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Preface

Since 1985, the international conferences on Integral Methods in Science and
Engineering (IMSE) have brought together researchers in various theoretical and
applied areas, whose work makes use, in one form or another, of integration tech-
niques. This type of mathematical procedures are efficient, elegant, and powerful
in their diversity, offering a common ground to, and serving as a linchpin between,
many areas of academic endeavor.

The first 12 IMSE conferences took place in a variety of venues all over the
world:

1985, 1990: University of Texas–Arlington, USA;
1993: Tohoku University, Sendai, Japan;
1996: University of Oulu, Finland;
1998: Michigan Technological University, Houghton, MI, USA;
2000: Banff, AB, Canada (organized by the University of Alberta, Edmonton);
2002: University of Saint-Étienne, France;
2004: University of Central Florida, Orlando, FL, USA;
2006: Niagara Falls, ON, Canada (organized by the University of Waterloo);
2008: University of Cantabria, Santander, Spain;
2010: University of Brighton, UK;
2012: Bento Gonçalves, Brazil (organized by the Federal University of Rio Grande

do Sul).

The 2014 meeting, hosted by Karlsruhe Institute of Technology, July 21–25,
and attended by participants from 11 countries on 4 continents, continued and
strengthened the well-established IMSE reputation as an important international
forum where scientists and engineers from all over the world have a fruitful and
stimulating exchange of novel research ideas and projects.

IMSE 2014 was, as expected, organized to a very high standard, and the
participants wish to thank Deutsche Forschungsgemeinschaft and the Department of

v
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Mathematics at Karlsruhe Institute of Technology for their financial support. Special
thanks are due to the members of the Local Organizing Committee:

Andreas Kirsch (Karlsruhe Institute of Technology), Chairman,
Tilo Arens (Karlsruhe Institute of Technology),
Frank Hettlich (Karlsruhe Institute of Technology).

A new feature of IMSE 2014 was the inclusion of three minisymposia—on
Asymptotic Analysis: Homogenization and Thin Structures, Wave Phenomena, and
Inverse Problems.

The next IMSE conference will be hosted by the University of Padova, Italy, in
July 2016. Further details will be posted in due course on the conference web site.

The peer-reviewed chapters of this volume, arranged alphabetically by first
author’s name, are based on 58 papers from among those presented in Karlsruhe.
The editors would like to thank the staff at Birkhäuser for their courteous and
professional handling of the publication process.

Tulsa, OK, USA Christian Constanda
January 2015

The International Steering Committee of IMSE:

C. Constanda (The University of Tulsa), Chairman
B. Bodmann (Federal University of Rio Grande do Sul)
H. de Campos Velho (INPE, Saõ José dos Campos)
P.J. Harris (University of Brighton)
A. Kirsch (Karlsruhe Institute of Technology)
M. Lanza de Cristoforis (University of Padova)
S. Mikhailov (Brunel University)
D. Mitrea (University of Missouri-Columbia)
M. Mitrea (University of Missouri-Columbia)
D. Natroshvili (Georgian Technical University)
M.E. Pérez (University of Cantabria)
O. Shoham (The University of Tulsa)
I.W. Stewart (University of Strathclyde)
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Chapter 1
Solvability of a Nonstationary Problem
of Radiative–Conductive Heat Transfer
in a System of Semi-transparent Bodies

A. Amosov

1.1 Introduction

The problems of radiative–conductive heat transfer, where the radiative heat transfer
and the conductive heat transfer should be taken into account simultaneously,
appear in various fields of science and engineering. There is a huge amount of
books and articles discussing such problems from the physical point of view. But
the corresponding mathematical theory is not yet satisfactory. The main part of
mathematical results received to date is devoted to the problems of complex heat
transfer in materials which are nontransparent for radiation (opaque). Some of
the recent results in this area and the corresponding bibliography can be found in
[Am10a, Am10b].

The questions of solvability of the problems of radiation–conductive heat transfer
in semi-transparent materials were studied in a relatively few number of articles
[Am79a, Am79b, Ke96, LaTi98, LaTi01, La02, KoEtAl14, KoCh14].

1.2 Physical Statement of the Problem

We consider the problem of nonstationary radiative–conductive heat transfer in a

system G =
m⋃

j=1
Gj of semi-transparent bodies Gj, separated by a vacuum. Each

body Gj is a bounded domain in R
3 with a boundary ∂Gj ∈ C1. We assume that

domains Gi and Gj are pairwise disjoint whereas their boundaries can intersect for
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2 A. Amosov

some i �= j. Assume that each body Gj is occupied by a semi-transparent medium
with absorption coefficient κj,ν > 0, scattering coefficient sj,ν ≥ 0 and refraction
exponent kj,ν > 1 depending on radiation frequency ν . We set κν(x) =κj,ν , sν(x) =
sj,ν and kν(x) = kj,ν for x ∈ Gj, 1≤ j≤ m.

The sought functions u(x, t) and Iν(ω,x, t) are interpreted as the absolute
temperature and the intensity of the radiation with frequency ν at a point x∈G when
the radiation propagates along the direction ω ∈ Ω . Here Ω = {ω ∈ R

3 | |ω|= 1}
is the unit sphere in R

3 (the sphere of directions).
The emission and absorption of energy occur at frequencies ν ∈N=N ∪{ν�}⊂

R
+ = (0,+∞). Here ν� are the frequencies corresponding to spectral lines with

widths Δν� > 0. The set N is measurable and the set {ν�} may be countable, finite
or empty (the last in the event when spectral lines absent).

To describe the process of radiative–conductive heat transfer we use a system,
consisting of the heat equation

cp
∂u
∂ t
−div(λ (x,u)∇u)+H(x,u) = ∫

N
κν ∫

Ω
Iν dω dν+∑

�

κν� ∫
Ω

Iν� dω Δν�+ f ,

(x, t) ∈ QT = G× (0,T) (1.1)

and the radiative transfer equation

ω ·∇Iν +(κν + sν)Iν = sνSν(Iν)+κνk2
νhν(u),

(ω,x, t) ∈ D× (0,T), ν ∈N, (1.2)

where D =Ω ×G =
m⋃

j=1
Dj, Dj =Ω ×Gj, 1≤ j≤ m.

Here cp(x) is the coefficient of heat capacity, λ (x,u) is the coefficient of thermal
conductivity and f (x, t) is the density of heat sources. The function

H(x,u) = 4π ∫
N

κν(x)k
2
ν(x)hν(u)dν+4π∑

�

κν�(x)k
2
ν�(x)hν�(u)Δν�

corresponds to the density of the radiative energy, and the first two terms in the right-
hand side of the equation (1.1) correspond to the density of an absorbed energy. The
function hν corresponds to the Planck spectral distribution

hν(u) =
2ν2

c2
0

h̄ν

exp
(

h̄ν/(k̂u)
)
−1

where h̄ > 0 is the Planck constant, k̂ > 0 is the Boltzmann constant and c0 is the
light speed in a vacuum. According to the physical interpretation, this function is



1 Heat Transfer in a System of Semi-transparent Bodies 3

defined only for positive values of u. We extend it for u ≤ 0 by setting hν(u) =
−hν(|u|) if u < 0 and hν(0) = 0.

In Equation (1.2) the term ω · ∇Iν =
3
∑

i=1
ωi

∂
∂xi

Iν means the derivative of a

function Iν along the direction ω and Sν denotes the scattering operator

Sν(ϕ)(ω,x) =
1

4π

∫

Ω

θj,ν(ω ′ ·ω)ϕ(ω ′,x)dω ′, (ω,x) ∈ Dj, 1≤ j≤ m,

where the scattering indicatrix θj,ν satisfies

θj,ν ∈ L1(−1,1), θj,ν ≥ 0,
1
2

1∫

−1

θj,ν(μ)dμ = 1

for all ν ∈N and 1≤ j≤ m.
Complete the system (1.1), (1.2) by the boundary value conditions

λ (x,u)
∂u
∂nj

= 0, (x, t) ∈ ∂Gj× (0,T), 1≤ j≤ m, (1.3)

Iν |Γ− =Bν(Iν |Γ+)+C(J∗ν), (ω,x, t) ∈ Γ−× (0,T), ν ∈N (1.4)

and the initial condition

u|t=0 = u0, x ∈ G. (1.5)

Hereinafter nj is the outward normal to the boundary ∂Gj of the domain Gj. The
condition (1.3) means that the conductive heat flow on the boundary is missing.
(Recall that the bodies Gj are separated by vacuum).

The condition (1.4) describes reflection and refraction of the radiation on the
boundaries of Gi. Here Iν |Γ− and Iν |Γ+ are the intensities of incoming and outgoing
radiations, J∗ν is the intensity of incoming radiation originating from the outside.
The operators Bν and C will be defined in the next section; the sets Γ−, Γ+ are
defined by (1.6), (1.7).

1.3 Boundary Value Problem for the Radiative Transfer
Equation with Reflection and Refraction Conditions

In this section we briefly discuss the boundary value problem for the radiative
transfer equation with reflection and refraction conditions. Detailed explanation can
be found in [Am13a, Am13b, Am14].
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1.3.1 Some Notations and Function Spaces

Let x · y =
3
∑

i=1
xiyi be the inner product in R

3.

Hereinafter we will use the notation μj = ω ·nj(x) for (ω,x) ∈Ω ×∂Gj, 1≤ j≤
m. We introduce the sets

Γ =Ω ×∂G =
m∪

j=1
Γj, Γj =Ω ×∂Gj, 1≤ j≤ m,

Γ− =
m∪

j=1
Γ−j , Γ−j = {(ω,x) ∈ Γj | μj < 0}, 1≤ j≤ m, (1.6)

Γ+ =
m∪

j=1
Γ+

j , Γ+
j = {(ω,x) ∈ Γj | μj > 0}, 1≤ j≤ m, (1.7)

Γ 0 =
m∪

j=1
Γ 0

j , Γ 0
j = {(ω,x) ∈ Γj | μj = 0}, 1≤ j≤ m.

Assume that the measure dΓ (ω,x) = dωdσ(x) is introduced on Γ . Here dω and
dσ(x) are the measures induced by the Lebesgue measure in R

3 on Ω and ∂G,
respectively. On Γ+ and Γ− we introduce the measures

d̂Γ+(ω,x) = ω ·nj(x)dωdσ(x), (ω,x) ∈ Γ+
j , 1≤ j≤ m;

d̂Γ−(ω,x) = |ω ·nj(x)|dωdσ(x), (ω,x) ∈ Γ−j , 1≤ j≤ m.

Let 1≤ p≤∞ and E± be a subset of Γ±, measurable with respect to the measure
dΓ . Denote by M(E±) the set of functions on E± that are measurable with respect
to the measure dΓ and introduce the Banach spaces L̂p(E±) of functions g∈M(E±)
which possess the finite norms

‖g‖L̂p(E±) =

⎧
⎪⎪⎨

⎪⎪⎩

(
∫

E±
|g(ω,x)|p d̂Γ±(ω,x)

)1/p

, 1≤ p < ∞,

ess sup
(ω,x)∈E±

|g(ω,x)|, p = ∞.

Let Lp
loc(Γ

±) be the space of functions g ∈M(Γ±) such that g ∈ Lp(K) for any
compact subset K ⊂ Γ±.

Denote by Lp(D) the Banach space of functions f defined on D and measurable
with respect to the measure dωdx with the finite norm

‖f‖Lp(D) =

⎧
⎪⎨

⎪⎩

(∫
D
|f (ω,x)|pdωdx

)1/p
, 1≤ p < ∞,

ess sup
(ω,x)∈D

|f (ω,x)|, p = ∞.
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Denote by W p(D) the Banach space of functions f ∈ Lp(D) possessing the weak
derivative ω ·∇f ∈ Lp(D) and equipped with the norm

‖f‖W p(D) =

⎧
⎨

⎩

(
‖f‖p

Lp(D)
+‖ω ·∇f‖p

Lp(D)

)1/p
, 1≤ p < ∞,

max{‖f‖L∞(D),‖ω ·∇f‖L∞(D)}, p = ∞.

We will denote by f |Γ± and f |Γ±j the traces of function f ∈W p(D) on Γ± and Γ±j ,

respectively. It is known that the traces f |Γ± of a function f ∈W p(D) with 1≤ p<∞
do not necessarily belong to L̂p(Γ±), but f |Γ± ∈ Lp

loc(Γ
±).

Let ν ∈N and μ̂j,lim,ν =
√

1−1/k2
j,ν . Introduce the sets

Γ̂−ν =
m∪

j=1
Γ̂−j,ν , Γ̂−j,ν = {(ω,x) ∈ Γ−j | − μ̂j,lim,ν < μj < 0},

Γ̂+
ν =

m∪
j=1
Γ̂+

j,ν , Γ̂+
j,ν = {(ω,x) ∈ Γ+

j | 0 < μj < μ̂j,lim,ν},
∨
Γ−ν = Γ− \ Γ̂−ν =

m∪
j=1

∨
Γ−j,ν ,

∨
Γ−j,ν = {(ω,x) ∈ Γ−j | −1≤ μj ≤−μ̂j,lim,ν},

∨
Γ+
ν = Γ+ \ Γ̂+

ν =
m∪

j=1

∨
Γ+

j,ν ,
∨
Γ+

j,ν = {(ω,x) ∈ Γ+
j | μ̂j,lim,ν ≤ μj ≤ 1}.

1.3.2 Boundary Operators

Introduce the operators R−ν and R+
ν of outer and inner reflections by the formulas

R−ν (ϕ)(ω,x) = r−j,ν(μj)ϕ(ω−2μjnj(x),x), (ω,x) ∈ Γ−j , 1≤ j≤ m;

R+
ν (ψ)(ω,x) = r+j,ν(μj)ψ(ω−2μjnj(x),x), (ω,x) ∈ Γ+

j , 1≤ j≤ m.

Here r−j,ν and r+j,ν are the coefficients of the outer and inner reflections, defined by
Fresnel formulas

r−j,ν(μj) =
1
2

⎡

⎣

(
η+

j,ν(μj)+ kj,νμj

η+
j,ν(μj)− kj,νμj

)2

+

(
kj,νη+

j (μj)+μj

kj,νη+
j,ν(μj)−μj

)2
⎤

⎦, (ω,x) ∈
∨
Γ−j,ν ,

r−j,ν(μj) = 1, (ω,x) ∈ Γ̂−j,ν ,

r+j,ν(μj) =
1
2

⎡

⎣

(
μj− kj,νη−j,ν(μj)

μj + kj,νη−j,ν(μj)

)2

+

(
kj,νμj−η−j,ν(μj)

kj,νμj +η−j,ν(μj)

)2
⎤

⎦, (ω,x) ∈ Γ+
j ,
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where

η+
j,ν(μj) =

√
1− k2

j,ν(1−μ2
j ), η−j,ν(μj) =

√

1− 1

k2
j,ν

(1−μ2
j ).

Note that the effect of complete inner reflection holds for (ω,x) ∈ Γ̂−j,ν :

R−ν (ϕ)(ω,x) = ϕ(ω−2μjnj(x),x), (ω,x) ∈ Γ̂−j,ν , 1≤ j≤ m.

Define the operators P−
ν and P+

ν of refraction inside and outside G by the
formulas

P−
ν (ψ)(ω,x)=

⎧
⎨

⎩

(1− r−j,ν(μj))k2
j,ν ψ(ωP−j,ν

(ω,x),x), (ω,x)∈
∨
Γ−j,ν ,

0, (ω,x) ∈ Γ̂−j,ν ,
1≤ j≤ m,

P+
ν (ϕ)(ω,x) = (1− r+j,ν(μj))

1

k2
j,ν
ϕ(ωP+

j,ν
(ω,x),x), (ω,x) ∈ Γ+

j , 1≤ j≤ m,

where

ωP−j,ν
(ω,x) =−η+

j,ν(μj)nj(x)+ kj,ν(ω−μjnj(x)),

ωP+
j,ν
(ω,x) = η−j,ν(μj)nj(x)+

1
kj,ν

(ω−μjnj(x)).

It is proved that

R−ν : Lp
loc(Γ

+)→Lp
loc(Γ

−), R−ν : L̂p(Γ̂+
ν )→L̂p(Γ̂−ν ), R+

ν : L̂p(Γ−)→L̂p(Γ+),

P−
ν : L̂p

1−r+ν
(Γ−)→ L̂p(Γ−), P+

ν : L̂p
1−r−ν

(
∨
Γ+
ν )→ L̂p(Γ+), 1≤ p≤ ∞.

Here

Lp
1−r+ν

(Γ−)={g ∈M(Γ−) |
n
∑

j=1
∫
Γ−j
|g(ω,x)|p[1− r+j (μj)]d̂Γ−(ω,x)< ∞},

Lp
1−r−ν

(
∨
Γ+
ν )={g ∈M(

∨
Γ+
ν ) |

n
∑

j=1
∫
∨
Γ+

j,ν

|g(ω,x)|p[1− r−j (μj)]d̂Γ+(ω,x)< ∞}

for 1≤ p < ∞ and L∞
1−r+ν

(Γ−) = L∞(Γ−), L∞
1−r−ν

(
∨
Γ+
ν ) = L∞(

∨
Γ+
ν ).
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Let ∂Gj∩∂Gj �= /0 for some i �= j and

Γ−+ij = Γ−i ∩Γ+
j , Γ+−

ij = Γ+
i ∩Γ−j ,

∨
Γ−+ij,ν =

∨
Γ−i,ν ∩Γ+

j ,

Γ̂−+ij,ν = Γ̂−i,ν ∩Γ+
j ,

∨
Γ+−

ij,ν =
∨
Γ+

i,ν ∩Γ−j , Γ̂+−
ij,ν = Γ̂+

i,ν ∩Γ−j .

Introduce the operators R−ij,ν and P−
ij,ν by formulas

R−ij,ν(ϕ)(ω,x) =

⎧
⎨

⎩
r−ij,ν(μi)ϕ(ω−2μini(x),x), (ω,x) ∈

∨
Γ−+ij,ν ,

ϕ(ω−2μini(x),x), (ω,x) ∈ Γ̂−+ij,ν ,

P−
ij,ν(ψ)(ω,x) =

⎧
⎪⎨

⎪⎩

(1− r−ij,ν(μi))
k2

i,ν

k2
j,ν
ψ(ωP−ij,ν

(ω,x),x), (ω,x) ∈
∨
Γ−+ij,ν ,

0, (ω,x) ∈ Γ̂−+ij,ν .

Here

ωP−ij,ν
(ω,x) =−η+

ij,ν(μi)ni(x)+
ki,ν
kj,ν

(ω−μini(x)), μi = ω ·ni(x),

η+
ij,ν(μi) =

√

1− k2
i,ν

k2
j,ν

(1−μ2
i ),

r−ij,ν(μi) =
r−i,ν(μi)+ r+j,ν(η

+
i,ν(μi))−2r−i,ν(μi)r

+
j,ν(η

+
i,ν(μi))

1− r−i,ν(μi)r
+
j,ν(η

+
i,ν(μi))

.

It is proved that

R−ij,ν : Lp
loc(Γ

+−
ij )→ Lp

loc(Γ
−+
ij ), R−ij,ν : L̂p(

∨
Γ+−

ij,ν )→ L̂p(
∨
Γ−+ij,ν ),

P−
ij,ν : L̂p(

∨
Γ+−

ji,ν )→ L̂p(
∨
Γ−+ij,ν ), 1≤ p≤ ∞.

Introduce the sets

S−j = {(ω,x) ∈ Γ−j | x ∈ ∂Gj \ ∪
i �=j
∂Gi}, S− =

m∪
j=1

S−j ,

∗
S− = {(ω,x) ∈ S− | {x− tω | t > 0}∩G = /0}.

Let (ω,x) ∈ S− \ ∗S− = {(ω,x) ∈ S− | {x− tω | t > 0}∩G �= /0}. We set

τ−(ω,x) = inf {t > 0 | x− tω ∈ G} and X−(ω,x) = x− τ−(ω,x)ω.

Note that X−(ω,x) ∈ ∂G and (ω,X−(ω,x)) ∈ Γ+∪Γ 0.
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Introduce the set

S̃− = {(ω,x) ∈ S− \ ∗S− | (ω,X−(ω,x)) ∈ Γ+}

and define translation operator T by formula

Tϕ(ω,x) = ϕ(ω,X−(ω,x)), (ω,x) ∈ S̃−.

1.3.3 Statement of the Reflection and Refraction Conditions

Remember that Iν |Γ− and Iν |Γ+ are the intensity of entering G and outgoing from
G radiation. Let Jν be the intensity of the radiation propagating in the vacuum and
falling to ∂G.

For (ω,x) ∈ S̃− the radiation Jν falling from the vacuum to ∂G comes from the
points X−(ω,x) ∈ ∂G. This radiation is composed of the reflected and refracted
radiations at the point X−(ω,x):

Jν = TR+
ν (Jν)+TP+

ν (Iν |Γ+), (ω,x) ∈ S̃−.

For (ω,x) ∈ ∗S− the radiation Jν falling from the vacuum to ∂G goes outside and
we can assume that it is prescribed:

Jν = J∗ν , (ω,x) ∈ ∗S−.

For (ω,x) ∈ S− entering G radiation is composed of the reflected and refracted
radiations:

Iν |Γ− =R−ν (I|Γ+)+P−
ν (Jν), (ω,x) ∈ S−.

For (ω,x)∈Γ−+ij entering Gi radiation is composed of the reflected and refracted
radiations also:

Iν |Γ−i =R−ij,ν(Iν |Γ+
i
)+P−

ij,ν(Iν |Γ+
j
), (ω,x) ∈ Γ−+ij .

Here Iν |Γ−i and Iν |Γ+
i

are the values of the intensities of entering Gi and outgoing
from Gi radiations.
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1.3.4 Boundary Value Problem for Radiative Transfer
Equation with Reflection and Refraction Conditions

Consider the problem

ω ·∇Iν +(κν + sν)Iν = sνSν(Iν)+κνk2
νFν , (ω,x) ∈ D, (1.8)

Iν |Γ− =R−ν (Iν |Γ+)+P−
ν (Jν), (ω,x) ∈ S−, (1.9)

Iν |Γ−i =R−ij,ν(I|Γ+
i
)+P−

ij,ν(Iν |Γ+
j
), (ω,x) ∈ Γ−+ij , i �= j, (1.10)

Jν = TR+
ν (Jν)+TP+

ν (Iν |Γ+), (ω,x) ∈ S̃−, (1.11)

Jν = J∗ν , (ω,x) ∈ ∗S−. (1.12)

describing the radiative transfer in the system of semi-transparent bodies with taking
into account reflection and refraction on their boundaries. The functions Fν ∈ L1(D)

and J∗ν ∈ L̂1(
∗
S−) are prescribed.

It is proved [Am10a] that a solution Jν ∈ L̂1
1−r+ν

(S−) of subproblem (1.11), (1.12)

exists, is unique and may be represented in the form Jν = Bν(Iν |Γ+)+Cν(J∗ν),

where Bν and Cν are linear bounded operators from L̂1(
∨
Γ−ν ) to L̂1

1−r+ν
(S−) and

from L̂1(
∗
S−) to L̂1

1−r+ν
(S−), respectively.

So the unknown function Jν can be excluded and the problem (1.8)–(1.12) may
be reduced to the following problem

ω ·∇Iν +(κν + sν)Iν = sνSν(Iν)+κνk2
νFν , (ω,x) ∈ D, (1.13)

Iν |Γ− =Bν(Iν |Γ+)+C(J∗ν), (ω,x) ∈ Γ− (1.14)

with one unknown function Iν . Here

Bν(Iν |Γ+)(ω,x)=

⎧
⎨

⎩

[R−ν (Iν |Γ+)+P−
ν B

−
ν (Iν |Γ+)](ω,x), (ω,x) ∈ S−,

[R−ij,ν(Iν |Γ+
i
)+P−

ij,ν(Iν |Γ+
j
)](ω,x), (ω,x)∈Γ−ij , i �= j,

Cν(J∗ν)(ω,x)=

{
P−
ν C

−
ν (J∗ν)(ω,x), (ω,x) ∈ S−,

0, (ω,x) ∈ Γ−ij , i �= j.

By a solution to the problem (1.13), (1.14) we mean a function Iν ∈ W 1(D),
that satisfies equation (5.1) almost everywhere on D and condition (1.14) almost
everywhere on Γ−.
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The following theorem holds.

Theorem 1. Let Fν ∈ L1(D), Jν ∈ L̂1(
∗
S−). Then the solution Iν ∈ W 1(D) to the

problem (1.13), (1.14) exists and is unique. If additionally Fν ∈ Lp(D), J∗ν ∈ L̂p(
∗
S−)

with some p ∈ (1,∞], then Iν ∈W p(D).
The following estimates hold:

‖κ1/p
ν k2/p−2

ν Iν‖Lp(D) ≤
(
‖κ1/p

ν k2/p
ν Fν‖p

Lp(D)
+‖J∗ν‖p

L̂p(
∗
S−)

)1/p
,

‖κ1/p−1
ν k2/p−2

ν ω ·∇Iν‖Lp(D) ≤

≤ 2
1−ϖmax,ν

(
‖κ1/p

ν k2/p
ν Fν‖p

Lp(D)
+‖J∗ν‖p

L̂p(
∗
S−)

)1/p

for 1≤ p < ∞ and the estimates

‖k−2
ν Iν‖L∞(D) ≤max{‖Fν‖L∞(D),‖J∗ν‖

L∞(
∗
S−)
},

‖κ−1
ν k−2

ν ω ·∇Iν‖L∞(D) ≤
2

1−ϖmax,ν
max{‖Fν‖L∞(D),‖J∗ν‖

L∞(
∗
S−)
}

for p = ∞.

Here ϖmax,ν = max
1≤j≤m

sj,ν

κj,ν + sj,ν
<1.

Thus, the solution to the problem (1.13), (1.14) can be represented in the form

Iν =Aν(Fν)+Dν(J∗ν), (1.15)

where Aν : Lp(D)→Wp(D) and Dν : L̂p(
∗
S−) are the linear bounded operators. The

operator Aν maps the function Fν ∈ Lp(D) into the solution of the problem (1.13),

(1.14) with J∗ν = 0, and the operator Aν maps the function J∗ν ∈ L̂p(
∗
S−) into the

solution of the problem (1.13), (1.14) with Fν = 0.

1.4 Mathematical Statement of the Problem and Main
Results

Let us return to the problem (1.1)–(1.5). Using formula (1.15) with Fν = hν(u)
we can exclude the unknown function Iν from the problem and rewrite it in the
following form:
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cp
∂u
∂ t
−div(λ (x,u)∇u)+H(x,u) =H [u]+F, (x, t) ∈ QT , (1.16)

λ (x,u)
∂u
∂nj

= 0, (x, t) ∈ ∂Gj× (0,T), 1≤ j≤ m, (1.17)

u(x,0) = u0(x), x ∈ G, (1.18)

where

H [u] =
∫

N
κν
∫

Ω
Aν(hν(u))dω dν+∑

�
κν�
∫

Ω
Aν�(hν�(u))dωΔν�,

F = f +
∫

N
κν
∫

Ω
Dν(J∗,ν)dω dν+∑

�
κν�
∫

Ω
Dν�(J∗ν�)dωΔν�.

Remember that

H(x,u) = 4π ∫
N

κν(x)k
2
ν(x)hν(u)dν+4π∑

�

κν�(x)k
2
ν�(x)hν�(u)Δν�.

We assume that the following assumptions on data hold:

(A1) cp ∈ L∞(G) and there are positive constants cp, cp such that

0 < cp ≤ cp(x)≤ cp ∀x ∈ G.

(A2) The function λ (x,u) is defined on G×R and for all u ∈R is measurable on x.
Besides, there are positive constants λ ≤ λ and A such that

0 < λ ≤ λ (x,u)≤ λ ∀(x,u) ∈ G×R

and the following Hölder condition holds:

|λ (x,u+ v)−λ (x,u)| ≤ A|v|1/2 ∀(x,u) ∈ G×R, ∀v ∈ [−1,1].

(A3) The function H(x,u) is defined on G×R and the following inequality holds:

|H(x,u)| ≤ cH(|u|s +1) ∀(x,u) ∈ G×R,

where s > 0, cH > 0 are constants.
(A4) u0 ∈ Lp(G), where p ∈ [max{2,3s/5},∞];
(A5) F ∈ Lr(0,T;Lq(G)), where r,q ∈ [1,∞], 2/r+3/q≤ 2+3/p.
(A6) κν ,j > 0, sν ,j ≥ 0, kν ,j > 1 for all ν ∈N and 1 ≤ j ≤ m. Besides, coefficients

κν ,j, sν ,j, kν ,j are measurable functions of ν ∈N .
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(A7) The scattering indicatrix θj,ν is such that:

θj,ν ∈ L1(−1,1), θj,ν ≥ 0,
1
2

1
∫
−1
θj,ν(μ)dμ = 1 for all ν ∈N and 1≤ j≤ m.

Besides, the function ν→ θj,ν , considering as a mapping from N to L1(−1,1),
is strongly measurable.
We introduce the Banach space V2(QT) = L2(0,T;W1

2 (G))∩ L∞(0,T;L2(G)),
equipped with the norm

‖u‖V2(QT ) = ‖∇u‖L2(0,T;L2(G)) +‖u‖L∞(0,T;L2(G)).

By a solution to the problem (1.16)–(1.18) we mean a function u ∈ V2(QT)∩
Ls(QT)∩C([0,T];L1(G)) such that it satisfies the integral identity

− ∫
QT

cpu
∂ϕ
∂ t

dxdt+
∫

QT

λ (x,u)∇u ·∇ϕ dxdt+
∫

QT

H(x,u)ϕ dxdt =

=
∫

G
cpu0ϕ|t=0 dx+

∫

QT

H [u]ϕ dxdt+
∫

QT

Fϕ dxdt

for all ϕ(x, t) = v(x)η(t), where v ∈W1
2 (G)∩L∞(G) and η ∈ C∞[0,T], η(T) = 0.

Theorem 2. A solution to the problem (1.16)–(1.18) exists, is unique and satisfies
the following estimate:

‖u‖V2(QT ) ≤ C1(‖u0‖Lp(G) +‖F‖Lr(0,T;Lq(G))). (1.19)

If p > 2, then |u|γ−1u ∈ V2(Q) for all γ ∈ (1,p/2] and the following estimate
holds:

‖|u|γ−1u‖V2(QT ) ≤ C2(‖u0‖Lp(G) +‖F‖Lr(0,T;Lq(G))). (1.20)

If p = ∞ and exponents q,r are such that 2/r+ 3/q < 2, then u ∈ L∞(QT) and
the following estimate holds:

‖u‖L∞(Q) ≤ C3(‖u0‖L∞(G) +‖F‖Lr(0,T;Lq(G))). (1.21)

In estimates (1.19)–(1.21) C1, C2, C3 are positive constants depending on G, T,
cp, cp, λ , r and q.

The following comparison theorem holds.

Theorem 3. Let u1,u2 be solutions to problem (1.16)–(1.18), corresponding to the
data u0,1,u0,2 ∈ Lp(G) and F1,F2 ∈ Lr(0,T;Lq(G)).

If u0,1 ≤ u0,2 and F1 ≤ F2, then u1 ≤ u2.



1 Heat Transfer in a System of Semi-transparent Bodies 13

Corollary 1. If u0 ≥ 0 and F ≥ 0, then u≥ 0.
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Chapter 2
The Nonstationary Radiative–Conductive
Heat Transfer Problem in a Periodic System
of Grey Heat Shields. Semidiscrete
and Asymptotic Approximations

A. Amosov

2.1 Introduction

In applications, it is of great importance to study the heat transfer process in periodic
media containing vacuum interlayers or cavities through which the heat transfer
is realized by radiation. A direct numerical solving of such problems requires
considerable computational efforts and becomes, in fact, impossible for a large
number of heat transferring elements, especially in the case of two-dimensional
and three-dimensional structures. Therefore, it is important to construct effective
approximation methods which, in particular, could be based on constructing special
homogenizations of the problem.

Formal homogenized equations for such problems were constructed in [Ba82,
BaPa89]. But neither rigorous mathematical justification of the homogenized
equations nor homogenization of the boundary and initial conditions were provided
there. We also refer to [AlHa13a, AlHa13b] for theoretical and numerical analysis
of the radiative–conductive heat transfer problem in a periodic perforated domain.

One of the simplest problems of such a type is the problem describing the
heat transfer in a system of n grey parallel plate heat shields of width ε = 1/n,
separated by vacuum interlayers. The heat shields are layers of a homogeneous heat-
conductive material with constant specific heat c > 0, heat conductivity coefficient
λ > 0, density ρ > 0, and emittance 0 < θ ≤ 1. The solvability of this problem
was studied in [Am10]. Special semidiscrete and asymptotic approximations were
proposed in [Am07, AmGu08], and justified in [Am11]. In this article we give a
brief and somewhat simplified summary of results [Am10, Am11].
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2.2 Statement and Some Properties
of the Radiative–Conductive Heat Transfer
Problem in a Periodic System of Grey Shields

2.2.1 Physical Statement of the Problem

With the ith heat shield we associate the interval Ωi = (xi−1,xi), 1 ≤ i ≤ n, where
xi = εi, ε = 1/n. We set

Ω =
n⋃

i=1

Ωi, Qi,T =Ωi× (0,T), QT =Ω × (0,T) =
n⋃

i=1

Qi,T .

For the sake of brevity, we denote the partial derivatives in the following way:

Dt =
∂
∂ t

, D =
∂
∂x

, D2 =
∂ 2

∂x2 .

The heat transfer inside each shield Ωi is described by the heat equation

cρDtu = λD2u, (x, t) ∈ Qi,T , 1≤ i≤ n,

where u(x, t) is the absolute temperature. We may rewrite this equation in the
following form:

cρDtu = Dw, w = λDu, (x, t) ∈ Qi,T , 1≤ i≤ n,

where w = λDu coincides up to sign with the heat flux density.
On the interface of heat shields, there is the radiative heat transfer. We recall that

the radiation energy flux density on the surface of a grey body is equal to θh(u). The
function h(u)=σ0|u|3u for u>0 corresponds to the Stefan–Boltzmann law, 0 < σ0

is the Stefan–Boltzmann constant. The coefficient θ , called the emittance, indicates
which part of the radiation energy coming from outside is absorbed by the surface.
The remaining unabsorbed radiation energy is reflected by the surface. In the case
of a grey body, 0 < θ ≤ 1. In the case of an absolutely black body, θ = 1.

Let xi be a point corresponding to the interface of heat shields Ωi and Ωi+1. The
heat energy flux coming to the shield surface by heat conductivity is equal to the
difference between the energies absorbed and radiated by the surface:

λDu
∣
∣
x=xi−0 = λDu

∣
∣
x=xi+0 = wi = κ[h(u+i )−h(u−i )], 0 < i < n,

where κ = θ/(2−θ) is the apparent emittance. Hereinafter,

u+i = u|x=xi+0, u−i = u|x=xi−0.
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We emphasize that the temperature u is discontinuous at the points xi, 0 < i < n.
At the same time, the function w = λDu possesses the same limit values wi at these
points.

We assume that the system of heat shields is located in an ambient medium with
the temperature u�(t) from the left of the shields and the temperature ur(t) from the
right of the shields. On the left and right boundaries, the radiation heat exchange
with the ambient medium is expressed as

λDu
∣
∣
x=x0+0 = w0 = κ�[h(u

+
0 )−h(u�)],

λDu
∣
∣
x=xn−0 = wn = κr[h(ur)−h(u−n )],

where κ� and κr are constants, 0 < κ� ≤ θ ≤ 1, 0 < κr ≤ θ ≤ 1. At the initial time
t = 0, the absolute temperature is assumed to be given:

u
∣
∣
t=0 = u0(x), x ∈Ω .

Remark 1. Note that the data of the problem and its solution essentially depend on
the values of small parameter ε . Therefore, one should use the notation u0

ε , u�,ε , ur,ε ,
uε , and wε . However, we omit the superscript ε for the sake of simplicity.

Remark 2. Note that the length T of the time-interval is also an important large
parameter since the study of the heat transfer processes on large time-intervals T ∼
1/ε is of great importance in applications.

2.2.2 Well-Known Asymptotic Approximations

In [Ba82] the problem was studied in an infinite system of heat shields under
the assumption that the shield width ε → 0, and formal homogenized equations
with arbitrary order in ε for an asymptotic approximation v to u were constructed.
Eliminating terms containing εm with m≥ 2 from these homogenized equations, we
obtain an approximation of the radiative heat conductivity

cρDtv = D(λε(v)Dv) , where λε(v) = εκh′(v). (2.1)

In this equation, the role of the heat conductivity coefficient is played by the
radiative heat conductivity coefficient λε(u) = εκh′(v). It is obvious that the
description of the heat transfer process by means of (2.1) is not perfect since the
value of the heat conductivity coefficient λ is ignored.

Eliminating terms containing εm, m≥ 3, in the expansions [Ba82], we find

cρDtv = D(λε(v)Dv) , where λε(v) = εκh′(v)
(

1− εκ h′(v)
λ

)

. (2.2)
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Here, the contribution of the heat conductivity to the heat transfer process is

taken into account, but for εκ
h′(v)
λ

> 1 the modified radiative heat conductivity

coefficient λε(v) becomes negative and Equation (2.2) is inapplicable.
Experts in the field of thermal protection use the following equation instead of

Equation (2.2):

cρDtv = D(λε(v)Dv) , where λε(v) =
εκh′(v)

1+ εκ
h′(v)
λ

(2.3)

Formally, this equation is different from (2.2) by only terms of order O(ε3).
However, it can be used for any values of parameters.

2.2.3 Mathematical Statement of the Original Problem

We formulate the original problem as a problem of finding a function u and a vector-
valued function w = (w0,w1, . . . ,wn) such that

1) for all i = 1,2, . . . ,n the function u is such that: u ∈W1,2(Qi,T), D2u ∈ L2(Qi,T)
and u is a solution to the parabolic problem

cρDtu = λD2u, (x, t) ∈ Qi,T , (2.4)

λDu
∣
∣
x=xi−1

= wi−1, λDu
∣
∣
x=xi

= wi, t ∈ (0,T), (2.5)

u
∣
∣
t=0 = u0, x ∈Ωi; (2.6)

2) w ∈W1,1(0,T;L2(ω̄ε)) and the following conditions are satisfied:

wi = κ[h(u+i )−h(u−i )], 0 < i < n, (2.7)

w0 = κ�[h(u
+
0 )−h(u�)], wn = κr[h(ur)−h(u−n )]. (2.8)

Here ω̄ε = {xi = εi, 0≤ i≤ n} is a grid and L2(ω̄ε) is the space of grid functions

Y : ω̄ε → R with the norm ‖Y‖L2(ω̄ε ) =
( n
∑

i=0
Y(xi)

2ε
)1/2

.

The functions u0, u�, and ur are given and possess the following properties:

u0 ∈W1,2(Ωi), 1≤ i≤ n; umin ≤ u0(x)≤ umax ∀x ∈Ω ,

u�,ur ∈ L∞(R+), Dtu�,Dtur ∈ L1(R+),

umin ≤ u�(t)≤ umax, umin ≤ ur(t)≤ umax ∀ t ∈ R
+,
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where 0 < umin < umax are some fixed constants. Assume also that

‖Du0‖L2(Ω)+

(

|u0,+
0 −u�(0)|2+

n−1

∑
i=1

(u0,+
i −u0,−

i )2+|ur(0)−u0,−
n |2
)1/2

≤ N,

where N is independent of u0,u�,ur, and ε .
By assumption Dtu�,Dtur ∈ L1(R+), the following limits exist:

us
� = lim

t→∞u�(t), us
r = lim

t→∞ur(t).

We also assume that h(u�)−h(us
�), h(ur)−h(us

r) ∈ L2(R+); moreover,

‖h(u�)−h(us
�)‖L2(R+) +‖h(ur)−h(us

r)‖L2(R+) ≤ N,

‖Dth(u�)‖L1(R+) +‖Dth(ur)‖L1(R+) ≤ N,

where N is independent of u�, ur, and ε .

Theorem 1. The original problem has a unique solution (u,w) and u satisfies the
two-sided estimates

umin ≤ u(x, t)≤ umax, (x, t) ∈ QT .

For T ≤ A/ε the following estimates hold:

‖Du‖L2(QT )
+‖w‖L2(0,T;L2(ω̄ε )) ≤ C(A)

√
ε,

‖Dtu‖L2(QT )
+‖Du‖C([0,T];L2(Ω)) +‖D2u‖L2(QT )

≤ C(A).

If us
� = us

r, then the following T-uniform estimates hold:

‖Du‖L2(QT )
+‖w‖L2(0,T;L2(ω̄ε )) ≤ C

√
ε ,

‖Dtu‖L2(QT )
+‖Du‖C([0,T];L2(Ω)) +‖D2u‖L2(QT )

≤ C.

Hereinafter C and C(A) are some positive constants, which may depend on N,
cρ , λ , κ, κ�, κr, but do not depend on ε and T .

2.3 Semidiscrete Approximations

2.3.1 Grids, Grid Functions, and Grid operators

Introduce the grids

ωε = {xi = εi, 0 < i < n}, ωε1/2 = {xi−1/2 = ε(i−1/2), 1≤ i≤ n}.
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and denote by L2(ωε) and L2(ωε1/2) the spaces of grid functions on ωε and ωε1/2,
respectively. We equip these spaces with the norms

‖Y‖L2(ωε ) =

(

∑
0<i<n

Y2
i ε
)1/2

, ‖Y‖L2(ωε1/2)
=

(

∑
1≤i≤n

Y2
i−1/2ε

)1/2

.

Hereinafter Yi is the value Y(xi) of the grid function Y at the grid point, where i is
an integer or a half-integer subscript.

Introduce the difference operator δ by the formula δYi−1/2 =
Yi−Yi−1

ε
, where

i is an integer or a half-integer subscript.

2.3.2 The Basic Semidiscrete Problem

We begin with a formal derivation of semidiscrete analogs of the original problem
(2.4)–(2.8) whose solutions are regarded as approximations to the solution to the
original problem.

Averaging Equation (2.4) over Ωi, we have

cρDt[u]i−1/2 = δwi−1/2, 1≤ i≤ n,

where [u]i−1/2(t) =
1
ε
∫

Ωi

u(x, t)dx.

Note that u+i ≈ [u]i+1/2−
ε

2λ
wi, u−i ≈ [u]i−1/2 +

ε
2λ

wi.

Thus, the conditions (2.7), (2.8) can be approximated as follows:

wi ≈ κ

[
h
(
[u]i+1/2−

ε
2λ

wi

)
−h
(
[u]i−1/2 +

ε
2λ

wi

)]
, 0 < i < n,

w0≈κ�

[
h
(
[u]1/2−

ε
2λ

w0

)
−h(u�)

]
, wn≈

[
h(ur)−h

(
[u]n−1/2+

ε
2λ

wn

)]
.

Introducing the functions Ui−1/2(t) and Wi(t) that approximate [u]i−1/2(t) and
wi(t), we obtain the basic semidiscrete problem

cρDtUi−1/2 = δWi−1/2, 1≤ i≤ n, (2.9)

Wi = κ

[
h
(

Ui+1/2−
ε

2λ
Wi

)
−h
(

Ui−1/2 +
ε

2λ
Wi

)]
, 0 < i < n, (2.10)

W0 = κ�

[
h
(

U1/2−
ε

2λ
W0

)
−h(u�)

]
, (2.11)
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Wn = κr

[
h(ur)−h

(
Un−1/2 +

ε
2λ

Wn

)]
, (2.12)

Ui−1/2(0) = U0
i−1/2. 1≤ i≤ n. (2.13)

Hereinafter, U0
i−1/2 = [u0]i−1/2.

Equation (2.10) is a nonlinear equation with respect to Wi and defines Wi as
a function of Ui−1/2, Ui+1/2. Similarly, Equations (2.11) and (2.12) define W0 as
a function of u�, U1/2 and Wn as a function of Un−1/2, ur. In whole, we have a
Cauchy problem for the system of nonlinear differential equations with respect to
the unknowns Ui−1/2(t), 1≤ i≤ n.

This problem is of independent interest. As numerical experiments show, its
solution U is a good approximation to the solution u to the original problem. Below,
the basic semidiscrete problem is used as a basis for constructing other semidiscrete
problems which, in turn, can be considered as approximations of initial-boundary
value problems approximating the original problem.

2.3.3 The First Semidiscrete Problem

We simplify Equations (2.10)–(2.12) by eliminating terms of the form
ε

2λ
Wi from

their right-hand sides. Then we arrive at the first semidiscrete problem

cρDtUi−1/2 = δWi−1/2, 1≤ i≤ n, (2.14)

Wi = κ
[
h(Ui+1/2)−h(Ui−1/2)

]
, 0 < i < n, (2.15)

W0 = κ�

[
h(U1/2)−h(u�)

]
, Wn = κr

[
h(ur)−h(Un−1/2)

]
, (2.16)

Ui−1/2(0) = U0
i−1/2, 1≤ i≤ n. (2.17)

2.3.4 The Second Semidiscrete Problem

We return to the basic semidiscrete problem and note that the following approxima-
tions hold:

Wi = κ

[
h
(

Ui+1/2−
ε

2λ
Wi

)
−h
(

Ui−1/2 +
ε

2λ
Wi

)]
≈

≈ κ

[
h(Ui+1/2)−h′(Ui+1/2)

ε
2λ

Wi−h(Ui−1/2)−h′(Ui−1/2)
ε

2λ
Wi

]
,



22 A. Amosov

0 < i < n, which implies

Wi ≈
κ[h(Ui+1/2)−h(Ui−1/2)]

1+
εκ
2λ
(
h′(Ui+1/2)+h′(Ui−1/2)

) ≈ κ

Ui+1/2∫

Ui−1/2

h′(s)

1+
εκ
λ

h′(s)
ds =

= κ[H(Ui+1/2)−H(Ui−1/2)],

where H(u) =
u∫

0

h′(s)

1+
εκ
λ

h′(s)
ds. In the same manner

W0 =κ�

[
h
(

U1/2−
ε

2λ
W0

)
−h(u�)

]
≈κ�

[
h
(
U1/2
)−h′(U1/2)

ε
2λ

W0−h(u�)
]
,

which implies

W0 ≈
κ�[h(U1/2)−h(u�)]

1+
εκ�

2λ
h′(U1/2)

≈ κ�

U1/2∫

u�

h′(s)

1+
εκ�

2λ
h′(s)

ds = κ�[H�(U1/2)−H�(u�)],

where H�(u) =
u∫

0

h′(s)

1+
εκ�

2λ
h′(s)

ds. Similarly,

Wn ≈
κr[h(ur)−h(Un−1/2)]

1+
εκr

2λ
h′(Un−1/2)

≈ κr[Hr(ur)−Hr(Un−1/2)],

where Hr(u) =
u∫

0

h′(s)

1+
εκr

2λ
h′(s)

ds.

These arguments lead to the second semidiscrete problem

cρDtUi−1/2 = δWi−1/2, 1≤ i≤ n, (2.18)

Wi = κ[H(Ui+1/2)−H(Ui−1/2)], 0 < i < n, (2.19)

W0 = κ�[H�(U1/2)−H�(u�)], Wn = κr[Hr(ur)−Hr(Un−1/2)], (2.20)

Ui−1/2(0) = U0
i−1/2, 1≤ i≤ n. (2.21)
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2.4 Asymptotic Approximations

2.4.1 The First Homogenized Problem

As a differential analog of the first semidiscrete problem and an asymptotic
approximation of the original problem we consider the following initial-boundary
value problem (called the first homogenized problem)

cρDtv = εκD2h(v), (x, t) ∈ Qε
T =Ωε × (0,T), (2.22)

− εκDh(v)
∣
∣
x=ε/2 + cρ

ε
2

Dtv�+κ�h(v�) = κ�h(u�), t ∈ (0,T), (2.23)

εκDh(v)
∣
∣
x=1−ε/2 + cρ

ε
2

Dtvr +κrh(vr) = κrh(ur), t ∈ (0,T), (2.24)

v
∣
∣
t=0 = v0, x ∈Ωε = (ε/2,X− ε/2). (2.25)

Here v� = v
∣
∣
x=ε/2, vr = v

∣
∣
x=1−ε/2. The function v0 is piecewise linear: v0(x) =

n
∑

i=1
[u0]i−1/2ê(x− xi−1/2). where ê(x) = 1−|x|/ε for x ∈ [−ε ,ε ], ê(x) = 0 for x /∈

[−ε ,ε ].
The values vi−1/2(t) = v(xi−1/2, t) are considered as approximations to the values

[u]i−1/2(t) and u(xi−1/2, t), 1≤ i≤ n.

Remark 3. Note that Equation (2.22) coincides with an approximation of the
radiative heat conductivity (2.1).

Remark 4. The solution to the original problem depends on the heat conductivity
coefficient λ . At the same time, there is no information about the value of λ in the
first semidiscrete and in the first homogenized problems. Hence one can expect that
the solutions to these problems are rather rough approximations to the solution to
the original problem.

2.4.2 The Second Homogenized Problem

The second semidiscrete problem can be regarded as an approximation of the
following initial-boundary value problem (the second homogenized problem):

cρDtv = εκD2H(v), (x, t) ∈ Qε
T , (2.26)

− εκDH(v)
∣
∣
x=ε/2 + cρ

ε
2

Dtv�+κ�H�(v�) = κ�H�(u�), t ∈ (0,T), (2.27)
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εκDH(v)
∣
∣
x=1−ε/2 + cρ

ε
2

Dtvr +κrHr(vr) = κrHr(ur), t ∈ (0,T), (2.28)

v
∣
∣
t=0 = v0, x ∈Ωε . (2.29)

Remark 5. Since εκDH(v) = λε(v)Dv, where λε(v) =
εκh′(v)

1+ ε
κh′(v)
λ

,

Equations (2.26) and (2.3) coincide.

Remark 6. Since the right-hand sides of Equations (2.22) and (2.26) contain the
factor ε , the homogenized problems become singularly perturbed. It should be taken
into account that the boundary conditions (2.23), (2.24), (2.27), and (2.28) have a
nonstandard form.

Remark 7. Semidiscrete problems are an important intermediate stage between
the original problem and its homogenizations. In particular, such problems are
essentially used for estimating an error of the asymptotic approximations.

2.5 Semidiscrete Problems. Existence and Uniqueness
of a Solution. A Priori Estimates for Solutions

By a solution to the first (second) semidiscrete problem we mean a function U ∈
C1([0,T];L2(ωε1/2)) such that U satisfies Equation (2.14) (Equation (2.18)), where
W is defined by (2.15) and (2.16) (W is defined by (2.19) and (2.20)), and U satisfies
the initial condition U|t=0 = U0.

Theorem 2. A solution to the first (second) semidiscrete problem exists and is
unique. The following the T-uniform estimates hold:

umin ≤ U ≤ umax, (x, t) ∈ ωε1/2× [0,T],

‖DtU‖L2(0,T;L2(ωε1/2))
+
√
ε‖δU‖2

C([0,T];L2(ω̄ε )) ≤ C.

2.6 Error Estimates for Solutions to Semidiscrete Problems

Let u be a solution to the original problem. We denote by u a function on ω̄ε1/2×
[0,T] with the values ui−1/2(t) = u(xi−1/2, t), 1≤ i≤ n.

Theorem 3. Let U be a solution to the first semidiscrete problem. Then for T ≤A/ε
the following estimate holds:

‖U−u‖L2(0,T;L2(ωε1/2))
≤ C(A)

√
ε.
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If us
� = us

r, then the following T-uniform estimate holds:

‖U−u‖L2(0,T;L2(ωε1/2))
≤ C
√
ε ,

Theorem 4. Let U be a solution to the second semidiscrete problem. Then for T ≤
A/ε the following estimate holds:

‖U−u‖L2(0,T;L2(ωε1/2))
≤ C(A)ε .

Remark 8. The same accuracy orders in ε as established in this section were
observed for the first and second semidiscrete methods in computational experi-
ments. These experiments also show that the basic semidiscrete method possesses
the first-order accuracy with respect to ε and has an error less than the second
semidiscrete method has. Unfortunately, a rigorous mathematical analysis of this
method has not been provided yet.

2.7 Homogenized Problems. Existence and Uniqueness
of a Solution. A Priori Estimates and Comparison
Theorem

By a solution to the first (second) homogenized problem we mean a function v ∈
W1,2(Qε

T) such that:

1) Dv ∈ L∞(0,T;L2(Ωε)), Dtv ∈ L2(Qε
T), D2H(v) ∈ L2(Qε

T), v�,vr ∈W1,2(0,T);
2) v satisfies Equation (2.22) (Equation (2.26)) in L2(Qε

T), the boundary conditions
(2.23) and (2.24) (the boundary conditions (2.27) and (2.28)) in L2(0,T), and the
initial condition u|t=0 = u0 in the classical sense.

Theorem 5. A solution to the first (second) homogenized problem exists and is
unique. The following T-uniform estimates hold:

umin ≤ v≤ umax ∀ (x, t) ∈ Qε
T ,

‖Dtv‖L2(QεT )
+
√
ε‖Dv‖L∞(0,T;L2(Ωε )) ≤ C,

√
ε‖Dtv�‖L2(0,T) +

√
ε‖Dtvr‖L2(0,T) ≤ C.

For T ≤ A/ε the following estimate holds:

√
ε‖Dv‖L2(QεT )

+ ε3/4‖Dv‖L2(0,T;L∞(Ωε )) + ε
5/4‖D2v‖L2(QεT )

≤ C(A).
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If us
� = us

r, then the following T-uniform estimate holds:

√
ε‖Dv‖L2(QεT )

+ ε3/4‖Dv‖L2(0,T;L∞(Ωε )) + ε
5/4‖D2v‖L2(QεT )

≤ C.

We proved the following comparison theorem.

Theorem 6. Let v(1) and v(2) be two solutions to the first (second) homogenized

problem corresponding to the data v0,(1), u(1)� , u(1)r and v0,(2), u(2)� , u(2)r , respectively.

Suppose that v0,(1) ≤ v0,(2), u(1)� ≤ u(2)� , and u(1)r ≤ u(2)r . Then v(1) ≤ v(2).

2.8 Error Estimates for Solutions to the Homogenized
Problems

We denote by v a function on ω̄ε1/2× [0,T] with the values vi−1/2(t) = v(xi−1/2, t),
1≤ i≤ n.

Theorem 7. Let v be a solution to the first homogenized problem. Then for T ≤ A/ε
the following estimate holds:

‖v−u‖L2(0,T;L2(ωε1/2))
≤ C(A)

√
ε .

If us
� = us

r, then the following T-uniform estimate holds:

‖v−u‖L2(0,T;L2(ωε1/2))
≤ C
√
ε .

Theorem 8. Let v be a solution to the second homogenized problem. Then for T ≤
A/ε the following estimate holds:

‖v−u‖L2(0,T;L2(ωε1/2))
≤ C(A)ε3/4.

Remark 9. In computational experiments, the convergence of order O(
√
ε) and

O(ε) has been observed for the first and second homogenized problems. In [Am11],
for the second homogenized problem we were able to establish only the convergence
of order O(ε3/4). At present, it is not clear whether this fact is caused by the nature
of the case or by the lack of tools for investigation.
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Chapter 3
A Mixed Impedance Scattering Problem
for Partially Coated Obstacles
in Two-Dimensional Linear Elasticity

C.E. Athanasiadis, D. Natroshvili, V. Sevroglou, and I.G. Stratis

3.1 Introduction

In this chapter, we consider the scattering problem of time-harmonic plane elastic
waves by a non-penetrable partially coated obstacle embedded in a (N +1)-layered
background medium. Without loss of generality in this work we only consider the
case N = 1 which means that our obstacle is buried in a two-layered background
medium. From the point of view of applications, a medium of this type which is
consisted by a finite number of homogeneous layers (having a nested body) appears
in remote sensing, nondestructive testing, radars, etc. [AtNa10].

Let D denote the piecewise homogeneous medium which is a bounded and
closed subset of R

2 with a boundary S0. We also denote by D0 the exterior of
D, i.e., D0 = R

2 \D. The interior of D is divided into two disjoint layers D1 and
D2, with D2 being the non-penetrable obstacle, which is an open bounded domain
having a C2-boundary Γ . The layer D1 is the domain between S0 and Γ and clearly
∂D1 = Γ ∪ S0. Furthermore, we assume that the domains Dj, j = 0,1 are occupied
by dissimilar homogeneous isotropic elastic media with densities ρj and Lamé
constants λj and μj, j= 0,1, respectively, while D2 is occupied by a rigid body which
is treated as a non-penetrable obstacle. The boundary Γ of D2 is divided into two
parts, a Dirichlet (rigid) one ΓD and a Robin (impedance) one ΓI . These two parts
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are simply connected disjoint sub-manifolds and the boundary Γ has a dissection
Γ = Γ D ∪Γ I . The latter part is due to a coating on the Robin part of the boundary
with a material of constant surface impedance c. We note here that the case ΓI = /0
corresponds to a rigid body, whereas the case ΓD = /0, c = 0 yields a Neumann
boundary condition which corresponds to a cavity.

Our paper is organized as follows: In Section 3.2 we present the direct scattering
problem in a dyadic form by describing it with a mixed impedance transmission
boundary value problem. Issues of existence, uniqueness and stability are also
briefly discussed. In Section 3.3 we establish the unique determination of both the
non-penetrable obstacle D2 with its boundary condition and the interface S0 from a
knowledge of the far-field pattern for incident elastic plane-waves. Our uniqueness
will be based on a generalization of a mixed reciprocity relation; that is for the
uniqueness of the partially coated obstacle D2 and its boundary conditions, whereas
the uniqueness of the penetrable interface S0 between the two-layered media will be
based on a uniqueness result of a specific mixed impedance Robin boundary value
problem.

The results of the present work concerning the direct scattering problem have
been studied extensively in [AtNa14, AtNa11, NaTe01] and they are very useful
for the results obtained in Section 3.3 concerning inverse problems which deal with
partially coated obstacles in the case of elastic layered background media. A more
analytical study for the latter is in progress and will be communicated separately.

3.2 The Direct Scattering Problem

We consider the direct scattering problem of a given harmonic elastic wave by a
partially coated obstacle D2 in R

2 buried in a two-layered piecewise homogeneous
medium. In what follows we consider the problem in a dyadic formulation due
to the dyadic nature of the fundamental Green’s function. We mention here that,
as Twersky [Tw67] pointed out for electromagnetic waves, the dyadic scattering
problem – because of its higher symmetry – is easier than the corresponding vector
scattering problem. The reason for that is the fact that the propagation vector alone
suffices to specify the incident field. For dyadic formulation of various scattering
problems in two-dimensional elasticity, we refer to [AtSe06, PeSe03], whereas
properties of dyadics can be found in the excellent source of the book [Ta94].

We continue our analysis by introducing the free-space Green’s dyadic of the
Navier equation in R

2, given by [Se05]

Γ̃ (r,r′) =
i
4
{ 1
μ

Ĩ H(1)
0 (ks|r− r′|)

− 1
ω2∇r⊗∇r

[
H(1)

0 (kp|r− r′|)−H(1)
0 (ks|r− r′|)

]
} (3.1)
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for r,r′ ∈ R
2, r �= r′, where H(1)

0 (z) is the cylindrical Hankel function of the first
kind and zero order, Ĩ is the 2× 2 identity matrix and the “∼” in this paper will
denote dyadic fields. Furthermore, “∇r” denotes the action of the gradient operator
with respect to the variable r, and “⊗” is the juxtaposition between two vectors (this
gives a dyadic). The fundamental solution Γ̃ (r,r′) satisfies the following equation

Δ ∗Γ̃ (r,r′)+ρ ω2 Γ̃ (r,r′) =−Ĩ δ (r− r′), r, r′ ∈ R
2

where δ (r− r′) represents the Dirac measure concentrated at the point r and Δ ∗
stands for the Lamé operator (see (3.11)).

Our scatterer D2 is irradiated either by incident elastic plane-waves, or by elastic
point-sources. Elastic plane-waves and point-sources are of special interest and will
play an important role in the study of the inverse problem (see later, Section 3.3).

For the case of plane-waves we have the following analysis: An incident plane
P-wave (pressure wave) is given by

ũinc
p (r, d̂) := d̂⊗ d̂ eik0,p r·d̂ (3.2)

where d̂ is the incident direction of propagation, i.e., d̂ ∈ Ω := {r ∈ R
2 : |r| = 1},

whereas a plane S-wave (shear wave) is of the form

ũinc
s (r, d̂) := (̃I− d̂⊗ d̂)eik0,s r·d̂ (3.3)

where Ĩ− d̂⊗ d̂ = d̂⊥⊗ d̂⊥ with d̂⊥ being the polarization vector. Due to the incident
plane-wave the corresponding scattered field is denoted by ũsct(r, d̂), given by

ũsct(r, d̂) := ũsct
p (r, d̂)+ ũsct

s (r, d̂), (3.4)

where the dyadics ũsct
p , ũsct

s are referred to as the longitudinal (pressure) and
transverse (shear) parts of ũsct, respectively. Then, the total elastic field ũt is the
superposition of the incident field and the corresponding scattered field, i.e.,

ũt(r, d̂) = ũinc(r, d̂)+ ũsct(r, d̂) (3.5)

Remark: The incident plane-wave field ũinc could also be considered as the
superposition of P and S-wave, in the form

ũinc(r, d̂) = d̂⊗ d̂ eik0,p r·d̂ +(̃I− d̂⊗ d̂)eik0,s r·d̂ (3.6)

It is worth mentioning that, due to elasticity theory, independently of what form the
incident field is, (3.2), (3.3), or (3.6) the corresponding scattered field always will
be consisted of the scattered P-wave and S-wave as well (see (3.4)).
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Next, we present the notation for elastic point-sources. We denote by ũinc
a an

incident point-source due to a source located at a point a ∈ R
2 with corresponding

scattered field ũsct
a and total field given by

ũt
a(r) = ũinc

a (r)+ ũsct
a (r). (3.7)

From the mathematical point of view our direct scattering problem for a partially
coated obstacle embedded in a two-layered homogenous medium is described by
the following mixed impedance transmission boundary value problem:

Given h̃ ∈ H1/2
2 (ΓD), g̃ ∈ H−1/2

2 (ΓI), p̃ ∈ H−1/2
2 (S0) and f̃ ∈ H1/2

2 (S0), find
functions ũ ∈ H1

2,loc(D0) and υ̃ ∈ H1
2,loc(D1) satisfying the differential equations

Δ ∗ ũ+ρ0ω2 ũ = 0̃ in D0,

Δ ∗ υ̃+ρ1ω2 υ̃ = 0̃ in D1,

the mixed impedance boundary conditions

υ̃ = h̃ on ΓD, (3.8)

T υ̃+ iω c υ̃ = g̃ on ΓI , (3.9)

the transmission boundary conditions

ũ− υ̃ = f̃ , Tũ−Tυ̃ = p̃ on S0

and the Sommerfeld–Kupradze radiation conditions

lim
|r|→∞

√
r

(∂ ũβ (r)

∂ r
− ikβ ũβ (r)

)

= 0̃, β = p,s, (3.10)

where the explicit expression for Δ ∗ũ is given by

Δ ∗ũ(r) := μ(r)Δ ũ(r)+(λ (r)+μ(r)) graddiv ũ(r) (3.11)

while the stress operator T acting on ũ, with outward normal unit vector n = (n1,n2)
at the point r ∈ Γ or S0, is defined as:

Tũ := (2μ n ·grad+λ ndiv+μ n× curl) ũ, (3.12)

Throughout this paper c (the surface impedance for the boundary ΓI) will be
considered a positive constant, while the above piecewise constant functions, λj and
μj are the Lamé constants, ρj are the densities of the elastic layers, satisfying the
relations

μj > 0, λj +2μj > 0, ρj > 0, j = 0,1
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and ω ∈ R is the so-called frequency parameter. The Sommerfeld-Kupradze
radiation conditions (3.10) are assumed to hold uniformly in all directions r̂ =
r/|r|. Further, kj,p, kj,s, j = 0,1 are the wave numbers for the longitudinal and the
transverse waves, respectively, given by

kj,p = ω
√

ρj

λj +2μj
, kj,s = ω

√
ρj

μj
, j = 0,1 (3.13)

Note that in (3.10) kβ = k0,β , β = p,s (see also relations (3.2), (3.3) and (3.6)).
It is very important to mention that, the incident field for our scattering problem

(3.8), (3.10) could be a plane-wave or a point-source as well. In the latter case let
ũinc

a (r) := Γ̃ (r, a), r �= a be a source point, with

Γ̃ (r,a) = − i
4ρ0ω2 ∇r∇r H(1)

0 (k0,p|r−a|)

+
i

4ρ0ω2 (∇r∇r + k0,sĨ)H(1)
0 (k0,s|r−a|)}, (3.14)

located at a point with position vector a ∈ R
2. This is actually similar to the

fundamental solution (3.1).
The solvability of the direct scattering problem (3.8)–(3.10) for partially piece-

wise homogeneous and inhomogeneous layered obstacles has been proved via the
potential method in [AtNa14]. In particular, we reduced the mixed impedance
transmission problem to an equivalent system of pseudodifferential equations and
proved that the corresponding boundary operators are invertible in appropriate
Bessel potential and Besov spaces. We also established existence of solution of the
mixed impedance problem as well as regularity results. Furthermore, the case of
Lipschitz surfaces was also studied and treated separately. For a detailed analysis,
we refer to [AtNa14] and [AtNa11].

