Chapter 10
The Characteristic Matrix of Nonuniqueness
for First-Kind Equations

C. Constanda and D.R. Doty

10.1 Introduction

Let S be a finite domain in RZ, bounded by a simple, closed, C2 curve 9S. We denote
by x and y generic points in SUdS and by |x — y| the distance between x and y in
the Cartesian metric. Also, let C%%(dS) and C1%(9S), o € (0, 1), be, respectively,
the spaces of Holder continuous and Holder continuously differentiable functions
on dS. In what follows, Greek and Latin indices take the values 1,2 and 1,2, 3,
respectively, and a superscript T denotes matrix transposition.

For any function f continuous on dS, we define the ‘calibration’ functional p by

o= s
a8

Using the fundamental solution for the two-dimensional Laplacian

1
glx,y) = ~5z In|x—y|,

we define the single-layer harmonic potential of density ¢ by

(Vo)) = [ 8x.r)p()ds(y).
as
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The proof of the following assertion can be found, for example, in [C0o94] or
[Co00].

Theorem 1. For any o € (0, 1), there are a unique nonzero function ® € C%%(95)
and a unique number ® such that

VO=w ondS, pd=I.

It is easy to see that @ and ® depend on g and JS.

The numbers 2@ and e~>" are called Robin’s constant and the logarithmic
capacity of 9S.

For a circle with the center at the origin and radius R, both @ and ® can be
determined explicitly:

1 1
b= 7R’ = o InR.
For other boundary curves, @ and @ are practically impossible to determine
analytically and must be computed by numerical methods.
If the solution of the Dirichlet problem in S with data function f on dS is sought
as u = V@, then ¢ is a solution of the (weakly singular) first-kind boundary integral
equation

Vo=f ondSs.

This is a well-posed problem if and only if @ # 0. If @ = 0, the above equation has
infinitely many solutions, which are expressed in terms of @.

10.2 Plane Elastic Strain

Consider a plate made of a homogeneous and isotropic material with Lamé constants
A and u, which undergoes deformations in the (x1,x;)-plane. If the body forces
are negligible, then its (static) displacement vector u = (uy,u;)T satisfies the
equilibrium system of equations [Co00]

Au=0 inS,
where

A+ A+1)d2  (A+u)dios )

A1, ) =
(91,92) ( (A+1)01dy pA+(A+u)d3
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It is not difficult to show [Co00] that the columns F' (i) of the matrix

10 X2
F:
(Ol—xl)

form a basis for the space of rigid displacements.
The ‘calibrating’ vector-valued functional p is defined for continuous 2 x 1 vector
functions f by

of = / Ffds.
as

A matrix of fundamental solutions for A is [Co00]

D(xay): :

Anu(y+1)
2(x1 —y1)? 2xy — _
2yln\X—y|+2y+1_M 20 YI_)(XE y2)
" 2 3n) )
x1 —y1)(x2 — Xy —
B e 2yInfx—y| +2y+1 - T2 220
x =yl |x—y|
A+3
y=""8
+u

The single-layer potential of density ¢ is defined by

(Vo)(x) = [ Dlx.y)o()ds().
N

The proof of the following assertion can be found in [Co00].

Theorem 2. There is a unique 2 x 3 matrix function ® € C*%(dS) and a unique
3 x 3 constant symmetric matrix € such that the columns ®\ of ® are linearly
independent and

VO =F¢ ondS, p®=I,

where I is the identity matrix.

Clearly, @ and % depend on A, D, and 0.
In the so-called alternative indirect method [Co00], the solution of the Dirichlet
problem in S with data function f on 0 is sought in the form

u=Ve. (10.1)
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Then the problem reduces to the (weakly singular) boundary integral equation

Vo=f onds. (10.2)

Theorem 3. Equation (10.2) has a unique solution ¢ € C%*(3S), a € (0,1), for
any f € C%*(9S) if and only if det€ # 0. In this case, (10.1) is the unique solution
of the Dirichlet problem.

