set
the security label of child process different with the parent process.

Image files label management. The SMACK security label of files is stored in the
extended attribute (security.SMACK64) of file system. To mark image files with
security label, we need to write the security label information to the attribute security.
SMACK64 of image files. In SMACK security driver, we implement SmackSetSe-
curityImageLabel() and SmackRestoreSecurityImageLabel() to manage image file’s
security label, the former is responsible to mark image files’ security label when virtual
machines start, the latter to reset image files’ security label to default values when
virtual machines close. In order to write security label to the extended attribute of
image file, the key is to locate the image position, libvirt provides structure _virDo-
mainDiskDef to store virtual machine configuration information, whose member field

VM

hardware

hypervisor

libvirt

kernel

SMACK

libvirt driver

hypervisor driver

security driver

storage driver

libvirt API

virsh virt-manager

SMACK driver

Manage and verify label

Manage process label

Manage image files label

Manage socket label

Other function for label
image

QEMU/KVM driver

Xen driver

VM

image

Fig. 3. Libvirt driver modules

520 H. Liang et al.

src points to the location of the image file. SmackSetSecurityImageLabel() use setattr()
to write security label to the security.SMACK64 attribute of image file. SmackRe-
storeSecurityImageLabel() uses the same method to locate image file and reset its
security label to the default.

Socket label management. Because Linux system does not provide socket security
attribute interface for SMACK in /proc/PID/attr, we modify the Linux kernel and add
two interfaces (/proc/PID/attr/sockoutcreate and /proc/PID/attr/sockincreate) to set
socket SMACK security label. After a process writes SMACK label to /proc/PID/attr/
sockoutcreate, the process create socket, which sends packets carrying the security label.
For SMACK label written in /proc/PID/attr/sockincreate interface, SMACK will com-
pare it with the label stored in received packets and determine whether to accept them
according to the access rules. If sockoutcreate and sockincreate interfaces are empty,
then packets will carry default security label and SMACK will also use the default label
to make access control decision. Function SmackSetSecuritySocketLabel() and
SmackSet- SecurityDaemonSocketLabel() are added to write SMACK label to /proc/
PID/attr/sockoutcreate and /proc/PID/attr/sockincreate interfaces. We will discuss the
details of sockoutcreate and sockincreate in Sect. 4.3.

4.2 Integrating SMACK Mechanism to Libvirt

SMACK is designed to provide a lightweight mandatory access control mechanism.
Subject (such as process) and Object (such as file) need to be marked with security
labels. The default SMACK security policy restricts that only when the subject and
object have the same label, the subject can access read/write/execute/append (r/w/x/a)
the object.

In Sect. 4.1, we implement SMACK security driver for libvirt and it will be
registered and initialized by daemon libvirtd on startup. In order to integrate SMACK
mandatory access control to virtual machines deployment, virtual machine process,
image files and other resources should be marked with SMACK security label. Libvirt
uses hook functions to call SMACK security driver when virtual machines are started
by libvirt. At runtime, virtual machine process and image file will have the same
SMACK security label, so SMACK mandatory access control mechanism will take
effect, as shown in Fig. 4.

Hook functions to set security label. In libvirt, function qemuProcessStart() is
responsible to start the virtual machine. During startup, virtual machine boot process
and image files will be set SMACK security label by different hook functions, which
are called during two phases, the initialization phase and the setup phase.

In initialization phase, hook function virSecurityManagerGenLabel() initializes
security label, it actually call SMACK security driver function SmackGenSecurity-
Label() to generate and save security labels for process, image files and other resources.
Function virSecurityManagerSetChildProcessLabel() will initialize security label for
child process, it actually call SMACK security driver function SmackSetSecurity-
ChildProcessLabel() to save specific security labels for the child process.

A Lightweight Security Isolation Approach for Virtual Machines Deployment 521

In setup phase, libvirt main process first creates a child process as virtual machine
boot process, and then enters wait state, the child process will call function smack_-
set_label_for_self() to write security label to /proc/PID/attr/current. Then, the virtual
machine boot process will possess security label, then notifies the parent process and
enters wait state. The parent process will wake up and call function virSecurityMan-
agerSetAllLabel() to mark image files and other resources, which actually calls
SMACK security driver SmackSetSecurityImageLabel() and other functions. Finally,
parent process notifies child process, the child process (boot process) will access image
file to start virtual machine. As shown in Fig. 5.

hypervisor

kernel

hardware

VM

libvirt libvirtd SMACK driver hook

SMACK

image

*

*

Fig. 4. Integrating SMACK mechanism with Libvirt (* represents SMACK security label)

Fig. 5. The process of starting VM in libvirt

522 H. Liang et al.

4.3 Migrating Virtual Machines Under Trusted Access Control

Libvirt supports hypervisor (QEMU/KVM) for VM’s non-shared storage live migration
[22]. To provide secure migration between source host and destination host, we use
SMACK security driver to control the migration. As shown in Fig. 6, guest virtual
machine running on the source host has security label. When migration happens, a socket
link will be established between the source and destination hosts. At source host,
SMACK driver uses CIPSO [23] to carry security label in packets. At destination host,
SMACK driver extracts security label from received packets, judge whether the label
meet SMACK security policies, if meet, it will receive the packets to prepare virtual
machine, if not, it will discard the packets. When the migration is completed, the VM on
the source host stops running, the migrated VM will continue running on the destination
host, with the same running state and same security label as running on the source host.

Supporting socket label in SMACK. In Sect. 4.1, we mention to add Linux kernel
with /proc/PID/attr/sockoutcreate and/proc/PID/attr/sockincreate interfaces for setting
socket security. We will discuss it in detail. SMACK module is implemented based on
LSM framework, process-related SMACK label is saved in structure task_smack,
whose member field smk_task corresponding to/proc/PID/attr/current, we add two
members smk_sk_in and smk_sk_out corresponding to/proc/PID/attr/sockincreate and/
proc/PID/attr/sockoutcreate, modified structure task_smack is shown in Fig. 7. More-
over, we modify function smack_sk_alloc_security() to examine smk_sk_in and
smk_sk_out before setting socket label. Other functions such as smack_getprocattr()
and smack_setprocattr() are also modified to add support for sockincreate and
sockoutcreate.

*

SMACK-Labelled
CIPSO Tunnel

hypervisor

libvirt

hardware

VM

kernel

SMACK
driver

SMACK

image

*

*

hypervisor

libvirt

hardware

VM

kernel

SMACK
driver

SMACK

*

image
*

Fig. 6. VM migration under trusted access control (* represents SMACK security label)

A Lightweight Security Isolation Approach for Virtual Machines Deployment 523

Trusted migration channel. Non-shared storage live migration is supported through
ensuring both virtual machine image files and runtime status to be migrated between
different hosts. Libvirt will call QEMU to perform “drive-mirror” and “migrate”
command to implement migration respectively. As described in last paragraph, the data
packets of image files and runtime status will be sent with carrying SMACK-based
CIPSO security information, so a trusted communication channel will be established
between the source host and destination host.

5 Evaluation

We complete the development based on libvirt-1.1.4 on Linux (Kernel 3.11.10)
QEMU/KVM virtualization platform, comprising of 1847 LOC for libvirt and 41 LOC
for Linux kernel. We build experiment environment as follows, host is Fedora 20 with
hardware Intel Core 2 Duo CPU T6670@2.20 GHz and 4 GB memory, hypervisor is
QEMU 1.4.2, guest virtual machine is Fedora cloud image [24] with one core plus
512 MB memory.

5.1 Isolation

First, we will verify that each running guest virtual machine process and its corre-
sponding image file have the same SMACK security label and different virtual
machines with different security labels. We start guest virtual machine fedora-01 and
fedora-02, as shown in Fig. 8, two virtual machines are running simultaneously.

struct task_smack {
struct smack_known * smk_task; // label for access control
struct smack_known * smk_forked; // label when the fork
struct smack_known * smk_sk_in; // label for socket in
struct smack_known * smk_sk_out; // label for socket out
struct list_head smk_rules;
struct mutex smk_rules_lock;
};

Fig. 7. Structure task_smack in SMACK

Fig. 8. Virtual Machines fedora-01 and fedora-02 run simultaneously

524 H. Liang et al.

Since we employ QEMU as hypervisor, each virtual machine process is QEMU
process. Different virtual machine processes have different SMACK Security labels, as
shown in Fig. 9.

Figure 10 shows the security labels of virtual machine image files. Comparing with
Fig. 9, the security label of each virtual machine process is consistent with the cor-
responding image file. SMACK will ensure virtual machine process only access the
image files with same label, thus achieving strong isolation between virtual machines in
deployment.

To test mandatory access control for virtual machines isolation deployment, we use
libvirt to start virtual machine and intentionally mark image file with different security
labels from virtual machine boot process. In such a case, we simulate that a guest
process attacks other guest images. When virtual machine boot process try accessing
image file to start virtual machine, SMACK mandatory access control mechanism will
prevent boot process access image file, resulting in virtual machine failing to start
(Permission denied), as shown in Fig. 11.

Fig. 10. The SMACK labels of VM fedora-01 and fedora-02 image files

Fig. 9. The SMACK labels of running VM fedora-01 and fedora-02

Fig. 11. VM processes fail to access image files

A Lightweight Security Isolation Approach for Virtual Machines Deployment 525

Above experiments show that SMACK provides a lightweight mandatory access
control mechanism, which simplifies security policy configuration. Security policy
requires subject (virtual machine process) to access object (resources) when both have
the same security label. Security policies are customized and extended by modifying
the configuration files.

