
Chapter 53
New Constructions in the Theory of Elliptic
Boundary Value Problems

V.B. Vasilyev

53.1 Introduction

How are potentials constructed for boundary value problems? One takes a funda-
mental solution of the corresponding differential operator in whole space Rm, and
with its help constructs the potentials according to boundary conditions. Further,
one studies their boundary properties, and with the help of potentials reduces
the boundary value problem to an equivalent integral equation on the boundary.
The formulas for integral representation of solution of the boundary value problem
were obtained for separate cases only (a ball, a half-space, such places, where one
has explicit form for a Green function). Thus, an ideal result for a boundary value
problem even with a smooth boundary is its reduction to an equivalent Fredholm
equation and obtaining the existence and uniqueness theorem (without knowing
how the solution looks) [Ag57, Fa88, Ke94, MiMiTa01, HsWe08]. We would like to
show that potentials can arise from another point of view, without using fundamental
solution, but using factorization idea and they obviously should take into account
the boundary geometry. A smooth boundary is a hyper-plane locally (there is a
Poisson formula for the Dirichlet problem, see also [Es81]), first type of non-smooth
boundary is a conical surface.
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53.2 Operators, Equations, and Wave Factorization

We consider an elliptic pseudo-differential equation in a multi-dimensional cone
and starting wave factorization concept we add some boundary conditions. For the
simplest cases explicit formulas for solution are given like layer potentials for a
classical case.

Let’s go to studying solvability of pseudo-differential equations [Va00a, Va11,
Va10]

(Au+)(x) = f (x), x ∈ Ca
+, (53.1)

in the space Hs(Ca
+), where Ca

+ is m-dimensional cone

Ca
+ = {x ∈ Rm : x = (x1, ...,xm−1,xm),xm > a|x′|,a > 0}, x′ = (x1, ...,xm−1),

A is pseudo-differential operator (ũ denotes the Fourier transform of u)

u(x) �−→
∫

Rm

eix·ξ A(ξ )ũ(ξ )dξ , x ∈ Rm,

with the symbol A(ξ ) satisfying the condition

c1 ≤ |A(ξ )(1+ |ξ |)−α| ≤ c2.

(Such symbols are elliptic [Es81] and have the order α ∈ R at infinity.)
By definition, the space Hs(Ca

+) consists of distributions from Hs(Rm), whose
support belongs to Ca

+. The norm in the space Hs(Ca
+) is induced by the norm from

Hs(Rm). The right-hand side f is chosen from the space Hs−α
0 (Ca

+), which is space
of distributions S′(Ca

+), admitting the continuation on Hs−α(Rm). The norm in the
space Hs−α

0 (Ca
+) is defined by

||f ||+s−α = inf ||lf ||s−α ,

where infimum is chosen from all continuations l.
Further, we define a special multi-dimensional singular integral by the formula

(Gmu)(x) = lim
τ→0+

∫

Rm

u(y′,ym)dy′dym

(|x′ − y′|2 − a2(xm − ym + iτ)2)
m/2

(we omit a certain constant, see [Va00a]). Let us recall, this operator is multi-
dimensional analogue of the one-dimensional Cauchy type integral, or Hilbert
transform.

We also need some notations before definition.
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The symbol
∗

Ca
+ denotes a conjugate cone for Ca

+:

∗
Ca
+= {x ∈ Rm : x = (x′,xm),axm > |x′|},

Ca− ≡ −Ca
+, T(Ca

+) denotes radial tube domain over the cone Ca
+, i.e. domain in a

complex space Cm of type Rm + iCa
+.

To describe the solvability picture for the equation (53.1) we will introduce the
following definition.

Definition 1. Wave factorization for the symbol A(ξ ) is called its representation in
the form

A(ξ ) = A 	=(ξ )A=(ξ ),

where the factors A 	=(ξ ),A=(ξ ) must satisfy the following conditions:

1) A 	=(ξ ),A=(ξ ) are defined for all admissible values ξ ∈ Rm, without may be, the
points {ξ ∈ Rm : |ξ ′|2 = a2ξ 2

m};
2) A 	=(ξ ),A=(ξ ) admit an analytical continuation into radial tube domains

T(
∗

Ca
+),T(

∗
Ca−), respectively, with estimates

|A±1
	= (ξ + iτ)| ≤ c1(1+ |ξ |+ |τ|)±κ,

|A±1
= (ξ − iτ)| ≤ c2(1+ |ξ |+ |τ|)±(α−κ), ∀τ ∈

∗
Ca
+ .