3.3 The Inverse Scattering Problem

In this section we establish uniqueness results for the inverse elastic scattering
problem. To the best of the author’s knowledge, there are no results concerning the
unique determination of both the non-penetrable partially coated obstacle embedded
in a two-layered piecewise homogeneous medium and the interface between the
layered media. Therefore, in this article we prove that both the penetrable interface
S0 and the non-penetrable obstacle D2 with its physical property (3.8), (3.9) can
be suniquely determined by a knowledge of the far-field pattern of the scattered
field. The obtained results also hold for a partially coated obstacle buried in multi-
layered media; they are valid as well for the three-dimensional case.
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In what follows we need the following Sobolev space setting:

Let H1
2(D), H1

2(R
2 \D) be the classical Sobolev spaces with H1/2

2 (Γ ) being their
trace space. In order to study mixed impedance boundary value problems with
boundary conditions such as in relations (3.8) and (3.9) we need Sobolev spaces
on an open part of the boundary. Hence, for a proper subset Γ0 ⊂ Γ , let

H1/2
2 (Γ0) := { ũ|Γ0 : ũ ∈ H1/2

2 (Γ )}
(

H1/2
2 (Γ0)

)∗
:= { ũ ∈ H1/2

2 (Γ ) : supp ũ ⊆ Γ 0}

H−1/2
2 (Γ0) :=

((
H1/2

2 (Γ0)
)∗)′

( i.e., the dual space of
(

H1/2
2 (Γ0)

)∗
)

(
H−1/2

2 (Γ0)
)∗

:=
(

H1/2
2 (Γ0)

)′
( i.e., the dual space of H1/2

2 (Γ0))

We will also need, corresponding to (3.8)–(3.10), a specific interior mixed
impedance boundary value problem in D1, which is stated as follows: Find
ũ ∈ H1

2(D1) such that

Δ ∗ũ+ρ1ω2 ũ = F̃ in D1, (3.15)

ũ = h̃ on ΓD, (3.16)

Tũ+ iω c ũ = g̃ on ΓI , (3.17)

Tũ+ iω ν ũ = f̃ on S0, (3.18)

where F̃ ∈ L2(D1), h̃ ∈ H1/2
2 (ΓD), g̃ ∈ H−1/2

2 (ΓI), f̃ ∈ H−1/2
2 (S0) and ν : S0 → R

with ν ≤ 0 a continuously differentiable function (ν does not vanish identically).
A study for the problem (3.15)–(3.18) has been considered, and in particular integral
representations of solutions have been derived. Basic uniqueness, existence and
regularity results for these mixed impedance problems have been established as
well. We mention here that the boundary value problem (3.15)–(3.18) also possesses
a unique solution if we assume (without loss of generality) that h̃ = 0̃ on ΓD.
This follows from the setting of the following space

H1
2(D1; ΓD) := { ũ ∈ H1

2(D1) : ũ|ΓD = 0̃)} (3.19)

by easily noting that H1
2(D1; ΓD) is a closed subspace of H1

2(D1).
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The elastic inverse scattering problem by a mixed partially coated obstacle
embedded in a two-layered background medium is described by the following mixed
impedance transmission boundary value problem: Determine uniquely the partially
coated obstacle D2 and its physical properties as well as the penetrable interface
(boundary) S0 of the piecewise homogeneous medium D, if the following conditions
hold:

Δ ∗ũ+ρ0ω2 ũ = 0̃ in D0,

Δ ∗ũ+ρ1ω2 ũ = 0̃ in D1,

ũ = 0̃ on ΓD,

Tũ+ iω c ũ = 0̃ on ΓI ,

ũext = ũint, Te ũext = Ti ũint on S0 (3.20)

lim
|r|→∞

√
r

(
∂ ũsct

β

∂ r
− ikβ ũsct

β

)

= 0̃, β = p,s,

where ũ = ũinc + ũsct in D0∪D1, ũint, ũext denote the interior and exterior one sides
limits (traces) on the interface S0, respectively, and the notations Ti ũint, Te ũext are
given by relation (3.12), if we replace the Lamé constants λ , μ with the appropriate
values λj, μj, j = 0 or1.

In order now to establish uniqueness, let us first prove an essential mixed
reciprocity relation. We need to consider incident plane-waves as well as point-
sources. In what follows, and for the reader’s convenience we recall the following
notation: For incident plane fields: ũt(r; d̂) = ũinc(r; d̂) + ũsct(r; d̂), whereas for
point-sources ũt

a(r) = ũinc
a (r)+ ũsct

a (r). Our incident point-source field is given by
ũinc

a (r) := Γ̃ (r,a), r �= a, where Γ̃ (r,a) is given by (3.14). We also denote by
ũ∞(r̂; d̂) and ũ∞,a(r̂) the far-field patterns of ũsct(r; d̂) and ũsct

a (r), respectively.
In the sequel we refer that the following mixed scattering principle is based on a

specific functional, the so-called Reciprocity Gap Functional defined as:

[ũ, ṽ]S0 :=
∫

S0

[
(Tṽ)� · ũ− ṽ� · (Tũ)

]
ds (3.21)

which is also employed in the study of various acoustic or elastic inverse problems
(see, e.g., [AtNa10, CaCo05, XiBo10] and the references therein).

We are now ready to state and prove the following theorem.

Theorem 1. Let ũinc
a (r) := Γ̃ (r, a) be an incident point-source wave field, and let

ũinc(r;−b̂) be an incident plane-wave propagating in the direction −b̂. Then the
following relations hold:

(i) For a ∈ D0

ũ∞,a(b̂) =
(
ũsct(a;−b̂)

)�
(3.22)
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(ii) For a ∈ D1

ũ∞,a(b̂) = (γ̃− Ĩ)
(
ũinc(a;−b̂)

)�
+ γ̃
(
ũsct(a;−b̂)

)�
(3.23)

with

γ̃ =−(â⊗ â)− λ +μ
μ

(
Ĩ− â⊗ â

)
(3.24)

and

ũ∞,a(b̂) :≡ ũp
∞,a(b̂)+ ũs

∞,a(b̂) (3.25)

Proof : Using relation (3.21) and its bilinearity we can arrive at

[ũt
a(r), ũt(r;−b̂)]S0 = [ũinc

a (r), ũt(r;−b̂)]S0

+[ũsct
a (r), ũt(r;−b̂)]S0 (3.26)

(i) Let us first consider the case when a ∈ D0. We have to calculate the sur-
face integrals [ũsct

a (r), ũt(r;−b̂)]S0 and [ũinc
a (r), ũt(r;−b̂)]S0 . Via Betti’s formulas,

the Sommerfeld–Kupradze radiation conditions and the integral representation of
the far-field pattern ũ∞,a(b̂), we have that

ũ∞,a(b̂) = [ũsct
a (r), ũt(r;−b̂)]S0 , (3.27)

or, equivalently

ũ∞,a(b̂) =
∫

S0

[(
T ũt(r;−b̂)

)� · ũsct
a (r)− (ũt(r;−b̂)

)� ·T ũsct(r)
]

ds

With the aid of (3.7) and the boundary conditions (3.20) on S0, the latter can be
written as

ũ∞,a(b̂) =
∫

S0

[(
T ũt(r;−b̂)

)� · ũt
a(r)−

(
ũt(r;−b̂)

)� ·T ũt
a(r)
]

ds

−
∫

S0

[(
T ũt(r;−b̂)

)� · ũinc
a (r)− (ũt(r;−b̂)

)� ·T ũinc
a (r)

]
ds

(3.28)
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Taking now into account second Betti’s formula, relation (3.28) is written as

ũ∞,a(b̂) =
∫

Γ

[(
T ũt(r;−b̂)

)� · ũt
a(r)−

(
ũt(r;−b̂)

)� ·T ũt
a(r)
]

ds

+
∫

D1

[(
Δ ∗ ũt(r;−b̂)

)� · ũt
a(r)−

(
ũt(r;−b̂)

)� ·Δ ∗ ũt
a(r)
]

dυ

−
∫

Γ

[(
T ũt(r;−b̂)

)� · ũinc
a (r)− (ũt(r;−b̂)

)� ·T ũinc(r)
]

ds

−
∫

D1

[(
Δ ∗ ũt(r;−b̂)

)� · ũinc
a (r)− (ũt(r;−b̂)

)� ·Δ ∗ ũinc
a (r)

]
dυ

(3.29)

and the fact that ũt(r;−b̂), ũt
a(r) are regular solutions of the Navier equation in D1,

equation (3.29) yields

ũ∞,a(b̂) = −
∫

Γ

[(
T ũt(r;−b̂)

)� · ũinc
a (r)− (ũt(r;−b̂)

)� ·T ũinc
a (r)

]
ds

+
∫

D1

(ρ1−ρ0) ω2 ( ũt(r;−b̂)
)� · ũinc

a (r)dυ

(3.30)

Concerning the other surface integral [ũinc
a (r), ũt(r;−b̂)]S0 , we have to do the

following manipulation

[ũinc
a (r), ũt(r;−b̂)]S0 = [ũin

a (r), ũinc(r;−b̂)]S0

+[ũinc
a (r), ũsct(r;−b̂)]S0

=
∫

S0

[(
T ũinc(r;−b̂)

)� · ũinc
a (r)− (ũinc(r;−b̂)

)� ·T ũinc
a (r)

]
ds

+

∫

S0

[(
T ũsct(r;−b̂)

)� · ũinc
a (r)− (ũsct(r;−b̂)

)� ·T ũinc
a (r)

]
ds

Using now the exterior integral representation (recall a ∈ D0) for the scattered field
ũsct(a;−b̂), the latter arrives to

−(ũsct(a;−b̂)
)�

=
∫

S0

[(
T ũt(r;−b̂)

)� · ũinc
a (r)− (ũt(r;−b̂)

)� ·T ũinc
a (r)

]
ds (3.31)



38 C.E. Athanasiadis et al.

With the aid now of the boundary conditions (3.20) and the second Betti’s formula,
relation (3.31) takes the form

(
ũsct(a;−b̂)

)�

= −
∫

Γ

[(
T ũt(r;−b̂)

)� · ũinc
a (r)− (ũt(r;−b̂)

)� ·T ũinc
a (r)

]
ds

−
∫

D1

[(
Δ ∗ ũt(r;−b̂)

)� · ũinc
a (r)− (ũt(r;−b̂)

)� ·Δ ∗ ũinc
a (r)

]
dυ

(3.32)

Since now ũt(r;−b̂) and ũinc
a (r) are regular solutions of the Navier equation in D1

and D0, respectively, relation (3.32) can be written as follows:

(
ũsct(a;−b̂)

)�

= −
∫

Γ

[(
T ũt(r;−b̂)

)� · ũinc
a (r)− (ũt(r;−b̂)

)� ·T ũinc
a (r)

]
ds

+
∫

D1

(ρ1−ρ0)ω2 (ũt(r;−b̂)
)� · ũinc

a (r)dυ (3.33)

Combining relations (3.26), (3.30) and (3.33) the first assertion of the theorem easily
follows.

(ii) We deal now with the case a ∈ D1. We calculate the two surface integrals
of the right-hand side of relation (3.26). Taking into account Betti’s formulas,
Sommerfeld-Kupradze radiation conditions and the integral representation of the
far-field pattern ũ∞,a(b̂), after lengthy calculations, we arrive at

[ũinc
a (r), ũt(r;−b̂)]S0

=

∫

Γ

[(
T ũt(r;−b̂)

)� · ũinc
a (r)− (ũt(r;−b̂)

)� ·T ũinc
a (r)

]
ds

+
∫

D1\Ω(a;ε)
(ρ0−ρ1)ω2 (ũt(r;−b̂)

)� · ũinc
a (r)dυ

+

∫

Ω(a;ε)

[(
T ũt(r;−b̂)

)� · ũinc
a (r)− (ũt(r;−b̂)

)� ·T ũinc
a (r)

]
ds
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or, equivalently in the more conventional for

[ũinc
a (r), ũt(r;−b̂)]S0 − [ũinc

a (r), ũt(r;−b̂)]Γ

=
∫

D1\Ω(a;ε)
(ρ1−ρ0)ω2 (ũt(r;−b̂)

)� · ũinc
a (r)dυ

+[ũinc
a (r), ũt(r;−b̂)]Ω(a;ε) (3.34)

where Ω(a; ε) := {r ∈R2 : |r−a|= ε} and D1 \Ω(a; ε) := {r ∈D1 : |r−a|> ε}.
Using the mean value theorem for the line integral [ũinc

a (r), ũt(r;−b̂)]Ω(a;ε) of (3.34)
and letting ε → 0, we get

[ũinc
a (r), ũt(r;−b̂)]S0 − [ũinc

a (r), ũt(r;−b̂)]Γ

=
∫

D1\Ω(a;ε)
(ρ1−ρ0)ω2 (ũt(r;−b̂)

)� · ũinc
a (r)dυ

+γ̃
(
ũt(a;−b̂)

)�
. (3.35)

Similar arguments for the second line integral [ũsct
a (r), ũt(r;−b̂)]S0 yield

[ũsct
a (r), ũt(r;−b̂)]S0 − [ũinc

a (r), ũt(r;−b̂)]Γ

=
∫

D1\Ω(a;ε)
(ρ1−ρ0)ω2 (ũt(r;−b̂)

)� · ũinc
a (r)dυ

+[ũsct
a (r), ũt(r;−b̂)]Ω(a;ε) (3.36)

Using again the mean value theorem, and letting ε → 0, the last term of the right-
hand side of (3.36) vanishes. Combining relations (3.35), (3.36) and taking into
account the representation (3.27) (note that (3.27) also holds for a ∈ D1), i.e.,

ũ∞,a(b̂) = [ũsct
a (r), ũt(r;−b̂)]S0 , a ∈ D1, (3.37)

we arrive at

ũ∞,a(b̂)− γ̃
(
ũt(a;−b̂)

)�
=−[ũinc

a (r), ũt(r;−b̂)]S0 ,

and by the superposition (3.5) the latter takes the form

ũ∞,a(b̂)− γ̃
(
ũt(a;−b̂)

)�
= −[ũinc

a (r), ũinc(r;−b̂)]S0

−[ũinc
a (r), ũsct(r;−b̂)]S0 (3.38)
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The second integral on the right-hand side of (3.38) vanishes for a ∈ D1, whereas
the first integral, due to integral representation theorem for the elastic incident field

[PeSe03], equals to −(ũinc(a;−b̂)
)�

, therefore

ũ∞,a(b̂) = γ̃
(
ũt(a,−b̂)

)�− (ũinc(a,−b̂)
)�

and hence, the second assertion of the theorem easily follows.
We remark that the above mixed reciprocity principle can be extended in three or

multi-layered background medium.
We now proceed with the following useful result.

Theorem 2. Assume that D2 and D̆2 are two subsets of D and G be the unbounded

component of R2 \
(

D2∪ D̆2

)
. Furthermore, let ˜̆usct(r, d̂) being the scattered field

due to obstacle D̆2 with corresponding far-field pattern ˜̆u∞(r̂, d̂) for all r̂, d̂ ∈ Ω .
If ũsct = ũsct(r; a) is the unique solution of the mixed impedance transmission
boundary value problem

Δ ∗ũsct +ρ0ω2 ũsct = 0̃ in D0 (3.39)

Δ ∗ũsct +ρ1ω2 ũsct = (ρ0−ρ1)ω2 Γ̃ (r, a) in D1 (3.40)

ũsct
e (r) = ũsct

i (r) Te ũsct
e (r) = Ti ũext

i (r) on S0 (3.41)

ũsct =−Γ̃ (r, a) on ΓD (3.42)

T ũsct + iωc ũsct =−T Γ̃ (r, a)− iωcΓ̃ (r, a) on ΓI (3.43)

lim
|r|→∞

√
r

(
∂ ũsct

β (r)

∂ r
− ikβ ũsct

β (r)

)

= 0̃, β = p,s, (3.44)

for r �= a∈D∩G, and further we assume that ˜̆usct := ˜̆usct(r; a) is the unique solution
of the mixed impedance transmission problem (3.39)–(3.44), but this time replacing

D1 and D2 by D̆1 := D\ D̆2 and D̆2, respectively, then

ũsct(r, a) = ˜̆usct(r, a), r ∈G

Recall here the boundary value problem (3.8)–(3.10) has a unique solution. Taking
into account the well-posedness of the interior mixed impedance boundary value
problem (3.15)–(3.18), the mixed reciprocity principle of Theorem 1 and Theo-
rem 2, we have the following main result.

Theorem 3. Assume that D2 and D̆2 are two scattering non-penetrable partially
coated obstacles embedded in the same elastic piecewise-constant background
medium in R

2 with c > 0, c̆ > 0 the corresponding surface impedance constants.
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If S0, S̆0 are two penetrable interfaces, and the far-field patterns of the scattered
fields for the same incident plane-wave coincide at a fixed frequency, for all incident
direction d̂ ∈Ω , and observation direction r̂ ∈Ω , then

D2 = D̆2

ΓD = Γ̆D, ΓI = Γ̆I , c = c̆

S0 = S̆0

References

[AtNa14] Athanasiadis, C. E., Natroshvili, D., Sevroglou, V. Stratis, I. G.: Mixed impedance
transmission problems for vibrating layered elastic problems. Math. Methods Appl.
Sc. (accepted 2014)

[AtNa11] Athanasiadis, C. E., Natroshvili, D., Sevroglou V., Stratis, I. G.: A boundary integral
equations approach for direct mixed impedance problems in elasticity. J. Integral Eqns.
Appl. 23, 183–222 (2011)

[AtNa10] Athanasiadis, C. E., Natroshvili, D., Sevroglou V., Stratis, I. G.: An application of the
reciprocity gap functional to inverse mixed impedance problems in elasticity. Inverse
Problems. 26, 085011 19pp (2010)

[AtSe06] Athanasiadis, C. E., Sevroglou V., Stratis, I. G.: Scattering relations for point-generated
dyadic fields in two-dimensional linear elasticity. Quart. Appl. Math. 4, 695–710
(2006)

[CaCo05] Cakoni, F., Colton, D.: Qualitative Methods in Inverse Electromagnetic Scattering
Theory. Springer-Verlag (2005)

[XiBo10] Xiaodong L., Bo, Z.: Direct and inverse obstacle scattering problems in a piecewise
homogeneous medium. SIAM J. Appl. Math. 70, No 8 (2010)

[NaTe01] Natrosvilli, D., Z. Tediashvili, Z.: Mixed type direct and inverse scattering problems.
In: Elschner, J., Gohberg, I., Silbermann, B. (eds.) Operator Theory: Advances and
Applications, 121, 366–389 Birkhäuser, Basel (2001)

[PeSe03] Pelekanos G., Sevroglou, V.: Inverse scattering by penetrable objects in two-
dimensional elastodynamics. J. Comp. Appl. Math. 151, 129–140 (2003)

[Se05] Sevroglou, V.: The far-field operator for penetrable and absorbing obstacles in 2D
inverse elastic scattering. Inverse Problems. 17, 717–738 (2005)

[Ta94] Tai, C. T.: Dyadic Greens Functions in Electromagnetic Theory. IEEE, New York
(1994)

[Tw67] Twersky, V.: Multiple scattering of electromagnetic waves by arbitrary configurations.
J. Math. Phys. 8, 589–610 (1967)



Chapter 4
Half-Life Distribution Shift of Fission Products
by Coupled Fission–Fusion Processes

J.B. Bardaji, B.E.J. Bodmann, M.T. Vilhena,
and A.C.M. Alvim

4.1 Introduction

Nuclear reactions are by far the most efficient processes of energy release that
may be used for energy production. Besides the nuclear decay, that is responsible
for maintaining the interior of the earth heated up, fission reactions are nowadays
exploited in nuclear power reactors, whereas fusion processes are considered a
potential nuclear power perspective of the future. Following a traditional paradigm
based on binding energy per nucleon considerations, fission is considered feasible
by fragmenting heavy nuclei with neutron emission while fusion shall be attained
by melting together light nuclei into heavier ones following several conceptions
such as Tokamaks, for instance, or involving laser based techniques among others.
In the present contribution we outline a different reasoning considering a combined
fission–fusion scenario where strongly negative iso-spin projection of unstable
fragments from fission may open a pathway for a fusion process when running
into a light nucleus. More specifically, negative iso-spin excess of the fission
fragments numerically around 3–4, which is a measure for instability of the nucleus,
indicates that there might exist possibilities to merge a fission fragment with a
light nucleus (1

1H, 2
1H, 7

3Li, 9
4Be or others) and thus places the produced heavier

nucleus closer to the stability line (with iso-spin excess close to zero). Here iso-
spin excess refers to the difference in the Bethe–Weizsäcker asymmetry term of the
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Fig. 4.1 Binding energy per nucleon as a function of neutron and proton number. The marked
transitions indicate possible fusion reactions of the fragments with a light nucleus following a
fission process.

unstable nuclei and its corresponding stable counterpart. An example is indicated
in figure 4.1, where the binding energy per nucleon is presented depending on the
number of protons and neutrons, respectively. The dark red region refers to largest
binding energy per nucleon (∼ 7–8 MeV) and shades from light red to blue indicate
decreasing stability (6 MeV→ 0 MeV) so that the indicated possible processes could
release an energy amount comparable to decay processes. In the present work we
analyze less the energy balance aspect of the combined fission–fusion process but
focus on another issue related to stability, i.e. the distribution of half-life times
of nuclei after fission and fusion following fission, respectively. The discussion
that follows presents first properties from propagation of fission products through
nuclear fuel material with addition of light elements and shows the kinetic energies
of the fission fragments that overcome the Coulomb repulsion of the respective
fusion partners. In a second step, the probability for fusion is estimated using the
uncertainty principle, due to the fact that there does not exist a model that covers
the variety of possible fusion reactions and thus would allow to calculate those
reactions by an approach like Fermi’s golden rule. Combining the two previous steps
allows to evaluate a comparison of the half-life distribution considering fission only
to the distribution from combined fission–fusion.
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4.2 The Coulomb Barrier

Considering fission of Uranium-235, a variety of fission modes are possible which
release mostly two or three neutrons in the fragmentation process besides the
two fragments that appear with a mass ratio of approximately ∼ 2

3 . The resulting
distribution of the fission products from Uranium-235 depending on the proton
(Z) and neutron number (N) is shown in figure 4.2. Since the fission process is a
many body process with typically four or five constituents the most probable kinetic
energy 〈E(Z,A)〉 for each fragment is given in equation (4.1) [ViKwWa85].

〈E(Z,A)〉= 0.1166MeV
Z2

A1/3
+9.0MeV. (4.1)

The kinetic energy distribution for the heavy fission products generated by a Monte
Carlo simulation for 105 fissions of 235U is shown in figure 4.3.

According to [Be88] fusion dynamics at low energies (i.e., of the order of mag-
nitude of classical potential energies) is governed by theoretical quantum tunnelling
through the Coulomb barrier (a semi-classical approach). The phenomenon occurs
already for kinetic energies from � 101 keV onwards. Note that there do exist some

Fig. 4.2 Fission product distribution from Uranium-235 depending on proton and neutron number
(red circles), for comparison stable nuclei (blue circles).
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Fig. 4.3 Kinetic energy distribution of fission products from Uranium-235.

Fig. 4.4 Kinetic energy of the fission fragment 136I and classical Coulomb repulsion barriers for
fusion with 1H, 2H, 6Li and 9Be.

models based on the Schrödinger equation [NiDaLa89, HaRoKr99, ZaSa04], that
allow to calculate fusion cross sections, however with acceptable results for energies
well beyond 101 MeV , only. Other approaches that consider fusion cross sections
[NaEtAl04, VoEtAl09, SiEtAl10] do not focus on a general description for fusion
reaction but are designed to describe specific reactions from heavy ion collision
experiments.

A crude estimate by comparing classical barriers and the kinetic energy along
the propagation depth shows that for a considerable path length the kinetic energy
of the fission fragment is above the repulsive potential energy. Even for a simplified
treatment, where the fission fragment has an associated wave function, whereas
the repulsive interaction is represented by a classical potential, the effective limit
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is lowered down by at least one order in magnitude, due to the so-called tunnel
effect. Thus from the kinetic energy and Coulomb repulsion comparison fusion is in
principle possible, as illustrated in figure 4.4.

4.3 Particle Stopping in Nuclear Fuel

Fission fragments with its initial kinetic energies lose their energies through
collisions with the surrounding material. The collisions may occur with the electrons
or the nucleus of the atoms dE

dx = dE
dx

∣
∣
n +

dE
dx

∣
∣
e
, respectively. In these processes

energy is transferred which for energy loss with electrons may be described to a
reasonable accuracy by the Bethe–Bloch formula. Here the energy loss is given in
units of MeV/(mg/cm2).

Collisions with the nucleus are more likely to happen for kinetic energies below
the Coulomb barrier and may involve significant energy transfers with associated
larger deflections in the ion trajectory, whereas ion electron collisions typically
show small energy losses and almost no deflection in the particle trajectory and
are dominant in the energy range of interest, i.e. where fusion can occur.

The stopping by the nucleus is described in detail in reference [ZiZiBi10] and
can be calculated by

dE
dx

∣
∣
∣
∣
n
=−Nπa2

TFTM

ε2

∫ TM

0
f
(

t1/2
)

dt .

Here N (in cm−3) is the atomic density, aTF = 1
2

(
3π
4

)3/2 h̄2

mee2Z1/3 is the Thomas–
Fermi screening length with the elementary charge e and the electron mass me,
TM = 4A1A2

(A1+A2)2 E is the maximum energy transfer, f (t1/2) is the Lindhard scaling

function and the dimensionless collision parameter t = ε2 T
TM

with the dimensionless

energy ε = A1
A1+A2

aTF
Z1Z2e2 E.

For the calculation of the electronic stopping (in units of MeVcm2/mg) of an ion
with speed v, we used the model proposed by the authors [SrMu76] presented below,
due to the fact that its results showed acceptable agreement with experimental data.
According to the findings in [MuSr74] equation (4.2) may be applied for particles
that are partially or totally ionized. However, it is noteworthy that for the case χ� 1
or χ � 1 they are not valid rigorously i.e., for the example of the fission products.

dE
dx

=
2πz2e4N

mev2 (J1 + J2 + J3) (4.2)

J1 ≡
U′s
∑

Us=0
ln(η2

s χ−2) J2 ≡
Us=2vχ−1

∑
Us=0

ln(η2
s ) J3 ≡

U′′s
∑

Us=2vχ−1

ln(η3
s χ−1)
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Here ηs = 2v/v0, χ = 2zv0/v, v0 = e2/h̄ and the upper limit of the sum Us is
the electron speed in the S orbit, that turns the logarithmic terms equal zero and
guarantees that energy transfer is semi-positive definite. In the following we present
the parametrizations for the calculation of the range, that depends basically on v, χ ,
the effective charge of the projectile z, and the charge of the target particle Z2. The
effective charge of a particle with speed v is calculated following reference [No60]

z = Z1

(
1−2.03exp

(−2vf (Z1)
Z1v0

))1/2
with the scaling function f (Z1) = 0.28Z2/3

1 for

Z1 ≤ 45.5 and f (Z1) = Z1/3
1 for Z1 ≥ 45.5. Further, in the formalism below the mean

excitation energy (Ī) for the target given by [SrMu76] was replaced by the values of
[Ah80] which provide the better results.

1. χ > 1 and v≥ 1
2 Z2v0χ:

For χ > 1, J1 all values for Us are included together with the electron’s speed in
the K shell, which are given by Z2v0, for v ≥ 1

2 Z2v0χ . Using η2
s = (2v/Us)

2 =
2mv2/Is, where the ionization potential of the S shell (Is) is given by Is = mU2

s /2,
one may express J1

J1 =
Z2

∑
s=1

ln(η2
s χ−2) = Z2 ln

(
2mv2

Īχ2

)

where Ī = 1
Z2
∑Z2

s=1 ln Is is the mean ionization potential. For v = 1
2 Z2v0χ the

superior limit of the sum for J2, Us = 2vχ−1, is equal to Us = Z2v0.

J2 =
Z2v0

∑
Us=0

ln

(
2v
Us

)2

=
Z2

∑
s=1

ln

(
2mv2

Is

)

= Z2 ln

(
2mv2

Ī

)

In the sum J3 the inferior limit is the maximum value, so that there is no
contribution. Thus the expression for the electronic stopping according to the
established conditions is

dE
dx

=
63.65 MeVcm3

gs2 z2Z2

A2v2 log10

(
11.39 keVs2

cm2 v2

Iχ

)

.

2. χ > 1 and 1
2 Z2v0χ1/3 ≤ v < 1

2 Z2v0χ:
For v< 1

2 Z2v0χ the value of U′s for J1 is 2vχ−1 and J1 is negative for Us > 2vχ−1.
According to [Bo48], the sum may be replaced by an integral

J1 =
2vχ−1

∑
Us=0

ln

(
2vχ−1

Us

)2

=
∫ n(2vχ−1)

0
ln

(
2vχ−1

Us

)2

dn(Us)

where n(Us) is the number of electronic orbitals with speeds inferior Us.
The author of reference [MuSr74] showed that for a medium with atomic number
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Z2, n(Us) is given by n(Us) =
f (Z2)Us

v0
with f (Z2) = 0.28Z2/3

2 for Z2 ≤ 45.5 and

f (Z2) = Z1/3
2 for Z2 ≥ 45.5. In order to reproduce the electron states with their

respective speeds so that
∫ 2v0Z2

Us=0 dn(Us) = Z2, [Mu75] applied the expression for
n(Us) to all electrons, except for the two electrons of the K shell.

J1 =
∫ 2vχ−1

Us=0
ln

(
2vχ−1

Us

)2

dn(Us) =
4f (Z2)χ−1v

v0

The term for J2 was obtained in a similar fashion.

J2 =
∫ 2vχ−1

Us=0
ln

(
2v
Us

)2

dn(Us) =
4f (Z2)χ−1(1+ lnχ−1)v

v0

For J3 the upper limit corresponds to U′′s = 2vχ−1/3 for v ≥ Z2v0χ1/3/2.
Recalling that the expression n(Us) does not include the K shell electrons, these
have to be added separately.

J3 =
f (Z2)

v0

∫ (Z2−2)v0/f (Z2)

Us=2vχ−1
ln

(
2v

Usχ1/3

)3

dUs +2ln

(
2v

Z2v0χ1/3

)

Upon solving the integral and summing the expressions ∑3
i=1 Ji yields

dE
dx

=
13.79 MeVcm3

gs2 z2

A2v2

(

3(Z2−2)

(

1+ ln
2f (Z2)v

(Z2−2)v0

)

+6ln
2v

Z2v0

+
2f (Z2)v

v0χ
−Z2 lnχ

)

3. χ > 1 and v < 1
2 Z2v0χ1/3Z2v0χ:

This case was elaborated in detail by [Bo48] and a general expression was given
by [MuSr74].

dE
dx

=
12.68 MeVcm2

gs f (Z2)z2

A2v

(
3χ−1/3 + χ−1

)

4. χ < 1 and v≥ 1
2 Z2v0:

For v ≥ 1
2 Z2v0 equation (4.2) simplifies to the form frequently found in the

literature [Ah80]. Now, if χ < 1, the particle is capable of ionizing the inner most
electrons of the target. The maximum electron speed after energy and momentum
transfer by a projectile with speed v is 2v and if the speed of an electron in the K
shell is Z2v0, then the second condition is valid for v≥ 1

2 Z2v0. Thus, J1 and J2 are
equal and J3 is redundant, so that the stopping power is applicable for relativistic
particles.
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Table 4.1 Comparison of calculated (Rcal), simulated (RSRIM), and observed
ranges (Rexp).

Ion Target E (MeV) Rcal(μm) Rexp(μm) RSRIM(μm) Reference
12C 27Al 124.8 239.49 231.68 230.10 [Br62]
20Ne 27Al 208.0 162.10 156.92 151.98 [Br62]
16O 63Cu 75.2 21.02 21.08 23.96 [Og59]
12C 12C 24.0 24.32 23.80 18.83 [TaBiBa97]
86Se 238U 39.54 4.25 − 3.53 −
100Zr 238U 49.19 4.34 − 4.02 −
153Pm 238U 90.12 5.53 − 5.47 −

dE
dx

=
63.65 MeVcm3

gs2 z2Z2

A2v2

(

log10

11.39 keVs2

cm2 v2

I(1−β 2)
− β 2

2.303

)

5. χ < 1 and v < 1
2 Z2v0:

In this case the appropriate limit for U′s in J1 and J2 shall be used, because not
all electrons are capable of participating in the electronic stopping process. The
logarithmic term in J1 and J2 are zero for U′s = 2v, thus, according to [Bo48,
MuSr74] and [BeAs53]

dE
dx

=
50.6 MeVcm2

gs f (Z2)z2

A2v

The energy loss results may be integrated from the initial energy to zero to yield
the range of the particle R = ρ−1 ∫ 0

E0
(dE/dx)−1 dE. Here E0 is the initial kinetic

energy (in MeV) of the ion from fission. Note that the range does not represent the
total length of the particle trajectory but the effective penetration depth. Further, one
may also calculate the stopping time tS = ρ−1 ∫ 0

E0
v−1(dE/dx)−1 dE. Table 4.1 shows

some results for kinetic energies, ranges determined from the present approach,
experimental data and from a benchmark simulation [ZiZiBi10]. The stopping time
in all cases was of the 100 ns order of magnitude and thus orders of magnitudes
larger than the time scale for possible fusion processes.

4.4 Fusion Following Fission

The procedure to analyze combined fission–fusion and compare them to pure fission
is based on the steps, definition of the chemical composition of the nuclear fuel plus
light substances, generating the fission products and evaluation of a possible nuclear
fusion reaction. To this end a Monte Carlo simulation platform was developed,
where the used databases for the half-lives and binding energies were taken from
[IAEA13] and [AuWa93], respectively.
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In a Monte Carlo simulation 105 fissions of 235U by thermal neutrons were
simulated according to the probabilities in [EnRi94] thus covering 98.7% of the
nuclide spectrum expected in a real situation. For each fission fragment the kinetic
energy was calculated using the formula for the most likely energy. The generated
distribution for the kinetic energies is shown in figure 4.3. The propagation of
the fission fragment was calculated using the parametrization from section 4.3
and fusion reactions were generated while the kinetic energy was sufficiently high
to overcome the Coulomb repulsion. As potential fusion partners we considered
hydrogen, deuterium, lithium-6, and beryllium-9. Although data were generated for
all targets and some mixtures, they qualitatively produce the same effect, namely the
shift in the half-life distribution towards larger values, therefore, only one example
(9Be) will be presented.

It is noteworthy that in spite of an increase in heavy ion collision research,
no model exists that would allow to calculate fusion cross sections or transition
rates. Hence, we circumvent this problem making use of mass defect measurements
together with the uncertainty principle ΔEΔ t ≥ h̄

2 in the spirit of Fermi’s Golden
Rule (see, for instance, [Sc04]). While ΔE is determined by the mass defect,
Δ t is related to the inverse transition rate, that in theoretical calculations may
be determined from the quantum transition matrix 〈β |V|α〉 and the density of
states ραβ . The transition rateΓαβ from initial state α to final state β is thus given by

1
Δ t
≈ Γαβ =

1
h
ραβ | 〈β |V|α〉 |2 . (4.3)

The probability for a specific nuclear reaction is given by the ratio of the
transition rate for the specific reaction divided by all possible reactions.

P(Z,A) =
Niτi

4π
h ΔEj

∑n
k=1∑

m
l=0 Nkτk

4π
h ΔEl

Here, Niτi is a measure for the probability of a fission fragment to hit a target nucleus
(H, Li or Be) for fusion or U and O, respectively, with no fusion. The term 4π/hΔEj

stems from Fermi’s golden rule and estimates the transition rate for a specific
reaction, that in case of fusion could be a simple fusion (no neutron emission) or
with emission of j neutrons, unless the energy balance Ereactants ≤ Eproducts holds.
Table 4.2 exemplifies this probabilities for a fusion reaction of germanium with
lithium. The obtained collision probabilities for the target nuclei H, Li, or Be are
0.277, 0.377, and 0.523, considering a particle density admixture of 30%.

For each target type three simulations were performed and the following
variables recorded:

• The average energy released by the fusion reaction,�B, in MeV , which is related
to the variation of the binding energy;

• the average number of neutrons N emitted in the fusion reactions;

• the proportion Pr of all nuclei that increased their half-life tfus
1/2 > tfis

1/2 and
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Table 4.2 Probability for a
fusion reaction 80Ge+ 6Li
with Ereactants =
722112.567 keV .

Reaction Eproduct(keV) t (y) Probability
80Ge+ 6Li→ 86Br 742386.902 16.23 0.5629
80Ge+ 6Li→ 85Br+1n 737287.894 21.69 0.4214
80Ge+ 6Li→ 84Br+2n 728384.015 58.07 0.0157
80Ge+ 6Li→ 83Br+3n 721545.735 − 0 (ΔE < 0)

Table 4.3 Results for a target with (30%) particle density admixture by 9Be.

Simulation no. fusions ΔB(MeV) no. neutrons % Pr tfus
1/2 > tfis

1/2 % Pt t1/2 > 1y

1 52159 10.06 0.317 60.17 1.990

2 52169 10.07 0.317 60.19 2.049

3 52325 10.23 0.318 60.12 2.041

Fig. 4.5 Shift in the half lives of fission products that underwent a subsequent fusion reaction with
30% admixture of 9Be in the nuclear fuel.

• The final state portion of all particles from the 105 fissions with half-life larger
than a year (Pt t1/2 > 1) compared to the value for fission only 0,209%.

Table 4.3 shows the results for simulations with a target composition contain-
ing 9Be. For this target the mean energy and mean neutron number released in this
reaction are 10.10MeV and 0,317, respectively. The proportion of half-lives larger
than a year increased by an order of magnitude ( a factor 9,70).
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Figure 4.5 shows the shift in the half-lives of fission products that underwent a
subsequent fusion reaction with 9Be. The set of points below the bisector clearly
show the tendency for increasing the half-life after fusion reaction, only a small
proportion reduced the half-life.

4.5 Conclusions

The present discussion is an initial study on the possibility to explore a coupled
fission–fusion scenario in a nuclear reactor core. In the outlined conception, fission
products could suffer a subsequent fusion reaction if some light nuclei was mixed
with the nuclear fuel. The discussion showed that one significant consequence of
such a scenario is manifest in the change of the half-life distribution of the produced
nuclei after fission–fusion when compared to the case where only fission occurs.
In the present simulations the coupled fission–fusion enhanced at an average the
half-lives by more than one order in magnitude.

The simulations with target nuclei 1H and 6Li yielded largest differences in
comparison with pure fission. Of all particles only 0.209% presented half-lives
larger than one year, that after inclusion of fusion shifted to 1.585% and 1.617%
for 1H and 6Li, respectively. The targets 2H and 9Be obtained values of 1.005%
and 1.087%, respectively. From the energetic point of view a gain is insignificant,
representing 5.8% and 7.8% of the released energy by nuclear fission, an expected
fact due to the small atomic number of the targets. This energy quantity is of a
similar magnitude as the energy release by the decay of nuclei that would occur in
a pure fission scenario.

Evidently, changes in the composition of materials present in the fuel and
moderator assembly have several consequences that we have not mentioned in our
discussion, such as the important question of criticality. Aspects that should be
analyzed are the relation moderator to fuel together with geometrical arrangements,
that have crucial consequences in such a new conception for nuclear reactors.
Furthermore, kinetics is expected to suffer from significant changes due to the
reduction of decay-chains relevant for the delayed neutron precursor production
together with the fusion reactions that produce neutrons. The average number of
neutrons that may be supplied is strongly related to the target in question. For a
case of thousand fusion reactions an average of 297, 145, 549, and 317 neutrons are
added for the targets of 1H, 2H, 6Li, and 9Be, respectively.

Moreover transport properties of neutrons should also suffer modifications, since
the various cross sections also changed. These aspects will be considered in future
studies, where point kinetics will be adapted to the cases considered and shall
give insight in the criticality aspect of this new conception. Also studies that
analyze changes in geometries are in order that may be addressed in approaches
like diffusion equation with heterogeneous domains and their associated parameter
sets.

Finally, the change in the half-life distribution has its impact on safety, reactor
dynamics, and nuclear fuel handling, especially the used fuel. For instance, decays
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of the remaining fission products provide approximately 8% of the total energy in
reactor operation. After shut-down though this energy is still released according
to the decay sequences and makes necessary monitoring and cooling for some
additional time. The reported increase in the half-life distribution has the effect of
reducing activity of the nuclear waste and consequently its heat production. More
aspects could be mentioned but by virtue the presented discussion has still some
speculative character and answers to more fundamental questions are required.
Hence, this work shall be considered as a first step into a new direction, where
pathways may be opened that consider energy production by a fission–fusion
conception with its new scientific and technological challenges and its possible
benefits.
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Chapter 5
DRBEM Simulation on Mixed Convection
with Hydromagnetic Effect

C. Bozkaya

The steady and laminar mixed convection flow of a viscous, incompressible,
and electrically conducting fluid under the effect of an inclined magnetic field
is numerically investigated. Specifically, the two-dimensional flow in a lid-driven
cavity with a linearly heated wall is considered. The dual reciprocity boundary
element method is used for solving the coupled nonlinear differential equations
in terms of stream function, vorticity, and temperature. The study focuses on the
effects of the physical parameters, such as Richardson and Hartmann numbers,
on the flow field and the temperature distribution at different inclinations of the
applied magnetic field. The streamlines and isotherms are used for the visualization
of the flow and temperature fields. The code validations in terms of average Nusselt
numbers show good agreement with the results given in the literature.

5.1 Introduction

A combined forced and free convection flow of an electrically conducting fluid and
heat transfer in the lid-driven cavities in the presence of a magnetic field is of great
interest due to its many industrial applications such as material processing, dynam-
ics of lakes, geothermal reservoirs, cooling of nuclear reactors, thermal insulation,
crystal growing, metal casting, and so on. In mixed convection, the temperature
differences across the cavity cause a buoyancy driven whereas the movement of a
wall generates a forced convection. The effect of an externally applied magnetic
field on the system of a mixed convection flow in enclosures has been investigated
numerically in some recent studies. Hossain et al [HoHa05] worked on the buoyancy
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and thermocapillary driven convection flow of an electrically conducting fluid in
an enclosure with heat generation subject to a uniform magnetic field by using
a finite difference method. They concluded that the applied magnetic field resists
the flow and retards the velocity field. Another finite difference solution to the
magnetohydrodynamic (MHD) mixed convection at high Hartmann numbers was
studied by Kalapurakal et al [KaCh13]. It was observed that the heat transfer was
more pronounced only with increased Richardson number. On the other hand,
Chatterjee [Ch13] analyzed the magnetoconvective flow and heat transfer in a
vertical lid-driven square enclosure with two different types of heat sources by
a finite volume approach. He showed that the heat transfer rate and bulk fluid
temperature both had increasing function of mixed convective strength. Al-Salem
et al [AlOz12] investigated the effects of moving lid direction on MHD mixed
convection in a linearly heated cavity by using a finite volume approach. It was
found that direction of lid was more effective on heat transfer and fluid flow in the
case of mixed convection than it was the case in forced convection, and the heat
transfer was decreased with increasing magnetic field. The works of Sivasankaran
[SiMa11] and Oztop [OzAl11] are also the finite volume solutions of MHD mixed
convection in a lid-driven cavity with the walls of different types of heating.

Rahman et al [RaOz11, RaOz12] investigated the effects of Joule heating and
the heater position, respectively, on the flow field and heat transfer by discretizing
the governing equation with a finite element approach. It was found in the latter
work that the highest heat transfer was obtained when the isothermal heater was
located at the right vertical wall. Kefayati et al [KeGo12] used the Lattice Boltzmann
simulation of mixed convection in a lid-driven cavity with linearly heated wall under
the effect of magnetic field.

In the present study, we focus on the dual reciprocity boundary element method
(DRBEM) solution of the MHD mixed convection flow problem, introduced in the
work [KeGo12], in a lid-driven square cavity subject to an inclined magnetic field.
The effects of controlling parameters including Hartmann and Richardson numbers,
and the influence of various inclination angles of the magnetic field on the flow field
and temperature distribution are investigated. In this paper, the stream function–
vorticity–temperature formulation of mixed convection flow under the effect of
an external magnetic field is followed. The DRBEM, which is a boundary only
nature technique, is used to treat the terms except the Laplace operator as the
inhomogeneity. These three equations are solved iteratively with the given boundary
conditions for stream function and the temperature. However, the vorticity boundary
conditions are obtained by using radial basis functions in the stream function
equation, which is an advantage of the DRBEM.

5.2 Problem Formulation and Governing Equations

Figure 5.1 displays the schematic of the considered model. It is a two-dimensional
cavity of which top wall moves horizontally at a constant velocity U0 and is
considered to be adiabatic. The vertical left wall is linearly heated whereas the right
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Fig. 5.1 Geometry of the
problem
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wall is kept at a constant cold temperature Tc. The bottom wall of the cavity is
maintained at a constant hot temperature Th. Air is selected as the working fluid
at a Prandtl number (Pr) of 0.71. The gravity acts downwards and the uniform
magnetic field of a constant strength B0 is imposed with an inclination angle φ .
The viscous dissipation and Joule heating effects are taken as negligible. In addition,
the magnetic Reynolds number is assumed to be small so that the induced magnetic
field is neglected. All fluid physical properties are assumed to be constant except
the density variations according to the Boussinesq approximation. The governing
equations for the problem under consideration are based on the conservation laws
of mass, momentum, and thermal energy in two dimensions. Thus, following
the aforementioned assumptions, these equations of the steady, laminar flow of a
viscous and electrically conducting fluid subjected to a uniform inclined magnetic
field can be written in the non-dimensional form [KeGo12] as

∂u
∂x

+
∂v
∂y

= 0 (5.1)

1
Re
∇2u =

∂p
∂x

+u
∂u
∂x

+ v
∂u
∂y
− Ha2

Re
(vsinφ cosφ −usin2 φ)

1
Re
∇2v =

∂p
∂y

+u
∂v
∂x

+ v
∂v
∂y
−RiT− Ha2

Re
(usinφ cosφ − vcos2 φ)

(5.2)

1
RePr

∇2T = u
∂T
∂x

+ v
∂T
∂y

(5.3)
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where u, v, p, T are the x- and y-velocity components, pressure, and the temperature
of the fluid, respectively. In these equations, the nondimensional parameters are
defined as: Re = U0l/ν , the Reynolds number, Pr = ν/α , the Prandtl number, Gr =
gβΔTl3/ν2, the Grashof number, Ha = B0l

√
σ/μ , the Hartmann number and Ri =

Gr/Re2, Richardson number where this ratio is used to indicate the relative strengths
of the two modes of convection in a mixed convection. Here, ν , α , β , σ , and μ are
the kinematic viscosity, the thermal diffusivity, the thermal expansion coefficient,
electrical conductivity, and the viscosity coefficients of the fluid, respectively. The
temperature difference is ΔT = Th− Tc, and U0, l are the reference velocity and
length, respectively.

The nondimensional boundary conditions corresponding to the considered prob-
lem are

On the sliding top lid: u = 1, v = 0, ∂T/∂n = 0
On the bottom wall: u = v = 0, T = 1
On the left vertical wall: u = v = 0, T = 1− y
On the right vertical wall: u = v = 0, T = 0 .

In order to eliminate the pressure and to satisfy the continuity equation automati-
cally, we introduce the stream function ψ(x,y) and the vorticity w(x,y) with

∂ψ
∂y

= u,
∂ψ
∂x

=−v, w =
∂v
∂x
− ∂u
∂y

.

Then, the equations (5.1)–(5.3) are transformed into

∇2ψ =−w (5.4)

∇2w = Re(
∂w
∂x

∂ψ
∂y
− ∂w
∂y

∂ψ
∂x

)−ReRi
∂T
∂x

−Ha2
(
∂ 2ψ
∂x∂y

sin2φ +
∂ 2ψ
∂x2 cos2 φ +

∂ 2ψ
∂y2 sin2 φ

) (5.5)

∇2T = PrRe(
∂T
∂x

∂ψ
∂y
− ∂T
∂y

∂ψ
∂x

) (5.6)

with the corresponding boundary conditions

On the sliding top lid: ψ = 0, ψx = 0, ψy = 1, ∂T/∂n = 0
On the bottom wall: ψ = 0, ψx = ψy = 0, T = 1
On the left vertical wall: ψ = 0, ψx = ψy = 0, T = 1− y
On the right vertical wall: ψ = 0, ψx = ψy = 0, T = 0 .

(5.7)
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On the other hand, the unknown boundary values for vorticity will be obtained from
the stream function equation (5.4) by using a radial basis function approximation
during the application of DRBEM.

5.3 Method of Solution

The governing equations (5.4)–(5.6) along with boundary conditions (5.7) are
discretized using the dual reciprocity boundary element method. Since the MHD
mixed convection equations are nonlinear and coupled in terms of stream function,
vorticity, and temperature, they are solved in an iterative manner.

The aim of the DRBEM is to transform the governing equations of the problem
into boundary integral equations. In the application, the terms except the Laplacian
will be treated as inhomogeneity, [BrPa92], and the equations (5.4)–(5.6) are
weighted with the two-dimensional fundamental solution of Laplace equation,
u∗ = 1/2π ln(1/r). Following the application of the Green’s second identity, the
equations (5.4)–(5.6) become

ciψi +
∫

Γ
(q∗ψ−u∗

∂ψ
∂n

)dΓ =−
∫

Ω
(−w)u∗dΩ (5.8)

ciwi +
∫

Γ
(q∗w−u∗

∂w
∂n

)dΓ = −
∫

Ω

(

Re(
∂w
∂x

∂ψ
∂y
− ∂w
∂y

∂ψ
∂x

)−ReRi
∂T
∂x

−Ha2(
∂ 2ψ
∂x∂y

sin2φ +
∂ 2ψ
∂x2 cos2 φ +

∂ 2ψ
∂y2 sin2 φ)

)

u∗dΩ

(5.9)

ciTi +
∫

Γ
(q∗T−u∗

∂T
∂n

)dΓ =−
∫

Ω
PrRe(

∂T
∂x

∂ψ
∂y
− ∂T
∂y

∂ψ
∂x

)u∗dΩ (5.10)

where q∗ = ∂u∗/∂n, Γ is the boundary of the domain Ω and the subscript i denotes
the source point. The constant ci is given by ci = θi/2π with the internal angle θi at
the source point.

The integrands of the domain integrals on the right-hand side of Equations
(5.8)–(5.10) are treated as inhomogeneity. Thus, they are approximated by a set of
radial basis functions fj(x,y) linked with the particular solutions ûj to the equation
∇2ûj = fj. The approximations for these integrands are given by ∑N+L

j=1 αjfj(x,y),

∑N+L
j=1 βjfj(x,y), and ∑N+L

j=1 γjfj(x,y), respectively, for Equations (5.8), (5.9), and
(5.10). The coefficients αj, βj, and γj are undetermined constants. The numbers of
the boundary and the internal nodes are denoted by N and L, respectively. Now,
the right-hand sides of Equations (5.8)–(5.10) also involve the multiplication of the
Laplace operator with the fundamental solution u∗, which can be treated in a similar
manner by the use of DRBEM, [BrPa92], to obtain the following boundary only
integrals,
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ciψi +
∫

Γ
(q∗ψ−u∗

∂ψ
∂n

)dΓ =
N+L

∑
j=1

αj

[

ciûji +
∫

Γ
(q∗ûj−u∗q̂j)dΓ

]

(5.11)

ciwi +
∫

Γ
(q∗w−u∗

∂w
∂n

)dΓ =
N+L

∑
j=1

βj

[

ciûji +
∫

Γ
(q∗ûj−u∗q̂j)dΓ

]

(5.12)

ciTi +
∫

Γ
(q∗T−u∗

∂T
∂n

)dΓ =
N+L

∑
j=1

γj

[

ciûji +
∫

Γ
(q∗ûj−u∗q̂j)dΓ

]

(5.13)

where q̂ = ∂ ûj/∂n. The use of constant boundary elements for the discretiza-
tion of the boundary leads to the corresponding matrix-vector form of Equa-
tions (5.11)–(5.13)

Hψ−G
∂ψ
∂n

= (HÛ−GQ̂)F−1{−w} , (5.14)

(Hw−G
∂w
∂n

) = (HÛ−GQ̂)F−1

{

Re(
∂w
∂x

∂ψ
∂y
− ∂w
∂y

∂ψ
∂x

)−ReRi
∂T
∂x

− Ha2(
∂ 2ψ
∂x∂y

sin2φ +
∂ 2ψ
∂x2 cos2 φ +

∂ 2ψ
∂y2 sin2 φ)

} (5.15)

(HT−G
∂T
∂n

) = (HÛ−GQ̂)F−1
{

PrRe(
∂T
∂x

∂ψ
∂y
− ∂T
∂y

∂ψ
∂x

)

}

(5.16)

where the matrices Û and Q̂ are constructed by taking each of the vectors ûj and q̂j

as columns, respectively. The (N +L)× (N +L) matrix F contains the coordinate
functions fj as columns. The components of the matrices H and G are

Hij = ciδij +
1

2π

∫

Γj

∂
∂n

(

ln(
1
r
)

)

dΓj, Hii =−
N

∑
j=1,j �=i

Hij

Gij =
1

2π

∫

Γj

ln(
1
r
)dΓj, Gii =

A
2π

(ln(2/A)+1)

where r is the distance from node i to element j, A is the length of the element,
and δij is the Kronecker delta function. In order to solve the resulting DRBEM
equations, which are nonlinear and coupled, we need to use an iterative process with
initial estimates of vorticity and temperature. First, the stream function equation
(5.14) is solved by giving an initial estimate for vorticity. Thus, we obtain both the
interior and boundary values of stream function, which will be used to calculate the
x- and y-derivatives of itself by means of polynomial type radial basis functions.
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The insertion of these derivative values in the vorticity equation (5.15) and the use
of an initial estimate for the temperature lead to the linearization of the vorticity
equation. Once the vorticity values are obtained at all points in the domain, a
similar procedure is employed for the solution of the energy equation (5.16). In each
iteration, the required space derivatives of the unknowns ψ , w, and T , and also the
unknown vorticity boundary conditions are obtained by using the coordinate matrix
F as

∂R
∂x

=
∂F
∂x

F−1R,
∂R
∂y

=
∂F
∂y

F−1R, w =−(∂
2F
∂x2 F−1ψ+

∂ 2F
∂y2 F−1ψ)

where R is one of the unknowns ψ , w, or T . This can be regarded as one of
the advantages of DRBEM. The iterative procedure will stop when a preassigned
tolerance is reached between two successive iterations.

5.4 Numerical Results and Discussion

The DRBEM analysis for the two-dimensional MHD mixed convection flow under
consideration is performed at the Reynolds number of Re = 100 to investigate
the effects of the Hartmann and Richardson numbers on the flow and temperature
fields. The boundaries of the cavity are discretized by using an adequate number of
constant boundary elements according to different combination of Ha and Ri values.
For example, maximum N = 240 constant boundary elements are used for the case
when Ha = 50 and Ri = 100.

First, to determine the accuracy of the present numerical algorithm, the average
Nusselt number is calculated for a lid-driven cavity whose top wall is moving to the
right with a constant velocity in the absence of a magnetic field (Ha= 0) when Gr =
100 and Pr = 0.71. The agreement of the present results with the ones available in
the literature is presented in Table 5.1 for several values of Reynolds and Richardson
numbers.

Figure 5.2 shows the effect of the Richardson number in the absence of the mag-
netic field, Ha = 0. As Ri increases, the core vortex of the streamlines concentrated
at the top of the cavity in the direction of the lid-driven velocity moves downwards

Table 5.1 Comparison of average Nusselt number with available results in
literature.

Re Ri Present [Wa09] [KeGo12] [KhCh99] [IwHy93]

1 100 0.99258 1.00033 1.0094 − −
100 0.01 2.0883 2.03116 2.09 2.01 1.94

400 0.00062 4.2914 4.0246 4.08082 3.91 3.84

1000 0.0001 6.5134 6.48423 6.54687 6.33 6.33
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Fig. 5.2 The effect of Richardson number on streamlines (top) and isotherms (bottom) for Ha= 0:
(a) Ri = 0.01, (b) Ri = 1, (c) Ri = 10, (d) Ri = 100.

through the center of the cavity. In addition, the stream function values increase in
magnitude as the flow regime is transformed from forced convection (Ri = 0.01) to
mixed convection (Ri = 1), and finally to natural convection (Ri = 10, 100). When
Ri = 100, a small secondary vortex is formed at the top left corner of the cavity.
On the other hand, the gradient of the temperature at heated and linearly heated
walls increases as Ri increases. Moreover, the isotherms move towards to the walls
of the cavity with an increase in Ri.

The flow behavior and the temperature distribution for the cases of the forced
convection Ri = 0.01, the mixed convection Ri = 1, and the natural convection
Ri = 100 (from top to bottom) when (a) Ha = 25, (b) Ha = 50 are visualized in
Figure 5.3 and Figure 5.4 for the inclination angles φ = 0 and φ = π/2, respectively.
The formation of new circulations occurs in the flow field with the application of
the magnetic field horizontally (φ = 0) at Ri = 0.01. That is, as Hartman number
increases from Ha = 0 to Ha = 25 (see top rows of Figure 5.2 and Figure 5.3),
a secondary vortex develops at the bottom of the cavity; and the value of the
stream function for the main flow decreases in magnitude. When Hartmann number
increases to Ha = 50, the values of the ψ continue to decline in magnitude, and a
tertiary weak circulation which agrees with the core vortex develops at the bottom of
the cavity. Further, the secondary circulation, which is counterclockwise, improves
and the main flow at the top of the cavity weakens for the higher value of Hartmann
number Ha = 50. On the other hand, when the magnetic field is applied vertically
(φ = π/2) at Ri = 0.01 (see top row of Figure 5.4), the core of the main flow
moves towards the top wall and extends horizontally for both Ha = 25 and Ha = 50.
Moreover, the values of ψ drop steadily in magnitude by an increase in Ha similar
to the case when φ = 0, Ri = 0.01.
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Fig. 5.3 Streamlines and isotherms for Ri= 0.01 (top), Ri= 1 (middle), Ri= 100 (bottom), φ = 0:
(a) Ha = 25, (b) Ha = 50.

At Ri = 1 when the magnetic field is applied horizontally (see middle row in
Figure 5.3), the core vortex of the flow moves towards the top right corner of the
cavity with an increase in Ha from 0 to 25, and the main vortex is separated into
two pieces with the application of a higher strength of magnetic field of Ha = 50.
The isotherms have similar profiles with Ri = 0.01 for both Hartmann numbers. On
the other hand, for the case of vertically applied magnetic field φ = π/2 (see middle
row in Figure 5.4), the core circulation of the flow moves to the right and up and
extends in y-direction as Ha increases. The behavior of the isotherms is also similar
to the ones at Ri = 0.01. However, at Ha = 25 the isotherms where T = 0.3 show
more convection and rise towards the top wall. For this case, the streamlines have
also a downward inclination towards the cold wall and the values of ψ increase
in magnitude when compared to the case Ri = 0.01. It is also observed that the
inclusion of the magnetic field with inclination angles φ = 0, π/2 reduces the
effect of an increase in Richardson number from Ri = 0.01 to Ri = 1 on isotherms,
especially when T = 0.3, 0.4 in the case of absence of magnetic field displayed in
Figure 5.2(b).

At the highest Richardson number Ri = 100 when φ = 0, the isotherms rise
towards the top wall and a depletion of the temperature gradient on the hot bottom
wall is seen as Ha increases. At Ha = 25, the core of the main flow is suppressed
down following the formation of a secondary circulation close to the upper side of
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Fig. 5.4 Streamlines and isotherms for Ri = 0.01 (top), Ri = 1 (middle), Ri = 100 (bottom), φ =
π/2 : (a) Ha = 25, (b) Ha = 50.

linearly heated wall. This secondary circulation weakens and a movement at the
top of the cavity for ψ is observed as Ha increases to 50. On the other hand, when
the magnetic field is applied vertically φ = π/2, similar to the case when φ = 0, a
secondary vortex formation occurs at the left top corner of the cavity and it becomes
intense as Ha increases to 50. Moreover, the main core of the flow gains an elliptical
form when compared to the case Ri = 1. The isotherms are noticeably affected at
Ri = 100 and the isotherms close to the cold wall moves up, that is, the heat transfer
increases.

Finally, the effect of the direction of the applied magnetic field on the flow
behavior and temperature distribution is analyzed by taking three inclination angles
φ = π/6, π/4, π/3 at fixed Ha = 25 and Ri = 1. The streamlines and the isotherms
are displayed in Figure 5.5. Although the isotherms show almost a similar behavior
in each φ , the isotherms where T = 0.3 rise slightly towards the top wall in the
direction of applied magnetic field as φ increases. On the other hand, the core
vortex of the streamlines is affected significantly with a change in the direction of
the magnetic field. That is, the main circulation concentrated at the top right corner
of the cavity when φ = π/6 extends in the direction of the applied magnetic field
and its magnitude decreases slightly as the inclination angle increases to π/3.
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Fig. 5.5 The effect of the inclination angle φ on streamlines (top) and isotherms (bottom) for
Ha = 25, Ri = 1: (a) φ = π/6, (b) φ = π/4, (c) φ = π/3.

5.5 Conclusions

The mixed convection flow in a lid-driven cavity with a linearly heated wall is
analyzed by using the dual reciprocity BEM with constant elements. Numerical
simulations are carried out for pertinent parameters in ranges: Ri= 0.01−100, Ha=
0–50, and for a fixed Reynolds number Re = 100 with several inclination angles.
The obtained results show that the flow behavior and the heat transfer characteristics
are significantly influenced by the use of different combination of Richardson and
Hartmann numbers. Formation of additional circulations is observed in the flow field
by a transition from the forced and mixed convection flow regimes to the dominating
natural convection flow regime as the Hartmann number increases. The application
of the magnetic field reduces the effect of the Richardson number on the temperature
distribution during the transition between forced, mixed, and natural convection
regimes. Thus, an external magnetic field in different directions can be used to
control the behavior of the flow and heat transfer in a cavity. All the present results
are in good agreement with the previously published results given in [KeGo12].
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Chapter 6
Nonlinear Method of Reduction
of Dimensionality Based on Artificial Neural
Network and Hardware Implementation

J.R.G. Braga, V.C. Gomes, E.H. Shiguemori, H.F.C. Velho,
A. Plaza, and J. Plaza

6.1 Introduction

The technological development of imaging sensors of high spectral resolution,
called multi- or hyper-spectral sensors, enables the acquisition of information on
dozens up to thousand of spectral bands. Due to the large amount of available
information, the reduction of the dimensions for the provided data, without loss
of information, is a challenge [Ch13].

There are several schemes for reducing the dimensionality of data, one of them
is the Principal Component Analysis (PCA) [An09]. Such analysis deals with linear
transformation, and this limitation can influence the data classification for hyper-
spectral sensors [LiEtAl12]. This is a motivation to study of nonlinear techniques for
data reduction. One of such techniques is the Nonlinear Principal Component Anal-
ysis (NL-PCA), based on artificial neural networks (ANN) [LiEtAl12, DeLiDu09].

In this chapter, a multi-layer perceptron ANN [SiEtAl13] classifier, with back
propagation for training, is employed. The general procedure to configure an ANN
is an empirical one, where the ANN architecture is defined by an expert. Here, a
self-configuring strategy is applied, where the optimal NN architecture is obtained
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by solving an optimization problem. A new metaheuristic, named Multi-particle
Collision Algorithm (MPCA) [LuBeVe08], is used to compute the minimum value
for the objective function.

Finally, all optimal MLP-NNs are implemented on a hardware component: Field
Programmable Gate Arrays. The use of hardware divide allows a fast parallel image
processing with low energy demand.

6.2 Methodology

Figure 6.1 exhibits the methodology followed in this study.

6.2.1 Principal Component Analysis

The Principal Component Analysis (PCA) can be used for data reduction by
eliminating less representative information [GoWo00]. The PCA reduction is based
on selecting a smaller data set, but with almost the same variance from the original
data. An algorithm for finding the principal components from a data set is expressed
below:

1. Given a data set with n vectors with dimension m;

x1 =

⎡

⎢
⎢
⎢
⎣

a1

a2
...

am

⎤

⎥
⎥
⎥
⎦

. . . xn =

⎡

⎢
⎢
⎢
⎣

a1

a2
...

am

⎤

⎥
⎥
⎥
⎦

.

Fig. 6.1 Flowchart of the methodology used.
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2. From these vectors, calculate the average μx.
3. Compute a new vector from the data set: vi = xi−μx (i = 1,2,3, . . . ,n).
4. Multiplying the vector vi by its transpose: Ai = vi× vi)

T .
5. Covariance matrix: perform the sum of matrices above and divide by n:

Mcov =
1
n

n

∑
i=1

Ai . (6.1)

6. Compute all the eigenvalues and eigenvectors of the covariance matrix (the QR
method, or even the deflation technique [An09]). The eigenvector set consists of
the principal components from the data set.

7. For generating the data set with reduced size, determine a reference eigenvalue.
After that, consider only the reduced matrix containing the maximum eigenvalue
(in module) up to the reference eigenvalue.

6.2.2 Artificial Neural Network

The Artificial Neural Network (ANN) is a machine designed to emulate the human
brain [Ha01], where:

(a) knowledge is acquired through a learning process;
(b) the basic unit of operation is the artificial neuron;
(c) connections among neurons, called synapses, store the acquired knowledge.

The ANN is usually implemented using electronic components, it can be
simulated by programming in a digital computer. The output of an ANN is given by

yk = ϕ(vk) (k = 1,2, . . . ,m) (6.2)

where ϕ(.) is the activation function, and vk is a linear combination of all inputs
xj (j = 1,2, ...,n) multiplied by their respective synaptic weight wkj. The activation
function is the nonlinear component for this mapping. Heaviside, sigmoid, hyper-
bolic tangent functions are usually used as an activation function in an artificial
neuron.

Figure 6.2 displays a representation for an artificial neuron. More than one hidden
layer can be employed to define an ANN. A very popular topology for ANN is the
multi-layer perceptron (MLP). Figure 6.2 shows a schematic of artificial neuron.

The most popular algorithm to determine the connection weights (learning phase)
is the error back-propagation algorithm [RuHiWi86]. The latter algorithm is an
example of supervised learning by error correction [Ha01]. Such learning algorithm
can be divided into two distinct steps:
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Fig. 6.2 Representation for an artificial neuron.

Fig. 6.3 Multi-layer perceptron ANN architecture.

(i) Each input pattern produces a response (output), and a value of error is obtained
by comparison with the target set.

(ii) The weights are updated from the calculated error.

6.2.3 Self-Associative Artificial Neural Network

Consider a fully connected MLP neural network with three hidden layers—see
Figure 6.4. The purpose of such NN is to produce an output identical to the input
data [DeLiDu09, LiEtAl12].
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Fig. 6.4 Outline for a self-associative ANN.

The ANN with the architecture showed in Figure 6.4 is the operator of Nonlinear
Principal Component Analysis (NL-PCA). The numbers of neurons in the input and
output layers are the same. The mapping layer and re-mapping layer have a sufficient
amount of neurons (equal). The output of this ANN is an approximation of the input
data. The bottleneck layer has a (much) smaller amount of neurons than the other
hidden layers. This is a nonlinear representation of the input data with dimension
reduction. For practical purposes, we will not be dealing with raw input data, but
with data emerging from the bottleneck layer [DeLiDu09].