5.2 Migration

QEMU supports non-shared storage live migration. Because we integrate SMACK
security driver into libvirt, source host and destination host establish SMACK-labelled
CIPSO tunnel to migrate image files and runtime state. After migration, virtual machine
running on destination host has the same security label as the one on source host.

When migration is completed, fedora-02 VM stops on source host and runs on
destination host. Figure 12 shows the security label of fedora-02 process and image file
on destination host. Comparing with Figs. 9 and 10, it is consistent with the security
labels when running on source host.

5.3 Performance

We measure the overhead introduced by MAC-based security isolation protection for
performance evaluation. For a throughout evaluation, we consider the start-up time of
guest OS, application benchmarks, and micro-benchmark as evaluation factors.

Guest OS start-up time. We test virtual machines start-up time in three scenarios:
without security driver, with SELinux security driver [19] and with SMACK security
driver.

Fig. 12. The SMACK label of VM fedora-02 after migration

Table 1. Comparison of VM start-up time

Security driver Start-up time (Overhead ratioa)

Without 13.4 s (0 %)
With SELinux 13.65 s (1.8 %)
With SMACK 13.46 s (0.4 %)
a Overhead ratio = (without/with security driver time - without
security driver time) ÷ without security driver time

526 H. Liang et al.

As shown in Table 1, integrating security driver to libvirt causes extra time over-
head in starting VM, due to the need to mark virtual machines boot process, image files
and other resources with security label during VM start-up. Overhead with SMACK is
less than the case with SELinux since of its lightweight design.

Application benchmarks. We perform application-level tests to measure the impacts
on guest OS due to host MAC-based security mechanism’s. We compile the Linux
3.11.10 kernel to evaluate performance. Figure 13 shows the normalized performance
results of the case with SELinux protection and the case with SMACK protection using
pure kernel (without any MAC protection) as baseline. Overall, MAC-based security
mechanism introduces performance less 1 % overhead. And, SMACK has less over-
head than SELinux.

Microbenchmark. We use UnixBench [26] to test the guest VM performance. The
final scores for the cases without MAC, with SELinux, and with SMACK, are
respectively 460, 458.2(0.4 % downgrade), and 459.7(0.06 % downgrade). The results
is consistent with the previous application-level test, SMACK has better performance.

In conclusion, MAC-based security isolation mechanism results in performance
overhead, Comparing SELinux and SMACK, SMACK introduces less overhead and
provides a lightweight method for security isolation.

6 Related Work

Aiming at the security of hypervisor, HyperSentry [13] proposed a monitor program
about the integrity of the virtual machine monitor. It developed a specific framework to
evaluate the integrity of privileged part of virtualization layer. HyperSafe [14] proposed
a lightweight protection solution for the type I virtual machine monitor, making the
monitor has a self-protection ability to maintain own integrity. CloudVisor [15] used
nested virtualization technology to guard the virtual machine monitor, achieving to
protect the confidentiality and integrity of virtual machines in a cloud environment.

NOVA [16] established a microkernel-based virtual machine monitor, to minimize
the size of the privileged program using user space virtualization technology. It changed

50%

60%

70%

80%

90%

100%

Linux kernel compilation

with SELinux

with SMACK

Fig. 13. The performance comparison of application benchmarks

A Lightweight Security Isolation Approach for Virtual Machines Deployment 527

the traditional monolithic structure into component-based and enforced the least privi-
lege principle to different components. NoHype [17] removed the virtualization layer to
reduce the security threats of the virtual machine monitor. The method utilized hardware
virtualization to establish virtualization execution environment, each virtual machine
was locked to a unique processor unit, using hardware to fixe memory allocation. As no
needing monitor to control the virtual device, it reduced the threat surface.

There were studies to use mandatory access control mechanism to enhance
hypervisor security. sHype [18] implemented mandatory access control based on the
Xen hypervisor, sVirt [19] integrated SELinux into virtual machines deployment in
QEMU/KVM hypervisor to achieve mandatory access control.

7 Conclusions

Providing suitable access and communication protection for virtual machines is crucial
in cloud computing platform. We design and implement a lightweight mandatory
access control approach for virtual machines deployment. We reform libvirt library to
integrate the Linux kernel’s SMACK mechanism into QEMU/KVM virtualization
environment, provide a lightweight MAC-based security isolation approach to control
resources available for guests, and implement a SMACK-labelled trusted channel to
secure virtual machines migration, thus enhancing the security of cloud computing
platform at the infrastructure level.

References

1. Amazon Web Services. http://aws.amazon.com/cn/
2. Microsoft Azure. http://azure.microsoft.com/zh-cn/
3. Google Cloud. https://developers.google.com/cloud/
4. Grobauer, B., Walloschek, T., Stocker, E.: Understanding cloud computing vulnerabilities.

IEEE Secur. Priv. 9, 50–57 (2011)
5. http://en.wikipedia.org/wiki/Mandatory_access_control
6. SMACK Project. http://schaufler-ca.com/
7. http://en.wikipedia.org/wiki/Hypervisor
8. Xen project. http://www.xenproject.org/
9. https://www.vmware.com/cn/products/vsphere/features/esxi-hypervisor.html
10. KVM project. http://www.linux-kvm.org/
11. Vitrualbox project. https://www.virtualbox.org/
12. Elhage, N.: Virtunoid: Breaking out of KVM, Black Hat USA (2011)
13. Azab, A.M., Ning, P., Wang, Z., Jiang, X., Zhang, X., Skalsky, N.C.: HyperSentry: enabling

stealthy in-context measurement of hypervisor integrity. In: Proceedings of the 17th ACM
Conference on Computer and Communications Security, pp. 38–49 (2010)

14. Wang, Z., Jiang, X.: HyperSafe: a lightweight approach to provide lifetime hypervisor
control-flow integrity. In: Proceedings of the 2010 IEEE Symposium on Security and
Privacy, pp. 380–395 (2010)

15. Zhang, F., Chen, J., Chen, H., Zang, B.: Cloudvisor: retrofitting protection of virtual
machines in multi-tenant cloud with nested virtualization. In: Proceedings of the 23th ACM
Symposium on Operating Systems Principles, pp. 203–216 (2011)

528 H. Liang et al.

http://aws.amazon.com/cn/
http://azure.microsoft.com/zh-cn/
https://developers.google.com/cloud/
http://en.wikipedia.org/wiki/Mandatory_access_control
http://schaufler-ca.com/
http://en.wikipedia.org/wiki/Hypervisor
http://www.xenproject.org/
https://www.vmware.com/cn/products/vsphere/features/esxi-hypervisor.html
http://www.linux-kvm.org/
https://www.virtualbox.org/

16. Steinberg, U., Kauer, B.: NOVA: a microhypervisor-based secure virtualization architecture.
In: Proceedings of the 5th European Conference on Computer Systems, pp. 209–222 (2010)

17. Keller, E., Szefer, J., Rexford, J., Lee, R.B.: NoHype: virtualized cloud infrastructure
without the virtualization. ACM SIGARCH Comput. Archit. News 38, 350–361 (2010)

18. Sailer, R., Jaeger, T., Valdez, E., Caceres, R., Perez, R., Berger, S., Griffin, J.L., van Doorn,
L.: Building a MAC-based security architecture for the Xen open-source hypervisor. In:
Proceedings of the 21st Annual Computer Security Applications Conference, pp. 276–285
(2005)

19. sVirt project. http://selinuxproject.org/page/SVirt/
20. Morris, J., Smalley, S., Kroah-Hartman, G.: Linux security modules: general security

support for the linux kernel. In: USENIX Security Symposium (2002)
21. libvirt project. http://libvirt.org/
22. http://wiki.libvirt.org/page/NBD_storage_migration
23. https://tools.ietf.org/id/draft-ietf-cipso-ipsecurity-01.txt
24. http://fedoraproject.org/zh_CN/get-fedora#clouds
25. SELinuxproject. http://selinuxproject.org/page/Main_Page
26. http://code.google.com/p/byte-unixbench/

A Lightweight Security Isolation Approach for Virtual Machines Deployment 529

http://selinuxproject.org/page/SVirt/
http://libvirt.org/
http://wiki.libvirt.org/page/NBD_storage_migration
https://tools.ietf.org/id/draft-ietf-cipso-ipsecurity-01.txt
http://fedoraproject.org/zh_CN/get-fedora#clouds
http://selinuxproject.org/page/Main_Page
http://code.google.com/p/byte-unixbench/

A Novel Approach to True Random Number
Generation in Wearable Computing
Environments Using MEMS Sensors

Neel Bedekar1(&) and Chiranjit Shee2

1 Institute for Interdisciplinary Information Sciences, Tsinghua University,
FIT Building, 1-208, Beijing 100084, China

neel.bedekar@gmail.com
2 Airbus Industrie, Xylem Building, Mahadevapura, Bangalore 560038, India

Abstract. Micro Electro Mechanical Systems (MEMS) sensors (accelerometer,
gyroscope, and compass) offer a practical approach for true random number
generation. Entropy values of 0.99 close to theoretical value of 1, and large
Kullback-Leibler distances were obtained in this study [1]. The main contri-
bution of this work was the generation of high quality random number strings,
when the MEMS sensor was at complete rest, a configuration in which these
sensors were heretofore considered to be inadequate. This was accomplished by
using the initial noise in the sensing mechanisms for the MEMS sensors. The
compass output stream passed the highest number of NIST Tests; 11/15 and 14/
15 under stationary and complete motion, respectively [2–4]. Short burst (<1 s)
strings passed 13 out of 15 NIST tests, and applying the Barak-Impagliazzo-
Wigderson recursive extractor led to successful results in all 15 NIST tests.
Interleaving MEMS output with audio resulted in a string that passed 14 out of
15 NIST tests.