The number κ ∈ R is called index of wave factorization.

The class of elliptic symbols admitting the wave factorization is very large. There
are the special chapter in the book [Va00a] and the paper [Va00b] devoted to this
question, there are examples also for certain operators of mathematical physics.

Everywhere below we will suppose that the mentioned wave factorization does
exist, and the sign ∼ will denote the Fourier transform, particularly H̃(D) denotes
the Fourier image of the space H(D).

53.3 After the Wave Factorization

Now we will consider the equation (53.1) for the case κ−s= n+δ ,n∈N, |δ |< 1/2,
only. A general solution can be constructed in the following way. We choose an
arbitrary continuation lf of the right-hand side on a whole space Hs−α(Rm) and
introduce

u−(x) = (lf )(x)− (Au+)(x).
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After wave factorization for the symbol A(ξ ) with preliminary Fourier transform
we write

A 	=(ξ )ũ+(ξ )+A−1
= (ξ )ũ−(ξ ) = A−1

= (ξ )l̃f (ξ ).

One can see that A−1
= (ξ )l̃f (ξ ) belongs to the space H̃s−κ(Rm), and if we choose

the polynomial Q(ξ ), satisfying the condition

|Q(ξ )| ∼ (1+ |ξ |)n,

then Q−1(ξ )A−1
= (ξ )l̃f (ξ ) will belong to the space H̃−δ (Rm).

Further, according to the theory of multi-dimensional Riemann problem [Va00a],
we can decompose the last function on two summands (jump problem):

Q−1A−1
= l̃f = f++ f−,

where f+ ∈ H̃(Ca
+), f− ∈ H̃(Rm \Ca

+).
So, we have

Q−1A 	=ũ++Q−1A−1
= ũ− = f++ f−,

or

Q−1A 	=ũ+− f+ = f−−Q−1A−1
= ũ−

In other words,

A 	=ũ+−Qf+ = Qf−−A−1
= ũ−.

The left-hand side of the equality belongs to the space H̃−n−δ(Ca
+), and right-

hand side is from H̃−n−δ (Rm \Ca
+), hence

F−1(A 	=ũ+−Qf+) = F−1(Qf−−A−1
= ũ−),

where the left-hand side belongs to the space H−n−δ (Ca
+), and the right-hand side

belongs to the space H−n−δ (Rm \Ca
+), that’s why we conclude immediately that it

is a distribution supported on ∂Ca
+.

The main tool now is to define the form of the distribution.
We denote Ta the bijection operator transferring ∂Ca

+ into hyperplane xm = 0,
more precisely, it is transformation Rm −→ Rm of the following type

⎧⎪⎪⎨
⎪⎪⎩

t1 = x1,

............

tm−1 = xm−1,

tm = xm − a|x′|.
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Then the function

TaF−1(A 	=ũ+−Qf+)

will be supported on the hyperplane tm = 0 and belongs to H−n−δ (Rm). Such
distribution is a linear span of Dirac mass-function and its derivatives [GeSh59]
and looks as the following sum

n−1

∑
k=0

ck(t
′)δ (k)(tm).

It is left to think, what is operator Ta in Fourier image. Explicit calculations give
a simple answer:

FTau = Vaũ,

where Va is something like a pseudo-differential operator with symbol e−ia|ξ ′|ξm ,
and, further, one can construct the general solution of our pseudo-differential
equation (53.1).

We need some connections between the Fourier transform and the operator Ta:

(FTau)(ξ ) =
∫

Rm

e−ix·ξ u(x1, ...,xm−1,xm − a|x′|)dx =

=

∫

Rm

e−iy′ξ ′
e−i(ym+a|y′|)ξmu(y1, ...,ym−1,ym)dy =

=

∫

Rm−1

e−ia|y′|ξm e−iy′ξ ′
û(y1, ...,ym−1,ξm)dy′,

where û denotes the Fourier transform on the last variable, and the Jacobian is

D(x1,x2, ...,xm)

D(y1,y2, ...,ym)
=

∣∣∣∣∣∣∣∣∣∣∣

1 0 · · ·0 0
0 1 · · ·0 0
0 0 · · ·1 0

· · · · · · · · · · · · · · ·
ay1
|y′|

ay2
|y′| ....

aym−1
|y′| 1

∣∣∣∣∣∣∣∣∣∣∣
= 1.

