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Chapter 7
Phytoremediation Crops and Biofuels

M.N.V. Prasad

Abstract Environmental decontamination is an integral part of sustainable 
 development. In recent years there has been growing interest in using plants for 
decontamination. On the other hand, water, soil and air are increasingly contami-
nated. Large amounts of toxic waste have been dispersed in thousands of 
 contaminated sites spread all over the globe. These pollutants belong to two main 
classes: inorganic and organic. The challenge is to develop innovative and cost-
effective solutions to decontaminate polluted environment. Phytoremediation is 
emerging as an invaluable tool for environmental cleanup. Various strategies are 
being applied to reduce the accumulation of toxic metals in plants. Cultivation of 
edible crops in contaminated soils is a subject of human health concern if the con-
taminant concentration in the edible parts of crops plant exceed the permissible 
level. In such cases non-food crop production viz. value chain and value additions 
appears profitable. In this review: (1) the contamination due to industrial effluents 
in peri urban region of greater Hyderabad, and (2) the strategies to use contaminated 
soil and water for raising phytoremediation crops, and generation of value products. 
Crops and products include medicinal and aromatic plants, ornamental plants, bio-
fuels, tree crops, fiber crops, dyes, and plants for carbon sequestration.

Keywords Biodiesel • Bioeconomy • Biomass conversion • Biorefinery • Carbon
sequestration•Circulareconomy•Constructedwetlands•Energycrops•Environmental
cleanup • Industrial crops • Ornamental crops • Value additions • Value chain
products

7.1  Introduction

Environmental (Soil, water and pollution) (conflict between agro-ecosystems and 
urbanization) is not only a subject of pan-Indian concern, but also for the entire 
world. Consequently, developing eco-innovative remediation technologies to re-use 
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contaminated substrates (land and water) in line with biomass production for the bio-
economy are gaining considerable global attention (Prasad 2015). Rapid industrial-
ization and extraction of large quantity of natural resources is the main cause of 
environmental contamination and pollution. Thus, every one of us are being exposed 
to  contamination from past and present industrial practices, emissions in natural 
resources (air, water and soil) even in the most remote regions. The risk to human and 
environmental health is rising and there is evidence that this cocktail of pollutants is 
a contributor to the global epidemic of cancers, and other degenerative diseases.

Plant based technologies are emerging as viable alternatives to conventional 
remediation techniques when time constraint is low, being more energy-efficient 
and less disruptive to contaminated sites. Based on small-scale studies, annual and 
perennial accumulators are suitable candidates for these plant based technologies 
(= Phytotechnologies). Plant-associated microbes are also implicated in enhancing 
plant performance, reducing contaminant phytotoxicity or modifying (degrading) 
(organic) contaminants. These innovative phytotechnologies can be in-situ or ex-
situ (Conesa et al. 2012), remediate soil layers explored by roots and at the same 
time provide plant biomass, contributing towards achieving envisaged targets on the 
use of renewable plant-based feedstock for various purposes (renewable energy 
sources, ecomaterials, biomass for bioreffineries, green fine chemistry, bioplastics, 
etc. (Prasad 2014b)) in substitution to fossil fuels and other non-renewable raw 
materials. They can also reduce the diversion of croplands to bioenergy and other 
non-food crops (Liu et al. 2011, 2012; Sheng et al. 2012; Zhang et al. 2014a). 
Development of economically sound valorisation pathways for complete chain of 
phytoproducts of value addition and value chain from phytoremediated plants would 
go a long way (Grison 2015; Prasad 2015; van der Ent et al. 2015) (Fig. 7.1).

Energy and environment are interlinked complex issues. Population explosion 
(~7.2 billion) on plant earth and excessive use of natural resources resulted in envi-
ronmental pollution and contamination with inorganic and organics (Prasad 2011; 
Xu et al. 2006). Pollution in environment is an ever increasing phenomenon and 
often regulatory systems and cleaning operations are not commensurate with waste 

Fig. 7.1 Environmental 
crops boosting circular 
economy, carbon 
sequestration and 
co-generation of 
phytoproducts
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generation. It is therefore, necessary to search for effective technologies for 
 decontaminating the natural resources. Biodiversity has immense potential not only 
for monitoring and  abatement of environmental pollution but also in generating a 
wide variety of by- products. Breakthrough research innovations that are amenable 
for field applications of pollution abatement are discussed with specific examples in 
several papers (Conesa et al. 2012; Prasad 2011; Prasad and Freitas 2003; Prasad 
and Prasad 2012; Prasad et al. 2010; Prasad 2013; Puhui et al. 2011).

The growing need for biomass for conversion to biofuels, require lignocellulosic- 
rich raw materials. Phytoremediated phytomass is one such option used to produce 
fuel like methanol, biodiesel, synthetic gas, and hydrogen (using thermal and thermo-
chemical processes by direct or indirect liquefaction or gasification) and ethanol 
(through hydrolysis and subsequent fermentation). Biorefinery processes (the sustain-
able processing of biomass to a spectrum of marketable products and energy) is an 
absolute necessity and it is the key to meet this vision towards bio-based economy.

Brassica juncea (Indian mustard) Helianthus annus (Sunflower), Prosopis juli-
flora, bamboo, and Pistia stratiotes (water lettuce), could be grown for different 
purposes including energy generation Annual and perennial crops, including algae 
in wastewater ponds are potential candidates. Management and production of phy-
toremediation crops in contaminated substrates serves as a sink for contaminants 
with possibility for co-generation of economic products. Economics and byproduct 
generation with the overall success level of integration in the bioremediation foster-
ing circular economy (Prasad 2015) (Fig. 7.2).

The challenge for environmental decontamination of inorganic and organic pol-
lutants and contaminants is to develop innovative and cost-effective solutions to 
decontaminate polluted environments. Biodiversity is the raw material for environ-
mental cleanup and is an invaluable tool box with wider application in the field of 
pollution abatement (Witters et al. 2012). Phytoremediation includes variety of 
technologies using plants and microbes to remediate or contain contaminants in 
soil, groundwater, surface water, and/or sediments including air. These technologies 
have become attractive alternatives to conventional cleanup technologies due to 
relatively low capital costs and the inherently aesthetic nature (Fig. 7.3).

Phytoremediation is a sustainable environmental cleanup technology. This 
approach is based on a wide range of plants that include terrestrial, aquatic, weeds, 
annuals, perennials (agricultural, tree and field crops) and ornamentals (Poonam 

Fig. 7.2 “Biorefinery” is the sustainable processing of conversion of phytoremediated phytomass 
into a spectrum of marketable products for e.g. chemicals, composite materials, and energy
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et al. 2014; Vamerali et al. 2011, 2014). Plants applied in phytoremediation have 
several beneficial uses. Nature cure mechanisms for natural resources and environ-
mental protection viz. phytosequestration,  rhizodegradation, phytohydraulics, phy-
toextraction, phytodegradation and phytovolatilization are well established with 
suitable examples (Shekhar 2012).

Arsenic, Mercury, Chromium, Fluoride, Cyanide, abandoned mines, fly ash dis-
posed sites, engineered phytotreatment technologies, biological permeable barriers 
and degradation of Organics viz., petroleum hydrocarbons, pesticides and explo-
sives are some of the contaminants subjected to bioremediation and promising 
results have been obtained.

Quite a variety of plants, natural, transgenic, and/or associated with rhizosphere 
micro-organisms are extraordinarily active in these biological interventions and 
cleaning up pollutants by removing or immobilizing. While diverse microbes are 
the most active agents, fungi and their strong oxidative enzymes are key players as 
well in recycling recalcitrant polymers and xenobiotic chemicals following systems 
biology and biotechnology interventions (de Lorenzo 2008; Dowling and Doty 
2009; Wood 2008). Constructed wetlands are the result of human skill and technol-
ogy integrating the geology, hydrology and biology (Prasad 2004a, b, 2007a, b). 
Constructed wetlands have been designed centuries ago by mankind to treat waste-
water (Bi et al. 2007; Türker et al. 2013). Bioeconomy is a solution for clean air, 
water and environmental sustainability (Prasad 2015).

Bioremediation approach is currently applied to contain contaminants in soil, 
groundwater, surface water, or sediments including air. These technologies have 
become attractive alternatives to conventional cleanup technologies due to rela-
tively low capital costs and the inherently aesthetic nature. Nature’s cure using plant 
resources (= Phytoremediation) is a sustainable solution for environmental decon-
tamination (Bañuelos et al. 1997; Bitterli et al. 2010). As of now about 20,000 
research papers have been published on various aspects of using biological resources 
for environmental cleanup starting with only 11 in 1989. Environmental sources of 
heavy metals are shown in Table 7.1.

Bioeconomy
Bioenergy &
Geen refinery

Biobased
Bioeconomy

Fossil fuel 
carbon economy

evironmental
pollution

Fig. 7.3 Bioremediation and biobased economy. A biobased economy is a sustainable economy, 
optimising economic value through valorization of bimass. The new wave in this direction is to use 
phytoremediated phytomass as substrate in biorefinery for replacing fossil resources and to pro-
duce a variery of economic products
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Biodiversity and ecosystem services offer means and ways to render the usage of 
natural resources more sustainably. This can be achieved by using the soil and eco-
system to generate solutions for modern-day challenges such as industrial pollution 
and the growing demand for natural resources (Aparna et al. 2010). Thus, there is a 
need to develop appropriate tools with like minded parties and allied disciplines. 
This kind of action plan would assist planners in calculating the social benefits of 
green missions in urban environments. The nexus of ‘Biodiversity vs Industry’ con-
sortium and knowledge based systems for better understanding of production chains 
would contribute to sustainable development.

Industrial and urban activities impact our environment, especially in terms of 
polluting soil, air and water. Large numbers of sites are nowadays contaminated/
polluted by inorganic and/or organics. Treating these pollutants represents an eco-
nomic need, which often remains unanswered by conventional civil/chemical engi-
neering methods, due to their inappropriateness, their environmental impact and 
costs (notably for large sites) (Figs. 7.4 and 7.5).

Table 7.1 Environmental sources of heavy metals (Prasad 2011)

Cadmium (Cd) Production of stainless steel, alloys, storage batteries, spark plugs, 
magnets and machinery, Cadmium (Cd) Cd-Ni battery production, 
pigments for plastics and enamels, fumicides, and electroplating and 
metal coatings.

Molybdenum (Mo) Spent catalyst.
Zinc (Zn) Brass and bronze alloys production, galvanized metal production, 

pesticides and ink. Zinc smelting, waste batteries, e-waste, paint sludge, 
incinerations, fuel combustion and electroplating.

Tin (Sn) Soft drink, beer and beverage can production.
Cobalt (Co) Steel and alloy production, paint and varnish drying agent and pigment 

and glass manufacturing.
Chromium (Cr) Corrosion inhibitor, dyeing and tanning industries, plating operations, 

alloys, antiseptics, defoliants and photographic emulsions. Mining, 
industrial coolants, chromium salts manufacturing, and leather tanning.

Lead (Pb) Lead battery industry, fuel additives, paints, herbicides manufacturing of 
ammunition, caulking compounds, solders, pigments, and insecticides, 
Smelting operations, coal- based thermal power plants, lead acid 
batteries, paints, and E-waste.

Mercury (Hg) Electrical apparatus manufacture, electrolytic production of Cl and 
caustic soda, paints, pharmaceuticals, plastics, paper products, batteries, 
pesticides and burning of coal and oil chlor-alkali plants, thermal power 
plants, fluorescent lamps, hospital waste (damaged thermometers, 
barometers, sphygmomanometers), electrical appliances etc.

Arsenic (As) Production of pesticides, veterinary pharmaceuticals and wood 
preservatives, geogenic/natural processes, smelting operations, thermal 
power plants, and fuel burning.

Copper (Cu) Textile mills, cosmetic manufacturing and hardboard production sludge, 
mining, electroplating, and smelting operations.

Vanadium (Va) Spent catalyst, sulphuric acid plant.
Nickel (Ni) Smelting operations, thermal power plants, and battery industry.
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Fig. 7.4 Nature’s biotechnology involves biodiversity as raw mterial for pollution abatement. 
During the last two decades, we have witnessed the emergence of gentle soil remediation tech-
niques using various plant species and the combination of microbial biotechnologies

Contaminated substrates

Fine  chemicals         

Biopolymers

Biocomposites

Bioplastics

Biogas/biohydrogen

Biodiesel

Bioethanol

The New Innovation Wave 

Fig. 7.5 Utilization of contaminated substrates for boosting bioeconomy through cascading 
approach is a new innovation wave. The added value is the highest at the top of the pyramid and 
the lowest at the bottom. On the contrary, the volume of biomass needed for the application is the 
lowest at the top of the pyramid and the highest at the bottom of the pyramid
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7.2  Study Area

Major contaminated sites in Greater Hyderabad = Tri cities (Hyderabad, 
Secunderabad and Cyberabad) are selected for this study (Figs. 7.6–7.12).

Fig. 7.6 Major contaminated sites in Greater Hyderabad = Tri cities (Hyderabad, Secunderabad 
and Cyberabad)
H Hussain Sagar, J Jawaharnagar, K Katteda
M Musi river, N Nakkavagu, P Patancheru
Bholakpur area – Abdul et al. (2012)
Municipal solid waste dumping sites – Jawaharnagar – Ahmed et al. 2011; Parth et al. 2009, 2011
Industrial waste contaminated areas – Ahmed et al. (2011), Balanagar, Machender et al. (2011, 
2012)
Kattedan – Sekhar et al. (2006), Govil et al. (2008, 2012)
Hussainsagar lake sediments – PTE – Gurunadha Rao et al. (2004, 2008), Jain et al. (2010), 
Suneela et al. (2008), Vikram Reddy et al. (2012)
Industrially contaminated sites of Hyderabad – Sekhar et al. (2003, 2005)
Patancheru Industrial Area – Dasaram et al. (2011), Govil et al. (2001)
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7.3  Products from Plants Applied in Phytoremediation

The objective of this paper aims at highlighting the sustainable valorization of 
 phytoremediated phytomass for production of value additives and value chain prod-
ucts for boosting bio-economy (Bañuelos 2002, 2006) (Fig. 7.13).