Keywords: MEMS � Invensense � Nasiri � Accelerometer � Gyroscope �
Compass � Random number � Entropy � NIST � Kullback-Leibler � Extractor �
Von neumann � Barak-Impagliazzo-Wigderson � Audio

1 Introduction

Random numbers play a key role in information security. They are used in the gener-
ation of encryption keys and inputs to cryptographic functions. The most common use of
random numbers is in generating the encryption keys for symmetric protocols like DES
(Data Encryption Standard) and the asymmetric standards like ECC (Elliptical Curve
Cryptography) [5]. Both encryption techniques rely on the strength of the random
number generation, and any weakness or bias can be exploited to attack the system.

Wearable computing is generally considered as the next frontier of technology
innovation. The Apple watch, Samsung Gear and Moto 360 are first versions of
products that are expected to see widespread application. The total worldwide market
for computers was 296 million units in 2013, while cell phone shipments reached 1.8
billion units [6]. The wearable computing market is expected to reach 19 million units
in 2014. In the next 5–10 years due to the vast increases in features, the total market for

© Springer International Publishing Switzerland 2015
D. Lin et al. (Eds.): Inscrypt 2014, LNCS 8957, pp. 530–546, 2015.
DOI: 10.1007/978-3-319-16745-9_29

wearable devices and mobile phones is expected to cross 3 billion units [7]. It is vitally
important to have a secure source of random number generation in wearable computing
environments. The key challenges are small form factor, battery life constraints, and the
lack of the traditional sources of random number generation due to the limitations in
electronics that can be incorporated into the wearable device.

Micro Electro Mechanical System (MEMS) based sensors are ubiquitous in cell
phones, gaming devices, and wearable electronics. For example, MEMS sensors are
used to understand a phone’s position and rotate the screen appropriately. MEMS based
motion sensors (accelerometers, gyroscopes and compass) are excellent candidates for
true non-deterministic random number generation in these environments. iSuppli
estimates that the number of accelerometers shipped has grown from 700 million in
2009 to 2.3 billion in 2013 [8]. Every wearable computing device (phones, watches,
medical sensors) is expected to have MEMS based motion sensors given their low cost
(<$ 1), small form factor and the ability to integrate with existing semiconductor
electronic circuitry. MEMS sensors are thus ideal high entropy sources to generate
random numbers [9].

2 Random Number Generation

Pseudo Random Number Generators (PRNG) rely on algorithms and are generated by
specific computational formulae. PRNGs are deterministic and can be generated in a
fast manner. However, they provide an easier hurdle for an adversary in that once the
computation formulae are compromised, an attacker can gain access to the random
number output [10].

True Random Number Generators (TRNGs) rely on a physical source of ran-
domness that exists in nature or on the circuitry to generate the output. By its very
nature, TRNGs are much more secure, since the hurdle for an attacker is substantially
higher. Even if an adversary gains insight into the process of generating TRNGs, it is
very difficult to model the output [11].

TRNGs have been obtained from numerous physical phenomena; white noise,
keystrokes, radioactive decay measurements, and audio input to name a few. Until the
early 2000s, it was unfeasible to use motion sensors, since the underlying technology
(piezoresistive effect and capacitive accelerometers) was expensive and could not fit
into a small form factor [12, 13].

2.1 Background Research

Silicon MEMS are a relatively new invention, and only in the last seven years have
they begun to see widespread adoption with the smart phone revolution. Voris, Saxena
and Halevi in 2011 were the first to show true random number generation in RFID tags
using accelerometers [9]. They achieved speeds up to 85 bits/s. Lauradoux, Ponge and
Roeck developed an entropy estimation algorithm for the iPhone accelerometer,
gyroscope and compass sensors in 2011 [14]. Their work focused mainly on the
entropy estimation, and they did not evaluate the properties of the random number
strings generated. There is significant literature in using the accelerometers as a source

A Novel Approach to True Random Number Generation 531

of entropy in providing key exchange protocols for interactions between mobile
devices. Groza and Mayrhofer developed several protocols for secure key exchange
[15]. Studer, Passaro and Bauer developed the “Shake on it” protocol for secure
exchange between mobile devices [16]. Chagnaadorj and Tanaka developed acceler-
ometer based gesture input encryption schemes to facilitate secure exchange between
mobile devices [17]. Several researchers have used physical noise to study random
number generation. Zhou et al., studied the generation of true random numbers using
mouse movement [18]. Chen I-Te studied the random number generation from audio
and video sources and found that 98 % of the data passed all the NIST tests [13].

2.2 Research Goals

The first iPhone launched in 2007 only featured a 3 axis accelerometer. Compass
sensors were incorporated into iPhone 3G in June 2009, and gyroscopes saw adoption
in iPhone 4 (Sept. 2010). Due to the newness of the high sensitivity MEMS sensors,
their use in true random number generation has not been studied in literature. Given
this gap in research, the goal of this study was to evaluate all three sensors, and
benchmark the NIST Test Suite performance of the resulting random number strings.
An additional goal of this work was to evaluate the combination of uncorrelated
entropy sources such as the microphone with the MEMS sensor output.

2.3 Silicon Micro Electro Mechanical Systems Sensors (MEMS)

The advent of silicon MEMS has radically expanded the market for motion sensing.
MEMS sensors are typically built on top of CMOS circuitry (Complementary Metal
Oxide Semiconductor), and are thus able to leverage the cost advantages, die shrinkage
and computing power due to all the CMOS developments of the last forty years [19].
This study used MEMS sensors from InvenSense Inc., which use the patented Nasiri
fabrication process, a state of the art vertical integration of MEMS with CMOS cir-
cuitry that allows for a very small form factor package, industry leading accuracy, and
low cost [20] (Fig. 1).

MEMS accelerometers are based on the motion of a proof mass attached to a
mechanical anchor in a bulk substrate. If the proof mass sees an acceleration it
experiences a motion that can be measured due to capacitance change between the
proof mass and reference electrode [22, 23].

MEMS gyroscopes are the most complicated sensors with a much higher manu-
facturing requirement than accelerometers. A proof mass within the sensor is driven
into oscillation by an actuator. When the sensor is rotated it experiences a Coriolis
force, which depends on the orientation of the angular velocity with the velocity of the
proof mass. The Coriolis force, velocity of the proof mass and the angular motion are
perpendicular to each other. A sensing of this Coriolis force leads to the measurement
of angular velocity [24].

MEMS magnetic field sensors are based on the Hall effect, which is the voltage
gradient produced in an electrical conductor when a magnetic field is applied in a
direction perpendicular to the electric field. The output voltage is directly proportional
to the magnetic field [25] (Fig. 2).

532 N. Bedekar and C. Shee

3 Experimental Methods

The MPU 9250 outputs three axes accelerometer, gyroscope and compass data with 9
degrees of precision after the decimal point via a Bluetooth interface. The MPU 9250
allows a Bluetooth access with a resolution of 16 bits and gyroscope, accelerometer and
compass ranges of ±2000 dps, ±16 g and ±4800 μT The python utility supplied with
the Software Development Kit (SDK) was used for data collection. For the audio input,
we utilized the microphone of an iPhone 5 and “I said what” app from Tapparatus to
collect the input at 500 % sensitivity (Fig. 3).

Fig. 1. CMOS MEMS Structure(21)

Fig. 2. MEMS Sensors – Principles of operation [26, 27]

A Novel Approach to True Random Number Generation 533

The data was initially collected as csv files (comma separated values) and a python
program was written to read the data from csv files. With 9 digits of precision and 9
columns of data (3 axes for each sensor), 81 potential strings could be used to generate
random numbers. The decimal numbers were converted to binary values by assigning
even numbers to zero and odd numbers to one. The audio output was converted into a.
wav file using a python utility. To convert the.wav file to binary data, we employed the
threshold rule that all values above the mean would represent 1, and all values below
the mean would represent 0.

The suitability of the digits to be used for generating random number strings was
evaluated by two main approaches and appropriate python programs were written for
each method; (1) The string of decimal numbers would have to display average values
close to 4.5 and acceptable mean, skew and kurtosis values, and (2) Kullback-Leibler
(KL) distances between the distributions have to be comparable to or larger than the KL
distances between two random number strings of equal length.

The NIST Test Suite (SP 800-22, Rev 1a) was used for evaluating 15 different tests
of the random number strings [4]. To achieve adequate statistics numerous successive
runs were concatenated together to produce outputs strings of sufficient lengths for the
NIST tests.

This study analyzed the MEMS sensor output for two boundary conditions; com-
plete rest in an enclosure that minimized outside vibrations (most challenging envi-
ronment) and continuous motion (board strapped on the wrist of a player playing ping
pong). The major focus of this study was the complete rest condition, and two main
data collection methods were employed. In the first case, ten measurements of 2 min
each were concatenated to yield a random number string for NIST testing.

When any measurement process is undertaken, there is an initial noise inherent in the
capacitive sensing and Hall effect voltage measurement mechanisms for the accelerom-
eter, gyroscope and compass sensors. After 1–2 s, the noise dies down, and the underlying
values of the sensors are displayed. MEMS sensors have traditionally been thought of as
being severely challenged in the complete rest condition; since there is no motion, there is

Fig. 3. InvenSense MPU 9250 SDK [28]

534 N. Bedekar and C. Shee

no fluctuation in the measured values, and hence no entropy for generating random
number strings. To overcome this problem, this study focused on utilizing the noise
inherent in the measurement process. Rapid measurements (<1 s) were performed and 100
such measurements were concatenated together to yield strings for NIST Test Suite
measurements. Rapid (<1 s) measurements would only capture the noise, and could
provide adequate entropy even when the MEMS sensor was at complete rest.