6.2.4 Multi-Particle Collision Algorithm

Artificial neural networks have huge success in many applications. However, a
tedious job that requires participation of an expert is the configuration of a neural
network. Here, the problem of finding an optimal configuration for the neural
network is formulated as an optimization problem, where the objective function
is expressed as:

J(z) = penalty×
(
ρ1×Etrain +ρ2×Egen

ρ1 +ρ2

)

(6.3)

where ρ1 = 1 and ρ2 = 0.1 are the same values proposed by [CaRaCh11], which are
adjustment factors that magnify the relevance attributed to the training error Etrain

(see Eq. 6.4), and generalization error Egen (see Eq. 6.5), respectively [CaRaCh11].
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Etrain =
1
N

N

∑
k=1

(yk− ŷk)
2 (6.4)

Egen =
1

M− (N +1)

M

∑
k=N+1

(yk− ŷk)
2 (6.5)

with yk and ŷk being the ANN output and the target value, respectively. The unknown
vector z has 5 entries: # hidden layers (max = 3), # neurons for each hidden
layer (max = 32), the learning ratio, momentum parameter – both used during the
training phase, and type of activation function (only three: logarithmic, sigmoid, and
hyperbolic tangent).

The penalty term is used to look for a simpler ANN, with the smallest number
of neurons and the fastest convergence for calculating the connection weights.
However, the penalty term will not be used in our applications.

The minimum for the objective function J(z) (Eq. 6.3) is computed by the Multi-
Particle Collision Algorithm (MPCA) [LuBeVe08], based on Particle Collision
Algorithm [SaOl86]. The MPCA was modified by [AnEtAl14] to find the best value
for objective function 6.3.

6.3 Results

The data set used was obtained from the Institute of Advanced Studies (IEAv, Brazil)
and covers an area from São José dos Campos (SP), Brazil. Images were acquired
by air-transported Hyperspectral Scanner Sensor (HSS), with 37 bands from the
electromagnetic spectrum into range [0.44 μm, 4 μm]. The image spatial resolution
for the HSS sensor ranging between 2 and 9 meters [Ca03]. There is a ground truth
of 4 regions of interest used to evaluate the land classification. Figure 6.5 shows a
region on São José dos Campos area, with the 4 regions of interest and the respective
ground truth.

An MLP-NN is used as an image classifier. For self-configuring the NN, 105
images were selected, where each region is represented by the average of the pixels
in a 3× 3 matrix for each band. The data was split into three sets: training set,
validation set, and testing set – see Table 6.1.

Before the data reduction by PCA or NL-PCA, and classification by MLP-NN,
the pixels (radiance) were normalized:

pN =
p−pMin

pMax−pMin
(6.6)

where p is the raw (pixel) data, pN is the normalized pixel value, and pMin and pMax

are the lowest the largest pixel values found in the data set.
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Fig. 6.5 (A) Original image obtained by HSS sensor, (B1) left: 4 regions of interest, right: the
ground-truth for 4 cited regions, and (C) the legend for the classes.

Table 6.1 Data organization for train-
ing and testing the MLP-NN.

Numbers of patterns to training 55

Numbers of patterns to validation 15

Numbers of patterns to test 35

After the data normalization, the PCA method was applied. Only 6 principal
components represent 99% the variability of the data. The MPCA was employed
to find the optimal configuration of the MLP-NN to promote the data reduction by
NL-PCA method. The MPCA was also used to determine the optimal architecture
for the neural classifier.

Three ANNs were designed: (A) for performing the NL-PCA, (B) neural
classifier with input data from standard PCA, and (C) neural classifier with input
data from NL-PCA. The optimal configuration obtained with MPCA meta-heuristic
is shown in Table 6.2.

To evaluate the data classification, the κ-index was used. The κ-index is a
measure to quantify the deviation (classified data) from the exact values. The
evaluation results for classification of κ-index average for 4 regions, overall
accuracy, and average accuracy are shown in Table 6.3.
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Table 6.2 Optimal architectures of the MLP found by MPCA.

Configuration A Configuration B Configuration C

Input Layer 37 6 7

First Hidden Layer 25 25 20

Second Hidden Layer 7 — —

Third Hidden Layer 25 — —

Output Layer 37 3 3

Activation Function Hyperbolic Tangent Hyperbolic Tangent Hyperbolic Tangent

Learning Rate 0.05 0.25 0.22

Momemtum 0.9 0.83 0.87

Table 6.3 Evaluation results obtained from classification by PCA of 4 regions
using HSS sensor.

Total Accuracy Average Accuracy κ-Index

NL-PCA + Classification 68.58% 61.61% 0.55

PCA + Classification 67.86% 65.55% 0.59

6.3.1 Execution of NLPCA in Hardware

The data reduction by the NL-PCA method was also implemented on the hardware
device Xilinx Virtex II Pro FPGA. The VHDL1 was used to configure the FPGA.
The Cray XD1 hybrid computer system has 6 interconnected processing nodes,
where each node has 2 AMD processors (CPU) and one FPGA.

If an FPGA is configured as an artificial neural network, the device can be
identified as a neuro-computer. The implementation of the MLP-NN on FPGA has
four different modules: (a) the MAC (Multiplier And Accumulator): designed to do
the product between inputs and weights (or bias); (b) artificial neuron: using the
MAC and control structures; (c) combination of neurons: the inputs are connected
by a single bus; (d)LUT (LookUp Table) unit: the neurons can receive data, and the
results (outputs) are flowing to the LUT unit – defined to address 524,288 values
of activation function. Finally, the layers can be concatenated in series forming the
MLP-NN. Figure 6.6 shows all implemented components of our neuro-computer.

The activation phase of the optimal architecture for both MLP-NNs, one used as
NL-PCA operator and another one to perform the classification, was implemented
in the FPGA. A comparison between the results produced by the implementation of
software and hardware is performed, the 4 regions used to evaluate the classification
in software were used to evaluate the classification in hardware. Table 6.4 shows the
average of result of κ-index, overall accuracy, and average accuracy of 4 regions
performed in FPGA.

1VHDL: VHSIC (Very High Speed Integrated Circuits) Hardware Description Language.
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Fig. 6.6 Implementation of MLP-NN on FPGA: (A) MAC unit, (B) pipeline for LUT unit,
(C) the MLP implemented in FPGA.

Table 6.4 Results obtained for classification by means of PCA with 4 HSS sensor regions.

Total Accuracy Average Accuracy κ-Index

NLPCA + Classification in Hardware 68.58% 61.61% 0.55

Fig. 6.7 Neural classifier for 4 regions with data reduction: PCA and NL-PCA on software, and
NL-PCA on FPGA.

Figure 6.7 displays the classification results by using data reduction considering
two strategies: PCA + NN-classifier (software), and NL-PCA + NN-classifier
(software), and NL-PCA + NN-classifier (hardware = FPGA). The results express a
good performance of NL-PCA for data reduction. The MLP-NN implementation on
FPGA produced very good results in comparison with the software implementation.
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6.4 Conclusions

A case study was presented to evaluate the NL-PCA method, a nonlinear scheme
for reducing data dimensionality. The NL-PCA utilizes a self-associative MLP-NN
as the reduction operator. The standard procedure by using PCA was also used
for comparison. The data reduction was employed to deal with image processing
with data from multi- or hyper-spectral sensors. In our context, image processing
means image classification. An artificial neural network was designed as an image
classifier.

A self-configuring scheme, formulated as an optimization problem, was applied
to define the best configuration for all ANNs employed. The optimization problem
was solved by the MPCA meta-heuristic. Such procedure does not need an expert
to define a workable neural network.

Finally, the ANN implemented on FPGA produced good results in comparison
with software implementation. This is an important result, because the system can be
embedded in aircrafts or satellites, allowing a HPC (High Performance Computing)
environment working in parallel (data acquisition, pre-processing (data reduction),
and image processing (image classification)) with low energy consumption.
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Chapter 7
On the Eigenvalues of a Biharmonic
Steklov Problem

D. Buoso and L. Provenzano

7.1 Introduction

Let Ω be a bounded domain (i.e., a bounded connected open set) of class C2 in R
N ,

N ≥ 2 and τ > 0. We consider the following Steklov eigenvalue problem for the
biharmonic operator

⎧
⎪⎨

⎪⎩

Δ 2u− τΔu = 0, in Ω ,
∂ 2u
∂ν2 = 0, on ∂Ω ,

τ ∂u
∂ν −div∂Ω

(
D2u.ν

)− ∂Δu
∂ν = λu, on ∂Ω ,

(7.1)

in the unknowns λ (the eigenvalue) and u (the eigenfunction). Here ν denotes the
unit outer normal to ∂Ω , div∂Ω the tangential divergence operator, and D2u the
Hessian matrix of u. The spectrum consists of a diverging sequence of eigenvalues
of finite multiplicity

0 = λ1 < λ2 ≤ ·· · ≤ λj ≤ ·· · ,

where the eigenvalues are repeated according to their multiplicity.
When N = 2, problem (7.1) arises in the study of the vibration modes of a

free elastic plate subject to lateral tension (represented by the parameter τ) whose
total mass is concentrated at the boundary. We can describe this concentration
phenomenon as follows.
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For any ε sufficiently small we consider the ε-neighborhood of ∂Ω , namelyωε =
{x ∈Ω : 0 < d(x,∂Ω)< ε}. We fix M > 0 and define the function ρε on Ω as
follows:

ρε=

{
ε , in Ω \ωε ,
M−ε |Ω\ωε |
|ωε | , in ωε .

For any x∈Ω we have ρε(x)→ 0 as ε→ 0. Moreover,
∫
Ω ρε =M for all ε > 0. Then

we consider the following eigenvalue problem for the biharmonic operator subject
to Neumann boundary conditions

⎧
⎪⎨

⎪⎩

Δ 2u− τΔu = λ (ε)ρεu, in Ω ,
∂ 2u
∂ν2 = 0, on ∂Ω ,

τ ∂u
∂ν −div∂Ω

(
D2u.ν

)− ∂Δu
∂ν = 0, on ∂Ω .

(7.2)

The spectrum consists of a diverging sequence of eigenvalues of finite multiplicity

0 = λ1(ε)< λ2(ε)≤ ·· · ≤ λj(ε)≤ ·· · ,
where the eigenvalues are repeated according to their multiplicity. Here we empha-
size the dependence of the eigenvalues on the parameter ε .

We remark that for N = 2 problem (7.2) provides the fundamental modes of
vibration of a free elastic plate with mass density ρε and total mass M, as discussed
in [Ch11, Chasman]. We refer to [Ch11] for the derivation and the physical
interpretation of problem (7.2).

It is possible to prove that the eigenvalues and the eigenfunctions of (7.2)
converge to the eigenvalues and eigenfunctions of (7.1) as ε goes to zero (see, e.g.,
[ArJiRo08, BuPr14, LaPr14]).

The aim of this paper is to study a few properties concerning the dependence
of the eigenvalues of (7.1) upon perturbations of the domain Ω which preserve the
measure.

First, we study the asymptotic behavior of the eigenvalues of (7.2) as ε → 0
providing an interpretation of (7.1) as the model of a free vibrating plate with all the
mass concentrated at the boundary (see Theorem 1). This fact suggests that (7.1) is
the natural fourth order generalization of the classical Steklov eigenvalue problem
for the Laplace operator, see [St02] and the recent [La14] for related problems.

Second, we consider the problem of the optimal shape of Ω for the eigenvalues
of (7.1) under the constraint that the measure of Ω is fixed. This problem has been
largely investigated for the Laplace operator subject to different homogeneous
boundary conditions. We refer to [He06, Henrot] for a collection of results on the
subject. See also [Ba80, Bandle]. As far as the biharmonic operator is concerned,
only a few results exist in literature. It has been proved in [Na95, Nadirashvili] for
N = 2 and soon generalized in [AsBe95, Ashbaugh, Benguria] for N = 3 that the
ball is a minimizer for the first eigenvalue of the biharmonic operator subject to
Dirichlet boundary conditions. In the recent paper [Ch11], it has been proved that
the first positive eigenvalue of problem (7.2) with constant mass density ρ ≡ 1 is
maximized by the ball among those sets with a fixed measure.
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As for Steklov boundary conditions, we refer to [BuFe09, Bucur, Ferrero, Gazzola]
and the references therein. The authors consider the following eigenvalue problem

⎧
⎨

⎩

Δ 2u = 0, in Ω ,

u = 0, on ∂Ω ,

Δu = λ ∂u
∂ν , on ∂Ω .

(7.3)

Problem (7.3) should not be confused with problem (7.1) and reveals a rather
different nature. (We note that one may refer to Steklov-type boundary conditions
for those problems where the spectral parameter enters the boundary conditions.)

By following the approach developed in [BuLa13, BuLa14] we prove that simple
eigenvalues and the symmetric functions of multiple eigenvalues of (7.1) depend
real analytically upon transformations of the domain Ω (see Theorem 2) and
we characterize those critical transformations which preserve the measure (see
Corollary 1). See also [LaLa04, LaLa06, LaLa07]. Then we show that the ball
is a critical point for all simple eigenvalues and all symmetric functions of the
eigenvalues under measure constraint in the sense of Theorem 3.

Finally, we prove the following isoperimetric inequality: “The ball is a maximizer
for the first positive eigenvalue of problem (7.1) among those bounded domains with
a fixed measure” (see Theorem 4). To do so, we follow the approach of [Ch11] and
in particular we study problem (7.1) when Ω is the unit ball in R

N , identifying the
first positive eigenvalue and the corresponding eigenfunctions.

Detailed proofs of the results announced in this paper can be found in [BuPr14].

7.2 Asymptotic Behavior of Neumann Eigenvalues

Let Ω be a bounded domain in R
N of class C2. Let λj and λj(ε), j ∈ N\{0}, be the

eigenvalues of (7.1) and (7.2), respectively. For the sake of simplicity and without
any loss of generality, we assume that M = |∂Ω |. We recall that λ1 = λ1(ε) = 0,
while λ2,λ2(ε)> 0 for all ε > 0.

We have the following result concerning the spectral convergence of problem
(7.2) to problem (7.1).

Theorem 1. Let Ω be a bounded domain in R
N of class C2. Then λj(ε)→ λj for

all j ∈ N \ {0}. Moreover the projections on the eigenspaces associated with the
eigenvalues converge in norm.

This theorem can be proved by using the notion of compact convergence for the
resolvent operators which implies, in the case of self-adjoint operators, convergence
in norm. It is well known that if a family of self-adjoint operators Aε converges in
norm to a self-adjoint operator A, then isolated eigenvalues of A are exactly the limits
of eigenvalues of Aε counting multiplicity. Moreover, eigenprojections converge in
norm. We refer to [BuPr14, LaPr14] for more details. We also refer to the recent
paper [ArLa13] for a general approach to the shape sensitivity analysis of higher-
order operators.
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Theorem 1 justifies our interpretation of problem (7.1) as the equations of a free
vibrating plate whose mass is concentrated at the boundary. However, we can also
directly obtain (7.1) by deriving the equations of motions of a free vibrating plate
with constant surface density. To do so, we follow the approach of [We52, ch.10-8]
in the case N = 2. We represent the displacement at rest of the plate by means of a
domain Ω ⊂ R

2 and we describe the vertical deviation from the equilibrium during
the vibration of each point (x,y) ∈ Ω at time t by means of a function v(x,y, t) ∈
C2(Ω × [t1, t2]). Then we write the Hamilton’s integral H of the system

H =
1
2

∫ t2

t1

∫

∂Ω
v̇2dσdt− 1

2

∫ t2

t1

∫

Ω

(
v2

xx + v2
yy +2v2

xy

)
+ τ
(
v2

x + v2
y

)
dxdydt.

(7.4)

According to Hamilton’s Variational Principle, the actual motion of the system
minimizes such integral. Let v ∈ C2(Ω × [t1, t2]) be a minimizer for H . Then by
differentiating (7.4) it follows that v satisfies

−
∫ t2

t1

∫

∂Ω
η v̈dσdt−

∫ t2

t1

∫

Ω
η
(
Δ 2v− τΔv

)
dxdydt

−
∫ t2

t1

∫

∂Ω

∂η
∂ν

∂ 2v
∂ν2 −η

(

τ
∂v
∂ν
−div∂Ω

(
D2v.ν

)
∂Ω −

∂Δv
∂ν

)

dσdt = 0,

for all η ∈ C2(Ω × [t1, t2]). We refer [Ch11] for the details. By the arbitrary choice
of η we obtain

⎧
⎪⎪⎨

⎪⎪⎩

Δ 2v− τΔv = 0, in Ω ,
∂ 2v
∂ν2 = 0, on ∂Ω ,

v̈+ τ ∂v
∂ν −div∂Ω

(
D2v.ν

)− ∂Δv
∂ν = 0, on ∂Ω ,

for all t ∈ R. As is customary, by looking for solution of the form v(x,y, t) =
u(x,y)ψ(t). We find that the temporal component ψ(t) solves the ordinary differ-
ential equation −ψ̈ = λψ for all t ∈ [t1, t2], while the spatial component u solves
problem (7.1).

7.3 Isovolumetric Perturbations

Given a bounded domain in R
N of class C2, we set

Φ(Ω) =

{

φ ∈ (C2 (Ω
))N

: φ injective and inf
Ω
|detDφ |> 0

}

.
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We observe that if Ω is of class C2 and φ ∈Φ(Ω), it makes sense to study problem
(7.1) on φ(Ω). For any φ ∈Φ(Ω) we denote by λj(φ), j ∈ N\{0}, the eigenvalues
of (7.1) on φ(Ω).

We plan to study the dependence of the eigenvalues upon the function φ .
In general, one cannot expect differentiability of the eigenvalues with respect to φ .
This is due, for example, to well-known bifurcation phenomena that occur when
multiple eigenvalues split from a simple eigenvalue. However, as is pointed out
in [BuLa13, BuLa14], in the case of multiple eigenvalues it is possible to prove
analyticity for the symmetric functions of the eigenvalues. Namely, given a finite set
of indexes F⊂N\{0}, one can consider the symmetric functions of the eigenvalues
with indexes in F

ΛF,s(φ) = ∑
j1<···<js∈F

λj1(φ) · · ·λjs(φ),

and prove that such functions are real analytic on the set

AΩ [F] =
{
φ ∈Φ(Ω) : λl(φ) �∈

{
λj(φ) : j ∈ F

} ∀l ∈ N\ (F∪{0})} .

Then it is possible to find formulas for the Fréchet derivatives of the symmetric
functions of the eigenvalues. It is convenient to set

ΘΩ [F] =
{
φ ∈AΩ [F] : λj1(φ) = λj2(φ) ,∀j1, j2 ∈ F

}
.

Theorem 2. Let Ω be a bounded domain of R
N of class C2. Let F be a finite

nonempty subset of N \ {0}. Then AΩ is open in Φ(Ω) and ΛF,s are real analytic
in AΩ . Moreover, let φ̃ ∈ ΘΩ [F] be such that ∂ φ̃(Ω) ∈ C4. Let v1, ...,v|F| be a
orthonormal basis of the eigenspace associated with the eigenvalue λF(φ̃). Then

d|φ=φ̃ (ΛF,s)(ψ) =−λ s
F(φ̃)
(|F|−1

s−1

) |F|
∑
l=1

∫

∂ φ̃(Ω)

(
λFKv2

l

+λF
∂ (v2

l )

∂ν
− τ |∇vl|2−|D2vl|2

)
μ ·νdσ , (7.5)

for all ψ ∈ (C2(Ω))N, where μ = ψ ◦ φ (−1), and K denotes the mean curvature
on ∂ φ̃(Ω).

The proof follows the lines of the corresponding results provided in [BuLa13]
and [BuLa14] for general polyharmonic operators subject to Dirichlet boundary
conditions and for the biharmonic operator subject to hinged boundary conditions.

We consider now the problem of finding critical points φ ∈ Φ(Ω) for the
symmetric functions of the eigenvalues under the condition that φ preserves the
measure. We set V (φ) =

∫
φ(Ω) dy =

∫
Ω |detDφ |dx. We fix V0 ∈]0,+∞[ and consider
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the set V(V0) = {φ ∈Φ(Ω) : V (φ) = V0}. Given Ω such that |Ω |= V0, V(V0) is
the subset of Φ(Ω) of those functions φ preserving the measure. By formula (7.5)
and by the Lagrange Multipliers Theorem we can characterize the critical points.

Corollary 1. Let all the assumptions of Theorem 2 hold. Then φ̃ ∈ Φ(Ω) is a
critical point for ΛF,s on V(V0) if and only if there exists a constant c ∈ R such
that

|F|
∑
l=1

(

λF(φ̃)
(

Kv2
l +

∂v2
l

∂ν

)

− τ |∇vl|2−|D2vl|2
)

= c, a.e.on ∂ φ̃(Ω),

where K denotes the mean curvature on ∂ φ̃(Ω).

Thanks to Corollary 1 we can prove that balls are critical points for the symmetric
functions of the eigenvalues under measure constraint, in the sense of the following

Theorem 3. Let φ̃ ∈ Φ(Ω) be such that φ̃(Ω) is a ball. Let λ̃ be an eigenvalue of
the problem in φ̃(Ω), and let F be the set of all j ∈ N \ {0} such that λj(φ̃) = λ̃ .
Then ΛF,s has a critical point at φ̃ on V(V0), for all s = 1, . . . , |F|.
The proof can be carried out as in [BuLa13, BuLa14]. Namely, given λ an
eigenvalue of problem (7.1) on the unit ball B in R

N , consider the subset F of N\{0}
of those indexes j such that the j-th eigenvalue of problem (7.1) in B coincides
with λ . Consider then v1, ...,v|F| an orthonormal basis of the eigenspace associated
with the eigenvalue λ , where the orthonormality is taken with respect to the scalar
product in L2(∂B). Then it is possible to show that the quantities∑|F|j=1 v2

j ,∑|F|j=1 |∇vj|2
and ∑|F|j=1 |D2vj|2 are radial functions. This fact and the fact that the mean curvature
K is constant on the ball allow to conclude.

7.4 The Isoperimetric Inequality

Let us consider problem (7.1) when Ω = B is the unit ball in R
N . It is convenient

to use spherical coordinates (r,θ) in R
N , where θ = (θ1, ...,θN−1), with r ∈ [0,1[ ,

θ1, ...,θN−2 ∈ [0,π] , θN−1 ∈ [0,2π]. In this case the boundary conditions can be
written in the following form

⎧
⎨

⎩

∂ 2u
∂ r2 |r=1

= 0,

τ ∂u
∂ r − 1

r2ΔS

(
∂u
∂ r − u

r

)
− ∂Δu

∂ r |r=1
= λu|r=1

,
(7.6)

where ΔS is the angular part of the Laplacian (see [Ch11] for details). Then,
the eigenfunctions of problem (7.1) on the ball can be described explicitly as in
the following lemma. We refer to [AbSt64, ch.9] for well-known definitions and
properties of Bessel functions.
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Lemma 1. Let B be the unit ball in R
N. An eigenfunction u of (7.1) is of the form

u(r,θ) = Rl(r)Yl(θ), where Yl(θ) is a spherical harmonic of some order l ∈ N,

Rl(r) = Alr
l +Blil(

√
τr) (7.7)

and Al and Bl are suitable constants such that

Bl =
l(1− l)

τi′′l (
√
τ)

Al. (7.8)

Here il denotes the ultraspherical modified Bessel function of the first kind, which is
defined by

il(z) = z1− N
2 I N

2 −1+l(z),

where Il(z) denotes the modified Bessel function of the first kind.

We note that equality (7.8) is obtained by imposing the boundary conditions (7.6)
to the function (7.7).

Lemma 1 allows to find explicit formulas for the eigenvalues. In the sequel we
will denote by λ(l) the eigenvalue corresponding to the eigenfunction ul defined in
Lemma 1.

Lemma 2. The eigenvalues λ(l) of problem (7.1) on B are delivered by the formula

λ(l) = l
(
(1− l)lil(

√
τ)+ τi′′l (

√
τ)
)−1[

3(l−1)l(l+N−2)il(
√
τ)

−(l−1)
√
τ
(
N−1+2Nl+2l(l−2)l+ τ

)
i′l(
√
τ)

+τ
(
(l−1)(l+2N−3)+ τ

)
i′′l (
√
τ)

+(l−1)τ
√
τi′′′l (
√
τ)
]
,

with l ∈ N.

Now we need to identify the index l satisfying λ(l) = λ2, that is the first positive
eigenvalue of (7.1). This is done by means of the following

Lemma 3. The first positive eigenvalue of problem (7.1) on B is λ2 = λ(1) = τ . The
corresponding eigenspace is generated by the coordinate functions {x1, ...,xN}.
The proof of Lemma 3 consists in two steps. In the first step we observe that 0 =
λ(0) < λ(1) = τ . Moreover, by using well-known recurrence relations for modified
ultraspherical Bessel functions of the first kind and their derivatives we are able to
prove that λ(1) < λ(2). In the second step we show that for any smooth radial function
R(r), the Rayleigh quotient
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Q(R(r)Yl(θ)) =
∫
Ω |D2(R(r)Yl(θ))|2 + τ |∇(R(r)Yl(θ))|2dx

∫
∂Ω R(r)2Yl(θ)2dσ

is an increasing function of l for l ≥ 2. This, combined with the variational
characterization of the eigenvalues, allows us to conclude that λ(l) is an increasing
function of l for l≥ 2.

We are ready to state the isoperimetric inequality.

Theorem 4. Among all bounded domains of class C2 with fixed measure, the ball
maximizes the first nonnegative eigenvalue, that is λ2(Ω)≤ λ2(Ω ∗), where Ω ∗ is a
ball with the same measure as Ω .

The proof can be carried out as in [He06, par.7.3]. Namely, we use the following
variational characterization of the sum of inverse of eigenvalues.

N+1

∑
l=2

1
λl(Ω)

= max

{
N+1

∑
l=2

∫

∂Ω
v2

l dσ

}

, (7.9)

where {vl}N+1
l=2 is a family in H2(Ω) satisfying

∫
Ω D2vi : D2vj + τ∇vi ·∇vjdx = δij

and
∫
∂Ω vldσ = 0 for all l = 2, ...,N + 1. We plug the functions vl = (τ |Ω |)− 1

2 xl,
with l = 1, ...,N, into (7.9) and we use the inequality

∫

∂Ω
f (|x|)dσ ≥

∫

∂Ω∗
f (|x|)dσ , (7.10)

where Ω ∗ is the ball with the same measure of Ω and f is a continuous, non-
negative, non-decreasing function defined on [0,+∞) and moreover is such that the
map t �→ (f (t1/N)− f (0)

)
t1−(1/N) is convex. Then the isoperimetric inequality easily

follows. We refer to [HiXu93] for the proof of (7.9) and to [BeBr99] for the proof
of (7.10).
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Chapter 8
Shape Differentiability of the Eigenvalues
of Elliptic Systems

D. Buoso

Let Ω be a bounded open set in R
N of class C1, m ∈ N. By H1(Ω) we denote the

Sobolev space of functions in L2(Ω) with derivatives in L2(Ω), and by H1
0(Ω) we

denote the closure in H1(Ω) of the space of C∞-functions with compact support
in Ω .

We consider the following eigenvalue problem in the weak form

∫

Ω

N

∑
α ,β=1

m

∑
i,j=1

aij
αβ
∂ui

∂xα

∂ϕj

∂xβ
dx = λ

∫

Ω
u ·ϕdx, (8.1)

for any ϕ ∈ V(Ω)m, in the unknowns u ∈ V(Ω)m (the eigenfunction), λ ∈ R (the
eigenvalue), where V(Ω) denotes either H1

0(Ω) (for Dirichlet boundary conditions)
or H1(Ω) (for Neumann boundary conditions).

Note that the classical formulation of the Dirichlet problem reads

{
−∑N

α ,β=1∑
m
i=1 aij

αβ
∂ 2ui

∂xα∂xβ
= λuj, j = 1, . . . ,m, in Ω ,

u = 0, on ∂Ω ,
(8.2)

while the classical formulation of the Neumann problem reads

⎧
⎨

⎩

−∑N
α ,β=1∑

m
i=1 aij

αβ
∂ 2ui

∂xα∂xβ
= λuj, j = 1, . . . ,m, in Ω ,

∑N
α ,β=1∑

m
i=1 aij

αβνβ
∂ui
∂xα

= 0, j = 1, . . . ,m, on ∂Ω ,
(8.3)

where ν denotes the outer unit normal to ∂Ω .
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Here and in the sequel, aij
αβ ∈ R are constant coefficients satisfying aij

αβ = aji
βα

and the Legendre–Hadamard condition, i.e.,

N

∑
α ,β=1

m

∑
i,j=1

aij
αβ ξiξjηαηβ ≥ θ |ξ |2|η |2, ∀ξ ∈ R

m,∀η ∈ R
N , (8.4)

for some θ > 0.
We consider in H1(Ω)m the bilinear form

< u,v >=
∫

Ω

N

∑
α ,β=1

m

∑
i,j=1

aij
αβ
∂ui

∂xα

∂vj

∂xβ
dx, (8.5)

for any u,v∈H1(Ω)m. Note that, for instance, it is possible to prove that the bilinear
form (8.5) defines on H1

0(Ω)m a scalar product whose induced norm is equivalent to
the standard one.

Note that problem (8.1) includes some important problems in linear elasticity.
For instance, the choice aij

αβ = δijδαβ + μδiαδjβ , where δij is the Kronecker delta
and μ ≥ 0 a constant, leads to the Lamé eigenvalue problem

{−Δu−μ∇divu = λu, in Ω ,

u = 0, on ∂Ω .
(8.6)

Problem (8.6) is very similar to the Reissner–Mindlin system

⎧
⎪⎨

⎪⎩

− μ
12Δβ − μ+λ

12 ∇divβ − μk
t2
(∇w−β ) = γ t2

12 β , in Ω ,

− μk
t2
(Δw−divβ ) = γw, in Ω ,

β = 0, w = 0, on ∂Ω ,

(8.7)

which arises in the study of the vibrations of a clamped plate. Here μ ,λ ,k, and t
are physical constants, γ is the eigenvalue, and (β ,w) is the eigenvector. Note that
the current discussion does not comprehend problem (8.7), since it presents lower-
order terms. However, the arguments we use can be easily adapted in order to treat
problem (8.7) as well (see [BuLa]).

Thanks to condition (8.4), it is possible to show that the eigenvalues of problem
(8.1) are nonnegative, have finite multiplicity, and can be represented as a non-
decreasing divergent sequence λk[Ω ], k ∈ N where each eigenvalue is repeated
according to its multiplicity. In particular,

λk[Ω ] = min
E⊂V(Ω)m

dimE=k

max
u∈E
u �=0

R[u],
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for all k ∈ N, where V(Ω) denotes either H1
0(Ω) (for problem (8.2)) or H1(Ω) (for

problem (8.3)), and R[u] is the Rayleigh quotient defined by

R[u] =

∫
Ω ∑

N
α ,β=1∑

m
i,j=1 aij

αβ
∂ui
∂xα

∂uj
∂xβ

dx
∫
Ω |u|2dx

.

For the sake of brevity, in the sequel we shall use Einstein notation, hence
summation symbols will be dropped.

In Section 8.1 we examine the problem of shape differentiability of the eigen-
values of problem (8.1). We consider problem (8.1) in φ(Ω) and pull it back to Ω ,
where φ belongs to a suitable class of diffeomorphisms. This analysis was exploited
in [LaLa04, LaLa07] for the Laplace operator, in [BuLa13, BuLa14, BuPr14] for
polyharmonic operators and in [BuLa] for the Reissner–Mindlin system (8.7). In
particular, we derive Hadamard–type formulas for the symmetric functions of the
eigenvalues of problem (8.1).

In Section 8.2 we consider the problem of finding critical points for the
symmetric functions of the eigenvalues of problem (8.1), under volume constraint.
This is strictly related to the problem of shape optimization of the eigenvalue
(see [He06] for a detailed discussion on the topic). Similarly to what was done in
[BuLa13, BuLa14, BuLa, BuPr14], and [LaLa06], we provide a characterization for
the critical domains, and show that, for a particular class of coefficients aij

αβ , balls
are critical domains for all the symmetric functions of the eigenvalues.

8.1 Analyticity Results

Let Ω be a bounded open set in R
N of class C1. We shall consider problem (8.1) in

a family of open sets parameterized by suitable diffeomorphisms φ defined on Ω .
Namely, we set

AΩ =

{

φ ∈ C1(Ω ;RN) : inf
x1,x2∈Ω

x1 �=x2

|φ(x1)−φ(x2)|
|x1− x2| > 0

}

,

where C1(Ω ;RN) denotes the space of all functions from Ω to R
N of class C1.

Note that if φ ∈AΩ then φ is injective, Lipschitz continuous, and infΩ |det∇φ |> 0.
Moreover, φ(Ω) is a bounded open set of class C1 and the inverse map φ (−1)

belongs to Aφ(Ω). Thus it is natural to consider problem (8.1) on φ(Ω) and
study the dependence of λk[φ(Ω)] on φ ∈ AΩ . To do so, we endow the space
C1(Ω ;RN) with its usual norm. Note that AΩ is an open set in C1(Ω ;RN),
see [LaLa04, Lemma 3.11]. Thus, it makes sense to study differentiability and
analyticity properties of the maps φ �→ λk[φ(Ω)] defined for φ ∈AΩ . For simplicity,
we write λk[φ ] instead of λk[φ(Ω)]. We fix a finite set of indexes F ⊂ N and we
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consider those maps φ ∈ AΩ for which the eigenvalues with indexes in F do not
coincide with eigenvalues with indexes not in F; namely, we set

AF,Ω = {φ ∈AΩ : λk[φ ] �= λl[φ ], ∀ k ∈ F, l ∈ N\F} .

It is also convenient to consider those maps φ ∈AF,Ω such that all the eigenvalues
with index in F coincide and set

ΘF,Ω =
{
φ ∈AF,Ω : λk1 [φ ] = λk2 [φ ], ∀ k1,k2 ∈ F

}
.

For φ ∈AF,Ω , the elementary symmetric functions of the eigenvalues with index
in F are defined by

ΛF,s[φ ] = ∑
k1,...,ks∈F
k1<···<ks

λk1 [φ ] · · ·λks [φ ], s = 1, . . . , |F|. (8.8)

We have the following

Theorem 1. Let Ω be a bounded open set in R
N of class C1 and F be a finite set

in N. The set AF,Ω is open in AΩ , and the real-valued maps ΛF,s are real-analytic
on AF,Ω , for all s = 1, . . . , |F|. Moreover, if φ̃ ∈ΘF,Ω is such that the eigenvalues
λk[φ̃ ] assume the common value λF[φ̃ ] for all k ∈ F, and φ̃(Ω) is of class C2, then
the Frechét differential of the map ΛF,s at the point φ̃ is delivered by the formula

d|φ=φ̃ (ΛF,s)[ψ] =−λ s
F[φ̃ ]
(|F|−1

s−1

) |F|
∑
l=1

∫

∂ φ̃(Ω)
aij
αβ
∂v(l)i

∂yα

∂v(l)j

∂yβ
ζ ·νdσ , (8.9)

for problem (8.2), or

d|φ=φ̃ (ΛF,s)[ψ] =−λ s
F[φ̃ ]
(|F|−1

s−1

) |F|
∑
l=1

∫

∂ φ̃(Ω)

⎛

⎝λF|v(l)|2−aij
αβ
∂v(l)i

∂yα

∂v(l)j

∂yβ

⎞

⎠ζ ·νdσ , (8.10)

for problem (8.3), for all ψ ∈ C1(Ω ;RN), where ζ = ψ ◦ φ̃ (−1) and {v(l)}l∈F is an
orthonormal basis in V(φ̃(Ω))m (with respect to the scalar product (8.5)) of the
eigenspace associated with λF[φ̃ ].

The proof of Theorem 1 can be easily done adapting that of [LaLa04, Theo-
rem 3.38] for the Dirichlet problem (8.2), and that of [LaLa07, Theorem 2.5] for the
Neumann problem (8.3), and it can be found in [BuTh].
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8.2 Isovolumetric Perturbations

We consider the following extremum problems for the symmetric functions of the
eigenvalues

min
V[φ ]=const

ΛF,s[φ ] or max
V[φ ]=const

ΛF,s[φ ], (8.11)

where V[φ ] denotes the N-dimensional Lebesgue measure of φ(Ω). Note that if φ̃ ∈
AΩ is a minimizer or maximizer in (8.11) then φ̃ is a critical domain transformation
for the map φ �→ΛF,s[φ ] subject to volume constraint, i.e.,

Ker d|φ=φ̃V ⊂ Ker d|φ=φ̃ΛF,s,

where V is the real-valued function defined on AΩ which takes φ ∈AΩ to V[φ ].
The following theorem provides a characterization of all critical domain trans-

formations φ (see also [BuLa13, BuLa14, BuLa, BuPr14], and [LaLa06]).

Theorem 2. Let Ω be a bounded open set in R
N of class C1, and F be a finite

subset of N. Assume that φ̃ ∈ΘF,Ω is such that φ̃(Ω) is of class C2 and that the
eigenvalues λj[φ̃ ] have the common value λF[φ̃ ] for all j ∈ F. Let {v(l)}l∈F be an
orthonormal basis in V(φ̃(Ω))m (with respect to the scalar product (8.5)) of the
eigenspace corresponding to λF[φ̃ ]. Then φ̃ is a critical domain transformation for
any of the functions ΛF,s, s = 1, . . . , |F|, with volume constraint if and only if there
exists c ∈ R such that

|F|
∑
l=1

aij
αβ
∂v(l)i

∂yα

∂v(l)j

∂yβ
= c, on ∂ φ̃(Ω), (8.12)

for problem (8.2), or

|F|
∑
l=1

⎛

⎝λF|v(l)|2−aij
αβ
∂v(l)i

∂yα

∂v(l)j

∂yβ

⎞

⎠= c, on ∂ φ̃(Ω), (8.13)

for problem (8.3).

Proof. The proof is a straightforward application of Lagrange Multipliers Theorem
combined with formulas (8.9) and (8.10).

Now we introduce the following definition, which is a generalization of the
notion of rotation invariance for scalar operators to the case of vectorial operators.

Definition 3. The operator L defined by

L (u)j =−aij
αβ

∂ 2ui

∂xα∂xβ
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is said to be rotation invariant if there exists a group homomorphism

S : ON(R)→ Om(R),

(i.e., S(AB) = S(A)S(B) for all A,B ∈ ON(R)) such that

L
(
S(R)tu◦R

)
= S(R)tL (u)◦R,

for any R ∈ ON(R), and for any u ∈ H2
loc(R

N)m.

Theorem 4. Suppose that the operator associated with problem (8.1) is rotation
invariant. Let B be the unit ball in R

N centered at zero, and let λ be an eigenvalue
of problem (8.1) in B. Let F be the subset of N of all k such that the k-th eigenvalue
of problem (8.1) in B coincides with λ . Let v(1), . . . ,v(|F|) be an orthonormal basis of
the eigenspace associated with the eigenvalue λ in V(B)m. Then there exists c ∈ R

such that condition (8.12) (condition (8.13) respectively) holds.

Proof. First of all, note that by standard regularity theory (cf. [AgDoNi64, §10.3]),
the functions v(l) ∈ C∞(B) for all l ∈ F.

Thanks to the rotation invariance, {(S(R)tvl) ◦ R : l = 1, . . . , |F|} is another
orthonormal basis for the eigenspace associated with λ , whenever R ∈ On(R),
where S(R) is defined as in Definition 3. Since both {v(l) : l = 1, . . . , |F|} and
{(S(R)tv(l)) ◦ R : l = 1, . . . , |F|} are orthonormal bases, then there exists A[R] ∈
ON(R) with matrix (Arh[R])r,h=1,...,|F| such that

(S(R)tv(r))◦R =
|F|
∑
l=1

Arl[R]v
(l). (8.14)

Using (8.14) we get

|F|
∑
k=1
|v(k)|2 ◦R =

|F|
∑
k=1
|(S(R)tv(k))◦R|2

=
|F|
∑
k=1

( |F|
∑
l=1

Akl[R]v
(l)

)

·
( |F|
∑
h=1

Akh[R]v
(h)

)

=
|F|
∑
k=1

|F|
∑

l,h=1
Alk[R]Akh[R](v

(l) · v(h)) =
|F|
∑
l=1
|v(l)|2,

and similarly,

|F|
∑
k=1

⎛

⎝aij
αβ
∂v(k)i

∂yα

∂v(k)j

∂yβ

⎞

⎠◦R =
|F|
∑
l=1

⎛

⎝aij
αβ
∂v(l)i

∂yα

∂v(l)j

∂yβ

⎞

⎠ .

This concludes the proof.
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Thus we get the following

Corollary 5. Let Ω be a domain in R
N of class C1. Suppose that the operator

associated with problem (8.1) is rotation invariant. Let φ̃ ∈AΩ be such that φ̃(Ω)
is a ball. Let λ̃ be an eigenvalue of problem (8.1) in φ̃(Ω), and let F be the set of
j ∈ N such that λj[φ̃ ] = λ̃ . Then φ̃ is a critical point ΛF,s under volume constraint,
for all s = 1, . . . , |F|.
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Chapter 9
Pollutant Dispersion in the Atmosphere:
A Solution Considering Nonlocal Closure
of Turbulent Diffusion

D. Buske, M.T.B. Vilhena, B.E.J. Bodmann, R.S. Quadros, and T. Tirabassi

9.1 Introduction

Increasing problems that involve pollution in the atmospheric boundary layer call
for countermeasures, and simulation of pollutant dispersion is one of them. Hence,
in the last years, analytical solutions for the advection–diffusion equation received
attention in order to describe the pollutant dispersion in the boundary layer. So
far there do exist analytical solutions in the literature, however, for specific and
particular problems, see, for instance, the works [Ro55] [De78] [NiHa81] [Ti89]
[ShSiYa96] [Ti03]. In fact, all these solutions are valid for very specialized practical
situations with restrictions on wind and vertical profiles of eddy diffusivities. Costa
et al. [CoEtAl06] presented a semi-analytical solution of the multidimensional
advection–diffusion equation for more realistic physical scenario using an integral
formulation. The solution is valid for a limited atmospheric boundary layer and
general wind and vertical eddy diffusivity profiles, that are approximated by a
stepwise function [MoEtAl06a] [CoEtAl11].

Finally a general two-dimensional solution without any restriction in the spa-
tial function of wind and eddy diffusion coefficients was presented by [Wo05]
[MoEtAl06b] [BuEtAl10]. The solving methodology was the Generalized Integral
Laplace Transform Technique (GILTT) that is an analytical series solution including
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the solution of an associated Sturm–Liouville problem, expansion of the pollutant
concentration in a series in terms of the attained eigenfunctions, replacement of this
expansion in the advection–diffusion equation and, finally, taking moments. This
procedure leads to a set of ordinary differential equations that are solved analytically
by Laplace transform technique. A complete review of the GILTT method is given
in [MoEtAl09]. More recently, the three-dimensional GILTT solution (3D-GILTT)
considering local closure of turbulence was presented by Buske et al. [BuEtAl11].
The solution procedure makes use of the integral transform in the y-direction
and then the resultant two-dimensional problem is solved following the previous
works [Wo05] [MoEtAl06b] [MoEtAl09] [BuEtAl10] [BuEtAl11]. Note that no
approximation is made along the solution derivation so that an exact solution is
obtained except for round-off errors.

In this work we consider a three-dimensional problem with nonlocal closure
of generic turbulent diffusion. The counter-gradient term in the turbulence closure
made additional terms to appear in the advection–diffusion equation and these terms
are related to the asymmetrical transport in the convective boundary layer. This
new equation is solved by the 3D-GILTT method. Numerical results and statistical
comparisons with experimental data are presented.

9.2 The Advection-Diffusion Equation
and the 3D-GILTT Method

The stationary advection–diffusion equation of air pollution in the atmosphere is
essentially a statement of conservation of the suspended material and it can be
written as

u
∂c
∂x

+ v
∂c
∂y

+w
∂c
∂ z

=−∂u′c′

∂x
− ∂v′c′

∂y
− ∂w′c′

∂ z
+S, (9.1)

in which c denotes the average concentration of a passive contaminant (g/m3), u, v,
and w in units of (m/s) are the mean wind components along the axes x, y, and z,
respectively, and S is a source term. The terms u′c′, v′c′, w′c′ represent, respectively,
the turbulent fluxes of contaminants (g/sm2) in the longitudinal, crosswind, and
vertical directions.

Observe that eqn. (9.1) has four unknown variables (the concentration c and
turbulent fluxes) which lead us to the known turbulence closure problem. One of
the most widely used closures for eqn. (9.1) is based on the gradient hypothesis
(or K-theory) which, in analogy with Fick’s law of molecular diffusion, assumes
that turbulence causes a net movement of material following the gradient of material
concentration at a rate which is proportional to the magnitude of the gradient
[SePa98]:
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u′c′ =−Kx
∂c
∂x

;v′c′ =−Ky
∂c
∂y

;w′c′ =−Kz
∂c
∂ z

, (9.2)

Here Kx, Ky and Kz are the Cartesian components of the turbulent diffusion (m2/s)
in the x, y, and z directions, respectively. In first-order closure all the information of
the turbulence complexity is contained in the eddy diffusivities.

Eqn. (9.2), combined with the mass continuity equation, leads to the Cartesian
advection–diffusion eqn. [Bl97]:

u
∂c
∂x

+ v
∂c
∂y

+w
∂c
∂ z

=
∂
∂x

(

Kx
∂c
∂x

)

+
∂
∂y

(

Ky
∂c
∂y

)

+
∂
∂ z

(

Kz
∂c
∂ z

)

+S (9.3)

The simplicity of the K-theory of turbulent diffusion has led to widespread use of
this theory as mathematical basis for simulating pollutant dispersion (open country,
urban, photochemical pollution, etc.). However, K-closure has its own limitations: in
contrast to molecular diffusion, turbulent diffusion is scale-dependent. This means
that the rate of diffusion of a cloud of material generally depends on the cloud
dimension and the intensity of turbulence. As the cloud grows, larger eddies are
incorporated in the expansion process, so that a progressively larger fraction of
turbulent kinetic energy is available for the cloud expansion.

Another problem is that the down-gradient transport hypothesis is inconsistent
with observed features of turbulent diffusion in the upper portion of the mixed layer
for convective cases, where counter-gradient material fluxes are known to occur
[DeWi75]. Because counter-gradient fluxes are thought to be indicative of boundary
layer scale eddies, as opposed to small scales, such fluxes are often called nonlocal
fluxes. Local K-theory is a method that parametrizes the effects of turbulent mixing
based on how small eddies mix quantities along a local gradient of the transported
quantity.

Already some decades ago it was noted that in the upper part of convectively
driven boundary layers, the flux of scalars are counter to the gradient of the mean
scalar profile [De66]. The mean potential temperature gradient and the flux change
sign at different levels introducing a certain region in the convective boundary layer,
where they have the same sign. This was in contrast to the common view in first
order turbulent closure, that turbulent diffusion is directed along the down-gradient.
In order to describe diffusion also in these regions, Ertel [Er42] and Deardoff [De66,
De72] proposed to modify the usual applied flux-gradient relationship in K-theory
approach according to

w′c′ =−Kz

(
∂c
∂ z
− γ
)

(9.4)

where γ represents the counter-gradient term.
Many schemes and parametrizations for counter-gradient terms have been

developed in the literature. Here, we use the parametrization proposed by van Dop
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and Verver [Va01], γ =− β
Kz

∂w′c′
∂ z where β =

SkσwTlw
2 , which is based on the work of

Wyngaard and Weil [WyWe91].

[

1+

(
SkσwTlw

2

)
∂
∂ z

]

w′c′ =−Kz
∂c
∂ z

(9.5)

Here Sk =w′3/w′2
3/2

is the skewness of the vertical turbulent velocity (w′), σw is the
vertical turbulent velocity standard deviation (m/s), and Tlw is the Lagrangian time
scale (s). The second term in the operator (in the brackets) represents the nonlocal
counter-gradient term.

Using eqns. (9.4) and (9.5), together with w′c′ = β u ∂c
∂x −Kz

∂c
∂ z + β Ky

∂ 2c
∂y2 , the

turbulence closure problem is solved using a non-Fickian closure (also known as
nonlocal closure). This approach models a more consistent kinetic eddy energy
spectrum in different heights and the effect of the asymmetric transport of pollutant
concentration by turbulent dispersion.

Applying the above eqns. in eqn. (9.1), in the Eulerian framework in which the x
direction coincides with that of the average wind field, yields

u
∂c
∂x

= Ky
∂ 2c
∂y2 +

∂
∂ z

(

Kz
∂c
∂ z

)

− ∂
∂ z

(

βu
∂c
∂x

)

+
∂
∂ z

(

βKy
∂ 2c
∂y2

)

(9.6)

for 0< z< h, 0< y< Ly, and x> 0. In this work we neglect the diffusion component
Kx because we assume that the advection is dominant in the x-direction and also
consider that Ky depends only on the z-direction. Equation (9.6) is subject to the
boundary conditions

Kz
∂c
∂ z

= 0 at z = 0,h (9.7)

Ky
∂c
∂y

= 0 at y = 0,Ly (9.8)

and to the source condition,

uc(0,y,z) = Qδ (y− y0)δ (z−Hs) , (9.9)

where h is the boundary layer height (m), Ly is a domain limit far from the source
(m), Hs is the height of the source (m), Q is the emission rate (g/s), and δ is the
Dirac delta functional.

To solve problem (9.6) by the GILTT method (see [BuEtAl07, MoEtAl09,
BuEtAl11]), we initially apply the integral transform technique in the y variable.
To this end, we expand the pollutant concentration,
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c(x,y,z) =
M

∑
m=0

cm(x,z)Ym(y) , (9.10)

where Ym(y) = cos(λmy) are orthogonal eigenfunctions with eigenvalues λm =
mπ/Ly (m = 0,1,2, ...).

To determine the unknown coefficients cm(x,z), we substitute eqn. (9.10) in

eqn. (9.6) and then apply the operator
∫ Ly

0 (·)Yn(y)dy. This procedure leads to the
set with M+1 two-dimensional diffusion equations

u
∂cm

∂x
=
∂
∂ z

(

Kz
∂cm

∂ z

)

− ∂
∂ z

(

βu
∂cm

∂x

)

−λ 2
mKycm−λ 2

mKy
∂
∂ z

(βcm) (9.11)

The problem (9.11) is then solved analytically by the GILTT method following
the works [BuEtAl07, MoEtAl09, BuEtAl10], where the solution of problem (9.11)
is given by

cm(x,z) =
L

∑
l=0

cm,l(x)ζl(z) . (9.12)

Here ζl(z) = cos(ηlz) are a set of orthogonal eigenfunctions, with eigenvalues ηl =
lπ/h (l=0,1,2,...).

Replacing eqn. (9.12) in eqn. (9.11) and taking moments, we get the first-order
matrix differential equation

dPm

dx
(x)+G.Pm(x) = 0, (9.13)

for m= 0, . . . ,M, where Pm(x) is the column vector whose components are {cm,l} for
l = 0, . . . ,L. The matrix G is composed by G = B−1

1 B2, with the entries of matrices
B1 and B2.

(B1)l,j =−
∫ h

0
uζl(z)ζj(z) dz

and

(B2)l,j =
∫ h

0
K′z ζ ′l (z)ζj(z) dz−λ 2

l

∫ h

0
Kz ζl(z)ζj(z) dz

−η2
l

∫ h

0
Ky ζl(z)ζj(z) dz

A similar procedure leads to the boundary condition of problem (9.13):

Pm(0) = cm,l(0) = QA−1 ζj(Hs)Y(y0) dz (9.14)
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where A−1 is the inverse of matrix A with the entries: Al,j =
∫ h

0 uζl(z)ζj(z) dz. In
a fashion already shown in [MoEtAl09], we solve the problem (9.13) applying
Laplace transform and diagonalization that leads to

Pm(s) = X(sI +D)−1ξ (9.15)

where ξ = X−1Pm(0) is found from the equation Xξ = Pm(0), and the values are
calculated by LU-decomposition, whose computational effort is smaller than that
of a matrix inversion. The elements of the diagonal matrix (sI +D) are of the form
s+di where di are the eigenvalues of the matrix G and the elements of (sI+D)−1 are

1
s+di

whose Laplace transformed inverse is e(−dix). Let be E(x) the diagonal matrix

whose elements are e(−dix) the final solution is then given by

Pm(x) = XE(x)ξ . (9.16)

Finally, using formula (9.12), we obtain the solution of the 2D problem, where
ζl(z) = cos(ζlz) and cm,l(x) is the solution of the transformed problem given
by eqn. (9.13). Once cm(x,z) are known, the final three-dimensional solution of
problem (9.6) is given by expression (9.10), henceforth called 3D-GILTT (three-
dimensional GILTT solution). It is noteworthy that the advection–diffusion equation
with Fickian closure [BuEtAl11] is recovered in the limit β → 0.

9.3 Turbulent Parameterization

In the literature one finds a considerable variety for calculating the vertical turbulent
diffusion coefficient [DeMoVi01]. In order to validate the solution against experi-
mental data, we use the vertical and lateral diffusion parametrization as suggested
by Degrazia et al. [DeCaCa97] for convective conditions:

Kz = 0.22w∗h
( z

h

) 1
3
(

1− z
h

) 1
3
(

1− e
4z
h −0.0003e

8z
h

)
(9.17)

Ky =

√
πσv

16(fm)vqv
(9.18)

with

σ2
v =

0.98cv

(fm)
2
3
v

(
ψε
qv

) 2
3 ( z

h

) 2
3

w2
∗ (9.19)
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ψ
1
3
ε =

((
1− z

h

)2(− z
L

)− 2
3
+0.75

) 1
2

(9.20)

(fm)v = 0.16 and qv = 4.16 z
h . Here, k is the von Karman constant (k = 0.4), w∗

is the convective velocity scale, σv Eulerian standard deviation of the longitudinal
turbulent velocity, qv is the stability function, ψε is the non-dimensional molecular
dissipation rate function, and (fm)v is the peak wavelength of the turbulent velocity
spectrum.

In order to evaluate the vertical wind velocity variance σw and Lagrangian
time scale Tlw in β =

SkσwTlw
2 the following expressions were used [DeMoVi01,

KaEtAl76, Ca82].

TLw =
0.55

4
1
σw

z
(f ∗m)w

, (9.21)

where (f ∗m)w = z
(λm)w

is the reduced frequency of the convective spectral peak and

(λm)w = 1.8h

[

1− exp

(

−4z
h

)

−0.0003exp

(
8z
h

)]

(9.22)

is the peak wavelength of the turbulent velocity spectrum. For the vertical wind
velocity variance we use

σ2
w = 1.06cw

ψ2/3

(f ∗m)
2/3
w

( z
h

)2/3
w2
∗ , (9.23)

where ψ = 1.5−1.2
(

z
h

)1/3
is the turbulent molecular dissipation [DrEtAl83].

The wind speed profile can be described by a power law, according to [PaDu88]:

uz

u1
=

(
z
z1

)n

, (9.24)

where uz and u1 are the horizontal mean wind speeds at heights z and z1 and n is
an exponent that is related to the intensity of turbulence [Ir89]. All components are
determined so that the model together with the parametrization may be applied to
an experiment, where the ground-level concentrations of emissions released from
an elevated continuous source point in an unstable boundary layer are presented.
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9.4 Application to a Meteorological Scenario

The obtained solution together with the eddy diffusivity parametrization for
convective regimes is validated using data of the Copenhagen experiment [GrLy84].
The Copenhagen campaign [GrLy84] took place in the suburbs of Copenhagen,
where an SF6 tracer was released without buoyancy from a tower at a height of
115m and collected at ground level on arcs located at distances of 2000, 4000, and
6000 meters from the release point. The site is mainly residential with a roughness
length of 0.6m. The meteorological conditions during the dispersion experiments
ranged from moderately unstable to a convective regime. Tracer releases typically
started one hour before tracer sampling and stopped after a sampling period of two
hours.

Due to the fact that there does not exist a consensus as to what numerical value
should be attributed to the skewness parameter typical for a specific turbulence
regime, in the present analysis we compare findings for Sk = 0.6, as proposed
in Wyngaard and Weil [WyWe91] to those for Sk = 1.0 suggested by van Dop
and Verver [Va01]. Results for both parametrizations are shown in Figure 9.1,
where observed concentrations are plotted against the predictions by the advection–
diffusion model with local and non-local closure for turbulence normalized by the
emission source rate (c/Q).

In the sequel, we use standard statistical tools established by Hanna [Ha89] to
compare the quality of the new approach. Table 9.1 presents the model results for the
experiment mentioned above, and characterized in the following. The reduced mean

Fig. 9.1 Scatter diagram of
the observed versus predicted
maximum ground level
concentrations normalized by
the emission rate.
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Table 9.1 Statistical results
obtained with the 3D-GILTT
method compared with the
Copenhagen experiment.

3D-GILTT NMSE COR FB FS

Sk = 0.0 0.15 0.91 0.20 0.17

Sk = 0.6 0.12 0.91 0.12 0.09

Sk = 1.0 0.14 0.88 0.08 −0.01

square error (NMSE = (Co−Cp)2/Cp Co ) represents the model value dispersion
with respect to data dispersion, where the subscripts o and p refer to observed and
predicted quantities, respectively, and the overbar indicates an averaged value. The
correlation coefficient (COR = (Co−Co)(Cp−Cp)/σoσp ) indicates the agreement
between the mean values determined by the deterministic model against experimen-
tally sampled values of an unknown distribution. It is noteworthy that differently
than in parametric inference applications one does not expect a perfect correlation
due to the stochastic nature of the observed phenomenon. The fractional bias (FB =
Co−Cp/0.5(Co +Cp) ) indicates an asymmetry of the distribution of data points
above and below the bisector, whereas the fractional standard deviations (FS =
(σo−σp)/0.5(σo +σp) ) indicate an asymmetry in the spread of data points.

Note that the predicted concentrations are of deterministic origin, whereas
the data spread of stochastic experimental findings naturally are located in the
larger intervals. Moreover, the statistical analysis indicates the nonlocal model
with Sk = 0.6 as the more appropriate model for the Copenhagen scenario, since
the model with Sk = 1.0 has a smaller standard deviation for the stochastic
data in comparison with the standard deviation of the deterministic model. As a
general statement we emphasize that the statistical analysis does not have the same
meaning as the same concepts in statistical inference applications, due to the above-
mentioned difference in the mean value character of the deterministic predictions,
whereas experimental data are by nature of stochastic origin. Furthermore, only one
sample of an unknown distribution is acquired, once repetitions are in general not
feasible because of the variability of meteorological regimes. A reinterpretation of
the statistical analysis is beyond the scope of the present contribution and will be
discussed in a future work.

9.5 Conclusions

In the present contribution we presented a general solution of the three-dimensional
steady state advection–diffusion equation considering nonlocal turbulence closure,
which can be applied in operative models for simulation of turbulent dispersion of
many scalar quantities, such as air pollution, radioactive material, among others.
As model validation we chose the Copenhagen experiment with its predomi-
nantly convective regime. The theoretical model supplied mean concentrations that
were compared to simple samples of a stochastic phenomenon with in general
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non-negligible fluctuations and higher statistical moments, respectively. The anal-
ysis of the results showed acceptable agreement between computed values against
experimental findings.

The already established three-dimensional steady state advection–diffusion mod-
el was generalized admitting also non-Fickian closure for turbulence. For this model
a solution was determined in analytical representation. One of the emerging features
is the coupling of the vertical and crosswind degrees of freedom, which was attained
introducing a counter term in the Fickian closure according to the reasoning in
references [Er42, De66, De72, DeWi75]. It is worth mentioning that the considered
model, once solved provides mean concentrations as a consequence of the derivation
of the model, i.e. the reduction of a deterministic-stochastic to purely deterministic
model by the closure hypothesis.

From the numerical findings the model for Sk = 0.6 seems to be the better model,
at least for comparable scenarios to the Copenhagen experiment. Note that for Sk =
0.0, which represents the advection-diffusion model with Fickian closure no up-
draft down-draft asymmetry is contemplated. This is different for presented models
with Sk = 0.6 and Sk = 1.0. However, other validations shall be performed to verify
as to which specific 0 ≤ Sk ≤ 1.0 shall be associated with specific scenarios. Such
a knowledge will open pathways for further generalizations of the discussed model
and consequently will allow to implement a broader class of simulations where air
quality and control is the principal issue.
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Chapter 10
The Characteristic Matrix of Nonuniqueness
for First-Kind Equations

C. Constanda and D.R. Doty

10.1 Introduction

Let S be a finite domain in R
2, bounded by a simple, closed, C2 curve ∂S. We denote

by x and y generic points in S∪ ∂S and by |x− y| the distance between x and y in
the Cartesian metric. Also, let C0,α(∂S) and C1,α(∂S), α ∈ (0,1), be, respectively,
the spaces of Hölder continuous and Hölder continuously differentiable functions
on ∂S. In what follows, Greek and Latin indices take the values 1, 2 and 1, 2, 3,
respectively, and a superscript T denotes matrix transposition.

For any function f continuous on ∂S, we define the ‘calibration’ functional p by

pf =
∫

∂S

f ds.

Using the fundamental solution for the two-dimensional Laplacian

g(x,y) =− 1
2π

ln |x− y|,

we define the single-layer harmonic potential of density ϕ by

(Vϕ)(x) =
∫

∂S

g(x,y)ϕ(y)ds(y).
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The proof of the following assertion can be found, for example, in [Co94] or
[Co00].

Theorem 1. For any α ∈ (0,1), there are a unique nonzero function Φ ∈ C0,α(∂S)
and a unique number ω such that

VΦ = ω on ∂S, pΦ = 1.

It is easy to see that Φ and ω depend on g and ∂S.
The numbers 2πω and e−2πω are called Robin’s constant and the logarithmic

capacity of ∂S.
For a circle with the center at the origin and radius R, both Φ and ω can be

determined explicitly:

Φ =
1

2πR
, ω =− 1

2π
lnR.

For other boundary curves, Φ and ω are practically impossible to determine
analytically and must be computed by numerical methods.

If the solution of the Dirichlet problem in S with data function f on ∂S is sought
as u = Vϕ , then ϕ is a solution of the (weakly singular) first-kind boundary integral
equation

Vϕ = f on ∂S.

This is a well-posed problem if and only if ω �= 0. If ω = 0, the above equation has
infinitely many solutions, which are expressed in terms of Φ .

10.2 Plane Elastic Strain

Consider a plate made of a homogeneous and isotropic material with Lamé constants
λ and μ , which undergoes deformations in the (x1,x2)-plane. If the body forces
are negligible, then its (static) displacement vector u = (u1,u2)

T satisfies the
equilibrium system of equations [Co00]

Au = 0 in S,

where

A(∂1,∂2) =

(
μΔ +(λ +μ)∂ 2

1 (λ +μ)∂1∂2

(λ +μ)∂1∂2 μΔ +(λ +μ)∂ 2
2

)

.
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It is not difficult to show [Co00] that the columns F(i) of the matrix

F =

(
1 0 x2

0 1 −x1

)

form a basis for the space of rigid displacements.
The ‘calibrating’ vector-valued functional p is defined for continuous 2×1 vector

functions f by

pf =
∫

∂S

FTf ds.

A matrix of fundamental solutions for A is [Co00]

D(x,y) =− 1
4πμ(γ+1)

×

⎛

⎜
⎜
⎝

2γ ln |x− y|+2γ+1− 2(x1− y1)
2

|x− y|2 − 2(x1− y1)(x2− y2)

|x− y|2
− 2(x1− y1)(x2− y2)

|x− y|2 2γ ln |x− y|+2γ+1− 2(x2− y2)
2

|x− y|2

⎞

⎟
⎟
⎠ ,

γ =
λ +3μ
λ +μ

.

The single-layer potential of density ϕ is defined by

(Vϕ)(x) =
∫

∂S

D(x,y)ϕ(y)ds(y).

The proof of the following assertion can be found in [Co00].

Theorem 2. There is a unique 2× 3 matrix function Φ ∈ C0,α(∂S) and a unique
3× 3 constant symmetric matrix C such that the columns Φ (i) of Φ are linearly
independent and

VΦ = FC on ∂S, pΦ = I,

where I is the identity matrix.

Clearly, Φ and C depend on A, D, and ∂S.
In the so-called alternative indirect method [Co00], the solution of the Dirichlet

problem in S with data function f on ∂S is sought in the form

u = Vϕ. (10.1)
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Then the problem reduces to the (weakly singular) boundary integral equation

Vϕ = f on ∂S. (10.2)

Theorem 3. Equation (10.2) has a unique solution ϕ ∈ C0,α(∂S), α ∈ (0,1), for
any f ∈ C1,α(∂S) if and only if detC �= 0. In this case, (10.1) is the unique solution
of the Dirichlet problem.

If detC = 0, then the unique solution of the Dirichlet problem is obtained by
solving an ill-posed modified boundary integral equation whose infinitely many
solutions are constructed with Φ and C .

In the so-called refined indirect method [Co00], the solution of the Dirichlet
problem is sought as a pair {ϕ, c} such that

u = Vϕ−Fc in S, pϕ = s,

where s a constant 3×1 vector chosen (arbitrarily) a priori and c is a constant 3×1
vector. This leads to the system of boundary integral equations

Vϕ−Fc = f on ∂S, pϕ = s. (10.3)

Theorem 4. System (10.3) has a unique solution {ϕ, c} with ϕ ∈ C0,α(∂S) for any
f ∈ C1,α(∂S), α ∈ (0,1), and any s.

It is important to evaluate the arbitrariness in the representation of the solution
with respect to the prescribed ‘calibration’ s.

Theorem 5. If {ϕ(1), c(1)}, {ϕ(2), c(2)} are two solutions of (10.3) constructed
with s(1) and s(2), respectively, then

ϕ(2) = ϕ(1) +Φ(s(2)− s(1)),

c(2) = c(1) +C (s(2)− s(1)).

It is not easy to compute Φ and C analytically, or even numerically, in arbitrary
domains S, but this can be accomplished if S is a circular disk. Let ∂S be the circle
with center at the origin and radius R. In this case, Φ and C can be determined
analytically as

Φ =
1

2πR

(
1 0 R−2x2

0 1 −R−2x1

)

,
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C =− 1
4πμ(λ +2μ)R2

×
⎛

⎝
(λ +3μ)R2(lnR+1) 0 0

0 (λ +3μ)R2(lnR+1) 0
0 0 −(λ +μ)

⎞

⎠ .