India is forging ahead to attain high GDP growth rate to achieve the status of 
industrialized and developed nation by 2020. In order to achieve this, heavy 
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Fig. 7.7 Hussainsagar metal contamination budget (a) Surface water and (b) sediment
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 consumption of natural resources is inevitable. The other side of the coin of this task 
is enormous waste generation. The waste management summit, held in 2012 has 
estimated that the poised industrial growth would generate 100 million tons of non- 
hazardous solid waste, 6–7 million tons of hazardous waste annually. Thus, soil 
pollution, land-use and land cover change (conflict between agro-ecosystems and 
urbanization) are of pan-Indian concerns. Consequently, developing eco- innovative 
soil remediation technologies to re-use contaminated lands in line with biomass 
production for the bioeconomy are priority objectives.
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Fig. 7.8 Jawaharnagar waste dump site (a) Soil and (b) ground water
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Land resources on a global perspective are under immense pressure. Soil reme-
diation is a solution to reduce the pressure on land resources. Land degradation is 
due to: (a) Natural processes, (b) erosion, (c) nutrient depletion, (d) loss of organic 
matter, (e) structural losses, (f) Induced land degradation, (g) irrigation with waste 
waters, (h) atmospheric deposition of pollutants, (i) poor agricultural practices and 
(j) climate change increases the intensity of land degradation.
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Fig. 7.9 Kattedan industrial area metal contamination (a) Surface water and (b) ground water
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Fig. 7.10 Musi river heavy metal contamination (a) Surface water (b) Ground water
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Of the 92 known elements in earth crust, 35 metals that concern us because of 
occupational or residential exposure, 23 of these are “heavy metals”: Ag, As, Au, Bi, 
Cd, Ce, Co, Cr, Cu, Fe, Ga, Hg, Mn, Ni, P, Pb, Sb, Sn, Te, Tl, U, V, and Zn (Glanze 
1996). Heavy metals are among the contaminants in the environment. Beside the 
natural activities, almost all human activities also have potential contribution to 
produce heavy metals as side effects. Migration of these contaminants into non-
contaminated areas as dust or leachates through the soil and spreading of heavy 
metals containing sewage sludge are a few examples of events contributing towards 
contamination of the ecosystems (Gaur and Adholeya 2004; Peña et al. 2014). From 
a chemical point of view, the term heavy metal is strictly ascribed to transition met-

Nakkavagu - metal contamination
Metal ranges in surface water
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Fig. 7.11 Nakkavagu – Metal contamination (a) Surface water and (b) Ground water (ppb)
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als, metalloids, with atomic mass over 20 and specific gravity >5. Here the term 
“heavy metals” will be for these potentially phytotoxic elements. Some of these 
heavy metals do not perform any known physiological function in plants. However, 
others such as micronutrients and beneficial elements are required for plant growth 
and metabolism, but these elements can easily lead to phytotoxicity when their con-
centration rises above optimal ranges. Heavy metal phytotoxicity may result from 
alterations of numerous physiological processes caused at cellular/molecular level 
by inactivating enzymes, blocking functional groups of metabolically important 
molecules, displacing or substituting for essential elements and disrupting  membrane 
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Fig. 7.12 Patancheru – Metal contamination (a) Surface water (b) Ground water
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integrity. A rather common consequence of heavy metal poisoning is the enhanced 
production of reactive oxygen species (ROS) due to interference with electron 
transport activities, especially that of chloroplast membranes (Pagliano et al. 2006; 
La Rocca et al. 2009). This increase in ROS exposes cells to oxidative stress leading 
to lipid peroxidation, biological macromolecule deterioration, membrane 
 dismantling, ion leakage, and DNA-strand cleavage (NavariIzzo et al. 1998, 1999; 
Quartacci et al. 2001). Plants resort to a series of defence mechanisms that control 
uptake, accumulation and translocation of these dangerous elements and detoxify 
them by excluding the free ionic forms from the cytoplasm. One commonly 
employed strategy lies in hindering the entrance of heavy metals into root cells 
through entrapment in the apoplastic environment by binding them to exuded 
organic acids (Watanabe and Osaki 2002) or to anionic groups of cell walls (Dalla 
Vecchia et al. 2005; Rascio et al. 2008). Most of the heavy metals that enter the plant 
are then kept in root cells, where they are detoxified by complexation with amino 
acids, organic acids or metal-binding peptides and/or sequestered into vacuoles 
(Hall 2002). This greatly restricts translocation to the above-ground organs thus 
protecting the leaf tissues, and particularly the metabolically active photosynthetic 
cells from heavy metal damage. A further defence mechanism generally adopted by 
heavy metal-exposed plants is enhancement of cell antioxidant systems which 
counteracts oxidative stress (Navari-Izzo et al. 1998; Sgherri et al. 2003).

Several methods are already being used to clean up the environment from these 
contaminants, but most of them are costly and far away from their optimum perfor-
mance. The chemical technologies generate large volumetric sludge and increase the 
costs (Rakhshaee et al. 2009). Both chemical and thermal methods are technically 
difficult and expensive, and can also degrade the valuable component of soils 
(Hinchman et al. 1995). Conventionally, remediation of heavy-metal contaminated 
soils involves either onsite management or excavation and subsequent disposal to a 
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landfill site. This method of disposal solely shifts the contamination problem else-
where along with the hazards associated with transportation of contaminated soil and 
migration of contaminants from landfill into an adjacent environment. Soil washing 
for removing contaminated soil is an alternative way to excavation and disposal to 
landfill. This method is very costly and produces a residue rich in heavy metals, 
which will require further treatment. Moreover, these physio-chemical technologies 
used for soil remediation render the land usage as a medium for plant growth, as they 
remove all biological activities (Gaur and Adholeya 2004).

Recent concerns regarding the environmental contamination have initiated the 
development of appropriate technologies to assess the presence and mobility of 
metals in soil (Shtangeeva et al. 2004), water, and wastewater. Since, these heavy 
metals cannot be degraded from the nature, at great extent we can take the advan-
tage of natural solar driven process of plants for translocating these contaminants to 
various parts from the soil or water. Hence, this process is called phytoremediation. 
Presently, phytoremediation has become an effective and affordable technological 
solution used to extract or remove inactive metals and metal pollutants from con-
taminated soil. The term phytoremediation (“phyto” meaning plant, and the Latin 
suffix “remedium” meaning to clean or restore) refers to a diverse collection of plant 
based technologies that use either naturally occurring, or genetically engineered, 
plants to clean up the contaminated soil or water environment (Flathman and Lanza 
1998). Phytoremediation is natural, simple, cost effective, non environmentally dis-
ruptive green technology and most importantly, its by products can find a range of 
other economical uses (Truong 1999, 2003). Phytoremediation takes the advantage 
of the unique and selective uptake capabilities of plant root systems, together with 
the translocation, bioaccumulation, and contaminant degradation abilities of the 
entire plant body (Hinchman et al. 1995).

The main objective of this work is to highlight the potential of phyto-products 
from various plants applied in remediation of heavy metal contaminated soils as 
well as the usage of the polluted water for co-generation of biofuels using algae 
(Samardjieva et al. 2011).

Phytoremediation is the use of plants to accumulate, remove or render harmless 
toxic compounds contaminating the environment. Plants absorb/exclude, translo-
cate, store or detoxify inorganic and organic. Thereby they contribute significantly 
to the fate of these contaminants from the biosphere. Thus, contaminants (inorganic 
and organic) can enter the food chain when bio-available, which would cause 
unwanted effects (Abhilash and Yunus 2011). Many think that phytoremediation is 
a temporary solution and often the following questions are posed:

 (a) There has been a disbelief among scientists and regulators about 
phytoremediation

 (b) How does phytoremediation works?
 (c) How to select plants suitable for fostering remediation?
 (d) Will phytoremediation work on every heavy metal contaminated/polluted site?
 (e) How to dispose of the plants contaminated in this decontamination process?
 (f) How to manage the risk based phytoremediation?
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Often policy and decision makers, academia and civic governance think that 
phytoremediation is a temporary solution of transferring the pollutants and con-
taminants are transferred from one place to another. Scientists and academia are 
no exception to this feeling. Regulators have expressed apprehensions about 
phyto- remediation due to lack of knowledge of contemporary knowledge of envi-
ronmental sustainability. Often, it is generally believed that this kind of environ-
mental decontamination is a temporary solution. How to dispose of the 
contaminated phytomass is a puzzling question by environmental managers and 
regulators.

Soil, water and air are the important natural resources that must be cleaned. 
Unfortunately, natural resources are polluted globally. Rapid industrialization and 
extraction of large quantity of natural resources including indiscriminate extraction 
of ground water have resulted in environmental contamination and pollution. Large 
amounts of toxic waste have been dispersed in thousands of sites spread across the 
globe resulting in varying degrees of contamination and pollution. Thus, every one 
of us are being exposed to contamination from past and present industrial practices, 
emissions in natural resources (air, water, and soil) even in the most remote regions. 
The risk to human and environmental health is rising and there is evidence that this 
cocktail of pollutants is a contributor to the global epidemic of cancers, lungs and 
other degenerative diseases. These pollutants belong to two main classes: inorganic 
and organic. The challenge is to develop innovative and cost-effective solutions to 
decontaminate polluted environments.

Bioremediation includes variety of technologies using plants and microbes to 
remediate or contain contaminants in soil, groundwater, surface water, and/or sedi-
ments including air. These technologies have become attractive alternatives to con-
ventional cleanup technologies due to relatively low capital costs and the inherently 
aesthetic nature.

Bioremediation is the use of biological interventions of biodiversity for miti-
gation (and wherever possible, complete elimination) of the noxious effects 
caused by environmental pollutants in a given site. It operates through the prin-
ciples of biogeochemical cycling. If the process occurs in the same place affected 
by pollution then it is called in-situ bioremediation. In contrast, deliberate reloca-
tion of the contaminated material (soil and water) to a different place to accelerate 
biocatalysis is referred to as ex-situ bioremediation. Bioremediation has been suc-
cessfully applied for cleanup of soil, surface water, groundwater, sediments and 
ecosystem restoration. It has been unequivocally demonstrated that a number of 
xenobiotics including nitro-glycerine (explosive) can be cleaned up through bio-
remediation. Bioremediation is generally considered to include natural attenua-
tion (little or no human action), bio-stimulation or bio-augmentation, the 
deliberate addition of  natural or engineered micro-organisms to accelerate the 
desired catalytic  capabilities. Thus bioremediation, phytoremediation and rhi-
zoremediation contribute significantly to the fate of hazardous waste and can be 
used to remove these unwanted compounds from the biosphere (Rajkumar et al. 
2009, 2010, 2012).
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Hibiscus cannabinus (Kenaf), Brassica juncea (Indian mustard), Helianthus 
annus (Sunflower), Ricinus communis (Castor), Vetiveria zizanioides (Khus 
Khus grass) and Prosopis juliflora (Velvet Mesquite) are considered as environ-
mental/ phytoremediation crops. Therefore, phytoproducts (value additives) 
from the plants that are applied in phytoremediation and safe disposal of con-
taminated phytomass (risk based remediation) would propel bioeconomy.

7.3.1  Products from Phytoremediated Crops

Due to rapid globalization of the current century, the demand for energy is steeply 
increasing. Use of fossil fuels have an adverse environmental impact although eco-
nomic viability and efficiency are in favour of fossil fuels. To reduce the negative 
impact of fossil fuels, use of contaminated substrates for bioenergy is being 
researched globally (Meers et al. 2010). This strategy avoids competition over land 
use for food crops. Further, vast resources that can be harvested from contaminated 
substrates, conversion through efficient biorefineries via research and development 
is being tapped in many countries. Technically, biomass and the conversion prod-
ucts can be used as supplemental sources for conventional fuels (fossil fuels) and 
chemical feedstock for various industries. This approach is promising in the area of 
alternate sources of energy and dependency on fossil fuels can be minimized to a 
considerable extent. The production of biomass involves the use of abundantly 
available and rapidly growing non-agricultural plants, preferably with good coppic-
ing and nitrogen fixing capabilities to produce energy products by suitable conver-
sion technologies (Table 7.2).

The annual photosynthetic storage of energy in biomass is eight times more 
that of energy use from all sources. This estimate clearly illustrates the immense 
potential of biomass resources, if harnessed and managed sustainably. Further, 
biomass derived constituents serve as analogues of fossil fuel derivatives. 
Sunflower and Indian mustard are popular energy and environmental crops (Fozia 
et al. 2008; Madejón et al. 2003).

Large tracts of contaminated sites are available in different agro-climatic zones 
of our country. A number of multiuse plant species with energy rich chemicals have 
been identified. It is therefore, necessary to integrate such energy plantations into a 
system of rotational cycle to suit socio-economic aspects of the people. Broad areas 
of biomass energy sources.

Energy crops include corn, sugar cane, sugar beet, cassava, soyabean and other 
sugar and starch producing crops. In Brazil, sugar cane cultivation was expanded 
to some extent at the expense of food crop. Brazil, USA, Philippines, Germany 
use blended mixture of gasoline and alcohol. Such a blended fuel was termed 
Gasohol or alcogas. Brazil’s National alcohol and pure alcohol programmed 
“Proalcool” aims at running cars on gasohol and pure alcohol. Cassava (mandioca, 
tapioca), grown in many developing countries is rich in starch. It can be cultivated 
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Table 7.2 Metal accumulation reports with reference to Brassica juncea (Indian mustard)

As Srivastava et al. (2013)
As, Cd, Cu, Fe, Mn, Pb, Zn, Clemente et al. (2005, 2006)
Au Bali et al. (2010)
B Giansoldati et al. (2012)
Cd Schneider et al. (1999), Lee and Leustek (1999), Qadir et al. 

(2004), Quartacci et al. (2005), Minglin et al. (2005), 
Nouairi et al. (2006), Manciulea and Ramsey (2006), Mobin 
and Khan (2007), Hayat et al. (2007), Seth et al. (2008), 
Szőllősi et al. (2009), Hong-Xia et al. (2009), Ahmad et al. 
(2011); Bauddh and Singh (2012a, b)

Cd, Zn Sridhar et al. (2005)
Cd, Co, Cr, Cu, Fe, K, Mn, Na, 
Ni, Pb, Zn,

Gupta and Sinha (2007)

Cd, Cr, Cu, Fe, Mn, Ni, Pb, Zn, Gupta and Sinha (2006)
Cd, Cr, Cu, Pb, Zn Quartacci et al. (2006)
Cd, Cu, Ni, Zn, do Nascimento et al. (2006)
Cd, Cu, Pb, Zn, Wu et al. (2004)
Cd, Cu, Zn Schafer et al. (1997)
Cd, Fe Qureshi et al. (2010)
Cd, Ni Cao et al. (2008)
Cr Pandey et al. (2005), Pandey (2013), Rajkumar et al. (2006), 

Sinha et al. (2009)
Cr, Ni Hsiao et al. (2007)
Cu Fariduddin et al. (2009), Singh et al. (2010), Chigbo et al. 

(2013)
Cu, Fe, Mn, Pb, Zn Walker et al. (2003)
Hg Shiyab et al. (2009), Meng et al. (2011), Cassina et al. 

(2012)
Mo, Se Schiavon et al. (2012)
Ni Rajkumar and Freitas (2008a, b), Ali et al. (2008), Kanwar 

et al. (2012)
Pb Liua et al. (2000), Lim et al. (2004), Meyers et al. (2008), 

Zaier et al. (2010), Ghnaya et al. (2013)
Pu Lee et al. (2002)
Se Grant et al. (2004), Kahakachchi et al. (2004), Yathavakilla 

et al. (2005), Hladun et al. (2011), Jaiswal et al. (2012)
Zn Alia and Saradhi (1995), Prasad et al. (1999), Saxena et al. 

(2005)

in wide range of agroclimatic situations and does not require high dosage of fertil-
izer and pesticides to produce high yields. The notable examples of biomass con-
version to biofuels are sweet sorghum and Miscanthus (Babu et al. 2014; Brosse 
et al. 2009; Chami et al. 2014; El Hage et al. 2010; Pavel et al. 2014; Płażek et al. 
2014; Sharmin et al. 2012).
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Bioenergy is renewable alternative fuel/energy produced from materials derived 
from biological sources such as plants, animal oils or fermentation. Biomass is any 
organic material which has stored sunlight in the form of chemical energy. As a fuel 
it may include wood, wood waste, straw, manure, sugarcane, and many other 
byproducts from a variety of agricultural processes. Energy is a key to socio- 
economic development (Figs. 7.14–7.16).

Sunflower crop can be grown in the pollution affected areas. The root system of 
the plan develops well in varying soil pH conditions. Moistening and acidification 
of the rhizosphere could enhance the nutrient uptake mechanism of the crop, induc-
ing a ‘fertilising’ effect (Junkang Guo et al. 2014; Juwarkar et al. 2008; Khouja 
et al. 2013; Kötschau et al. 2014; Liphadzi and Kirkham 2006; Madrid et al. 2008; 
Rajkumar et al. 2009; Stanbrough et al. 2013). Sunflower is a multipurpose crop 
producing a variety of industrial feed stock.

In recent years environmental crops for e.g. Indian mustard, sunflower and sweet 
sorghum etc. have gained considerable attention. The primary goal of this exercise 
is to cultivate these crops using contaminated substrates with two objectives. (a) to 
combat environmental pollution, and (b) to produce beneficial and regenerable 
products.