4 Results

4.1 Data Output – MEMS Sensor Output

Figure 4 shows that the gyroscope sensor output was 10 %–20 % more than the
accelerometer, and the compass sensor output was 70 %–80 % lower than the accel-
erometer. Unlike an accelerometer, which relies on only one proof mass, a gyroscope
works on the analysis of the Coriolis force on a mass set in motion. This requires two
MEMS devices to achieve the required output. Gyroscopes also have to exhibit high
sensitivity because of the smaller magnitude of the Coriolis forces that are being
detected. Higher sensitivities imply more accurate capacitive sensing mechanisms and
hence higher frequency of data output. As a result, 10 %–20 % more harvestable data
was generated from gyroscopes than from accelerometers.

The compass on the other hand works on the Hall effect principle in which a
voltage is generated due to the Lorentz force of an orthogonal magnetic field on a
conductor carrying electrical current. The Hall effect sensing mechanism inherently

0
100
200
300
400

0 1 2 3 4 5 6 7 8 9

F
re

qu
en

cy

Decimal output

0
100
200
300
400
500

0 1 2 3 4 5 6 7 8 9

F
re

qu
en

cy

Decimal output

0

50

100

150

0 1 2 3 4 5 6 7 8 9

F
re

qu
en

cy

Decimal output

Accelerometer Gyroscope

Compass

Fig. 4. Frequency of the decimal output of the 8th digit from the accelerometer, gyroscope, and
compass x axis (MEMS sensor in complete motion)

A Novel Approach to True Random Number Generation 535

generated less random number data (but of a higher quality as later part of this study
will show) than the capacitive sensing mechanism of the accelerometer and gyroscope.

4.2 Speed of Data Extraction

The InvenSense MPU 9250 outputs 43 unique characters in the first five seconds after
the measurement was triggered. The preceding sections have shown that Digits 3 to
Digit 9 past the decimal point can be used to harvest the data. With 3 axes measurement
of the accelerometer, gyroscope and compass values, this gave us an effective output of
500 bits per second even in the most challenging case of the sensor at complete rest.
One of the key disadvantages of true random number generators is the slow output
which renders them difficult to use in statistical or cryptography applications. With an
output of 500 bits/sec, the InvenSense MEMS sensors overcame one of the key dis-
advantages of TRNGs.

4.3 Data Output Over Time Shows an Initial Spike Followed
by a Stabilization

There was a spike in the MEMS sensor data at the start of the measurement (sensor at
complete rest) after which the measurements quickly converged to the stable values due
to the excellent damping circuitry built into today’s MEMS sensors. Figure 5 shows
that at t = 5 s, 43 readings were generated and at t = 120 s, t = 3600, and t = 14,400 s,
there was only a small increase to 60, 114 and 116 data values, respectively. This is one
of the most interesting results of this study and it points to the source of the random
number generation. When the sensor detection process is initiated, there is a significant
spike in readings and 43 unique readings were obtained in the first five seconds. In the
time from 5 s to 120 s, there was only a small increase of 17 unique data values. Due
to the excellent damping circuitry, only a small increase of 54 data values was obtained
in the time period from t = 120 s (2 min) to t = 3600 (1 h). Increasing the data collection
time to 14,400 s (4 h) led to a negligible increase of 2 data values.

3.5

4

4.5

5

5.5

20

40

60

80

100

120

5 10 15 20 25 30 40 50 60 75 90 10
5

12
0

36
00

14
40

0

Unique Values

F
re

qu
en

cy
 o

f s
en

so
r

ou
tp

ut
M

ean of decim
al output

Time (seconds)

//

Fig. 5. Frequency and Mean of the accelerometer x axis output versus data collection time in the
complete rest condition

536 N. Bedekar and C. Shee

When the MEMS sensor is at complete rest, there are two sources of fluctuation in
values; (1) electrical noise inherent in the sensing process for the accelerometer,
gyroscope, and compass sensors and (2) fluctuation in the measured values due to
external vibrations, electrical, audio or other external effects.

The initial spike in the number of data values was most likely due to the noise in the
sensing process of the accelerometer, gyroscope, and compass values. The subsequent
small increase observed over time was due to the excellent damping circuitry built into
the MEMS sensors. Before undertaking this study, it was thought that the random
number generation would most likely be due to fluctuations in the measured values from
the sensors, but this study proved that it was the noise in the measurement process that
caused the initial accumulation of random numbers. State of the art MEMS sensors used
in today’s wearable computing devices have excellent damping circuitry, and it is for-
tuitous that the sensing mechanism was responsible for the bulk of random number
generation. Mean values converged to 4.5 at time intervals of t = 10 s, and stayed fairly
constant after that. Since decimal output is being analyzed, the expected mean is 4.5, and
these results indicate a uniform distribution (Fig. 6).

Skewness ¼
PN

i¼1
ðYi � YmÞ
N � 1ð Þs3 ð1Þ

Ym = mean, s = standard deviation, N = number of data points

Kurtosis ¼
PN

i¼1
Yi � Yð Þ4

N � 1ð Þs4 � 3 ð2Þ

Skewness is a measure of the symmetry of the distribution whereas Kurtosis is a
measure of how peaked is the distribution compared with a normal distribution. Low
kurtosis values indicate a flattish profile. [4]

-1.8

-1.3

-0.9

-0.4

0.1

Time 10 20 30 50 75 105 3600

SkewS
ke

w
 K

urtosis

Time (seconds)

Fig. 6. Skew and Kurtosis for the accelerometer x axis versus data collection time in the
complete rest condition

A Novel Approach to True Random Number Generation 537

The skew and kurtosis parameters stayed fairly constant for all data collection
times. A perfectly random distribution of decimal characters would show skewness and
kurtosis values of 0 and *−1.2. Even with time spans as small as 5 s, the observed
values were very close to the ideal indicating that the MEMS sensor output was in-line
with that of an unbiased sensor.

The results of this section showed that the decimal outputs from the MEMS sensor
were an excellent source of physical noise to create random number strings.

4.4 Entropy Calculations

Entropy is a measure of the uncertainty of the measured value. In the case of binary data
since we have two states, the theoretical maximum entropy is 1 (2 states) (Tables 1, 2).

Entropy H (x) is [29]

H xð Þ ¼ �
X

p xð Þ log pðxÞ ð3Þ

In this experiment we converted the decimal output from the MEMS sensor into
binary values. Entropy values close to the perfect value of 1 were obtained even when
the device was at complete rest. This is a very important conclusion as it shows the
suitability of using any of three MEMS sensors for generating the random number
output. Arithmetic mean was very close to 0.5 indicating a uniform binary distribution.

4.5 Kullback – Leibler Distance

The MEMS sensor outputs three axis data for three sensors, yielding nine potential
values. Each reading is outputted with 9 digits of arithmetic precision. A total of 81
potential decimal outputs can thus be used to generate random numbers, and it is
important to ascertain if these are independent distributions.

The Kullback–Leibler distance is proposed as a way of evaluating the suitability of
combining the data. Kullback-Leibler divergence was first proposed in 1951 as a way

Table 1. Entropy and mean calculations for the MEMS sensor at complete rest

Accelerometer Gyroscope Compass

Entropy 0.9992954 0.9998548 0.995252
Arithmetic Mean 0.5156 0.4929 0.5405

Table 2. Entropy and mean calculations for MEMS sensor in continuous motion

Accelerometer Gyroscope Compass

Entropy 0.999995 0.999909 0.999887
Arithmetic Mean 0.5012 0.5055 0.5063

538 N. Bedekar and C. Shee

to quantify the divergence between two distributions [1]. The KL divergence of
probability distribution B from A is defined as

DKL AjjBð Þ ¼
X

i

lnðAðiÞ
BðiÞÞxA ið Þ ð4Þ

D is always greater than zero and D KL (A||B) is not equal to D KL (B||A)
In this study, KL distance was used as a key metric to determine if the distributions

obtained from each digit (out of the 9 digits after the decimal point) from the three axes
of the accelerometer, gyroscope and compass could be combined. Higher KL values
would indicate distributions that are far apart, and hence suitable for combination in
generating large random number strings.

To evaluate the absolute value of the KL distance, the Pseudo Random Number
Generation (PRNG) utility in python was used to create two additional distributions,
Random 1 and 2, of the same length as the test string under evaluation. If the KL
distance between two sensor data streams was higher than that between the two random
number streams, then combining the sensor data was a viable technique of generating
large strings of random numbers.

Tables 3 and 4 show the KL distance values for different test conditions. These
results clearly show that (1) More than 60 %–70 % of the KL distance values for the
MEMS sensors were greater than those observed between two random distributions.
Combining data from various streams from the MEMS sensor is hence an excellent
way of generating random number strings, (2) Successive runs yielded varying KL
distances indicating an inherent non-deterministic nature of the MEMS sensor and (3)
KL distances increased more than 50x when the sensor was in motion indicating a very
robust performance for scenarios where the MEMS sensor was in motion. Combining
data streams from digits 3 to 9 of the nine sensor axes was thus an excellent approach
of generating long random number strings.

4.6 Sensor in Motion

When the sensor was in full motion, more than 70 % of the KL distances were higher than
those generated between two pseudo random number sequences in python. The KL

Table 3. KL distance between 9th digit of the accelerometer z axis for four consecutive runs
(Random 1 to Random 2 KL distance was 1296). Shaded regions indicate KL distances higher
than those obtained between two random number strings of equivalent length.

A Novel Approach to True Random Number Generation 539

distances increased by 50x versus the sensor at rest configuration. Thus, a high relative
entropy was obtained between the different distributions, when the sensor was in motion.