Clearly, detC = 0 if and only if R = e−1.
Analytic computation of Φ and C is practically impossible for non-circular

domains, and must be performed numerically.
We choose four 3× 1 constant vectors s(0), s(i) such that the set {s(i)− s(0)} is

linearly independent, and form the 3× 3 matrix Σ with columns s(i)− s(0). Also,
we choose an arbitrary function f . Next, we compute the solutions {ϕ(0), c(0)},
{ϕ(i), c(i)} of (10.3) corresponding to s(0), s(i), respectively, and f , by the refined
indirect method, then form the 2× 3 matrix function Ψ with columns ϕ(i)−ϕ(0)

and the constant 3×3 matrix Γ with columns c(i)− c(0).
From Theorem 4 it follows that

ϕ(i)−ϕ(0) =Φ(s(i)− s(0)),

c(i)− c(0) = C (s(i)− s(0)),

or, what is the same,

ΦΣ =Ψ , CΣ = Γ ;

hence,

Φ =ΨΣ−1, C = ΓΣ−1.

A similar analysis can be performed for other two-dimensional linear elliptic
systems with constant coefficients—for example, the system modeling bending of
elastic plates with transverse shear deformation [Co00]. No apparent connection
exists between the matrix C and the characteristic constant ω of ∂S.

10.3 Numerical Examples

Consider a steel plate with scaled Lamé coefficients

λ = 11.5, μ = 7.69,

and let ∂S (see Figure 10.1) be the curve of parametric equations

x1(t) = 2cos(πt)− 4
3 cos(2πt)+ 10

3 ,

x2(t) = 2sin(πt)+2, 0≤ t ≤ 2.
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Fig. 10.1 The boundary
curve ∂S.
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0
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4

x1

x 2

We choose the vectors

s(0) =

⎛

⎝
1
1
1

⎞

⎠ , s(1) =

⎛

⎝
1
0
0

⎞

⎠ , s(2) =

⎛

⎝
0
1
0

⎞

⎠ , s(3) =

⎛

⎝
0
0
1

⎞

⎠ ,

f (x) =

(
1
0

)

.

The approximating functions for computing ϕ(0)(t) and ϕ(i)(t) are piecewise
cubic Hermite splines on 12 knots; that is, the interval 0 ≤ t ≤ 2 is divided into
12 equal subintervals. Then the characteristic matrix (with entries rounded off to 5
decimal places) is

C =

⎛

⎝
−0.01627 −0.01083 −0.00370
−0.01083 −0.00892 0.00542
−0.00370 0.00542 0.00185

⎞

⎠ .

Here,

detC = 1.08273×10−6.

The graphs of the components Φαi of Φ are shown in Figure 10.2.
As a second example, consider the ‘expanding’ ellipse ∂S of parametric

equations

x1(t) = 2k cos(πt),

x2(t) = k sin(πt), 0≤ t ≤ 2.

The graph of detC as a function of k is shown in Figure 10.3.
Here, detC = 0 for k = 0.22546 and k = 0.26934.
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Chapter 11
On the Spectrum of Volume Integral Operators
in Acoustic Scattering

M. Costabel

11.1 Volume Integral Equations in Acoustic Scattering

Volume integral equations have been used as a theoretical tool in scattering theory
for a long time. A classical application is an existence proof for the scattering
problem based on the theory of Fredholm integral equations. This approach is
described for acoustic and electromagnetic scattering in the books by Colton and
Kress [CoKr83, CoKr98] where volume integral equations appear under the name
Lippmann–Schwinger equations.

In electromagnetic scattering by penetrable objects, the volume integral equation
(VIE) method has also been used for numerical computations. In particular the
class of discretization methods known as ‘discrete dipole approximation’ [PuPe73,
DrFl94] has become a standard tool in computational optics applied to atmospheric
sciences, astrophysics and recently to nano-science under the keyword ‘optical
tweezers’ (see the survey article [YuHo07] and the literature quoted there). In sharp
contrast to the abundance of articles by physicists describing and analyzing applica-
tions of the VIE method, the mathematical literature on the subject consists only of
a few articles. An early spectral analysis of a VIE for magnetic problems was given
in [FrPa84], and more recently [Ki07, KiLe09] have found sufficient conditions for
well-posedness of the VIE in electromagnetic and acoustic scattering with variable
coefficients. In [CoDK10, CoDS12], we investigated the essential spectrum of the
VIE in electromagnetic scattering under general conditions on the complex-valued
coefficients, finding necessary and sufficient conditions for well-posedness in the
sense of Fredholm in the physically relevant energy spaces. A detailed presentation
of these results can be found in the thesis [Sa14]. Publications based on the thesis
are in preparation. Curiously, whereas the study of VIE in electromagnetic scattering
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has thus been completed as far as questions of Fredholm properties are concerned,
the simpler case of acoustic scattering does not seem to have been covered in the
same depth. It is the purpose of the present chapter to close this gap.

The basic idea of the VIE method in scattering by a penetrable object is to
consider the effect of the scatterer as a perturbation of a whole-space constant
coefficient problem and to solve the latter by convolution with the whole-space
fundamental solution. In the acoustic case, we consider the scalar linear elliptic
equation

diva(x)∇u+ k(x)2u = f in R
d (11.1)

where we suppose that the (in general, complex-valued) coefficients a and k are
constant outside of a compact set:

a(x)≡ 1, k(x)≡ k ∈ C outside of the bounded domain Ω .

and f has compact support. We further assume that u satisfies the outgoing
Sommerfeld radiation condition. It is well known that under very mild conditions
on the regularity of the coefficients a and k, there is at most one solution of this
problem.

We then rewrite (11.1) as a perturbed Helmholtz equation:

(Δ + k2)u = f −divα∇u−βu (11.2)

with

α(x) = a(x)−1, β (x) = k(x)2− k2 .

Let now Gk be the outgoing full-space fundamental solution of the Helmholtz
equation, i.e. the unique distribution in R

d satisfying (Δ + k2)Gk = −δ and the
Sommerfeld radiation condition. In dimension d = 3, we have

Gk(x) =
eik|x|

4π|x| .

We obtain the VIE from the following well-known lemma.

Lemma 1. Let u be a distribution in R
d satisfying-(Δ + k2)u = v, where v has

compact support, and the Sommerfeld radiation condition. Then u = Gk ∗ v, and
if v is an integrable function, the convolution can be written as an integral:

u(x) =
∫

Gk(x− y)v(y)dy .
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Applying this lemma to (11.2), we obtain the equation

u =−Gk ∗ f +divGk ∗ (α∇u)+Gk ∗ (βu),

valid in the distributional sense on R
d. This can be written as a VIE

u(x)−div
∫

Ω
Gk(x− y)α(y)∇u(y)dy−

∫

Ω
Gk(x− y)β (y)u(y)dy = uinc(x)

(11.3)
where we use the notation

uinc(x) :=−
∫

Gk(x− y)f (y)dy .

The fact that the coefficients α and β vanish outside of Ω permits to consider the
integral equation (11.3) on any domain Ω̂ satisfying Ω ⊂ Ω̂ ⊂ R

d. Once u solves
(11.3) on Ω̂ , one can use the same formula (11.3) to extend u outside of Ω̂ . It is
clear that the resulting function u will not depend on Ω̂ and will be a solution of
the original scattering problem (11.1). In the following we will make the minimal
choice Ω̂ =Ω and therefore consider (11.3) as an integral equation on Ω . We shall
abbreviate this integral equation as

u−Au = uinc (11.4)

with

Au(x) = div
∫

Ω
Gk(x− y)α(y)∇u(y)dy+

∫

Ω
Gk(x− y)β (y)u(y)dy . (11.5)

Assuming that Ω is a bounded Lipschitz domain, one can consider the VIE (11.4)
in the standard Sobolev spaces Hs(Ω). The natural energy space associated with
the second-order PDE (11.1) is H1(Ω), but other values of s can be interesting, too,
in particular s = 0, i.e. the space L2(Ω), which seems naturally associated with the
apparent structure of (11.4) as a second kind integral equation and may be useful
for analyzing certain numerical algorithms for its solution.

The convolution with Gk is a pseudo-differential operator of order −2, mapping
distributions with compact support and Sobolev regularity s to Hs+2

loc (Rd) for any s∈
R, which implies immediately boundedness of the operator A in low-order Sobolev
spaces:

Proposition 1. Let α,β ∈ L∞(Ω). Then

A : H1(Ω)→ H1(Ω) is bounded .

If, in addition, ∇α ∈ L∞(Ω), then A is a bounded operator in L2(Ω).
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Another immediate observation is that the second integral operator in (11.5) maps
L2 to H2, and is therefore compact as an operator in L2 and in H1. This is relevant
if a(x) is constant everywhere, since then α ≡ 0 and the first integral operator in
(11.5), which is not compact, in general, is absent.

Theorem 1. Let a(x) = 1 in R
d and k ∈ L∞(Rd). Then the VIE (11.3) is a second

kind Fredholm integral equation with a weakly singular kernel and the Fredholm
alternative holds: The operator I−A is a Fredholm operator of index zero in L2(Ω)
and in H1(Ω).

11.2 Smooth Coefficients

Besides the case of the Laplace operator addressed in Theorem 1, another situation
is well known and is studied, for example, in the book [CoKr83]. This is the case of
a coefficient a(x) that is smooth on all of Rd. In this case, α = 0 on the boundary
Γ = ∂Ω , and the first integral operator in (11.5) can be transformed by integration
by parts:

divGk ∗ (α∇u)(x) =−div
∫

Ω
∇y
(
Gk(x− y)α(y)

)
u(y)dy

= Δ
∫

Ω
Gk(x− y)α(y)u(y)dy−div

∫

Ω
Gk(x− y)(∇α)(y)u(y)dy

=−α(x)u(x)− k2
∫

Ω
Gk(x− y)α(y)u(y)dy−div

∫

Ω
Gk(x− y)(∇α)(y)u(y)dy.

This allows us to write the VIE (11.3) in an equivalent form that shows its nature as
a Fredholm integral equation of the second kind with a weakly singular kernel:

a(x)u(x)−
∫

Ω
Gk(x− y)(β (y)− k2α(y))u(y)dy

+div
∫

Ω
Gk(x− y)(∇α)(y)u(y)dy−

∫

Ω
Gk(x− y)β (y)u(y)dy = uinc(x)

(11.6)

Theorem 2. Let a∈C1(Rd) and k∈ L∞(Rd). Then the operator I−A is a Fredholm
operator of index zero in L2(Ω) and in H1(Ω) if and only if a(x) �= 0 for all x ∈Ω .

11.3 Piecewise Smooth Coefficients

In obstacle scattering, the case of a globally smooth coefficient a(x) is not natural.
There one expects rather a sharp interface where the material properties change
discontinuously. We thus assume that the coefficient a is piecewise C1, which means
that α ∈ C1(Ω).
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One can then still carry out the partial integration as in the previous section, but
there will appear an additional term on the boundary Γ = ∂Ω :

divGk ∗ (α∇u)(x)

=−div
∫

Ω
∇y
(
Gk(x− y)α(y)

)
u(y)dy+div

∫

Γ
n(y)Gk(x− y)α(y)u(y)ds(y)

=−α(x)u(x)− k2
∫

Ω
Gk(x− y)α(y)u(y)dy−div

∫

Ω
Gk(x− y)(∇α)(y)u(y)dy

−
∫

Γ
∂n(y)Gk(x− y)α(y)u(y)ds(y) .

The additional term is just the Helmholtz double-layer potential with density αu,
which we can abbreviate as Dγ(αu) . Here γ : H1(Ω)→H

1
2 (Γ ) is the trace operator.

We obtain our volume integral operator in the form

(I−A)u(x) = a(x)u(x)+A1u(x)+Dγ(αu)(x) (11.7)

with

A1u(x) =−k2
∫

Ω
Gk(x− y)α(y)u(y)dy

+div
∫

Ω
Gk(x− y)(∇α)(y)u(y)dy−

∫

Ω
Gk(x− y)β (y)u(y)dy .

The operator A1 is bounded from L2(Ω) to H1(Ω), hence compact as an operator in
H1(Ω).

The operator u �→ Dγ(αu) is bounded in H1(Ω) but not compact, in general.
It is also not continuous with respect to the L2(Ω)-norm of u. This implies that
the operator I−A, despite being generated from a pseudo-differential operator of
order zero, does not have a continuous extension to L2(Ω) from the dense subspace
H1(Ω). It does have a continuous extension to L2(Ω) from the subspace H1

0(Ω),
but this is a different operator, where the last term in (11.7) is missing.

11.3.1 Extension to a Boundary–Domain System

From the VIE (11.4) with the integral operator written in the form (11.7), we can
get an equation on the boundary by taking the trace on Γ :

aγu+ γA1u+ γDγ(αu) = γuinc . (11.8)
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We now treat the trace γu as if it was an additional unknown, denoted by φ , and
consider the two equations (11.4) and (11.8) as a coupled boundary–domain integral
equation system.

Taking into account the jump relation for the double-layer potential

γDφ =− 1
2φ +Kφ ,

where K is the Helmholtz double layer-potential operator evaluated on Γ , as well
as the fact that the commutator [K,α] between K and the multiplication by α is

compact in the trace space H
1
2 (Γ ), we can write this coupled system in the matrix

form

(
aI+A1 D(γα·)
γA1

1
2 (1+a)I+αK +[K,α]

)(
u
φ

)

=

(
uinc

ψ

)

(11.9)

It is easy to see that this system is equivalent to the original VIE in the following
sense.

Proposition 2. Let Ω be a bounded Lipschitz domain with boundary Γ . Let α ∈
C1(Ω) and β ∈ L∞(Ω), and let uinc ∈ H1(Ω) be given.

If u ∈ H1(Ω) is a solution of the VIE (11.4), then

(
u
φ

)

=

(
u
γu

)

solves the coupled

system (11.9) with ψ = γuinc.

Conversely, let ψ ∈ H
1
2 (Γ ) be given and

(
u
φ

)

∈ H1(Ω)×H
1
2 (Γ ) be a solution of

the coupled system (11.9). If ψ = γuinc, and if γa �= 0 a.e. on Γ , then φ = γu, and u
is a solution of the VIE (11.4).

Proof. The construction of the coupled system shows that it is satisfied by any
solution of the VIE and its trace on the boundary. To show the converse, one
subtracts the trace of the first equation in (11.9) from the second and finds

γa
(
γu−φ)= 0.

Since we assume that γa does not vanish on a set of positive measure, φ = γu
follows.

11.3.2 Lipschitz Boundary

The system (11.9) is easier to analyze than the original VIE (11.4). This is due to
the fact that now the main difficulty is pushed to the boundary integral operator K,
which is a well-studied classical boundary integral operator [Co88]. Indeed, splitting
off the operators that we already have identified as compact operators, and taking
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into account that the coupling operator φ �→ D(γαφ) is bounded from H
1
2 (Γ ) to

H1(Γ ) [Co88], we see that the Fredholm alternative holds for the system (11.9)
(and therefore for the VIE (11.4)) if and only if the operator

Â =

(
aI D(γα·)
0 1

2 (1+a)I+αK

)

is a Fredholm operator of index zero in the space H1(Ω)×H
1
2 (Γ ). This, in turn, is

the case if and only if both

aI : H1(Ω)→ H1(Ω) and
1
2
(1+a)I+αK : H

1
2 (Γ )→ H

1
2 (Γ )

are Fredholm of index zero. We have shown the following result.

Theorem 3. Let Ω be a bounded Lipschitz domain with boundary Γ . Let α ∈
C1(Ω) and β ∈ L∞(Ω). Then for the VIE (11.3) the Fredholm alternative holds
in H1(Ω) if and only if

(i) a(x) �= 0 in Ω and

(ii) 1
2 (1+a)I+αK is Fredholm of index zero in H

1
2 (Γ ).

Condition (ii) can be made more precise by using information about the essential
spectrum of the operator 1

2 I+K. This operator differs by a compact operator from
the corresponding operator for k = 0, i.e. the trace of the harmonic double layer
potential operator. The latter is known to be a positive self-adjoint contraction in
H

1
2 (Γ ) if this space is equipped with a suitable scalar product, see [Co07].
Therefore its essential spectrum, which is also the essential spectrum of the

operator 1
2 I+K, is a compact subset Σ of the open interval (0,1). It is known that

for any Lipschitz boundary 1
2 ∈ Σ , that for smooth boundaries Σ = { 1

2}, and that for
polygons in R

2, Σ is an interval depending on the corner angles.
If the coefficient function a is piecewise constant, so that α = a−1 is a constant

on Γ , the operator 1
2 (1+a)I+αK is either the identity if α = 0 or a multiple of the

operator σI− ( 1
2 I+K) with

1+a
2(1−a)

= σ − 1
2
⇐⇒ a =

σ −1
σ

. (11.10)

It follows that the operator 1
2 (1+a)I+αK is Fredholm of index zero if and only if

σ �= Σ .
If the function α is not constant on Γ , one can use the fact that the operator

K commutes modulo compact operators with multiplications by C1 functions and
apply standard localization procedures. The result is that if for each point x ∈ Γ ,
the number σ from (11.10) does not belong to the essential spectrum Σ , then the
operator 1

2 (1+a)I+αK is Fredholm. This condition
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∀x ∈ Γ :
1

1−a(x)
�∈ Σ (11.11)

is, in general, only a sufficient condition. In order to obtain a necessary condition,
one would need a ‘localized’ version Σx of Σ , which is only known in some cases,
namely when Γ has a suitable tangent cone at x.

We summarize this discussion.

Theorem 4. Assume the hypotheses of Theorem 3. Let Σ ⊂ (0,1) be the essential

spectrum of the operator 1
2 I+K in H

1
2 (Γ ). If the coefficient a ∈ C1(Ω) is constant

on Γ , then the volume integral operator I−A is Fredholm of index zero in H1(Ω) if
and only if

(i) a(x) �= 0 in Ω and
(ii) a(x) �= σ−1

σ for x ∈ Γ , σ ∈ Σ .

If a is not constant on Γ , then the conditions (i) and (ii) imply that the volume
integral operator is Fredholm in H1(Ω).

11.3.3 Smooth Boundary

IfΓ is smooth (C1+ε with ε > 0), then the boundary integral operator K has a weakly
singular kernel and is compact in H

1
2 (Γ ). This implies that Σ = { 1

2} in Theorem 4.
But it also implies directly that the operator 1

2 (1+ a)I+αK is Fredholm of index
zero if and only if 1+ a does not vanish. We obtain immediately as a corollary of
Theorem 3 the following result.

Theorem 5. Let Ω be a bounded smooth (Lyapunov) domain. Let α ∈ C1(Ω) and
β ∈ L∞(Ω). Then for the VIE (11.3) the Fredholm alternative holds in H1(Ω) if and
only if

(i) a(x) �= 0 in Ω and
(ii) a(x) �=−1 on Γ .

The conditions on the coefficient a(x) obtained in Theorem 5 have been known for a
long time as conditions for Fredholm properties of the scattering problem (11.1). In
[CoSt85], the case of piecewise constant coefficients was treated. Using the method
of boundary integral equations, the case of smooth boundaries in any dimension and
the case of polygons in dimension two were studied. In the thesis [Ch12] and the
paper [BBCC12], variational methods for the interface problem were used to obtain
the same conditions in the case of smooth domains and also necessary and sufficient
conditions for some non-smooth domains.



11 Volume Integral Operators in Acoustic Scattering 127

References

[BBCC12] Bonnet-Ben Dhia, A.-S., Chesnel, L., Ciarlet, P. Jr.: T-coercivity for scalar interface
problems between dielectrics and metamaterials. ESAIM Math. Model. Numer. Anal.
46(6), 1363–1387 (2012)

[Ch12] Chesnel, L.: Investigation of some transmission problems with sign changing coeffi-
cients, Application to metamaterials. PhD thesis, École Polytechnique (2012)

[CoKr83] Colton, D., Kress, R.: Integral equation methods in scattering theory. Pure and Applied
Mathematics (New York). John Wiley & Sons Inc., New York (1983)

[CoKr98] Colton, D., Kress, R.: Inverse acoustic and electromagnetic scattering theory, vol-
ume 93 of Applied Mathematical Sciences. Springer-Verlag, Berlin, second edition
(1998)

[Co88] Costabel, M.: Boundary integral operators on Lipschitz domains, elementary results.
SIAM J. Math. Anal. 19(3), 613–626 (1988)

[Co07] Costabel, M.: Some historical remarks on the positivity of boundary integral operators.
In: Boundary element analysis, volume 29 of Lect. Notes Appl. Comput. Mech.,
pp. 1–27. Springer, Berlin (2007)

[CoDK10] Costabel, M., Darrigrand, E., Koné, E.-H.: Volume and surface integral equations
for electromagnetic scattering by a dielectric body. J. Comput. Appl. Math. 234(6),
1817–1825 (2010)

[CoDS12] Costabel, M., Darrigrand, E., Sakly, H.: The essential spectrum of the volume integral
operator in electromagnetic scattering by a homogeneous body. Comptes Rendus
Mathématique, 350, 193–197 (2012)

[CoSt85] Costabel, M., Stephan, E.: A direct boundary integral equation method for transmission
problems. J. Math. Anal. Appl. 106(2), 367–413 (1985)

[DrFl94] Draine, B. T., Flatau, P. J.: Discrete-dipole approximation for scattering calculations.
J. Opt. Soc. Am. A 11(4), 1491–1499 (1994)

[FrPa84] Friedman, M. J., Pasciak, J. E.: Spectral properties for the magnetization integral
operator. Math. Comp. 43(168), 447–453 (1984)

[Ki07] Kirsch, A.: An integral equation approach and the interior transmission problem for
Maxwell’s equations. Inverse Probl. Imaging 1(1), 159–179 (2007)

[KiLe09] Kirsch, A., Lechleiter, A.: The operator equations of Lippmann-Schwinger type for
acoustic and electromagnetic scattering problems in L2. Appl. Anal. 88(6), 807–830
(2009)

[PuPe73] Purcell, E. M., Pennypacker, C. R.: Scattering and adsorption of light by nonspherical
dielectric grains. Astrophys. J. 186, 705–714 (1973)

[Sa14] Sakly, H.: Opérateur intégral volumique en théorie de diffraction électromagnétique.
PhD thesis, Université de Rennes 1 (2014)

[YuHo07] Yurkin, M. A., Hoekstra, A. G.: The discrete dipole approximation, an overview and
recent developments. J. Quant. Spectrosc. Radiat. Transf. 106(1), 558–589 (2007)



Chapter 12
Modeling and Implementation of Demand
Dispatch Approach in a Smart Micro-Grid

F.D. Farimani and H.R. Mashhadi

12.1 Introduction

12.1.1 Motivation

Since today power distribution systems have experienced fundamental changes in
recent decades, management mode of the system should also be impressed by
the changes. Development of control and communication systems along with new
concept of smart grid enables demand side assets to participate in dispatching
process. This paper incentive is to precisely model DD, define the DD Aggregator
problem, and finally implement the model on a real case study.

12.1.2 Literature Review

Demand dispatch was firstly introduced in [BrEtAl10], as a new way of thinking
about demand response (DR) due to the development of communication and control
(C&C) technologies in demand side. Many loads are now equipped with C&C
and could receive the aggregator dispatch/control command. The article presents
the required infrastructure of DD, especially communication part and necessary
characteristics of the internet for a successful implementation of DD. Some of the
differences between DD and DR are also explained. Moreover, the main required
characteristics of the loads, which could be dispatched and remotely controlled
(DLs) are presented. The aggregated loads are used for ancillary services and
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the benefits of load-based ancillary services are pointed. Finally, smart charging
of PEVs is simulated as an example of demand dispatch. Botterud [BoEtAl13]
employed DD combined with a powerful probabilistic wind power forecasting
method (WPF). Combination of DD and WPF could increase integration of wind
power into the power grid. A UC model considering WPF was developed by Wang
[WaEtAl11] and its formulation was extended in [BoEtAl13], to include DD. The
results show the ability of DD to handle uncertainty of wind power. DD not only
results reserve improvement and less load curtailment but also provides lower wind
power curtailment. Daburi [DaRa13] employed DD on an autonomous hybrid PV-
wind-battery-diesel system and concluded that DD could reduce the capacity of
required backup of battery energy storage and diesel units due to their lower dispatch
commands. Berardino [BeNwMi11] presented a method for economic dispatch of
some buildings along with DR purposes. In this paper, a generic formulation for
DD problem from the perspective of end user is presented and thus topology and
constraints of distribution system are not considered. Using DD for smart charging
of PEVs is performed in [WuEtAl12]. Stochastic charging of PEVs is an important
issue in distribution systems, which causes negative impacts on the grid. This issue
is addressed by [WuEtAl12] using 3 smart charging patterns. Daburi [DaRa13]
presented a priority list algorithm for the aggregator to implement DD on 900 DLs
with the aim of wind generation following by the DLs. Unfortunately, correlation
of wind power production and residential power consumption is usually low due to
higher wind speed and wind–load correlation and reduces the total operation cost.
DOE/NETL [Do11] prepared a comprehensive report of DD approach covering
DD definition and characteristics, comparison of DD with SD, its benefits and
implementation barriers. Current state of DD is also presented. One of the practical
projects on DD is the project in New Brunswick, Canada, which was reported by
Power Shift Atlantic. The goal of the project is to balance the variable energy of
wind turbines with the residential loads. It is the first project in the world, which
uses aggregated loads for integration of wind power into the grid. In this project
more than 1000 homes were monitored. One of the benefits of this approach is
that replaces the need of supporting wind power with costly generation systems.
Actually the existing assets, here dispatchable loads are used in spite of expensive
conventional power plants.

12.1.3 Chapter Content

The rest of this chapter is organized as follows. Section 12.2 generally explains
DD modeling. Firstly, a definition for DD is provided, and then a structure for
dispatching process is suggested to define the DDA identity and his relations with
the structure. After that, DDA and end user (EU) roles are modeled. This section
finally presents a structure for market relations between DDA, EUs, and MO.
In Section 12.3, the problem of aggregator is formulated. DDA problem is first
described in part A. The objective function and constraints of the optimization
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problem are presented in the next parts. Input data of the problem, DDA commands
to the DLs and the results will be analyzed. Asset optimization, as a benefit of DD,
is also proofed in the simulations. Finally, the paper is summarized and concluded
in Section 12.4. Recommendations for future works are also included in this section.

12.2 Demand Dispatch Modeling

12.2.1 DD Definition

Demand dispatch refers to remotely, dynamically and real time control of demand
(especially DLs) by the grid operator through whole day to help balance generation
and load. Dispatchable loads provide a more flexible system operation. About 33
percent of all loads are estimated to be dispatchable [BrEtAl10]. Section 12.3 will
explain this flexibility in detail. DD is a complement approach to SD for more
effective operation optimization. The conventional economic dispatch, actually
supply dispatch (SD), matches with the conventional centralized power plants while
DD is more compatible with decentralized generations and especially variable
renewable distributed generations since it is based on the strategy of generation
following (GF) as opposed to SD, which uses load following (LF) paradigm.
A perfect comparison between DD and SD is presented in [DaRa13]. Some of the
main differences between DD and DR are mentioned in [BrEtAl10] and [DaRa13].

12.2.2 Dispatching Structure

Dispatching process is considered to have some levels from the first level dis-
patcher, which is the independent system operator, to the fourth level one, shown
in Figure 12.1. Number of dispatchers is normally more than presented in the
structure. Aggregators at the end of the structure are assumed to send their optimum
control commands to the related level-4 dispatcher, which is responsible for remote
controlling of DLs. Every Level-4 dispatcher receives the control commands of
his own aggregators as illustrated in Figure 12.2. The grid scale within a level
4 dispatcher scope is about 3 percent of a city electric network. Level-3 ones,
which are distribution dispatchers, receive level-4 dispatchers information and will
transmit the information to their own level-2 dispatcher. Level-2 dispatchers are
the regional dispatchers under level 1 dispatcher. Therefore, there is a down-up
data transfer direction in DD, since the load follows the generation pattern. We call
this approach generation following (GF). In the conventional dispatching approach,
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Fig. 12.1 Dispatching structure with the aggregators at the end.

Fig. 12.2 Aggregators and level 4 dispatchers relations.

which we call it load following (LF), generation follows the load pattern. In LF, the
load profile is first forecasted and the generation units dynamically follow it through
unit commitment and economic dispatch methods.
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12.2.3 Demand Dispatch Aggregator Modeling

The DD aggregator as mentioned before is a small system operator that is the closest
dispatcher to the residential customers. He receives the information of DLs from the
end users, and solves an optimization problem to determine the best commands
to the DLs. As depicted in Figure 12.2, every DDA reports the information of
commands to the level 4 dispatcher, which is responsible for connecting the DLs in
the right time. It could be possible for level-4 dispatcher to solve a new optimization
problem based on the commands received from the aggregators. In this way, every
micro-grid could play the role of a virtual power plant (VPP) to be considered in the
higher level dispatcher optimization.

12.2.4 End-User Modeling

End-users play an important role in DD implementation. They are expected to set
some information on their appliances after plugging it. We speak about dispatchable
loads, which are flexible in time of performance like dishwashers, EVs, washing
machines, clothes dryers, pool pumps, and so on. When it is possible for the
customer to wait more than the required time for his/her appliance to accomplish
its work (for example, a dishwasher needs 30 minutes but it is possible for the user
to wait 8 hours for clean dishes), he/she could simply participate in DD. Assuming
that the appliances are equipped with communication technology needed, the user
will be able to set some required information on the appliance. The user determines
his/her waiting period by setting start time (is) and the end time (ie); see Table 12.1.
In order to provide a more flexible time scheduling, the day is divided into 144 time
intervals. So every time interval lasts 10 minutes. The user might plug the appliance
at 7:00 for example, and selects the waiting period between 10:00 to 18:30 (equals
with 42 to 111). The end user should also specify the number of intervals needed
for the appliance, which is shown in column 4 of Table 12.1. It is assumed that the
appliance energy consumption characteristics are known by the aggregator. Since
the grid is smart, the aggregator is able to assign an IP for every DL connected
to the smart plugs and easily obtain the energy usage of the appliance. The end
users expect the aggregator to supply their loads exactly in the determined waiting
period. Assume 4 types of DLs like clothes dryer, dishwasher, washing machine,
and electric vehicle to participate in DD with energy characteristics of Table 12.2.
We will discuss on the number of each DL type participated in DD for the scale of
micro-grid in the next section.
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Table 12.1 Dispatchable loads information.

DL type is (1-144) ie (1-144) Time intervals Interval energy (kWh) No. of DLs

Type1 is,1 ie,1 6 0.650 10

Type2 is,2 ie,2 3 0.200 25

Type3 is,3 ie,3 4 0.470 15

Type4 is,4 ie,4 18 0.544 10

Fig. 12.3 DD Aggregator,
end user, and market operator
relations.

12.2.5 DDA, EU, and Market Operator

According to Figure 12.3, end-users’ contract with DDA for their energy supply and
demand dispatch participation. They pay for their energy consumption to DDA and
receive a reward from DDA due to DD participation. It could be also assumed they
are rewarded by lower energy payments. DDA should pay for energy to the market
operator. MO pays DDA for his DD implementation and load aggregation. DDA
tries to minimize his/her cost, which consists of pay for energy to MO and pay for
DD participation to EUs.
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12.3 Problem Formulation

12.3.1 What is the DDA Problem?

The aggregator is responsible for aggregation of candidate DLs to minimize the
operation cost. As mentioned before, from the electricity market perspective, DDA
buys energy from the MO and supplies the EUs (see Figure 12.3). Final goal is to
daily schedule the DLs to minimize operation cost. The micro-grid consists of 40
houses. For the considered 40 houses, about 10 dryers, 25 dishwashers, 15 washing
machines, and 5 to 20 EVs could be candidate DLs for an especial day.

12.3.2 Objective Function

DDA’s goal is to minimize the operation cost for a period of 24 hours. The
mathematical formulation could be described as Equation 12.1.

The first term refers to the energy cost paid by the DDA to the MO. The
second term describes the cost of not supplying the load due to overloading of the
transformer. The power flow is illustrated in Figure 12.4.

Minimize
144

∑
i=1

Egrid,iρi +EOL,iρNS,i (12.1)

Fig. 12.4 Power flows of the
micro-grid.
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12.3.3 Constraints

DDA problem constraints include network limitations and DL constraints.
The transformer loading limitation is considered by Equation 12.2. Generation

and load balance is formulated as Equation 12.3.

Pgrid,i ≤ Pmax (12.2)

Pgrid,i−PNDL,i +PWind,i +PPV,i− (
dlmax

∑
dl=1

EdlSdl,i)/T)+EOL,i/T = 0 (12.3)

ie

∑
is

Sdl,i = Ndl,i ∀dl (12.4)

The operation time of the dispatchable loads should lie within the allow-
able period of that load and equal with the up time needed as formulated in
Equation 12.4.

Sdl,i denotes the status of the DLs, which is the result of DD. It is a vector
containing 144 binary elements. As an example, assume that 30 minutes is needed
for a dishwasher to accomplish its work. Assume that the user period is from 37
to 131 (from 07:00 to 21:50). There must be 3 ones (3 ∗ 10 = 30min) in the status
vector:

Sdl,i = [0 0 0 1 1 1 0 , ..., 0 0 0]

For continuous operation of the DLs, the operation period should be uninter-
rupted. So, one-valued elements should appear sequential as in Equation 12.5.
Equation 12.6 represents the relationship between the DLs status and the indicators
of startup and shut down of the loads. In order to avoid the appliance to simultane-
ously receive on and off commands, inequality Equation 12.7 is considered in the
constraints. Since the loads are assumed to participate in DD one time a day, they
should receive on and off commands, just one time as formulated in Equation 12.8
and Equation 12.9.

i+Ndl−1

∑
I=i

Sdl,I ≥ NdlMdl, i ∀dl,∀i≤ 144−Nr,dl +1 (12.5)

Mdl,i−Kdl,i = Sdl,i−Sdl,i−1 ∀dl,∀i (12.6)

Mdl,i +Kdl,i ≤ 1 ∀dl,∀i (12.7)

144

∑
i=1

Mdl,i = 1 ∀dl (12.8)

144

∑
i=1

Kdl,i = 1 ∀dl (12.9)
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For a better comparison between the conventional approach and a smart grid
system using DD, the micro-grid system is also simulated without using DD,
when all the loads are non-dispatchable in three scenarios for different time of
use of the DLs. Assume the micro-grid shown in Figure 12.5. The PEVs consume
energy of 9.8 kWh in 3 hours (18 time intervals) to get full-charged. The energy
characteristics of the other three dispatchable loads are given in Table 12.1. In the
input DLs information matrix, all of the DLs are assumed to have the same energy
characteristics, but with different waiting periods. A 50 Kw wind turbine with the
characteristics given in Table 12.2 is assumed for the micro-grid. Data of wind
speed in the first of October 2008 in Khaf were converted to wind power using
Equation 12.10.

Fig. 12.5 The micro-grid case studies.
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Table 12.2 Wind Turbine
Characteristics.

inscap 50 kW

cis 3.5 m/s

cos 25 m/s

rs 14 m/s

PW(K) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0 if sw(k)≥ cos or sw(k)≤ cis

inscap if sw(k)≥ rs or sw(k)≤ cos

inscap
rs− cis

S(k)cos if sw(k)≥ cis or sw(k)≤ rs

(12.10)

12.3.4 Case 1: Micro-Grid Operation Without DD

• Scenario 1: the customers plug their DLs based on their habits without consider-
ing the energy price.

• Scenario 2: the customers use their dispatchable appliances in low price intervals
of daytime when they are awake.

• Scenario 3: the customers plug in their DLs in low-price intervals even in the
midnight.

12.3.5 Case 2: Micro-Grid Operation Using DD

The aggregator should determine the start time of the DLs based on the information
received from the EUs. DLs status is shown in Figure 12.6. The first 10 loads are
clothes dryers with 60 minutes required time. The next 25 DLs are the dishwashers
with 30 minutes duration required. The next 15 DLs are the washing machines with
50 minutes required time and the last 10 loads are the EVs with 18 time intervals
for charging. According to the energy price curve in simulation results, the DLs are
charged in low cost intervals except the ones which the related waiting periods of
them were settled in higher cost intervals by the customer. As shown in Table 12.3,
operation cost of the DDA reduces to 276.65 dollars/day when using DD and the
dispatchable loads are dispatched by the aggregator. Moreover, the transformer
overloading is reduced to zero. One other important result of using DD is Wind-
load correlation increment. In the first 6 hours of the day, we have a high amount
of wind power. Without using DD, the surplus wind energy is injected to the main
grid due to the lack of loads while it is locally consumed by the micro-grid DLs
when using DD. In this way, the energy is locally used by the loads and results less
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0
DLs Status (on-off)

144 time intervals from 00:00 A.M. to 24:00 P.M.

10

20

30

40

50

60
20 40 60 80 100 120 140

Fig. 12.6 Dispatchable Loads charging period over the time.

Table 12.3 Comparison between conventional generation and DD.

Micro-grid-DDA operation cost Operation cost reduction

(dollars/day) (as percentage)

NDL Scenarios Without DD Using DD

Scenario 1 368.86 276.65 24.99

Scenario 2 338.22 18.20

Scenario 3 289.29 4.37

power loss in comparison with transferring energy out of the micro-grid. DD could
reduce the installation capacity of the transformer. To see how DD helps in asset
optimization, especially in distribution transformer loading, operation cost versus
different capacities of the transformer for both case studies of no DD and using DD
is depicted in Figure 12.7. The horizontal axis represents the nominal capacity of
the distribution transformer in kVA from 10 kVA to 70 kVA. The vertical axis is the
DDA operation cost. As illustrated in Figure 12.7, minimum operation cost without
DD approach occurs with a 55 kVA transformer, while a 40 kVA transformer is
enough when using DD. In order to obtain a valid installation capacity of the
transformer and speak on planning issues, operation cost of one year load profile, at
least, should be drawn versus different transformer capacities.

12.4 Conclusions

In this paper, DD approach was modeled as an optimization problem, from the
perspective of the aggregator of a micro-grid connected to a distribution transformer.
Simulation results obtained from the case studies revealed that Demand Dispatch
would lessen the operation cost, optimize asset utilization, reduce overloading of
transformers and increase wind–load correlation.
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Fig. 12.7 Operation cost for different transformer capacities from 10 to 70 kVA.

Nomenclature

i Time interval indicator from 1 to 144
dl The indicator of DLs from 1 to dlmax (60 for the case study)
t Time interval duration equals to 1/6 hour
Egrid,i energy exchanged between the main grid and the micro-grid
ρi The energy price in ith time interval (cent/kWh)
EOL,i The over-loaded energy of the transformer during ith time interval
ρNS,i Energy not supplied cost in dollars
Pmax Maximum power limitation of transformer
PNDL,i Non-dispatchable loads power during ith time interval
Pwind,i Produced wind power during ith time interval
Ppv,i Produced photovoltaic power during ith time interval
Edl Required energy of a dispatchable load for a 10-minute period
Sdl,i binary state of the DLs in every time interval
Ndl The up time needed for the dlth DL
Mdl,i A binary indicator for the startup period of dlth DL
Kdl,i A binary indicator for the shutdown period of dlth DL
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Chapter 13
Harmonic Functions in a Domain with a Small
Hole: A Functional Analytic Approach

M. Dalla Riva and P. Musolino

13.1 Introduction

In this survey, we present some recent results obtained by the authors on the asymp-
totic behavior of harmonic functions in a bounded domain with a small hole.
Particular attention will be paid to the case of the solutions of a Dirichlet problem
for the Laplace operator in a perforated domain. We fix once for all

n ∈ N\{0,1} , α ∈]0,1[ .

Then we take two open setsΩ i andΩ o in the n-dimensional Euclidean space Rn.
We assume that Ω i and Ω o satisfy the following condition.

Ω i and Ω o are open bounded connected subsets of Rn of

class C1,α such that Rn \ clΩ i and R
n \ clΩ o are connected, (13.1)

and such that the origin 0 of Rn belongs both to Ω i and Ω o.

Here cl denotes the closure of a set. For the definition of functions and sets of
the usual Schauder classes C0,α and C1,α , we refer, for example, to Gilbarg and
Trudinger [GiTr01, §6.2]. The set Ω o will represent the unperturbed domain where
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we make a hole. On the other hand, the set Ω i will play the role of the shape of the
perforation. Here, the letter ‘i’ stands for ‘inner domain’ and the letter ‘o’ stands for
‘outer domain.’

We note that condition (13.1) implies thatΩ i andΩ o have no holes and that there
exists a real number ε0 such that

ε0 > 0 and εclΩ i ⊆Ω o for all ε ∈]− ε0,ε0[.

We are now in the position to define the perforated domain Ω(ε):

Ω(ε)≡Ω o \ εclΩ i ∀ε ∈]− ε0,ε0[ .

In other words, the set Ω(ε) is obtained by removing from Ω o the closure of the set
εΩ i, which can be seen as a hole.

If ε ∈]−ε0,ε0[\{0}, then by a simple topological argument one can see thatΩ(ε)
is an open bounded connected subset of Rn of class C1,α . For each ε ∈ ]− ε0,ε0[,
the boundary ∂Ω(ε) of Ω(ε) consists of the two connected components ∂Ω o and
ε∂Ω i. In particular, ∂Ω o is the ‘outer boundary’ of Ω(ε) and ε∂Ω i is the ‘inner
boundary.’ We also note that Ω(0) =Ω o \{0}.

For each ε ∈]− ε0,ε0[\{0} we want to consider a Dirichlet problem for the
Laplace operator in the perforated domain Ω(ε). In order to do so, we fix two
functions f i ∈ C1,α(∂Ω i) and f o ∈ C1,α(∂Ω o), and we define the Dirichlet datum
fε ∈ C1,α(∂Ω(ε)) as follows:

fε(x)≡
{

f i(x/ε) if x ∈ ε∂Ω i ,

f o(x) if x ∈ ∂Ω o .

Then for each ε ∈]−ε0,ε0[\{0} we consider the following boundary value problem

{
Δu = 0 in Ω(ε) ,
u(x) = fε(x) for x ∈ ∂Ω(ε) .

(13.2)

As is well known, the problem in (13.2) has a unique solution in C1,α(clΩ(ε)), and
we denote such solution by uε . Our aim is to investigate the behavior of the solution
uε of (13.2) as ε tends to 0. We observe that problem (13.2) is clearly singular when
ε = 0. Indeed, the domainΩ(ε) is degenerate for ε = 0 and also the Dirichlet datum
on ε∂Ω i does not make sense for ε = 0.

Therefore, in order to study the behavior of uε , we can fix a point which belongs
toΩ(ε) for all ε that are close to 0, and see what happens to the value of the solution
uε at this fixed point as ε approaches 0. Also, we can choose to approach to the
degenerate value ε = 0, for example, from positive values of ε . So we assume that

p ∈Ω o \{0}, (13.3)
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and that

εp ∈]0,ε0[ is such that p ∈Ω(ε) for all ε ∈]0,εp[. (13.4)

We note that (13.4) implies that the point p belongs to the domain of the function
uε for all ε ∈]0,εp[, and therefore it makes sense to consider the value uε(p) for
ε ∈]0,εp[. Thus we can ask the following question.

What can be said of the map from ]0,εp[ to R

which takes ε to uε(p) when ε is close to 0?
(13.5)

The behavior of the solutions of boundary value problems in domains with small
holes has been investigated, for example, with methods of asymptotic analysis. With
such approach, one would try to answer to the question in (13.5) by producing
an asymptotic expansion of uε(p) for ε close to 0. It is impossible to provide
a complete list of all the contributions with this method. As an example, we
mention the works by Bonnaillie–Noël and Dambrine [BoDa13], Il’in [Il92],
Maz’ya, Movchan, and Nieves [MaMoNi13], Maz’ya, Nazarov, and Plamenevskij
[MaNaPl00a, MaNaPl00b]. Moreover, the study of problems of this type has
revealed to be a powerful tool in the frame of shape optimization (cf. Novotny and
Sokołowsky [NoSo13]). Applications of these investigations, for example, to inverse
problems are widely illustrated in Ammari and Kang [AmKa07] and Ammari, Kang,
and Lee [AmKaLe09].

Here instead we wish to characterize the behavior of uε at ε = 0 by a different
approach. For example, we would try to represent uε(p) for ε > 0 in terms of real
analytic functions of the variable ε defined on a whole neighborhood of 0, and of
possibly singular at ε = 0 but explicitly known functions of ε (such as logε , ε−1,
etc.). Then, if we knew, for example, that uε(p) equals for positive values of ε a
real analytic function of the variable ε defined on a whole neighborhood of 0, we
would be able to deduce the existence of ε ′ ∈]0,εp[ and of a sequence {cj}∞j=0 of real
numbers such that

uε(p) =
∞

∑
j=0

cjε j ∀ε ∈]0,ε ′[ ,

where the series in the right-hand side converges absolutely on ]− ε ′,ε ′[. As we
shall see, this is indeed the case when n≥ 3 (cf. Theorem 1 below).

This method has been applied to investigate perturbation problems for the
conformal representation and for boundary value problems for the Laplace operator
in a bounded domain with a small hole (cf., e.g., Lanza de Cristoforis [La02, La08]).
Later on, the approach has been extended to nonlinear traction problems in
elastostatics (cf., e.g., [DaLa11]), to the Stokes flow (cf., e.g., [Da13]), and to the
case of an infinite periodically perforated domain (cf., e.g., [LaMu14]). Moreover,
the authors have analyzed the effective properties of dilute composite materials by
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this technique (see [DaMu13]). Finally, also (regular) domain perturbation problems
in spectral theory have been analyzed with this approach (cf., e.g., Buoso and
Lamberti [BuLa13], Lamberti and Provenzano [LaPr13]).

13.2 What Happens When ε is Positive and Close to 0?

In the following theorem, we answer question (13.5) on the behavior of uε(p) as
ε → 0+, by exploiting the functional analytic approach proposed by Lanza de
Cristoforis. We find convenient to denote by u0 the unique function in C1,α(clΩ o)
such that

{
Δu0 = 0 in Ω o ,

u0(x) = f o(x) for x ∈ ∂Ω o .
(13.6)

Theorem 1 (Lanza de Cristoforis [La08]). Let p be as in (13.3).

(i) If n = 2, then there exist εp as in (13.4), εp < 1, and a real analytic function U#
p

from ]− εp,εp[×]1/ logεp,−1/ logεp[ to R such that

uε(p) = U#
p [ε ,1/ logε ] ∀ε ∈]0,εp[ ,

and that u0(p) = U#
p [0,0].

(ii) If n ≥ 3, then there exist εp as in (13.4) and a real analytic function Up from
]− εp,εp[ to R such that

uε(p) = Up[ε ] ∀ε ∈]0,εp[ ,

and that u0(p) = Up[0]

Now, instead of considering the behavior of the value of uε at a fixed point, as
done in Theorem 1, we could consider the restriction of uε to the closure of a suitable
open subset of Ω o \{0}. More precisely, we note that if

Ω̃ is a bounded open subset of Ω o such that 0 �∈ clΩ̃ , (13.7)

then there exists εΩ̃ such that

εΩ̃ ∈]0,ε0[ and clΩ̃ ∩ εclΩ i = /0 for all ε ∈]− εΩ̃ ,εΩ̃ [ . (13.8)

In particular, clΩ̃ ⊆ clΩ(ε) for all ε ∈]− εΩ̃ ,εΩ̃ [. As consequence, if ε ∈]0,εΩ̃ [,
then it makes sense to consider the restriction of uε to clΩ̃ . Then we describe the
behavior of uε |clΩ̃ in the following.
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Theorem 2 (Lanza de Cristoforis [La08]). Let Ω̃ be as in (13.7).

(i) If n = 2, then there exist εΩ̃ as in (13.8), εΩ̃ < 1, and a real analytic map U#
Ω̃

from ]− εΩ̃ ,εΩ̃ [×]1/ logεΩ̃ ,−1/ logεΩ̃ [ to C1,α(clΩ̃) such that

uε(x) = U#
Ω̃ [ε ,1/ logε ](x) ∀x ∈ clΩ̃ ,∀ε ∈]0,εΩ̃ [ , (13.9)

and that u0|clΩ̃ = U#
Ω̃ [0,0].

(ii) If n ≥ 3, then there exist εΩ̃ as in (13.8) and a real analytic map UΩ̃ from
]− εΩ̃ ,εΩ̃ [ to C1,α(clΩ̃) such that

uε(x) = UΩ̃ [ε ](x) ∀x ∈ clΩ̃ ,∀ε ∈]0,εΩ̃ [ , (13.10)

and that u0|clΩ̃ = UΩ̃ [0].

We note that in Theorem 2 the real analytic maps U#
Ω̃ and UΩ̃ have values in the

Banach space C1,α(clΩ̃). Here we just recall that if X , Y are (real) Banach spaces
and if F is a map from an open subset W of X to Y , then F is real analytic in W
if for every x0 ∈W there exist r > 0 and continuous symmetric j-linear operators Aj

from X j to Y such that ∑j≥1 ‖Aj‖rj <∞ and F(x0 +h) = F(x0)+∑j≥1 Aj(h, . . . ,h)
for all h ∈X with ‖h‖X ≤ r (cf., e.g., Deimling [De85, p. 150]).

Theorem 2 has been proved in Lanza de Cristoforis [La08, Theorem 5.3], where
also real analyticity properties of the solution upon perturbations of Ω o and Ω i

are considered. Furthermore, Theorem 2 could also be deduced by some more
recent results concerning real analytic families of harmonic functions (cf. [DaMu12,
Proposition 4.1] and [DaMu15, Theorem 3.1]).

Moreover, we observe that if p ∈ clΩ̃ , then the map which takes a function
u ∈ C1,α(clΩ̃) to u(p) is linear and continuous (and thus real analytic). Since the
composition of real analytic maps is real analytic, by Theorem 2 we deduce the
validity of Theorem 1.

13.3 What Happens for ε Negative?

Now we would like to investigate the validity of equalities (13.9) and (13.10) when
ε is negative. As we have seen, the behavior of uε for ε close to 0 in case n = 2 and
in case n ≥ 3 are different. As a consequence, we need to analyze separately these
two cases.

13.3.1 Case of Dimension n≥ 3

We now observe that both uε and UΩ̃ [ε ] in equality (13.10) are defined also for
negative values of ε . However, by Theorem 2, we just know that the equality in
(13.10) holds when ε is small and positive. As a consequence, it is natural to ask the
following question.
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Does the equality in (13.10) hold also for ε negative? (13.11)

In [DaMu12], it has been shown that the answer to the question in (13.11) depends
on the parity of the dimension n.

The following theorem says that if the dimension n is even and bigger than 3
(i.e., n = 4,6,8, . . . ), then the equality in (13.10) holds also for ε < 0 (cf. [DaMu12,
Theorem 3.1 and Proposition 4.1]). Moreover, if u0 is the solution of problem (13.6),
equality (13.10) holds in a whole neighborhood of 0, and in particular also for ε = 0.

Theorem 3. Let n be even and n≥ 3. Let Ω̃ , εΩ̃ be as in (13.7), (13.8), respectively.
Then there exists a real analytic map UΩ̃ from ]− εΩ̃ ,εΩ̃ [ to C1,α(clΩ̃) such that

uε(x) = UΩ̃ [ε ](x) ∀x ∈ clΩ̃ ,∀ε ∈]− εΩ̃ ,εΩ̃ [ .

We now turn to consider case n odd. As we shall see, if n is odd (i.e., n =
3,5,7, . . . ), then the validity of the equality in (13.10) also for ε < 0 has to be
considered as a very exceptional situation. Indeed, we have the following theorem
(cf. [DaMu12, Proposition 4.3]).

Theorem 4. Let n be odd and n ≥ 3. Then the following statements are
equivalent.

(i) There exist Ω̃ , εΩ̃ as in (13.7), (13.8), respectively, and a real analytic map UΩ̃
from ]− εΩ̃ ,εΩ̃ [ to C1,α(clΩ̃) such that

uε(x) = UΩ̃ [ε ](x) ∀x ∈ clΩ̃ ,∀ε ∈]− εΩ̃ ,εΩ̃ [\{0} .

(ii) There exists c ∈ R such that

f i(x) = c ∀x ∈ ∂Ω i , f o(x) = c ∀x ∈ ∂Ω o

(and thus uε(x) = c for all x ∈ clΩ(ε) and ε ∈]− ε0,ε0[\{0}).
Clearly, if statement (ii) of Theorem 4 holds and Ω̃ , εΩ̃ are as in (13.7), (13.8),

respectively, then the map UΩ̃ from ]− εΩ̃ ,εΩ̃ [ to C1,α(clΩ̃) defined by

UΩ̃ [ε ](x) = c ∀x ∈ clΩ̃ , ∀ε ∈]− εΩ̃ ,εΩ̃ [ ,

is such that the equality in (13.10) holds for ε ∈]− εΩ̃ ,εΩ̃ [\{0}, and therefore we
deduce the validity of statement (i). On the other hand, Theorem 4 says in particular
that if there exists at least one open subset Ω̃ as in (13.7) for which we can find a
small positive number εΩ̃ as in (13.8) and a real analytic map UΩ̃ from ]− εΩ̃ ,εΩ̃ [
to C1,α(clΩ̃) such that the equality in (13.10) holds for ε ∈]−εΩ̃ ,εΩ̃ [\{0}, then we
are in the very exceptional situation that f i and f o are both equal to the same constant
c ∈R (and that accordingly uε = c on clΩ(ε) for all ε ∈]−ε0,ε0[\{0}). Hence, if n
is odd, the validity of equality (13.10) also for ε negative has to be considered as a
very special situation which happens only in the trivial case in which the functions
uε for ε ∈]− ε0,ε0[\{0} are all equal to the same constant.
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13.3.2 Case of Dimension n = 2

We now turn to consider the case of dimension n = 2. Also in this case, we would
like to say something about the validity of equality (13.9) for ε < 0. In particular
we would like to replace the pair (ε ,1/ logε), where the map U#

Ω̃ is evaluated when
ε > 0, by a convenient pair which makes sense also for ε < 0, in a way to preserve
the validity of equality (13.9) for ε in a whole neighborhood of 0. We do so in the
following theorem (cf. [DaMu15, Theorem 3.1]).

Theorem 5. Let n = 2. Let Ω̃ , εΩ̃ be as in (13.7), (13.8), respectively, with εΩ̃ < 1.
Then there exist an open neighborhood UΩ̃ of {(ε ,1/ log |ε |) : ε ∈]−εΩ̃ ,εΩ̃ [\{0}}
∪{(0,0)} in R

2 and a real analytic map U#
Ω̃ from UΩ̃ to C1,α(clΩ̃) such that

uε(x) = U#
Ω̃ [ε ,1/ log |ε |](x) ∀x ∈ clΩ̃ ,∀ε ∈]− εΩ̃ ,εΩ̃ [\{0} .

Now we would like to consider boundary data f o and f i in such a way to get rid of
the logarithmic behavior of uε for ε small. In other words, we would like that the
following condition (a) holds.

(a) For all Ω̃ , εΩ̃ as in (13.7), (13.8), respectively, there exists a real analytic map
VΩ̃ from ]− εΩ̃ ,εΩ̃ [ to C1,α(clΩ̃) such that

uε(x) = VΩ̃ [ε ] ∀x ∈ clΩ̃ ,∀ε ∈]− εΩ̃ ,εΩ̃ [ .

In [DaMu15, Theorem 3.6], we show that condition (a) is equivalent to the following
condition (b).

(b) There exist p, εp as in (13.3), (13.4), respectively, and a real analytic map Vp

from ]− εp,εp[ to R such that p ∈Ω(ε) for all ε ∈]− εp,εp[ and

uε(p) = Vp[ε ] ∀ε ∈]0,εp[ .

This means that either uε(p) displays a logarithmic behavior for every point p∈Ω o\
{0}, or uε(p) does not display a logarithmic behavior for any point p ∈ Ω o \ {0}.
Also, by [DaMu15, Theorem 3.6] there exists a pair of functions (ρo[ε ],ρ i[ε ]) ∈
C0,α(∂Ω o)×C0,α(∂Ω i) which depends only on ε , ∂Ω o, and ∂Ω i, such that (a)
and (b) are equivalent to the following condition (c).

(c) It holds
∫
∂Ωo f oρo[ε ]dσ +

∫
∂Ω i f iρ i[ε ]dσ = 0 for all ε ∈]− ε0,ε0[.

The advantage of condition (c) with respect to (a) and (b) is that (c) can be
verified on the boundary data f o and f i and does not require the knowledge of the
solution uε of (13.2). In [DaMu15, §3], we also observe that under some convenient
assumptions, condition (c) can become very explicit. For example, if f o and f i are
both constant functions, then condition (c) is equivalent to the fact that f o and f i are
identically equal to the same real number. If instead both Ω o and Ω i coincide with
the unit ball B2 of R2, then condition (c) is equivalent to

∫
∂B2

f o dσ =
∫
∂B2

f i dσ .
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13.4 Asymptotic Expansion of the Solution of a Dirichlet
Problem in a Perforated Domain (n = 2)

As already mentioned, the functional approach of the authors can be used to
compute asymptotic expansions for the solutions of boundary value problems in
perforated domains. In particular, the results of [DaMu15] have been exploited in
[DaMuRo] to prove the following expansions for the solution uε of the Dirichlet
problem (13.2) for the Laplace operator in a bounded planar domain with a small
hole.

Theorem 6. Let n = 2. Then there exist a family {λM,(j,l)}(j,l)∈N2 , l≤j+1 of functions

from (clΩ o)\{0} to R, and a family {λm,(j,l)}(j,l)∈N2 , l≤j+1 of functions from R
2 \Ω i

to R, and r0 ∈ R such that the following statements hold.

(i) Let ΩM ⊆ Ω o be open and such that 0 /∈ clΩM. Then there exists ε ′M ∈
]0,ε0]∩]0,1[ such that clΩM ∩ εclΩ i = /0 for all ε ∈]− ε ′M,ε ′M[ and such that

uε |clΩM
=

∞

∑
j=0
ε j

j+1

∑
l=0

λM,(j,l)|clΩM

(r0 +(2π)−1 log |ε |)l

for all ε ∈]− ε ′M,ε ′M[\{0}. Moreover, the series

∞

∑
j=0
ε j

j+1

∑
l=0

λM,(j,l)|clΩM
η l

(r0η+(2π)−1)l

converges in C1,α(clΩM) uniformly for (ε ,η) belonging to the product of
intervals ]− ε ′M,ε ′M[×]1/ logε ′M,−1/ logε ′M[.

(ii) Let Ωm ⊆ R
2 \ clΩ i be open and bounded. Then there exists ε ′m ∈]0,ε0]∩]0,1[

such that εclΩm ⊆Ω o for all ε ∈]− ε ′m,ε ′m[ and such that

uε(ε ·)|clΩm =
∞

∑
j=0
ε j

j+1

∑
l=0

λm,(j,l)|clΩm

(r0 +(2π)−1 log |ε |)l

for all ε ∈]− ε ′m,ε ′m[\{0}. Moreover, the series

∞

∑
j=0
ε j

j+1

∑
l=0

λm,(j,l)|clΩmη
l

(r0η+(2π)−1)l

converges in C1,α(clΩm) uniformly for (ε ,η) belonging to the product of
intervals ]− ε ′m,ε ′m[×]1/ logε ′m,−1/ logε ′m[.
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Here above, we denote by uε(ε ·) the rescaled function which takes x ∈
ε−1clΩ(ε) to uε(εx), for all ε ∈]− ε0,ε0[\{0}. Moreover, the letter ‘M’ stands for
‘macroscopic,’ while the letter ‘m’ stands for ‘microscopic.’ Indeed, in Theorem 6
(i) we analyze the behavior of uε far from the hole and in Theorem 6 (ii) we consider
the solution in proximity of the perforation.

Finally, we note that in [DaMuRo] explicit formulae for the families of functions
{λM,(j,l)}(j,l)∈N2 , l≤j+1 and {λm,(j,l)}(j,l)∈N2 , l≤j+1 are provided.

13.5 Real Analytic Families of Harmonic Functions
in a Bounded Domain with a Small Hole

The results of Subsections 13.3.1 and 13.3.2 can be deduced from those in the papers
[DaMu12] and [DaMu15], where we introduce and study real analytic families of
harmonic functions, which are not required to be the solutions of any particular
boundary value problem. Therefore, in the present section, the functions uε are not
necessarily solutions of problem (13.2).

Definition 1. Let ε1 ∈]0,ε0]. We say that {uε}ε∈]0,ε1[ is a right real analytic family
of harmonic functions on Ω(ε) if it satisfies the following conditions (a0)–(a2).

(a0) uε ∈ C1,α(clΩ(ε)) and Δuε = 0 in Ω(ε) for all ε ∈]0,ε1[.
(a1) Let ΩM ⊆ Ω o be open and such that 0 /∈ clΩM . Let εM ∈]0,ε1] be such that

clΩM ∩ εclΩ i = /0 for all ε ∈]− εM,εM[. Then there exists a real analytic map
UM from ]− εM,εM[ to C1,α(clΩM) such that

uε |clΩM
= UM[ε ] ∀ε ∈]0,εM[ .

(a2) Let Ωm ⊆ R
n \ clΩ i be open and bounded. Let εm ∈]0,ε1] be such that

εclΩm ⊆ Ω o for all ε ∈]− εm,εm[. Then there exists a real analytic map Um

from ]− εm,εm[ to C1,α(clΩm) such that

uε(ε ·)|clΩm = Um[ε ] ∀ε ∈]0,εm[ .

Definition 2. Let ε1 ∈]0,ε0]. We say that {vε}ε∈]−ε1,ε1[ is a real analytic family of
harmonic functions on Ω(ε) if it satisfies the following conditions (b0)–(b2):

(b0) v0 ∈ C1,α(clΩ o) and Δv0 = 0 in Ω o, vε ∈ C1,α(clΩ(ε)) and Δvε = 0 in Ω(ε)
for all ε ∈]− ε1,ε1[\{0}.

(b1) Let ΩM ⊆ Ω o be open and such that 0 /∈ clΩM . Let εM ∈]0,ε1] be such that
clΩM ∩ εclΩ i = /0 for all ε ∈]− εM,εM[. Then there exists a real analytic map
VM from ]− εM,εM[ to C1,α(clΩM) such that

vε |clΩM
= VM[ε ] ∀ε ∈]− εM,εM[ .
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(b2) Let Ωm ⊆ R
n \ clΩ i be an open and bounded subset. Let εm ∈]0,ε1] be such

that εclΩm ⊆ Ω o for all ε ∈]− εm,εm[. Then there exists a real analytic map
Vm from ]− εm,εm[ to C1,α(clΩm) such that

vε (ε ·)|clΩm = Vm[ε] ∀ε ∈]− εm,εm[\{0}.

Definition 3. Let ε1 ∈]0,ε0]. We say that {wε}ε∈]−ε1,ε1[ is a real analytic family of
harmonic functions on Ω o if it satisfies the following conditions (c0), (c1).

(c0) wε ∈ C1,α(clΩ o) and Δwε = 0 in Ω o for all ε ∈]− ε1,ε1[.
(c1) The map from ]− ε1,ε1[ to C1,α(clΩ o) which takes ε to wε is real analytic.

Then the following assertion holds (see [DaMu12] and [DaMu15]).

Theorem 7. (i) If the dimension n is even and {uε}ε∈]0,ε1[ is a right real analytic
family of harmonic functions onΩ(ε), then there exists a real analytic family of
harmonic functions {vε}ε∈]−ε1,ε1[ on Ω(ε) such that uε = vε for all ε ∈]0,ε1[.

(ii) If the dimension n is odd and {vε}ε∈]−ε1,ε1[ is a real analytic family of harmonic
functions onΩ(ε), then there exists a real analytic family of harmonic functions
{wε}ε∈]−ε1,ε1[ on Ω o such that vε = wε |clΩ(ε) for all ε ∈]− ε1,ε1[.

In particular, we note that for n odd, Theorem 7 (ii) implies that for each value
of ε ∈]− ε1,ε1[ the function vε can be extended inside the hole εΩ i to a harmonic
function defined on the whole of Ω o.
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Chapter 14
Employing Eddy Diffusivities to Simulate
the Contaminants Dispersion for a Shear
Dominated-Stable Boundary Layer

G.A. Degrazia, S. Maldaner, C.P. Ferreira, V.C. Silveira, U. Rizza,
V.S. Moreira, and D. Buske

14.1 Introduction

For the convective planetary boundary layer there is a large number of mathematical
models to describe the transport and the dispersion of contaminants. Generally, the
turbulent parameterizations that are utilized in such models are well known and
statistical quantities as eddy diffusivities, dispersion parameters, velocity variances,
and time scales are represented by a convective similarity theory originated from
a physical system in a state of quasi-equilibrium. Differently, in comparison with
the convective boundary layer, the number of turbulent parameterizations employed
in a dispersion model for a shear dominated stable boundary layer (SBL) is quite
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reduced. One of the major problems concerning to the shear dominated SBL is the
determination of its height. This particular vertical depth is a relevant quantity to
describe the processes that govern the SBL development. It is important to note that
the SBL height has a significant influence on the mixing properties. Furthermore,
the inhomogeneous character associated with the turbulence in the SBL becomes
difficult the derivation of eddy diffusivities and dispersion parameters. Nonetheless,
the local similarity theory (LST) allied to the spectral Taylor statistical diffusion
theory allows to construct local expressions for the turbulence parameters in a
shear dominated SBL. Therefore, in the present study we employ the LST and
the turbulent velocity spectra, in the Taylor statistical diffusion theory to derive
eddy diffusivities for a shear dominated SBL. This new formulation is used in
a bidimensional Eulerian dispersion model to simulate the observed contaminant
concentrations in the classical Hanford experiment [DoHo85].