PCB
TPH

BTEXTCE

U

Th
Cs

Sr

Ra

TNT

Sunflower

High biomass producer
Accumulates heavy metals + radionuclides

Use of chelators viz., EDTA, NTA and FYM 
enhanced metal accumulation

Harvesting & Crop rotation

Biodiesel, Fiber and industrail feed stock

Fig. 7.14 Sun flower as environmental crop for cultivation on inorganic and organics contami-
nated environment. Biodiesel, fiber and industrial feed stock are the phytoproducts. BETX Benzene, 
Ethylbenzene, Toluene and Xylenes, Cs Cesium, Ra Radium, Sr Strontium, TCE Trichloroethylene, 
Th Thorium, TNT Trinitrotoluene, TPH Total petroleum hydrocarbons, U Uranium
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Degum oil

Crush oil seed
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Methyl alcohol
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Protein cake 

Fig. 7.15 Biodiesel and 
cogeneration of industrial 
feed stock from sun flower 
from phytoremediated crop 
produce
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Fig. 7.16 Brassica juncea (Indian mustard) as environmental crop for cultivation on inorganic and 
organics contaminated environment. Biodiesel is the main byproduct (Marillia et al. 2014; Tomé 
et al. 2009). BETX Benzene, Ethylbenzene, Toluene and Xylenes, Cs Cesium, Ra Radium,  
Sr Strontium, TCE Trichloroethylene, Th Thorium, TNT Trinitrotoluene, TPH Total petroleum 
hydrocarbons, U Uranium
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The biofuel generations are the following:
1st generation – Jatropha based 
2nd generations – lignocellulosic ethanol
3rd generation – algal biofuels
4th generation – Bio-butanol, bio-hydrogen, biomethyl furan etc.

7.3.2  Medicinal and Aromatic Plants on Contaminated Soils

Aromatic crops, used for production of essential oils as opposed to food or feed, 
may be suitable alternative crops in heavy metal contaminated agricultural as well 
as non-agricultural soils. Essential oils are low-volume, high value products that are 
widely used as aromatic agents in various non-food industries, such as perfumery, 
cosmetics, and aromatherapy suggesting the possibility that such plants could be 
used in phytoremediation of contaminated soils. The use of aromatic plants for phy-
toremediation may have several advantages over other crop plants in that the har-
vested foliage is a source of essential oils, which are the marketable revenue-generating 
products of aromatic crops. Growing of these aromatic crops in metal contaminated 
areas may not introduce heavy metals into the food chain and may not result in an 
economic penalty compared to most other edible crops. In the process of oil extrac-
tion by distillation, heavy metals remain in the extracted plant residues, limiting the 
quantities of heavy metals in the commercial oil product (Zheljazkov and Nielsen 
1996; Scora and Chang 1997; Zheljazkov and Warman 2004). Thus, significant 
amounts of heavy metals could be removed from the soil through proper disposal of 
the metal contaminated plant residues, while the metal-free, extracted oils could be 
safely marketed. High-value aromatic crops may be a better alternative for heavy 
metal contaminated agricultural soils than the suggested woody species such as 
Salix and Betula (Hammer et al. 2003; Rosselli et al. 2003), or other plants like 
Sesbania drummondii that have been shown to hyperaccumulate Pb (Sahi et al. 
2002). For disposal of metal contaminated phytomass, several approaches such as 
composting, incineration, ashing, pyrolysis, direct disposal and liquid extraction 
have been proposed (Sas-Nowosielska et al. 2004; Keller et al. 2005).

Some aromatic plants appear capable of accumulating heavy metals from con-
taminated soil (Chand et al. 2012; Zheljazkov and Nielsen 1996; Zheljazkov and 
Warman 2004; Zheljazkov et al. 2008b; Chaiyarat et al. 2011; Aziz et al. 2011; 
Amirmoradi et al. 2012), and some might demonstrate significant phytoremediation 
potential if coupled to other means for increasing bioavailability and uptake of Cd, 
Pb, and Cu, such as chelates (Schmidt 2003) or biosurfactants (Mulligan et al. 2001) 
(Fig. 7.17).

The effects of these metals on growth, essential oil production, and metal 
accumulation of most commercially important essential oil producing aromatic 
crops, such as coriander (Coriandrum sativum L.), dill (Anethum graveolens L.), 
chamomile (Chamomilla recutita (L.)K.), peppermint (Mentha x piperita L.), 
basil (Ocimum basilicum L.), hyssop (Hyssopus officinalis L.), lemon balm 
(Melissa officinalis L.), and sage (Salvia officinalis L.) are, however, largely 

7 Phytoremediation Crops and Biofuels



180

unknown. Coriander, dill, chamomile, peppermint, basil, hyssop, lemon balm, 
and sage are aromatic crops that have been traditionally grown as cash crops in 
Europe (Topalov 1962), and North America. Coriander, dill, chamomile, pepper-
mint, basil, hyssop, lemon balmand sage have very high phytoremediation poten-
tial (Brown et al. 1998) (Table 7.4).

Traditionally, peppermint, basil, and sage tissue wastes after distillation are 
used as feed for sheep (Topalov 1962). Results of experiments demonstrated that 
if peppermint, basil, and sage are grown in highly heavy metal contaminated 
medium, Cd, Pb, and Cu may accumulate in shoots and wastes from distillation 
above the maximum permissible concentrations for these elements in animal feed 
(NRC 1985), making these waste products unsuitable as animal feed. To reduce 
the amount of Cd, Pb, and Cu and produce usable final product, metal contami-
nated distillation wastes could be composted after mixing with wastes from other 
low metal feedstock.

Trace elements in the healing plants can act as remedies (Prasad 2008). Trace 
elements accumulated in medicinal plants have healing power in numerous ail-
ments and disorders. Herbal preparation known as ‘bhasmas’ (ash of the poly-
herbals and specific plants and or their parts) are popular in Ayurveda, Indian 
traditional medicinal system. According to this medicinal system, metal based 
drugs known as ‘bhasma’ involve the conversion of a metal into its mixed oxides. 
Plants that accumulate metals and metalloids have gained considerable signifi-
cance and are implicated in healing function. Plants that accumulate essential 
trace elements are implicated in propelling metabolic processes (metallomics) 
(Prasad 2008).

Fig. 7.17 Commiphora wightii, a source of guggul steroids capable of growing on lime stone 
quarry waste
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7.3.3  Ornamentals for Environmental Moderation  
and Toxic Trace Metal Cleanup

Several ornamental plants have been successfully applied in environmental toxic 
cleanup (Figs. 7.17–7.25) (Abad et al. 2001; Bosiacki 2009a, b; Ding and Hu 2012). 
For e.g. Lemon-scented geraniums (Pelargonium sp. ‘Frensham’, or scented gera-
nium) accumulated large amounts of Cd, Pb, Ni and Cu from soil in greenhouse 
experiments (Bosiacki 2008; Dan et al. 2000; Saxena et al. 1999). Biotechnological 
interventions through hairy root regenerants are useful in floriculture (Giri and 
Narasu 2000; Giovanni et al. 1997). Pellegrineschi et al. (1994) improved the orna-
mental quality of scented Pelargonium spp. This plant has pleasant odor that adds 
scent to the toxic metal contaminated soil.

Vetiveria zizanioides (Vetiver grass): It is known to have multiple uses. This plant 
had several popular names such as ‘the miracle grass’, ‘a wonder grass’, ‘a magic 
grass’, ‘an unique plant’, ‘an essential grass’, ‘an amazing plant’, ‘an amazing 
grass’, ‘a versatile plant’, ‘a living barrier’, ‘a living dam’, ‘a living nail’, ‘a living 

Fig. 7.18 Cultivation of ornamentals on contaminated soils in peri urban Greater Hyderabad. (a) 
Chrysanthemum sp. (pink flowers) (b) Chrysanthemum (Yellow flowers), (c) Gaillardia sp. and (d) 
Rosa sp. (Colour figures online)
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Fig. 7.19 Cultivation of ornamentals on contaminated soil in perdi urban Greater Hyderabad (a) 
and (b) Jasminum officinale L. with Musi river contaminated water. (c) and (d) Tagetes sp. (Patel 
and Patra 2014)

Fig. 7.20 Cultivation of (a) Crossandra infundibuliformis (L.) Nees with Musi river contaminated 
water (b) flowers of C. infundibuliform (c) Asparagus setaceus (Kunth) Jessop and (d) Origanum 
majorina
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wall’, ‘an eco-friendly grass’. This extraordinary grass is adaptable to multiple 
 environmental conditions and it is globally recognized as an easy and economical 
alternative to control soil erosion and to solve a variety of environmental problems. 
It has been used for restoration, conservation and protection of land disrupted by 
man activities like agriculture, mining, construction sites, oil exploration and 
 extraction, infrastructure corridors, as well as used for water conservation in 
 watershed management, disaster mitigation and treatment of contaminated water 
and soil. Research at the global level has proved the relevance of vetiver in multiple 
applications. Vetiveria zizanioides exhibited high metal tolerance (Andra et al. 
2009, 2010, 2011; Chintakovid et al. 2008; Chen et al. 2012; Chiu et al. 2006; 
Chong and Chu 2007; Danh et al. 2011; Rotkittikhun et al. 2007; Makris et al. 2007; 
Pang et al. 2003; Truong 2000; Wilde et al. 2005) and is used in stabilization of 
mine tailings in different parts of the world (Frérot et al. 2006; Pérez-López et al. 
2014; Rocio et al. 2013).

The debris generated from the ornamentals containing the toxic metal residues 
can be treated easily as the biomass would be relatively less in view of high water 
content. Appropriate techno-economic feasible options based on integrated model 
systems was recently suggested for the appropriate use of Eichhorinia crassipes 

Fig. 7.21 Ornamentals in commercial market (a) Chrysanthemum sp. (b) Alternanthera sp.
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Fig. 7.22 Ornamentals in commercial market (a) Rosa sp. (b) Lilium sp. (c) Jasminum officinale L.

Fig. 7.23 Water ornamentals. (a) Pistia stratiotes L. dry phytomass. (b) Nymphaea odorata Aiton. 
(c) N. nouchali Burm. f. (d) N. pubescens Willd.
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Fig. 7.24 (a and b) Vetiveria zizanioides and (c and d) Water lilies (Nymphaea) in commercial 
market

Fig. 7.25 Ornamental Canna indica in soil scape filtration for removal of nutrients and colouring 
material from waste water (Huiping Xiao et al. 2010)



186

(water hyacinth) (Malik 2007). Similar solutions need to be worked out for the 
ornamentals proposed for toxic metal celanup.

Ornamental plants have an added advantage of enhancing environmental aesthet-
ics besides cleaning the environment. This approach has several advantages for envi-
ronmental moderation, cleanup and generation of revenue. Therefore, this approach 
will add new dimension to the field of phytoremediation of contaminated environ-
ment. The compost generated from the phytoremediated ornamental plants serves as 
a medium for use as growing media for production ornamentals (Page et al. 2014).

“Scent the soil” with aromatic plants is a fascinating proposition. Several poten-
tial and promising options exist for environmental management of contaminated 
soils using medicinal and aromatic plants. Yet certain bottlenecks are to be investi-
gated for wider applications. The regulatory bodies and biosafety issues might com-
plicate this approach. The compost generated from the ornamentals plants used in 
remediation serves as a compost and can be reused as growing media for production 
ornamentals. The quantum of biomass generated would be relatively less in view of 
high water content in several of these ornamentals. Integrated model and appropri-
ate techno-economic feasible options were suggested for the use of Eichhorinia 
crassipes (water hyacinth) (Malik 2007). Similar solutions need to be worked out 
for the ornamental proposed for toxic metal celanup.

7.3.4  Non-edible Oil Plants for Biofuels on Contaminated Soil

Non-edible vegetable oils or the second generation feed stocks have become more 
attractive for biodiesel production. These feed stocks are very promising for the 
sustainable production of biodiesel (Agbogidi and Eruotor 2012; Agbogidi et al. 
2013; Ahmadpour et al. 2010; Jamil et al. 2009; Liang et al. 2012; Luhach and 
Chaudhry 2012; Majid et al. 2012; Mangkoedihardjo and Surahmaida 2008).

Taking the advantage of second generation biodiesel plants and obtaining the 
biodiesels from these plants as most of these plants naturally grown in highly con-
taminated with variety of inorganic and organic pollutants. Most of the these plants 
grow widely in contaminated substrates. Our field work survey reveled that some of 
the potential plants are Ricinus communis, Jatropha curcas, Azadiracta indica. The 
world’s dependence on fossil fuels is a perfect example. Therefore, biodiesel feed-
stock should be as diversified as possible, depending on geographical locations in 
the world. Therefore, exploring alternative biodiesel feedstocks like non-edible veg-
etable oils should be an important objective for biodiesel industries in near future.

In developing countries like India, biofuel program of Government of India has 
launched alcohol production from sugar/starch based feedstock the Jatropha curcas 
plant has been planted on massive scale on waste/degraded or other lands to open new 
avenues for producing biodiesel from Jatropha curcas oil thereby reducing/saving 
foreign exchange needed to import the  petroleum fuel (Abioye et al. 2010; Acharya et 
al. 2012; Gao et al. 2009; Ghavri and Singh 2012; Kumar et al. 2008, 2013; Singh et 
al. 2013, 2014; Wu et al. 2011; Yadav et al. 2009). In biodiesel production, India is on 
8th position with 0.03 billion liters of biodiesel production per year.
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The above problem can be solved by using cheapest, low cost several potential 
tree borne oil seeds (TBOs) and non-edible crop source have been identified as suit-
able feed stock for biodiesel. However, it must be pointed out that global biodiesel 
feed stocks should not rely on certain sources as it could bring harmful influence in 
the long run. The worlds’ dependence on fossil fuels is a perfect example.

Therefore, biodiesel feed stock should be as diversified as possible, depending 
on geographical locations in the world. The determined properties beside the engine 
performance and emission characteristics of non-edible biodiesel covered in this 
review indicated that there is a huge chance to produce biodiesel from non-edible 
sources in the future.

Since, India is net importer of edible vegetable oils, these oils are therefore not 
available for conversion to biodiesel. India has the potential of becoming the world’s 
leading producer of biodiesel, as it can be “harvested,” and produced from non- 
edible oils like Jatropha curcas, Pongamia pinnata, Madhuca indica plants etc 
(Awwokunmi et al. 2012; Bauddh and Singh 2012a, b).

The increasing use of biodiesel in India will provide green cover to wasteland, 
support the agricultural and rural economy, reduce the dependency on imported 
crude oil and improve the environmental emissions. Even though, 12 Jatropha spe-
cies are reported by several Indian floras, research has been confined to nine species 
only. Among all the Jatropha species, J. curcas is the most primitive form and has 
the potential for biodiesel and for medicinal (Abd El-Kader et al. 2012).

There are several tree species that are suitable for Biodiesel production like 
Jatropha sps., Pongamia pinnata (Millettia pinnata), Moringa, Simarouba glauca, 
Calophyllum inophyllum, Citrullus colocynthis, Simmondsia chinesis, Helianthus 
tuberosus, Garcinia indica, Madhuca indica, Azadirachta indica, Linum usitatissi-
mum etc. (Fig. 7.26).