4.7 NIST Data Analysis

NIST Test Suite (SP 800-22, Rev 1a) was used for testing [30]. The data files were
generated by using the 3rd to 9th digit of the accelerometer, gyroscope and compass
axes outputs. To achieve sufficient long bit streams more than 50–100 test files were
concatenated to generate the test file. If 7 out of 10 streams passed a test, then the
sensor was considered to have passed the corresponding test. The Frequency Test
measures the proportion of zeros and ones for the entire sequence, and measures
whether they fall in the expected range of a random sequence. This is the most basic
test and the remaining tests depend on passing this test. A majority of the test con-
figurations in this study passed this test.

4.8 Compass Sensor Output Passed the Maximum NIST Tests

The most interesting conclusion was the substantial improvement in the NIST test
results observed for the compass sensor versus the accelerometer and gyroscope, in

Table 4. KL distance between 9th digit of the z axis of the accelerometer (2), gyroscope (5) and
compass (8) for four consecutive runs (Random 2 to Random 1 KL distance was 310 in the first
table and 624 for the 2nd table).

540 N. Bedekar and C. Shee

spite of data counts that are typically 70 %–80 % lower (Table 3). For the stationary
configuration, the compass sensor passed 11 out of 15 tests, and for continuous motion,
successful results were obtained on 14 out of 15 tests.

The compass sensor is based on the Hall effect sensor wherein the output voltage
changes due to the magnetic field. The superior compass sensor results were most
likely due to the higher quality randomness inherent in the sensing of the Hall effect
voltage.

4.9 Von Neumann and Barak-Impagliazzo-Wigderson Extractor

In 1951, Von Neumann proposed an extractor to generate a random binary sequence
from a biased stream [2]. If a string is composed of 01001110, then the extractor will
pair up this distribution into pairs (01), (00), (11), (10). Each pair which has the same
digits is discarded and in the remaining pairs the second digit is discarded to yield us a
string of 01 from the preceding stream. The Von Neumann extractor caused a slight
degradation in the result with the resulting bit stream passing 6 out of 15 tests. The
biggest contribution of the Von Neumann extractor is to yield an equal frequency of 0 s
and 1 s. However, the entropy and mean calculations from previous sections have
shown that the MEMS sensor output is exceptionally uniform. Hence the Von Neu-
mann extractor did not cause any improvements in these tests. Since the Over Lapping
Template tests the occurrence of predetermined strings, and the Linear Complexity test
measures the length of Linear Feedback Shift Registers, the forced alteration due to
Von Neumann extractor caused these tests to fail [30] (Table 6).

Table 5. NIST Test Suite results for MEMS sensor in complete motion (Pass threshold 7 out
of 10)

Parameter Accelerometer
only

Gyroscope
only

Compass
only

Frequency 10/10 10/10 7/10
BlockFrequency 10/10 10/10 8/10
CumulativeSums 10/10 10/10 7/10
CumulativeSums 10/10 10/10 7/10
Runs 3/10 1/10 8/10
LongestRun 0/10 0/10 7/10
Rank 9/10 10/10 10/10
FFT 1/10 4/10 8/10
Nonoverlapping
Template

10/10 10/10 10/10

OverlappingTemplate 10/10 8/10 9/10
Universal 10/10 10/10 10/10
ApproximateEntropy 0/10 0/10 0/10
Serial 0/10 2/10 7/10
Serial 0/10 5/10 8/10
LinearComplexity 9/10 10/10 10/10

A Novel Approach to True Random Number Generation 541

The Barak-Impagliazzo-Wigderson two source extractor works on the principle of a
recursive sum of a ∙ b + c and the resulting bit stream passed 10 out of the total 15
NIST tests (Table 6) (Boaz Barak, 2006). The two big areas of improvement were in
the Longest Run and FFT test. The Longest Run test checks the length of the 0 s and
1 s with that expected for a random distribution. Even though the frequency data
showed excellent results indicating an even distribution of 0 s and 1 s, the native data
from InvenSense MEMS sensor typically failed the Runs Test indicating a problem in
the length of the runs. The Barak-Impagliazzo-Wigderson two source extractor
addressed this problem, and a higher χ 2 was obtained, which led to a passing of the
Longest Run test. The FFT test detects periodic features that would indicate a non
random distribution, and the recursive extractor overcame the limitations observed with
the raw MEMS sensor data.

4.10 Short Duration Measurements and Barak-Impagliazzo-Wigderson
Extractors Led to a Dramatic Improvement in Results

This study tested the stationary MEMS sensor output in two data acquisition scenarios;
(1) 2 min data collection time, and (2) 1 s data collection time. NIST test results for the
short data collection time (1 s) showed a dramatic improvement in the test results, and
random number strings passed 13 out 15 NIST tests as compared with 8 out of 15 for
the 2 min data collection case. The 1 s data collection times predominantly captured the
measurement noise, thus leading to better NIST test results (Table 7).

Table 6. NIST Test results with extractors MEMS sensor at rest (Pass threshold 7 out of 10)

Parameter Stationary
Sensor

Von
Neumann
Extractor

Barak-
Impagliazzo-
Wigderson

Frequency 10/10 10/10 8/10
BlockFrequency 6/10 10/10 0/10
CumulativeSums 10/10 10/10 8/10
CumulativeSums 10/10 10/10 8/10
Runs 0/10 0/10 1/10
LongestRun 0/10 0/10 7/10
Rank 10/10 5/10 9/10
FFT 0/10 1/10 10/10
NonOverlapping
Template

10/10 10/10 10/10

OverlappingTemplate 7/10 0/10 10/10
Universal 10/10 10/10 10/10
ApproximateEntropy 0/10 0/10 0/10
Serial 0/10 0/10 0/10
Serial 0/10 0/10 0/10
LinearComplexity 9/10 4/10 8/10

542 N. Bedekar and C. Shee

4.11 Adding an Uncorrelated Audio Output Led to a Dramatic
Improvement in NIST Test Results

While the raw audio random number data stream only passed 6 out of the 15 NIST tests,
interleaving this data with the MEMS sensors yielded a string that passed 14 out of the
15 tests (Table 8). Interleaving also effectively doubled the size of the output data.

4.12 Future Directions

The Apple watch uses visible and infrared LEDs in addition to photo sensors to detect
heart rate, and several other health parameters. Other wearable devices are expected to
include numerous unique sensors. In the future in addition to MEMS sensors, we will
be able to use numerous other sensors to generate a random number string. Combining
the output of the sensors that measure non-correlated parameters will most likely give
rise to a stronger random number string.

5 Conclusions

This study proved that MEMS sensors offered excellent sources of entropy for true
random number generation. While the original thesis that the MEMS sensors would
serve as an excellent random number generation source did turn out to be true, the source

Table 7. NIST test results for different data collection times and extractor application (Pass
threshold 7 out of 10)

Parameter Stationary
Sensor
(2 min)

After Barak-
Impagliazzo-
Wigderson

Stationary
Sensor
(1 sec)

After Barak-
Impagliazzo-
Wigderson

Frequency 10/10 8/10 7/10 10/10
BlockFrequency 6/10 0/10 10/10 10/10
CumulativeSums 10/10 8/10 8/10 10/10
CumulativeSums 10/10 8/10 7/10 10/10
Runs 0/10 1/10 7/10 8/10
LongestRun 0/10 7/10 6/10 10/10
Rank 10/10 9/10 9/10 10/10
FFT 0/10 10/10 9/10 10/10
Non Overlapping
Template

10/10 10/10 10/10 10/10

OverlappingTemplate 7/10 10/10 9/10 10/10
Universal 10/10 10/10 10/10 10/10
ApproximateEntropy 0/10 0/10 10/10 10/10
Serial 0/10 0/10 5/10 9/10
Serial 0/10 0/10 8/10 10/10
LinearComplexity 9/10 8/10 10/10 10/10

A Novel Approach to True Random Number Generation 543

of entropy was a new discovery in this study. When the MEMS sensor was evaluated in
the complete rest condition, this work showed that the bulk of the random number
generation happened in the first five seconds of data collection. The source of the
entropy was the noise in the sensing mechanism, as opposed to the fluctuations in the
measured value. Hence, it was not a surprise that the MEMS sensor yielded an adequate
random number string in the stationary configuration. This is the most unique contri-
bution of this study in that it shines light on the origin of the random number generation.

While the overall MEMS sensor passed 8 out of 15 NIST tests, compass outputs
offered superior NIST test result pass rates of 11/15 and 14/15 for the stationary and
continuous motion cases, respectively. The Hall effect voltage sensing mechanism
generated higher quality random number streams than the capacitive sensing mecha-
nism used for accelerometers and gyroscopes. Concatenating short duration (<1 s)
measurements yielded strings that passed 13 out of the 15 NIST tests as compared with
8 out of 15 NIST tests for the 2 min measurement case. Applying the Barak-Impa-
gliazzo-Wigderson two source recursive extractor yielded a random number string that
passed all 15 NIST tests.