14.2 Derivation of Eddy Diffusivities

An expression for the eddy diffusivities in the planetary boundary layer can be
written as ([Ba49, PaSi83, DeMoVi01])

Kα =
σ2

i βi
2π
∫ ∞

0 FE
i (n)

sin(2πt/βi)
n dn (14.1)

with α = x,y,z and i = u,v,w, where FE
i (n) is the Eulerian spectrum of energy

normalized by the velocity variance, n is the frequency, βi is the ratio of the
Lagrangian to the Eulerian integral time scales, σ2

i is the turbulent velocity variance,
and t is the travel time. According to [WaKo62], βi can be described by

βi = ( πU2

16σ2
i
)1/2 (14.2)

where U is the mean wind speed.
The velocity spectra for a shear dominated stable boundary layer can expressed

as [DeEtAl00]

Si(n)
U2∗

= 1.5ciz/Uφ2/3

(fm)
5/3
i (1+1.5 f 5/3

(fm)
5/3
i

) (14.3)

where ci = αi(0.5± 0.05)(2πk)−2/3 with αi = 1,4/3 and 4/3 for u,v, and w
components, respectively, U∗ is the local friction velocity (U∗ = (1− z/h)3/4u∗),
h is the turbulent SBL height, φε is the dissipation rate, f is the reduced frequency
(f = nz/U), z is the height above the surface, k = 0.4 is the von Karman constant,
and (fm)i is the normalized frequency of the spectral peak described by
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(fm)i = (fm)0i(1+3.7 z
Λ ) (14.4)

where (fm)0i is the frequency of the spectral peak in the surface for neutral
conditions and Λ is the local Monin–Obukhov length:

Λ = L(1− z/h)5/4

where L is the Monin–Obukhov length. By integrating Si(n) (equation 14.3) over
the whole frequency range, one obtains the following variance [DeEtAl00]

σ2
i = 2.32ciφ2/3U2∗

(fm)
2/3
i

(14.5)

Eq. (14.1) together with the equations (14.3), (14.2), and (14.4) leads to the
following parameterization for the eddy diffusivities in a shear dominated SBL:

Kα
u∗h =

0.07
√

ci(1−z/h)3/4z/h

(fm)
4/3
i

∫ ∞
0

sin[(18.24(1−z/h)3/4X
′
)(fm)

2/3
i

h
z n
′
]

(1+n′5/3)n′
dn
′

(14.6)

where n = 1.5z
(fm)iU

n
′
, X
′
= xu∗

hU . For α = z in equation (14.6) result:

Kz
u∗h = 0.04(1−z/h)3/4z/h

(fm)
4/3
w

∫ ∞
0

sin[(18.24(1−z/h)3/4X
′
)(fm)

2/3
w

h
z n
′
]

(1+n′5/3)n′
dn (14.7)

14.3 Test of the Proposed Parameterization Employing
the Hanford Observed Concentration Data

The eddy diffusivities are used in a Eulerian dispersion model to simulate the
observed contaminant concentrations in the classical Hanford experiment. The study
of transport and dispersion of contaminants in the planetary boundary layer is
described by the advection–diffusion equation, which is obtained parameterizing
the turbulent fluxes in the continuity equation utilizing the gradient transport model
or K-theory. For a cartesian coordinate system in which the x-direction coincides
with that one of the wind speed magnitude, the steady state advection–diffusion
equation is written as

U ∂ c̄
∂x = ∂

∂x (Kx
∂ c̄
∂x )+

∂
∂y (Ky

∂ c̄
∂y )+

∂
∂ z (Kz

∂ c̄
∂ z ) (14.8)

where c̄ is the average concentration of a contaminant, U is the wind speed
magnitude in x direction, and Kx, Ky, and Kz are the eddy diffusivities. Neglecting
the longitudinal diffusion in comparison to wind advection, the integration of the
equation (14.8) leads to
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U ∂ c̄y
∂x = ∂

∂ z (Kz
∂ c̄y
∂x ) (14.9)

where c̄y is the average crosswind integrated concentration in the vertical region
0 < z < zi and for X > 0, considering the following boundary conditions and
emission rate Q:

Kz
∂ c̄y
∂ z = 0 (14.10)

at z = 0,h (zero concentration flux at the surface and CBL top) and

ūc̄y(0,z) = Q(z−Hs) (14.11)

(emission rate at source height Hs).
In the present study, the solution for the problem defined by the equations (14.9),

(14.10), and (14.11) is obtained by the GILTT method (see [BuEtAl11] and
[MoEtAl09]). This general method to simulate pollutants dispersion in a planetary
boundary layer is described in a detailed form in [BuEtAl11, MoEtAl09]. The
vertical eddy diffusivity as given by equation (14.7) is introduced in equation (14.9)
and solved with the GILTT method with the aim of evaluating the performance of
this new parameterization in reproducing the observed ground level concentrations.
To accomplish this task, observed concentration data from the Hanford dispersion
experiment were simulated. The Hanford diffusion experiments were accomplished
in Washington region [DoHo85]. The tracer SF6 was released at a height of 2m
and sampled in arcs of 100,200,800,1600, and 3200m from the source. The u∗ and
L were determined by measurements obtained from sonic anemometer [DoHo85].
The height of the stable layer was determined by the following formulation [Ni84]:

h = 0.4(
u∗L

f
)1/2

The wind speed profile employed in the simulations is expressed by a power law
provided by the following relation [AlEtAl12]

uz

u1
= (

z
z1
)n

where u1 and uz are the mean horizontal wind speeds at heights z and z1, while n is
an exponent that is related to the intensity of turbulence. For shear forcing conditions
n = 0.1 [Ir79]. Table 14.1 shows a summary of the meteorological conditions during
the Hanford stable experiments [DoHo85].

The performance of the GILTT method employing the vertical eddy diffusivity
as given by equation (14.7) is shown in Table 14.2 and Figure 14.1.

Table 14.2 exhibits the statistical analysis that allows to compare observed
and simulated magnitudes of the ground level crosswind integrated concentration
cy/Q. The statistical indices to evaluate the performance of the new vertical eddy
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Fig. 14.1 Scatter diagram between observed and predicted cy/Q.

diffusivity were proposed by [Ha89]. The NMSE is the normalized mean square
error, FA2 is Factor 2, COR is the correlation coefficient, FB is the fractional bias and
FS is the fractional standard deviations. The meaning of these indices is discussed
and explained in a detailed form in [MoEtAl11] and [MaEtAl13]. The statistical
indices NMSE, FB, and FS represent good results when they approach zero, whereas
COR and FA2 are optimized at the value 1. Therefore, analyzing the magnitude of
the statistical indices in Table 14.2 and observing the scatter diagram in Figure 14.1,
it is possible to conclude that the advection–diffusion equation (14.9), solved by
GILTT method, employing the vertical eddy diffusivity for a shear dominated SBL
obtained from Taylor statistical diffusion and local similarity theory, reproduces
very well the observed crosswind integrated concentration from the Hanford stable
experiment.

Table 14.1 Meteorological
parameters measured during
the Hanford stable
experiment.

Run Data h(m) L(m) u∗
11 May 18, 1983 325 166 0.40

12 May 26, 1983 135 44 0.26

13 June 5, 1983 182 77 0.27

14 June 12, 1983 104 34 0.20

15 June 24, 1983 157 59 0.26

16 June 27, 1983 185 71 0.30
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Table 14.2 Statistical
indices of the model
performance for the Hanford
stable diffusion experiments.

Normalized Mean Square Error (NMSE) 0.18

Correlation coefficient (COR) 0.92

Fractional bias (FB) 0.06

Fractional Standard deviation (FS) −0.18

Factor 2 (FA2) 0.77

14.4 Conclusion

Eddy diffusivities for a shear dominated stable planetary boundary layer turbulence
are derived. The model is based upon Taylor statistical diffusion and local similarity
theory. These eddy diffusivities can be applied to parameterize turbulent dispersion
in the near, the intermediate and far field of an elevated continuous point source.
The present development allows to construct a vertical eddy diffusivity expressed
in terms of the source distance for an inhomogeneous turbulent field in a stable
PBL. In this aspect Kz is dependent on the nondimensional distance X , on the
stability parameter z/Λ and of the nondimensional height z/h. To evaluate the new
vertical eddy diffusivity (equation 14.7) in a Eulerian dispersion model, we employ
equation (14.7) in the advection–diffusion equation (14.9) to simulate the Hanford
observed ground level crosswind integrated concentrations. The results show that
there is a good agreement between simulated and observed concentrations. There-
fore, the new eddy diffusivity applied to a shear dominated SBL, expressed by the
equation (14.7), depending on source distance and describing an inhomogeneous
turbulence, can be applied in regulatory air pollution modeling.
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Chapter 15
Analysis of Boundary–Domain Integral
Equations for Variable-Coefficient Dirichlet
BVP in 2D

T.T. Dufera and S.E. Mikhailov

15.1 Preliminaries

Let Ω be a domain in R
2 bounded by simple closed infinitely differentiable curve

∂Ω , the set of all infinitely differentiable function on Ω with compact support
is denoted by D(Ω). The function space D ′(Ω) consists of all continuous linear
functionals over D(Ω). For s ∈ R, we denote by Hs(R2) the Bessel potential
space. Note that the space H1(R2) coincides with the Sobolev space W1

2 (R
2) with

equivalent norm and H−s(R2) is the dual space to Hs(R2). For any nonempty open
set Ω ∈ R

n we define Hs(Ω) = {u ∈ D ′(Ω) : u = U|Ω for some U ∈ Hs(Rn)}.
The space H̃s(Ω) is defined to be the closure of D(Ω) with respect to the
norm of Hs(Rn). For s ∈ (− 1

2 ,
1
2 ), Hs(Ω) can be identified with H̃s(Ω), see e.g.

[Mc00, HsWe08].
We shall consider the scalar elliptic differential equation

Au(x) =
2

∑
i=1

∂
∂xi

[

a(x)
∂u(x)
∂xi

]

= f (x) in Ω (15.1)

with a(x) ∈ C∞(R2), a(x)> 0.
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For given functions ϕ0 ∈H
1
2 (∂Ω) and f ∈ L2(Ω), we will consider the Dirichlet

boundary value problem for function u ∈ H1(Ω),

Au = f in Ω , (15.2)

γ+u = ϕ0 on ∂Ω . (15.3)

Here equation (15.2) is understood in the distributional sense and (15.3) in the trace
sense.

In applications, the BVP (15.2)–(15.3) may describe a stationary heat transfer
boundary value problem in isotropic inhomogeneous two-dimensional body Ω ,
where u(x) is an unknown temperature, a(x) is a known variable thermal conductiv-
ity coefficient, f (x) is a known distributed heat source, ϕ0(x) is known temperature
on the boundary.

We define as in [Gr85, Co88, Mi11], the subspace

H1,0(Ω ;A) := {g ∈ H1(Ω) : Ag ∈ L2(Ω)}

endowed with the norm ‖g‖2
H1,0(Ω ;A) := ‖g‖2

H1(Ω)
+‖Ag‖2

L2(Ω).

For u ∈ H1,0(Ω ;A) we can define the (canonical) conormal derivative T+u ∈
H−

1
2 (∂Ω) in the weak form (see, e.g., [Co88, Mi11] and the references therein),

〈T+u,w〉 :=
∫

Ω
[(γ+−1w)Au+E(u,γ+−1w)]dx ∀w ∈ H

1
2 (∂Ω), (15.4)

where γ+−1 : H
1
2 (∂Ω) → H1(Ω) is a continuous right inverse of the continuous

interior trace operator γ+ : H1(Ω)→ H
1
2 (∂Ω), while E(u,v) := a(x)∇u(x) ·∇v(x)

is the symmetric bilinear form.
For u ∈ Hs(Ω), s > 3/2, the canonical conormal derivative defined by (15.4)

coincides with the classical one, defined in the trace sense, i.e.,

T+u = an · γ+∇u, (15.5)

where n(x) is the exterior unit normal vector.

Remark 1. The first Green identity holds for any u ∈ H1,0(Ω ;A) and v ∈ H1(Ω)
([Co88, Mi11]), i.e.,

∫

Ω
E(u,v)dx =−〈Au,v〉Ω + 〈T+u,γ+v〉∂Ω

and the second Green identity holds for any u,v ∈ H1,0(Ω ;A),

∫

Ω

(vAu−uAv)dx = 〈T+u,γ+v〉∂Ω −〈T+v,γ+u〉∂Ω .
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15.2 Parametrix-Based Potential Operators

A function P(x,y) is a parametrix (Levi function) for the operator A if

AxP(x,y) = δ (x− y)+R(x,y),

where δ is the Dirac-delta distribution, while R(x,y) is a remainder possessing at
most a weak singularity at x = y.

In particular, see, e.g., [Mi02], the function

P(x,y) =
1

2πa(y)
log |x− y|, x,y ∈ R

2

is a parametrix for the operator A and the corresponding remainder is

R(x,y) =
2

∑
i=1

xi− yi

2πa(y)|x− y|2
∂a(x)
∂xi

, x,y ∈ R
2.

If a(x) = 1, then A becomes the Laplace operator, Δ , and the parametrix P(x,y)
becomes its fundamental solution, PΔ (x,y).

If u ∈ H1,0(Ω ;A), then from the second Green identity, we have the following
parametrix-based third Green identity for y ∈Ω , [Mi02],

u(y) =
∫

∂Ω

[γ+u(x)T+
x P(x,y)−P(x,y)T+u(x)]dx

−
∫

Ω

R(x,y)u(x)dx+
∫

Ω

P(x,y)f (x)dx, y ∈Ω . (15.6)

Note that the direct substitution of v(x) by P(x,y) in the second Green identity is not
possible as it has singularity at x = y. This difficulty is avoided by replacing Ω by
Ω \B(y,ε), where B(y,ε) is a disc of radius ε centered at y; taking the limit ε → 0,
we then arrive at (15.6), cf. e.g. [Mi70].

The parametrix-based logarithmic and remainder potential operators are defined,
similar to [ChMiNa09a] in the 3D case, as

Pg(y) :=
∫

Ω

P(x,y)g(x)dx, Rg(y) :=
∫

Ω

R(x,y)g(x)dx.

The single-layer and double-layer potential operators, corresponding to the
parametrix P(x,y), are defined for y /∈ ∂Ω as

Vg(y) :=−
∫

∂Ω

P(x,y)g(x)dsx, Wg(y) :=−
∫

∂Ω

T+
x P(x,y)g(x)dsx.
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The following boundary integral (pseudo-differential) operators are also defined
for y ∈ ∂Ω ,

V g(y) :=−
∫

∂Ω

P(x,y)g(x)dsx, W g(y) :=−
∫

∂Ω

T+
x P(x,y)g(x)dsx,

W ′g(y) :=−
∫

∂Ω

T+
y P(x,y)g(x)dsx, L +g(y) := T+

y Wg(y).

Let PΔ ,VΔ ,WΔ ,VΔ ,WΔ ,L
+
Δ denote the potentials corresponding to the opera-

tor A = Δ . Then the following relations hold (cf. [ChMiNa09a] for 3D case),

Pg =
1
a
PΔg, Rg =

−1
a(y)

2

∑
i=1
∂iPΔ [g(∂ia)], (15.7)

Vg =
1
a

VΔg, Wg =
1
a

WΔ (ag) (15.8)

V g =
1
a
VΔg, W g =

1
a
WΔ (ag), (15.9)

W ′g =W ′
Δg+

[

a
∂
∂n

(
1
a

)]

VΔg, (15.10)

L +g =L +
Δ (ag)+

[

a
∂
∂n

(
1
a

)]

W+
Δ (ag). (15.11)

Theorem 1. For s ∈ R, the following operators are continuous,

V : Hs(∂Ω)→ Hs+ 3
2 (Ω),

W : Hs(∂Ω)→ Hs+ 1
2 (Ω),

V : Hs(∂Ω)→ Hs+1(∂Ω),

W ,W ′ : Hs(∂Ω)→ Hs+1(∂Ω),

L + : Hs(∂Ω)→ Hs−1(∂Ω).

Proof. We have the corresponding mappings for the corresponding constant-coef-
ficient operators. Then (15.8)–(15.11) imply the theorem claim. !"
Theorem 2. Let u∈H−

1
2 (∂Ω) and v∈H

1
2 (∂Ω). Then the following jump relation

holds on ∂Ω

γ+Vu(y) = V u(y), (15.12)
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γ+Wv(y) = −1
2

v(y)+W v(y), (15.13)

T+Vu(y) =
1
2

u(y)+W ′u(y). (15.14)

Proof. For the constant coefficient case, this theorem is well known. Then taking
into account the relations (15.8)–(15.10), we can prove the theorem for the variable
positive coefficient a ∈ C∞(R2) as well.

Theorem 3. Let Ω be a bounded open domain in R
2 with closed, infinitely smooth

boundary ∂Ω . The following operators are continuous.

P : H̃s(Ω)→ Hs+2(Ω), s ∈ R; (15.15)

: Hs(Ω)→ Hs+2(Ω), s >−1
2

; (15.16)

R : H̃s(Ω)→ Hs+1(Ω), s ∈ R; (15.17)

: Hs(Ω)→ Hs+1(Ω), s >−1
2

; (15.18)

γ+P : H̃s(Ω)→ Hs+ 3
2 (∂Ω), s >−3

2
; (15.19)

: Hs(Ω)→ Hs+ 3
2 (∂Ω), s >−1

2
; (15.20)

γ+R : H̃s(Ω)→ Hs+ 1
2 (∂Ω), s >−1

2
; (15.21)

: Hs(Ω)→ Hs+ 1
2 (∂Ω), s >−1

2
; (15.22)

T+P : H̃s(Ω)→ Hs+ 1
2 (∂Ω), s >−1

2
; (15.23)

: Hs(Ω)→ Hs+ 1
2 (∂Ω), s >−1

2
; (15.24)

T+R : H̃s(Ω)→ Hs− 1
2 (∂Ω), s >

1
2

; (15.25)

: Hs(Ω)→ Hs− 1
2 (∂Ω), s >

1
2
. (15.26)

Proof. The operator PΔ is a homogeneous pseudo-differential operator of order
−2 on R

2, mapping PΔ : Hs
comp(R

2) → Hs+2
loc (R2) continuously for any s ∈

R. Hence the application of trace theorem along with the relations (15.7), the
operators (15.15), (15.17),(15.19),(15.21), (15.23), and (15.25) are continuous. For
s ∈ (− 1

2 ,
1
2 ), H̃s(Ω) is identified with Hs(Ω), and (15.16) directly follows from

(15.15). To prove the case s ∈ ( 1
2 ,

3
2 ), we implement the Gauss divergence theorem

and the fact that
∂
∂xj

log |x− y|=− ∂
∂yj

log |x− y| and obtain
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∂
∂yj

(PΔg)(y) =− 1
2π

∫

Ω
g(x)

∂
∂xj

log |x− y|dx

=
1

2π

∫

Ω
log |x− y| ∂

∂xj
g(x)dx− 1

2π

∫

∂Ω
log |x− y|njγ+g(x)dsx

=PΔ (∂jg)(y)+VΔ (njγ+g)(y). (15.27)

Now for s ∈ ( 1
2 ,

3
2 ), since ∂j : Hs(Ω)→ Hs−1(Ω) is continuous, we have PΔ∂j :

Hs(Ω)→Hs+1(Ω) is continuous, and from trace theorem γ+g∈Hs− 1
2 (∂Ω) and the

properties of the single-layer potential, we conclude that∇PΔ : Hs(Ω)→Hs+1(Ω)
is continuous. This implies that PΔ : Hs(Ω) → Hs+2(Ω) is continuous, which
along with the relation Pg = 1

aPΔ leads to the continuity of operator (15.16) for
s ∈ ( 1

2 ,
3
2 ).

Further, with the help of these results and the relation (15.27), we can verify by
induction that the operator (15.16) is continuous for s ∈ (k− 1

2 ,k+
1
2 ), where k is an

arbitrary nonnegative integer. For the values s = k+ 1
2 the continuity of the operator

(15.16) then follows due to the complex interpolation properties of Bessel potential
spaces.

The trace theorem will give the continuity proof for the operators (15.19) and
(15.20). We can follow the same procedure to prove the claim of the theorem
concerning the operator R. The continuity of the operators (15.23)–(15.26) follows
if we remark that for the chosen s the conormal derivative can be understood in the
classical sense (15.5). !"

By the Rellich compact embedding theorem (see, e.g., [Mc00, Theorem 3.27]),
Theorems 1 and 3 imply the following two assertions.

Corollary 1. Let s ∈ R. The following operators are compact,

V : Hs(∂Ω)→ Hs(∂Ω) (15.28)

W : Hs(∂Ω)→ Hs(∂Ω) (15.29)

W ′ : Hs(∂Ω)→ Hs(∂Ω) (15.30)

Corollary 2. The following operators are compact for any s > 1
2 ,

R : Hs(Ω)→ Hs(Ω),

γ+R : Hs(Ω)→ Hs− 1
2 (∂Ω),

T+R : Hs(Ω)→ Hs− 3
2 (∂Ω).
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15.3 Invertibility of the Single-Layer Potential Operator

It is well known (see, e.g., [Co00, Remark 1.42(ii)], [St08, proof of Theorem 6.22])
that for some 2D domains the kernel of the operator VΔ is non-zero, which by (15.9)
also implies that kerV �= {0} for the same domains.

In order to have invertibility for the single-layer potential operator in 2D, we
define the following subspace of the space H−

1
2 (∂Ω), see, e.g., [St08, Eq. (6.30)],

H
− 1

2∗ (∂Ω) := {φ ∈ H−
1
2 (∂Ω) : 〈φ ,1〉∂Ω = 0},

where the norm in H
− 1

2∗ (∂Ω) is the induced by the norm in H−
1
2 (∂Ω).

Theorem 4. If ψ ∈ H
− 1

2∗ (∂Ω) satisfies V ψ = 0 on ∂Ω , then ψ = 0.

Proof. The theorem holds for the operator VΔ (see, e.g., [Mc00, Corollary 8.11(ii)]),
which by (15.9) implies it for the operator V as well. !"
Theorem 5. Let Ω ⊂ R

2 have the diameter diam(Ω) < 1. Then the single layer

potential V : H−
1
2 (∂Ω)→ H

1
2 (∂Ω) is invertible.

Proof. By [St08, Theorem 6.23], for diam(Ω) < 1 the operator VΔ : H−
1
2 (∂Ω)→

H
1
2 (∂Ω) is H−

1
2 (∂Ω)−elliptic and since it is also bounded, c.f. Theorem 1 for

s = −1/2, the Lax–Milgram theorem implies its invertibility. Then by the first

relation in (15.10) the invertibility of the operator V : H−
1
2 (∂Ω)→ H

1
2 (∂Ω) also

follows. !"

15.4 The Third Green Identity

For u ∈H1,0(A;Ω), let us write the third Green identity (15.6) using the surface and
volume potential operator notations,

u+Ru−VT+u+Wγ+u =PAu in Ω . (15.31)

Applying the trace operator to equation (15.31) and using the jump relations from
Theorem 2, we have

1
2
γ+u+ γ+Ru−V T+u+W γ+u = γ+PAu on ∂Ω . (15.32)
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Similarly, applying the conormal derivative operator to equation (15.31), and using
again the jump relation, we obtain

1
2

T+u+T+Ru−W ′T+u+L +γ+u = T+PAu on ∂Ω . (15.33)

For some functions f ,Ψ and Φ let us consider a more general indirect integral
relation associated with equation (15.31).

u+Ru−VΨ +WΦ =Pf in Ω . (15.34)

Lemma 1. Let u ∈ H1(Ω), f ∈ L2(Ω),Ψ ∈ H−
1
2 (∂Ω), and Φ ∈ H

1
2 (∂Ω) satisfy

equation (15.34). Then u belongs to H1,0(Ω ;A) and is a solution of PDE Au = f in
Ω and

V(Ψ −T+u)(y)−W(Φ− γ+u)(y) = 0, y ∈Ω

Proof. The proof follows word for word the corresponding proof in 3D case in
[ChMiNa09a, Theorem 4.1]. !"
Lemma 2. (i) Let eitherΨ ∗ ∈ H−

1
2 (∂Ω) and diam(Ω)< 1, orΨ ∗ ∈ H

− 1
2∗ (∂Ω). If

VΨ ∗ = 0 in Ω , thenΨ ∗ = 0 on ∂Ω .

(ii) Let Φ∗ ∈ H
1
2 (∂Ω). If WΦ∗ = 0 in Ω , then Φ∗ = 0 on ∂Ω .

Proof. (i) Taking the trace of equation in Lemma 2(i) on ∂Ω , by the jump relation
(15.13) we have VΨ ∗(y) = 0 on ∂Ω . IfΨ ∗ ∈H−

1
2 (∂Ω) and diam(Ω)< 1, then the

result follows from the invertibility of the single-layer potential given by Theorem 5.

On the other hand, ifΨ ∗ ∈ H
− 1

2∗ (∂Ω), then the result is implied by Theorem 4.

(ii) Let us take the trace of equation in Lemma 2(ii) on ∂Ω , and use the jump
relation (15.14) to obtain,

−1
2
Φ∗+W Φ∗ = 0 on ∂Ω .

Multiplying this equation by a(y), denoting Φ̂∗ = aΦ∗ and using the second
relation in (15.9), we obtain equation

−1
2
Φ̂∗+WΔ Φ̂∗ = 0 on ∂Ω .

It is well known that this equation has only the trivial solution. It is
particularly due to the contraction property of the operator 1

2 I +WΔ , see
[StWe01, Theorem 3.1]. Since a(y) �= 0, the result follows. !"
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15.5 Boundary–Domain Integral Equations (BDIEs)

To reduce the variable-coefficient Dirichlet BVP (15.2)–(15.3) to a segregated
boundary-domain integral equation system, let us denote the unknown conormal
derivative as ψ := T+u ∈ H−

1
2 (∂Ω) and will further consider ψ as formally

independent on u.
Assuming that the function u satisfies PDE Au = f , by substituting the Dirichlet

condition into the third Green identity (15.31) and either into its trace (15.32) or
into its conormal derivative (15.33) on ∂Ω , we can reduce the BVP (15.2)–(15.3)
to two different systems of Boundary–Domain-Integral Equations for the unknown
functions u ∈ H1,0(Ω ;A) and ψ := T+u ∈ H−

1
2 (∂Ω).

BDIE system (D1) obtained from equations (15.31) and (15.32) is

u+Ru−Vψ = F0 in Ω ,

γ+Ru−V ψ = γ+F0−ϕ0 on ∂Ω ,

where

F0 :=Pf −Wϕ0 in Ω . (15.35)

The system can be written in matrix form as A 1U = F 1, where U := [u,ψ]� ∈
H1,0(Ω ;A)×H−

1
2 (∂Ω) and

A 1 :=

[
I +R −V
γ+R −V

]

, F 1 =

[
F0

γ+F0−ϕ0

]

.

From the mapping properties of W in Theorem 1 and P in Theorem 3, we get
the inclusion F0 ∈ H1,0(Ω ;A), and the trace theorem implies γ+F0 ∈ H

1
2 (∂Ω).

Therefore, F 1 ∈H1(Ω)×H
1
2 (∂Ω). Due to the mapping properties of the operators

involved in A 1, the operator A 1 : H1,0(Ω ;A)×H−
1
2 (∂Ω)→H1(Ω)×H

1
2 (∂Ω) is

bounded.
BDIE system (D2) obtained from equations (15.31) and (15.33) is

u+Ru−Vψ = F0 in Ω ,

1
2
ψ+T+Ru−W ′ψ = T+F0 on ∂Ω ,

where F0 is given by (15.35). In matrix form it can be written as A 2U =F 2, where

A 2 =

[
I +R −V

T+R 1
2 I−W ′

]

, F 2 =

[
F0

T+F0

]

Note that the operator A 2 : H1,0(Ω ;A)×H−
1
2 (∂Ω)→ H1(Ω)×H−

1
2 (∂Ω) is

bounded.
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15.6 Equivalence and Invertibility Theorems

In the following theorem we shall see the equivalence of the original Direchlet
boundary value problem to the boundary–domain integral equation systems.

Theorem 6. Let ϕ0 ∈ H
1
2 (∂Ω) and f ∈ L2(Ω).

(i) If some u ∈ H1(Ω) solves the BVP(15.2)–(15.3), then the pair (u,ψ),where

ψ = T+u ∈ H−
1
2 (∂Ω), (15.36)

solves BDIE systems (D1) and (D2).
(ii) If a pair (u,ψ)∈H1(Ω)×H−

1
2 (∂Ω) solves BDIE system (D1), and diam(Ω)<

1, then u solves BDIE system (D2) and BVP(15.2)–(15.3), this solution is unique,
and ψ satisfies (15.36).

(iii) If a pair (u,ψ) ∈ H1(Ω)×H−
1
2 (∂Ω) solves BDIE system (D2), then u solves

BDIE system (D1) and BVP(15.2)–(15.3), this solution is unique, and ψ satisfies
(15.36).

Proof. (i) Let u∈H1(Ω) be solution of the BVP(15.2)–(15.3). Since f ∈ L2(Ω), we
have that u ∈ H1,0(Ω ;A). Setting ψ by (15.36) and recalling how BDIE systems
(D1) and (D2) were constructed, we obtain that (u,ψ) solve them.

Let now a pair (u,ψ) ∈ H1(Ω)×H−
1
2 (∂Ω) solve system (D1) or (D2). Due

to the first equations in the BDIE systems, the hypotheses of Lemma (1) are
satisfied implying that u belongs to H1,0(Ω ;A) and solves PDE (15.2) in Ω ,
while the following equation also holds,

V(ψ−T+u)(y)−W(ϕ0− γ+u)(y) = 0, y ∈Ω . (15.37)

(ii) Let (u,ψ) ∈ H1(Ω)×H−
1
2 (∂Ω) solve system (D1). Taking the trace of the

first equation in (D1) and subtracting the second equation from it, we get
γ+u = ϕ0 on ∂Ω . Thus, the Dirichlet boundary condition is satisfied, and using
it in (15.37), we have V(ψ − T+u)(y) = 0, y ∈ Ω . Lemma 2(i) then implies
ψ = T+u.

(iii) Let now (u,ψ) ∈H1(Ω)×H−
1
2 (∂Ω) solve system (D2). Taking the conormal

derivative of the first equation in (D2) and subtracting the second equation
from it, we get ψ = T+u on ∂Ω . Then inserting this in (15.37) gives W(ϕ0−
γ+u)(y) = 0, y ∈Ω and Lemma 2(ii) implies ϕ0 = γ+u on ∂Ω .

The uniqueness of the BDIE system solutions follows from the fact that the cor-
responding homogeneous BDIE systems can be associated with the homogeneous
Dirichlet problem, which has only the trivial solution. Then paragraphs (ii) and
(iii) above imply that the homogeneous BDIE systems also have only the trivial
solutions. !"
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Theorem 7. If diam(Ω)< 1, then the following operators are invertible,

A 1 : H1(Ω)×H−
1
2 (∂Ω)→ H1(Ω)×H

1
2 (∂Ω), (15.38)

A 1 : H1,0(Ω ;A)×H−
1
2 (∂Ω)→ H1,0(Ω ;A)×H

1
2 (∂Ω). (15.39)

Proof. Theorem 6(ii) implies that operators (15.38) and (15.39) are injective.

Let us denote A 1
0 :=

[
I −V
0 −V

]

. Then A 1
0 : H1(Ω)×H−

1
2 (∂Ω)→ H1(Ω)×

H
1
2 (∂Ω) is bounded. It is invertible due to its triangular structure and invertibility

of its diagonal operators I : H1(Ω)→H1(Ω) and−V : H−
1
2 (∂Ω)→H

1
2 (∂Ω) (see

Theorem 5).
By Corollary 2 the operator

A 1−A 1
0 =

[
R 0
γ+R 0

]

: H1(Ω)×H−
1
2 (∂Ω)→ H1(Ω)×H

1
2 (∂Ω)

is compact, implying that operator (15.38) is a Fredholm operator with zero index,
see, e.g., [Mc00, Theorem 2.26]. Then the injectivity of operator (15.38) implies its
invertibility, see e.g. [Mc00, Theorem 2.27].

To prove invertibility of operator (15.39), we remark that for any element
F 1 ∈H1,0(Ω ;A)×H

1
2 (∂Ω), a solution of the equation A 1U =F 1 can be written

as U = (A 1)−1F 1, where (A 1)−1 : H1(Ω)×H
1
2 (∂Ω)→ H1(Ω)×H−

1
2 (∂Ω) is

the continuous inverse to operator (15.38). But due to Lemma 1 the first equation
of system (D1) implies that U = (A 1)−1F 1 ∈ H1,0(Ω ;A) × H−

1
2 (∂Ω) and

moreover, the operator (A 1)−1 : H1,0(Ω ;A)×H
1
2 (∂Ω)→H1,0(Ω ;A)×H−

1
2 (∂Ω)

is continuous, which implies invertibility of operator (15.39). !"
The following similar assertion for the operator A 2 holds without the limitation

on the diameter of Ω .

Theorem 8. The following operators are invertible.

A 2 : H1(Ω)×H−
1
2 (∂Ω)→ H1(Ω)×H−

1
2 (∂Ω), (15.40)

A 2 : H1,0(Ω ;A)×H−
1
2 (∂Ω)→ H1,0(Ω ;A)×H−

1
2 (∂Ω). (15.41)

Proof. Theorem 6(iii) implies that operators (15.40) and (15.41) are injective.

Let us denote A 2
0 =

[
I −V
0 1

2 I

]

. Then A 2
0 : H1(Ω)×H−

1
2 (∂Ω) → H1(Ω)×

H−
1
2 (∂Ω) is bounded. It is invertible due to its triangular structure and invertibility

of its diagonal operators I : H1(Ω)→ H1(Ω) and I : H−
1
2 (∂Ω)→ H−

1
2 (∂Ω). By

Corollaries 1 and 2 the operator
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A 2−A 2
0 =

[
R 0

T+R −W ′

]

: H1,0(Ω ;A)×H−
1
2 (∂Ω)→ H1(Ω)×H−

1
2 (∂Ω)

is compact. This implies that operator (15.40) is a Fredholm operator with zero
index and then the injectivity of operator (15.40) implies its invertibility.

The invertibility of operator (15.41) is then proved similar to the last paragraph
of the proof of Theorem 7. !"

15.7 Conclusions

In this paper, we have considered the interior Dirichlet problem for variable
coefficient PDE in a two-dimensional domain, where the right-hand side function is
from L2(Ω) and the Dirichlet data from the space H

1
2 (∂Ω). The BVP was reduced

to two systems of Boundary–Domain Integral Equations and their equivalence to
the original BVP was shown. The invertibility of the associated operators in the
corresponding Sobolev spaces was also proved.

In a similar way one can consider also the 2D versions of the BDIEs for the
Neumann problem, mixed problem in interior and exterior domains, united BDIEs
as well as the localized BDIEs, which were analyzed for 3D case in [ChMiNa09a,
ChMiNa13, Mi06, ChMiNa09b].
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Chapter 16
Onset of Separated Water-Layer in Three-Phase
Stratified Flow

M. Er, R. Mohan, E. Pereyra, O. Shoham, G. Kouba, and C. Avila

16.1 Introduction

Three-phase gas-oil-water stratified flow schematic is shown in Figure 16.1.
As shown in the figure, two possible flow configurations of the liquid-phase may
occur. The first flow configuration is a separated liquid-phase, namely, the oil and
the water flow separately as layers. The second possible flow configuration is a
mixed liquid phase, whereby one of the phases is dispersed into the other. The
flow configuration of the liquid-phase in a three-phase stratified flow in pipelines
can affect the operation of the line. When the liquid-phase is separated, water
can accumulate in low locations along the pipeline. The water accumulation may
increase the pressure upstream, and eventually the accumulated water will be pushed
forward by the gas in the form of a water slug. The water slug may cause operational
problems in downstream separation facilities, which might require shutdown of the
system. Additionally, water accumulation may lead to Under Deposit Corrosion.
Thus, it is desirable to operate a three-phase stratified flow pipeline under dispersed
liquid-phase conditions, avoiding accumulation, corrosion, and slugging of water
in the pipeline. There are numerous publications on stratified three-phase flow;
however, most of them focus on the interaction between the gas and liquid phases.
As of the writing of this chapter, no studies have been carried out on the interaction
between the oil and water phases under three-phase stratified flow conditions.
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Fig. 16.1 Liquid-phase
behaviors in three-phase
stratified flow.
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The objective of this study is to acquire data and to develop a model for
the prediction of the transition boundary between the separated liquid-phase and
dispersed liquid-phase regimes, namely, the onset of a separated water-layer, in a
horizontal three-phase stratified flow. This represents a novel study, since no studies
have been conducted on this topic before.

16.2 Experimental Program

This section provides details of the three-phase flow experimental facility used to
investigate the flow behavior of the liquid-phase in three-phase stratified flow. The
test matrix, fluid physical properties, and testing procedure are also presented, as
well as the acquired data on the liquid-phase flow behavior. Refer to Er [Er10] for
additional details.

16.2.1 Experimental Facility

The three-phase oil-water-gas flow loop, shown schematically in Figure 16.2, is a
fully instrumented state-of-the-art facility. The three-phase flow loop consists of
two major sections, namely, the storage and metering section and the test section,
which are described briefly next.
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Fig. 16.2 Schematic of three-phase flow loop.

16.2.1.1 Storage and Metering Section

Two separate tanks are installed for oil and water storage, with a capacity of
400 gallons each. The oil and water flow from the three-phase separator into the
respective storage tanks.

Two 3656 model pumps are connected to each of the tanks in order to deliver oil
and water to the test section. One of the pumps’ size is 1×2–8 with a 10 HP motor,
delivering 25 gpm rotating at 3600 rpm. The size of the second pump is 1.5×2–10
with a 25 HP motor, delivering 110 gpm rotating at 3600 rpm. Gas is provided by a
compressor, which delivers 240 scfm at 100 psig.

The fluids pass through the metering section before reaching the test section.
Oil, water, and gas densities and flow rates are measured utilizing Micromotion R©

Coriolis meters, and the flow rates are controlled by control valves. Pressure and
temperature transducers, and check valves are also installed in the metering section.

The oil and water are mixed in an impacting tee, which is located upstream of a
second impacting tee that combines the gas with the oil and water mixture to obtain
gas-oil-water flow.



180 M. Er et al.

Pressure
gauge

Visualization
boxes

3” I.D
33.8 ft long

5.6 ft
Elevation

y

z

x

16.4
 ft

2” I.D
Inlet

Gas-Oil-Water

SEPARATOR

Fig. 16.3 Schematic of first test section.

16.2.1.2 Test Section

The horizontal test section, shown in Figure 16.3, is 33.8 ft (10.3 m) long,
constructed of a 3-in.-ID PVC pipe. The elevation of the test section is 5.6 ft
(around eye level), facilitating visual observations. A three-phase separator is
located downstream of the test section, operating at 7 psig, where the phases are
separated. The air is discharged to the atmosphere, and the separated oil and water
flow back into their respective storage tanks.

The inlet section is a vertical 2-in.-ID, 2-ft long PVC pipe. A static mixer is
installed at the bottom of the inlet, to ensure well-mixed gas-oil-water flow. The
gas-oil-water mixture flows through the vertical inlet section into the horizontal
test section. Three visualization boxes were installed along the test section. These
boxes are filled with Glycerin to prevent light reflection, making observations and
measurements more accurate. The visualization boxes are located at 1.5, 4.5, and
7.5 m from the inlet. The first visualization box is used to verify that all fluids are
well mixed. The two others are used to observe the liquid-phase flow behavior and
to measure the heights of the oil and water layers. A pressure gauge is installed at
the inlet of the test section in order to obtain the average pressure in the test section
and adjust the gas flow rate accordingly.

The measured oil, water, and gas flow rates and densities are transferred to
a computer through LabView software. The mass flow rates are controlled by
using the front panel of the program. Volumetric flow rates, superficial velocities,
densities, and system pressure and temperature are also depicted on the front panel.
The acquired data can be saved in an Excel file for further analysis.
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Table 16.1 Physical Properties of Tap Water and Tulco Tech Oil.

Tap Water Tulco Tech Oil

Density (ρ)@70◦F 1.0 g/cm3 Specific gravity (γ) 0.857

Viscosity (μ)@70◦F 1.25 cp Viscosity (μ)@100◦F 13.6 cp

Surface Tension @77◦F 71.97 dyne/cm Surface Tension @77◦F 29.14 dyne/cm

16.2.2 Test Matrix

The physical properties of the test fluids, detailed information on the test matrix,
and test procedure are presented next.

16.2.2.1 Test Fluids

The working fluids used in this study are air, tap water, and Tulco Tech 80 oil. The
Tulco Tech 80 oil was selected because of its fast separability and stability. For all
the experimental runs, the temperature was between 67 and 70◦F and the average
pressure was around 21.4 psia. The physical properties of tap water at atmospheric
conditions and Tulco Tech 80 oil are summarized in Table 16.1.

16.2.2.2 Test Conditions

The experimental test matrix is shown in Figure 16.4. The horizontal and vertical
axes represent, respectively, vSW and vSO, namely, the water and oil superficial
velocities. Three different liquid superficial velocities, vSL (vSL = vSW + vSO), are
used, namely 0.01, 0.02, and 0.03 m/s. The liquid superficial velocities are chosen
to ensure that stratified gas-liquid flow occurs. Water cut values of 5, 10, 20, 30, and
40% were used for each superficial liquid velocity. Thus, a total of 5×3 = 15 data
points were acquired for each superficial gas velocity. Five different superficial gas
velocities, vSG, i.e.: 0.3, 1.5, 3.0, 4.6 and 6.1 m/s were run, resulting in a total of
5×15 = 75 data points.

16.2.3 Experimental Results

The experimental results include the observed flow configuration of the liquid-phase
for all the runs given in the test matrix, namely, separated or dispersed oil and water
flow. Also, the heights of the oil and water layers (for separated liquid-phase) or the
liquid-phase height (for dispersed liquid-phase) are presented.
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Fig. 16.4 Experimental test matrix map.

16.2.3.1 Flow Patterns

In this study, the flow patterns for three-phase stratified flow are defined according
to the gas-liquid and oil-water interactions, as shown in Figure 16.5. The oil-water
interaction has been classified into two cases, namely, separated or dispersed liquid-
phase. The separated liquid-phase represents the condition where a water layer
flows at the bottom of pipe and an oil layer flows on top of the water layer. On
the other hand, the oil and water are completely mixed for the dispersed liquid-
phase configuration. The gas-liquid interface is also considered in the flow pattern
classification. For each of the liquid-phase cases, depending on the configuration of
the gas-liquid interface, either stratified smooth or stratified wavy may occur. Thus,
a total of four flow patterns are possible as shown in Figure 16.5.

16.2.3.2 Experimental Results

The experimental results are presented in Figures 16.6(a) through 16.7(c), each
of which is for a fixed superficial gas velocity. The flow patterns classified in
the previous section are represented with different symbols and colors. The gas-
liquid interaction is depicted as follows: diamonds represent stratified smooth and
triangles represent stratified wavy gas-liquid interface. Colors are used to define
the oil-water interaction. Red and black represent the separated and the dispersed
liquid-phase, respectively. For instance, a data point represented by a red diamond
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Fig. 16.5 Schematic of three-phase stratified flow patterns: gas (white), oil (red), water (blue).

indicates that the liquid-phase is separated and the gas-liquid interface is smooth.
As another example, black triangle stands for dispersed liquid-phase and wavy gas-
liquid interface. The cross marker (x) represents inlet perturbation, which is defined
later.

Figures 16.6(a) and 16.6(b) present the results for the low superficial gas veloci-
ties of 0.3 and 1.5 m/s, respectively. For the 0.3 m/s case, as shown in Figure 16.6(a),
the oil and water are separated and the gas-liquid interface is smooth, namely,
Separated-Liquid-Phase Stratified-Smooth flow occurs. Also, flow perturbations are
observed for 30% and 40% water cuts with 0.02 m/s and 0.03 m/s superficial liquid
velocities.

The inlet perturbations occur due to the vertical inlet section. When operating at
low superficial gas velocities, liquid accumulates in the vertical section. Periodically
the gas pushes the accumulated liquid from the vertical inlet section into the test
section. This inlet perturbation creates a disturbance wave in the test section for
high water cut values. For the of 0.3 and 1.5 m/s superficial gas velocity cases,
just before the disturbance occurs, Separated-Liquid-Phase Stratified-Smooth flow
is observed for these four perturbation data points. Therefore, it is expected that the
inlet perturbed data are also separated liquid-phase, as are all the other data points
for this case.

Similarly, the experimental results for 1.5 m/s superficial gas velocity are shown
in Figure 16.6(b). The flow behavior for 1.5 m/s superficial gas velocity is similar
to the behavior of the 0.3 m/s superficial gas velocity. For all flow conditions
Separated-Liquid-Phase Stratified-Smooth flow occurs. Similarly, four perturbation
runs occur at the same superficial liquid velocities and water cuts.

For the 3 m/s superficial gas velocity results, dispersed liquid-phase occurs at
some flow conditions, as shown in Figure 16.7(a). The liquid-phase is dispersed
for the lowest water cut, namely, 5% for 0.01, 0.02, and 0.03 m/s superficial
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Fig. 16.6 Observed three-phase flow patterns.
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Fig. 16.7 Observed three-phase flow patterns.
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Fig. 16.7 (continued)

liquid velocities. For higher water cuts, oil and water are separated from each
other. The gas-liquid interface is still smooth for all the data points of this case.
Moreover, no inlet perturbations are observed for the 3 m/s and higher superficial
gas velocities. The results for 4.6 m/s superficial gas velocity can be seen in
Figure 16.7(b). For 5% and 10% water cuts, the liquid-phase is dispersed for
all three superficial liquid velocities. With increase in water cut, transition from
dispersed liquid-phase to separated liquid-phase occurs. Another effect of increasing
the water cut is observed at the gas-liquid interface. With 20% water cut the interface
becomes wavy. However, when the water cut reaches 30%, the gas-liquid interface
becomes smooth.

Figure 16.7(c) presents the experimental results for the highest superficial gas
velocity of this study, namely, 6.1 m/s. For this case, the dispersed liquid phase
region expands. The oil and water phases are separated only for 30% and 40% water
cuts with 0.03 m/s superficial liquid velocity, and 40% water cut for 0.02 m/s liquid
superficial velocity. For all other conditions the liquid phase is dispersed. The gas-
liquid interface is wavy for all data points, and the wave frequency is higher, as
compared to the lower gas velocity runs.
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Fig. 16.8 Schematic of
forces acting on gas, oil, and
water phases.
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16.3 Model Development

This section presents the developed mechanistic model for predicting the transition
between separated and dispersed liquid-phase under horizontal three-phase stratified
flow conditions, namely, the onset to water layer. The model consists of two parts.
The first part consists of the three-phase stratified flow model developed by Taitel
et al. [TaBa94]. The second part of the model utilizes the results of the first part to
develop a criterion for the transition between separated and dispersed liquid-phase
conditions.

16.3.1 Three-Phase Stratified Flow Model

The proposed model requires as input the three-phase stratified flow variables,
which are determined based on the Taitel et al. [TaBa94] model. The Taitel et al.
[TaBa94] model for separated three-phase stratified flow was developed by applying
momentum balance equations for the gas, oil, and water phases. Figure 16.8 shows
the acting forces on the three phases. Neglecting the rate of change of momentum
(steady state), the momentum balance equation reduces to a force balance equation.
The momentum (force) balance equations for inclined flow for the gas, oil, and
water are given, respectively, by
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−AG

(
dp
dL

)

G
− τGSG− τGOSGO−ρGAGgsinβ = 0, (16.1)

−AO

(
dp
dL

)

O
− τOSO− τOWSOW + τGOSGO−ρOAOgsinβ = 0 (16.2)

and

−AW

(
dp
dL

)

W
− τWSW + τOWSOW −ρWAWgsinβ = 0. (16.3)

The momentum balance equation for the total liquid-phase (oil and water) can
be obtained by summing the oil and water momentum equations. Adding Eqs. 16.2
and 16.3 yields

−AL

(
dp
dL

)

L
− τLSL + τGOSGO−ρLALgsinβ = 0, (16.4)

where AL = AW +AO, ρL = ρW AW+ρOA0
AL

and τLSL = τWSW + τOSO.

In Eq. 16.4, A is cross sectional area,
dp
dL

is pressure gradient, τ is the shear

stress, S is the perimeter, ρ is the density, g is the acceleration of gravity, and
β is the inclination angle. Gas, oil, water, and total liquid-phase are represented
by subscripts G, O, W, and L, respectively. The subscripts GO and OW represent,
respectively, the gas-oil and oil-water interfaces.

The cross-sectional areas and perimeters are calculated utilizing geometrical
relationships based on the pipe diameter and the heights of the water layer, hW , and
oil layer, hO as shown in Figure 16.8. Refer to Shoham [Sh06] for these geometrical
relationships. On the other hand, determination of the wall and interfacial shear
stresses is more complex, which can be obtained by different correlations. The shear
stresses between each phase and the pipe wall are determined as follows:

τG = fG
ρGv2

G

2
, τO = fO

ρOv2
O

2
, and τW = fW

ρWv2
W

2

The interfacial shear stresses are calculated using

τOW = fOW
ρO (vO− vW) · |vO− vW |

2
and τGO = fGO

ρG (vG− vO) · |vG− vO|
2

The friction factors between the pipe wall and the gas, oil and water phases are
calculated by the Blasius correlation (for smooth pipes), namely,

f = C ·Re−n
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where Re is the Reynolds number and C and n are constants: C = 0.046 and n = 0.2
for turbulent flow and C = 16 and n = 1 for laminar flow.

The Reynolds numbers of the gas, oil, and water phases are

ReG =
4 · vGAGρG

(SG +SGO)μG
ReO =

4 · vOAOρO

SOμO
and ReW =

4 · vWAWρW

SWμW

There are several correlations for the interfacial shear stress friction factor. Taitel
et al. [TaBa94] followed the Cohen and Hanratty [CoHa68] correlation, as follows:

If fG < 0.014, then fGO = 0.014; otherwise, fGO = fG, and if fW < 0.014, then
fOW = 0.014, otherwise fOW = fW , where fGO and fOW are the friction factors of gas-
oil and oil-water interface and fG and fW are the gas-wall and water-wall friction
factors.

Equating the pressure gradient terms in the gas and liquid momentum balance
equations, namely, Equations 16.1 and 16.4, yields the combined momentum
balance equation of the gas and liquid phases given by

− τLSL

AL
+
τGSG

AG
+ τGOSGO

(
1

AL
+

1
AG

)

− (ρL−ρG)gsinβ = 0. (16.5)

Similarly, equating the pressure gradient terms in the oil and water momentum
equations, which are given in Equations 16.2 and 16.3, results in a second combined
momentum balance equation of the oil and water phases, namely,

− τWSW

AW
+
τOSO

AO
− τGOSGO

AO
+ τOWSOW

(
1

AW
+

1
AO

)

− (ρW −ρO)gsinβ .

(16.6)

The two combined momentum equations are implicit equations for the heights of
the oil and water layers, hO and hW , (see [Sh06]). Equations 16.5 and 16.6 must be
solved simultaneously in order to obtain hO and hW . Note that the height of the gas
can be determined based on the pipe diameter.

16.3.2 Transition Between Separated and Dispersed
Liquid-Phase

The three-phase stratified flow model presented in the previous section is used to
find the oil and water layer heights under a given set of flow conditions. However,
these heights represent the equilibrium heights of the oil and water layers. Thus, the
three-phase flow model does not address the liquid-phase flow behavior, which is the
main objective of the current study. A simple mechanistic model is developed in this
study for determining the transition between separated and dispersed liquid-phase
under three-phase stratified flow.



190 M. Er et al.

Separated Liquid-Phase

a b c

Mechanism of Dispersion Dispersed Liquid-Phase

Fig. 16.9 Liquid-phase dispersion transition mechanism.

16.3.2.1 Transition Mechanism

The experimental results reveal that dispersion of the oil and water phases in three-
phase stratified flow depends on the gas velocity and water cut. Increasing vG results
in the occurrence of waves at the gas-liquid and oil-water interfaces. If the oil-
water interfacial waves bridge the bottom of the pipe, they sweep the water layer
and disperse it. Illustration of the dispersion mechanism is given in Figure 16.9. As
shown in Figure 16.9(a), waves at oil-water interface may not be sufficiently large to
bridge the pipe bottom. However, as shown in Figure 16.9(b), for low water cuts the
waves reach the bottom of pipe, and sweep the liquid-phase, generating a dispersion.
Figure 16.9(c) shows the dispersed liquid-phase with Stratified Wavy Flow. This
observation is the basis for modeling the transition from separated liquid-phase to
dispersed liquid-phase.

16.3.2.2 Transition Criterion

Based on the physical phenomena presented in the previous section, a simple
transition criterion for the liquid-phase is proposed, based on the Froude number.
The Froude number has previously been used by several authors for different appli-
cations. Taitel and Dukler [TaDu76] utilized the Froude number for characterization
of transition boundary between stratified to non-stratified flow in gas-liquid flow.
The Froude number was also used by Petalas and Aziz [PeAz00] to determine the
occurrence of waves in two-phase stratified flow. Hong et al. [Hong01] found that
corrosion inhibitor films are washed away from the pipe surface under high Froude
number condition. The Froude number is defined as the ratio of inertial forces to the
gravitational forces, as given by

Fr2 =
ρG

(ρW −ρG)
· v2

G

g ·hW cosβ
(16.7)

where vG is actual gas velocity, hW is water height, g is the acceleration due to
gravity, β is the inclination angle, and ρG and ρW are the gas and water densities,
respectively. Note that vG is a function of the oil and the water heights (which are
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outputs of the Three-Phase Stratified Flow Model solution) and ρG is a function of
pressure. Therefore, Eq. 16.7 is dependent on the liquid layer thickness and pressure.

The Froude number has been predicted by the proposed model for each of
the experimental runs. It was found that for all cases where the liquid-phase was
separated, the Froude number was less than 1.28±0.145. On the other hand, for all
cases where the liquid-phase was dispersed, the Froude number is equal or greater
than 1.28±0.145.

Thus, the criterion for the onset of water layer (separated liquid-phase) is
given by

Fr2 < 1.28±0.145 (16.8)

The developed transition criterion was also calculated with the measured values of
the variables in the Froude number. The height of the water layer, hW , was measured
directly and the gas velocity, vG, was determined based on the measured gas-phase
height, hG. The calculated Froude number for this approach resulted in the same
criterion as given in Eq. 16.8.

16.4 Results and Discussion

This section provides a comparison between the acquired data and model predic-
tions for the transition boundaries between the separated and the dispersed liquid-
phases. The transition boundary between separated liquid-phase and dispersed
liquid-phase in three-phase stratified flow, or onset to liquid layer, is predicted based
on the Froude number criterion approach. Figures 16.10(a), 16.10(b), and 16.10(c)
show the transition boundaries, which are represented by red dashed lines, and the
experimental data for 6.1 m/s, 4.6 m/s and 3.1 m/s superficial gas velocities, respec-
tively. Because the predicted Froude number is less than 1.28 for the .3 m/s and 1.5
m/s superficial gas velocity cases, the predicted liquid-phase configuration is always
separated. Therefore, for these cases, the transition line does not exist, as confirmed
by the experimental results. As shown in Figure 16.10(a), the predicted transition
boundary for the 6.1 m/s superficial gas velocity case accurately separates the
dispersed liquid-phase data points from the separated liquid-phase data points. All
the data points on the left of transition boundary are indeed separated liquid-phase,
while the points on the right of transition line are dispersed liquid-phase. A
comparison between model predictions and experimental data for the 4.6 m/s
superficial gas velocity case is shown in Figure 16.10(b). The predicted transition
boundary between separated and dispersed liquid-phase passes around 12% water
cut, showing a good agreement with the experimental results. Figure 16.10(c) shows
a similar comparison for the 3 m/s superficial gas velocity runs. Although the line
does not pass between the separated liquid-phase and dispersed liquid-phase data
points, it passes very close to the separated liquid-phase boundary. The transition
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Fig. 16.10 Comparison between model prediction and experimental data.
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Fig. 16.10 (continued)

line occurs around 3% water cut while the observed transition occurs at 5% water
cut values, which constitutes a fair agreement. This slight difference is due to the
uncertainty of the water height at low water cuts.

16.5 Conclusions

A total of 75 experimental runs under horizontal gas-oil-liquid three-phase stratified
flow were conducted varying the water cut between 5% and 40%. The experimental
results provide the transition boundary between the separated liquid-phase and
the dispersed liquid-phase flow configurations, namely, the onset of water layer.
A mechanistic model was developed for the prediction of the transition boundary
between the separated and dispersed liquid-phase under three-phase stratified flow.
The model predictions of the transition boundary between the separated and
dispersed liquid-phase flow show good agreement with the acquired experimental
data.
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Chapter 17
An Integro-Differential Equation
for 1D Cell Migration

C. Etchegaray, B. Grec, B. Maury, N. Meunier, and L. Navoret

17.1 Introduction

Cell migration is a fundamental biological phenomenon involved, for example, in
development, wound healing, cancer, and immune response. Understanding its key
features is therefore a burning issue.

Some cells can move on an adherent substrate by a crawling process, where
motion comes from the formation of finger-like extensions named filopodia that
adhere to the substrate for some time (see Fig. 17.1). When the cell contracts, non-
adherent filopodia retract, whereas adherent ones exert forces that induce motion.
We refer to [AnEh07] for a complete description of cell crawling.

When a cell is set on a flat homogenous substrate, it performs a random-like
motion. However, it can also become polarized and move in a preferential direction.
How this direction is chosen is a question that is still driving many experimental and
modeling efforts. In [CaVoRi14], a nonhomogenous substrate imposes geometrical
constraints that are sufficient to direct 1D cell motion. This paper focuses on the 1D
motion brought forth by the filopodial activity.

We introduce a simplified model of 1D cell migration (see Fig. 17.1) relying
on the filopodial activity. In what follows, the substrate is supposed to be flat and
homogenous, but more complex settings could also be described. Let us consider
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Filopodial forces
Direction
of motion

Friction force

Fig. 17.1 Illustration of a moving cell [LoEtAl02], and picture of a fibroblast [MaEtAl08].

the center of mass of the cell, whose position at time t is denoted x(t) ∈ R. Force
equilibrium leads to

C
dx
dt
(t) =−F�(t)+Fr(t), (17.1)

where Fr ≥ 0 (resp. F� ≥ 0) is the force exerted by filopodia located on the right
(resp. on the left) of the cell and C is the friction parameter, that can be set equal to
1nN.h.μm−1 [WoTa11].

We can now focus on the forces Fr,�. Following biological knowledge, we assume
that the forces exerted by filopodia on the cell at time t depend on

• densities of filopodia sent to the right and left, denoted by ψr,� > 0,
• their existence time, fixed by the lifetime function P : R+→ R+,
• the force fr,� exerted by one filopodium on the cell, related to its orientation.

Moreover, we assume that fr,� = fr,�(x(t′),x(t)) depends on the positions of both
the tip of the filopodium, related to the cell position at creation time t′, and the
actual cell position.

Consequently, equation (17.1) rewrites as an integro-differential equation

dx
dt
(t) =

∫ t

0
P(a)

(
ψrfr(x(t−a),x(t))−ψ�f�(x(t−a),x(t))

)
da, (17.2)

x(0) = x0,

where ψr,� are positive constants, x : R+→ R, and fr,� : R2→ R. Let us assume for
simplicity that x0 = 0.

Problem (17.2) can be treated more or less easily depending on the force
functions fr,�. In this work, we shall first investigate one case of nonlinear elastic
force, where only existence and uniqueness of a solution can be proved. Then, we
shall consider a simplified case of linear force functions, where a linear Volterra
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equation can be obtained. We shall see how this formalism allows us to get more
information on the sign, boundedness, and asymptotic behavior of the solution in
general, as well as explicit solutions for some special cases.

17.2 Nonlinear Force Functions

Let us start with the force functions

fr(y,x) = k [�− (x− y)]+ , and f�(y,x) = k [�− (y− x)]+ ,

where [.]+ denotes the positive part function and k, �∈R+ are two constants. Taking
fr(x(t− a),x(t)) and f�(x(t− a),x(t)), it corresponds to the hypothesis of filopodia
having a constant size �, and exerting elastic forces as long as the cell at position
x(t) has not reached their tips x(t−a)± �. Equation (17.2) now writes

dx
dt
(t) = k

∫ t

0
P(a)

(
ψr[�+ x(t−a)− x(t)]+

−ψ� [�+ x(t)− x(t−a)]+

)
da.

(17.3)

17.2.1 Existence and Uniqueness

We prove the following result :

Theorem 1. For P ∈ L1(R+), there exists a unique solution x ∈ C 1(R+,R) of
(17.3).

Proof. After integration, equation (17.3) writes

x(t) = k
∫ t

0

∫ s

0
P(a)

(
ψr
[
x(s−a)+ �− x(s)

]
+

−ψ�

[
x(s)− x(s−a)+ �

]
+

)
dads =:Φ(x)(t)

with

Φ :
(
C ([0,T],R),‖ ‖∞

) −→ (
C ([0,T],R),‖ ‖∞

)

x �−→ Φ(x) = (t �→Φ(x)(t)),
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for some T ≥ 0. We are looking for existence and uniqueness of a fixed point for Φ .
Let us construct a sequence (xn)n≥0 in C ([0,T],R) such that

x0 ≡ x0, xn+1 =Φ(xn) ∀n≥ 0.

As [0,T] is compact,
(
C ([0,T],R),‖ ‖∞

)
is a Banach space and we can use the

Banach fixed-point theorem. All we need to show now is that Φ is a contraction
mapping. Considering (y,z) ∈ (C ([0,T],R),‖ ‖∞

)2
and denoting

gs,a(y) = y(s−a)+ �− y(s), and hs,a(y) = y(s)− y(s−a)+ �,

we have

‖Φ(y)−Φ(z)‖∞ = sup
t∈[0,T]

∣
∣
∣
∣
∣
k
∫ t

0

∫ s

0
P(a)

(
ψr
(
[gs,a(y)]+− [gs,a(z)]+

)

−ψ�

(
[hs,a(y)]+− [hs,a(z)]+

))
dads

∣
∣
∣
∣
∣

≤ kT sup
s∈[0,T]

∫ s

0
|P(a)|×

(
ψr
∣
∣[gs,a(y)]+− [gs,a(z)]+

∣
∣

+ψ�

∣
∣[hs,a(y)]+− [hs,a(z)]+

∣
∣
)

da,

since ψr,� ≥ 0. Denote ψ := ψr +ψ�. Now, for (A,B) ∈ R
2, the inequality

∣
∣[A]+−

[B]+
∣
∣≤ ∣∣A−B

∣
∣ holds, leading to

‖Φ(y)−Φ(z) ‖∞ ≤ kT sup
s∈[0,T]

∫ s

0
ψ |P(a)| ∣∣(y− z)(s−a)− (y− z)(s)

∣
∣da,

≤ 2kTψ ‖P ‖L1(R+)‖ y− z ‖∞ .

For T small enough such that 2kψ ‖ P ‖L1(R+)
T < 1, we deduce that Φ is a

contraction mapping. As a consequence of the Banach fixed-point theorem, there
exists a unique x ∈ C ([0,T],R) which is solution of (17.3).

Iterating the same reasoning on time intervals of size T , one can extend this result
to prove that (17.3) admits a unique solution x ∈ C (R+,R). Finally, using (17.3), it
is clear that x ∈ C 1(R+,R), and this concludes the proof.

17.2.2 Numerical Simulations

We consider the lifetime function P : a �→ e−a. This means that a density of
filopodia will exponentially decrease with time, as more and more filopodia will
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Fig. 17.2 Numerical simulation of a particle speed and trajectory during T = 10h, for dt = 10−2h,
C = 1nN.h.μm−1, k = 1nN.μm−1, �= 20.5μm, and (ψr,ψ�) = (1.5,1).

have disappeared. For the filopodia’s length, we use an experimental value from
[CaVoRi14]. Moreover, we impose a bias on the densities of filopodia (ψr > ψ�).

Figure 17.2 represents the cell position and velocity over time computed
with an explicit Euler time discretization and a rectangle integration method of
equation (17.3). What can be observed is that the bias in the produced forces
seems to lead to a nonzero asymptotic velocity. Further simulations with different
parameter values and/or lifetime functions confirm this tendency.

17.3 Linear Forces

The presence of the positive part function in the previous case prevents getting
analytical properties of the solution. In this section, we will take the following
linearized forces functions:

fr(x(t−a),x(t)) = k (x(t−a)+ �− x(t)) ,

f�(x(t−a),x(t)) = k (x(t)− x(t−a)+ �) ,

with k, � ∈ R+. This assumption is less relevant from the modeling point of view,
since if the cell overtakes the tip of a filopodium, then it will experience a force
in the opposite direction. However, for k small enough, and an appropriate lifetime
function, we can assume that the cell is slow enough so that it does not reach any
existing filopodium tip.

Equation (17.2) can be written as a linear Volterra equation, which will lead to
more analytical results.
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17.3.1 Linear Volterra Equation Formalism

Let us rewrite equation (17.2) as

v(t) = k
∫ t

0
P(a)

(
ψr(x(t−a)+ l− x(t))−ψ�(x(t)− x(t−a)+ �)

)
da

= kl(ψr−ψ�)

∫ t

0
P(a)da+ kψ

∫ t

0
P(a)(x(t−a)− x(t))da. (17.4)

Denoting Q : t �→
∫ t

0
P(a)da and integrating by parts, we obtain

v(t) = k�(ψr−ψ�)Q(t)+ kψ
(∫ t

0
Q(a)v(t−a)da−Q(t)x(t)

)

,

since Q(0) = 0 and x(0) = 0. After the change of variable s = t−a, we get

v(t) = f (t)− kψ
∫ t

0
(Q(t)−Q(t− s))v(s)ds, (17.5)

with f (t) = k�(ψr−ψ�)Q(t). (17.6)

which is a linear Volterra integro-differential equation for v.

17.3.2 Existence and Uniqueness of a Solution

With similar arguments to Theorem 1, we can prove the following property:

Theorem 2. Equation (17.5) admits a unique solution v ∈ C (R+,R) for any P ∈
L1(R+).

Remark 1 (The resolvent formalism). Let us define the operator

h� v : t �→
∫ +∞

0
h(t,s)v(s)ds.

Equation (17.5) can then be written as a convolution-like equation:

v(t)+(h� v)(t) = f (t), with

h(t,s) = kψ(Q(t)−Q(t− s))1[0,t](s).

Existence and uniqueness of a solution can be proved by showing that h is a Volterra
kernel of L∞ type. For more details, we refer to [GrLoSt90].
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17.3.3 Sign and Boundedness Property

We now prove a result showing how important the function f is in controlling the
migration. Indeed, it captures no less than the range of forces exerted with k, aging,
and the potential asymmetry ψr−ψ� in the formation of filopodia.

Theorem 3. If P is positive and decreasing, then the solution to equation (17.5)
satisfies

ψr ≥ ψ� ⇒ ∀t ≥ 0, v(t) ∈ [0, f (t)],

ψr ≤ ψ� ⇒ ∀t ≥ 0, v(t) ∈ [f (t),0].