Advantages of non-edible oil as Biodiesel has the following advantages:

• Mitigate Environmental Global Warming
• Energy Security
• Rural and Urban Economic Development
• Reduce Sulfur/Aromatics
• Clean Air
• Health Effects
• Biodiesel Exhausts reduce Carcinogen Emissions
• High Cetane and Lubricity
• Biodegradable
• Non-Toxic
• The cancer causing potential of diesel exhaust largely a function of:

Amount, size, and composition particulates
Mutagenicity of exhaust gases
High exhaust mutagenicity can cause:
shortened life, birth defects
asthma and respiratory problems
specially in infants or the elders
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7.3.5  Tree Crops

The following are some examples Casurina equisetifolia, Leucaena leucocephala 
(Subabul, koobabul, ipil-ipil, lead tree, tan tan, white popinac etc.) Parkinsonia acu-
leata (Jerusalem thorn), Pithecellobium dulce (Jangil jailebi), Bauhinia variegata, 
Cassia siamea, Prosopis juliflora (Mesquite), P. chiliensis (Paradeshi Babul), P. cin-
eraria (Khejri), Peltophorum pterocarpum (Copper pod), Sesbania gradiflora 
(Avisa), and S.bispinosa (Jeelgu) (Yang et al. 2003; Zalesny et al. 2009). However, 
only a few like Eucalyptus, Leucaena and Casuarina are mostly grown (monocul-
ture). In such plantations, wood production is about 20 cu m/ha/year/ to 60 cu m/ha/
year. Eucalyptus wood has industrial value in pulp, rayon charcol, methanol distill-
eries (Fig. 7.27).

In the contemporary time energy and environment security are at stake in our 
situation. Land resources are under immense pressure glocally (globally and 
locally). The pressure on available land resources is increasing due to land degrada-
tion, population explosion, global economic development and urbanization. Land 
degradation is mainly due to erosion, nutrient depletion, loss of organic matter, 
structural losses, induced land degradation, faulty irrigation, atmospheric deposi-
tion of pollutants, poor agricultural practices. Climate changes increases the inten-

Fig. 7.26 Cultivation of biodiesel and oil producing crops contaminated soil (a) Ricinus commu-
nis (b) Vetiveria zizanioides (c) Jatropha curcas and (d) Moringa oleifera
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sity of land degradation. Therefore, utilization of contaminated environment 
(terrestrial and aquatic) following the principles of phytoremediation for biofuel 
production would be one of the sustainable options (Núñez-López et al. 2008). 
Although this strategy has immense scope and limitations (Tables 7.3 and 7.4) con-
siderable progress and successful demonstration projects have provided convincing 
evidence for environmental moderation, cleanup and co-generation of revenue. 
Therefore, this approach will add new dimension to the field of sustainable 
development.

Natural vegetation of Prosopis juliflora in Patancheru Industrial Development 
Area contaminated with highly above permissible limits of heavy metals in soil and 
surface and ground water. Prosopis juliflora is an evergreen, fast growing, drought 
resistant, widely distributed phreatophyte not only in India but also in other arid and 
semi-arid tropical countries. A valued tree for shade, timber and forage It is a thorny, 
deciduous, large crowned and deep rooted bush or tree which grows up to 10 m 
height or more, depending on the variety and climatic conditions. It is widely dis-
tributed in the dry tropical and sub-tropical regions of Central America and Northern 
South America. Also, it is widely propagated in Africa and Asia. It is the only exotic 
species capable of growing on a wide variety of soils and climatic conditions. It is 
an ideal species for afforestation and helps in the reclamation of waste lands, stabi-

Fig. 7.27 Stabilization of mine tailings with Cymbopogon citratus (lemon grass) miracle grass, 
Vetiveria zizanioides and Jatropha curcas (a) Nyveli lignite mine (b) Mine over burden (c) Jatropha 
curcas plantation in mine over burden and (d) Jatropha biodiesel
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Table 7.3 Metal accumulation reports with reference to Helianthus annus (sun flower) (Ruiz et al. 
2007)

Al, Cd, Cr Gallego et al. (2002)
Al, Cd, Cu, Fe, Mn, Zn Fauziah et al. (2011)
Al, Cd, Cu, Ni, Pb, Zn Chakravarty and Srivastava (1992)
As Baroni et al. (2004)
As, Ca, Cd, Co, Cr, Cu, 
Mn, Na, Ni, Pb, U, V, Zn

Paun et al. (2012)

As, Cd, Co, Cu, Pb, Zn Marchiol et al. (2007)
As, Cd, Cr, Fe, Ni, January et al. (2008), Cutright et al. (2010)
Ca, Cd, Co, Cu, K, La, Li, 
Mg, Mn, Na, Ni, Zn

Enache et al. (2003)

Cd Yurekli and Kucukbay (2003), Gallego et al. (2005)
Cd, Cr, Cu, Pb, Zn Soudek et al. (2010)
Cd, Cr, Ni Chen and Cutright (2001)
Cd, Cr, Pb, Ullah et al. (2011)
Cd, Cu, Fe, Mn, Ni, Pb, Zn Liphadzi et al. (2003)
Cd, Cu, Ni, Pb, Zn Meers et al. (2005), Jadia and Fulekar (2008)
Cd, Cu, Ni, V, Zn Lombi et al. (1998)
Cd, Cu, Pb, Adewole et al. (2010)
Cd, Cu, Pb, Zn Garcia et al. (2006, 2009), Nathan et al. (2012), Mayora et al. 

(2012), Angelova et al. (2012)
Cd, Hg Rai and Kumar (2010)
Cd, Pb Lotfy et al. (2009) Awotoye et al. (2009)
Cd, Pb, Zn Nehnevajova et al. (2005, 2007)
Cd, Zn Xiu-Zhen et al. (2012)
Cr Fozia et al. (2008)
Cr, Fe, Mn, Zn, Singh et al. (2004)
Cr, Pb Araiza-Arvilla et al. (2006)
Cs Soudek et al. (2004)
Cs, Sr, U Prasad (2007b)
Cu Zengin and Kirbag (2007), Herrera-Rodríguez et al. (2007)
Cu, Cd, Pb, Zn, Lesage et al. (2005)
Cu, Fe, Mn, Si, Sr, Ti, Zn, Busuioc et al. (2009)
Cu, Fe, Mn, Zn Sabudak et al. (2007)
Cu, Ni, Zn Rajkumar et al. (2008)
Cu, Pb, Zn, Tandy et al. (2006)
Hg Pedron et al. (2013)
Ni Szymaska and Matraszek (2005), Najafi et al. (2011)
Pb Azhar et al. (2006), Sinegani and Khalilikhah (2008), Melo et al. 

(2009), Azhar et al. (2009), Sinha et al. (2011), Usha et al. 
(2011), Azad et al. (2011), Chandra et al. (2011), Seth et al. 
(2012)

Pb, Zn Solhi et al. (2005), Adesodun et al. (2010)
Ra, U Tomé et al. (2008)
Zn Fauziah et al. (2011)
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Table 7.4 Medicinal and aromatic plants capable of growing on contaminated soils

Plant name Common name Family Parts used

Abies densa Silver fir Pinaceae Wood
Acorus calamus Sweet flag Araceae Rhizome
Acorus gramineus Sweetflag Araceae Aerial parts
Acorus gramineus – Araceae Rhizome
Adenosma indicum – Scrophulariaceae Aerial parts
Amomum sp. Cardamom Zingiberaceae Fruit
Aquilaria crassna Eaglewood Thymelaeaceae Wood
Artemisia vulgaris Mugwort Asteriaceae Aerial parts
Blumea balsamifera – Asteriaceae Leaf
Chenopodium ambrosioides Chenopodiaceae Aerial parts
Cinnamomum camphora Camphor Lauraceae Wood
Cinnamomum cassia Cassia Lauraceae Bark, leaf
Cinnamomum glaucescens – Lauraceae Berry
Cinnamomum iners Thai cinnamon Lauraceae Bark
Cinnamomum loureirii Vietnamese cassia Lauraceae Bark
Cinnamomum obtusifolium – Lauraceae Bark, leaf
Cinnamomum tamala Indian cinnamon Lauraceae Leaf
Citrus hystrix Leech lime Rutaceae Fruit peel
Cunninghamia sinensis – Pinaceae Saw dust
Cymbopogon distans – Poaceae Aerial parts
Elscholtzia cristata – Lamiaceae Aerial parts
Elsholtzia blanda – Lamiaceae Aerial parts
Eucalyptus globulus Eucalypt Myrtaceae Leaf
Gaulteria fragrantissima Wintergreen Ericaceae Leaf
Homalomena aromatica – Araceae Rhizome
Homalomena occulta – Araceae Rhizome
Hyptis suaveolens – Lamiaceae Herb
Jasminum sambac Arabian jasmine Oleaceae Flower
Juniperus indicus Juniper Cupressaceae Berry
Lavandula angustifolia Lavender Lamiaceae Flower
Lavandula officinale Lavender Lamiaceae Flower
Litsea cubeba Cubeb Araceae Fruit
Lonicera japonica Honeysuckle Caprifoliaceae Flower
Michelia alba Champi Annonaceae Flower
Nardostachys grandiflora Spikenard Valerianaceae Rhizome
Ocimum gratissimum Lemon basil Lamiaceae Aerial parts
Ocimum tenuiflorum Holy basil Lamiaceae Aerial parts
Parmelia nepalensis, Lichens/ Tree moss Parmeliaceae Whole plant
Pelargonium fragrans Nutmeg-scented geranium Geraniaceae Leaf
Pelargonium capitatum Alta of rose geranium Geraniaceae Leaf
Pelargonium crispum Curly-leaved geranium Geraniaceae Leaf
Pelargonium graveolens Pot geranium Geraniaceae Leaf
Pelargonium macrorrhizum Scented geranium Geraniaceae Twig
Pelargonium pratense Scented geranium Geraniaceae Twig
Pinus roxburghii Pine Pinaceae Resin
Pinus khasya Pine Pinaceae Resin
Pinus merkusii Pine Pinaceae Resin

(continued)



Table 7.4 (continued)

Plant name Common name Family Parts used

Rhododendron anthopagon Rhododendron Ericaceae Twig
Rosa damascena Damask rose Rosaceae Flowers
Usnea sp. Ramaliana spp. Lichens/Tree moss Usneaceae Whole plant
Vetiveria zizanioides Vetiver Poaceae Root
Zanthoxylum armatum Zanthozylum Rutaceae Fruit
Zingiber purpureum Phlai’ Zingiberaceae Rhizomes

Table 7.5 Metal accumulation in selected Medicinal and aromatic plants

Plant name Metals References

Anethum graveolens Cd, Pb, Cu, Mn, Zn Zheljazkov et al. (2008a, b)
Chamomilla recutita

Coriandrum sativum

Hyssopus officinalis

Melissa officinalis

Mentha x piperita .
Ocimum basilicum

Salvia officinalis

Acorus calamus Al, Ca, Fe, K, Mg, Na, P, Zn Ozcan and Akbulut (2007)
Artemisia absinthium

Brassica alba

Capparis ovata

Capsicum frutescens

Carum copticum

Cinnamomum zeylanicum

Cuminum cyminum

Echinophora tenuifolia

Foeniculum vulgare ssp. 
piperitum
Glycyrrhiza glabra

Laurusnobilis

Matricaria chamomilla

Melissa officinalis

Mentha piperita

Myrtus communis

Nigella sativa

Ocimum minumum

Pimpirella anisum.
Piper nigrum

Rhus coriaria

Rosmarinus officinalis

Salvia aucheri

Salvia fruticase

Satureja hortensis

Sesamum indicum

Syzygium aromaticum

Thymbra spicata

Tilia cordata

(continued)



Plant name Metals References

Ocimum basilicum Cd, Pb, Zn Galeş et al. (2009)
Salvia officinalis

Vetiveria zizanioides Cd, Pb Minh and Khoa (2009)
Catharanthus roseus
Hyptis suaveolens

Cu, Fe, Al, Cr Deo et al. (2011)

Woodfordia fruiticosa

Taraxacum officinale Pb, Cd, Cu, Zn, Hg, Fe, Co, Cr, Mo Malawska and Wiłkomirski 
(2001)

Artemisia herba alba, Al, Ca, Fe, K, Mg, Mn, P, Ba, Cd, 
Pb, Zn

Imelouane et al. (2011)
Lavandula dentata,
Rosmarinus tournefortii,

Thymus vulgaris

Salvia officinalis Pb, Cd, Cr, Co, Ni, Zn, Fe, Cu, Mn Abu-Darwish et al. (2011)
Salvia officinalis Pb, Cd, Cu, Zn Blagojević et al. (2009)
Thymus vulgaris Cd, Cr, Pb, Ni, Cu, Mn, Zn, Fe, Co Abu-Darwish (2009)
Thymus serpyllum

Salvia officinallis

Tribulus terrestris Cd, Pb, Zn Stancheva et al. (2011)
Salvia officinalis Cd, Cu, Pb, Zn Stancheva et al. (2009)
Hyssopus officinalis Cd, Pb, Cu, Mn, Zn, Fe Roodi et al. (2012)
Satureja montana

Hypericum perforatum

Achillea millefolium

Mentha piperita

Mentha arvensis var 
piperascens Malinv.
Majorana hortensis Ca, Na, Mg, Fe, Mn, Zn, Cu, Cd, 

Ni, Pb
Khalifa et al. (2011)

Mentha pipperita

Pelargonium graveolens

Foeniculum vulgaris

Matricaria chamomilla

Abutilon indicum V, Cr, Mn, Ni, Co, Cu, Zn, As, Se, 
Rb, Sr, Mo, Ag, Cd, Sb, Ba, Ti, Pb, 
U, Na, Mg, Al, Si, K, Ca, Fe

Kumari et al. (2012), Bauddh 
and Singh (2012a, b)Achyranthes aspera var.

Adhatoda vasica Nees,

Alternanthera sessilis

Azadirachta indica

Eucalyptus globulus

Hyptis pectinata

Ocimum sanctum,

perphyristachya

Ricinus communis

Tinospora cordifolia

Vetiveria zizanioides As, Cd, Cr, Cu, Hg, Ni, Pb, Se, Zn Danh et al. (2009)
Vetiveria zizanioides Zn, Cu, Ni, and Cr Roongtanakiat et al. (2003)

(continued)
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Table 7.5 (continued)

Plant name Metals References

Rosmarinus officinalis
Origanum majorana

Fe, Mn, Zn, Ni, Cu, Pb, Cd, Cr, Co Koc and Sari (2009)

Sideritis congesta

Mytrus communis

Hypericum perforatum

Capsicum annum

Thymus vulgaris

Saturage hortensis

Melisa officinalis

Lavandula officinalis

Vitex agnis

Mentha piperita

Laurus nobilis

Chrysopogon zizanioides Fe, Zn, Mn, Cu Roongtanakiat et al. (2009)
Chrysopogon nemoralis Zn, Cd, Pb Roongtanakiat and Sanoh 

(2011)Chrysopogon zizanioides

Acorus calamus Pb, Cd, Ni, Cu, Fe, Mn, Co, Zn Malenčić et al. (2005)
Thymus montanus

Salvia verticillata

Ocimum gratissimum Cd, Zn Chaiyarat et al. (2011)
Mentha piperita Co Aziz et al. (2011)
Mentha piperita Cd, Pb Amirmoradi et al. (2012)
Majorana hortensis, Ca, Mg, Na, Fe, Mn, Zn, Cu, Cd, 

Ni, Pb
Hussein et al. (2006)

Mentha pipperita

Pelargonium graveolens,
Foeniculum vulgaris,
Matricaria chamomilla,
Salvia officinalis Cd, Cu, Pb, Zn Stancheva et al. (2009)
Azadiractha indica Zn, Pb, Cd Princewill-Ogbonna and 

Ogbonna (2011)Occimum gratissimum

Vernonia amygdaline

Mentha arvensis Pb, Ni, Cr, Zn, Cu, Mn Chand et al. (2012)
Catharanthus roseus Cd, Mn, Ni, Pb Srivastava and Srivastava 

(2010)
Rosmarinus officinalis Zn, Pb, Cd Gaïda et al. (2013)
Vetiveria nigritana, Cd, As, Pb Oshunsanya et al. (2012)
Vetiveria zizanioides

Matricaria recutita, Cd, Pb, Ni Lydakis-simantiris et al. 
(2012)Salvia officinalis

Thymus vulgaris

Phyllanthus amarus, Al, Cd, Pb, As Jadhav et al. (2012), 
Agamuthu et al. (2010)Jatropha gossypifolia

Ruta graveolens
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lization and prevents soil erosion. It has tremendous field potential for reclamation 
of a variety of mine soils, fly ash land fills and disturbed ecosystems.