Even in the most challenging situation of the MEMS sensor at complete rest, this
work has shown high random number generation output speeds of 500 bits/sec. The
Kullback-Leibler (KL) distances for successive runs, different axes data, and varying
configurations (stationary versus continuous motion) showed significant relative
entropy. High entropy values close to the theoretical value of 1, and very little skew
point to high quality random number data streams obtained in this study. The addition of
an uncorrelated output such as audio to MEMS sensors led to a dramatic improvement in
the results. The resulting random number string passed 14 out of the 15 NIST tests, and

Table 8. NIST test results for MEMS + Interleaved audio random number strings (Pass
threshold 7 out of 10)

Parameter MEMS Audio Interleaved
MEMS +Audio

Frequency 7/10 10/10 8/10
BlockFrequency 10/10 0/10 10/10
CumulativeSums 8/10 10/10 8/10
CumulativeSums 7/10 10/10 8/10
Runs 7/10 0/10 10/10
LongestRun 6/10 0/10 10/10
Rank 9/10 8/10 10/10
FFT 9/10 1/10 10/10
NonOverlapping Template 10/10 0/10 10/10
OverlappingTemplate 9/10 0/10 10/10
Universal 10/10 10/10 10/10
ApproximateEntropy 10/10 0/10 6/10
Serial 5/10 0/10 9/10
Serial 8/10 0/10 9/10
LinearComplexity 10/10 10/10 8/10

544 N. Bedekar and C. Shee

offered a data output twice as large as the input. In conclusion, this study showed that
even under the most challenging condition of the sensor being at complete rest, the
MEMS sensors offered excellent entropy, and high data output speeds of 500–1000 bits
per second, thus overcoming the traditional challenge of true random number
generators.

Acknowledgments. The authors would like to thank Professor John Steinberger for helpful
discussions and support through the summer internship. This work was performed at Tsinghua
University, Institute for Interdisciplinary Information Sciences, Beijing, China and their support
is greatly appreciated. The authors also appreciate the support of Cameron Ballingall and
InvenSense Inc., which provided the MEMS sensors used in this study. The authors would also
like to thank the reviewers for their comments and suggestions.

References

1. Leibler, R.A., Kullback, S.: On Information and Sufficiency. Ann. Math. Stat. 22, 79–86
(1951)

2. Von Neumann, J.: Various techniques used in connection with random digits. In: Forsythe,
G.E., Germond, H.H., Householder, A.S. (eds.) Monte Carlo Method. Government Printing
Office, Washington (1951)

3. Barak, B., Impagliazzo, R., Wigderson, A.: Extracting randomness using few independent
sources. SIAM J. Comput. 36, 1095–1118 (2006). 4, Philadelphia USA: Society for
Industrial and Applied Mathematics

4. NIST. Engineering and Statistics Handbook. s.l.: NIST (2012)
5. Whitfield, D., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theory IT-22

(6), 644–654 (1976)
6. Gartner: Forecast: PCs, ultramobiles and mobile phones 2014. Gartner Group, Egham

(2014)
7. Llamas, Ramon T.: Worldwide Wearable Computing Device 2014–2018 Forecast and

Analysis. IDC, Boston (2014)
8. Invensense Annual Report, Form 10-K. San Jose, CA, USA: s.n., March 2014
9. Voris, J., Saxena, N., Halevi, T.: Accelerometers and Randomness: Perfect Together. ACM,

Hamburg, Germany (2011). WiSec
10. Dodis, Y., Pointcheval, D., Ruhault, S., Vergnaud, D., Wichs, D.: Security analysis of

pseudo-random number generators with input. In: ACM Conference on Computer and
Communication Security. ACM, Berlin, Germany (2013)

11. Barak, Boaz, Shaltiel, Ronen, Tromer, Eran: True random number generators secure in a
changing environment. In: Walter, Colin D., Koç, Çetin Kaya, Paar, Christof (eds.) CHES
2003. LNCS, vol. 2779, pp. 166–180. Springer, Heidelberg (2003)

12. Wang, X., Xue, Q., Lin, T.: A novel true random number generator based on mouse
movement and a one dimensional chaotic map. s.l. Math. Prob. Eng. 2012, 12 (2012).
Hindawi Publishing

13. Chen, I.T.: Random numbers generated from audio and video sources s.l. Math. Prob. Eng.
2013, 7 (2013). Hindawi Publishing

14. Lauradoux, C., Ponge, J., Roeck, A.: Online Entropy Estimation for Non-Binary Sources
and Applications on iPhone. Institut National de Recherche en Informatique et en
Automatique, pp. 19–42 (2011)

A Novel Approach to True Random Number Generation 545

15. Mayrhofer, R., Groza, B. (eds.): Simple accelerometer based wireless pairing with heuristic
trees. In: Proceedings of the 10th International Conference on Advances in Mobile
Computing and Multimedia. ACM (2012)

16. Studer, A., Timothy, P., Bauer, L.: Don’t bump, shake on it; the expoitation of a popular
accelerometer-based smart phone exchange and its secure replacement. In: Proceedings of
the 27th Annual Computer Security Applications Conference, pp. 333–342. ACM,
New York (2011)

17. Chagnaadorj, O., Tanaka, J.: MimicGesture: Secure Device Pairing with Accelerometer-
Based Gesture Input. In: Han, Y.-E., Park, D.-S., Jia, W., Yeo, S.-S. (eds.) Ubiquitous
Information Technologies and Applications. Lecture Notes in Electrical Engineering, vol.
214, pp. 59–67. Springer, Heidelberg (2013)

18. Zhou, Q., Liao, X., Wong, K., Hu, Y., Xiao, D.: True random number generator based on
mouse movement and chaotic hash function s.l. Inf. Sci. 179, 3442–3450 (2009). Elsevier

19. Nasiri, Steven: A Critical Review of MEMS Gyroscope Technology and Commercialization
Status. Invensense Inc, San Jose (2006)

20. Nasiri, S.: Wafer-Scale Packaging and Integration Are Credited for New Generation of Low-
Cost MEMS Motion Sensor Products. Invensense, San Jose (2006)

21. Daneman, M., Lim, M., Assaderaghi, F.: Evolution of MEMS towards a semiconductor
model. Hearst Business Coummunications, New York (2012)

22. Nasiri, S., Seeger, J., Yaralioglu, G.: 20080314147 Saratoga, California (2008)
23. Qiu, J., Seeger, J., Castro, A., Tchertkov, I., Li, R.: 20120125104 Sunnyvale, California

(2012)
24. Seeger, J., Nasiri, S., Castro, A: 2010132460 Menlo Park, USA (2010)
25. Dixon-Warren, J.: MEMS J (February 2011). www.memsjournal.com
26. MEMS Sensors; How it works technically. MEMS Central (2014). http://memscentral.com/

Secondlayer/mems_motion_sensor_perspectives-2.htm. Accessed 20 July 2014
27. Silicon Designs. Silicon Designs (2014). http://www.silicondesigns.com/tech.html. Acces-

sed 20 July 2014
28. Invensense MPU 9250 SDK. Invensense Inc, San Jose, California (2013)
29. Cover, T.M., Thomas, J.A.: Entropy, Relative Entropy and Mutual Information. Elements of

Information Theory, pp. 12–25. John Wiley and Sons, New York (1991)
30. A Statistical Test Suite For Random and Pseudorandom Number Generators For Cryptographic

Applications. National Institute of Standards and Technology, Gathiersburg, Maryland, USA
(2010)

546 N. Bedekar and C. Shee

http://www.memsjournal.com
http://memscentral.com/Secondlayer/mems_motion_sensor_perspectives-2.htm
http://memscentral.com/Secondlayer/mems_motion_sensor_perspectives-2.htm
http://www.silicondesigns.com/tech.html

Author Index

Agrawal, Megha 343
Alderman, James 51
AlTawy, Riham 311
Aniorté, Philippe 150
Arzapalo, Denisse Muñante 150

Bai, Dongxia 329
Bao, Zhenzhen 259
Bedekar, Neel 530
Bhattacharjee, Debjyoti 385
Boureanu, Ioana 170

Calderoni, Luca 16
Cao, Zhenfu 403
Chang, Donghoon 343, 361
Chattopadhyay, Anupam 385
Cheung, Henry K.F. 239
Chiprianov, Vanea 150
Chow, Sherman S.M. 37, 239
Cid, Carlos 51
Clear, Michael 72
Crampton, Jason 51

Ding, Ning 130
Dutta, Ratna 109

Gallon, Laurent 150
Ghosh, Mohona 343
Guleria, Vandana 109

Han, Changyao 516
Hanzlik, Lucjan 475
Hao, Yonglin 286
Hu, Lei 207
Huang, Zhangjie 207

Janson, Christian 51
Jati, Arpan 361

Kubiak, Przemysław 475
Kutyłowski, Mirosław 475

Lai, Russell W.F. 239
Laird, Paul 72
Li, Bao 463
Li, Hongda 93, 193

Li, Yuan 424
Liang, Bei 193
Liang, Hongliang 516
Lin, Dongdai 259
Liu, Weiwei 3
Liu, Zhen 403

Maio, Dario 16
Mishra, Sweta 361
Mu, Yi 3

Palmieri, Paolo 16
Patsakis, Constantinos 72
Peris-Lopez, Pedro 496

Robert, Jean-Marc 445

Sanadhya, Somitra Kumar 343, 361
Shee, Chiranjit 530
Shi, Dongyuan 424
Suarez-Tangil, Guillermo 496

Tang, Fei 93
Tapiador, Juan E. 496
Tian, Song 463

Vaudenay, Serge 170

Wang, Changji 424
Wang, Fuqun 220
Wang, Kunpeng 220, 463
Wong, Duncan S. 403
Wu, Dongyang 516

Xu, Jun 207
Xu, Xilei 424

Yang, Guomin 3
Youssef, Amr M. 311
Yu, Hongbo 329
Yu, Wei 463

Zhang, Daijie 516
Zhang, Rui 193
Zhang, Tao 37
Zhang, Wentao 259

	Preface
	Inscrypt 2014
	Contents
	Privacy and Anonymity
	An Efficient Privacy-Preserving E-coupon System
	1 Introduction
	2 Definition and Assumptions
	2.1 Definition of an E-coupon System
	2.2 Complexity Assumptions