Proof. First, suppose that ψr ≥ψ�. Consequently, ∀t≥ 0, f (t)≥ 0 and f ′(t)≥ 0. By
derivation of (17.5), we obtain

v′(t) = f ′(t)− kψ(Q(t)−Q(0))v(t)− kψ
∫ t

0
(P(t)−P(t− s))v(s)ds,

with f ′(t) = k�(ψr −ψ�)P(t). Suppose there exists t∗ such that ∀t < t∗, v(t) > 0
and v(t∗) = 0, then

v′(t∗) = f ′(t∗)− kψQ(t∗)v(t∗)− kψ
∫ t∗

0
(P(t∗)−P(t∗ − s))v(s)ds

is positive (since all the terms are positive). Consequently, ∀t ≥ 0, v(t) ≥ 0.
This implies that x(t− a)− x(t) ≤ 0, ∀t ≥ a ≥ 0. Going back to the equivalent
equation (17.4), this shows that ∀t≥ 0, v(t)≤ f (t). Now, let us assume that ψ� ≥ψr,
which means that ∀t ≥ 0, f (t) ≤ 0 and f ′(t) ≤ 0. In a similar way, if there exists t∗
such that ∀t < t∗, v(t) < 0 and v(t∗) = 0, then v′(t∗) is negative. And considering
again (17.4), we easily show that ∀t ≥ 0, v(t)≥ f (t), which concludes the proof.

17.3.4 Asymptotic Velocity

We now give an expression for the asymptotic velocity of the cell. Here again, f has
a crucial importance. The proof of the following result is similar to the one done in
a forthcoming work [GrEtAl], and we do not repeat it here.

Theorem 4. Let v be the solution of (17.5), and denote γ = limt→+∞ f (t). Assume
that v is uniformly continuous on R+. Then,

v(t) −→
t→+∞

v∞ =

⎧
⎪⎪⎨

⎪⎪⎩

γ
1+kψ

∫+∞
0 aP(a)da

if a �→ aP(a) ∈ L1(R+),

0 if a �→ aP(a) /∈ L1(R+).
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Having two different cases can be interpreted as follows: if the mean lifetime
of filopodia is finite, then the cell is permanently escaping from the action of older
forces. As a consequence, if ψr −ψ� �= 0, it can get off its position all the time.
However, if the mean lifetime of filopodia is infinite, all of them exert elastic forces
on the cell, which will be stabilized in finite time.

17.3.5 Particular Cases

Some choices of function P can give more explicit information on the solution.

17.3.5.1 Infinite Existence Time of Forces (P ≡ 1).

Taking P ≡ 1, we are considering elastic forces that never disappear. Here, P does
not fulfill the hypothesis of Theorem 2, but Theorem 4 applies. Equation (17.5)
writes

v(t) = k�(ψr−ψ�)t− kψ
∫ t

0
sv(s)ds,

and can be solved after derivation with the variation of constants method, to give

v(t) = v(0)e−kψt2/2 + �

√
kπ
2
(ψr−ψ�)

√

e−
kψt2

2

(

1− e−
kψt2

2

)

. (17.7)

Figure 17.3 represents the solution v as well as the corresponding forcing
function f . As expected, the cell is stabilized in finite time. Moreover, we can
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Fig. 17.3 Graph of t �→ v(t) and t �→ f (t) for P ≡ 1, with C = 1nN.h.μm−1, � = 20.5μm, k =
5nN.μm−1, (ψr,ψ�) = (6,4) and v(0) = 0.
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observe numerically the sign and boundedness property (given in Theorem 3), where
in this case the f (t) bound is optimal.

It is easy to check analytically the convergence of v to v∞ = 0 since we have the
equivalence

v(t) ∼
t→+∞

�

√
kπ
2
(ψr−ψ�)e

−kψt2/4.

17.3.5.2 Exponential Decay (P(a) = e−a)

We now assume that P(a) = e−a, which was the function chosen in Section 17.2.2.
All the results demonstrated before apply. However, we can actually directly solve
the equation. Noting that Q(t) = 1− e−t, equation (17.5) becomes

v(t) = k�(ψr−ψ�)(1− e−t)− k(ψr +ψ�)e
−tA(t), (17.8)

with A(t) =
∫ t

0
(es−1)v(s)ds.

Proposition 1. The solution to (17.8) is given by

v(t) = k�(ψr−ψ�)
(
1− e−t)− k2l(ψr−ψ�)ψe−(kψ+1)t+kψ−kψe−t

J(t), (17.9)

with J(t) =
∫ t

0
(es + e−s−2)ekψ(s−1+e−s)ds.

Proof. Deriving A with respect to time leads to

A′(t) = k�(ψr−ψ�)(e
t + e−t−2)− kψ(1− e−t)A(t).

Now, by the variation of parameters method, we find that

A(t) = k�(ψr−ψ�)e
−kψ(t−1+e−t)

∫ t

0
(es + e−s−2)ekψ(s−1+e−s)ds,

leading to expression (17.9).

As a consequence, an asymptotic equivalent of the solution can be given.

Theorem 5. The following equivalence holds:

v(t) ∼
t→+∞

k�(ψr−ψ�)

(

1− kψ
kψ+1

− kψ
kψ−1

e−2t +2e−t
)

, (17.10)
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and v converges to the asymptotic velocity

v∞ := k�(ψr−ψ�)

(

1− kψ
kψ+1

)

.

Proof. Using the following equivalence

∫ t

0
eαsds ∼

t→+∞

eαt

α
,

we easily obtain

J(t) ∼
t→+∞

e−kψ

(
e(kψ+1)t

kψ+1
+

e(kψ−1)t

kψ−1
−2

ekψt

kψ

)

.

Considering expression (17.9), we have

v(t) ∼
t→+∞

kl(ψr−ψ�)

[

1− kψe−(kψ+1)t

(
e(kψ+1)t

kψ+1
+

e(kψ−1)t

kψ−1
−2

ekψt

kψ

)]

,

which leads to the result.

We can then deduce that the asymptotic behavior of the cell depends on the range
of filopodial forces k, on the global filopodial activity ψ , and on the asymmetry ψr−
ψ�. Moreover, the bigger k andψ are, the faster the cell velocity reaches equilibrium.
The non-trivial equilibrium is a consequence of the lifetime function that lets newer
forces lead motion, whereas the older ones are ‘silenced’. The initial asymmetry is
then maintained over time. In Figure 17.4, a numerical simulation illustrates this
behavior.

17.3.5.3 Constant Existence Time (P(a) = 1[0,τ ](a))

Now, let us look at P(a) = 1[0,τ ](a) with τ > 0, meaning that all filopodia exert
forces during the same finite amount of time. For t ≥ 0, we have

Q(t) =

{
t if t < τ ,
τ if t ≥ τ .

Existence and uniqueness of a continuous solution to (17.5) comes from Theorem 2.
Moreover, we can find an explicit solution for t≤ τ , and bounds for the solution for
t ≥ τ . Equation (17.5) then writes
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Fig. 17.4 Numerical simulation of the exact solution, its equivalent at infinity and the asymptotic
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v(t) = k�(ψr−ψ�)t− kψ
∫ t

0
sv(s)ds, for t ≤ τ , (17.11)

v(t) = k�τ(ψr−ψ�)− kψ
∫ t

t−τ
v(s)(τ− (t− s))ds, for t ≥ τ . (17.12)

Theorem 6. The unique solution to equations (17.11)–(17.12) satisfies

v(t) = �(ψr−ψ�)

√
kπ
2ψ

√

(1− e
−kψ

2 t2) for t ≤ τ , (17.13)

v(τ)exp

(

−kψ
(t2− τ2)

2

)

≤ v(t)≤ k�(ψr−ψ�) for t ≥ τ . (17.14)

Proof. Let us first study the case where t ≤ τ . By derivation of (17.11), we have

v′(t) = k�(ψr−ψ�)− kψtv(t),

and the variation of parameters method leads to expression (17.11).
Let us now consider the case where t ≥ τ . After a change of variable, equa-

tion (17.12) becomes

v(t) = k�τ(ψr−ψ�)− kψ
∫ τ

0
(τ− s)v(t− s)ds, (17.15)

= k�τ(ψr−ψ�)− kψ
∫ t

0
(t− s)v(t− s)ds+h(t), (17.16)
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with

h(t) = kψ
∫ t

τ
(t− s)v(t− s)ds+ kψ

∫ τ

0
(t− τ)v(t− s)ds.

Since P is positive and decreasing, we deduce from Theorem 3 that ∀t ≥ 0, v(t)≥
0. Hence, we know that h ≥ 0 on [τ ,+∞[. Moreover, differentiating h with respect
to t, we obtain

h′(t) = kψ
(∫ t

τ

d
dt
((t− s)v(t− s))ds+

∫ τ

0

d
dt
((t− τ)v(t− s))ds

)

,

= kψ ((t− τ)v(t)+(x(t)− x(t− τ)))≥ 0,

as v≥ 0. Then, differentiating equation (17.16) leads to

v′(t)≥−kψtv(t),

from which we deduce that

v(t) ≥ v(τ)exp

(

−kψ
(t2− τ2)

2

)

,

leading to the first inequality. Moreover, as v ≥ 0, the second one is obtained from
equation (17.15), and this concludes the proof.

17.4 Conclusions and Perspectives

In this chapter, we have introduced a simple deterministic model of 1D cell
migration, based on the filopodial activity of the cell. It describes the formation
of antagonist elastic forces by filopodia on each side of the cell.

This model is not able to describe realistic trajectories, as the filopodial activity
is taken constant, but it relates explicitly filopodial statistics to the cell velocity and
asymptotic behavior, and hence represents a first step in the global description of
cell trajectories from filopodial activity.

In this work, we have studied a realistic case where filopodia stop exerting a
force as soon as the cell overtook their tips. In this case, the highly nonlinear forces
prevent us from getting more than an existence and uniqueness result.

The case of linear elastic forces is richer, as it gave more information about the
sign, boundedness, and asymptotic behavior of the solution. It is important to keep
in mind that the linear model is realistic only in a particular setting: if the cell
is slow enough and filopodia’s lifetime short enough, then they won’t be reached
by the cell. Typical velocity and filopodium lifetime are closely related to the
cell type and experimental setting. Indeed, considering the force k� exerted by a
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filopodium of length � on the substrate, it is known that � is variable among cell
types. Moreover, k highly depends on the rigidity of the substrate: the more it is
rigid, the larger the forces are [LoEtAl00]. Another key player in the filopodial
forces is the adhesiveness of the substrate, that scales how strong it is coupled to
filopodia, hence how large forces will be. However, a very adherent substrate is
also less likely to let go of filopodia during the contraction of the cell, leading to
a longer lifetime for them. This results in a bell-shaped curve relating velocity and
adhesiveness, as described in [PaLoHo97]. As a consequence, it is likely that for a
substrate of low (or very large) adhesiveness and low rigidity, cells velocity would
be low enough so that the linear model fits with experimental conditions. This first-
step model describing filopodial activity and trajectories is simple enough to give
analytical information about the cell velocity, but still rich enough to be compared
to different kinds of experimental 1D migration assays. In future works, it will be
crucial to consider nonconstant densities of filopodia, to take into account the effect
of motion itself on the filopodial activity. This would probably lead to much more
realistic trajectories, where changes of direction would be described.
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Chapter 18
The Multi-Group Neutron Diffusion Equation
in General Geometries Using the Parseval
Identity

J.C.L. Fernandes, F. Oliveira, B.E.J. Bodmann, and M.T.B. Vilhena

18.1 Multi-Group Steady State Diffusion in General
Geometry

Our starting point is the steady state multi-energy group neutron diffusion equation,
with the usual diffusion, removal, out-scattering, fission and in-scattering terms as
presented in [Bd10] and solved in cylindrical geometry in [Fe12]. Here Dg is the
diffusion coefficient for energy group g, for general geometry we have

−DgΔγφg +

⎛

⎜
⎝Σag +

G

∑
g′=

1
g′ �=g

Σ s
g→g′

⎞

⎟
⎠φg = χg

G

∑
g′=1

νΣfg′φg′ +
G

∑
g′=1

Σg′→gφg′

where Δγ = x−γ∂x (xγ∂x). This operator represents for each γ the suitable geometry
of a multi-group neutron diffusion problem. Here, ΣRg = Σag +∑G

g′=1Σ
s
g→g′ (for

g′ �= g) are the respective removal cross section, Σg→g′ , Σg′→g the out- and in-
scattering cross sections represented by Σgg′ and Σgg′ , respectively. Further, νΣfg is
the fission cross section times the average neutron yield per fission, χg the spectral
weight of energy group g ∈ [1,G] and we add a generic source term Sg per energy
group.
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The nonhomogeneous system is

−DgΔγφg +ΣRgφg = χgνΣfg′φg′ +Σgg′φg′ +Sg (18.1)

Let xγ be the variable in the coordinate system generated by γ and Xγ the space such
that xγ ∈ Xγ . To solve the initial system, we define the general integral transform
that takes Xγ into Xγ :

f (xγ) =Iγ [f (xγ);xγ → xγ ] =
∫

Xγ
f (xγ)Kγ(xγ ,xγ) dxγ

where Kγ is the respective kernel of the integral transform with two remarkable
properties, namely

i) Iγ [κ(f (xγ)+g(xγ))] := κf (xγ)+κg(xγ), f ,g ∈ Xγ and κ ∈ R;
ii) Iγ [Δγ f (xγ)] := h(xγ)f (xγ).

where h(xγ) is an algebraic function that depends on xγ . Now, applying Iγ in the
system (18.1), we get

−Dgh(xγ)φ g(xγ)+ΣRgφ g(xγ) = χgνΣfg′φ g′(xγ)+Σgg′φ g′(xγ)+Sg (18.2)

Without loss of generality, we consider the case with two energy groups. After
application of Iγ in (18.2) we obtain

[ −D1h(xγ)+ΣR1 −(χ1νΣf 2 +Σ12)

−(χ2νΣf 1 +Σ21) −D2h(xγ)+ΣR2

][
φ 1

φ 2

]

=

[
S1

S2

]

(18.3)

For convenience, we define the constant μgg′ = χgνΣfg′ + Σgg′ and the function
Ag(xγ) ∈ Xγ , with Ag(xγ) = −Dgh(xγ) + ΣRg. This way, the system (18.3), is of
the form

[
A1(xγ) −μ12

−μ21 A2(xγ)

][
φ 1

φ 2

]

=

[
S1

S2

]

The solution in Xγ , in matrix notation is M(xγ)Φ = S, where Φ = [φ 1,φ 2]
T and

S = [S1,S2]
T .

Det(M(xγ)) =
∣
∣M(xγ)

∣
∣= A1(xγ)A2(xγ)−μ12μ21 �= 0

The general solution is given by

φ g =
1

∣
∣M(xγ)

∣
∣Ag′(xγ)Sg +

1
∣
∣M(xγ)

∣
∣μgg′Sg′ .



18 The Multi-Group Neutron Diffusion Using the Parseval Identity 211

To find the solution in Xγ we apply the inverse operator I −1
γ [f (xγ);xγ → xγ ] :=

∫
Xγ

f (xγ)K−1
γ (xγ ,xγ) dxγ . Then

φg(xγ) =
∫

Xγ

1
∣
∣M(xγ)

∣
∣Ag′(xγ)Sg(xγ)K

−1
γ (xγ ,xγ) dxγ

︸ ︷︷ ︸

φ (1)g

+
∫

Xγ

1
∣
∣M(xγ)

∣
∣μgg′Sg′(x1)K

−1
γ (xγ ,xγ) dxγ

︸ ︷︷ ︸

φ (2)g

(18.4)

To evaluate each integral in (18.4) we need define Iγ and the respective kernel
Kγ(xγ ,xγ) for each γ , i.e., for the considered

Kγ(xγ ,xγ) :=

[
1√
2π

e−ixγ xγ

]δ0,γ

× [xγJ0(xγxγ)
]δ1,γ

K−1
γ (xγ ,xγ) :=

[
1√
2π

eixγ xγ

]δ0,γ

× [xγJ0(xγxγ)
]δ1,γ ,

where δi,j is the Kronecker delta. To solve the equation for φ (1)(xγ) and φ (2)(xγ) we
will use the Parseval relation given by the following Theorem.

Theorem 1 (Parsenval’s relation in general geometries [Sn72]). If the functions
f (x′γ) and g(x′γ) are piecewise continuous and absolutely integrable on the positive

real line and if f (xγ) and f (xγ) denote the respective integral transforms by Iγ , then

∫

X′γ
ω(x′γ)f (x′γ)g(x′γ) dx′γ =

∫

Xγ
ω(xγ)f (xγ)g(xγ) dxγ (18.5)

where ω(xγ) is a weight function that depends on γ .

Using the Parseval relation and the kernels previously mentioned for φ (1)g (xγ),
we get

∫

Xγ
ω(xγ)

{
Ag′(xγ)K

−1
γ (xγ ,xγ)

∣
∣M(xγ)

∣
∣

}

Sg(xγ) dxγ =

∫

X′γ
ω(x′γ)I−1

γ

{
Ag′(xγ)K

−1
γ (xγ ,xγ)

∣
∣M(xγ)

∣
∣

}

Sg(x
′
γ) dx′γ
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or

I−1
γ

{
Ag′(xγ)K

−1
γ (xγ ,xγ)

∣
∣M(xγ)

∣
∣

}

=
∫

Xγ

{
Ag′(xγ)K

−1
γ (xγ ,xγ)

∣
∣M(xγ)

∣
∣

}

K(x′γ ,xγ) dxγ .

So that, the final expression for φ (1)g (xγ) is

φ (1)g (xγ) =
∫

X′γ

∫

Xγ
ω(x′γ)

Ag′(xγ)∣
∣M(xγ)

∣
∣K
−1(xγ ,xγ)K(x′γ ,xγ)Sg(x

′
γ) dxγ dx′γ (18.6)

By a similar procedure, we can obtain the general solution for φ (2)g (xγ) again using
the Parseval relation:

φ (2)g (xγ) =
∫

X′γ

∫

Xγ

ω(x′γ)μgg′∣
∣M(xγ)

∣
∣ K−1(xγ ,xγ)K(x′γ ,xγ)Sg′(x

′
γ) dxγ dx′γ (18.7)

18.1.1 Homogeneous Associated Solution

In the sequel, we determine the associated homogeneous solution of the system. The
homogeneous equation of this system for two energy groups is

Δγφg−αgφg +
μgg′

Dg
φg′ = 0 ,

and in matrix representation

ΔγΦ−PΦ = 0 with P =

[
α1 − μ12

D1

− μ21
D2

α2

]

Upon diagonalizing the matrix P = UDU−1 where D is a diagonal matrix, using
W = U−1Φ , the last matrix equation turns into ΔγW−DW = 0. At this point, the
solution is given by Φ = UW after solving the equation system for W.

18.2 Solution for Cylindrical Geometry

The Laplace operator in cylinder coordinates is Δ1 = 1
r
∂
∂ r +

∂ 2

∂ r2 , assuming trans-
lational symmetry of the neutron flux φg along the cylinder axis (∂zzφ = 0). The
diffusion problem is subject zero current density boundary conditions at the center
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of the cylinder ∂φg
∂x1

(0) = 0 and zero flux at the border φg(R) = 0. Let X1 be the
domain, with X1 = [0,∞) and Δ1 a linear operator as described in [Fe11]. By the
definition of Iγ ,

I1[f (x1);x1→ x1] :=
∫

X1

f (x1)K(x1,x1) dx1

K1(x1,x1) := x1J0(x1x1) (18.8)

K−1
1 (x1,x1) := x1J0(x1x1)

Using property (ii) of Iγ

I1[Δ1f (x1)] :=−x2
1f (x1)

where h(x1) = −x2
1. This way, we can use the same general methodology shown

before and after application of the transform I1 to system (18.1), one obtains the
general solution given by equation (18.6).

Using the Parseval relation (18.5) where γ = 1 and ω1(x1) = x1 and considering

that φg(x1) := φ (1)g (x1)+φ
(2)
g (x1) we obtain

φ (1)g (x1) =
∫

X1

x1
1

|M(x1)|Ag′Sg(x1)J0(x1x1) dx1

=
∫

X1

x1
Ag′(x1)

Ag(x1)Ag′(x1)−μgg′μg′g
Sg(x1)J0(x1x1) dx1

φ (2)g (x1) =
∫

X1

x1
1

|M(x1)|μgg′Sg′(x1)J0(x1x1) dx1

=

∫

X1

x1
μgg′Sg′(x1)J0(x1x1)

Ag(x1)Ag′(x1)−μgg′μg′g
dx1 (18.9)

The final solution for this couple of equations can be expressed using (18.6) and
(18.7), and has the form

φ (1)g (x1) =
∫

X′1

∫

X1

Ag′(x1)

|M(x1)|K
−1(x1,x1)K(x′1,x1)Sg(x

′
1) dx1 dx′1 (18.10)

φ (2)g (x1) =
∫

X′1

∫

X1

μgg′

|M(x1)|K
−1(x1,x1)K(x′1,x1)Sg′(x

′
1) dx1 dx′1

Solving first φ (1)g (x1), using (18.8) and (18.10) one gets

φ (1)g (x1) =
∫

X′1

∫

X1

Ag′(x1)x1J0(x1x1)x′1J0(x′1x1)Sg(x′1)
Ag(x1)Ag′(x1)−μgg′μg′g

dx1 dx′1
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To solve the inner integral, we use the Parseval relation and make use of the
generally valid relation

μgg′μg′g
Ag(x1)Ag′(x1)

� 1

From the identity

Ag′(x1)

Ag(x1)Ag′(x1)−μgg′μg′g
=

Ag′(x1)

Ag(x1)Ag′(x1)

1

1− μgg′μg′g
Ag(x1)Ag′ (x1)

=
1

Ag(x1)

∞

∑
n=0

(
μgg′μg′g

Ag(x1)Ag′(x1)

)n

We consider only the dominant term of this series,

φ (1)g (x1) =
∫

X′1

∫

X1

1
Ag(x1)

x1J0(x1x1)x
′
1J0(x

′
1x1)Sg(x

′
1) dx1 dx′1

That allows us to solve the integral analytically:

∫

X1

x1
J0(x1x1)

Ag(x1)
J0(x

′
1x1) dx1 =

{
1

Dg
I0(
√αgx′1)K0(

√αgx1) for 0 < x′1 < x1
1

Dg
I0(
√αgx1)K0(

√αgx′1) for x1 < x′1 < ∞
,

where αg =
ΣRg
Dg

. Here, I0 and K0 are the modified Bessel functions. To complement
this part of the solution we use the fact that there does not exist any source outside
the cylinder, i.e., Sg = 0 for x1 > R. We can express the solution as

φ (1)g =T
(1)

g [Sg](x1)

where

T
(1)

g [·] :=
K0(
√αgx1)

Dg

∫ x1

0
x′1I0(

√αgx′1)[·] dx′1

+
I0(
√αgx1)

Dg

∫ R

x1

x′1K0(
√αgx′1)[·] dx′1 (18.11)

Now, we determine the solution of φ (2)g . Again, we can use the above-mentioned
theorems to obtain

∫

X1

x1
J0(x1x1)

|M(x1)| Sg′ dx1 =
∫

X1

x′1I
−1

0

{
J0(x1x1)

|M(x1)|
}

Sg′(x
′
1) dx′1
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and, by definition,

I −1
0

{
J0(x1x1)

|M(x1)|
}

=

∫

X1

x1
J0(x1x1)

|M(x1)| J0(x
′
1x1) dx1

Using analogue arguments as for the fast flux, we arrive at

I −1
0

{
J0(x1x1)

|M(x1)|
}

=
1

(ΣRgDg′ −ΣRg′Dg)

∫

X1

x1
J0(x1x1)J0(x′1x1)

x2
1 +(
√αg′)2

dx1

− 1
(ΣRgDg′ −ΣRg′Dg)

∫

X1

x1
J0(x1x1)J0(x′1x1)

x2
1 +(
√αg)2

dx1

=

⎧
⎪⎪⎨

⎪⎪⎩

I0(
√
αg′ x′1)K0(

√
αg′ x1)−I0(

√αgx′1)K0(
√αgx1)

(ΣRgDg′−ΣRg′Dg)
for 0 < x′1 < x1

I0(
√
αg′ x1)K0(

√
αg′ x′1)−I0(

√αgx1)K0(
√αgx′1)

(ΣRgDg′−ΣRg′Dg)
for x1 < x′1 < ∞

.

This way,

φ (2)g = cgg′(Dg′T
(1)

g′ [Sg′ ](x1)−DgT
(1)

g [Sg′ ](x1)),

where cgg′ =
μgg′

(ΣRgDg′−ΣRg′Dg)
and by the similarity of the solutions of the integral

expressions may be used to formulate the complete solution for the group g using
(18.11)

φg(x1) =T
(1)

g [Sg](x1)+ cgg′(Dg′T
(1)

g′ [Sg′ ](x1)−DgT
(1)

g [Sg′ ](x1)) (18.12)

The solution for the group g′ is obtained upon changing g′ with g in (18.12). This
last equation together with associated homogeneous solutions for γ = 1 represents
the complete profile of neutron flux in cylindrical geometry.

18.3 Solution for Cartesian Geometry

In this section, we solve (18.1) for γ = 0, i.e., in Cartesian geometry. The
multi-group diffusion equation (18.1) is subject to the boundary conditions
φg(L/2) = φg(−L/2) = 0 and by the definition of Iγ we have

I0[f (x0);x0→ x0] :=
∫

X0

f (x0)K(x0,x0) dx0

K0(x0,x0) :=
1√
2π

e−ix0x0 and K−1
0 (x0,x0) :=

1√
2π

eix0x0 (18.13)
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Using the property (ii) of Iγ and for this case h(x0) =−x2
0, one obtains

I0[Δ0f (x0)] :=−x2
0f (x0)

This way, we can express the general solution using (18.13) as

φg(x0) =
1√
2π

∫

X0

Ag′(x0)

|M(x0)|e
−ix0x0 Sg(x0) dx0

︸ ︷︷ ︸

φ (1)g (x0)

+
1√
2π

∫

X0

μgg′

|M(x0)|e
−ix0x0 Sg′(x0) dx0

︸ ︷︷ ︸

φ (2)g (x0)

,

where X0 = X0 = (−∞,∞). Firstly, solving for φ (1)g we define

G∗1(x0) =
Ag′(x0)

|M(x0)|e
ix0x0 and F1(x0) = Sg(x0)

and using the Parseval theorem again with w(x0) = 1/
√

2π . Then

φ (1)1 (x0) =
1√
2π

∫

X0

G(1)∗
1 (x0)F

(1)
1 (x0) dx0 =

1√
2π

∫

X′0
g(1)∗1 (x′0)S1(x

′
0) dx′0

where

g(1)∗1 (x′0) =F−1
{

G(1)∗
1 (x0)

}
=

1√
2π

∫

X0

eix0(x′0−x0) A2(x0)

|M(x0)| dx0. (18.14)

We define the following constant Cgg′ = αgαg′ −
μgg′μg′g
DgDg′

. Thus, according to

definition (18.14):

g(1)∗1 (x′0) =
1

Dg
√

2π

∫

X0

x2
0 +αg′

x4
0 +
(
αg +αg′

)
x2

0 +Cgg′
eix0(x′0−x0) dx0

To obtain an expression for g(1)∗1 (x′0), we make use of the residue theorem of Cauchy.
To this end we consider the integral

∫

Γ

z2 +αg′

z4 +
(
αg +αg′

)
z2 +Cgg′

eiz(t−x) dz

for x′0−x0 > 0, where Γ is a closed Jordan curve in the sector and oriented such that
all poles are inside the curve oriented counterclockwise. The poles at the integrand
are y = z2 and observing that

(
αg +αg′

)2− 4Cgg′ > 0, further, from that fact that
the nuclear parameters are all positive, we conclude that there are two distinct real
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roots for y and consequently four different roots for z. Observe that the signal of y1

can be positive or negative while y2 < 0, y1 < 0 with 0 < μgg′μg′g < ΣRgΣRg′ . All
poles of the integrand are located on the imaginary axis.

z±∓ =±i

√
2

2

(

(αg +αg′)∓
√
(
αg−αg′

)2
+

4Cgg′

DgDg′

) 1
2

Knowing the poles, we can choose Γ = Γ+∪ΓR, where Γ+ = {z ∈ C : z = Reiθ ,0≤
θ ≤ π} and ΓR = {z ∈ R : 0 < |z|< R}. Then, by the residue theorem of Cauchy
we get

∫

Γ
u(1)1 (z) dz = 2πi

(
2

∑
n=1

Resz=znu(1)1 (z)

)

=
∫ R

−R
u(1)1 (z) dz+

∫

Γ+
u(1)1 (z) dz

with u(1)1 (z) =
z2+αg′

z4+(αg+αg′ )z2+Cgg′
eiz(x′0−x0). In the limit of R going to infinity and the

integral along Γ+ is null, so that

lim
R→∞

∫ R

−R
u(1)1 (z) dz =

∫ ∞

−∞
z2 +αg′

z4 +
(
αg +αg′

)
z2 +Cgg′

eiz(x′0−x0) dz

= 2πi
[
Resz=z1u(1)1 (z)+Resz=z2u(1)1 (z)

]

where after some manipulations

Resz=z1u(1)1 (z) =
(αg−αg′ +

√
β )e−

√
2

2 (x′0−x0)(αg+αg′+
√
β )1/2

2
√

2i
√
β (αg +αg′ +

√
β )1/2

Resz=z2u(1)1 (z) =
(αg−αg′ −

√
β )e−

√
2

2 (x′0−x0)(αg+αg′−
√
β )1/2

2
√

2i
√
β (αg +αg′ −

√
β )1/2

where β = (αg−αg′)
2 +

4μgg′μg′g
DgDg′

. This way, we obtain

g(1)∗1 (x′0) =

+π
(αg +αg′ −

√
β ) 1

2 (αg−αg′ +
√
β )e−

√
2

2 (x′0−x0)(αg+αg′+
√
β )

1
2

4Dg
√
πβCgg′

−π (αg +αg′ +
√
β ) 1

2 (αg−αg′ −
√
β )e−

√
2

2 (x′0−x0)(αg+αg′−
√
β )

1
2

4Dg
√
πβCgg′
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We express φ (1)g (x0), bearing in mind that we have no source outside the slab,
i.e., Sg = 0 for |x0|> L/2,

φ (1)g (x0) =T
(1)
− [Sg](x0)−T

(1)
+ [Sg](x0) ,

where

T
(1)
∓ [·] = (αg +αg′ ±

√
β ) 1

2 (αg−αg′ ∓
√
β )

4Dg
√

2βCgg′

×
[∫ x0

− L
2

e
√

2
2 (x′0−x0)(αg+αg′∓

√
β )

1
2
[·] dx′0

+
∫ L

2

x0

e−
√

2
2 (x′0−x0)(αg+αg′∓

√
β )

1
2
[·] dx′0

]

To obtain the solution for φ (2)g (x0) we may use a similar procedure to end up with
the final expression

φ (2)g =T
(2)
− [Sg′ ](x0)−T

(2)
+ [Sg′ ](x0)

where

T
(2)
∓ [·] =

μgg′
(
αg +αg′ ±

√
β
) 1

2

2
√

2βCgg′

×
[
∫ x0

− L
2

e

√
2

2 (x′0−x0)
(
αg+αg′∓

√
β
) 1

2

[·] dx′0

+
∫ L

2

x0

e
−
√

2
2 (x′0−x0)

(
αg+αg′∓

√
β
) 1

2

[·] dx′0

]

Thus, the full representation for the solution in Cartesian coordinates is described by

φg(x0) =T
(1)
− [Sg](x0)−T

(1)
+ [Sg](x0)+T

(2)
− [Sg′ ](x0)−T

(2)
+ [Sg′ ](x0)

This last expression together with the associated homogeneous solutions for γ = 0
represents the complete profile of neutron flux in slab geometry.
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Table 18.1 Sets 1-2 of Nuclear Parameters used in cylinder simulations (a is
7.3760×10−1 ).

Set 1 g = 1 g = 2 Set 2 g = 1 g = 2

Dg 2.4449 1.2272 Dg 2.4449 1.2272

χg 7.3760(−1)a 2.6220(−1) χg 7.3760(−1) 2.6220(−1)

ΣRg 5.8938(−2) 6.7201(−2) ΣRg 5.8938(−2) 6.7201(−2)

Σgg′ 1.0000(−2) 1.0000(−4) Σgg′ 1.0000(−1) 1.0000(−4)

νΣfg 9.6350(−4) 1.1530(−3) νΣfg 1.46025(−3) 1.7295(−3)

Sg 1.0000 1.0000(−1) Sg 1.0000 1.0000(−1)
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Fig. 18.1 Profile of φ1 (�) and φ2 (◦), R = 1 and using set 1.

18.4 Results

For simulations we consider a set of parameters (see table 18.1) for two energy
groups in a homogeneous medium. For different cases we simulated the flux for
both groups (see figures 18.1 and 18.2) and present normalized results in the domain
Xγ (see tables 18.2 and 18.3).

18.5 Conclusions

In this work, a multi-group neutron diffusion problem in different geometries is
discussed. The analytical expressions found represent an accurate solution for the
multi-group steady state diffusion equation in a slab and cylinder coordinates.
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Fig. 18.2 Profile of φ1 (�) and φ2 (◦), L = 5 and using set 1.

Table 18.2 Normalized profile for two energy groups by two differ-
ent parameters in cylindrical geometry with R = 5.

Set 1 Set 2

x1/R φ1 φ2 x1/R φ1 φ2

0.0 1.0000000 1.0000000 0.0 1.0000000 1.0000000

0.1 0.3284663 0.2729200 0.1 0.4715268 0.3282991

0.2 0.2295664 0.1897752 0.2 0.3295612 0.2294560

0.3 0.1717303 0.1412999 0.3 0.2465389 0.1716520

0.4 0.1307049 0.1070547 0.4 0.1876467 0.1306485

0.5 0.0988880 0.0806290 0.5 0.1419720 0.0988476

0.6 0.0728922 0.0591645 0.6 0.1046525 0.0728640

0.7 0.0509098 0.0411342 0.7 0.0730935 0.0508911

0.8 0.0318613 0.0256255 0.8 0.0457457 0.0318503

0.9 0.0150500 0.0120486 0.9 0.0216089 0.0150451

1.0 0.0000000 0.0000000 1.0 0.0000000 0.0000000

An immediate conclusion that may be drawn from this work is that for neutron
diffusion scenarios, using the Parseval Identity is a considerably efficient technique
for solving this type of problem. As can be seen from the formulation, the present
method provides the correct final expression without making use of approximations
or simplifications. In procedures where an analytical solution was obtained by
a spectral theory approach, the solution had been expressed as an expansion of
orthogonal functions with a predefined base. It is noteworthy that Parseval’s identity
indicates the base that “naturally” should be used. Concluding, this method in these
geometries can be considered a reliable tool for solving more general problems in
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Table 18.3 Normalized profile for two energy groups by two different param-
eters in slab geometry with L = 5.

Set 1 Set 2

x0/(L/2) φ1 φ2 x0/(L/2) φ1 φ2

0.0 1.0000000 1.0000000 0.0 1.0000000 1.0000000

0.1 0.9904005 0.9910545 0.1 0.9903972 0.9910538

0.2 0.9615538 0.9640957 0.2 0.9615411 0.9640928

0.3 0.9133158 0.9187549 0.3 0.9132886 0.9187487

0.4 0.8454454 0.8544121 0.4 0.8454005 0.8544018

0.5 0.7576040 0.7701872 0.5 0.7575410 0.7701728

0.6 0.6493545 0.6649283 0.6 0.6492767 0.6649105

0.7 0.5201600 0.5371958 0.7 0.5200749 0.5371763

0.8 0.3693819 0.3852425 0.8 0.3693026 0.3852244

0.9 0.1962778 0.2069900 0.9 0.1962243 0.2069778

1.0 0.0000000 0.0000000 1.0 0.0000000 0.0000000

neutron diffusion, for example, with more than two energy groups. We further plan
to investigate results for more realistic problems in nuclear reactor physics where
the application of this methodology will be generalized to heterogeneous problems.
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Chapter 19
Multi-Group Neutron Propagation in Transport
Theory by Space Asymptotic Methods

J.C.L. Fernandes, S. Dulla, P. Ravetto, and M.T.B. Vilhena

19.1 Introduction

The study of the neutronic response to a localized pulsed source requires accurate
models, due to the strong spatial effects coming into play associated with the
wavefront propagation. Furthermore, usually neutron sources inject particles at
high energy and, consequently, important spectral effects may come into play. In
previous works, the propagation phenomenon has been investigated for idealized
configurations in exact transport [DuGaRa06], restricting the analysis to one-group
problems. Furthermore, the numerical effects associated with the application of
discrete ordinate and spherical harmonics methods have been analyzed [DuRa04,
DuRa08], illustrating the appearance of time-dependent ray effects.

The present work aims at the characterization of the response of a system to
localized pulsed source also taking into account spectral phenomena, which may
have an important role in the interpretation of pulsed experiments [DuEtAl13]. To
this aim, the multi-group transport equation is considered in one-dimensional plane
geometry, extending what was done for the one-velocity model. The contribution of
delayed neutrons is not considered, since in these short-term transients the role of
delayed emissions is negligible. The interest of the present work is mainly focused
on gaining insight into basic physics. Therefore, simple configurations are analyzed
and the treatment is analytical as much as possible to clearly evidence physical
effects. Furthermore, the analytical approach yields reference solutions free from
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numerical discretization drawbacks and the results can be proposed as benchmarks
for numerical methods and codes [Ga83].

19.2 Problem Formulation

The multi-group linear transport model considered for this study concerns a 1D slab
geometry, assuming a homogeneous medium, isotropic emissions, and vanishing
initial conditions for the angular fluxes ϕg:

1
vg

∂ϕg(x,μ , t)
∂ t

+μ
∂ϕg(x,μ , t)

∂x
+σgϕg(x,μ , t) =

1
2

G

∑
g′=1

σg′cgg′
∫ 1

−1
ϕg′(x,μ ′, t)dμ ′

+
1
2

Sg(x, t) =
1
2

G

∑
g′=1

σg′cgg′Φg′(x, t)+
1
2

Sg(x, t), g = 1, . . . ,G,

(19.1)

where the system spans in the interval x ∈ [−h/2 : h/2] and is surrounded by
vacuum; a total number of G energy groups is assumed.

The application of Laplace (t→ s) and Fourier (x→ B) transforms in time and
space (see [DuGaRa06]) allows to derive the following algebraic expression for the
transformed fluxes:

s
vg

˜̄ϕg(B,μ ,s)− iBμ ˜̄ϕg(B,μ ,s)+σg ˜̄ϕg(B,μ ,s)

=
1
2

G

∑
g′=1

σg′cgg′
˜̄Φg′(B,s)+

1
2

˜̄Sg(B,s), g = 1, . . . ,G.
(19.2)

The g-group angular flux can be made explicit from the left-hand side of Eq. (19.2):

ϕg(B,μ ,s) =
1

σg +
s
vg
− iBμ

[
1
2

G

∑
g′=1

σg′cgg′Φg′(B,s)+
1
2

Sg(B,s)

]

(19.3)

and both sides of Eq. (19.3) can be integrated with respect to μ , to obtain an
expression involving the scalar flux and the external source only:

∫ 1

−1
ϕg(B,μ ,s)dμ =

G

∑
g′=1

σg′cgg′Φg′(B,s)
1
2

∫ 1

−1

1

(σg +
s
vg

)− iBμ
dμ

+Sg(B,s)
1
2

∫ 1

−1

1

(σg +
s
vg

)− iBμ
dμ .

(19.4)
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If we define the integral expression

Ag
l,k(B,s) =

1
2

∫ 1

−1

Pl(μ)Pk(μ)

(σg +
s
vg

)− iBμ
dμ , (19.5)

where Pl(μ) is the Legendre polynomial of order l, we can re-write Eq. (19.4) in a
more compact form as

Φg(B,s) = Ag
0,0(B,s)

G

∑
g′=1

σg′cgg′Φg′(B,s)+Ag
0,0(B,s)Sg(B,s), g = 1, . . . ,G.

(19.6)

To solve the system of equations (19.6) we assume an expansion for the flux in each
energy group in the form:

Φg(B,s) :=
∞

∑
i=0
Φ (i)

g (B,s), (19.7)

where the first term Φ (0)
g represents the solution obtained in the one-group case and

the other terms allow to take into account the coupling among energy groups. The
solution procedure starts from the solution of the monokinetic problem, as solved in
[DuGaRa06], and then evaluate the following terms of the expansion through this
equation:

Φ (i)
g (B,s) = Ag

0,0(B,s)σgcggΦ
(i)
g (B,s)+Ag

0,0(B,s)
G

∑
g′ �=g

σg′cgg′Φ
(i−1)
g′ (B,s)

+Ag
0,0Sg(B,s), i > 0, g = 1, . . . ,G,

(19.8)
where the i−th term of (19.8) can be made explicit as:

Φ (i)
g (B,s) =

Ag
0,0(B,s)

1−σgcggAg
0,0(B,s)

G

∑
g′ �=g

σg′cgg′Φ
(i−1)
g′ (B,s)

+
Ag

0,0(B,s)

1−σgcggAg
0,0(B,s)

Sg(B,s), i > 0, g = 1, . . . ,G.

(19.9)

The transfer functions in the transformed space appearing in (19.9) can be defined
in a general form as

Γgg′(B,s) :=
Ag

0,0(B,s)

1−σg′cgg′A
g
0,0(B,s)

(19.10)
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and the solution for the i−th term takes the form

Φ (i)
g (B,s) = Γgg(B,s)

{
G

∑
g′ �=g

σg′cgg′Φ
(i−1)
g′ (B,s)+Sg(B,s)

}

. (19.11)

The computation of the scalar flux as defined in the expansion (19.7) requires the
definition of a truncation order N. Having introduced the scalar flux obtained with
such truncation ΦN

g , we can write its explicit form as

ΦN
g (B,s) =Φ (0)

g (B,s)+Φ (1)
g (B,s)+ ...+Φ (N)

g (B,s) for N ≥ 1

= Γgg(B,s)Sg(B,s)+
N

∑
i=1
Φ (i)

g (B,s)

= (N +1)Γgg(B,s)Sg(B,s)
︸ ︷︷ ︸

one-group solution=Φ̂g(B,s)

+Γgg(B,s)
N

∑
i=1

G

∑
g′ �=g

σg′cgg′Φ
(i−1)
g′ (B,s)

︸ ︷︷ ︸
energy group interaction=Φ̌N

g (B,s)

:= Φ̂g(B,s)+ Φ̌N
g (B,s),

(19.12)

allowing its evaluation up to the desired order N.
In order to obtain the solution in the physical space-time domain, it is then

required to perform the inverse Fourier and Laplace transform on the solution
(19.12). The inverse Fourier transform is tackled first; the general form of the
integral to be performed is

I
Sg
m1,m2,...,mG(x,s) =

∫ ∞
−∞(Γ11)

m1(Γ22)
m2 ...(ΓGG)

mG(B,s)Sg(B,s)e−iBxdB

=
∫ ∞

−∞

G

∏
γ=1

(Γγγ)mγ (B,s)Sg(B,s)e
−iBxdB.

(19.13)

Expression (19.13) is obtained starting from the term of Eq. (19.12) providing the
coupling among groups, Φ̌N

g , and making explicit all the flux terms appearing in
such expression, so that they can all be referred directly to the external sources Sg.
This process results in successive application of the transport kernel Γgg, as made
explicit in (19.13) by the exponentials m1 . . .mG.

At this point the Fourier transform can be worked out easily if we assume that a
generic symmetric source in the domain [−h/2;h/2] can be expanded in Helmholtz
eigenfunctions as

Sg(B,s) =

√
2
h

∞

∑
n=1

sg
n(s)

[
δ (B−Bn)+δ (B+Bn)

2

]

, (19.14)

where Bn = (2n−1)π/h. This assumption implies that also the solution will satisfy
the same boundary conditions as the harmonics adopted, i.e. it vanishes at the system
boundary. This condition is not correct when applied to the scalar flux, but is still
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physically significant in the analysis of source pulses for short times, when the
neutrons still have not reached the system boundary. Once we introduce (19.14)
into (19.13) the inverse Fourier transform is easily obtained, and we can proceed to
the evaluation of the inverse Laplace transform:

I
Sg
m1,m2,...,mG(x, t) =
√

2
h

∞

∑
n=1

{
∫ t

0

[
1

2πi

∫ −σg+i∞

−σg−i∞

G

∏
γ=1

Γ mγ
γγ (B,s)es(t−t′)ds

]

sg
n(t
′)dt′
}

cos(Bnx)

(19.15)
Making use of the integral definitions above, we can provide as example the solution
in the transformed space of the flux when expanded to progressively higher orders
N. For N = 0 we have

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Φ0
1 (B,s) = Γ11S1(B,s)

Φ0
2 (B,s) = Γ22S2(B,s)

...
Φ0

G(B,s) = ΓGGSG(B,s)

⇒

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Φ0
1 (x, t) = IS1

1 (x, t)
Φ0

2 (x, t) = IS2
0,1(x, t)

...
Φ0

G(x, t) = ISG

0,0, ...,1
︸ ︷︷ ︸

×G

(x, t).

(19.16)

When expanding to higher orders, we obtain, as expected, expressions of increasing
complexity. For the first group, the case N = 1 reads as

Φ1
1 (B,s) = 2Γ11S1(B,s)+Γ11

1

∑
i=1

G

∑
g′ �=g

σg′c1g′Φ
(i−1)
g′ (B,s) (19.17)

= 2Γ11S1(B,s)+Γ11

(
σ2c12Φ

(0)
2 (B,s)+ · · ·+σGc1GΦ

(0)
G (B,s)

)

= 2Γ11S1(B,s)+σ2c12Γ11Γ22S2(B,s)+ · · ·+σGc1GΓ11ΓGGSG(B,s)

and for the generic group g in the transformed space we have

Φ1
g (B,s) = 2ΓggSg(B,s)+Γgg

G

∑
g′ �=g

σg′cgg′Φ
(0)
g′ (B,s)

= 2ΓggSg(B,s)+
G

∑
g′ �=g

σg′cgg′ΓggΓg′g′Sg′(B,s). (19.18)

The solution obtained when expanding up to order N = 2 writes as

Φ2
g (B,s) = 3ΓggSg(B,s)+Γgg

2

∑
i=1

G

∑
g′ �=g

σg′cgg′Φ
(i−1)
g′ (B,s)

= 3ΓggSg(B,s)+Γgg

(
G

∑
g′ �=g

σg′cgg′Φ
(0)
g′ (B,s)+

G

∑
g′ �=g

σg′cgg′Φ
(1)
g′ (B,s)

)
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= 3ΓggSg(B,s)+2
G

∑
g′ �=g

σg′cgg′ΓggΓg′g′Sg′(B,s)

+
G

∑
g′ �=g

G

∑
g′′ �=g′

σg′cgg′σg′′cg′g′′ΓggΓg′g′Γg′′g′′Sg′′(B,s). (19.19)

The compact form at the end of expression (19.19) provides a guideline for the
determination of the higher order solutions; the case N = 3 is

Φ3
g (B,s) = 4ΓggSg(B,s)+3

G

∑
g′ �=g

σg′cgg′ΓggΓg′g′Sg′(B,s)

+ 2 ∑
g′ �=g

∑
g′′ �=g′

σg′cgg′σg′′cg′g′′ΓggΓg′g′Γg′′g′′Sg′′(B,s)

+ ∑
g′ �=g

∑
g′′ �=g′

∑
g′′′ �=g′′

σg′cgg′σg′′cg′g′′σg′′′cg′′g′′′ΓggΓg′g′Γg′′g′′Γg′′′g′′′Sg′′′(B,s).

(19.20)

The general case of expansion up to order N can be written as

ΦN
g (B,s) = (N +1)ΓggSg(B,s)

+ N ∑
g1 �=g

σg1 cgg1ΓggΓg1g1Sg1(B,s)

+ (N−1) ∑
g1 �=g

∑
g2 �=g1

σg1 cgg1σg2 cg1g2ΓggΓg1g1Γg2g2Sg2(B,s)

... (19.21)

+ ∑
g1 �=g

∑
g2 �=g1

· · · ∑
gN �=gN−1

︸ ︷︷ ︸
×N

σg1 cgg1 ...σgN cgN−1gNΓggΓg1g1 ...ΓgN gN SgN ,

where the group indexes in the sums have been generalized as gj, j = 1, . . . ,N.
In order to obtain a compact and elegant expression for the group fluxes in the

transformed and direct space, we introduce the constants Ξg,�max and the operators
Tg,jmax(·) by

Ξg,�max =

{
�max

∏
�=1

σg�+1cg�g�+1

}

σg1 cgg1 , �max ∈ {0, . . . ,N−1}

Tg,jmax(·) =
{

jmax

∏
j=1
Γkjkj

}

Γgg(·), jmax ∈ {0, . . . ,N−1}. (19.22)
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where Ξg,0 = σg1 cgg1 and Tg,0(·) = Γgg(·). As a consequence, we can rewrite the
expression (19.21) as

ΦN
g (B,s) = (N +1)Tg,0(Sg(B,s))

+ N ∑
g1 �=g

Ξg,0Tg,1(Sg1(B,s))

+ (N−1) ∑
g1 �=g

∑
g2 �=g1

Ξg,1Tg,2(Sg2(B,s))

... (19.23)

+ ∑
g1 �=g

∑
g2 �=g1

· · · ∑
gN �=gN−1

︸ ︷︷ ︸
×N

Ξg,N−1Tg,N(SgN (B,s)),

or

ΦN
g (B,s) = (N +1)Tg,0(Sg(B,s))+

N

∑
ω=1

(N−ω+1)

⎧
⎪⎨

⎪⎩
∑ · · ·∑
︸ ︷︷ ︸
×ω

Ξg,ω−1Tg,ω(Sgω )

⎫
⎪⎬

⎪⎭
.

(19.24)

Expression (19.24) can be inverted in order to obtain the group fluxes ΦN
g (x, t)

noticing that the operator Tg,jmax , when the inverse Fourier and Laplace transforms
are applied, satisfies the following relation:

L −1 [F−1 [Tg,jmax(Sg(B,s))]
]
= I

Sg
m1,...,mgjmax

(x, t). (19.25)

19.3 The Singularities of the Laplace Transform

The Laplace inverse transform is carried out by the use of the residue theorem, and,
thus, it is required to study the distribution of the singularities of the transforms
of the group fluxes: to this purpose, the behavior of the function Γ (B,s) must be
analyzed. This function depends on the integral term A00(B,s):

A00(B,s) =
∫ 1

−1

1
(
σ +

s
v

)
− iBμ

dμ =
1
B

arctan

⎛

⎝ B

σ +
s
v

⎞

⎠, (19.26)

that can be written in terms of the logarithm in the complex plane as

arctan

⎛

⎝ B

σ +
s
v

⎞

⎠=
1
2i

log

⎡

⎣
σ +

s
v
+ iB

σ +
s
v
− iB

⎤

⎦. (19.27)
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Fig. 19.1 Poles and branch
cut in complex plane.
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pnlim,g p2,g p1,g Re(s)

Im(s)

The presence of a logarithmic terms introduces as a consequence a vertical branch
cut is introduced in the complex plane for each group between the points (−vgσg−
ivgB) and (−vgσg + ivgB). Being Bn an increasing sequence, the span of the cut in
the complex plane is increasing with n (see Figure 19.1).

The characteristic equation to be solved in order to determine the location of the
poles is

1− c
σ
Bn

arctan

⎛

⎝ Bn

σ +
s
v

⎞

⎠= 0, (19.28)

where c is the number of secondaries per collision within each energy group. Letting
τn = Bn/σ , it is immediate to verify that a solution to Eq. (19.28) exists only if
τn/c < π/2. Therefore, the following chain of consequences holds:

Bn

cσ
<
π
2

⇒ (2n−1)π
hcσ

<
π
2

⇒ n <
hcσ +2

4
. (19.29)

Therefore, a polar singularity exists provided the following inequality is satisfied:

n≤ nlim :=
hcσ +2

4
. (19.30)

This evaluation holds for the transport kernel associated with each energy group,
Γgg: the existence of poles to be considered in the inverse Laplace transform is
given by the condition:

n≤ nlim,g :=
hcggσg +2

4
, (19.31)

as can be seen graphically in Figure 19.1.
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In conclusion, the inverse transform shall be constituted by the sum of an integral
part along the branch cut and a time exponential term introduced by the residue at
the polar singularity, whenever it exists.

19.4 Numerical Solution for Three Energy Groups

The analytical model for the solution of the linear transport equation in the multi-
group case in the presence of a pulsed source is now applied to the case of three
energy groups. The system is supposed to experience a pulsed source, distributed
in all energy groups, located symmetrically in the center of the system, to preserve
the symmetry of the solution we adopted as hypothesis. Therefore, the source in
each energy group g is constant, unitary and spans on the interval [−x0,g;x0,g]. The
basic material and geometrical data adopted to evaluate the numerical solution are
reported in Table 19.1, while the scattering matrix containing the energy transfer
probabilities is assumed as

Mscat =

⎡

⎣
c11 c12 c13

c21 c22 c23

c31 c32 c33

⎤

⎦=

⎡

⎣
0.40 0.05 0.40
0.30 0.50 0.20
0.25 0.35 1.00

⎤

⎦ . (19.32)

As a first step, the evaluation of the poles and branch cuts of the Laplace-
transformed transport kernels for each energy group is performed, as a function
of the number of Helmholtz harmonics adopted for the inverse Fourier transform.
Some example of the results obtained is given in Figure 19.2, where the physical
dimension of the system h has been changed to highlight how this parameter affects
both the extension of the branch cut and the appearance of polar singularities.

The time-dependent solution to the transport problem in response to the pulsed
source described above has been evaluated for the three energy groups, adopting
10 terms in the expansion (19.7) and using 300 Helmholtz eigenfunctions for the
spatial representation of the flux. The behavior at different time instants is given in
Figure 19.3, showing the initial distribution associated with the source shape and
the consequent propagation at finite speed vg characterizing the fluxes behavior
at subsequent times. Moreover, the effects associated with the truncated series of
spatial harmonic adopted for the representation are visible, especially for the third
energy group where the flux should be null.

Table 19.1 Material and geometrical data assumed in the transient
evaluation. Dimensionless quantities are used.

σ1 σ2 σ3 v1 v2 v3 h x0,1 x0,2 x0,3

1.00 1.00 2.00 1.00 0.50 0.10 10.00 0.50 0.25 0.25
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Fig. 19.2 Localization of poles and extension of branch cut obtained in the Laplace transform
inversion of the transport kernel for each energy group g and different system dimensions h.

19.5 Conclusions

An analytical method to study the propagation of neutron pulses in the frame of
multi-group neutron transport is presented. The method is based on the use of
the double Fourier-Laplace transform, to deal with space and time, respectively.
The technique yields exact results for times smaller than the transit time of the
pulse through the spatial domain, to reach the boundary of the system. Use is
made of the solution for the one-group problem, in combination with a multiple
collision approach. Some results are presented and discussed for the three-group
case. The convergence with respect to the number of harmonics used in the spatial
series and of number of collision is investigated. Future developments will include
the comparison with discrete-ordinate and spherical harmonics models. The series
representation of the solution could also be accelerated by efficient novel techniques
[Ga13].
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Fig. 19.3 Spatial distribution of group fluxesΦg for a transient initiated by a unitary pulsed source
in all groups. Flux expansion up to order N = 10; spatial representation with 300 Helmholtz
eigenfunctions. Times are expressed as mean free times.
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Chapter 20
Infiltration in Porous Media:
On the Construction of a Functional
Solution Method for the Richards Equation

I.C. Furtado, B.E.J. Bodmann, and M.T.B. Vilhena

20.1 Introduction

In engineering, knowledge about infiltration and water movement in soil emerges as
a preventive measure, both to control the destructive action of water on foundations,
dams, and pavements and to predict the behavior of flow and transport of pollutants.
Mathematical modeling of these infiltration processes in porous media is substan-
tiated by the equations of Richards, or Fokker–Planck. Both equations are highly
nonlinear, so that analytical solutions to the equations are extremely difficult to find.
In order to turn prognostics in applications more efficient, it is essential to consider
field observations, because they are necessary for identification of constitutive
relations that govern the phenomenon and may be used in theoretical formulations.
The best-known models that relate soil parameters are the models found in refs.
[BrCo64, Ge80] and [Ga58]. The Van Genuchten model provides more satisfactory
results than others when compared with experimental data, but due to its functional
form proposed solutions have limited applicability. On the other hand, the other two
models result in simplified equations, leading to cases of linearized equations and
their associated solutions, as, for instance, in [Ba99, ChTaCh01, Ba02]. However,
most of these solutions are limited to cases with uniform initial conditions and in an
infinite domain.

In this contribution, we analyze a problem of transient flow of water in
unsaturated media, modeled by the Richards equation. To this end, the constitutive
relations of Van Genuchten are employed and a hybrid method of Padé approxima-
tions and Adomian decomposition [Ad94] is applied. Although Adomian states in
his work that this method should be applicable to any nonlinear problem, the present
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problem is a counterexample, where the method in its original form fails. In order
to circumvent this shortcoming, we propose a construction of a functional solution
method for the Richards equation, that shall replace the recursion initialization of
the decomposition method. The found solution is then optimized and its accuracy
evaluated by the nonlinear Richards equation and the profile of the potential matrix
is also compared to numerical findings [WePi10]. It is remarkable that for the
present parameter set the recursion initialization is already considerably close to
the true solution, so that in the present case no further recursion steps are necessary.

20.2 The Model

The governing equation describing infiltration in porous media is established by the
Darcy–Buckingham and the continuity equation.

�q =−K(θ)�∇Φ and
∂θ
∂ t

=−�∇�q (20.1)

Here �q in (m/s) is the specific flow, K(θ) in (m/s) is the hydraulic conductivity
depending on soil moisture θ , andΦ signifies the hydraulic potential in units of (m).
Equation (20.1) has a considerable mathematical complexity due to the nonlinearity
present in the hydraulic conductivity. Moreover, this equation is established for
steady state condition or dynamical equilibrium. Though, most situations in nature
are transients, and to describe such scenarios time dependence is introduced by the
continuity equation.

For convenience one may split Φ = ψ+ z into the matrix potential that contains
the essential effects attributed to porosity, and the gravitational potential represented
by the soil depth. Nevertheless equation system (20.1) needs an additional relation
so that the system can be solved with one unique solution forΨ . To this end, one
may use the model of Van Genuchten [Ge80], which is capable of characterizing
the zone of capillary rise and is applicable from zero to saturation condition. The
relationship between volumetric water content (θ ) and the matrix potential (ψ) is

parametrized as ψ = α−1
(
S(θ)−1/m−1

)1/q
, where m = 1− 1/q is related to the

effective saturation, α,q are parameters dependent on soil properties and S(θ) =
(θ −θr)/(θs−θr), with θs and θr the saturated and residual soil water content. The
relationship between K and θ is given by

K(θ) = KsS(θ)1/2
(

1−
(

1−S(θ)1/m
)m)2

,

where Ks is the saturated hydraulic conductivity. Thus, one may write K as a direct
function of ψ

K(ψ) = Ks ((αψ)q +1)−m/2
(

1−
(

1− ((αψ)q +1)−1
)m)2

.
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Combining the Darcy–Buckingham and continuity equation together with the van
Genuchten relation allows to cast the problem in the form

C(ψ)
∂ψ
∂ t

= �∇[K(ψ)∇ψ]+
dK(ψ)

dψ
�∇ψ , (20.2)

where C(ψ) = dθ
dψ is called hydraulic capacity. Equation (20.2) is known as the

Richards equation. This equation governs the movement of water in unsaturated soil
and can be applied in the whole domain even for distinct saturated and unsaturated
areas [WePi10]. The specific water capacity of the soil is explicitly given by

C(ψ) =
mqαq(θr−θs)ψq−1

(1+(αψ)q)m+1 .

For all numerical calculations that follow we use the parameter of [CeBoZa90], α =
3.35m−1, q = 2, Ks = 9.92× 10−5ms−1,θs = 0.368m3m−3 and θr = 0.102m3m−3.
The considered depth range in soil is [0,L = 1m] and initial and boundary conditions
areψ(z,0) =−10m,−L≤ z≤ 0; ψ(0, t) =−0.75m and ψ(−L, t) =−10m for t > 0.

Note that the model of Van Genuchten is widely used in numerical simulations,
but due to its complexity in functional form algebraic manipulations are rather
complicated that seem to make analytic solutions unattractive. To circumvent some
of these difficulties, functional Padé approximants were used to substitute the
expressions for C and K. Note that these parameters are phenomenological relations,
so that the representation by approximants can be used without loss of generality.
The simplest Padé representation for K and C in the region of interest is [1/3] with
expansion point ψ = −0.2 for C and ψ = −0.1 for K, respectively. A comparison
of the original expressions and the Padé approximations for K and C are shown in
figure 20.1.

20.3 Construction of a Parametrized Solution

In the sequel, we consider the 1⊕1 dimensional space-time version of the Richards
equation with the aforementioned initial and boundary conditions. The initial idea
to employ the Adomian decomposition method [Ad94] was abandoned after several
attempts to implement the method even in different ways, because the latter did not
attain convergent results. In order to recover at least a part of the procedure that
that was proven to be useful in other applications, we first construct a solution that
shall be a reasonable initial solution for the recursive scheme so that all remaining
corrections are sufficiently small and the scheme converges. The equation to be
solved for the matrix potential is the Richards equation.

C(ψ)
∂ψ
∂ t

=
∂
∂ z

[

K(ψ)
(
∂ψ
∂ z

+1

)]
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Fig. 20.1 Comparison of [1/3] Padé approximants for K(ψ) and C(ψ) with the original
expressions.
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20.3.1 Transient and Steady State Regimes

From comparison to experimental findings, one expects the matrix potential to
assume negative values in the range of [−10,0]. From inspection one observes that
for a restriction of ψ ∈ [−10,−2] the hydraulic conductivity may be approximated
by a constant K(ψ) ≈ K and the hydraulic capacity may be approximated by a
polynomial C(ψ) ≈ a(ψ + 10)6. For convenience we introduce the substitution
ψ+10→ φ and solve the resulting equation

aφ 6 ∂φ
∂ t

= K
∂ 2φ
∂ z2 .

This equation has an implicit travelling wave solution as shown in [PoZa03],

λ 2
∫

dφ
F(φ)+C1

= t+λ z+C2 , F(φ) =
∫

aφ 2

K
dφ ,

where λ ,C1 and C2 are constants which are determined from the initial and
boundary conditions of the problem.

The found solution already allows us to analyze some properties of the dynamics
of the system, namely the transient and stationary regime of the matrix potential.
Figure 20.2 shows the plot of contours with constant matrix potential φ as a function
of time and depth. One nicely observes that contours with φ ≥ 3 (ore equivalently
ψ ≥ −7) effectively reduce the dimension of the problem by one so that either
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Fig. 20.2 Transient to steady state evolution of constant matrix potential contours φ .
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the time or the space variable may be substituted in the problem and hence can be
attributed to stationarity.

20.3.2 The Stationary Solution

From the finding that a stationary regime exists for the expected values of ψ and
thus φ , we solve the time independent problem but this time using a polynomial
expression for the logarithmic hydraulic conductivity lnK(ψ) = a(ψ−b)2− c.

0 =
∂K(ψ)
∂ z

[
∂ψ
∂ z

+1

]

+K(ψ)
∂ 2ψ
∂ z2

0 =
∂ lnK(ψ)

∂ z

[
∂ψ
∂ z

+1

]

+
∂ 2ψ
∂ z2

0 = a
∂
∂ z

(ψ−b)2
(
∂ψ
∂ z

+1

)

+
∂ 2ψ
∂ z2

Here, a, b, and c are parameters determined such as to minimize the difference
between the polynomial function to the original expression. Upon substitution
of ψ → φ = ψ − b we solve the resulting ordinary differential equation using a
decomposition method, where φ = ∑∞i=0 φi.

0 =
∂ 2φ
∂ z2 +a

∂φ 2

∂ z
︸ ︷︷ ︸
A (Initialisation)

+ a
∂φ 2

∂ z
∂φ
∂ z

︸ ︷︷ ︸
B (Correction)

(20.3)

Equation (20.3) can be solved using a recursive method, where the terms A are used
to determine the initialization and terms of B are considered as a correction for
the subsequent recursions. Therefore, if we assume that φ0 is the first term of the
recursion, then φ0 is solution of the following equation

∂ 2φ0

∂ z2 +a
∂φ 2

0

∂ z
= 0

with known solution

φ0(z, t) =−
√

c1

a
tanh(

√
ac1(−z+ c2))

To determine φ1 in the second recursion step, the term B is now considered as a
source using the previously determined solution φ0.
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∂ 2φ1

∂ z2 +a
∂φ 2

1

∂ z
=−a

∂φ 2
0

∂ z
∂φ0

∂ z
(20.4)

Since φ0 is the homogeneous solution of eq. (20.4) the method of variation of
parameters [ON11] leads to the particular solution. Thus, the particular solution
φp = v(z)φ0 with v(z) is determined from

v′(z)φ0(z) =−a
∂φ 2

0

∂ z
∂φ0

∂ z

and

φ1(z) = φ0 c3︸︷︷︸
=0

+φ0(z)
∫ z

0

1
φ0(z′)

(

−a
∂φ 2

0

∂ z′
∂φ0

∂ z′

)

dz′ ,

in this case c3 = 0 because of the zero boundary conditions. Note that the boundary
conditions of the problem were already absorbed in the determination of the solution
φ0 so that all remaining extra boundary conditions are zero, which is a peculiarity of
the decomposition method. For all the terms φi (i > 1) the procedure is repeated in
an analogue fashion. By inspection one finds that the first term of the formψ0(z, t) =
a1 tanh(a3z+a4)+a2 is the dominant one and the result of the first recursion only a
correction. The constants may be found using the Richards equation and minimizing
the error.

20.3.3 The Time-Dependent Solution

Phenomenological arguments allow now to extend the stationary solution including
a time dependence as follows. With increasing infiltration the surface region
approaches local saturation so that the scenario characterized by the initial condition
is shifted towards increasing depth. Saturation is already present in the asymptotic
behavior of the hyperbolic tangent function and because of the initial condition
(ψ(z,0) = −10,−L ≤ z < 0) the argument of tanh shall be singular. The simplest
way to introduce a shift is adding a term a4/t to z in the argument of the hyperbolic
tangent function. Last, we apply some “cosmetics” to our solution by observing that
there exists an asymmetry between the convex and concave parts of the profile,
i.e. the edge towards the saturated region is sharper than the one at the edge
where the matrix potential assumes a numerical value of approximately −10 m.
This may be achieved by multiplying the hyperbolic tangent’s argument by a factor
1+ exp

(
a3z+a4 +

a5
t

)
. Thus we arrive at a solution in parametrized form, that we

evaluate using the original Richards equation.