If det% = 0, then the unique solution of the Dirichlet problem is obtained by
solving an ill-posed modified boundary integral equation whose infinitely many
solutions are constructed with @ and %

In the so-called refined indirect method [Co00], the solution of the Dirichlet
problem is sought as a pair {¢, ¢} such that

u=Ve—Fc inS, pp=s,

where s a constant 3 x 1 vector chosen (arbitrarily) a priori and c is a constant 3 X 1
vector. This leads to the system of boundary integral equations

Vo—Fc=f ondS, pp=s. (10.3)
Theorem 4. System (10.3) has a unique solution {@, c} with ¢ € C%%(3S) for any
feCh¥(ds), o € (0,1), and any s.

It is important to evaluate the arbitrariness in the representation of the solution
with respect to the prescribed ‘calibration’ s.

Theorem 5. If {1, ¢V}, {0@), ¢} are two solutions of (10.3) constructed
with s\ and s(z), respectively, then

o =) 4 q)(s(Z) _S(l)),
@ =) +cg(s(2) ,S(l)).
It is not easy to compute @ and % analytically, or even numerically, in arbitrary

domains S, but this can be accomplished if S is a circular disk. Let dS be the circle
with center at the origin and radius R. In this case, @ and ¥ can be determined

analytically as
o L (10 R72x, 7
2R \ 01 —R%x,
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1
" 4nu(A+2u)R?
(A+30)R2(InR+ 1) 0 0
x 0 (A+3u)R*(InR+1) 0
0 0 —(A+u)

Clearly, det% = 0 if and only if R = ¢~ .

Analytic computation of @ and % is practically impossible for non-circular
domains, and must be performed numerically.

We choose four 3 x 1 constant vectors s(*), s() such that the set {s(i) - s<0)} is
linearly independent, and form the 3 x 3 matrix ¥ with columns s — 50), Also,
we choose an arbitrary function f. Next, we compute the solutions {(p(0>, C(O)},
{(p(i), c<i>} of (10.3) corresponding to 59, s, respectively, and f, by the refined
indirect method, then form the 2 x 3 matrix function ¥ with columns ¢ — ¢(©)
and the constant 3 x 3 matrix I" with columns ¢(®) — ¢(0).

From Theorem 4 it follows that

or, what is the same,
X =Y, ¥X=T;
hence,
o=vx"' w=rz

A similar analysis can be performed for other two-dimensional linear elliptic
systems with constant coefficients—for example, the system modeling bending of
elastic plates with transverse shear deformation [Co0O]. No apparent connection
exists between the matrix ¢ and the characteristic constant @ of 0.

10.3 Numerical Examples

Consider a steel plate with scaled Lamé coefficients
A=115 pu=17.69,
and let S (see Figure 10.1) be the curve of parametric equations
x1(t) =2cos(mt) — % cos(2mt) + 12,

x(t) =2sin(mr)+2, 0<r<2.
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Fig. 10.1 The boundary 4F
curve 9S.
= 2
0hk ‘
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We choose the vectors

The approximating functions for computing ¢(%)(z) and ¢ (r) are piecewise
cubic Hermite splines on 12 knots; that is, the interval 0 < ¢ < 2 is divided into
12 equal subintervals. Then the characteristic matrix (with entries rounded off to 5
decimal places) is

—0.01627 —0.01083 —0.00370
¢ = | —0.01083 —0.00892 0.00542
—0.00370 0.00542 0.00185

Here,
det¥ = 1.08273 x 107°.

The graphs of the components @,; of @ are shown in Figure 10.2.
As a second example, consider the ‘expanding’ ellipse dS of parametric
equations
x1(t) = 2kcos(nt),
x2(t) = ksin(mz), 0<tr<2.

The graph of det%’ as a function of & is shown in Figure 10.3.
Here, det% = 0 for k = 0.22546 and k = 0.26934.
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Fig. 10.2 Graphs of the @;.
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Fig. 10.3 Graph of det%'.
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