P. juliflora is an ideal species for stabilizing the pegmatitic tailings of mica mines 
in Nellore district of Andhra Pradesh. Research findings revealed that it is helpful 
for reclamation of copper, tungsten, marble, dolomite mine tailings and is a green 
solution to heavy metal contaminated soils. This is an appropriate species for reha-
bilitation of gypsum mine spoil in arid zone restoration of sodic soils. It out- 
performed all other tree species in sand dune stabilization. Arbuscular mycorrhizal 
inocula have been isolated from its rhizosphere (low cost agrotechnology) were 
found to accelerate the growth of their agroforestry and social forestry legumes in 
perturbed ecosystems (Patrick Audet 2014).

Prosopis juliflora colonized the industrial effluent produced by textile, paper 
products, tannery, chemical products, basic metal products, machinery parts and 
transport equipments industry. P. juliflora and Leptochloa fusca association was 
successful for revegetating salt laden lands (Singh 1995; Shelef et al. 2012) 
(Figs. 7.28, 7.29, 7.30, 7.31, and 7.32).

Grass-legume-tree association need to be tested on different sites for remedia-
tion, if necessary with biotic and abiotic amendments. Restoration of fly ash land-
fills with P. juliflora following different amendments and Rhizobium inoculation 

Fig. 7.28 Prosopis juliflora in industrial areas contaminated with heavy metals. is the feed stock 
in biomass based power plants (a) Prosopis juliflora (b) Prosopis wood (c) Biomass fired power 
plant
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yielded promising results (Dwivedi et al. 2008). Mycorrhizae improved the growth 
of P. juliflora on high pH soils. P. juliflora seedlings growing in gypsum mine had 
high frequency  arbuscular mycorrhizal fungal infection. However, P. juliflora has 
some biological characters that foster invasion, hence appropriate management 
practices needed to be developed for recommending it for phytoremediation.

Industrial and urban activities impact our environment, especially in terms of soil 
pollution. Large numbers of sites are nowadays contaminated by pollutions of 
chemical or organic origin. Treating these pollutions represents an economic need, 
which often remains unanswered by conventional civil engineering methods, due to 
their inappropriateness, their environmental impact and costs (notably for large 
sites). During the last two decades, we have witnessed the emergence of gentle soil 
remediation techniques using various plant species and the combination of  microbial 
biotechnologies. Several phytotechnologies can be considered and applied to 
 polluted soils Conesa et al. (2012): (1) phytostabilisation, which uses perennials 
able to sorb and immobilize potentially toxic trace elements (PTTE) in the root 
zone, avoiding their transfer toward groundwater and aerial parts and preventing 
their bioaccumulation in the food chain as well as dispersion by natural agents 
(wind erosion, water, etc.) (2) phytoextraction, based on root-to-shoot transfer and 
storage of PTTE in harvestable plant parts. P. juliflora produced phytoproducts are 
shown in Figs. 7.33–7.40).

Fig. 7.29 Prosopis juliflora – charcoal production (a) Prosopis wood (b) Controlled burning to 
produce charcoal (c and d) Charcoal

M.N.V. Prasad



197

7.3.6  Products from Phytoremediated Fiber Crops

Since ancient times, plants were of considerable help in satisfying man’s necessities 
in respect of food, clothing and shelter. In those days, man also required some form 
of cordage for his snares, bow-strings, nets, etc. and also for better types of covering 

Fig. 7.30 Prosopis juliflora wood is used as fuel and also for production of charcoal which is also 
used as a carrier of biofertilizing microbes (a) Charcoal production (b) Charcoal (c) Charcoal is 
used as carrier for plant growth promoting bacteria (d) Application of biofertilizer using charcoal 
as carrier

Grasses:
Leptochloa fusca,

Chloris barbata

Legumes,
Acacia and 
Leucaena

Prosopis juliflora

Trees:
Eucalyptus

Fig. 7.31 Tree – grass – 
legume association was found 
to be the best combination for 
restoration of mica, copper, 
tungsten, marble, dolomite, 
limestone, and mine spoils of 
Rajasthan State and else 
where in India
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Restoration of
contaminated  
lands

Seeds provide 
galactomannans
Which have wide
industrial use 

In wetlands it
shelters breeding 
and migratory birds

P. juliflora
phytoproducts
and benefits

Gum is a good 
encapsulating 
material with  
medicinal value

Pods are good 
adsorbents of
toxic metals

Feedstock for 
biomass power 
plants, charcoal 
Fire wood 

Fig. 7.32 Prosopis juliflora benefits and products

Fig. 7.33 Cultivation of Gossypium arboreum in polluted (a and b) (c) Cotton ready for hearvest 
(d) Cotton godown
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Fig. 7.34 (a) Cultivation of Vetiveria, (b) Hibiscus cannabinus, (c) H. sabdariffolia and (d) 
Jatropha gossipyfolia on contaminated lands. Variety of non-edible products are produced from 
these plants

Granular 
adsorbent

Bioplastics
Granular 

adsorbent

Cordage

Hibiscus cannabinus (Kenaf) 

Fig. 7.35 Novel composites containing polyaniline coated short kenaf (Hibiscus cannabinus) bast 
fibers and polyaniline nanowires
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Fig. 7.36 Variety of handi crafts made out of vetiver roots (Source: www.vetiver.org/IND_ 
handicrafts.pdf; www.vetiver.org and Dr Paul Truong)

Fig. 7.37 Venetian blinds and door curtains made out of vetiver roots (Source: www.vetiver.org/
IND_handicrafts.pdf; www.vetiver.org and Dr Paul Truong)

http://www.vetiver.org/IND_handicrafts.pdf
http://www.vetiver.org/IND_handicrafts.pdf
http://www.vetiver.org/
http://www.vetiver.org/IND_handicrafts.pdf
http://www.vetiver.org/IND_handicrafts.pdf
http://www.vetiver.org/
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Fig. 7.38 Variety of household items made out of vetiver roots (Source: www.vetiver.org/IND_
handicrafts.pdf; www.vetiver.org and Dr Paul Truong)

Fig. 7.39 Garlands and a wide variety of household items made out of vetiver roots (Source: 
www.vetiver.org/IND_handicrafts.pdf; www.vetiver.org and Dr Paul Truong)
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for his shelter. Tough, flexible fibres obtained from stems, leaves, roots, etc., of vari-
ous plants served the above purposes very well. With the advancement of civiliza-
tion, the use of plant fibres has gradually increased and their importance today is 
very great. Fibre-yielding plants have been of great importance to humans and they 
rank second only to food plants in their usefulness. Although many different species 
of plants, roughly about two thousand or more, are now known to yield fibres, com-
mercially important ones are quite small in number (Tables 7.2 and 7.3). Fibers are 
long narrow tapering cell, dead and hollow at maturity, thick cell wall composed 
mostly of cellulose and lignin. They are rigid for support, found mainly in vascular 
tissue. Most importantly natural fibers are biodegradable (Figs. 7.33–7.40).

7.3.7  Dye Yielding Plants

Dye yielding plants are shown is Table 7.12.

Fig. 7.40 Soft sandals and wide variety of household items made out of vetiver roots (Source: 
www.vetiver.org/IND_handicrafts.pdf; www.vetiver.org and Dr Paul Truong)

M.N.V. Prasad
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7.3.8  Phytoremediation Crops for Carbon Sequestration

Biofuel production, carbon sequestration are the two sides of the coin of the 
“Phytoremediation crops” (Aggarwal and Goyal 2007). Before the industrialization 
revolution (1760–1830 A.D), the amount of greenhouse gases (GHGs) such as 
Carbon dioxide (CO2), Carbon monoxide (CO), Nitrous oxide (N2O), Methane 
(CH4), Ozone (O3), Chlorofluorocarbon (CFC) i.e., Hydrofluoro-carbons (HFCs), 
Perfluorocarbons (PFCs), Sulfur hexafluoride (SF6) in the atmosphere remained 
relatively constant. Except for slow changes on a geological time scale, the absorp-
tion through photosynthetic process by green plants and release of carbon from vari-
ous sources was at equilibrium.

The worldwide economic growth and development basically requires energy. 
Among the many human activities that produce GHGs, the use of energy represents 
by far the largest source of emissions of GHGs, direct combustion of fossil fuels 
dominates the GHGs emissions from the energy sector. CO2 results from the oxida-
tion of carbon in fuels (www.iea.org). According to available data 2011 A.D, total 
CO2 emissions from the consumption of energy is 32,578.645 Million metric tonnes 
(http://www.eia.gov). The world’s current data for atmospheric CO2 is measured at 
the Mauna Loa Observatory in Hawaii. Measurements are made and reported inde-
pendently by two scientific institutions: Scripps Institution of Oceanography and 
the National Oceanic and Atmospheric Administration (NOAA). According to the 
recent data, the upper safety limit for atmospheric CO2 is 350 parts per million 
(ppm) has crossed in 1988 itself and in July 2013 the atmospheric CO2 raised to 
398.58 ppm and projected to cross the 400 ppm mark (http://co2now.org) (Table 7.6).

Although some of the effects of increased CO2 levels on the global climate are 
uncertain, most scientists agree that doubling atmospheric CO2 concentrations may 
cause serious environmental consequences. The ten indicators of warming world are 
increasing the humidity, air temperature near surface (Troposphere), temperature 
over oceans, sea surface temperature, sea levels, temperature over land, ocean heat 
content, decreasing the glaciers, snow cover, and sea ice. Increasing global tempera-
tures could raise sea levels, change precipitation patterns and affect both weather 
and climatic conditions. Currently, we are experiencing all the effects of global-
warming and in future our next generations have to face.

Anything that removes carbon from the atmosphere is a ‘sink’. In order to be 
effective in combating climate change, the sink must be large and the carbon must 
stay in the sink. Carbon is continuously exchanged between atmosphere, soil, ocean 
and life, which is predominately, plants. Since, CO2 is important GHGs, one strat-
egy that can partially combat global warming and climate change is to increase the 
amount of carbon stored in plants. By increasing the amount of plant life on earth, 
or altering it to plant types that store the most carbon, more carbon dioxide may be 
pulled out of the atmosphere and stored for a period of time through photosynthetic 
process. It is presumed that only 26 % (9.5 million metric tonnes) of CO2 is trapped 
again in the photosynthetic process by green plants. However, real time data reveals 
the rapid land changing pattern i.e., clearing the forest lands, increasing the 
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 agricultural lands (http://www.iaees.org) and burning fossil fuels more rapidly. Due 
to shrinking of plant life in due course of time the present percentage of carbon 
sequestration is still further reduces. This phenomenon forced to increasing the 
global temperature and rise of sea levels, which are significant effects of GHGs. In 
the process of human development further, industries are necessary and release of 
pollutants is obvious end products. Hence to combat and control the GHGs and 
other pollutants (inorganic and organic), huge plantation programme should be con-
ducted and see that its survival in industrial zones as marginal lands. This helps in 
carbon sequestration as well as pollutants remediation from those industrial zones. 
The latest carbon sequestration method is digging the deep wells and release into 
the injection zone (i.e., 7,000 ft below the surface) (http://www.epa.gov). Taking the 
advantage of latest carbon sequestration method integrated approach of phytoreme-
diation techniques in the vicinity of industrial zones is both way getting benefited 
i.e., release of GHGs are significantly reduced and effectively implement the 
phytoremediation.

Table 7.6 Ornamental plants capable of accumulating metals

Metal Metal accumulation values References

As 0.06–0.58 mg/g Meera and Agamuthu (2011)
B Bañuelos et al. (1993)
Cd Carlson et al. (1982)

Hiroyuki et al. (2005)
Hattori et al. (2006)

1.26 mg/Kg Subramanian et al. (2012)
Jyothi et al. (2003)

Cr Carlson et al. (1982)
Cu Carlson et al. (1982)

87.5 mg/Kg Jyothi et al. (2003)
65.39 mg/Kg Subramanian et al. (2012)

Fe Carlson et al. (1982)
Meera and Agamuthu (2011)
Abioye et al. (2012)
Subramanian et al. (2012)

Hg Carlson et al. (1982)
Mg 410 mg/Kg Subramanian et al. (2012)
Mn Carlson et al. (1982)

Subramanian et al. (2012)
Kanchi et al. (2012)

Na 782.42 mg/Kg Subramanian et al. (2012)
Pb Ho et al. (2008), Kiliç et al. 

(2008), Rahi et al. (2013)
Bada and Kalejaiye (2010)
Jyothi et al. (2003)
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Selection and plantation of right choice of plants for effective phytoremediation 
as well as carbon sequestration is important for obtaining the phyto products in 
industrial zones and contaminated abandoned lands. Revegetating with right choice 
of plants on former mining sites can provide phytoremediation services as well as 
carbon sequestration. Though, the process is cost effective it requires considerable 
time and should be employed at sites where remediation can occur over a long 
period of time. Generally, long term carbon sequestration can be achieved when 
carbon from above ground biomass transfers to the roots and enters the pool of Soil 
Organic carbon (SOC) or Soil Inorganic Carbon (SIC) which is possible for peren-
nial trees and herbaceous plants with extensive root systems (Jansson et al. 2010) 
(Fig. 7.41).

Photosynthesis

 
6 6 674 62 2 6 12 6 2CO H O Kcal C H O O

Solar energy

Chlorophyll

Carbohy

+ + → +
ddrate mol1  

One of the important limiting factor of solar energy conversion by plants is their 
photosynthetic efficiency

 IS P H C TC→ → → →  

IS = Insolation (in coming solar radiation)
P = Producer, H = Herbivore, C = Carnivore
TC = Top carnivore
PN = Q.β.ε-R (PN= Net Productivity)
Q = PAR, the quantity of incident light

Fig. 7.41 Simplified carbon cycle. Unlike fossil fuels, biomass does not increase atmospheric 
green house gases when burned. Closed carbon cycle

7 Phytoremediation Crops and Biofuels



206

β = the proportion of that light intercepted by green plant organs (canopy size, struc-
ture, pigments)

ε = the efficiency of photosynthetic conversion of the intercepted light into biomass
R = respiration

 CO H O light quata CH O H O O whereCH O glucosemo2 2 2 2 2 22 8 1 6+ + ( )→ ( ) + + = / llecule  

Gibbs free energy stored per glucose is 477 KJ and 8Q of light (400–700 nm 
monochromatic) of 575 nm is required.

8Q of light have energy content of 1,665 KJ, which gives maximum photosyn-
thetic efficiency of 477/1,665 = 0.286

Maximum photosynthetic efficiency of PAR constitute about 43 %
Canopy absorb only 80 % available PAR
Respiratory losses and energy requirement for life accounts for 1/3 of stored 

energy = 66.7 %
Hence, over all photosynthetic efficiency of conversion of solar energy into 

stored chemical energy by terrestrial plants is 0.43 × 0.8 × 0.286 × 0.667 = 6.6 %
Therefore, in view of the above explained limitation, the only way is to use con-

taminated land for phytoremediation crops and thereby enhance carbon capture.