ψ(z, t) =−a1 tanh
((

1+ ea3z+a4+
a5
t

)(
a3z+a4 +

a5

t

))
+a2 (20.5)
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Now, the matrix potential ψ is given as a parametrized function ψ = ψ(z, t;{ai})
with parameter ai (i = 1,2,3,4,5), where the unknown parameter has to be
determined.

20.3.4 Optimization

To adjust the parameter set, we insert the parametrized solution (ψP) given in
equation (20.5) into the governing equation, which for convenience we write in a
form where all terms are on the left-hand side and consequently the right-hand side
is zero. LetΩR be the differential operator that represents the Richards equation with
all terms to the left, then for the true solution ΩR[ψT ] = 0 holds. Since our solution
is an approximate solution the right hand side differs from zero by a residual term
ΩR[ψP] = R(z, t). Thus, the solution presented in eq. (20.5) is optimized minimizing
R(z, t) using the method of nonlinear least squares optimization and refined by
Newton’s method, so that this procedure constitutes a self-consistency test.

Some constants can be determined a priori the optimization. We can fix the
constants a1 and a2 directly using the boundary conditions where a1 = (ψ(0, t)−
ψ(L, t))/2 and a2 =ψ(0, t)−a1. The remaining parameter are determined using the
afore mentioned minimization of R. The objective function that is to be minimized is

M

∑
i=0

N

∑
j=0

[

C(ψ)
∂ψ
∂ t
−
(
∂
∂ z

[K(ψ)
∂
∂ z
ψ]+

∂K(ψ)
∂ψ

∂ψ
∂ z

)]2
∣
∣
∣
∣
∣
(zi,tj)

→min .

Since the asymptotics of the solution was fixed using the boundary conditions we
use a discrete set of points in the range that contains maximum curvature and the
inflection point to optimize {a3, . . . ,a5}. The optimization may then be simplified
using an expansion of the hyperbolic tangent function around the inflection point
(at z0), i.e. where the argument of the function is zero a3z0 +a4 +

a4
t = 0 allows to

solve the minimization problem in a straightforward fashion.

20.4 Results

The parameter set [CeBoZa90] that was used for an application refers to a situation
that considers the infiltration of water in a column of initially dry homogeneous soil.
Figure 20.3 shows the computed matrix potential for a sequence of times and again
one observes the already analyzed transition from the transient to the steady state
regime. We further show in figure 20.4 the self-consistency test along the vertical
coordinate and present some numerical values in table 20.1 for the largest deviations
from the parametrized to the true solution.
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Fig. 20.4 Self-consistency test profile with depth for a selection of times.

We further compare the parametrized solution to the calculated matrix potential
profile from a numerical approach [WePi10], shown in figure 20.5. It is noteworthy
that the difference between the two solutions is in a range where the error of the
parametrized solution is negligible. From table 20.1 one may conclude that the
bumps in the curves that appear in figure 20.4 are small indeed and so is the error
of the solution, so that one can say that the parametrized solution is close to the true
solution.
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Table 20.1 Self-consistency
test along the vertical
coordinate.

Largest deviation R[ψ]/ψ
t = 10−1 t = 5 t = 9

0.00025 0.005 0.0045
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Fig. 20.5 Parametrized solution compared to a result from a numerical approach [WePi10].

20.5 Conclusions

In the present work we discussed a methodology to construct a parametrized
solution for the Richards equation. It is remarkable that already the initial solution
for a recursive scheme given in a relatively compact formula is close to the true
solution, so that one may efficiently simulate one dimensional flow of water in
unsaturated and saturated porous media. The main difficulties of the problem were
the non-linearity and the initial condition. Although Adomian’s decomposition
method has been used successfully in a variety of applications, in the present case,
this scheme strongly diverges and does not solve the nonlinear Richards equation.
Moreover, one could argue that using Padé approximations should simplify the
decomposition, in an analytical sense, however the numerically increasing source
term with increasing recursion depth clearly turns this procedure a divergent
sequence. In this sense the Richards equation is a counterexample to the statement,
that Adomians prescription should in principle work for any nonlinearity and lead
to a convergent recursion procedure. Various implementations of Adomian’s idea
suffered from the same problem, the increasing source term contributions to the
corrections of the solution per recursion step.

The parametrized solution, which was presented in eq. 20.5, when optimized
by the method of least squares and nonlinear Newton’s method, gave fairly good
results for the matrix potential profile. A self-consistency test accused only small
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differences between the true and the parametrized solution. A similar conclusion
may be drawn from the comparison to a numerical solution from the literature
[WePi10]. For the soil specification used to perform the numerical calculations we
found that no further recursion was of need, however, for other soil compositions
and their associated parameter sets one cannot expect that the hyperbolic function
formula is as good an approximation as for the case discussed in this contribution.
Nevertheless, it is quite plausible that using the hyperbolic tangent expression as
recursion initialization will necessitate only a few recursion steps to obtain an
acceptable solution within a predefined accuracy.
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Chapter 21
A Soft-Sensor Approach to Probability Density
Function Estimation

M. Ghaniee Zarch, Y. Alipouri, and J. Poshtan

21.1 Introduction

In probability and statistics, density estimation is the construction of an estimate,
based on observed data, of an unobservable underlying Probability Density Function
(PDL8). There are two main approaches to estimate the PDF. In the first approach, a
special sensor is designed to measure the PDF of a signal. In recent years, such
sensors are becoming available. For example, one can now use optical sensors
and digital cameras to pick profile images and then transfer these imagines into
a mathematical representation such as probability density functions. In the second
approach, a mathematical tool is utilized to approximate the PDF. Generally, since
a PDF is a nonlinear and positive function with an integral constraint, determining
the output PDF requires some complicated mathematical techniques such as partial
differential equations. Both introduced approaches to estimate the PDF have some
drawbacks. The first approach needs physical equipment that may be expensive, and
a special sensor must be designed for each specific application. The second approach
is usually time-consuming and not well developed.

One approach to fill this gap is using soft-sensor methods. Soft-sensor methods
are mixture of both approaches which have advantages of both, without need to
design any physical equipment.

One approach to density estimation is non-parametric. A variety of approaches
to non-parametric density estimation have been proposed, such as Histograms
[Or13], Naive estimator [We72], Kernel estimator [MaSc14], Nearest neighbor
method [WeTiWa14], Orthogonal series estimators [Sc67], Maximum penalized
likelihood estimators [TaGoRe14], General weight function estimators [Si86],
Parzen estimators [WaJo95, ScSz01, ZhKw06], Expectation maximization (EM)
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algorithm [McKr97, FiJa02, ZiVa04], Variational estimation [CoBi01, McTi07]. The
most basic form of density estimation is a rescaled histogram. It is the oldest and
most widely used density estimator, however the discontinuity of histograms causes
extreme difficulty if derivatives of the estimates are required [Si86].

In statistics, kernel density estimation (KDE) is a non-parametric way to estimate
the probability density function of a random variable. Kernel density estimation is
a fundamental data smoothing problem where inferences about the population are
made, based on a finite data sample.

A range of kernel functions are commonly used: uniform, triangular, biweight,
triweight, Epanechnikov, normal, and others. The Epanechnikov kernel is optimal
in a minimum variance sense [Ep69], though the loss of efficiency is small for
the kernels listed previously [WaJo95], and due to its convenient mathematical
properties, the normal kernel is often used.

In particular, we focus on Gaussian Mixture Models (GMM), which are known
to be a powerful tool in approximating distributions even when their form is far
from Gaussian [WaJo95]. A GMM is a probability density function represented as
a weighted sum of Gaussian component densities [PrSa14].

There are several techniques available for estimating the parameters of a GMM
[Mc88]. By far the most popular and well-established methods are Expectation-
Maximization (EM) algorithm or Maximum A Posteriori (MAP) estimation. How-
ever, their extension to online estimation of mixture models is nontrivial, since they
assume all the data is available in advance (batch learning) [KrSkLe10].

The process of online learning should create, update, and modify models of
the perceived data in a continuous manner, while still keeping the representations
compact and efficient. Various models and methods for their extraction have been
proposed in different contexts and tasks [ArEtAl92, Ar04, KiWeKo05, SoWa05,
ArCi05]. To deep review on online methods to estimate GMM refer to [KrSkLe10].
Based on authors’ knowledge, there is not any method which is used fuzzy tools
to online estimation of kernel density function. Most of the proposed methods
have conflict with requirement for online applications and their complexity increase
with time. We propose a method using fuzzy approach to fulfill these requirements
without losing accuracy.

The remainder of the chapter is outlined as follows: In Section 21.2, the method
of online kernel density estimation is proposed. Section 21.3 presents simulation
study to clarify the effectiveness of the proposed method. Conclusions are drawn in
Section 21.4.

21.2 Online Kernel Density Estimation

Throughout this chapter, we will refer to a class of kernel density estimates based
on Gaussian kernels, which are commonly known as the Gaussian mixture models.
A one-dimensional M-component Gaussian mixture model is a weighted sum of M
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component Gaussian densities as given by Equation 21.1

ˆfσ (x) =
M

∑
j=1

wjg
(
x|μj,σ2

j

)
(21.1)

where wj is the weight of the jth component and g
(

x|μj,σ2
j

)
is a Gaussian-kernel

g
(
x|μj,σ2

j

)
=
(
2πσ2

j

) 1
2 exp

(

− (x−μj)
2

2σ2
j

)

centered at mean μj with standard deviation σ2
j ; note that σ2

j is also known as the
bandwidth of the Gaussian-kernel. The mixture weights satisfy the constraint that

M

∑
j=1

wj = 1

Suppose that we have observed a set of nt samples {xi}i=1:nt up to some time-
step t. The problem of modeling samples by a probability density function can be
posed as a problem of kernel density estimation [WaJo95]. Here, a fuzzy approach is
proposed for estimating the mixture weights. The fuzzy logic model is empirically
based, relying on an operator’s experience rather than their technical understanding
of the system. It consists of three main operators: fuzzifier, rule inference, and
defuzzifier. From input output point of view, the constructed fuzzy model can be
written as

f (x) =

M

∑
l=1
αlwlȳl

M

∑
l=1
αlwl

(21.2)

where M denotes the number of rules and is fixed, αl denote rules weights, ȳl is
center of output memberships, and wl are defined as:

wl =
n

∏
i=1
μAl

i
(x)

where μAl
i

are memberships values. The common defuzzifier method is centroid. In
centroid defuzzifier method yl is the center of the activated output membership. In
this study, the goal is estimating a Gaussian mixture model. Hence, considering
Eq. 21.1, yl must be a Gaussian function. Therefore, we change the defuzzifier
method such that yl is the activated output membership function (not its centroid
value). In the proposed structure, in each step, just one of the output membership
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functions which has higher membership value is activated. Therefore, Eq. 21.2 can
be rewritten as

f̂σ (x) =

M

∑
j=1

wj (x)×αj×gj
(
x|μj,σ2

j

)

M

∑
j=1

wj (x)×αj

(21.3)

Notice that all membership functions are selected Gaussian.

21.2.1 Tuning the Model Parameters

Parameters of model (21.3) which must be adapted are
{
αj,μj,σ2

j

}
. To implement

this, the adaptation process is performed in two stages. In first stage, one of the
output membership parameters

(
μj,σ2

j

)
is updated using observed data at each new

samples, then the rules weights are adapted by minimizing the mean square error
cost function.

Stage 1: As stated above, just one of the output membership functions is activated
for each new sample. The parameters of the activated output membership function
is updated by the new sample data xt as follows.

μt+1 = μt +
1

t+1
(xt−μt) (21.4)

σ2
t+1 =

t
t+1

σ2
t +

t

(t+1)2 (xt−μt)
2 (21.5)

Above equations are intuitively derived from

μT =
1
T

T−1

∑
t=1

xt

μT+1 =
1

T +1

T

∑
t=1

xt =
1

T +1
(TμT + xT) = μT +

1
T +1

(xT −μT)

and similarly,

σ2
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1
T +1

(
T
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t

)

−μ2
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(
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))−μ2
T

=
T

T +1
σ2

T +
T

(T +1)2 (xT −μT)
2
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Stage 2: The value of the rules weights are updated by minimizing expected L2

risk function, also termed the mean integrated squared error

MISE (h) = E
∫ (

f̂h (x)− f (x)
)2

dx

The above criteria cannot be calculated by the data as the true value f (x) is not
previously known. Suppose X is a random variable and that all of the moments
exist. Further, suppose the probability distribution of X is completely determined by
its moments, i.e., there is no other probability distribution with the same sequence
of moments. If

lim
N→∞

E
(
xk

N

)
= E
(
xk)

for all values of k, then the sequence {Xn} converges to X in distribution. In other
words, if two distributions have the same moments (i.e., same moment-generating
function), then they are identical at all points [GrSn97]. Therefore, we redefine the
cost function as

MSE =
p

∑
h=1

ch

(
1

N1

N1

∑
t=1

x̂h
t −

1
N2

N2

∑
t=1

xh
t

)2

(21.6)

where ch is weighting coefficient which is intuitively we select ch−1 > ch . xt : t =
1, . . . ,N2 are last observed data, N2 is the window width, and x̂t are data produced
by the estimated kernel density function f̂ (x). From practical point of view, we can
suppose N1� N2.

To minimize cost function (21.6), the gradient descent method has been utilized.
The rule weights are updating as

α t+1
j = α t

j −2η

[
p

∑
h=1

ch

(
1

N1

N1

∑
t=1

x̂h
t −

1
N2

N2

∑
t=1

xh
t

)]
∂ f̂h (x)
∂α t

j
(21.7)

where η is the step length.

∂ f̂h (x)
∂αi

=

M

∑
j=1

wj (x)×wi (x)×αj×
(
g
(
x|μi,σ2

i

)−g
(
x|μj,σ2

j

))

(
M

∑
j=1

wj (x)×αj

)2

Considering above explanations, the algorithm is summarized in following steps:

1. Initialize the membership functions, rules and the rules weights.
2. Calculate the membership value for the new input sample.
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3. Decide the rule with maximum inference operator
4. Determine the activated output membership function
5. Tune the activated output membership function by Eqs. 21.4 and 21.5.
6. Tune the rules weights by Eq. 21.7.
7. Calculate the cost function (21.6).
8. If the stop criteria is not met, back to step 2.

21.3 Simulation

In this section, the capability of the proposed method in online estimation of kernel
density function is tested on Gaussian probability density function. In this part, we
assume that input variable xt for PDF belongs to [0,1]. In Step 1, we define three
input fuzzy sets in [0,1], and three output fuzzy sets initialized in [0,1], where the
input and output membership functions are shown in Figure 21.1. Then, the output
function (estimated kernel density function) is

f̂ (x) =
{

w1 (x) max
i=1,2,3

(αi)g1
(
x|μi,σ2

i

)

+w2 (x) max
i=4,5,6

(αi)g2
(
x|μi,σ2

i

)
+w3 (x) max

i=7,8,9
(αi)g3

(
x|μi,σ2

i

)}

/{
w1 (x) max

i=1,2,3
(αi)+w2 (x) max

i=4,5,6
(αi)+w3 (x) max

i=7,8,9
(αi)
}

Parameters of the cost function defined in 21.6 are:

p = 4, c1 = 7, c2 = 5, c3 = 3, c1 = 1, N1 = 2000, N2 = 500

Fig. 21.1 Membership
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Fig. 21.2 Estimated KDF at iterations 1, 100, 1000 and 10,000.
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Fig. 21.3 Value of the cost in each sample.

The step length is 0.01. The singleton fuzzifier block has been selected. The rule
weights are initialized randomly. After initialization steps, as introduced above, the
proposed method is tested on estimating Gaussian density function with mean 0.4
and variance 0.1. Figure 21.2 shows the estimated KDF. It can be seen that the
algorithm significantly estimates the true KDF. Figure 21.3 shows the cost function
(MSE of estimated and true KDF, see Eq. 21.6). It can be seen that the algorithm can
find the true model by sample 5000. The results show that the algorithm is successful
in estimating the KDF. Note that just three membership functions are used for
input and output of fuzzy logic. By increasing the number of membership functions
the accuracy will be increased. Besides, the estimation is performing recursively
by collecting just 500 last sampled data (not batch learning). By increasing the
window of sampled data the accuracy maybe increased. The algorithm in this study
is simulated in MATLAB R2009b environment with CPU 2.2 GHz Intel 2 core
Duo processor T6600. In this environment, an iteration of running the proposed
algorithm requires 0.005 sec. It is suitable for most online real-world applications.
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21.4 Conclusions

In this study, a fuzzy method has been proposed to estimate kernel density function
online. To achieve this goal, Gaussian mixture model has been generated by the
fuzzy algorithm. Defuzzifier operator has been modified to make it suitable for this
application. Means and variances of the model have been adapted using observed
data in each new sample. Then, rules weights have been tuned by minimizing the
expected L2 risk function of estimated and true PDFs. In contrast to the existing
approaches, our approach does not require fine-tuning parameters for a specific
application, we do not assume specific forms of the target distributions and temporal
constraints are not assumed on the observed data. The algorithm is simple and easy
to use. Simulation results show capability of the proposed algorithm in online and
accurate estimation of kernel density function.
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Chapter 22
Two Reasons Why Pollution Dispersion
Modeling Needs Sesquilinear Forms

D.L. Gisch, B.E.J. Bodmann, and M.T.B. Vilhena

22.1 Introduction

Atmospheric dispersion modeling is nowadays a valuable tool that permits to
simulate how air pollutants affect the ambient atmosphere. Models are not only
used to estimate the downwind concentration of pollutant substances but also allow
to reproduce the full three-dimensional pollutant distributions over time, while
measurements are typically acquired by a small set of detection locations, only
[PeEtAl13, BuEtAl12b, TiEtAl11]. Nowadays, governmental agencies for ambient
air quality protection and management employ such models in order to determine
whether existing or planned emission sources are in compliance with ambient air
quality standards.

The atmospheric boundary layer that extends from the earth’s surface to a few
kilometers in height is where predominantly emission, transport and dispersion of
airborne pollutants take place [PeBoVi11]. The phenomena that characterize the
boundary layer dictate the physical content of a model that shall either be incorpo-
rated in form of physical laws or if complexity cannot be disentangled into simpler
components, parametrizations hide the unknown reality [PuEtAl13, CoAcDe11].
Meteorological conditions such as the wind field and the vertical thermodynamics
profile on one side and atmospheric turbulence in diverse stability regimes on the
other side [GoEtAl10]. The emission source(s) and locations which may be of point,
line, surface or volume type with their characteristic time signatures of discharge
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rates, such as instantaneous or steady state releases among many others. Last not
least the natural or urban topography shall enter the model so that simulations with
a reasonable precision may be performed.

In the sequel, we focus only on one aspect of the rather complex dispersion
phenomenon, namely the transport and mixing by the phenomenon of turbulence
[PeEtAl13, BuEtAl12b, TiEtAl11]. It is noteworthy that pollutant dispersion for
instance smoke from a chimney is being observed along centuries, however insight
in what gives life to those filigrane patterns is still some way ahead. The discussion
that follows addresses the question as to what is the most efficient way to model the
aforementioned patterns without extending the parameter space of the model to an
exorbitant dimension.

22.2 Modeling

In the literature, one finds two classes of models used to simulate pollutant
dispersion in the planetary boundary layer, either deterministic models [PeEtAl13,
BuEtAl12b, TiEtAl11] or stochastic models [BoMeVi13, BoViMe10]. While the
phenomenon is manifest stochastic, deterministic models provide a solution which
describes average pollutant concentrations, so that for each statistical moment, such
as variance skewness and bias among others an additional model equation is of
need. Only rare cases where the distribution is sufficiently narrow are characterized
by the mean values only. In stochastic approaches the pollutant distribution is
obtained from a number of realizations that follow a probability density function.
These probability density functions are unknown and can only be determined by
a validation procedure, after the solution has been determined. In practice this
means, that one selects the ‘best’ solution among the trials that were conducted.
In the further we present a novel approach that shall maintain the simplicity of the
deterministic models but present some realistic features concerning the stochastic
character of the dispersion phenomenon. To this end, we first analyze the traditional
way to derive a deterministic model and indicate the minimal modifications that can
be introduced that turn the model a stochastic one.

22.2.1 A Traditional Deterministic Model

A convenient starting point is the continuity equation with the time derivative of
the concentration, or pollutant density and a current density, i.e. the pollutant flux.
The variables are then decomposed into mean values and fluctuation quantities
which are eliminated upon applying the Fickian closure. This procedure reduces
the originally stochastic model into a deterministic one known as the advection–
diffusion equation. Since it is the closure that eliminates the stochastic character, a
modification of the closure seems the adequate way to recover at least partially the
stochastic nature of the phenomenon. The traditional model is
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∂C
∂ t

+u∇C = ∇†K∇C+S .

Here, C is the mean pollutant concentration, u represents the wind velocity field,
K = diag(Kx,Ky,Kz) is the turbulent diffusion coefficient matrix, and S a source
term. The domain considered is bounded in the crosswind and vertical direction
and semi-open in the wind velocity direction. At the boundary of the domain
y ∈ [−Ly,Ly]∪ z ∈ [0,zBL]} with zBL the boundary layer height, the pollutant flux
vanishes and as initial condition we assume zero pollutant concentration, except for
the point source location.

D= {x = (x,y,z) | x ∈ [0,∞), y ∈ [−Ly,Ly], z ∈ [0,zBL]}
∇C = 0 ∀ x ∈ δD

C(x,y,z,0) = 0 for t = 0 and x ∈ D\(0,0,Hs)

In this discussion, we consider a continuous source with constant emission rate
located at the coordinates x = (0,0,Hs)

uC(0,y,z, t) = Q̇δ (y)δ (z−Hs) .

Due to the choice of the domain, we make use of spectral theory in D\{x | x ∈
[0,∞)} [BoEtAl12a] together with Laplace transform in {x | x ∈ [0,∞)}∪ {t | t ∈
[0,∞)} to obtain a solution in analytical form. Furthermore, instead of solving the
problem for the continuous source, we superimpose solutions from the problem
without source term for initial conditions by shifting the initial time to larger values.
One could interpret such a procedure as continuous initial condition.

C(x,y,z, t) = ∑∞n=1∑
∞
l=1 Anl c(x, t) cos

(
nπ
Ly

y
)

cos
(

lπ
Lz

z
)

c(x, t) =
∫ t

0
1
2 e

u
2Kx

x e

(
α− u2

4Kx

)
τ

e
−
(

x2
4Kxτ

) (
x√
πKxτ3

− 5
√

Kxu√
πτ

)

dτ

α =−
((

Kz sin
(

zπ
Lz

))(
lπ
Lz

)2
+Ky

(
nπ
Ly

)2
)

The expansion coefficients are determined by

(AnlAn′l′) =
Q̇
u
φnln′l′(y0,Hs)

(∫ Lz

0

∫ Ly

−Ly

φ 2
nln′l′(y,z) dydz

)−1

=
4Q̇φnln′l′(y0,Hs)

u(LyLz)2

φnln′l′(y,z) = cos

(
nπ
Ly

y

)

cos

(
lπ
Lz

z

)

cos

(
n′π
Ly

y

)

cos

(
l′π
Lz

z

)

.

Although we will change the closure, this solution will still be useful even for our
stochastic approach.
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22.2.2 A New Concept

As the following discussion will show using some axiomatic arguments and
reinterpreting the solution will lead us a pollutant density from a deterministic-
stochastic approach. Stochastic evolution with turbulent character arises upon
interpreting the solution in terms of a probability amplitude. In order to render the
concentration compatible with necessary properties for distributions we construct
our solution such that the following properties are true. Due to the fact that the
pollutant density (C) shall be interpreted in terms of probabilities it shall result
‘naturally’ as a mapping from space-time to a semi-positive definite space R

3⊕1→
R
+. The distribution shall be independent on any specific choice of reference

frame, i.e. under coordinate transformation the quantity shall have the property of
a scalar density CA(xA, tA) = J CB(xB, tB). One possibility that complies with the
aforementioned properties is representing the concentration by a Hermitian form
associated quadratic form C×C→ R

+, where semi-positiveness is guaranteed for
the Euclidean case [La05, MiHu73, GrWe77].

From the physical point of view, we consider turbulent evolution following the
idea of Kolmogorov’s eddy spectrum [Su32, Mo83]. Eddies are coherent structures
[BoEtAl13] that at least show partially constant space-time correlations and may be
implemented by the presence of a phase. The fact that complex functions naturally
embody a phase indicates them as a convenient descriptor. Since sesquilinear forms
[La05, MiHu73, GrWe77] unite density and evolution aspects they seem an adequate
way to describe distributions with structure, where structure means a filigrane
appearance as, for instance, the patterns that appear with smoke.

One of the fundamental differences to the traditional model, that maps space-time
to a concentration function C : R3⊕1 → R using a real diffusion coefficient matrix
K ∈ M(3,R), is that the quantity that is determined by the complex advection-
diffusion equation is not the observable, i.e. the pollutant concentration. The
solution of the equation is a complex probability amplitude C : R3⊕1→C that upon
taking the Hermitian form associated quadratic form results in the concentration
C = C †C which is naturally semi-positive. The complex solution is obtained from
the modified Fickian closure, that makes use of a complex diffusion coefficient
matrix K∈M(3,C). For simplicity and to show the effect of a complex contribution,
we maintain the coefficients for the wind and cross wind direction real Kx,Ky ∈ R

and add only to the vertical component an imaginary part Kz(z) = KzR sin
(

zπ
Lz

)
+

ıKzI . Note that the turbulent character is strongest in the vertical direction due to
predominantly vertical heat-flux. The model inherent appearance of structure may
be understood from the sesquilinearity conditions, that because of the presence of a
phase together with the crossed terms generate structure.
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C(x,y,z, t) =

(

∑
i

C †
i

) (

∑
j

Cj

)

=∑
i

C †
i Ci

︸ ︷︷ ︸
traditional

+∑
i
∑

j

(1−δij)C
†
i Cj

︸ ︷︷ ︸
structure

Here δij is the Kronecker delta.

22.3 Results

For a purely real eddy diffusion coefficient, one obtains a Gaussian solution with
its maximum at the center position (y = 0), where the source is located. Upon
extending the model with a complex valued eddy diffusion coefficient one obtains
an intuitively unexpected result, a distribution with two global maxima to the left
and right of the center position (see figure 22.1). Due to the probabilistic nature
of the obtained distributions this property is a first hint to understand meandering
in terms of a deterministic-stochastic model. The reported effect increases with
increasing values for the imaginary part of the eddy diffusion coefficient as shown
in figures 22.2 and 22.3. Moreover, the larger the imaginary part the more apparent
is the wavy character of the distribution. While in figure 22.1 there are no local
maxima next the center, the latter exist for KzI = 0.5 and KzI = 0.8 (shown in
figures 22.2 and 22.3), respectively. In order to analyze the spatial distribution of the
concentration, i.e. the spatial structure, we compare the concentration depending on
the wind direction x and the height z for two cases of wind speeds. Figure 22.4
shows a structure that emerges for low wind speeds ∼ 1 m

s , where along 102m
of length there are several local maxima of crest like structures, that show a
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Fig. 22.1 Concentration evolution in cross wind direction for KzI = 0.2.
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Fig. 22.2 Concentration evolution in cross wind direction for KzI = 0.5.

-20 -15 -10 -5  0  5  10  15  20
 0

 20
 40

 60
 80

 100

 0

 2e-05

 4e-05

 6e-05

 8e-05

 0.0001

 0.00012

 0.00014

 0.00016

C
 (

g/
m

3 )

Kz = Kza + i 0.8

 y (m)

t (s)

Fig. 22.3 Concentration evolution in cross wind direction for KzI = 0.8.
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divergence with increasing distance from the source. In the case for a wind speed
of 10 m

s the plume is stretched with little divergence as the distance to the source
increases (see figure 22.5). Furthermore, the already commented meandering related
characteristics of the distribution is less pronounced for the large wind speed,
an effect also confirmed by observation, i.e. meandering only occurs significantly
for low wind speeds. Projections in the vertical direction for horizontal distances
x = 10m, 50m and 100m are shown for low and high wind speed in figures 22.6
and 22.7, respectively. For shorter distances the pronounced maxima are visible,
whereas for larger distances, dissipative effects leave a remaining weakly wavy
distribution. This at least qualitatively corroborates with observation, where turbu-
lence decays and increasingly larger wavelength contributions prevail, an effect of
combined dispersion with dissipation.
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22.4 Conclusion

In this chapter, we presented a novel approach to simulating transport and dispersion
of pollutant by the presence of turbulence. In contrast to the traditional approaches
either by deterministic or stochastic models, the present model contains a phase
responsible for structure patterns in the concentration distribution. Similar patterns
may be observed in scenarios where smoke is released or more generally where the
pollutant accompanies the wind field with its velocity distribution.

Both methods traditionally used in pollutant dispersion modeling either of
deterministic or stochastic character have their shortcomings. In the derivation of
deterministic models the closure that should characterize the turbulent character
is of deterministic origin. Consequently, essential properties due to turbulence are
lost and the dynamics is reduced to an advection-diffusion process. Stochastic
dispersion models such as the Langevin equation maintain stochastic character by
a probability-driven source term. However, the probability density functions that
simulate the turbulent character are not known a priori and thus are in general
imposed ad hoc. One of the consequences is that if the complex structure of the
plume is not put in by hand, no such structure emerges from the model.

This is different in the proposed model, where structure in the space time
dependent concentration field emerges from the presence of a phase in the model.
The phase was included using a complex closure and writing the concentration
C : R3⊕1 → R

+ as a sesquilinear form associated quadratic form C = C †C . It is
noteworthy that the equation for the amplitude is linear, whereas the observable,
i.e. the pollutant concentration is nonlinear, which gives rise to the structure by the
presence of interference terms. The model has some remarkable inherent features.
At low wind speed the maxima in crosswind and vertical direction are not centered at
the line that is oriented along the wind direction and passes through the center of the
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sources. This effect disappears with increasing wind speed. Observation agrees with
that phenomenon, if the distribution is interpreted as a probability density function
then realizations of pollutant flow would either deviate to the left or right and cross
over to the adjacent side in the cross wind as well as the vertical plane. This effect is
known as meander and there is no model known so far that predicts such a behavior
in a model inherent fashion.

Acknowledgements The authors wish to thank CAPES, LGSA, PD-ANEEL, and CPPT for
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Chapter 23
Correcting Terms for Perforated Media by
Thin Tubes with Nonlinear Flux and Large
Adsorption Parameters

D. Gómez, M. Lobo, M.E. Pérez, T.A. Shaposhnikova, and M.N. Zubova

23.1 Introduction and Formulation of the Problem

In this chapter, we obtain correcting terms in homogenization problems for the
Laplace operator arising e.g., in modeling diffusion of substances in perforated
media with large adsorption parameters on the boundary of the perforations (see,
e.g., [Go95, CoDi04], for more specific models). These correctors allow us to
improve the results on weak convergence obtained in [GoLo14], providing bounds
for convergence rates of solutions in H1, for all the possible relations between the
parameters arising in the problem, namely, periodicity ε , diameter of tubes aε and
adsorption parameters β (ε), aε being aε � ε , and ε → 0. At the same time, we
provide proofs for some of the results stated in [GoLo14] for the relations (23.12).
The results in this paper complement and improve [GoLo13b] and [GoLo14]. Here,
for the sake of simplicity in computations, we assume that the cylinders have a
circular transverse section, but we emphasize that the statements of all the theorems
can be formulated (with the suitable modifications) for the more general geometrical
configuration in [GoLo14] involving both isoperimetric cylinders and a certain non-
periodic distribution of the tubes. See also Remark 2 for other extensions of the
results in this paper.

We assume that the medium fills a domain Ωε of R
3 which is obtained by

removing thin cylinders (0, l)×Gε , the thin tubes, of diameter O(aε) from a fixed
domain Ω . These cylinders of length O(1) are periodically placed in volume over
Ω , parallel to the x1-axis; the basis of the cylinders are circles on the plane {x1 = 0}
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which are periodically distributed at a distance O(ε) between them. Here, the
period ε is a small parameter which we shall make to go to zero; the radius of
the circles aε is such that aε � ε . A Dirichlet condition is imposed on ∂Ωε ∩ ∂Ω ,
while a nonlinear flux is imposed on the rest of the boundary, namely, on the
lateral boundary of the thin tubes. This condition involves both a large adsorption
parameter β (ε) and a nonlinear function σ ∈ C1(Ω ×R), σ being monotonic with
respect to the second argument (cf. (23.1) and Remark 1).

An extensive study of these kinds of problems for the case of perforated domains
with perforations which are balls has been considered, e.g., in [Go95] and [ZuSh11].
See also [CoDi04, Ti09] and [CaDo12] for the case where the size of the perforations
is of the same order of magnitude as the period, and [LoPe11] and [GoPe12] for the
case where the perforations are placed along manifolds. Let us mention [ZuSh11,
GoPe12] and [GoLo14] for a large list of references on the subject.

Letω be a bounded domain of R2, in the plane {x1 = 0}, with a smooth boundary
∂ω . We set Ω = (0, l)×ω . Let ε and aε be small parameters, 0 < ε � 1 and 0 <
aε < ε . We set

ω̃ε = {x ∈ ω : ρ(x,∂ω)> 2ε}, Ω̃ε = (0, l)× ω̃ε ,

where ρ denotes the distance to the boundary.
Let Z be the set of vectors j = (0, j2, j3) with integer coordinates. We define

Gε =
⋃

j∈ϒε
(0, l)× (G0

ε + εj) =
⋃

j∈ϒε
(0, l)×Gj

ε ,

where G0
ε = {x̂∈R2

x2x3
, x2

2+x2
3 < a2

ε} andϒε = {j∈Z : (0, l)×Gj
ε
⋂
Ω̃ε �= /0}. Note

that |ϒε | ∼= dε−2, with some d > 0.
We set

Ωε =Ω \Gε , ∂Ωε = Sε
⋃
Γε ,

where Sε =
⋃

j∈ϒε (0, l)×∂Gj
ε =
⋃

j∈ϒε Sj
ε is the lateral area of cylinders, Sj

ε the lateral

area of (0, l)×Gj
ε , Γε = ([0, l]× ∂ω)⋃ω0

ε
⋃
ω l
ε , ω0

ε = ω \Gε , ω l
ε = (∂Ω

⋂{x1 =
l})\Gε (see Figure 23.1 for the geometrical configuration of Ωε ).

Let σ(x,u) be a continuously differentiable function of variables (x,u) ∈Ω ×R

satisfying σ(x,0) = 0 and there exist two constants k1 > 0 and k2 > 0 such that

k1 ≤ ∂σ
∂u

(x,u)≤ k2, ∀x ∈Ω , u ∈ R.

Note that the above conditions imply that

k1|uv| ≤ |σ(x,u)v| ≤ k2|uv| and (σ(x,u)−σ(x,v))(u− v)≥ k1(u− v)2, (23.1)
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Fig. 23.1 The domain Ωε .

for any x ∈Ω and u, v ∈ R.
For f ∈ L2(Ω), we consider the boundary value problem

⎧
⎪⎪⎨

⎪⎪⎩

−Δuε = f in Ωε ,
∂uε
∂ν

+β (ε)σ(x,uε) = 0 for x ∈ Sε ,

uε = 0 on Γε ,

(23.2)

where β (ε) is a certain strictly positive order function and ν denotes the unit
outward normal vector to ∂Ωε on Sε .

The variational formulation of problem (23.2) is: find uε ∈H1(Ωε ,Γε) satisfying

∫

Ωε

∇uε∇ψdx+β (ε)
∫

Sε

σ(x,uε)ψds =
∫

Ωε

fψdx, ∀ψ ∈ H1(Ωε ,Γε). (23.3)

As usual, we denote by H1(Ωε ,Γε) the completion with respect to norm H1(Ω) of
the set of infinitely differentiable function in Ωε vanishing on Γε .

On account of the monotonicity of the function σ(x,u) with respect to u, the
following assertion can be proved (see [GoLo13b] and [GoLo14] for the proof):

Proposition 1. Let ε > 0 and f ∈ L2(Ω). For fixed ε , problem (23.3) has a unique
solution uε ∈ H1(Ωε ,Γε). In addition, for uε the solution of (23.3), there exists ũε
an extension of uε to Ω , ũε ∈ H1

0(Ω) with the following properties

‖ũε‖H1(Ω) ≤ K‖uε‖H1(Ωε ), ‖∇ũε‖L2(Ω) ≤ K‖∇uε‖L2(Ωε ) ,
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and

‖ũε‖2
H1(Ω) +β (ε)‖uε‖2

L2(Sε )
≤ K. (23.4)

In all the estimates above, K > 0 denotes a constant independent of ε .

Thus, from (23.4), we derive that for each sequence ε we can extract a
subsequence (still denoted by ε) such that

ũε ⇀ u in H1
0(Ω)− weak and ũε → u in L2(Ω) as ε → 0, (23.5)

for a certain function u which, once identified, provides the convergence (23.5) for
the whole sequence of ε .

Under the assumption of thin cylinders in the period scale ε (namely, aε � ε),
in [GoLo14], we obtain the different averaged problems for u, and show the
convergence of the solution. As a matter of fact, considering the problem (23.2)
and the nine possibilities for the couple of limits

lim
ε→0

ε2 ln(aε) =−α2 and lim
ε→0

β (ε)aεε−2 = C2, (23.6)

where α2 and C2 can be well-determined positive constants, 0 or ∞, we obtain five
possible different limit behaviors of uε . In order to be self-contained, we gather the
results in the following theorem (cf. [GoLo14] for details):

Theorem 1. Let uε be the solution of (23.3). Then, the limit function u of the
extension of uε , which is defined by (23.5), coincides with

i). u = 0 when β (ε)aεε−2→ ∞ and ε2 ln(aε)→ 0. In addition,

‖ũε‖H1(Ω) ≤ K
(
ε2a−1

ε β (ε)−1 + ε2| ln(ε/2aε)|
)1/4

.

ii). the weak solution of the Dirichlet problem

{−Δu = f in Ω ,

u = 0 on ∂Ω ,
(23.7)

when β (ε)aεε−2→ 0 or ε2 ln(aε)→−∞.
iii). the weak solution of the problem

⎧
⎨

⎩
−Δu+

2π
α2 u = f in Ω ,

u = 0 on ∂Ω ,
(23.8)

when β (ε)aεε−2→ ∞ and ε2 ln(aε)→−α2 < 0.
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iv). the weak solution of the problem

{−Δu+2πC2σ(x,u) = f in Ω ,

u = 0 on ∂Ω ,
(23.9)

when β (ε)aεε−2→ C2 > 0 and ε2 ln(aε)→ 0.
v). the weak solution of the problem

⎧
⎨

⎩
−Δu+

2π
α2 H(x,u) = f in Ω ,

u = 0 on ∂Ω ,
(23.10)

where the function H = H(x,φ) is the unique solution of the functional equation

H = α2C2σ(x,φ −H), (23.11)

when β (ε)aεε−2→ C2 > 0 and ε2 ln(aε)→−α2 < 0.

In this paper, we construct correctors to improve convergence, and provide
estimates for convergence rates of solutions. Section 23.2 contains some preliminary
results which are necessary for proofs. Sections 23.3 and 23.4 contain the correctors
results for the different possible limits arising in (23.6).

As already mentioned, the closest works in the literature to the problem
here considered are [GoLo13b] and [GoLo14]. To be more specific, [GoLo13b]
addresses the case of a periodical distribution of the cylinders (0, l)×Gj

ε with a
circular transverse section, while only the parameters

aε = ε exp
(−α

2

ε2

)
and β (ε) = ε exp

(α2

ε2

)
(23.12)

have been considered leaving, as open problems, other possible choices for these
functions and possible shapes for perforations. [GoLo14] considers the problem for
a domain perforated by isoperimetric tiny tubes of arbitrary shape and any choice
of aε and β (ε), aε � ε . Both papers show convergence of solutions in the weak
topology of H1 (see Theorem 1). Also, in [GoLo13b], it is announced without proof
a corrector result for the parameters (23.12).

In order to illustrate the limit behaviors, for all the possible relations between
parameters, we choose a large set of different orders of magnitude for these
parameters, but ranging in the functions aε = εke−α2/εγ and β (ε) = ε2−meα

2/εγ ,
for any constants γ > 0, k ≥ 0 and m ≥ 0. However Figure 23.2 shows a general
situation for the different relations (23.21), (23.25), (23.33), (23.40), and (23.44).

We note that γ = 2 provides the critical size for perforated domains by tubes.
Namely, γ > 2 implies that the diameter of the cylinders is very small compared with
the distance between them. In this case, Figure 23.2 shows that the limit problem is
the Dirichlet problem in Ω . That is, asymptotically the solution of (23.2) ignores
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Fig. 23.2 Sketch of homogenized problems depending on γ ,k,m for aε = εke−α2/εγ and β (ε) =
ε2−meα

2/εγ .

both the tubes and the boundary conditions for any β (ε). This recalls the case of
a Dirichlet condition on the boundary of the tubes when β (ε)→ ∞ or a Neumann
condition when β (ε)→ 0 (cf. [CiMu82] and [LoOl97]). Now, the relations between
parameters would satisfy (23.40) or (23.44) and the limiting problem is (23.7). In the
case where γ < 2, the diameter of the tubes is very large compared with the distance
between them. Depending on β (ε) we obtain that an extension of the solution of
(23.2) converges either towards zero in H1(Ω) (case where k < m: β (ε) is very
large; relations β (ε)aεε−2→ ∞ and ε2 ln(aε)→ 0 hold) or towards the solution of
the Dirichlet problem (23.7) (case where k > m: β (ε) is very small; relation (23.40)
holds).

In the case where γ = 2, while k < m the adsorption parameter is very large
and it seems as though the Dirichlet condition is asymptotically imposed on the
boundary of the tubes and, consequently the limiting problem is the classical linear
one (23.8) ignoring both the shapes of the tubes and the datum σ . Note that in this
case we fit into the relations (23.33) between parameters (see the open triangle on
the plane γ = 2 in Figure 23.2). Above β (ε) small or large means in comparison
with |∂Gε |−1 ≡ O(ε2a−1

ε ). Note that γ = 2 is also the classical critical size of the
tubes in the homogenization of Dirichlet boundary condition, without adsorption
parameters (cf. [CiMu82]).

In the case where γ ∈ (0,2) and k = m we deal with large diameters of tubes
and the critical relation between β (ε), aε and ε given by (23.25)1. This choice
of parameters implies that the total area of the tubes multiplied by the adsorption
parameter β (ε) is of order O(1), and the homogenized problem contains a nonlinear
term 2πC2σ(x,u) (cf. problem (23.9)). Here, fixed β (ε) we have a critical relation
for aε and vice versa. Finally, the most critical relations are provided by γ = 2 and
k =m (namely, (23.21)) where the nonlinear homogenized problem (23.10) contains
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Fig. 23.3 Sketch of corrector terms depending on γ ,k,m.

what can be considered as the averaged influence of the large adsorption parameter,
namely 2πα−2H(x,u) with H a function of variables x and u defined implicitly by
the functional equation (23.11).

Summarizing the above comments, in (23.6), α2 > 0 provides the usual critical
size of the transversal sections of the cylinders for linear problems with Dirichlet
conditions (cf. [CiMu82] and [MaKh05]), but since we deal with large adsorption
parameters we also find a critical relation for the parameter β (ε) when α2 > 0:
relation which implies |∂Gε |β (ε) = O(1), namely C2 > 0, while the limit behavior
of the solution changes drastically for C = 0 or C = ∞. We emphasize that the
convergence results hold for a more general geometry of the tubes provided and a
non-certain periodically distribution (cf. [GoLo14]).

As regards the correctors that we construct here for a circular transverse section
of the cylinders, we use the classical test functions for linear homogenization
problems with forest of cylinders, namely functions wε defined in (23.14), which
we combine suitably with the non-linear function defining the average equation
(cf. Theorems 2 and 4). Since, in the case where the size of the tubes is very
small compared with the distance between them (ε2 ln(aε) → −∞), wε → 0 in
H1(Ω), we need to add the corrector to improve convergence only in the case where
ε2 ln(aε)→−α2 < 0, namely for the critical size of the tubes and limiting problems
described in statements iii) and v) of Theorem 1 (see plane γ = 2 in Figure 23.3).
Note the nonlinear dependence on u of the corrector term in the most critical case.
In the extreme cases (see statements ii) and iv) of Theorem 1) we obtain bounds
for convergence rates for the discrepancies uε −u in H1 (cf. Theorems 3, 5 and 6).
In the case of big sizes of tubes, namely ε2 ln(aε)→ 0, we use also the auxiliary
function θε (cf. (23.30)) to transform surface integrals into volume integrals and
derive estimates for uε −u in H1 (see Theorem 3).
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23.2 Preliminary Results

In this section, we introduce certain functions which allow us to construct correctors
and obtain precise bounds for discrepancies.

Let Pj
ε be the center of the ball Gj

ε in R
2
x2x3

and we denote by Tj
ε/4 the ball of

radius ε/4 with center Pj
ε . For j ∈ϒε let us consider the auxiliary problem

⎧
⎪⎨

⎪⎩

Δx̂wj
ε = 0 in Tj

ε/4 \Gj
ε ,

wj
ε = 1 on ∂Gj

ε ,

wj
ε = 0 on ∂Tj

ε/4,

(23.13)

and we introduce the function defined in Ω by

wε(x) =

⎧
⎪⎪⎨

⎪⎪⎩

wj
ε(x̂), x ∈ (0, l)× (Tj

ε/4 \Gj
ε), if j ∈ϒε ,

1, x ∈ (0, l)×Gj
ε , j ∈ϒε ,

0, x ∈Ω \⋃j∈ϒε (0, l)×Tj
ε/4.

(23.14)

As is well known, the solution of (23.13) can be constructed explicitly:

wj
ε(x̂) =

ln(4r/ε)
ln(4aε/ε)

where r = |x̂−Pj
ε |, (23.15)

where we assume that aε < ε
4 . Thus, we can compute

‖wε‖L2(Ωε ) ≤ K| ln(4aε/ε)|−1, ‖∇wε‖L2(Ω) ≤ Kε−1| ln(4aε/ε)|−1/2

‖∇wε‖Lp(Ω) ≤ Kε for p ∈ (1,2)
(23.16)

and, consequently, as ε → 0,

wε ⇀ 0 in H1(Ω)− weak if ε2 ln(aε)→−α2 < 0,
wε → 0 in H1(Ω) if ε2 ln(aε)→−∞.

Also, for the sake of completeness, we introduce here certain results which
prove to be useful for the proofs throughout Sections 23.3 and 23.4. We refer to
Proposition 1 in [GoLo14] for the proof of Lemma 1. See Lemma 1.6 in Chapter I
of [OlSh92] for the proof of Lemma 2.

In the lemmas below, and in what follows, K denotes a constant independent
of ε . Also, in these lemmas, the constant K does not depend on the functions w,h
appearing in their statements.

Lemma 1. There exists an operator Pε from H1(Ωε ,Γε) into H1
0(Ω), such that

for w ∈ H1(Ωε ,Γε) we set Pεw = w̃ the function which satisfies: w̃(x) = w(x) for
x ∈Ωε , and
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‖w̃‖H1(Ω) ≤ K‖w‖H1(Ωε ) and ‖∇w̃‖L2(Ω) ≤ K‖∇w‖L2(Ωε ).

Lemma 2. Let g(y) be a bounded and measurable function in y ∈ R
3, 1-periodic

and < g >Q= 0 where Q = (0,1)× (−1/2,1/2)2 ⊂ R
3. Then,

∣
∣
∣

∫

Ω

whg(x/ε)dx
∣
∣
∣≤ Kε‖w‖H1(Ω)‖h‖H1(Ω), ∀w,h ∈ H1(Ω).

Lemma 3. Let Tj
ε/4 be the ball of radius ε/4 with center Pj

ε . Then,

∣
∣
∣∑

j∈ϒε
4ε

∫

(0,l)×∂Tj
ε/4

hds−2π
∫

Ω

hdx
∣
∣
∣≤ Kε‖h‖H1(Ω), ∀h ∈ H1

0(Ω). (23.17)

(23.17) also holds if h≡ hε with ‖hε‖H1(Ω) bounded independently of ε .

Proof. Let Q = (0,1)× (−1/2,1/2)2 ⊂ R
3, Q1 = Q \ [0,1]× T1/4, where T1/4 is

the circle of radius 1/4 with the center in the origin of coordinates. Let M(y) be a
solution of the auxiliary problem

⎧
⎪⎪⎨

⎪⎪⎩

ΔyM = μ , y ∈ Q1,

∂νyM = 1, y ∈ [0,1]×∂T1/4,

∂νyM = 0, y ∈ ∂Q1 \ [0,1]×∂T1/4,

< M >Q1= 0,

where μ = π
2|Q1| . We set Mε(x) = ε2M( x

ε ). It is easy to see that Mε is a solution of
the following problem

⎧
⎪⎪⎨

⎪⎪⎩

ΔxMε = μ , x ∈ εQ1,

∂νx Mε = ε , x ∈ [0,ε ]×∂ (εT1/4),

∂νx Mε = 0, x ∈ ∂ (εQ1)\ [0,ε ]×∂ (εT1/4),

< Mε >εQ1= 0.

Then,

∫

εQ1

div(∇x(Mε)h)dx =
π

2|Q1|
∫

εQ1

hdx+
∫

εQ1

∇xMε∇xhdx = ε
∫

(0,ε)×∂ (εT1/4)

hds.

We can write such an equality for any set εQk
j = (εQ+ ε(k, j)) \ ε [k,k + 1]×

(εT1/4 + εj), j ∈ ϒε , k = 0,1, . . . ,Kε , Kε = cε−1 and, taking sums over j ∈ ϒε and
k = 0,1, . . . ,Kε , we obtain
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∑
j∈ϒε

ε
∫

(0,l)×∂Tj
ε/4

hds =
π

2|Q1| ∑j∈ϒε
Kε

∑
k=0

∫

εQk
j

hdx+ ∑
j∈ϒε

Kε

∑
k=0

∫

εQk
j

∇xMε∇xhdx. (23.18)

Now, we consider the function g defined in Q by g(y) = 1
|Q1| −1 if y∈Q1 and g(y) =

−1 if y ∈ Q\Q1, and extended by periodicity to R
3. Then, applying Lemma 2, we

have

1
|Q1| ∑j∈ϒε

Kε

∑
k=0

∫

εQk
j

hdx−
∫

Ω

hdx =
∫

Ω

hg(x/ε)dx≤ Kε‖h‖H1(Ω). (23.19)

In addition, since Mε(x) = ε2M(x/ε), we have

∣
∣
∣∑
j∈ϒε

Kε

∑
k=0

∫

εQk
j

∇xMε∇xhdx
∣
∣
∣≤ ε

∣
∣
∣∑
j∈ϒε

Kε

∑
k=0

∫

εQk
j

∇yM∇xhdx
∣
∣
∣≤ Kε‖h‖H1(Ωε ). (23.20)

Finally, gathering (23.18), (23.19), and (23.20) we deduce (23.17) and Lemma 3
holds.

23.3 The Case of Nonlinear Homogenized Problems:
Corrector and Energy Estimates

In this section we consider the case where the adsorption parameter multiplied by
the total area of the tubes is of order O(1); that is, limε→0β (ε)|Sε | �= 0. Depending
on the size of the tubes, we have two different limiting problems, with an average
provided by a nonlinear function which can be σ multiplied by some averaged
constant, or it can be defined implicitly as the solution of a functional equation
(cf. (23.11)). This depends on whether the relation between the diameters of the
transverse sections of tubes O(aε) and the cell scale ε satisfy ε2 ln(aε) = o(1) or
ε2 ln(aε) has a non null finite limit, providing in any case a critical size of tubes. The
last case is referred to as the most critical case and it is considered in Theorem 2.
The case of large sizes of transverse sections of tubes is considered in Theorem 3.
We recall that aε � ε always holds.

Theorem 2. Let us assume the β (ε) and aε satisfy the following conditions

β (ε)aεε−2→ C2 > 0 and ε2 ln(aε)→−α2 < 0 as ε → 0. (23.21)
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Let wε be the function defined by (23.14). Let uε be the solution of (23.3) and
u ∈ H1

0(Ω) the weak solution of problem (23.10), with the additional regularity
u ∈ C1(Ω). Then, we have

‖uε −u+wεH(x,u)‖2
H1(Ωε ) +β (ε)‖uε −u+H(x,u)‖2

L2(Sε )

≤ K[ε+(aεε−1)1/2 +δ ε1 +δ ε2 ],
(23.22)

where δ ε1 = |β (ε)aεε−2−C2| and δ ε2 = |ε2 ln(4aε/ε)+α2|.
Proof. Let us consider (23.3) with ψ = uε − u+wεH(x,u) ∈ H1(Ωε ,Γε), with H
defined as in Theorem 1, and take in the integral identity for the limit problem
(23.10) the test function vε = ũε −u+wεH(x,u) ∈ H1

0(Ω), where wε is defined by
(23.14). Subtracting both equalities we obtain

‖∇(uε −u+wεH(x,u))‖2
L2(Ωε )

+β (ε)
∫

Sε

(σ(x,uε)−σ(x,u−H(x,u)))(uε −u+H(x,u))ds

=
∫

Gε

∇u∇(ũε −u+wεH(x,u))dx−
∫

Gε

f (ũε −u+wεH(x,u))dx

+
2π
α2

∫

Ω

H(x,u)(ũε −u+wεH(x,u))dx

−β (ε)
∫

Sε

σ(x,u−H(x,u))(uε −u+H(x,u))ds

+
∫

Ωε

∇(wεH(x,u))∇(uε −u+wεH(x,u))dx.

Taking into account that

∫

Ωε

∇(wεH)∇(uε −u+wεH)dx =
∫

Ωε

∇wε∇[H(uε −u+wεH)]dx

−
∫

Ωε

∇wε∇H(uε −u+wεH)dx+
∫

Ωε

wε∇H∇(uε −u+wεH)dx,
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we conclude

‖∇(uε −u+wεH)‖2
L2(Ωε ) +β (ε)

∫

Sε

[σ(x,uε)−σ(x,u−H)](uε−u+H)ds

=
∫

Gε

∇u∇(ũε −u+wεH)dx−
∫

Gε

f (ũε −u+wεH)dx+Rε

+
∫

Ωε

wε∇H∇(uε −u+wεH)dx−
∫

Ωε

∇wε∇H(uε −u+wεH)dx

(23.23)

where

Rε =
∫

Ωε

∇wε∇[H(uε −u+wεH)]dx+
2π
α2

∫

Ω

H(ũε −u+wεH)dx

−β (ε)
∫

Sε

σ(x,u−H)(uε −u+H)ds.

Let us estimate each term on the right-hand side of (23.23). Denoting by |Gε | and
|Sε | the volume of Gε and the area of Sε , respectively, and using the regularity of
u, (23.4), (23.16), (23.21) and the embeddings of the spaces Lr(Ω) with 1≤ r ≤ ∞
and of H1

0(Ω) into L6(Ω), we obtain

∣
∣
∣

∫

Gε

∇u∇(ũε −u+wεH)dx
∣
∣
∣≤ K|Gε |1/2‖∇(ũε −u+wεH)‖L2(Ω) ≤ Kaεε−1,

∣
∣
∣

∫

Gε

f (ũε −u+wεH)dx
∣
∣
∣≤ ‖f‖L4/3(Gε )

‖ũε −u+wεH‖L4(Ω)

≤ K|Gε |1/4‖f‖L2(Gε )‖ũε −u+wεH‖H1(Ω) ≤ K(aεε−1)1/2,

∣
∣
∣

∫

Ωε

wε∇H∇(uε −u+wεH)dx
∣
∣
∣≤ K‖wε‖L2(Ωε )‖uε −u+wεH‖H1(Ωε )

≤ K| ln(4aε/ε)|−1 ≤ Kε2,
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∣
∣
∣

∫

Ωε

∇wε∇H(uε −u+wεH)dx
∣
∣
∣≤ K‖∇wε‖L6/5(Ωε )‖ũε −u+wεH‖L6(Ω)

≤ Kε‖ũε −u+wεH‖H1(Ω) ≤ Kε .

Let us estimate Rε . Using Green’s formula and the definitions of wε and H (cf.
(23.14) and (23.11)), we obtain

Rε = ∑
j∈ϒε

∫

(0,l)×(∂Tj
ε/4∪∂Gj

ε )

∂νwj
εhε ds+

2π
α2

∫

Ω

hε dx− β (ε)
α2C2

∫

Sε

hε ds,

where hε = H(ũε − u + wεH). Now, on account of (23.15), Lemma 3, relation
(23.21)(2) and the boundedness of hε in H1(Ω) (cf. (23.4) and (23.16)), we have

∣
∣
∣∑

j∈ϒε

∫

(0,l)×∂Tj
ε/4

∂νwj
εhε ds+

2π
α2

∫

Ω

hε dx
∣
∣
∣

=
∣
∣
∣∑

j∈ϒε

4
ε ln(4aε/ε)

∫

(0,l)×∂Tj
ε/4

hε ds+
2π
α2

∫

Ω

hε dx
∣
∣
∣

≤
∣
∣
∣

1
ε2 ln(4aε/ε)

[

∑
j∈ϒε

4ε
∫

(0,l)×∂Tj
ε/4

hε ds−2π
∫

Ω

hε dx
]∣
∣
∣

+2π
∣
∣
∣
[ 1
ε2 ln(4aε/ε)

+
1
α2

]∫

Ω

hε dx
∣
∣
∣

≤ K[ε+ |ε2 ln(4aε/ε)+α2|]‖hε‖H1(Ω) ≤ K(ε+δ ε2 ).

Moreover, by (23.15), the area of Sε and (23.21), we get

∣
∣
∣∑

j∈ϒε

∫

(0,l)×∂Gj
ε

∂νwj
εhε ds− β (ε)

α2C2

∫

Sε

hε ds
∣
∣
∣

=
∣
∣
∣
[ 1

aε ln(4aε/ε)
+
β (ε)
α2C2

]∫

Sε

H(uε −u+wεH)ds
∣
∣
∣

≤ K
∣
∣
∣
ε2 ln(4aε/ε)+α2

α2aε ln(4aε/ε)
+
β (ε)aεε−2−C2

α2C2aεε−2

∣
∣
∣[|Sε |+‖uε −u+wεH‖2

L2(Sε )
]

≤ K[δ ε1 +δ ε2 ]+K(δ ε1 +δ ε2 )β (ε)‖uε −u+wεH‖2
L2(Sε )

.
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Thus,

|Rε | ≤ K[ε+δ ε1 +δ ε2 ]+K(δ ε1 +δ ε2 )β (ε)‖uε −u+wεH‖2
L2(Sε )

.

Gathering (23.23) and the above estimates, we conclude that

‖∇(uε −u+wεH)‖2
L2(Ωε ) +β (ε)

∫

Sε

[σ(x,uε)−σ(x,u−H)](uε−u+H)ds

≤ K[(aεε−1)1/2 + ε+δ ε1 +δ ε2 ]+K(δ ε1 +δ ε2 )β (ε)‖uε −u+wεH‖2
L2(Sε )

],

and, from (23.1) and (23.21), we derive

‖∇(uε −u+wεH(x,u))‖2
L2(Ωε ) +β (ε)‖uε −u+H(x,u)‖2

L2(Sε )

≤ K[ε+(aεε−1)1/2 +δ ε1 +δ ε2 ].
(23.24)

To obtain (23.22) from (23.24), we consider the Poincaré inequality for the H1-
extension of uε−u+wεH(x,u) toΩ in Lemma 1, namely for the function Pε(uε−
u+wεH(x,u)) ∈ H1

0(Ω), which satisfies

‖∇(Pε(uε −u+wεH(x,u)))‖2
L2(Ω) ≤ K‖∇(uε −u+wεH(x,u))‖2

L2(Ωε ),

and consequently, we have

‖uε −u+wεH(x,u)‖2
L2(Ωε ) ≤ K‖∇(uε −u+wεH(x,u))‖2

L2(Ωε )

and (23.22) also holds.

Theorem 3. Let us assume the β (ε) and aε satisfy the following conditions

β (ε)aεε−2→ C2 > 0 and ε2 ln(aε)→ 0 as ε → 0. (23.25)

Let uε be the solution of (23.3) and u ∈H1
0(Ω) the weak solution of problem (23.9),

with the additional regularity u ∈ C1(Ω). Then, we have

‖uε −u‖2
H1(Ωε ) +β (ε)‖uε −u‖2

L2(Sε )
≤ K[ε+(aεε−1)1/2 +δ ε1 + δ̃ ε2 ], (23.26)

where δ ε1 = |β (ε)aεε−2−C2| and δ̃ ε2 = ε | ln(ε/2aε)|1/2.

Proof. Let us consider (23.3) with ψ = uε − u ∈ H1(Ωε ,Γε) and take in the
integral identity for the limit problem (23.9) the test function vε = ũε −u ∈ H1

0(Ω).
Subtracting both equalities we obtain
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‖∇(uε −u)‖2
L2(Ωε ) +β (ε)

∫

Sε

(σ(x,uε)−σ(x,u))(uε −u)ds

=
∫

Gε

∇u∇(ũε −u)dx−
∫

Gε

f (ũε −u)dx+ Iε

(23.27)

where

Iε = 2πC2
∫

Ω

σ(x,u)(ũε −u)dx−β (ε)
∫

Sε

σ(x,u)(uε −u)ds.

Computing the volume Gε and using (23.5) along with the convergence in Theo-
rem 1, and the embeddings of the spaces Lr(Ω) with 1≤ r ≤ ∞ and of H1

0(Ω) into
L6(Ω), we obtain

∣
∣
∣

∫

Gε

∇u∇(ũε −u)dx
∣
∣
∣≤ K|Gε |1/2‖∇(ũε −u)‖L2(Ω) ≤ Kaεε−1, (23.28)

and

∣
∣
∣

∫

Gε

f (ũε −u)dx
∣
∣
∣≤ ‖f‖L4/3(Gε )

‖ũε −u‖L4(Ω)

≤ K|Gε |1/4‖f‖L2(Gε )‖ũε −u‖H1(Ω) ≤ K(aεε−1)1/2.

(23.29)

In order to estimate Iε we introduce the function θε as follows. We define θ 0
ε as

a solution of the following problem

⎧
⎪⎨

⎪⎩

Δx̂θ 0
ε = με in εY \G0

ε ,

∂νθ 0
ε =−1 on ∂G0

ε ,

∂νθ 0
ε = 0 on ∂ (εY \G0

ε)\∂G0
ε ,

where με = −2πaε ε−2

1−π(aε ε−1)2 and Y = (−1/2,1/2)2. We assume that
∫

εY\G0
ε

θ 0
ε dx̂ = 0.

For j ∈ ϒε , we denote by θ j
ε(x) the solution of the problem posed in Yj

ε \Gj
ε =

(εY \G0
ε) + εj. We denote by Ŷε =

⋃
j∈ϒε (Y

j
ε \Gj

ε) and introduce the function θε
such that θε = θ j

ε in Yj
ε \Gj

ε . Then, it can be proved that (see [GoLo14] for details)

‖θε‖L2(Ŷε )
≤ Kaε | ln(ε/2aε)|1/2, ‖∇θε‖L2(Ŷε )

≤ Kaεε−1| ln(ε/2aε)|1/2.

(23.30)
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By means of θε , the integral on Sε of Iε can be transformed into a volume integral.
Thus, we can write

Iε =2πC2
∫

Ω

σ(x,u)(ũε −u)dx+β (ε)∑
j∈ϒε

με
∫

(0,l)×(Yj
ε\Gj

ε )

σ(x,u)(ũε −u)dx

+β (ε)∑
j∈ϒε

∫

(0,l)×(Yj
ε\Gj

ε )

∇θ j
ε∇(σ(x,u)(ũε −u))dx = I1

ε + I2
ε + I3

ε

where

I1
ε = 2π

[
C2−β (ε) aεε−2

1−π(aεε−1)2

]∫

Ω

σ(x,u)(ũε −u)dx,

I2
ε = 2πβ (ε)

aεε−2

1−π(aεε−1)2

∫

Ω\(0,l)×Ŷε

σ(x,u)(ũε −u)dx,

I3
ε = β (ε)

∫

(0,l)×Ŷε

∇θε∇(σ(x,u)(ũε −u))dx.

Now, from (23.25), the regularity of u, (23.5), the convergence in Theorem 1 and
(23.30), it follows that

|I1
ε | ≤ K[δ ε1 +(aεε−1)2]‖ũε −u‖L2(Ω) ≤ K[δ ε1 +(aεε−1)2],

|I2
ε | ≤ Kβ (ε)aεε−2|Ω \ (0, l)× Ŷε |1/2‖ũε −u‖L2(Ω) ≤ K[ε+aεε−1],

|I3
ε | ≤ Kβ (ε)‖∇θ‖L2(Ŷε )

‖ũε −u‖H1(Ω) ≤ Kβ (ε)aεε−1| ln(ε/2aε)|1/2 ≤ Kδ̃ ε2 ,

and, consequently,

|Iε | ≤ K[δ ε1 +aεε−1 + ε+ δ̃ ε2 ]. (23.31)

Gathering (23.27), (23.28), (23.29) and (23.31), we conclude that

‖∇(uε −u)‖2
L2(Ωε ) +β (ε)

∫

Sε

(σ(x,uε)−σ(x,u))(uε −u)ds

≤K[δ ε1 +(aεε−1)1/2 + ε+ δ̃ ε2 ]
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and, from (23.1),

‖∇(uε −u)‖2
L2(Ωε ) +β (ε)‖uε −u‖2

L2(Sε )
≤ K[ε+(aεε−1)1/2 +δ ε1 + δ̃ ε2 ].

(23.32)

To obtain (23.26) from (23.32), we apply the Poincaré inequality for the
extension Pε(uε −u) ∈ H1

0(Ω) as in Theorem 2, and the theorem is proved.