	3 Security Model
	3.1 Unforgeability
	3.2 Anonymity
	3.3 Double-Redemption Detection
	3.4 User Privacy

	4 Construction of Our E-coupon System
	5 Security Analysis
	5.1 Unforgeability
	5.2 Anonymity
	5.3 Double-Spend Detection
	5.4 User Privacy

	6 An Extension of Our E-coupon System
	7 Conclusion
	References

	Spatial Bloom Filters: Enabling Privacy in Location-Aware Applications
	1 Introduction
	1.1 Contribution

	2 Preliminaries
	2.1 Bloom Filters
	2.2 Cryptographic Primitives

	3 Spatial Representation
	3.1 Areas and Points of Interest (AoI & PoI)

	4 Spatial Bloom Filter
	5 Private Positioning Protocols for Spatial Bloom Filters
	5.1 Two-Party Scenario
	5.2 Three-Party Scenario

	6 Conclusions
	A Bloom Filters Properties
	B More on Spatial Representation
	References

	Security of Direct Anonymous Authentication Using TPM 2.0 Signature
	1 Introduction
	2 Preliminaries
	2.1 TPM 2.0 Signature
	2.2 Direct Anonymous Attestation (DAA)

	3 Review of the Current Security Model
	3.1 Current Security Model
	3.2 Security Concerns

	4 Our Analysis
	4.1 Revision of Security Model
	4.2 Potential Vulnerability

	5 Conclusion
	References

	Multiparty and Outsource Computation
	Revocation in Publicly Verifiable Outsourced Computation
	1 Introduction
	2 Verifiable Computation Schemes and Related Work
	3 Revocable Publicly Verifiable Computation
	3.1 Formal Definition
	3.2 Security Models

	4 Construction
	4.1 Technical Details
	4.2 Instantiation

	5 Conclusion
	A PVC Using KP-ABE
	References

	Private Aggregation with Custom Collusion Tolerance
	1 Introduction
	1.1 Related Work
	1.2 Overview of Our Protocols

	2 Preliminaries
	2.1 Notation and Definitions
	2.2 Single-Aggregation KDK
	2.3 Multi-aggregation KDK (MA-KDK)

	3 Protocol for Bounded Number of Aggregations
	3.1 Main Protocol Description
	3.2 Security Against Malicious Adversaries

	4 Hybrid Protocol
	5 Performance
	5.1 Computation of an Aggregation Round
	5.2 Recovery of the Sum with Pollard's Lambda Algorithm

	A Proof of Theorem 1
	B t-privacy in the Malicious Setting
	References

	Signature and Security Protocols
	Ring Signatures of Constant Size Without Random Oracles
	1 Introduction
	2 Building Blocks
	2.1 Pseudorandom Generator
	2.2 Constrained Pseudorandom Functions
	2.3 Indistinguishability Obfuscation

	3 Definitions of Ring Signatures
	3.1 Syntax
	3.2 Security Models

	4 Constant Size Ring Signature Scheme
	4.1 Our Construction
	4.2 Security

	5 Identity-Based Ring Signature Scheme
	5.1 Our Construction
	5.2 Security

	References

	Universally Composable Identity Based Adaptive Oblivious Transfer with Access Control
	1 Introduction
	2 Preliminaries
	2.1 Bilinear Pairing and Mathematical Assumptions
	2.2 Linear Secret Sharing Schemes (LSSS) [2]
	2.3 Non-Interactive Verification of Pairing Product Equation [12]
	2.4 Security Model of IBAOT-AC

	3 Our Protocol
	4 Security Analysis
	5 Comparison
	References

	Three-Round Public-Coin Bounded-Auxiliary-Input Zero-Knowledge Arguments of Knowledge
	1 Introduction
	1.1 Our Results
	1.2 Organizations

	2 High-Level Description
	2.1 Construction Idea
	2.2 Overview of The Protocol

	3 Actual Description
	3.1 Underlying Languages
	3.2 Detailed Specifications

	4 Concluding Remarks: On Extending to the Unbounded-Auxiliary-Input Case
	4.1 Difficulty in Extraction
	4.2 Introducing New Assumptions?
	4.3 Summary

	A Preliminaries
	A.1 Basic Notions
	A.2 Commitment Schemes
	A.3 Interactive Proofs and Arguments
	A.4 Zero-Knowledge
	A.5 Witness Indistinguishability
	A.6 Proof of Knowledge
	A.7 Universal Arguments
	A.8 The LS Proof System in [23]

	References

	A Model-Driven Security Requirements Approach to Deduce Security Policies Based on OrBAC
	1 Introduction
	2 Related Works
	3 The Organization-Based Access Control (OrBAC)
	4 The Security Requirements Profile
	4.1 The I* Metamodel
	4.2 The I* Metamodel Extended with the OrBAC Concepts
	4.3 Correspondence Between OrBAC Concepts and Concepts of Our Extended I* Metamodel

	5 The Model Transformation Between the Security Requirements Profile and the Security Formal Method
	5.1 I* Metamodel Reduction Process According to Necessary Conditions
	5.2 Deduction Process to Extract/Deduce OrBAC Security Policies

	6 Case Study: A Medical System
	6.1 Applying the Reduction Process
	6.2 Applying the Deduction Process

	7 Conclusions
	References

	Optimal Proximity Proofs
	1 Introduction
	2 Revised DB Security Model and Proofs
	3 New Highly Efficient, Symmetric Distance-Bounding Protocols
	3.1 DBopt
	3.2 DF-Resistance of DB1, DB2, and DB3
	3.3 Security of DB1, DB2, and DB3
	3.4 Soundness of DB1 and DB2
	3.5 Performance Comparisons

	4 Conclusion
	References

	Lattice and Public Key Cryptography
	Simpler CCA-Secure Public Key Encryption from Lossy Trapdoor Functions
	1 Introduction
	2 Preliminaries
	2.1 Lossy Trapdoor Functions
	2.2 All-But-One Lossy Trapdoor Functions
	2.3 Key Encapsulation Mechanism (KEM)
	2.4 Hash Functions
	2.5 Extracting Randomness

	3 The Proposed Scheme
	3.1 The Proposed CCA-Secure KEM
	3.2 Security Analysis

	4 Extensions and Discussions
	4.1 Obtaining a Longer Session Key
	4.2 CCA-Secure PKE
	4.3 Comparisons with the PW-Scheme
	4.4 Comparisons with the LDL-Scheme

	5 Conclusion
	A The PW-Scheme
	B The LDL-Scheme
	References

	Attacking RSA with a Composed Decryption Exponent Using Unravelled Linearization
	1 Introduction
	2 Preliminaries
	2.1 Lattices
	2.2 Coppersmith's Method

	3 The Technique of Unravelled Linearization
	4 New Attack Using Unravelled Linearization
	4.1 The Problem
	4.2 Description of the Attack

	5 Experiments
	A Dimension and Determinant of the Lattice L
	B Dimension and Determinant of the Lattice in [14]
	References

	Fully Homomorphic Encryption with Auxiliary Inputs
	1 Introduction
	1.1 Motivation and Contribution
	1.2 Organization

	2 Preliminaries
	2.1 Notations
	2.2 Homomorphism
	2.3 Vector Decomposition and Flatten
	2.4 Gaussian Measures
	2.5 Learning with Errors (LWE)
	2.6 Goldreich-Levin Theorem
	2.7 The Auxiliary Inputs Leakage Model for FHE

	3 An FHE from DRPKE
	3.1 The Scheme: DRFHE
	3.2 Analysis

	4 An FHE with Auxiliary Inputs
	4.1 The Scheme: DRFHEAI
	4.2 DRFHEAI Against Auxiliary Inputs Leakage

	5 Conclusions
	A A Symmetric-Key FHE with Auxiliary Inputs
	References

	Trapdoors for Ideal Lattices with Applications
	1 Introduction
	2 Preliminary
	2.1 Lattice Background
	2.2 Assumptions

	3 Primitive Vectors in Ideal Lattices
	3.1 Construction of Primitive Vectors
	3.2 Inversion for Primitive Vectors
	3.3 Gaussian Sampling for Primitive Vectors

	4 Trapdoors in Ideal Lattices
	4.1 Derivation of Old Trapdoors
	4.2 Generation of New Trapdoor
	4.3 ring-LWE Inversion from New Trapdoors
	4.4 Gaussian Sampling from New Trapdoors
	4.5 Trapdoors Delegation

	5 INDr-ID-CCA-Secure (H)IBE in Ideal Lattices
	5.1 Identity-Based Encryption
	5.2 Construction

	6 Concluding Remarks
	References

	Block Cipher and Hash Function
	Speeding Up the Search Algorithm for the Best Differential and Best Linear Trails
	1 Introduction
	1.1 Our Contributions
	1.2 Organization

	2 Notations and Preliminaries
	3 Previous Works
	3.1 Matsui's Algorithm
	3.2 Moriai et al.'s Algorithm
	3.3 Aoki et al.'s Algorithm

	4 Overall Strategy and Basic Principle in Our Work
	5 Starting from the Narrowest Point Strategy
	5.1 Proposal and Justification of the Starting from the Narrowest Point Strategy
	5.2 Experimental Results of Starting from the Narrowest Point Strategy

	6 Concretizing and Grouping Search Patterns Strategy
	6.1 Proposal and Justification of the Concretizing and Grouping Search Patterns Strategy
	6.2 Experimental Results of Concretizing and Grouping Search Patterns

	7 Trialling in Minimal Changes Order Strategy
	8 Results on Best Trails of NOEKEON and SPONGENT
	8.1 Object Cipher - A Block Cipher NOEKEON
	8.2 Object Cipher - A Hash Function SPONGENT