 1. Strategies of wasteland development (NWDB)

  Remediation have been frequently used in the literature.
  Restoration: replication of site conditions prior to disturbance
  Reclamation: rendering a site habitable to indigenous organisms
  Rehabilitation: disturbed land will be returned to a form and productivity in 

 conformity with a prior to land use plan
  Full restoration: Restoration of a site to its pre-damaged condition
  Partial restoration: Restoration of selected ecological attributes of the site and 

Creation of an alternative ecosystem type the latter though often desirable, is 
not to be called restoration.

 2. Biotic and Abiotic stress factors
 3. Species available for sustained yields
 4. Ecological constraints/Soil management for

 – nutrient depletion
 – annual crop production
 – pasture livestock production
 – perennial and tree crops

 5. Role of biofertilizers in restoring soil fertility, Azobacter, Azospirillum Rhizobium, 
Legume green manure

Also stated that, bioenergy crops (bioethanol, biogas, biodiesel, feedstock for 
electricity, charcoal) occupy a distinctive position in future terrestrial carbon 
 sequestration and the vast areas of bioenergy cultivation envisioned for sustainable 
biofuel production (Smith et al. 2013), especially from perennial grasses and woody 
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species, offer the potential for substantial mitigation of GHGs emissions both by 
displacing fossil fuels and through phyto-sequestration through extensive root sys-
tems. It is well known that most of these plants can accumulate pollutants by any of 
the phytoremediation process (Fig. 7.42).

Promising short rotation woody energy crops (SRWEC) are Populus ssp. (Imada 
et al. 2009; Sebastiani et al. 2004; Wu et al. 2010), Salix spp. (Lewandowski et al. 
2006), Liquidambar styraciflua, Platanus occidentalis, Robinia pseudoacacia, Acer 
saccharinum L. and Eucalyptus can be grown for other uses also such as paper pro-
duction and the waste can be utilized for energy (Capuana 2011; Claudia et al. 2012; 
Delplanque et al. 2013). Hibiscus cannabinus (Kenaf), Brassica juncea (Indian 
mustard), Helianthus annus (Sunflower), Ricinus communis (Castor), Vetiveria 
zizanioides (Khus Khus grass) Prosopis juliflora (Velvet Mesquite), are potential 
candidates for phytoremediation and carbon sequestration. Conversion of phytore-
mediation- borne biomass for (1) green-fine chemistry (catalyst production from 

Fig. 7.42 Scheme showing carbon sequestration by phytoremediation crops
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metal accumulating biomass) (2) biorefinery (prehydrolysis and organosolv pre-
treatment from metal accumulating woody lignocellulosic biomass) and (3) by 
increasing the panel of plant species cultivated on metal contaminated soils for 
value chain and value added products enhancing bioeconomy are emerging fields 
(Fig. 7.43).

7.3.9  Non-edible Oil Plants for Bio-Fuels  
on Contaminated Soils

Our world runs on energy – it’s fundamental to our way of life and growing our 
economy. Majority of the world’s energy needs are supplied through petrochemical 
sources, coal and natural gases (non- renewable), with the exception of hydroelec-
tricity and nuclear energy. World primary energy consumption grew by 1.8 % in 
2012 and oil remains the world’s leading fuel, at 33.1 % of global energy consump-
tion  (http://www.bp.comstatisticalreview). Today, global transportation sector is 
almost entirely dependent on petroleum- derived fuels and its escalating supply and 
consumption is dramatically increasing. While supply and consumption is 
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poultry feed
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combating against 
global warming

Co2

High 
productivity  High protein

Reduce As and
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in rice

Co2

Co2

Nutrient enriched
substrate for

mushroom culture

Duck weeds 

Removal of Metals and 
metalloids 
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Cd P
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Water purification

Duck weeds

Fig. 7.43 Carbon sequestration by aquatic macrophytes and byproduct generation (Prasad 2012,  
© Springer Science+Business Media, LLC 2012)
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increasing, its associated problems such as greenhouse gases especially CO2 emis-
sion is also increasing (http://www.eia.gov/). Petroleum-based products are one of 
the main causes of anthropogenic carbon dioxide (CO2) emissions to the atmo-
sphere. Moreover, the increase in pollutants emissions from the use of petroleum 
fuel will affect human health, such as respiratory system, nervous system and skin 
diseases etc. The conventional source of energy is non-renewable resources and in 
the recent times the world has been confronted with an energy crisis due to rapid 
depletion of natural resources, increased social and environmental problems. It is 
important to develop suitable long-term strategies based on utilization of renewable 
fuel that would gradually substitute the declining fossil fuel production. Various 
groups of biomass generated and its uses are shown in Table 7.7.

Biodiesel is considered to be a possible substitute for conventional diesel getting 
the interest of scientists and workers all over the world. Biodiesel, mixture of fatty 
acid methyl esters (FAME), is generally produced from a varied range of edible 
(First generation feedstock) and non-edible (Second generation feedstock) vegeta-
ble oils, algae (Third generation feedstock), animal fats, used frying oils, and waste 
cooking oils and waste soap stocks from the oleo-chemical industries have been 
identified as a source of biodiesel feed-stock.

The biodiesel is quite similar to conventional diesel fuel in its physical 
 characteristics and can be used as a direct substitute for petrodiesel and is techni-
cally called B100. The preferred ratio of mixture ranges between 5 % (B5) and 20 % 
(B20). Up to 20 % blending of biodiesel with diesel has shown no problems.

There are a great number of advantages as the primary feedstock can grow season 
after season and it provides a market for excess production of vegetable oils, and ani-
mal fats, thus enhancing the rural economies. Also for using biodiesel apart from 
reduces the country’s dependence on imported petroleum and specifically it is 
 biodegradable, non-toxic, renewable and closed carbon cycle. Also it reduces  emission 

Table 7.7 Metal 
accumulation capacity in 
selected high biomass 
producing ornamentals 
(Kaiser et al. 2009)

References

Canna indica

Cd, Cr, Cu, Fe, Mn, Ni, Pb, Zn Bose et al. (2008)
Co, Cr, Cu, Ni, Zn Yadav et al. (2012)
Cr, Ni Yadav et al. (2010)
Ipomoea carnea

Cd Ghosh and Singh (2005)
Cd, Cr, Cu, Mn, Ni, Pb, Pandey (2012a, b)
Alternanthera sessilis

Cd, Cr, Cu, Fe, Mn, Pb Rai et al. (1995)
Cd, Cr, Cu, Fe, Mn, Pb Marchand et al. (2010)
Cd, Cr, Pb Chandran et al. (2012)
Cd, Cu, Ni, Pb, Zn Premarathna et al. (2011)
Cr Sinha et al. (2002)
Cr, Na Bareen and Tahira (2011)
Cr, Ni, Pb Moodley et al. (2007)
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of CO, CO2, SO2, particulate matter, volatile organic compounds and unburned hydro-
carbons as compared to conventional diesel. In addition it has higher cetane number 
and flash point greater than 423 K as compared to 350 K for petroleum based diesel 
fuel. World production of various sources of vegetable oils in 2012–2013 was 160.22 
Million metric tonnes and mostly used for consumption purposes (www.fas.usda.
gov). However, in different countries of the world, same vegetable oils resources are 
used for biodiesel production. The source for biodiesel production is chosen accord-
ing to physico-chemical properties, production cost, transportation and policy. In 
USA, Europe, Brazil other parts, 95 % used type of biodiesel fuel is first generation 
feedstock i.e., edible oils like soybean, rapeseed, sunflower, safflower, canola, palm, 
Coconut and fish oils are used to reduce air pollution and dependency on fossil fuel, 
which are limited and localized to specific regions (Jeonng and Park 2008; Darnoko 
and Cheryman 2000; Vicente et al. 2004; Ramadhs et al. 2004; Cheng et al. 2004; de 
Oliveira et al. 2005; El Mashad et al. 2008; Sarin and Sharma 2007; Meka et al. 2007).

Although, biodiesel are mainly produced in many regions recently, environmen-
talists have started to debate on the negative impact of biodiesel production from 
edible oils (Butler 2006). Recently, the use of edible vegetable oils or the first gen-
eration feed stocks has been of great concern and the major obstacle for commer-
cialization of biodiesel is its cost from the feed stocks (Canakci and Van Gerpen 
2001). Cost of edible oils is very higher than petroleum diesel and we use edible oils 
for biodiesel production leads food oil crisis. This is because they raise many con-
cerns such as food versus fuel debate that might cause starvation especially in the 
developing countries and other environmental problems caused by utilizing much of 
the available arable land. This problem can create serious ecological imbalances as 
countries around the world began cutting down forests for plantation purposes and 
perfect examples is in countries like Malaysia, Indonesia and Brazil. In fact, the real 
time world land alterations can be glanced at on http://www.iaees.org.

Taking these factors into consideration, the above problem can be solved by using 
cheapest, low cost non edible oils which are not suitable for human  consumption 
because of the presence of some toxic secondary metabolites in their oils. Non edi-
ble oil crops can be grown in waste lands and the cost of cultivation is much lower 
because these crops can still sustain reasonably high yield without intensive care.

Exploring the availability of non-edible oil seed as alternative biodiesel feed-
stock in the transportation sector is critical towards achieving higher self-reliance 
energy security. This situation offers a challenge as well as an opportunity to look 
for replacement of fossil fuels as well as first generation feedstock of biodiesels for 
both economic (Food verses Fuel) and environmental benefits. The following are 
the advantages of non-edible oil:

Non-edible vegetable oils are not suitable for human consumption due to the 
presence of some toxic compounds in their oils. Non-edible oil plants are well 
adapted to arid, semi-arid, high rain fall zone conditions and require low fertility 
and moisture and to grow. Moreover, Non-edible biodiesel crops are expected to use 
lands that are largely unproductive and those that are located in poverty stricken 
areas and in degraded forests which can fix upto 10 t/ha/year CO2 emissions. They 
can also be planted on cultivators’ field boundaries, fallow lands, and in public land 
such as along railways, roads and irrigation canals. They do not compete with exist-
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ing less farm land and agricultural resources. Hence they eliminate competition for 
food and feed. Non-edible biodiesel plant cultivation as mentioned above could 
become a major poverty alleviation program for the rural poor apart from providing 
energy security. Moreover, they can be propagated through seed or cuttings. Most of 
the non-edible oils are highly pest and disease resistant. Non-edible feed stock can 
produce useful by-products during the conversion process, which can be used in 
other chemical processes or burned for heat and power generation.

7.3.10  Bioenergy from Phytoremediated  
Phytomass via Gasification

Phytomass gasification is basically the conversion of wood chips and wood waste 
into a combustible gas mixture called as producer gas (Low Btu gas). This process 
involves partial combustion of phytomass. Given that phytomass contains carbon, 
hydrogen and oxygen, complete combustion would produce carbon dioxide and 
water vapour. Partial combustion produces carbon monoxide and hydrogen both of 
which are combustible gases. The gas thus generated in a “Gasifier” could be used 
for captive power generation (a few KWs to several hundred KWs). Fuelwood direct 
combustion has several disadvantages owing to its limited applications and is of low 
efficiency. Direct thermal applications for power generation require steam boilers 
with steam engine or turbine along with necessary equipments. Such a conversion 
technology is not only capital intensive but is of low conversion efficiency. 
Conversion of the same phytomass (wood chips/ wood waste) to combustible gases 
in gasifier and its utilisation for power generation has innumerable advantages. 
Phytomass gasification (using gasifiers of various capacities) generates electricity, 
and the gas can be utilised for direct thermal energy and for shaft power (Fig. 7.44).

7.3.10.1  Aquatic Biomass

Biomass of Eichhornia crassipes (water hyacinth), Pistia statoides (water lettuce) 
and other aquatic weeds can be used for gasification (Figs. 7.45–7.49). Macrophytes 
spread rapidly and clog the aquatic systems (Bi et al. 2011). Therefore, utilization 
of such freely available biomass for bioenergy would be a happy solution. Aquatic 
weed biomass when subjected to anaerobic digestion optimum yield of gas was 
recovered when the C/N ration was between 20 and 30. One hectare of water hya-
cinth grown on sewage can purify the wastewater and produces 0.8 ton of dry matter 
per day which can be converted to 200 cu m gas that is enough for generating 
250 kw power.

It is possible for generating 100 L of biogas from 1 kg of dry matter under con-
trolled conditions. In China and Japan, large scale sea weed farms are under opera-
tion. Macrocystis (Giant kelp) is grown for fuel production. The kelp yields are 
represented to be of the tune of 90 tons/ha/year. In USA, California expects an area 

7 Phytoremediation Crops and Biofuels



Fig. 7.44 (a–d) Harvested phytoremediated aquatic weed biomass is used as feed stock for biogas 
in anaerobic digester

Fig. 7.45 (a–c) Profuse growth of water hyacinth (Eichhornia crassipes) in polluted water. 
Harvested biomass is used as feed stock for biogas (please see also Fig. 7.22)



Fig. 7.46 Phytofilteration of toxic metals in aquaculture ponds using Pistia stratiotes (Prasad and 
Prasad 2012, © Walter de Gruyter, Berlin, Boston)

Fig. 7.47 After harvesting Pistia stratoites the water body is used for fish culture – white arrows 
show feed bags suspended with the help of rope across the water body
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Fig. 7.48 Arsenic accumulating ornamentals are being used for treating arsenic contaminated 
water e.g. Pteris vittata, Colocasia esculenta and Cyperus sp.) (Kurosawa et al. 2008; Nakwanit 
et al. 2011; Prasad and Nakbanpote 2015, © Springer India 2015)

Fig. 7.49 Productivity and relative proximate dry matter production of potential macrophytes 
being applied for phytoremediation (Prasad et al. 2001)
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of 40,000 ha of ocean energy farms by the turn of the century. Each hectare of cul-
tivated kelp would yield about 10 million kilo calories of oil and about a 100 kilo 
calories of methane energy per year.

Plants endophytes relationships and the microbial communities play a key role in 
degrading the hazardous contaminants in rhizosphere to varying extents (Reichenauer 
and Germida 2008; Husain et al. 2009; Scow and Hicks 2005).

Arsenic contamination in Bengal Delta region is prevalent. The first known arse-
nic hyper accumulating plant is Pteris vittata. It is also known as Chinese brake 
fern, was discovered from an arsenic-contaminated site that was contaminated from 
pressure-treating lumber using chromated-copper-arsenate (CCA). P. vittata is 
reported to accumulate 22 g kg−1 of arsenic in its fronds (Carrier et al. 2011, 2012; 
Shelmerdine et al. 2009; Ye et al. 2011).

In addition to P. vittata and P. cretica, several other arsenic hyperaccumulating 
plants have been reported recently including Pityrogramma calomelanos, Pteris 
longifolia and Pteris umbrosa. Pilot-scale demonstration of phytofiltration for treat-
ment of arsenic has been demonstrated in New Mexico for production of drinking 
water (McCutcheon and Schnoor 2003) (Fig. 7.24).

