
Chapter 10
The Characteristic Matrix of Nonuniqueness
for First-Kind Equations

C. Constanda and D.R. Doty

10.1 Introduction

Let S be a finite domain in R
2, bounded by a simple, closed, C2 curve ∂S. We denote

by x and y generic points in S∪ ∂S and by |x− y| the distance between x and y in
the Cartesian metric. Also, let C0,α(∂S) and C1,α(∂S), α ∈ (0,1), be, respectively,
the spaces of Hölder continuous and Hölder continuously differentiable functions
on ∂S. In what follows, Greek and Latin indices take the values 1, 2 and 1, 2, 3,
respectively, and a superscript T denotes matrix transposition.

For any function f continuous on ∂S, we define the ‘calibration’ functional p by

pf =
∫

∂S

f ds.

Using the fundamental solution for the two-dimensional Laplacian

g(x,y) =− 1
2π

ln |x− y|,

we define the single-layer harmonic potential of density ϕ by

(Vϕ)(x) =
∫

∂S

g(x,y)ϕ(y)ds(y).
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The proof of the following assertion can be found, for example, in [Co94] or
[Co00].

Theorem 1. For any α ∈ (0,1), there are a unique nonzero function Φ ∈ C0,α(∂S)
and a unique number ω such that

VΦ = ω on ∂S, pΦ = 1.

It is easy to see that Φ and ω depend on g and ∂S.
The numbers 2πω and e−2πω are called Robin’s constant and the logarithmic

capacity of ∂S.
For a circle with the center at the origin and radius R, both Φ and ω can be

determined explicitly:

Φ =
1

2πR
, ω =− 1

2π
lnR.

For other boundary curves, Φ and ω are practically impossible to determine
analytically and must be computed by numerical methods.

If the solution of the Dirichlet problem in S with data function f on ∂S is sought
as u = Vϕ , then ϕ is a solution of the (weakly singular) first-kind boundary integral
equation

Vϕ = f on ∂S.

This is a well-posed problem if and only if ω �= 0. If ω = 0, the above equation has
infinitely many solutions, which are expressed in terms of Φ .

10.2 Plane Elastic Strain

Consider a plate made of a homogeneous and isotropic material with Lamé constants
λ and μ , which undergoes deformations in the (x1,x2)-plane. If the body forces
are negligible, then its (static) displacement vector u = (u1,u2)

T satisfies the
equilibrium system of equations [Co00]

Au = 0 in S,

where

A(∂1,∂2) =

(
μΔ +(λ +μ)∂ 2

1 (λ +μ)∂1∂2

(λ +μ)∂1∂2 μΔ +(λ +μ)∂ 2
2

)
.
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It is not difficult to show [Co00] that the columns F(i) of the matrix

F =

(
1 0 x2

0 1 −x1

)

form a basis for the space of rigid displacements.
The ‘calibrating’ vector-valued functional p is defined for continuous 2×1 vector

functions f by

pf =
∫

∂S

FTf ds.

A matrix of fundamental solutions for A is [Co00]

D(x,y) =− 1
4πμ(γ +1)

×

⎛
⎜⎜⎝

2γ ln |x− y|+2γ +1− 2(x1 − y1)
2

|x− y|2 − 2(x1 − y1)(x2 − y2)

|x− y|2
− 2(x1 − y1)(x2 − y2)

|x− y|2 2γ ln |x− y|+2γ +1− 2(x2 − y2)
2

|x− y|2

⎞
⎟⎟⎠ ,

γ =
λ +3μ
λ +μ

.

The single-layer potential of density ϕ is defined by

(Vϕ)(x) =
∫

∂S

D(x,y)ϕ(y)ds(y).

The proof of the following assertion can be found in [Co00].

Theorem 2. There is a unique 2× 3 matrix function Φ ∈ C0,α(∂S) and a unique
3× 3 constant symmetric matrix C such that the columns Φ (i) of Φ are linearly
independent and

VΦ = FC on ∂S, pΦ = I,

where I is the identity matrix.

Clearly, Φ and C depend on A, D, and ∂S.
In the so-called alternative indirect method [Co00], the solution of the Dirichlet

problem in S with data function f on ∂S is sought in the form

u = Vϕ. (10.1)
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Then the problem reduces to the (weakly singular) boundary integral equation

Vϕ = f on ∂S. (10.2)

Theorem 3. Equation (10.2) has a unique solution ϕ ∈ C0,α(∂S), α ∈ (0,1), for
any f ∈ C1,α(∂S) if and only if detC �= 0. In this case, (10.1) is the unique solution
of the Dirichlet problem.

If detC = 0, then the unique solution of the Dirichlet problem is obtained by
solving an ill-posed modified boundary integral equation whose infinitely many
solutions are constructed with Φ and C .