If we define a pseudo-differential operator by the formula

(Au)(x) =
∫

Rm

eixξ A(ξ )ũ(ξ )dξ ,
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and the direct Fourier transformation

ũ(ξ ) =
∫

Rm

e−ixξ u(x)dx,

then we have the following relation formally at least

(FTau)(ξ ) =
∫

Rm−1

e−ia|y′|ξm e−iy′ξ ′
û(y1, ...,ym−1,ξm)dy. (53.2)

In other words, if we denote the (m−1)-dimensional Fourier transform (y′ → ξ ′

in distribution sense) of function e−ia|y′|ξm by Ea(ξ ′,ξm), then the formula (53.2)
will be the following

(FTau)(ξ ) = (Ea ∗ ũ)(ξ ),

where the sign ∗ denotes a convolution for the first m−1 variables, and the multiplier
for the last variable ξm. Thus, Va is a combination of a convolution operator and the
multiplier with the kernel Ea(ξ ′,ξm). It is very simple operator, and it is bounded in
Sobolev–Slobodetski spaces Hs(Rm).

Notice that distributions supported on conical surface and their Fourier trans-
forms were considered in [GeSh59], but the author did not find the multi-dimension-
al analogue of theorem on a distribution supported in a single point in all issues of
this book.

Remark 1. One can wonder why we can’t use this transform in the beginning to
reduce the conical situation (53.1) to hyperplane one, and then to apply Eskin’s
technique [Es81]. Unfortunately, this is impossible because Ta is non-smooth
transformation, but even for smooth transformation we obtain the same operator
A with some additional compact operator. Obtaining the invertibility conditions for
such operator is a very serious problem.

53.4 General Solution

The following result is valid (it follows from considerations of Section 53.3).

Theorem 1. A general solution of the equation (53.1) in Fourier image is given by
the formula

ũ+(ξ ) = A−1
	= (ξ )Q(ξ )GmQ−1(ξ )A−1

= (ξ )l̃f (ξ )+

+A−1
	= (ξ )V−aF

(
n

∑
k=1

ck(x
′)δ (k−1)(xm)

)
,

where ck(x′) ∈ Hsk(Rm−1) are arbitrary functions, sk = s − κ + k − 1/2,
k = 1,2, ...,n, lf is an arbitrary continuation f on Hs−α(Rm).



53 Elliptic Boundary Value Problems 635

Starting from this representation one can suggest different statements of bound-
ary value problems for the equation (53.1).

53.4.1 Another Singularity

It may be that the singularity point will be different from considered one. This
matter will influence the structure of the operator Va. So, if we consider an another
m-dimensional cone, for example C�a

+ = {x ∈ Rm : x = (x1, ...,xm−1,xm),xm >
m−1
∑

k=1
ak|xk|, ak > 0, k = 1,2, ...,m− 1}, �a = (a1, ...,am−1), then we need certain

corrections for our studies, in general it will be the same. Namely, we need to define
a special multi-dimensional singular integral by the formula

(Gmu)(x) = (2i)m−1 lim
τ→0+

∫

Rm

m−1

∏
j=1

aj(xm − ym + iτ)m−2

(xj − yj)2 − a2
j (xm + ym + iτ)2

u(y)dy

(for details see also [Va00a]). Such operator corresponds to the Fourier multiplier
(characteristic function, or indicator) of the pyramid C�a

+.
The Jacobian for this transformation T�a is

D(x1,x2, ...,xm)

D(y1,y2, ...,ym)
=

∣∣∣∣∣∣∣∣∣∣∣

1 0 · · ·0 0
0 1 · · ·0 0
0 0 · · ·1 0

· · · · · · · · · · · · · · ·
−a sign(y1) −a sign(y2) ....− a sign(ym−1) 1

∣∣∣∣∣∣∣∣∣∣∣
= 1,

and the argument continues as above. This kind of singularity is considered in a
forthcoming paper by the author, to appear in Adv. Dyn. Syst. Appl.

53.5 Boundary Conditions: Simplest Version,
the Dirichlet Condition

We consider a very simple case, when f ≡ 0, a = 1, n = 1. Then the formula from
the theorem takes the form

ũ+(ξ ) = A−1
	= (ξ )V−1c̃0(ξ ′).