Bioconcentration factor: Bioconcentration of heavy metal by water weeds is 
described as the bioconcentration factor (BCF), which is the ratio of heavy metal accu-
mulated by plants to that dissolved in the surrounding medium. For this, two biocon-
centration factors were computed from the plant compartment concentrations as

 BCF CR CR root water/=  (7.1)

 BCF C CL leaf water= /  (7.2)

The translocation of heavy metal from the roots to harvestable aerial part is gen-
erally expressed as the translocation factor (TF) (Li et al. 2009, 2011, 2014). It was 
calculated on a dry weight basis by dividing the heavy metal concentration in aerial 
parts by the heavy metal concentration in root. Based on the above two equations 
(7.1) and (7.2), the translocation factor can be expressed as:

 
Translocationfactor TF BCF BCFleaf root[ ] = /

 
(7.3)

Plants with efficient phytofiltration of toxic metals are beneficial for cleanup of 
contaminated fish ponds (Pistia stratiotes = Water lettuce/Water cabbage). For 
metal contaminants, plants with high potential for phytoextraction (uptake and 
recovery of contaminants into above-ground biomass) are desirable (Cao et al. 
2007; Prasad 2007a, b) (Fig. 7.50)

Hazardous wastewater utilization for high rate algal ponds for production of bio-
diesel is being considered. Algae growing in wastewater treatment, high rate algal 
ponds [HRAPs] assimilate nutrients and thus subsequent harvest of the algal bio-
mass recovers the nutrients from the wastewater (Figs. 7.51–7.54).
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Fig. 7.50 Schematic view of photobioreactor for cultivation of algae in hazardous waste water 
(Chisti 2008)
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Fig. 7.51 Algae based photobioreactor for cultivation of algae in hazardous waste water for 
production of bio fuels, industrial feedstock and carbon dioxide sequestration. Leachate from 
hazardous waste dump sites are being used to establish High Rate Algal Ponds [HRAPs] for 
production of biodiesel (Park et al. 2011). The harvested phytomass of aquatic plants used for 
bioremediation serves as a valuable feedstock for biogas production (Abbasi et al. 1991) 
(Fig. 7.53)
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Fig. 7.52 Nutrient rich and sewage water treatment in constructed engineered wetland using high 
biomass produced macrophytes viz. Typha and Phragmites. Production of low cost roofing mate-
rial and compost from macrophytes used in nutrient rich and sewage water treatment in constructed 
engineered wetland (Zhang et al. 2014; Zheng et al. 2013)

Fig. 7.53 Waste water treatment in High Rate Algal Pond [HRAP] using hazardous waste water 
(Lim et al. 2013)
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Fig. 7.54 Biodiesel production using algae and waste water at lab scale (Source: Mr M.V. Bhaskar 
“Kadambari Consultants Pvt Ltd - Nualgi”)

7.3.11  Stabilization of Contaminated Lands by Sodding

Mulberry is an economically important tree, used for feeding the silkworm, 
Bombyx mori. Mulberry exhibits spatial localization and serves as sink for Sr, Zn 
and Cd in leaves along with Ca and Si accumulation. It is the sole food source for 
the silk worm (Ashfaq et al. 2009; Hegde and Fletcher 1996; Katayama et al. 
2013). The productivity of leaf biomass on coal mine over burden is quite high 
and serves as a resource. An estimate of 40 tons/ha/year (approximately 10 tons 
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of dry matter) has been reported. Based on the yield data, the amount of Sr deposi-
tion in leaves is roughly estimated to be 300 kg/ha/year. Mulberry leaves posses 
not only a high Sr sink but also yield high biomass, indicating that mulberry is one 
of the most efficient bioaccumulator plants for Sr and can be used in cleaning or 
rehabilitating soil contaminated by radiostrontium (Fig. 7.55).

Sodding is a bioengineering technique that uses vegetation mats for mine soil 
stabilization and erosion control. This technique has been used with success with a 
variety of grasses (Bonanno 2012; Bonanno et al. 2013), Perennial grasses with 
sturdy adventitious root mat anchor and stabilize mine soils. The following is a list 
of recommendations for using vegetation mats as bioengineering materials 
(Fig. 7.56)

• To anchor perennial solid binding grass mats to a slope, mats can be cut to form 
any shape desired. A shallow, narrow trench built along the contour of a slope 
and planted with a vegetation mat may become an effective terrace.

• The mat should remain attached to stable vegetation and thus be held in place 
from the top. The mat can be pegged to prevent ripping and sliding. This tech-
nique could be used to stabilize the contaminated soil.

• Vegetation mats can be used as building bricks. Slice the mats into rectangular 
pieces and use them to construct a very steep, living wall. The bricks can be 
pegged to each other and to the underlying substrate. This technique may be use-
ful around culverts or sunken walkways and controls erosion.

Tables 7.8–7.17 show various examples of biomass generation in phytoremedia-
tion and their possible economic uses.

7.4 Conclusions

Although phytoremediation is environmentally friendly, powerful and low-cost 
technology, one general belief is that it might take long time to clean-up inorganics 
in soil. However, it is relatively convenient to clean small water bodies and waste 
waster. Most of the previous researches have focused only on wild selected species 
(non-economic crops) that can tolerate and takeup large amounts of inorganic con-
taminants to increase the efficiency of phytoremediation. Much progress has been 
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made in countries like UK, USA, Canada, Australia, Japan and many European 
countries. In developing country like India, it is difficult to convince environmental 
regulators and local agencies to grow metal accumulators (the data on hyperaccu-
mulators is scanty) in the contaminated areas for the sole purpose of removing pol-
lutants from their environment unless financial renumeration or expenses are 
subsidized.

Fig. 7.55 Luxurient growth of Morus alba (mulberry) on coal mine over burden of west bokaro 
coal field

M.N.V. Prasad



Fig. 7.56 Sodding, a bioengineering technique that uses grass mats for soil stabilization and erosion 
control. Perennial grasses are preferred. Grasses with sturdy adventitious root mat stabilize metallifer-
ous soil. To anchor perennial solid binding grass mats to a slope, mats are cut to desirable sizes (1 × 1 
foot). This technique would beneficial to stabilize the contaminated soil (Thangavel and Sridevi 2015, 
© Springer India 2015) (a) Cultivation of Zoysia grass with contaminated substrated (soil and water) 
(b) Harvested grass mats are ready for sale (c) and (d) road cutting are stabilized with grass mats

Table 7.8 Metal accumulation in Ricinus communis (Castor bean)

Ag, Cd, Cu, Pb Figueroa et al. (2008), de Souza Costa et al. (2012)

As Santos-Jallath et al. (2012)

As, Cd, Co, Cr, Cu, Mn, Ni, Pb Varun et al. (2012)

B, Cu, Fe, Mn, Zn de Abreu et al. (2012)

Ba Coscione and Berton (2009)

Cd Shi and Cai (2009), Huang et al. (2011), Prabavathi et al. (2011), Bauddh 
and Singh (2012a, b)

Cd, Cr, Cu, Fe, Mn, Ni, Pb, Zn Singh et al. (2010)

Cd, Cu, Mn, Ni, Pb, Zn Olivares et al. (2013)

Cd, Cu, Mn, Pb, Zn Olivares et al. (2013)

Cd, Cu, Pb, Zn Chaudhry et al. (1998), Olivares et al. (2013)

Cd, Pb Zhi-xin et al. (2007), Niu et al. (2009), de Souza Costa et al. (2012)

Cd, Pb, Zn Sas-Nowosielska et al. (2008)

Cu, Fe, Mn, Zn Stephan et al. (1994), Schmidke and Stephan (1995), Stephan et al. (1995)

Cu, Pb, Zn Xiaohai et al. (2008), Nazir et al. (2011)

Cu, Zn Chaves et al. (2010)

Cu, Zn, Fe Khanam and Singh (2012)

Hg Siegel et al. (1984)

Mn, Ni, Pb, V Vwioko et al. (2006)

Ni Giordani et al. (2005)

Pb Romeiro et al. (2006)
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Table 7.9 Prosopis juliflora, a phreatophyte and its capability for accumulation of heavy metals

A1, As, Au, Ba, Br, C1, Ce, Cs, Cu, Fe, Hf, In, K, La, Mg, 
Mn, Na, Sb, Sc, Sm, Th, Ti, U, V, W, Yb, Zn,

Gabriel and Patten (1994)

Al, B, Ba, Ca, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Ni, Sr, V, Zn, Nagaraju and Prasad (1998)
Al, Cr Jamal et al. (2006)
As Mokgalaka-Matlala et al. (2008, 

2009)
As, Cd, Cr, Cu, Mn, Pb, Zn Solís-Domínguez et al. (2011)
As, Cd, Cu, Pb, Zn Al-Farraj and Al-Wabel (2007)
As, Cr, Cu, Mo, Zn Haque et al. (2009)
B, Ba, Co, Cr, Cu, Fe, Mn, Mo, Ni, Sr, V, Zn Chaudhary et al. (2009)
Cd Khan (2007)
Cd, Cr, Cu, Fe, Mn, Ni, Pb, Zn Shukla et al. (2011)
Cd, Cu, Zn Usha et al. (2009)
Cd, Pb Varun et al. (2012)
Ce, Zn, Viezcas (2009)
Co, Fe, Mn, Ni Naveed et al. (2012)
Cr Arias et al. (2010)
Cr, Cu, Fe, Mn, Zn Rai et al. (2004), Sinha  

and Gupta (2005)
Cr, Cu, Fe, Pb, Zn Atiq-Ur-Rehman and Iqbal (2008)
Cu, Cd Senthilkumar et al. (2005)
Cu, Pb, Zn Iqbal et al. (1999)
F Saini et al. (2012), Baunthiyal  

and Sharma (2012)
Pb Naveed et al. (2010)
Zn Hernandez-Viezcas et al. (2011)

Table 7.10 Fiber yielding plants that can be grown on contaminated sites (Bjelková et al. 2011; 
Griga and Bjelkova 2013; Linger et al. 2002; Smykalova et al. 2010)

Plant Source Description

Seed fiber Collected from seeds or seed cases (Eg: Gossypium Sps., Ceiba pentandra.

Leaf fiber Collected from leaves (Eg: Furcraea andina (introduced in India), Agave Sps. 
Sansevieria roxburghiana, Sansevieria hyacinthoides (Bowstring Hemp).

Bast fiber (or) 
Skin fiber

Collected from the skin or bast surrounding the stem of their respective plant. 
These fibers have higher tensile strength than other fibers. Therefore, these 
fibers are used for durable yarn, fabric, packaging, and paper. Some examples 
are Flax (produces linen) Linum usitatissimum, Jute (widely used, cheapest 
fiber after cotton) Corchorus capsularis, C. olitorius Kenaf (The interior of the 
plant stem is also used for fiber.) Hibiscus cannabinus, Hemp (A soft, strong 
fiber, edible seeds.) Cannabis sativa, Boehmeria nivea 600 species of palms in 
the tribe Calameae (rattan) and vine fibers.

Fruit fiber Collected from the fruit of the plant (Eg: Cocos nucifera).
Stalk fiber Stalks of the plant (Eg: straws of Triticum sps. Oryza sativa Hordeum vulgare 

and other crops including bamboo and grass.
Other fibers Bamboo fiber, Grewia optiva, Himalayan Nettle (Urtica dioica L.) Bhabar 

(Eulaliolopsis binata).
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Table 7.12 Dye yielding plants capable of growing on contaminated soils

Plant name Family Parts used Colour obtained

Abrus precatorius Fabaceae Seeds Black
Acacia catechu Mimosaceae Bark Brown/black
Acacia catechu var. sundra Mimosaceae Wood Reddish brown
Acacia leucophloea Mimosaceae Bark, leaves Red
Acacia nilotica Mimosaceae Bark and pods Yellowish brown
Acacia nilotica Mimosaceae Seeds Brown/black
Acanthophonax trifoliatum Araliaceae Fruit Black
Achyranthes aspera Amaranthaceae Whole plant Black-brown
Achyranthes bidentata Amaranthaceae Whole plant Black-brown
Actaea acuminate Ranunculaceae Seeds Reddish-green
Adenanthera pavonina Mimosaceae Wood Red

Adhatoda vasica Nees Acanthaceae Leaves Yellow
Adhatoda vasica Nees. Acanthaceae Leaf Yellow
Adhatoda zeylanica. Acanthaceae Leaves Yellow-green
Aegle marmelos Rutaceae Fruits Yellow
Aegle marmelos Rutaceae Rind of the fruit Reddish
Aesculus indica Hippocastanaceae Bark Brown
Agrimonia pilosa. Rosaceae Roots Yellow
Alnus glutinosa Betulaceae Bark Black

Alnus nepalensis Betulaceae Bark Red
Aloe barbadensis Liliaceae Whole plant Red
Alpinia galanga Zingiberaceae Root, stalk Yellow-brown
Althaea rosea Malvaceae Flowers Red dye
Amaranthus hypocondriacus Amaranthaceae Arial parts Red pigment
Ampelocissus latifolia Vitaceae Leaves Black
Anacardium occidentale Anacardiaceae Pericarp Light red
Annona reticulata. Annonaceae Fruit, shoots Bluish black
Arnebia benthamii Boraginaceae Roots Red
Artemisia japonica Asteraceae Leaves Brown
Artemisia nilagirica Asteraceae Leaves Brown
Artocarpus heterophyllus Moraceae Wood/fruits Yellow
Artocarpus lakoocha Moraceae Wood/fruits Yellow
Averrhoa carambola. Oxalidaceae Fruits Yellow/brown
Azadirachta indica Meliaceae Bark Brown
Bauhinia purpurea Caesalpiniaceae Bark Purple colour
B. racemosa Caesalpiniaceae Bark Light green
Bauhinia variegate. Caesalpiniaceae Flowers Purple
Benthamidia capitata Cornaceae Fruits Red
Berberis aristata Berberidaceae Bark roots Yellow
Berberis asiatata Berberidaceae Bark/roots Yellow
Berberis chitria Berberidaceae Bark/roots Yellow
Beta vulgaris Amaranthaceae Roots Red

(continued)
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Table 7.12 (continued)

Plant name Family Parts used Colour obtained

Bischofia javanica Euphorbiaceae Bark/seeds Black
Bixa orellana Bixaceae Seeds Red/pink
Bougainvillea glabra Nyctaginaceae Flower with ivory Yellow brown
Brugmansia suaveolens Solanaceae Leaves Green
Butea monosperma Fabaceae Dried flowers Brilliant yellow dye
Butea superba Fabaceae Root Red
Butea superba Fabaceae Root Yellow
Caesalpinia sappan Caesalpiniaceae Wood and pod Red
Capsicum annuum Solanaceae Fruits Red
Careya arborea Juglandaceae Bark Yellow
Carthamus tinctorious Asteraceae Flower Yellow, red
Carthamus tinctorius. Asteraceae Flowers Red and yellow
Cassia auriculata Caesalpiniaceae Flower, seeds Yellow
Cassia fistula Caesalpiniaceae Bark/fruits Brown
Cassia fistula Caesalpiniaceae Bark and sapwood Red
Cassia tora Caesalpiniaceae Seeds Blue
Casuarina equisetifolia Casuarinaceae Bark Light reddish
Celtis australis Ulmaceae Bark Yellow
Ceriops tagal Rhizophoraceae Bark Black, brown or 

purple
Chrozophora tinctorial Euphorbiaceae Herb Light green
Cinnamonum tamala Lauraceae Leaves Brown
Cladonia verticullata Cladoniaceae Whole plant Yellow-red
Commelina benghalensis Commelinaceae Juice of the flower blue
Convallaria majalis Liliaceae Leaves and stalk Green
Corylus jacquemontii Betulaceae Fruits rind Camel
Crocus sativus Iridaceae Flower Yellow, orange
Cupressus torulosa Cupressaceae Leaves Green
Curcuma angustifolia Zingiberaceae Tubers Yellow
C. aromatica Zingiberaceae Rhizome Yellow
C. domestica Zingiberaceae Rhizome Yellow
C.longa Zingiberaceae Rhizome Yellow
Curcuma zedoaria Zingiberaceae Rhizome Yellow
Cyperus scariosus Cyperaceae Roots Brown
Daphne papyracea. Thymelaeaceae Bark/fruits Red
Datisca cannabina Linn. Datiscaceae Roots Yellowish-red
Dipterocarpus spp. Diptero-carpaceae Bark Light brown
Elaeodendron glaucum Celastraceae Bark Red
Emblica officinalis Euphorbiaceae Fruits Brown
Engelhardtia spicata Juglandaceae Bark Dark brown
Enonymus tingens. Celastraceae Bark Yellow
Erythrina suberosa. Fabaceae Flower/bark Dark brown

(continued)
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Table 7.12 (continued)