	9 Conclusion and Future Work
	A Our Search Algorithm
	B Examples of Best Trails
	References

	The Boomerang Attacks on BLAKE and BLAKE2
	1 Introduction
	2 Preliminary
	2.1 The Round Functions of BLAKE and BLAKE2
	2.2 The Boomerang Attack

	3 The Boomerang Attacks on BLAKE and BLAKE2
	3.1 Construction of Differential Characteristics
	3.2 Finding the Boomerang Quartet Using Message Modification Technique

	4 Conclusion
	A The Bottom and Top Differential Characteristics for BLAKE and BLAKE2
	B 6.5-Round Examples for BLAKE and BLAKE2
	References

	Second Preimage Analysis of Whirlwind
	1 Introduction
	2 Whirlwind Description
	2.1 Notation

	3 MitM Preimage Attacks
	4 A Pseudo Preimage of the 5-Round Compression Function
	5 Extending the Attack by One More Round
	6 Second Preimage of the Hash Function
	7 Conclusion
	References

	Boomerang Attack on Step-Reduced SHA-512
	1 Introduction
	2 Description of SHA-2
	3 Boomerang Distinguishers of Hash Functions
	4 The Boomerang Attack on Reduced SHA-512
	4.1 Step-Reduced Differential Paths
	4.2 Message Differences
	4.3 Message Modification
	4.4 Sketch of the Attack
	4.5 Complexity of the Attack

	5 Conclusion
	References

	Collision Attack on 4-Branch, Type-2 GFN Based Hash Functions Using Sliced Biclique Cryptanalysis Technique
	1 Introduction
	2 Notation
	3 Preliminaries
	3.1 Type-2 Generalized Feistel Network (GFN) Instantiated with Double SP Layer
	3.2 t-bit Partial Target Preimage Attack
	3.3 Sliced Biclique Cryptanalysis

	4 Distinguishing Attack on 4-Branch, Type-2 GFN Based Permutation Using Sliced Biclique Cryptanalysis Technique
	5 Collision Attack on 4-Branch, Type-2, GFN Based Compression Function
	6 Collision Attack on Hash Functions
	7 Conclusions
	A 8-Round Collision Attack on CLEFIA Based Compression Function
	References

	Rig: A Simple, Secure and Flexible Design for Password Hashing
	1 Introduction
	2 Preliminaries
	3 Attack Platforms: Significant Hardwares
	4 Specification
	5 Design Rationale
	6 Implementation Aspects
	6.1 Design of Rig [Blake2b, BlakeCompress, Blake2b]
	6.2 Design of Rig [BlakeExpand, BlakePerm, Blake2b]
	6.3 Parallelization
	6.4 GPU Resistance
	6.5 ASIC/FPGA Resistance

	7 Performance Analysis
	7.1 Suggested Parameters

	8 Security Analysis
	8.1 Resistance Against Low Memory Attack
	8.2 Resistance Against Collision Attack
	8.3 Resistance Against Cache-Timing Attack
	8.4 Resistance Against Denial-of-Service Attack

	9 Conclusions
	References

	Authentication and Encryption
	Efficient Hardware Accelerator for AEGIS-128 Authenticated Encryption
	1 Introduction
	2 Theoretical Analysis of AEGIS for Improving Cycle-per-Byte
	2.1 Pipelining
	2.2 Parallelism
	2.3 Unrolling

	3 Accelerator Implementation of AEGIS-128
	3.1 Base Implementation
	3.2 Design Points for Area Optimization
	3.3 Design Points for Throughput Optimization

	4 Results and Benchmarkings
	4.1 Reported Performance Results of CAESAR Entries
	4.2 Comparison with AES-based Authenticated Encryption Schemes

	5 Conclusion
	A AEGIS-128
	A.1 Encryption and Generation of Tag of AEGIS-128
	A.2 Decryption and Verification of AEGIS-128

	References

	Fully Collusion-Resistant Traceable Key-Policy Attribute-Based Encryption with Sub-linear Size Ciphertexts
	1 Introduction
	1.1 Our Results

	2 KP-ABE with Traceability
	2.1 KP-ABE
	2.2 KP-ABE Traceability

	3 Augmented KP-ABE
	3.1 Definitions of Augmented KP-ABE
	3.2 Reducing Traceable KP-ABE to Augmented KP-ABE

	4 An Efficient Augmented KP-ABE Scheme
	4.1 Preliminaries
	4.2 AugKP-ABE Construction
	4.3 AugKP-ABE Security

	5 Conclusion
	A Proof of Lemma 1
	References

	Integrating Ciphertext-Policy Attribute-Based Encryption with Identity-Based Ring Signature to Enhance Security and Privacy in Wireless Body Area Networks
	1 Introduction
	1.1 Related Work
	1.2 Paper Organization

	2 Preliminaries
	2.1 Bilinear Group Generator and Complexity Assumptions
	2.2 Access Structure and Secret Sharing Schemes

	3 Security Analysis of Hu et al. FABSC Scheme
	3.1 Review of Hu et al. FABSC Scheme
	3.2 Security Analysis of Hu et al.'s FABSC Scheme

	4 Syntax and Security Definitions of CP-ABRSC Scheme
	5 Our CP-ABRSC Construction
	6 Application of CP-ABRSC Scheme in WBAN
	7 Conclusion
	References

	Elliptic Curve
	Parallelized Software Implementation of Elliptic Curve Scalar Multiplication
	1 Introduction
	2 Background on Elliptic Curve Scalar Multiplication
	2.1 Scalar Multiplication over Prime Field
	2.2 Elliptic Curve Scalar Multiplication over Binary Field

	3 Strategies for Parallel Implementation of Scalar Multiplication
	3.1 Field Implementation Strategies
	3.2 Parallelization
	3.3 Four-Thread Parallel Version over Binary Elliptic Curve

	4 Timings

	5 Conclusion
	A Appendix: Curve Parameters
	A.1 Elliptic Curves over Binary Field
	A.2 Weierstrass Curve over Prime Field
	A.3 Jacobi Quartic Curve over Prime Field

	References

	A Note on Diem's Proof
	1 Introduction
	2 Factor Base
	3 Isolated Decomposition
	3.1 The Bezout's Theorem and the Generic Resultant
	3.2 Probability of Isolated Decomposition

	References

	Cryptographic Primitive and Application
	Stand-by Attacks on E-ID Password Authentication
	1 Introduction
	1.1 Personal Identity Documents and Password Authentication
	1.2 Adversary Model
	1.3 Problems with Randomness
	1.4 Overview of the Rest of the Paper

	2 Attacks
	2.1 Attack on PACE-GM
	2.2 Attack on PACE-IM
	2.3 Attack on SPEKE
	2.4 Tracing Threats

	3 Trusted Exponentiation Strategy
	3.1 Naive Protection Strategies
	3.2 Deriving Random Exponents
	3.3 Control Mechanism
	3.4 Key Update Mechanism
	3.5 Security Features

	4 Secure Password Authentication with Trusted Exponentiation
	5 Final Remarks
	References

	Stegomalware: Playing Hide and Seek with Malicious Components in Smartphone Apps
	1 Introduction
	1.1 Contributions

	2 Information Hiding Techniques and Related Work
	2.1 Stegosystems
	2.2 Common Steganographic Algorithms
	2.3 Steganalysis
	2.4 Thwarting Malware in Smartphones

	3 Stegomalware
	3.1 Hiding Malicious Code in App Assets
	3.2 Type 0: Autonomous Stegomalware
	3.3 Type I: Stegoupdate Attacks
	3.4 Type II: Agnostic Stegomalware
	3.5 A Proof-of-Concept Implementation

	4 Searching for Stegomalware in the Wild
	4.1 Experimental Setting
	4.2 Step 1: Selecting Apps with Payload Execution Capability
	4.3 Step 2: Flagging Suspicious Assets
	4.4 Step 3: Identifying Steganographic Code
	4.5 Putting It All Together
	4.6 Main Findings

	5 Conclusions and Future Work
	References

	A Lightweight Security Isolation Approach for Virtual Machines Deployment
	Abstract
	1 Introduction
	2 Virtualization Security Analysis
	3 Design Overview
	4 Implementation
	4.1 SMACK Security Driver Module for Libvirt
	4.2 Integrating SMACK Mechanism to Libvirt
	4.3 Migrating Virtual Machines Under Trusted Access Control

	5 Evaluation
	5.1 Isolation
	5.2 Migration
	5.3 Performance

	6 Related Work
	7 Conclusions
	References

	A Novel Approach to True Random Number Generation in Wearable Computing Environments Using MEMS Sensors
	Abstract
	1 Introduction
	2 Random Number Generation
	2.1 Background Research
	2.2 Research Goals
	2.3 Silicon Micro Electro Mechanical Systems Sensors (MEMS)

	3 Experimental Methods
	4 Results
	4.1 Data Output -- MEMS Sensor Output
	4.2 Speed of Data Extraction
	4.3 Data Output Over Time Shows an Initial Spike Followed by a Stabilization
	4.4 Entropy Calculations
	4.5 Kullback -- Leibler Distance
	4.6 Sensor in Motion
	4.7 NIST Data Analysis
	4.8 Compass Sensor Output Passed the Maximum NIST Tests
	4.9 Von Neumann and Barak-Impagliazzo-Wigderson Extractor
	4.10 Short Duration Measurements and Barak-Impagliazzo-Wigderson Extractors Led to a Dramatic Improvement in Results
	4.11 Adding an Uncorrelated Audio Output Led to a Dramatic Improvement in NIST Test Results
	4.12 Future Directions

	5 Conclusions
	Acknowledgments
	References

	Author Index