We consider the following construction separately. According to the Fourier
transform our solution is

u+(x) = F−1{A−1
	= (ξ )V−1c̃0(ξ ′)}.
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Let’s suppose we choose the Dirichlet boundary condition on ∂C1
+ for unique

identification of an unknown function c0, i.e.

(Pu)(y) = g(y),

where g is given function on ∂C1
+, P is restriction operator on the boundary, so we

know the solution on the boundary ∂C1
+. Thus,

T1u(x) = T1F−1{A−1
	= (ξ )V−1c̃0(ξ ′)},

so we have

FT1u(x) = FT1F−1{A−1
	= (ξ )V−1c̃0(ξ ′)}= V1{A−1

	= (ξ )V−1c̃0(ξ ′)}, (53.3)

and we know (P′T1u)(x′) ≡ v(x′), where P′ is the restriction operator on the
hyperplane xm = 0.

The relation between the operators P′ and F is well-known [Es81]:

(FP′u)(ξ ′) =
+∞∫

−∞

ũ(ξ ′,ξm)dξm.

Returning to the formula (53.3) we obtain the following

ṽ(ξ ′) =
+∞∫

−∞

{V1{A−1
	= (ξ )V−1c̃0(ξ ′)}}(ξ ′,ξm)dξm, (53.4)

where ṽ(ξ ′) is given function. Hence, the equation (53.4) is an integral equation for
determining c0(x′).

The Neumann boundary condition leads to analogous integral equation (see
below).

53.6 Conical Potentials

We consider the particular case where f ≡ 0,n= 1. The formula for general solution
of the equation (53.1) takes the form

ũ+(ξ )) = A−1
	= (ξ )V−aF{c0(x

′)δ (0)(xm)},

and after Fourier transform (for simplicity we write c̃ instead of V−1c̃0),

ũ+(ξ ) = A−1
	= (ξ )c̃(ξ ′), (53.5)



53 Elliptic Boundary Value Problems 637

or equivalently the solution is

u+(x) = F−1{A−1
	= (ξ )c̃(ξ ′)}.

Then we apply the operator Ta to formula (53.5)

(Tau+)(t) = TaF−1{A−1
	= (ξ )c̃(ξ ′)}

and the Fourier transform

(FTau+)(ξ ) = FTaF−1{A−1
	= (ξ )c̃(ξ ′)}.

If the boundary values of our solution u+ are known on ∂Ca
+, it means that the

following function is given:

+∞∫

−∞

(FTau+)(ξ )dξm.

So, if we denote

+∞∫

−∞

(FTau+)(ξ )dξm ≡ g̃(ξ ′),

then for determining c̃(ξ ′) we have the following equation:

+∞∫

−∞

(FTaF−1){A−1
	= (ξ )c̃(ξ ′)}dξm = g̃(ξ ′), (53.6)

This is a convolution equation, and if evaluating the inverse Fourier transform
ξ ′ → x′, we’ll obtain the conical analogue of layer potential.

53.6.1 Studying the Last Equation

Now we try to determine the form of the operator FTaF−1 (see above Sec. 3). We
write

(FTaF−1ũ)(ξ ) = (FTau)(ξ ) =
∫

Rm−1

e−ia|y′|ξm e−iy′·ξ ′
û(y′,ξm)dy′, (53.7)

where y′ = (y1, ...ym−1), û is the Fourier transform of u on last variable ym.
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We denote the convolution operator with symbol A−1
	= (ξ ) by letter a, so that by

definition

(a ∗ u)(x) =
∫

Rm

a(x− y)u(y)dy,

or, for Fourier images,

F(a ∗ u)(ξ ) = A−1
	= (ξ )ũ(ξ ).

As above, we denote â(x′,ξm) the Fourier transform of convolution kernel a(x)
on the last variable xm. The integral in (53.6) takes the form (according to (53.7))

∫

Rm−1

e−ia|y′|ξm e−iy′·ξ ′
(â ∗ c)(y′,ξm)dy′,

Taking into account the properties of the convolution operator and the Fourier
transform we have the following representation (see Section 53.3)

Ea ∗ (A−1
	= (ξ )c̃(ξ ′)),

or, in more detail,
∫

Rm−1

Ea(ξ ′ −η ′,ξm)A
−1
	= (η ′,ξm)c̃(η ′)dη ′.