In the so-called refined indirect method [Co00], the solution of the Dirichlet
problem is sought as a pair {ϕ, c} such that

u = Vϕ −Fc in S, pϕ = s,

where s a constant 3×1 vector chosen (arbitrarily) a priori and c is a constant 3×1
vector. This leads to the system of boundary integral equations

Vϕ −Fc = f on ∂S, pϕ = s. (10.3)

Theorem 4. System (10.3) has a unique solution {ϕ, c} with ϕ ∈ C0,α(∂S) for any
f ∈ C1,α(∂S), α ∈ (0,1), and any s.

It is important to evaluate the arbitrariness in the representation of the solution
with respect to the prescribed ‘calibration’ s.

Theorem 5. If {ϕ(1), c(1)}, {ϕ(2), c(2)} are two solutions of (10.3) constructed
with s(1) and s(2), respectively, then

ϕ(2) = ϕ(1) +Φ(s(2)− s(1)),

c(2) = c(1) +C (s(2)− s(1)).

It is not easy to compute Φ and C analytically, or even numerically, in arbitrary
domains S, but this can be accomplished if S is a circular disk. Let ∂S be the circle
with center at the origin and radius R. In this case, Φ and C can be determined
analytically as

Φ =
1

2πR

(
1 0 R−2x2

0 1 −R−2x1

)
,
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C =− 1
4πμ(λ +2μ)R2

×
⎛
⎝(λ +3μ)R2(lnR+1) 0 0

0 (λ +3μ)R2(lnR+1) 0
0 0 −(λ +μ)

⎞
⎠ .

Clearly, detC = 0 if and only if R = e−1.
Analytic computation of Φ and C is practically impossible for non-circular

domains, and must be performed numerically.
We choose four 3× 1 constant vectors s(0), s(i) such that the set {s(i)− s(0)} is

linearly independent, and form the 3× 3 matrix Σ with columns s(i) − s(0). Also,
we choose an arbitrary function f . Next, we compute the solutions {ϕ(0), c(0)},
{ϕ(i), c(i)} of (10.3) corresponding to s(0), s(i), respectively, and f , by the refined
indirect method, then form the 2× 3 matrix function Ψ with columns ϕ(i) −ϕ(0)

and the constant 3×3 matrix Γ with columns c(i)− c(0).
From Theorem 4 it follows that

ϕ(i)−ϕ(0) = Φ(s(i)− s(0)),

c(i)− c(0) = C (s(i)− s(0)),

or, what is the same,

ΦΣ =Ψ , CΣ = Γ ;

hence,

Φ =ΨΣ−1, C = Γ Σ−1.

A similar analysis can be performed for other two-dimensional linear elliptic
systems with constant coefficients—for example, the system modeling bending of
elastic plates with transverse shear deformation [Co00]. No apparent connection
exists between the matrix C and the characteristic constant ω of ∂S.

10.3 Numerical Examples

Consider a steel plate with scaled Lamé coefficients

λ = 11.5, μ = 7.69,

and let ∂S (see Figure 10.1) be the curve of parametric equations

x1(t) = 2cos(πt)− 4
3 cos(2πt)+ 10

3 ,

x2(t) = 2sin(πt)+2, 0 ≤ t ≤ 2.
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Fig. 10.1 The boundary
curve ∂S.
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We choose the vectors

s(0) =

⎛
⎝1

1
1

⎞
⎠ , s(1) =

⎛
⎝1

0
0

⎞
⎠ , s(2) =

⎛
⎝0

1
0

⎞
⎠ , s(3) =

⎛
⎝0

0
1

⎞
⎠ ,

f (x) =

(
1
0

)
.

The approximating functions for computing ϕ(0)(t) and ϕ(i)(t) are piecewise
cubic Hermite splines on 12 knots; that is, the interval 0 ≤ t ≤ 2 is divided into
12 equal subintervals. Then the characteristic matrix (with entries rounded off to 5
decimal places) is

C =

⎛
⎝−0.01627 −0.01083 −0.00370

−0.01083 −0.00892 0.00542
−0.00370 0.00542 0.00185

⎞
⎠ .

Here,

detC = 1.08273×10−6.

The graphs of the components Φαi of Φ are shown in Figure 10.2.
As a second example, consider the ‘expanding’ ellipse ∂S of parametric

equations

x1(t) = 2k cos(πt),

x2(t) = k sin(πt), 0 ≤ t ≤ 2.

The graph of detC as a function of k is shown in Figure 10.3.
Here, detC = 0 for k = 0.22546 and k = 0.26934.
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Fig. 10.2 Graphs of the Φαi.
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Fig. 10.3 Graph of detC .
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