Plant name Family Parts used Colour obtained

Eugenia jambolana. Myrtaceae Bark, leaf Red
Everniastrum cirrhatum Parmeliaceae Whole plant Red brown
Galium aparine Rubiaceae Root Purple
Garcinia mangostana Clusiaceae Fruit Black
Geranium nepalense Geraniaceae Roots Red
Geranium wallichianum Geraniaceae Roots Red/brown
Grevillea robusta. Proteaceae Flowers Yellow
Grewia optiva Tiliaceae Fruits Yellow/orange
Grewia subinaequalis Tiliaceae Fruits Yellow/orange
Haematoxylon campechianum Caesalpiniaceae Heart wood Yellow
Hedychium spicatum Zingiberacae Rhizome Yellow
Hippophae salicifolia Elaegnaceae Fruits Yellow
Hypericum oblongifolium Hypericaceae Flowers Yellow
Impatiens balsamina Balsaminaceae Flowers Red
Impatiens balsamina Balsaminaceae Flower Brown
Indigofera atropurpurea Fabaceae Flowers Purple
Indigofera cassioides Fabacae Leaves/flowers Blue
Indigofera heterantha Fabacae Flowers Pink
Indigofera tinctoria Fabacae Leaves/flowers Blue
Indigofera tinctoria Fabaceae Green crop Blue
Isatis tinctoria Brassicaceae Leaves Dark blue
Juglans regia Juglandaceae Bark/fruits Camel-brown
Lannea coromandelica Anacrdiaceae Bark/resin Yellow-brown
Largestomia parviflora Lythraceae Bark Black
Lawsonia alba Lythraceae Leaves Brown
Lawsonia inermis Lythraceae Leaves Red/orange
Ligustrum vulgare. Oleaceae Mature berries Blue
Madhuca indica Sapotaceae Bark Reddish-yellow
Madhuca longifolia Sapotaceae Bark Yellow-brown
Mahonia borealis Berberidaceae Bark/roots Yellow
Mallotus philippensis Euphorbiaceae Fruits Red
Mallotus phillippensis Euphorbiaceae Fruit capsules Orange
Mangifera indica Anacardiaceae Bark/leaves Yellow
Michelia champaca Magnoliaceae Wood Yellow
Mimusops elengi Sapotaceae Seed Yellow
Mirabilis jalapa Nyctaginaceae Flowers Pink-red
Morinda citrifolia Rubiaceae Root bark Dull red
Myrica esculenta Lauraceae Bark/fruits Red yellow
Nardostachys grandiflora Valerianaceae Inflorescence Red
Nyctanthes arbor-tristis Oleaceae Flower Yellow
Nyctanthes arbourtritis Oleaceae Flowers Yellow-orange
Nymphaea alba Nymphaceae Rhizome Blue

(continued)
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Table 7.12 (continued)

Plant name Family Parts used Colour obtained

Onosma hispidum Boraginaceae Roots Red
Oroxylum indicum Bignoniaceae Bark/fruits Black
Osbeckia stellata Melastomaceae Fruits Brown
Peristrophe piniculata Acanthaceae Whole plant Greenish
Phlogacanthus thyrsiformis Acanthaceae Flowers Orange-yellow
Pinus wallichiana Pinaceae Bark Black
Pistacia khinjuk Anacrdiaceae Stem galls Brown
Prinsepia utilis Rosaceae Fruits Blue
Prunus cerasoides Rosaceae Fruits Yellow
Prunus persica Rosaceae Leaves, root bark Light yellow
Psidium guajava Myrtaceae Fruits Black-brown
Pterocarpus marsupium Cesalpiniaceae Bark Red
Pterocarpus santalinus Cesalpiniaceae Wood Red
Punica granatum. Punicaceae Flowers/fruits Yellow-red
Quercus infectoria Fagaceae Gall nuts Light yellow
Rheum moorcroftianum Polygonaceae Roots Yellow
Rheum webbianum Polygonaceae Roots Yellow
Rhododendron arboretum Ericaeace Flower Red
Rhododendron lepidotum Ericaeace Leaves/flowers Pink-red
Rimelia reticulate Parmeliaceae Whole plants Orange-yellow
Rubia cordifolia Rubiaceae Whole plant Red-brown
Rubia cordifolia Rubiaceae Stem, root Light Brown
Rubia tinctorum Rubiaceae Wood, root red, pink
Rubus fructicosus. Rosaceae Berries Brown
Rumex hastatus Polygonaceae Roots Yellow-green
Rumex nepalensis Polygonaceae Roots Yellow-green
Semecarpus anacardium Anacardiaceae Fruits Black
Solanum lycopersicum Solanaceae Fruits Red
Sophora mollis Fabaceae Roots/flowers Brown/yellow
Symplocos paniculata Symplocaceae Bark/leaves Yello
Symplocos ramosissima Symplocaceae Bark/Leaves Yellow
Syzygium cuminii Apiaceae Bark and Leaves Red
Tagetes erecta. Asteraceae Flowers Yellow
Tagetes erecta. Asteraceae Flower Yellow
Tamarindus indica. Caesalpiniaceae Leaves Reddish-yellow
Taxus baccata Linn. ssp. 
wallichiana

Taxaceae Bark Red

Tectona grandis Verbenaceae Leaf/bark Reddish
Terminalia alata Combretaceae Bark Red/brown
Terminalia arjuna Combretaceae Bark Red
Terminalia bellirica Combretaceae Fruits Black
Terminalia chebula. Combretaceae Fruits Yellow/black

(continued)
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Table 7.12 (continued)

Plant name Family Parts used Colour obtained

Toona hexandra var. gambleri Meliaceae Flowers/seeds Yellow-brown
Toona serrata Meliaceae Flowers/seeds Yellow
Usnia verticillata Parmeliaceae Whole plant Red brown
Utrica dioica Urticaceae Roots Brown-black
Ventilago denticulate Rhamnaceae Bark and roots Violet
Woodfordia fruiticosa Lythraceae Flowers Red Yellow
Wrightia arborea Apocynaceae Bark/leaves Yellow-pal
Wrightia tinctoria Apocynaceae Seeds Blue
Zanthoxylum armatnum Rutaceae Bark Brown
Ziziphus mauritiana Rhamnaceae Leaves/bark Pink/red

Table 7.13 Various groups of biomass resources and their possible scope for utilization as energy 
sources.

Biomass category Products Uses

Energy crops
Industrial residues

Methyl esters, alcohol Energy
Fibrous waste from pulp, including 
black liquor

Energy, composite material

Wet cellulosic industrial residues Electricity and heat
Industrial products Pellets, bio-oil (pyrolysis oil), ethanol, 

biodiesel
Electricity

High biomass
Producing grasses

Biohydrogen Electricity and heat, Proton 
exchange membrane fuel cell

Contaminated waste Biodegradable waste Sewage sludge Biogas

Table 7.14 Metal accumulation and adsorption capacity of Eichornia crassipes (Water hyacinth)

Eichornia crassipes References

Ag, Al, As, Ba, Ca, Cd, Ce, Co, 
Cu, Dy, Er, Eu, Fe, Ga, Gd, Ge, 
Hg, Ho, K, La, Mg, Mn, Mo, Na, 
Nb, Nd, Ni, Pb, Pr, Rb, Sm, Sr, Tb, 
Th, TI, Tm, U, Y, Yb, Zn, Zr

Valitutto et al. (2006)

Ag, Cd, Cr, Cu, Hg, Ni, Pb, Zn Odjegba and Fasidi (2006, 2007)
Al, As, Cd, Cr, Cu, Fe, Hg, Mn, 
Ni, Pb, Zn

Marchand et al. (2010)

Al, Cr, Cu, Klumpp et al. (2002)
As Alvarado et al. (2008), Rahman and Hasegawa (2011), 

Giri and Patel (2012)
As, Cd, Cr, Cu, Fe, Mn, Ni, Pb, V, 
Zn

Agunbiade et al. (2009)

Br, Ca, Cr, Cu, Fe, K, Mn, Ni, Pb, 
Rb, S, Sr, Ti, Zn

Tejeda et al. (2010)

Ca, Co, Cu, Fe, K, Mg, Mn Cooley and Martin (1979)

(continued)
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Table 7.14 (continued)

Eichornia crassipes References

Cd Wolverton and McDonald (1978), Cooley and Martin 
(1979), O’Keeffe et al. (1984), El-Enany and Mazen 
(1996), Das and Jana (1999), Maine et al. (2001), Das 
and jana (2004), di Toppi et al. (2007), de oliveira et al. 
(2009), Rana et al. (2011)

Cd, Co, Cr, Cu, Mn, Ni, Pb, Zn Soltan and Rashed (2003)
Cd, Co, Cu, Hg, Pb, Zn Buta et al. (2011)
Cd, Co, Pb Oseni (2004)
Cd, Cr, Cu, Fe, Mn, Ni, Pb, Zn Singh and Kalamdhad (2013)
Cd, Cr, Cu, Fe, Ni, Pb Khan et al. (2009)
Cd, Cr, Cu, Fe, Ni, Zn Mishra et al. (2008)
Cd, Cr, Cu, Fe, Zn Mishra and Tripathi (2008)
Cd, Cr, Cu, Ni, Pb, Zn Schorin et al. (1991)
Cd, Cr, Zn Delgado et al. (1993)
Cd, Cu, Hg, Pb, Zn Núñez et al. (2011)
Cd, Cu, Pb, Zn Fayed and Abd-El-Shafy (1985), Yang (1997), 

Smolyakov (2012)
Cd, Cu, Zn Smolyakov et al. (2010)
Cd, Mn, Cu, Hg, Pb Mishra et al. (2008)
Cd, Pb, Zn Mahamadi and Nharingo (2010)
Cd, Zn Hardy and O’Keeffe (1985), Lu et al. (2004)
Ce Chua (1998)
Co, Cs Saleh (2012)
Co, Cr, Cu, Fe, Ni, Pb, Zn Zaranyika et al. (1994)
Cr Rulangaranga and Mugasha (2003), Faisal and Hasnain 

(2003), Mangabeira et al. (2004), Paivaa et al. (2009), 
Espinoza-Quiñones et al. (2009), Mangabeira et al. (2011)

Cr, Cu, Mn, Pb, Zn Tiwari et al. (2007)
Cr, Hg Jana (1988)
Cr, Ni, Zn Maine et al. (2006), Maine et al. (2007), Maine et al. 

(2009)
Cu Mokhtar et al. (2011), Abdelraheem et al. (2012)
Cu, Hg Mishra et al. (2012)
Cu, Pb Vesk and Allaway (1997)
Fe Jayaweera et al. (2008)
Hg Panda et al. (1988), Lenka et al. (1992), Ramlal et al. 

(2003), Skinner et al. (2007), Caldelas et al. (2009)
Ir, Os, Pd, Pt, Rh, Ru, Farago and Parsons (1994)
Ni Bres et al. (2012)
Pb Hameed et al. (1997), Singh et al. (2012), Baruah et al. 

(2012)
Pb, Zn Verma et al. (2005)
Se Mane et al. (2011)
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The present study highlights the potential of ornamentals, fiber and energy crops 
for phytoremediation, because they are non-edible and income generators. Further 
studies should focus on combining phytoremediation with enhancing soil fertility 
and maximizing pest management, together with investigation of additional species 
for phytoremediation which may also enhance economic benefits. The management 
of plant biomass applied in phytoremediation should be also studied. Use of phy-
toremediated phytomass for phytoproducts and boosting bioeconomy via cogenera-
tion of value additions and value chain products has tremendous scope and should 
be a priority area of research.

Grison (2015) pioneered in turning metalliferous waste from plants into a 
resource through innovative technologies, processes and services. She and her team 
discovered an unprecedented concept in chemistry, namely ‘ecocatalysis’. The 
development of this new concept created a paradigm shift in sustainable and green 
chemistry i.e. the metallic wastes are becoming new ecofriendly and efficient cata-
lytic systems. Grison feels that combining phytoextraction and ecocatalysis has 
opened up a new vistas (E4) in greener chemistry i.e. Environmental, Ecological, 
Ethic and Economic (E4) opportunity.

Table 7.15 Metal accumulation in Alternanthera philoxeroides (Alligator weed)

As Li et al. (2011)
Ca, Cr, Cu, Fe, Mg, Mn, Na, Ni, Pb, Zn Zuo et al. (2012)
Cd Souza et al. (2009)
Cd, Cr, Cu, Mn, Pb, Zn Zhi Zhong et al. (2011)
Cd, Cr, Cu, Fe, Ni, Pb, Zn Lokeshwari and Chandrappa (2007)
Cd, Cr, Cu, Pb, Zn Gu et al. (2004)
Cd, Cu, Pb, Zn, Bi et al. (2007)
Cd, Pb, Zn Liu et al. (2007a, b)
Cr Mangabeira et al. (2010), Mangabeira et al. (2011)
Cr, Cu Naqvi and Rizvi (2000)
Cs Pinder et al. (2005, 2006)
Cu Guo and Hu (2012)
Cu, Cr, Ni Jian-Guo et al. (2010)
Cu, Pb, Zn Li et al. (2010)
Cu, Zn Tang et al. (2002)
Fe, Pb, Zn Deng et al. (2009)
Hg Hong-Wei et al. (2003)
Pb Shabani et al. (2010)
Pb, Zn Deng et al. (2006)
Zn Yuan et al. (2009)
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Table 7.16 Metal accumulation in Pistia stratiotes (Water lettuce/Water cabbage)

Pistia stratiotes + Metals References

Ag, Al, As, Ba, Ca, Cd, Ce, Co, Cu, Dy, Er, 
Eu, Fe, Ga, Gd, Ge, Hg, Ho, K, La, Mg, 
Mn, Mo, Na, Nb, Nd, Ni, Pb, Pr, Rb, Sm, 
Sr, Tb, Th, TI, Tm, U, Y, Yb, Zn, Zr

Valitutto et al. (2006)

Ag, Cd, Cr, Cu, Hg, Ni, Pb, Zn Odjegba and Fasidi (2004)
Al, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, 
Na, Ni, Pb, Zn

Lu et al. (2011)

As Rahman and Hasegawa (2011)
Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Na, 
Ni, Pb, Zn

Sridhar (1986)

Cd Maine et al. (2001), di Toppi et al. (2007), Bhakta 
and Munekage (2008), Li et al. (2013)

Cd, Cr Suñe et al. (2007)
Cd, Cr, Cu, Fe, Ni, Pb Khan et al. (2009)
Cd, Cr, Cu, Fe, Ni, Zn Upadhyay et al. (2007)
Cd, Cr, Cu, Fe, Zn Mishra and Tripathi (2008)
Cd, Cu, Hg, Mn, Pb, Mishra et al. (2008)
Cd, Cu, Hg, Pb, Zn Núñez et al. (2011)
Cd, Cu, Ni, Pb, Zn Miretzky et al. (2006)
Cr Satyakala and Jamil (1992), Mainea et al. (2004), 

Sinha and Gupta (2005), Ganesh et al. (2008), 
Espinoza-Quiñones et al. (2008), Sinha et al. 
(2009), Sundaramoorthy et al. (2010)

Cr, Cu, Fe, Mn, Pb, Zn Miretzky et al. (2004)
Cr, Cu, Mn, Ni, Pb, Zn Tewari et al. (2008)
Cr, Ni, Zn Mufarrege et al. (2010)
Cu Upadhyay and Panda (2009)
Cu, Hg Mishra et al. (2012)
Fe, Mn, Pb, Zn Ndzomo et al. (1994)
Hg Mhatre and Chaphekar (1985), De et al. (1985), 

Lenka et al. (1992), Mishra et al. (2009), Skinner 
et al. (2007)

Pb Espinoza-Quiñones et al. (2009), Vesely et al. 
(2012)

Th, U Cecal et al. (2003)
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