Then the equation (53.6) takes the form

∫

Rm−1

Ka(η ′,ξ ′ −η ′)c̃(η ′)dη ′ = g̃(ξ ′), (53.8)

where

Ka(η ′,ξ ′) =
+∞∫

−∞

Ea(ξ ′,ξm)

A 	=(η ′,ξm)
dξm.

So, the integral equation (53.8) is an equation for determining c̃(ξ ′). This is a conical
analogue of the double-layer potential.

Suppose that we solved this equation and constructed the inverse operator La, so
that Lag̃= c̃. By the way, we’ll note the unique solvability condition for the equation
(53.8) (i.e. existence of bounded operator La) is necessary and sufficient for unique
solvability for our Dirichlet boundary value problem. Using the formula (53.5) we
obtain

ũ+(ξ ) = A−1
	= (ξ )(Lag̃)(ξ ′),
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or, relabeling,

ũ+(ξ ) = A−1
	= (ξ )d̃a(ξ ′).

Then

u+(x
′,xm) =

∫

Rm−1

W(x′ − y′,xm)da(y
′)dy′, (53.9)

where W(x′,xm) = F−1
ξ→x(A

−1
	= (ξ )).

Formula (53.9) is the analogue of the Poisson integral for a half-space.

53.7 Comparison with the Half-Space Case for the Laplacian

For the half-space xm > 0 we have the following (see Eskin’s book [Es81]):

ũ+(ξ ) =
c̃(ξ ′)

ξm + i|ξ ′| .

If we have the Dirichlet condition on the boundary, then the function

g̃(ξ ′) =
+∞∫

−∞

ũ+(ξ )dξm

is given.
From the formula above we have

g̃(ξ ′) = c̃(ξ ′)
+∞∫

−∞

dξm

ξm + i|ξ ′| ,

and we need to calculate the last integral only.
For this case we can use the residue technique and find that the last integral is

equal to −π i. Thus,

ũ+(ξ ) =− g̃(ξ ′)
π i(ξm + i|ξ ′|) .

Consequently, our solution u+(x) is the convolution (for first (m− 1) variables)
of the given function g(x′) and the kernel defined by inverse Fourier transform of
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function (ξm+ i|ξ ′|)−1 (up to a constant). The inverse Fourier transform on variable
ξm leads to the function e−xm|ξ ′|, and further, the inverse Fourier transform ξ ′ → x′
leads to Poisson kernel

P(x′,xm) =
cmxm

(|x′|2 + x2
m)

m/2
,

cm is certain constant defined by Euler Γ -function.
Thus, for the solution of the Dirichlet problem in half-space Rm

+ for the Laplacian
with given Dirichlet data g(x′) on the boundary Rm−1 we have the integral
representation

u+(x
′,xm) =

∫

Rm−1

P(x′ − y′,xm)g(y
′)dy′.

53.8 Oblique Derivative Problem

We go back to formula (53.5). We can write

ξkũ+(ξ ) = ξkA−1
	= (ξ )c̃(ξ ),

or equivalently according to Fourier transform properties

∂u+
∂xm

= F−1{ξkA−1
	= (ξ )c̃(ξ )},

for arbitrary fixed k = 1,2, ...,m.
Further, we apply the operator Ta and work as above. Our considerations will

be the same, and in all places instead of A−1
	= (ξ ) will stand ξkA−1

	= (ξ ). We call this

situation the oblique derivative problem, because ∂
∂xk

related to conical surface is
not normal derivative exactly.

Remark 2. Some words on the Neumann problem. If we try to give normal
derivative of our solution on conical surface different from origin, then we have the
boundary value problem with variable coefficients because the boundary condition
varies from one point to another one on conical surface. We need additional
localization for such points to reduce it to the case of constant coefficients and
consider corresponding model problem in Rm

+. Roughly speaking, we would say that
the solution looks locally different in dependence on the type of boundary point. In
other words, local principle permits to work with symbols and boundary conditions
independent of the space variable.
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53.9 Conclusions

It seems that to solve explicitly the simplest boundary value problems in domains
with conical point, we need to use another potentials different from classical single-
layer and double-layer potentials. This fact will be shown for the Laplacian with
Dirichlet condition on a conical surface by direct calculations in a future paper.
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