23.4 The Case of Linear Homogenized Problems: Corrector
and Energy Estimates

In this section, we gather the results for the extreme relation between the parameters
β (ε) and aε ; namely, for the cases in which one of the limits (or both limits)
limε→0β (ε)|Sε | and limε→0 ε2 ln(aε) is 0 or ∞, excepting the case (23.25). Since
the Dirichlet problem (without foreign term) arises as the homogenized problem,
excepting for the relation (23.33) between parameters, the strong convergence of
solutions uε of (23.2) hold and we obtain precise bounds for discrepancies between
uε and u. In the case where (23.33) we show that the corrector is the same arising
in linear problems without any adsorption parameter. We recall that aε � ε always
holds.

Theorem 4. Let us assume the β (ε) and aε satisfy the following conditions

β (ε)aεε−2→ ∞ and ε2 ln(aε)→−α2 < 0 as ε → 0. (23.33)

Let wε be the function defined by (23.14). Let uε be the solution of (23.3) and
u ∈ H1

0(Ω) the weak solution of problem (23.8), with the additional regularity
u ∈ C1(Ω). Then, we have

‖uε −u+wεu‖2
H1(Ωε ) +β (ε)‖uε‖

2
L2(Sε )

≤ K[ε+(aεε−1)1/2 + δ̃ ε1 +δ ε2 ],
(23.34)

where δ̃ ε1 = (β (ε)aεε−2)−1/2 and δ ε2 = |ε2 ln(4aε/ε)+α2|.
Proof. Let us consider (23.3) with ψ = uε − u+wεu ∈ H1(Ωε ,Γε) and take in the
integral identity for the limit problem (23.8) the test function vε = ũε − u+wεu ∈
H1

0(Ω), where wε is defined by (23.14). Subtracting both equalities and taking into
account that wε = 1 in Gε , we have

‖∇(uε −u+wεu)‖2
L2(Ωε ) +β (ε)

∫

Sε

σ(x,uε)uε ds

=
∫

Gε

∇u∇ũε dx−
∫

Gε

f ũε dx+ Jε ,
(23.35)
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where

Jε =
∫

Ωε

∇(wεu)∇(uε −u+wεu)dx+
2π
α2

∫

Ω

u(ũε −u+wεu)dx.

Owing to the volume Gε and (23.4), we obtain

∣
∣
∣

∫

Gε

∇u∇ũε dx
∣
∣
∣≤ K|Gε |1/2‖∇ũε‖L2(Ω) ≤ Kaεε−1 (23.36)

and

∣
∣
∣

∫

Gε

f ũε dx
∣
∣
∣≤ ‖f‖L4/3(Gε )

‖ũε‖L4(Ω) ≤ |Gε |1/4‖f‖L2(Gε )‖ũε‖H1(Ω)

≤ K(aεε−1)1/2.

(23.37)

Let us estimate Jε . Straightforward calculation yields

∫

Ωε

∇(wεu)∇(uε −u+wεu)dx =
∫

Ωε

∇(u(uε −u+wεu))∇wε dx

+
∫

Ωε

∇u∇(uε −u+wεu)wε dx−
∫

Ωε

∇u∇wε(uε −u+wεu)dx.

Besides, using the definition of wε and the Green formula, we have that

∫

Ωε

∇(u(uε −u+wεu))∇wε dx

=∑
j∈ϒε

∫

(0,l)×∂Tj
ε/4

∂νwj
εu(uε −u+wεu)ds+ ∑

j∈ϒε

∫

(0,l)×∂Gj
ε

∂νwj
εuuε ds.

Thus, from (23.15), we can write Jε = J1
ε + J2

ε + J3
ε where

J1
ε = ∑

j∈ϒε

4
ε ln(4aε/ε)

∫

(0,l)×∂Tj
ε/4

u(uε −u+wεu)ds+
2π
α2

∫

Ω

u(ũε −u+wεu)dx,

J2
ε =−∑

j∈ϒε

1
aε ln(4aε/ε)

∫

(0,l)×∂Gj
ε

uuε ds,
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J3
ε =
∫

Ωε

∇u∇(uε −u+wεu)wε dx−
∫

Ωε

∇u∇wε(uε −u+wεu)dx.

We denote by ĥε = ũε − u+wεu. Using Lemma 3, (23.33), (23.4), (23.16) and the
fact that |Sε | ≤ Kaεε−2, we have

|J1
ε | ≤
∣
∣
∣

1
ε2 ln(4aε/ε)

[

∑
j∈ϒε

4ε
∫

(0,l)×∂Tj
ε/4

uĥε ds−2π
∫

Ω

uĥε dx
]∣
∣
∣

+2π
∣
∣
∣
[ 1
ε2 ln(4aε/ε)

+
1
α2

]∫

Ω

uĥε dx
∣
∣
∣

≤K
1

ε2| ln(4aε/ε)|ε‖ĥε‖H1(Ω) +K
δ ε2

ε2| ln(4aε/ε)| ‖ĥε‖L2(Ω) ≤ K[ε+δ ε2 ],

|J2
ε | ≤ K

1
aε | ln(4aε/ε)| |Sε |

1/2‖uε‖L2(Sε ) ≤ Kδ̃ ε1 β (ε)
1/2‖uε‖L2(Sε ) ≤ Kδ̃ ε1 ,

|J3
ε | ≤K‖∇ĥε‖L2(Ω)‖wε‖L2(Ω) +K‖∇wε‖L6/5(Ω)‖ĥε‖L6(Ω)

≤K| ln(4aε/ε)|−1‖∇ĥε‖L2(Ω) +Kε‖ĥε‖H1(Ω) ≤ K[ε2 + ε ],

and, hence,

|Jε | ≤ K[ε+δ ε2 + δ̃ ε1 ]. (23.38)

Gathering (23.35), (23.36), (23.37), and (23.38), we conclude that

‖∇(uε −u+wεu)‖2
L2(Ωε ) +β (ε)

∫

Sε

σ(x,uε)uε ds≤ K[ε+(aεε−1)1/2 + δ̃ ε1 +δ ε2 ]

and, by (23.1),

‖∇(uε −u+wεu)‖2
L2(Ωε ) +β (ε)‖uε‖

2
L2(Sε )

≤ K[ε+(aεε−1)1/2 + δ̃ ε1 +δ ε2 ].
(23.39)

Finally, to show (23.34) from (23.39) we rewrite the proof at the end of
Theorem 2 with minor modifications.

Theorem 5. Let us assume the β (ε) and aε satisfy the following condition

β (ε)aεε−2→ 0 as ε → 0. (23.40)
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Let uε be the solution of (23.3) and u ∈ H1
0(Ω) the weak solution of the Dirichlet

problem (23.7), with the additional regularity u ∈ C1(Ω). Then, we have

‖uε −u‖2
H1(Ωε ) +β (ε)‖uε −u‖2

L2(Sε )
≤ K[(aεε−1)1/2 +β (ε)aεε−2]. (23.41)

Proof. Let us consider the variational formulations of (23.2) and (23.7) with
v = uε − u ∈ H1(Ωε ,Γε) and v = ũε − u ∈ H1

0(Ω) as test functions, respectively.
Subtracting both equalities, we have

‖∇(uε −u)‖2
L2(Ωε ) +β (ε)

∫

Sε

[σ(x,uε)−σ(x,u)](uε −u)ds

=
∫

Gε

∇u∇(ũε −u)dx−
∫

Gε

f (ũε −u)dx−β (ε)
∫

Sε

σ(x,u)(uε −u)ds.
(23.42)

Let us estimate the last three terms of (23.42).
Computing |Gε | and |Sε | and using the regularity of u, (23.5) along with the

convergence in Theorem 1, we obtain that

∣
∣
∣

∫

Gε

∇u∇(ũε −u)dx
∣
∣
∣≤ C|Gε |1/2‖∇(ũε −u)‖L2(Ω) ≤ Kaεε−1,

∣
∣
∣

∫

Gε

f (ũε −u)dx
∣
∣
∣≤ ‖f‖L4/3(Gε )

‖ũε −u‖L4(Ω)

≤ |Gε |1/4‖f‖L2(Gε )‖ũε −u‖H1(Ω) ≤ K(aεε−1)1/2,

∣
∣
∣

∫

Sε

σ(x,u)(uε −u)ds
∣
∣
∣≤ δ‖uε −u‖2

L2(Sε )
+Kδ−1|Sε | ≤ δ‖uε −u‖2

L2(Sε )
+Kaεε−2,

with δ > 0 arbitrary. Therefore, from (23.42) and (23.1), it follows that

‖∇(uε −u)‖2
L2(Ωε ) +β (ε)(k1−δ )‖uε −u‖2

L2(Sε )
≤ K[(aεε−1)1/2 +β (ε)aεε−2].

Now, choosing δ = k1/2 in the above expression yields

‖∇(uε −u)‖2
L2(Ωε ) +β (ε)‖uε −u‖2

L2(Sε )
≤ K[(aεε−1)1/2 +β (ε)aεε−2].

(23.43)



23 Homogenization of Perforated Domains by Thin Tubes 287

Since |Sε | ≤ Kaεε−2, by (23.40), we also have

‖∇(uε −u)‖2
L2(Ωε ) +β (ε)‖uε‖

2
L2(Sε )

≤ K[(aεε−1)1/2 +β (ε)aεε−2].

Finally, to show (23.41) from (23.43) we rewrite the proof at the end of
Theorem 2 with minor modifications.

Theorem 6. Let us assume the β (ε) and aε satisfy the following condition

ε2 ln(aε)→−∞ as ε → 0. (23.44)

Let uε be the solution of (23.3) and u ∈ H1
0(Ω) the weak solution of the Dirichlet

problem (23.7), with the additional regularity u ∈ C1(Ω). Then, we have

‖uε −u‖2
H1(Ωε ) +β (ε)‖uε‖

2
L2(Sε )

≤ K[(aεε−1)1/2 + ε−1| ln(4aε/ε)|−1/2].

(23.45)

Proof. We consider the variational formulation of (23.2) and (23.7) and take
v = uε − u+wεu ∈ H1(Ωε ,Γε) and v = ũε − u+wεu ∈ H1

0(Ω) as test functions,
respectively, where wε is defined by (23.14). Subtracting both expressions and
taking into account that wε = 1 in Gε , we have
∫

Ωε

∇(uε −u)∇(uε −u+wεu)dx+β (ε)
∫

Sε

σ(x,uε)uε ds =
∫

Gε

∇u∇ũε dx−
∫

Gε

f ũε dx

and, hence,

‖∇(uε −u+wεu)‖2
L2(Ωε ) +β (ε)

∫

Sε

σ(x,uε)uεds

=
∫

Gε

∇u∇ũεdx−
∫

Gε

f ũεdx+
∫

Ωε

∇(wεu)∇(uε −u+wεu)dx.

Owing to (23.4), (23.16), and (23.44), and computing the volume of Gε , we
obtain that

∣
∣
∣

∫

Gε

∇u∇ũεdx
∣
∣
∣≤ K|Gε |1/2‖∇ũε‖L2(Ω) ≤ Kaεε−1,

∣
∣
∣

∫

Gε

f ũε dx
∣
∣
∣≤ ‖f‖L4/3(Gε )

‖ũε‖L4(Ω) ≤ |Gε |1/4‖f‖L2(Gε )‖ũε‖H1(Ω)

≤ K(aεε−1)1/2,

and
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∣
∣
∣

∫

Ωε

∇(wεu)∇(ũε −u+wεu)dx
∣
∣
∣≤ K‖∇(wεu)‖L2(Ωε ) ≤ Kε−1| ln(4aε/ε)|−1/2.

Thus, we have that

‖∇(uε −u+wεu)‖2
L2(Ωε ) +β (ε)

∫

Sε

σ(x,uε)uεds

≤K[(aεε−1)1/2 + ε−1| ln(4aε/ε)|−1/2],

which already shows that wεu is a corrector.
Finally, using again (23.16) and (23.1), it follows

‖∇(uε −u)‖2
L2(Ωε ) +β (ε)‖uε‖

2
L2(Sε )

≤ K[(aεε−1)1/2 + ε−1| ln(4aε/ε)|−1/2].

(23.46)

Now to show (23.45) from (23.46) we rewrite the proof at the end of Theorem 2
with minor modifications and the theorem holds.

Remark 1. As already noticed in [GoLo14], the hypothesis on σ suffices for all
the proofs throughout the paper. Nevertheless, depending on the section (namely,
depending on the limits (23.6)) this hypothesis can be weakened by prescribing
0≤ σu(x,u) or σu(x,u)≤ k2(1+ |u|δ ) for some δ ∈ [0,2].

Remark 2. As it is well known, in the case of a linear σ , estimates for convergence
rates of solutions of stationary problems allows us to derive estimates for conver-
gence rates of eigenelements of the associated spectral problems (see Theorems 1.4
and 1.7 in Section III.1 in [OlSh92] for the precise statement). Nevertheless, as
outlined in [GoPe12] these estimates should involve the norms of the data f in the
natural setting of the spectral problems, and avoiding hypothesis on smoothness for
solutions and using the technique in [GoPe13] and [GoLo13a] will likely provide us
with weaker bounds in terms of the parameter ε to be applied to the spectrum.
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Chapter 24
A Finite Element Method
For Deblurring Images

P.J. Harris and K. Chen

24.1 Introduction

This chapter considers a method for removing the noise and/or blurring from a
typical digital image. The fundamental problem is methods for removing either
noise or blurring from a digital image is one of the most important tasks in image
analysis. The problem has been studied extensively and different formulations
and methods have been widely reported in the literature (see [BrCh10, ChCh06,
VoOm96, YaChYu12] and the references that they contain). Most recent methods
reformulate the problem in terms of nonlinear partial differential equations which
have to be solved to give the original, uncontaminated image. One notable feature of
nearly all of the previous work on this problem is that the finite difference method
has been used to solve the governing equations. Whilst the problem certainly lends
itself to the finite difference method as it is essentially dealing with data on a uniform
grid, there are circumstances under which this may not be the best approach. For
example, if part of the image is masked giving a curved boundary, then it can be
complicated to modify the finite difference approach to incorporate this.

An alternative approach is to use a finite element type method. Although the
initial formulation is more complicated than for the finite difference method,
the finite element method can deal with irregular shaped boundaries with no
modifications provided the elements are defined in a sensible manner.

In this paper we will present a finite element method, based on the total variation
method, for removing the noise and/or blurring from a digital image. In the next
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section we will give a brief description of the finite element method for the general
problem. In the third section we will discuss how the integral operator which models
the blurring in the image is discretized and finally we will present some results for
some typical images.

24.2 The Finite Element Formulation of the Problem

Let u(x,y) denote a function which for integer values of x and y gives the intensity
level of the pixel located at (x,y) in the required uncontaminated digital image, and
let z(x,y) denote a function which gives the corresponding intensity levels when
the image is contaminated by noise or blurring. For convenience it is assumed that
the intensities are scaled such that 0 ≤ u ≤ 1. The actual pixel values can be found
by multiplying by an appropriate value (usually 255) and rounding to the nearest
integer value.

The total variation method for removing the noise and blurring from an image
can be written as [ChPiZa13]

min
u

(

α
∫

Ω
|∇u|2 dx dy+‖(A u− z)‖2

)

(24.1)

where A is an integral operator which introduced the blurring into the image, and
α is a regularization parameter. Given the pixel values of z we want to be able to
calculate the pixel values of u. The integral operator in (24.1) will be discussed in
the next section. If we are just removing noise from an image, then this is simply
the identity operator.

The Euler–Lagrange equations for the total variation method (24.1) can be
written as [ChPiZa13]

−α∇ ·
(

∇u
‖∇u‖β

)

+A ∗(A u− z) = 0 (24.2)

over the domain Ω of the image with the boundary condition

∂u
∂n

= 0

on the boundary Γ . Here

‖u‖β =
√
∇u ·∇u+β

where β is a small parameter used to avoid problems which can arise if ∇u ·∇u = 0.
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Approximate u by

ũ(x,y) =
N

∑
i=1

uiφi(x,y) (24.3)

where {φi(x,y)} is a set of known basis functions and {ui} is a set of constants to
be determined. Since (24.3) is not, in general, the exact solution of (24.2) when we
substitute (24.3) into (24.2) we get

−α∇ ·
(

∇ũ
‖∇ũ‖β

)

+A ∗(A ũ− z) = r(x,y) (24.4)

where r is a residual function. The Galerkin method now requires that the constants
are chosen to make

∫

Ω
rψi dx dy = 0 (24.5)

where {ψ1,ψ2, · · · ,ψN} is a set of trial functions. For simplicity, it is usual to take
the trial functions to be the same as the basis functions as this often leads to systems
where the coefficient matrix has useful properties such as symmetry and positive
definiteness.

Letting ψi = φi, taking the inner product of (24.4) with each trial function and
noting the requirement (24.5) leads to

−α
∫

Ω

[

∇ ·
(

∇ũ
‖∇ũ‖β

)

φj +A ∗(A ũ− z)φj

]

dx dy = 0 (24.6)

Apply the corollary to the divergence theorem

∫

Ω
(ψ∇ ·F+F ·∇ψ) dx dy =

∮

Γ
ψF ·n dC

with F = ∇ũ and ψ = φj to (24.6) to get

α
∫

Ω

[(
∇ũ
‖∇ũ‖β

)

·∇φj +A ∗(A ũ− z)φj

]

dx dy−
∮

Γ

(
∇ũ
‖∇ũ‖β

)

·nφj dC = 0.

Since ∂ ũ
∂n = 0 on Γ it follows that the integral around the boundary is zero. Hence

we get (where, for simplicity, ũ has been replaced by u)

α
∫

Ω

[(
∇u
‖∇u‖β

)

·∇φj +A ∗(A u− z)φj

]

dx dy = 0. (24.7)
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Consider the first term on the left of (24.7)

α
∫

Ω

[(
∇u
‖∇u‖β

)

·∇φj

]

dx dy.

This can be written in matrix notation as K(u)u, where u = [u1,u2, . . . ,uN ]
T where

K(u) = α
∫

Ω

[(
1

‖∇u‖β

)

∇φi ·∇φj

]

dx dy. (24.8)

Now consider the second term on the left of (24.7)
∫

Ω
A ∗(A u− z)φi dx dy.

Let w =A ∗(A u− z) and approximate w as

w =
N

∑
i=1

wiφi

in which case the final term on the left of (24.7) becomes

N

∑
i=1

wi

∫

Ω
φiφj dx dy

which can be expressed in matrix notation as Mw where w is the vector of nodal
values of w and

Mij =
∫

Ω
φiφj dx dy

Hence we can write the discrete version of (24.7) as

αK(u)u+MA∗(Au− z) = 0. (24.9)

where A denotes the matrix approximation to the integral operator A . We note at
this point that if the image contains N pixels, then the size of all of these matrices
will be N×N.

We now have to consider the choice of the finite element basis functions φi(x,y).
Since an image consists of data on a square grid, at first glance it would appear that
bilinear quadrilateral elements are most suitable type of elements to use. However,
if such elements are used, then the integrals of the functions which appear in (24.8)
have to be evaluated numerically, which adds considerably to the cost of the method
as this matrix need to be recalculated at each iteration of the solution process.
However, if the square is split into two triangles and linear basis functions used
in each, then the resulting integral in (24.8) can be evaluated analytically. Further,
using these linear elements means that any given node is only connected to itself and
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(at most) the eight which surround it which means any given row of the matrices K
and M will contain at most nine non-zero entries, making them both very sparse
matrices. For example, for an n× n image, the full matrix contains n4 entries, but
only at most 9n2 of these are non-zero. Thus even for moderate values of n, K and
M are going to be very sparse matrices.

The resulting nonlinear equations can be solved using a simple fixed point
iterative scheme obtained by rearranging (24.9) to give

(K(uj)+MA∗A)uj+1 = MA∗z

where the initial estimate of the solution is u1 = z, and the solution process stops
when

‖uj+1−uj‖< δ

for some predetermined tolerance δ . The final image obtained at the end of the
solution process will be called the recovered image.

24.3 Discretization of the Blurring Operator

The blurring operator A is a first kind Fredholm integral operator which can be
expressed in the form

A u =
∫

Ω
k(|p−q|)u(q)dq (24.10)

where k(|p−q|) is a known kernel function. For Gaussian blurring,

k(|p−q|) = 1
2πσ

exp

(

−|p−q|2
2σ2

)

(24.11)

where σ is a constant called the blurring parameter.
In the work presented here, an approximation to the blurring operator is obtained

using a piecewise constant approximation to the pixel intensities u. Whilst this is not
strictly consistent with the finite element approximations used above, it does allow
the calculation of the blurred intensities at each pixel which is all that is needed.
Applying the collocation method yields a matrix approximation given by

Aij =
∫

Ωj

k(|pi−q|)dq (24.12)

where Ωj is the square around the jth pixel. Depending on the kernel function, it
may be possible to evaluate the integrals in (24.12) analytically but in general these
integrals will have to be evaluated numerically.
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Since the matrix A is an approximation to an integral operator, it will be full and
for an n×n image, A will be an n2×n2 matrix. For all but the smallest of images, it
is impractical to form and store the whole matrix. Fortunately, the matrix has some
structure which we can exploit. It is easy to show that A can be expressed in block
form as

⎡

⎢
⎢
⎢
⎢
⎢
⎣

A1 A2 A3 · · · An

A2 A1 A2 · · · An−1

A3 A2 A1 · · · An−2
...

...
...

. . .
...

An An−1 An−2 · · · A1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(24.13)

where each block Aj is an n×n matrix. Hence by exploiting this structure the storage
requirement for the full matrix is reduced from n4 to n3. However, if the matrix is
now extended by adding n−2 rows and columns as follows

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A1 A2 A3 · · · An An−1 · · · A2

A2 A1 A2 · · · An−1 An · · · A3

A3 A2 A1 · · · An−2 An−2 · · · A4
...

...
...

. . .
...

...
. . .

...
An An−1 An−2 · · · A1 A2 · · · An−1

An−1 An An−1 · · · A2 A1 · · · An−2
...

...
...

. . .
...

...
. . .

...
A3 A4 A5 · · · An−2 An−3 · · · A2

A2 A3 A4 · · · An−1 An−2 · · · A1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(24.14)

the resulting matrix (24.14) is now block circulant. That is, each block column can
be formed by shifting the previous block column down one block, and block at the
bottom of the previous column becomes the top block in the current column. We
also note that this matrix also has block symmetry. Further, each block has the same
internal structure as the whole matrix. That is, the internal structure of each Aj is in
the form of (24.13) where each entry is a scalar rather than a matrix. If each block
is extended in a similar manner by adding n− 2 rows and columns to each block,
then the entire matrix becomes circulant and so only requires 4(n− 1)2 entries to
be stored. In order to find the matrix-vector product Au, the vector u needs to be
extended by inserting extra rows corresponding to the extra columns of A. Provided
these extra rows contain zero, the correct values of v = Au can be obtained from the
appropriate rows of v whilst the values in the extra rows of v are simply discarded.
These matrix-vector products can be found efficiently using a fast Fourier transform
method as described in [Da79].
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24.4 Numerical Examples

In this section, we present the results of applying the finite element method to some
typical examples. In order to measure the difference between the original image, the
contaminated image and the recovered image, we shall use the root mean square
(RMS) error, defined by

E(u,z) =

√

∑N
i=1(ui− zi)

N

to measure the difference between images with pixel intensities u and z, respectively.
Here N is the total number of pixels in each image.

Figure 24.1 shows a perfect test image (u) on the left, and the contaminated image
(z) obtained by blurring the perfect image using Gaussian blurring with parameter
σ = 3 is on the right. For this example E(u,z) = 0.07477. Figure 24.2 shows the
recovered image using α = 10−4 and different values of β . The images on the left
is the image recovered using β = 10−3 and the image on the right in the image
recovered using β = 10−6. The corresponding RMS errors in the recovered images
when compared to the original image are 0.03292 and 0.02979, respectively. These
results show that the choice of β does have an effect on the accuracy of the recovered
image, but more work is necessary to investigate this further. Also, the effect of the
parameter α has not been studied, so further work is needed here to investigate
its effect. Figure 24.3 shows the results for a typical image that arises in medical
imaging. The image top left is the original uncontaminated image and the image top
right is the one obtained when the image is contaminated with Gaussian blurring
with parameter σ = 3. The RMS error in the contaminated image is 0.05292. The
recovered image using α = 10−4 and β = 10−3 is shown bottom left, which the
recovered image shown bottom right uses α = 10−4 and β = 10−6. The RMS errors
in these recovered images are 0.02819 and 0.02889, respectively.

Fig. 24.1 The original (left) and blurred (right) images.
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Fig. 24.2 Recovered image for β = 10−3 (left) and β = 10−6 (right).

Fig. 24.3 The original image (top left), blurred image (top right), and recovered images using
β = 10−3 (bottom left) and β = 10−6 (bottom right) for a typical example used in medical imaging.



24 FEM For Deblurring Images 299

24.5 Conclusions

This chapter has shown that the finite element method can be used to solve the
nonlinear partial differential equation which arises when using the total variation
method to remove the noise and/or blurring from a digital image. Although it has
not been reported here, the method can be readily adapted to deal with images that
are not rectangular, such as when part of the image is masked. Further work needs
to be carried out to investigate the influence of the various parameters (such as α
and β ) on the accuracy of the final recovered image.
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Chapter 25
Mathematical Modeling to Quantify
the Pharmacokinetic Process
of [18F]2-fluor-2deoxy-D-glucose (FDG)

E.B. Hauser, G.T. Venturin, S. Greggio, and J.C. da Costa

25.1 Introduction

The main objective of this study is to quantify pharmacokinetic processes - such
as absorption, distribution and elimination - of [18F]2-fluor-2deoxy-D-glucose
(18F - FDG), by using the Laplace transformation method.

18F - FDG is a glucose analog, labeled with the positron emitter 18F, and
is used as a radiopharmaceutical to investigate tissue metabolism in positron
emission tomography (PET) studies. PET is a functional imaging technology that
allows to study physiological and molecular changes through the administration of
radiopharmaceutical tracers into living systems.

When a radiolabeled drug, such as 18F -FDG, is administered intravenously, the
absorption is complete, the compound becomes available in the bloodstream to be
distributed throughout the whole body in all tissues and fluids, and after that it is
eliminated.

Mathematical modeling seeks to describe the processes of distribution and
elimination through compartments, where distinct pools of the tracer are assigned
to different compartments.

A compartmental model is an important kinetic modeling technique used for
quantification in PET imaging. It is described by a system of differential equations,
where each equation represents the sum of all the transfer rates to and from a specific
compartment. Rate transferring from one compartment to another is proportional to
concentration in the compartment of origin. We denote
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d
dt

Ci(t) =
N

∑
j=1,j �=i

[KijCj(t)−KjiCi(t) ]

where Ci(t) is the concentration of radioactive tracer in compartment i, N is the
number of sections of the model, and Kij is the rate constant for transfer from
compartment j to compartment i.

Physiological or biochemical systems are described using models of compart-
ments in which a tracer is distributed between compartments, which represent
spatial location or chemical state.

In this chapter, a two-tissue irreversible compartment model is used for kinetic
modeling of 18F -FDG uptake by using the Laplace transform method.

The irreversible two-compartment model for 18F -FDG is used for description of
this tracer, which is first entering a free compartment, C1, and is then metabolized
irreversibly in the second compartment C2.

In order to determine the parameters of the model, information on the tracer
delivery is needed in the form of an input function that represents the time-course
of tracer concentration in the arterial blood or plasma [CuJo93, Za06, Kh11].

Quantitative PET studies often require a measure of the input function [La05,
VrGe09, KiPi11, Za06, Kuba91].

We estimated the arterial input function in two stages and applied the Levenberg–
Marquardt method to solve nonlinear regressions [BaWa88].

The transport of FDG across the arterial blood is very fast in the first ten minutes
and then slowly decreases. The main contribution of the present study is that we used
the We Heaviside function to represent this compartment modeling for 18F -FDG.
We applied the Laplace transform and obtained the analytical solution for the two-
tissue irreversible compartment model. The only approach is to determinate the
arterial input function.

25.2 The Proposed Method for Two-Tissue Irreversible
Compartment Model

The glucose metabolism is investigated using the irreversible FDG-model, which
was developed for description of the tracer 18F−2-fluor-2deoxy-D-glucose (see
[KiPi11]). The irreversible two-compartment model for FDG is illustrated in
Figure 25.1 and is used for description of the tracer, which first enter a free com-
partment, C1, and is then metabolized irreversibly in the second compartment C2.

The mathematical model for the problem is expressed by the system of two
differential equations

d
dt

C1(t) = K1Ca(t)− (k2+ k3)C1(t)

d
dt

C2(t) = k3C1(t)

(25.1)
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Fig. 25.1 FDG model.

Ca

K1

K2

K3
C1 C2

The tracer concentration in arterial blood Ca(t), the input function depends on the
time t, is a known quantity.

We apply the Laplace transformation with respect to t in (25.1), denoting

£{Ci(t)}= Ci(s) =
∫ ∞

0
e−st Ci(t)dt

and

£

{
d Ck(t)

dt

}

= sCi(s)−Ci(0).

We obtain, with C1(0) = 0 and C2(0) = 0 , an algebraic system:

(s+ k2+ k3)C1(s) = K1Ca(s)

−k3C1(s) + s C2(s) = 0
. (25.2)

Now we apply the inverse Laplace transformation to equation (25.2):

Ci(t) = £−1{Ci(s)
}
.

Therefore, we obtain

C1(t) = £−1
{

K1Ca(s)
(s+ k2+ k3)

}

, C2(t) = £−1
{

k3C1(s)
s

}

. (25.3)

Then

C1(t) = K1£−1
{

1
(s+ k2+ k3)

}

∗ £−1{Ca(s)
}

C2(t) = k3 ∗ £−1{C1(s)
}
,

(25.4)

where ∗ denotes the convolution operation.
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The representation (25.3) implies that

C1(t) = K1e−(k2+k3) t ∗ Ca(t) = K1
∫ t

0
e−(k2+k3)(t−u) Ca(u)du

C2(t) = k3 ∗ C1(t) = k3
∫ t

0
C1(u)du .

(25.5)

The analytic solution of the irreversible two-compartment model for FDG (25.1)
is (25.5).

25.3 Arterial Input Function

The transport of FDG across the arterial blood is very fast in the first minutes and
then slowly decreases. For this reason we have chosen to estimate the arterial input
function in two stages.

We defined the arterial input function for the fast stage

Cf (t), t ∈ (a , b)

and the arterial input function for the slow phase

Cs(t), t ∈ (b , c) .

We introduce the Heaviside step function (the unit step function)

H(t−a) =

{
0, t < a,

1, t ≥ a,

H(t−a)−H(t−b) =

{
1, a≤ t < b,

0, t < a and t ≥ b,
.

Our goal is to construct a piecewise input function as

Ca(t) = [H(t−a)−H(T−b) ] Cf (t) + [H(t−b)−H(T− c) ] Cs(t) . (25.6)

25.4 Illustrative Example

We used the experimental results presented by [KiPi11]. Considering k1= 0.4, k2=
0.2, and k3 = 0.05, we obtain the analytical solution for the system (2).

We write the input function as

Ca(t) = [H(t)−H(T−10) ] Cf (t) + [H(t−10)−H(T−60) ] Cs(t) . (25.7)
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Fig. 25.2 Cf (t) : Fast phase input function.

After some algebraic manipulations, we get that the arterial input function for the
fast stage, Cf (t) , obtained using the Levenberg–Marquardt method, as

Cf (t) =
0.51t+0.005

0.21t2−0.43t+1
, (25.8)

represented in Fig. 25.2.
And in (25.7), the arterial input function for the slow stage, Cs(t), obtained in a

similar fashion is

CS(t) =
(4.96×109) t+27.86

(4.36×107) t2 +(4.29×1010) t+1
, (25.9)

illustrated in Fig. 25.3.
In Fig. 25.4, we present the piecewise input function (25.7).
Then we use the Laplace transform method described in Section 25.2. In

Table 25.1 we summarize the properties of the Laplace transform needed to solve
the system of two ordinary differential equations of first order (25.1).

In Table 25.1, the special functions are defined by

• Exponential integral:

Ei(t) =
∫ ∞

t

e−u

u
du,

• Sine integral:

Si(t) =
∫ t

0

sinu
u

du

and
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Fig. 25.3 Cs(t) : Slow phase input function.
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Fig. 25.4 Ca(t) : Arterial input function.
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Table 25.1 Laplace Transform

f (t) £{f (t)}= F(s) =
∫ ∞

0
e−st f (t)dt

eatf (t) F(s−a)

f (t−a)H(t−a) e−asF(s)

f ′(t) sF(s)− f (0)

f (t)∗g(t) =
∫ t

0
f (u)g(t−u)du F(s)G(s)

eat 1
s−a

1
t+a

easEi(as)

1
t2 +a2

1
a
[cos(as){π

2
−Si(as)}− sen(as)Ci(as)]

t
t2 +a2 sen(as){π

2
−Si(as)}+ cos(as)Ci(as)]

• Cosine integral:

Ci(t) =
∫ ∞

t

cosu
u

du.

The input function Ca(t) and the response curves, C1(t) and C2(t), with transport
constants K1 = 0.4, k2 = 0.2, k3 = 0.05, are represented in Figure 25.5. C1(t) and
C2(t) are the analytical solution for two-tissue irreversible compartment model
(25.1). The results are very similar to those obtained in experiment described in
[KiPi11]. The only approximation used in this work was the arterial input function
Ca(t), expressed by de (25.7), (25.8) and (25.9).
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Fig. 25.5 Solution of the FDG model.

References

[BaWa88] Bates, D.M., Watts, D.G.: Nonlinear Regression and Its Applications. Wiley,
New York (1988)

[CuJo93] Cunningham, V.J., Jones, T.: Spectral analysis of dynamic PET studies. J Cereb Blood
Flow Metab. 13, 15–23(1993).

[Kh11] Khalil, M.M.: Basic Sciences of Nuclear Medicine. Springer, Berlin (2011).
[KiPi11] Kiessling, F., Pichler, B.J.: Small Animal Imaging. Springer, Berlin (2011).

[Kuba91] Kuikka, J.T. et al.: Mathematica Modelling in Nuclear Medicine. European Journal
of Nuclear Medicine. 18, 351–362 (1991).

[La05] Laforest, R. et al.: Measurement of input functions in rodents: challenges and
solutions. Nuclear Medicine and Biology. 32, 679–685 (2005)

[Za06] Zaidi, H.: Quantitative Analysis in Nuclear Medicine Imaging, Springer, New York
(2006).

[VrGe09] Vriens, D. et al.: A Curve-Fitting Approach to Estimate the Arterial Plasma Input
Function for the Assessment Of Glucose Metabolic Rate and Response to Treatment.
The Journal of Nuclear Medicine. 50–12, 1933–1939 (2009)



Chapter 26
Multi-Particle Collision Algorithm for Solving
an Inverse Radiative Problem

R. Hernández Torres, E.F.P. Luz, and H.F. Campos Velho

26.1 Introduction

Optimization is the area of the Applied Mathematics that studies the theory and
techniques to finding the best available values to optimize (minimize or maximize)
some objective function, also called error function or cost function.

Many real problems in science and engineering involves optimization in some
way. A class of inverse problems can also be formulated as an optimization
problem. The forward problem is characterized for producing a response from input
parameters. From measured or desired response, the procedure to identify the input
parameters is called inverse problem.

Inverse radiative transfer problem has many relevant applications in science
and industry. Some examples are computerized tomography, optical reconstruction
in spectroscopy, radiative property estimation, heat conduction, climate modeling,
hydrologic optics, and space science [StEtAl10]. These inverse problems can be
formulated implicitly and solved as an optimization problem. Inverse problems are
typically ill-posed problems. To deal with them, a regularization term is added to
the regular objective function.

Stochastic optimization has become an important tool to solve multi-modal cost
functions. In addition, sometimes it is hard to compute the gradient of a cost
function, or even there is no derivative of such function. Some stochastic methods
do not need gradient information or other internal information of the process/system
to be applied. Stochastic methods use a random process to generate new solutions,
and facilitate the exploration (global search) in the search space, at the same time
that exploitation (local search) is made by some methods. The entire search space
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can be visited by generating new randomly candidate solutions, while an intense
search is made in neighborhood of this candidate solution – this searching can be
applied for some selected candidates.

Meta-heuristic algorithms can be bio-inspired stochastic methods: evolution of
species, social behavior of animals (ants, fireflies, bees, etc.), or developed based
on physics phenomena (simulated annealing (SA), Particle Collision Algorithm
(PCA) [SaOl05]). In particular, the PCA was inspired by the physics of a nuclear
particle traveling inside of a nuclear reactor, where scattering and absorption are
the main phenomena in the process. PCA is an individual method, where a single
particle explores and exploits the search space.

A new version of PCA, named Multi-Particle Collision Algorithm (MPCA)
[LuBeVe08], the search space is explored for several particles at the same time. The
particles work in a cooperative behavior, and the strategy can easily be implemented
in a parallel machine. The MPCA will be used to address an inverse problem on
radiative transfer process.

In the next section, the direct problem will be enunciated. The inverse radiative
transfer problem is formulated in a later section of the direct problem. The canonical
MPCA will be presented in the following section, as well as an MPCA version with
pre-regularization. The final sections are results and conclusions.

26.2 Forward Problem: Solving the Radiative Transfer
Problem

Figure 26.1 represents a participating medium and transparent boundary surfaces
[StEtAl10]. The medium is considered as one-dimensional, heterogeneous, gray,
with optical thickness τ0. Radiation generated from external sources with intensities
A1 and A2, respectively, arrives on the boundaries at τ = 0 and τ = τ0 – the boundary
surfaces also diffusely reflect the radiation coming from inside.

Fig. 26.1 Plane parallel geometry with external incident radiation.
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The mathematical model of the radiative transfer problem, i.e. the radiation
interaction with the medium, for constant radiative properties, isotropic scattering,
and azimuthal symmetry, is given by the linear version of the Boltzmann equation,
and written in the dimensionless form as

μ
∂ I(τ ,μ)
∂τ

+ I(τ ,μ) =
ω(τ)

2

∫ 1

−1
I(τ ,μ ′)dμ ′,0 < τ < τ0 (26.1)

with the boundary conditions

I(0,μ) = A1(μ)+2ρ1

∫ 1

0
I(0,−μ ′)μ ′dμ ′,μ > 0 (26.2)

I(τ0,−μ) = A2(μ)+2ρ2

∫ 1

0
I(τ0,−μ ′)μ ′dμ ′,μ < 0 (26.3)

where I is the radiation intensity, τ ≡ ∫ τ0
0 a(x)dx the optical variable, μ cosine of

the polar angle, ρ1 and ρ2 diffuse reflectivities at the inner part of the boundary
surfaces at τ = 0 and τ = τ0, and ω(τ) = b(τ)/[a(τ)+ b(τ)] is the single albedo
(a(z) and b(z) are absorption and scattering coefficients, respectively), expressed in
the polynomial form

ω(τ) =
K

∑
k=0

Dkτk . (26.4)

The direct problem described in (26.1–26.4) may be solved by using Chan-
drasekhar’s discrete ordinate method, where the scattering angle μ is taken on
discrete directions – see Figure 26.2. The integral term on the right-hand side of
Eq. (26.2) is replaced by a Gaussian quadrature. A finite difference approximation
is used for the terms on the left-hand side of Eq. (26.2), and by performing forward
(from τ = 0 to τ = τ0) and backward (from τ = τ0 to τ = 0) sweeps, I(τ ,μ)
is determined for all spatial and angular nodes of the discretized computational
domain.

Fig. 26.2 Discretization of
the polar angle domain.
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26.3 Inversion Formulated as an Optimization Problem

The inverse problem consists of estimating the radiative properties of the medium
from the emerging radiation, minimizing the objective function:

Q(�Z) =
Nd

∑
i=1

[
I

mod

i (�Z)− I
exp

i

]2
(26.5)

where I
mod

i and I
exp

i are, respectively, the calculated and measured values of the
radiation intensity.

Half of the data is acquired at the boundary τ = 0 and half at τ = τ0 by using
external detectors, as represented in Figure 26.3. The space dependent albedo �Z =
{ω1 ,ω2 , · · · ,ωNu

}, with Nu discrete values, is unknown.
Considering that only the left boundary (τ = 0) is subjected to the incidence

of isotropic radiation originated at an external source while there is no radiation
coming into the medium through the boundary at τ = τ0. Also considering the
diffuse reflectivities ρ1 and ρ2 as null, the boundary conditions become

I(0,μ) = A1 if μ > 0, I(τ0,−μ) = 0 if μ < 0.

The integro-differential operator associated with the Boltzmann equation is
compact. Therefore, the inverse operator does not have a formal inverse. This ill-
posedness can be treated by a regularization process. A practical implementation is
to use the Tikhonov regularization of order 2. Then, the objective function becomes

Q∗(�Z) =
Nd

∑
i=1

[
I

mod

i (�Z)− I
exp

i

]2
+αΩ(�Z) (26.6)

where α is the regularization parameter and Ω(·) is the regularization operator. The
smoother operator is expressed by the second-order Tikhonov regularization

Fig. 26.3 Schematic representation for experimental data I
exp

i (i = 1,2, · · · ,N/2) acquired at τ =
τ0, and (i = N/2+1, · · · ,N−1,N) acquired at τ = 0.
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Ω(�Z) =
Nu−1

∑
i=1

[ωi+1−2ωi +ωi−1]
2 . (26.7)

The parameter α is hard to be determined. Depending on the adopted criterion,
many executions may be required for the inverse solver to calculate α . A scheme
of pre-regularization is implemented, where the regularization parameter is not
necessary. The scheme selects the smoothest candidate solutions (albedo, in our
case) from a population. The pre-regularization approach was successfully used by
solving an inverse hydrological optics Ant Colony Optimization (ACO).

The pre-regularization scheme has some computational advantages: saves extra
evaluations to obtain the value of the α parameter, and it is not necessary to solve
the forward problem for those no smooth candidates.

26.4 Multi-Particle Collision Algorithm (MPCA)

The MPCA [LuBeVe08] is based on the canonical Particle Collision Algorithm
(PCA), introduced by Sacco[SaOl05]. The MPCA pseudo-algorithm is represented
in Algorithm–1.

The PCA is inspired by the physics of nuclear particle traveling inside of a
nuclear reactor, particularly the scattering and the absorption phenomena. In this
algorithm, the Perturbation function (see algorithm 2) performs a random variation
of the solution within a defined range, allowing the visit on different regions in
the search space, while the Exploration function (see algorithm 3) performs a local
search (applying a small perturbation (see algorithm 4) on the candidate solution).
When the new candidate solution has a worse performance (the cost function is
enhanced), the Scattering process (see algorithm 5) is activated, in which the particle
(the candidate solution) is replaced by a new random solution, according a computed
probability from: [1− cost function/(best solution)] [LuBeVe08, SaOl05].

For the MPCA, more than one particle is applied to explore the search space in
a cooperative way. A blackboard strategy is implemented, where the best particle is
over-copied for all other particles after some iterations. The process is re-started at
every Nblackboard iterations (the textitblackboard cycle), as seen in Algorithm–1.

A parallel version of the MPCA is implemented in FORTRAN 95, using MPI
libraries in a multiprocessor architecture with distributed memory machine.

26.4.1 MPCA with Pre-regularization

The use of the pre-regularization in the MPCA implies that a large set of solutions
(T ×Nparticles) will be generated and evaluated according the regularization norm
– see Eq. 26.7. Therefore, a small subset (the Nparticles smoothest particles) will be



314 R. Hernández Torres et al.

Algorithm 1 MPCA (IL and SL are the lower and upper limits for the local search
perturbation intensity; LB and UB are the minimum and maximum value for each
variable; currentP is the current particle; newP is the new particle; bestP is the best
particle).

Global variables LB, UB, IL, SL
for i← 1,Nprocessors do

for j← 1,Nparticles do
currentPi,j = RANDOMSOLUTION

iteration = 0
while iteration < NmaxIterations or other stopping criteria not yet met do

for i← 1,Nprocessors do
if iteration % Nblackboard == 0 then

bestPi = UPDATEBLACKBOARD(currentPi,−)

for j← 1,Nparticles do
newPi,j = PERTURBATION(currentP.Solutioni,j)
if newPi,j.Fitness < currentPi,j.Fitness then

currentPi,j = newPi,j

currentPi,j = EXPLORATION(currentPi,j)
else

currentPi,j = SCATTERING(currentPi,j, newPi,j, bestPi)

if currentPi,j.Fitness < bestPi.Fitness then
bestPi = currentPi,j

iteration = iteration + 1
for i← 1,Nprocessors do

bestPi = UPDATEBLACKBOARD(currentPi,−)

return bestP1

Algorithm 2 Perturbation Function (P is the obtained particle, currentP is the
current particle, bestP is the best particle)

function PERTURBATION(currentP)
for d← 1,Ndimension do

R = rand(0,1)
P.Solutiond = currentP.Solutiond + ((UBd − currentP.Solutiond) ∗R)− ((P.Solutiond −

LBd)∗ (1−R))
if P.Solutiond > U then

P.Solutiond = U
else if P.Solutiond < L then

P.Solutiond = L
P.Fitness = FITNESS(P.Solution)
return P
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Algorithm 3 Exploration Function(currentP is the current particle, newP is the new
particle)

function EXPLORATION(currentP)
for n← 1,NmaxInternalIterations do

newP = SMALLPERTURBATION(currentP)
if newP.Fitness < currentP.Fitness then

currentP = newP
return currentP

Algorithm 4 Small Perturbation Function (P is the obtained particle, currentP is the
current particle, bestP is the best particle)

function SMALLPERTURBATION(currentP)
for d← 1,Ndimension do

U = currentP.Solutiond ∗ rand(1,SL)
L = currentP.Solutiond ∗ rand(IL,1)
R = rand(0,1)
if U > UBd then

U = UBd

if L < LBd then
L = LBd

P.Solutiond = currentP.Solutiond +((U− currentP.Solutiond)∗R)−
((currentP.Solutiond−L)∗ (1−R))

P.Fitness = FITNESS(P.Solution)
return P

Algorithm 5 Scattering Function (P is the obtained particle, currentP is the current
particle, newP is the new particle, bestP is the best particle)

function SCATTERING(currentP, newP, bestP)
pscattering = 1−(bestP.Fitness/newP.Fitness)
if pscattering > rand(0,1) then

P = RANDOMSOLUTION

else
P = EXPLORATION(currentP)

return P

used for ranking by objective function (Eq. 26.5). This procedure is executed at the
moment of generating a new random solution (i.e., creating the initial population
after Scattering action).

26.5 Experimental Results

For the numerical experiments, machine with 8 processors was used. One of them
is the master processor controlling the updating of the blackboard. Each processor
works with a single particle (Nparticles = 1), resulting eight particles in the population
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for each iteration. The control parameters for the MPCA are IL = 0.85 and SL =
1.15. In our application, the parameters LB = 0.0 and UB = 1.0 are assumed for
all dimensions. Maximum number of function evaluation (NmaxIterations) is set to
10000, and the number of evaluation for the internal loop NmaxInternalIterations = 200.
The blackboard updating occurs each 400 function evaluations (Nblackboard = 400).

The method is tested using synthetic measurements, where the exit radiation
intensities were generated (in silico) using the exact values of the radiative
properties, and some noise was added (2% and 5%, respectively). Considering
the following parameters [StEtAl10]: A1 = 1.0 and A2 = 0.0. The albedo is given
as a polynomial with the coefficients D0 = 0.2, D1 = 0.2, and D2 = 0.6, with
Nd = Nu = 10.

The results were obtained taking an average from 25 realizations, each one with
a different random seed. Three cases will be analyzed: noiseless experimental data,
and data with 2% and 5% of noise level. The quality of the results is given by the
value of the objective function (residue: Eq. 26.5), and the sum of the quadratic
error between the exact and the estimated values for the albedo is given by Eq. 26.8.
Table 26.1 shows the mean values for all the cases in 25 runs of the algorithm.

d2 =
Nd

∑
i=1

(
�Zexact

i −�Zestimated
i

)2
(26.8)

Each experiment expends approximately 10 seconds evaluating a mean of 10000
times the objective function, each run. The final results have the same quality that
those described in [StEtAl10], using the Ant Colony Optimization, but the results
obtained with MPCA were much faster: from 10 up to 20 faster, depending on
the execution seed. Figures 26.4–26.6 show the average of albedo profiles obtained
during 25 runs for all cases.

Table 26.1 Statistical results for 25 runs of MPCA with regularization.

Noise level (%) Initial Guess Final Result

Residue 0 3.8559 ×10−1 3.4563 ×10−6

Minimum Residue 5.4780 ×10−3 6.8150 ×10−7

Maximum Residue 2.1050 ×100 5.9920 ×10−6

Error 9.6275 ×10−2 4.8789 ×10−3

Residue 2 2.2216 ×10−1 1.7716 ×10−5

Minimum Residue 1.6470 ×10−2 1.4170 ×10−5

Maximum Residue 1.6210 ×100 2.1230 ×10−5

Error 5.2183 ×10−2 2.3857 ×10−2

Mean Residue 5 2.6367 ×10−1 4.4552 ×10−5

Minimum Residue 3,3150 ×10−3 4,2940 ×10−5

Maximum Residue 1,1540 ×100 4,7320 ×10−5

Error 1.0974 ×10−1 2.2869 ×10−3
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Fig. 26.4 Comparison of the exact and estimated albedo for mean of the final solution yielded by
25 runs the algorithm using noiseless data.
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Fig. 26.5 Comparison of the exact and estimated albedo for mean of the final solution yielded by
25 runs the algorithm using data with 2% of noise.
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Fig. 26.6 Comparison of the exact and estimated albedo for mean of the final solution yielded by
25 runs the algorithm using data with 5% of noise.

26.6 Conclusions

A pre-regularization scheme used with the MPCA was applied to reconstruction of
albedo with spatial dependency, with radiation data acquired by external detectors.
This intrinsic regularization scheme saves computational cost and can be applied to
any inverse problem, where the extra information (searching for smooth solution) is
not embedded in the objective function.

The experiments yielded good estimates for the albedo for all tested cases,
noiseless and noisy data. Future works include a hybridization scheme (stochastic
optimization associated with a deterministic one, such as LM method) for improving
the results.
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Chapter 27
Performance of a Higher-Order Numerical
Method for Solving Ordinary Differential
Equations by Taylor Series

H. Hirayama

27.1 Prerequisites

We consider the numeric solution of the initial value problem of the following
ordinary differential equations.

y′ = f(x,y) y(x0) = y0

As a numerical calculation method of such an ordinary differential equation, the
following explicit Runge–Kutta method is often used.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

k1 = f(xn,yn)

k2 = f(xn + c2h,yn +a21hk1)

k3 = f(xn + c3h,yn +a31hk1 +a32hk2)
...

ks = f(xn + csh,yn +as1hk1 +as2hk2 + · · ·+as,s−1hks−1)

yn+1 = yn +∑s
i=1 biki

(27.1)

When the value yn of y on x = xn is given, above formula (27.1) gives the value
yn+1 of y on xn+1 = xn + h, aij(1 ≤ j < i ≤ s), bi(i = 1, · · · ,s), ci(i = 2, · · · ,s) are
constants.
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It is very difficult to determine these constants as the order increases. In order
to make the higher order Runge–Kutta formula, you have to solve a large-scale
nonlinear equation. For example, if you want to make a 25 stage 12th order Runge–
Kutta formula, you have to solve the nonlinear equation that consists of 7813
equations[On06] to determine the coefficients of the equation. For this reason, the
formula of Runge–Kutta which can be used now is to the about 12th order, and we
cannot choose more than the 15th order formula.

To solve these disadvantages, there is an implicit Runge–Kutta method (IRK
method) as follows.

⎧
⎪⎨

⎪⎩

ki = f(xn + cih,yn +h
s

∑
j=1

aijkj) i = 1, · · · ,s

yn+1 = yn +h∑s
i=1 biki

(27.2)

When aij = 0 (j≥ i), the above formula (27.2) is called explicit Runge–Kutta, and
when other, it is called the implicit Runge–Kutta method.

Implicit Runge–Kutta method, it is possible to select the calculation order freely,
even more different from the explicit Runge–Kutta method characterized in that A
is stable. To use this formula, it is necessary to solve the simultaneous equations
for ki (i = 1, · · · ,s) in (27.2). Generally this equation is nonlinear simultaneous
equations, and it must solve it for every calculation step.

Moreover, the Taylor series solution [HiKoSa02] is known on the textbook of the
differential equation. By this calculation method, calculation of arbitrary order is
possible.

In this paper, we solve the problem that has been calculated by the IRK [Ko13]
in the Taylor series method, discussed its performance and its features.

In the following numerical computation, the computing environment that was
used in Taylor series method is Intel i7-3930K, 3.2GHz (6core), Windows 8 (64-bit),
MS Visual C ++ 2012, we used a self-made radix 108 multiple-precision program as
high precision program. The computing environment that was used in IRK method
is Intel i7-3820, 3.6GHz (4core), Scientific Linux 6.3 (64-bit), Intel C ++ 13.0.1,
multiple precision program MPFR 3.1.1 / GMP 5.1.1, BNC-pack 0.8.

27.2 Numerical Solution of an Ordinary Differential
Equation with a High-Order Formula

The problem to deal with is an ordinary differential equation called HIRES. With
the equation well quoted as a test problem, it is treated on many books [HaWa93] or
Web.
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It is a problem which consists of 8 equations as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y′1 = −1.71y1 +0.43y2 +8.32y3 +0.0007
y′2 = 1.71y1−8.75y2

y′3 = −10.03y1 +0.43y4 +0.035y5

y′4 = 8.32y2 +1.71y3−1.12y4

y′5 = −1.745y5 +0.43y6 +0.43y7

y′6 = −280y6y8 +0.69y4 +1.71y5−0.43y6 +0.69y7

y′7 = 280y6y8−1.81y7

y′8 = −280y6y8 +1.81y7

(27.3)

Initial conditions:y1(0) = 1,y2(0) = y3(0) = y4(0) = y5(0) = y6(0) = y7(0) = 0,
y8(0) = 0.0057. Integration interval : 0≤ t ≤ 321.8122.

27.2.1 Computer Program

The computer program can be written easily as follows. Suppose that the coefficient
of a Taylor series is expressed with an array in program language. In other words,
n-th order coefficient of the Taylor series ym represented by y[m][n]. Here, the
formula to calculate the y4 is written only. We can write other formulas similarly.
The zero-order constant term is determined using the initial value.

y[4][0] = 0 ;

To determine the i + 1th order coefficient of the Taylor series, substituting the
Taylor expansions to ordinary differential equations, to compare the coefficient of ti.
Because the left side is (i+1)y[4][i+1], the following formula is obtained.

y[4][i+1]=(8.32*y[2][i]+1.71*y[3][i]
-1.12*y[4][i])/(i+1) ;

By repeating use of this equation, the coefficient of any order of the Taylor expan-
sion equation is obtained.

y6 and subsequent expressions have a nonlinear term y6y8. This nonlinear term
can be calculated in the following manner. In the following program, using the
calculated nonlinear term, we calculate the equation y6.

y6y8[i] = 0 ;
for(int j=0 ; j<= i ; j++)y6y8[i]+

=y[5][j]*y[7][i-j] ;
y[6][i+1] = (-280y6y8[i]+0.69*y[4][i]

1.71*y[5][i]-0.43*y[6][i]+0.69*y[7][i])/(i+1) ;

The nonlinear clause calculated here is applicable also to calculation of y7 and y8.
Calculation of this nonlinear clause is also a kind of automatic differentiation[Ra81].
The library of Taylor series [Hi2] was used for actual calculation.
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Table 27.1 Numerical results of HIRES.

order comp. time(msec) No. of steps max. step size min. step size

3 874.00 1244404 6.04e-3 4.28e-12

4 45.41 61444 3.73e-2 3.06e-8

5 13.06 16254 1.63e-1 2.85e-6

6 9.40 10980 2.17e-1 4.75e-5

7 8.42 9179 4.15e-1 3.03e-4

8 7.69 8200 4.85e-1 8.96e-4

9 7.51 7445 5.00e-1 1.81e-3

10 7.32 6870 5.33e-1 3.48e-3

11 7.08 6371 5.73e-1 6.0ee-3

12 6.90 5951 6.24e-1 9.74e-3

13 6.89 5583 6.31e-1 1.46e-2

14 6.78 5261 7.12e-1 1.97e-2

15 6.77 4974 7.28e-1 2.33e-2

16 6.59 4718 7.65e-1 2.85e-2

17 6.59 4487 8.14e-1 3.46e-2

18 6.59 4277 8.78e-1 3.79e-2

19 6.65 4088 8.73e-1 3.97e-2

20 6.59 3914 9.00e-1 4.15e-2

25 6.59 3228 1.11e-1 5.03e-2

30 6.59 2749 1.26e-1 5.91e-2

35 6.71 2395 1.22e-1 6.79e-2

27.2.2 Computational Results

This equation was solved by using Taylor series in the order from 3 to 20 and 25,
30, 35. The results are given in Table 27.1.

Suppose that Taylor series obtained in the calculation assumed the form

y(t) = y0 + y1(t− t0)+ y2(t− t0)
2 + · · ·+ yn(t− t0)

n (27.4)

By use of this formula(27.4), the absolute error is presumed to be yn(t− t0)n. If a
step size is set to h, step size h which fulfills the conditions of the absolute error εabs

can be written as

|ynhn| ≤ εabs (27.5)

If y0( �= 0) assumes that it is very large compared to ynhn, it turns out that step size
h fits the formula

|yn

y0
hn| ≤ εrel (27.6)
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The step size h is calculated for every formula((27.4)and(27.6)) from these condi-
tional expressions. Let the minimum of the obtained calculation results be a step
size h. It computed using the adapted type numeric solution using this step size. In

this computation, it computed as εabs = ε [rel = 10−14].
When the 3rd order formula was used for this problem, only about 12 figures of

accuracy were acquired probably for the rounding error. The accuracy of about 13
figures was acquired in 4th order formula. The accuracy of 14 or more figures was
acquired in 5th or more order formula.

27.3 Comparison with the Implicit Runge–Kutta Method

Here, comparison with the implicit Runge–Kutta method is performed. Although the
implicit Runge–Kutta method was known from before that calculation of arbitrary
order is possible, since it was necessary to solve a nonlinear equation in the
computation, high order calculations were not actually performed. Such calculations
are performed recently, we did a comparison between the results and the Taylor
series method.

27.3.1 Lorenz Model

We consider Lorenz model as a simple problem. This problem is simple three
ordinary differential equations as represented by the following ordinary differential
equations.

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dy1

dx
= σ(−y1 + y2)

dy2

dx
= −y1y3 + ry1− y2

dy3

dx
= y1y2−by3

(27.7)

Initial conditions and constants are

y1(0) = 0, y2(0) = 1, y3(0) = 0, σ = 10, r =
470
19

, b =
8
3

This problem(27.7) is integrated over the interval [0,50] by the multi-precision
floating point number of 200 digits.

This problem is known as one of the nonlinear equations representing a chaotic
behavior. In double-precision calculations, for cancelation, it is also known a
problem that accurate results cannot be obtained. Here, it is calculated at 200 digits
of sufficient accuracy is calculated by decreasing the influence of cancelation.
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Table 27.2 Calculation results of the 200-digit accuracy of the Lorenz model.

(Tolerance) Taylor series(10−120) Implicit Runge–Kutta(10−120)

Order( No. of Stages) 160 200 240 160(80) 200(100) 240(120)

CPU time(sec) 42.5 46.1 81.7 1991.4 2317.4 2555.0

No. of Steps 1005 706 557 1661 863 563

Error 1.0e-110 2.7e-110 2.3e-110 6.5e-110 1.3e-109 2.3e-109

By using this program, we computed for three kinds of calculation order (100,
120,160) with a required accuracy of 10−120. The results are shown in Table 27.2.
Also shown there are the results of the IRK method according to Kouya [Ko13].

Since the computing environment is different, the comparison is difficult. When
compared simply, the Taylor series method can be seen to be about 40 times faster
than the IRK method.

27.3.2 The P-Dimensional Brusselator Problem

As a big problem, I can deal with one-dimensional Brusselator problem. This
ordinary differential equation is derived from the partial differential equations

⎧
⎪⎨

⎪⎩

∂u
∂ t

= 1+u2v−4+0.02
∂ 2u
∂x2

∂v
∂ t

= 3u−u2v+0.02
∂ 2v
∂x2

If this equation is equally divided into N pieces(N = 500) in terms of the space
variable, N +1 ordinary differential equations will be obtained.

Boundary condition : u(x = 0, t) = 0,u(x = 1, t) = 0,v(x = 0, t) = 3,v(x = 0, t)
= 3. Initial condition : u(x, t = 0) = 1+ sin(2πx),v(x, t = 0) = 3

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dui

dt
= 1+u2

i vi−4+0.02
ui+1−2ui +ui−1

(Δx)2

dvi

dt
= 3ui−u2

i vi−4+0.02
vi+1−2vi + vi−1

(Δx)2

(i = 0,1, · · · ,N +1)

We integrated these ordinary differential equations on [0,10]. Computation was
done using the multiple-precision number of radix 108 of 10 figures (they contain
about 80 digits). Kouya was calculated with an accuracy of 70 digits.

By the IRK method, since the calculation degree became twice a number of
stages, the degree calculated using the (40, 60, 80)-th order Taylor series. This
calculation result is shown in table 27.3.
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Table 27.3 The calculation result of the 70-digits accuracy of 1D Brusselator problem.

(Tolerance) Taylor series(10−60) Implicit Runge–Kutta(10−60)

Order( No. of Stages) 40 60 80 40(20) 60(30) 80(40)

CPU time(sec) 6518.2 9131.3 11797.6 19712.0 11377.8 13667.6

No. of Steps 12313 8454 6436 3249 890 630

error 2.9e-63 8.6e-65 1.2e-65 4.8e-53 1.1e-43 1.7e-44

Table 27.4 The calculation result of the 70-digits accuracy of 1D
Brusselator problem at the time of restricting a step size.

Tolerance(10−60) max hk ≤ 0.005 max hk ≤ 0.002

Order( No. of Stages) 60(30) 80(40) 60(30 ) 80(40)

CPU time(sec) 21834.0 32983.4 43723.7 74230.3

No. of Steps 1864 1748 3856 4156

error 1.1e-49 7.4e-49 3.4e-53 2.9e-53

In this problem, although the computation times of the Taylor series method and
the IRK method are almost same, when comparing the calculation results by the
two methods we see as for the calculation result by the IRK method, we see that the
latter are worse after about 10 figures of arithmetic precision.

Kouya has aimed to improve this point, when arithmetic precision restricts a step
size. In Table 27.4, restricting a step size 0.002 ≤ h ≤ 0.005 shows that arithmetic
precision is improvable.

Comparing these improved results with the Taylor series method results, we
conclude that the calculation accuracy is almost the same. However, due to
limitations of the step size, we see that the computation time of the latter increases
considerably. In this case, the IRK method requires from 4.7 to 7.3 times more time
than the Taylor expansion method.

27.4 Conclusions

When computing with different environments, it is impossible to discuss the relative
merits of the two methods. But if the performance of the compiler and the multiple-
precision arithmetic program are almost the same, then the Taylor series method
is about 40 times faster than the IRK method, which makes the calculation in stiff
problems several times faster.

In stiff problems, for many ordinary differential equations using the Taylor series
method and high-order calculation methods we can expect accurate computations at
high speed.

For the Taylor series method, because the calculation procedure is simple,
parallelization is easy. In particular, parallelization in the higher-order calculation
is effective. It seems that speed of the higher-order calculation, which requires a
longer time, can be improved by parallelization.
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Chapter 28
Retinal Image Quality Assessment
Using Shearlet Transform

E. Imani, H.R. Pourreza, and T. Banaee

28.1 Introduction

Eye diseases such as diabetic retinopathy (DR) affect a large number of the
population. Retinal fundus photographs are widely used in the diagnosis and
treatment of various eye diseases in clinics. It is also one of the main resources
for mass screening of diabetic retinopathy. The resulting retinal images must
be examined by an expert human grader in a cumbersome and time-consuming
diagnosis process. Automated analysis and diagnosis has the potential to reduce
the workload and thus increase the cost-effectiveness of such screening initiatives.
Nevertheless, there are number of problems that must be solved in order to develop
a fully reliable automated retinal images analysis system. Among them, is the need
to guarantee that the quality of the retinal images to be graded exceeds a threshold
below which the automated analysis procedures may fail [PiOlDa12].

In a DR system, an image is considered poor quality if it is difficult or impossible
to make a reliable clinical judgment on the image regarding presence or absence
of DR [YuEtAl12]. Performing automated analysis on the image of insufficient
quality will produce unreliable results. Images with low quality should be examined
by an ophthalmologist and reacquired if necessary [NiAbVa06]. The store and
forward teleophthalmology systems involve acquiring images and transmitting them
for remote retinopathy detection. This could become problematic when received
images do not have enough quality and patient is not accessible. Thus an algorithm
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with ability of automatically assessing fundus image quality is a necessary tool
in preprocessing stage for reliable lesion detection especially in the systems that
deliver eye care through telecommunications technology.

Fundus image quality can be affected by a number of factors including patient’s
head or eye movement, poorly dilated and small pupils, blinking and media opacity.
Head or eye movement can result in out-of-focus and incorrectly illuminated
images. Poorly dilated pupils may affect image illumination and create dark low-
contrast images that can prevent lesion identification. If fundus cameras capture
retinal images through cataract, images appear blurred and are often poor quality
[HuEtAl11]. In 2006, Zimmer–Galler [ZiZe06] reported that 11% of the images
in their study were unreadable. It was estimated that 25% of the poor quality
images were caused primarily by poor patient fixation, 25% by poor focus and
pupil centering, and 25% were thought to be caused by small pupil size, media
opacity, and instrument failure. A specific cause for the unreadable image could not
be determined for the remainder. Figure 28.1 shows some instances of good and
poor quality retinal images.

Several approaches have been developed to automatically determine the quality
of the retinal images. These approaches could be classified into two categories. The
first category is based on generic image quality parameters such as sharpness and
contrast. These methods make use of simple image measurements to estimate image
quality avoiding eye structure segmentation procedures which are usually complex
and time-consuming tasks [PiOlDa12]. In 2001, Lalondey [LaGaBo01] proposed a
method based on histogram of edge magnitude and local histogram of pixel gray-
scale values to evaluate image focus and illumination. In this method, the quality
of a given image is determined through the difference between its histogram and
the mean histogram of a set of good quality images used as reference. In 2009,

Fig. 28.1 Examples of good quality and poor quality retinal images: top row are good quality
images and bottom row are poor quality images
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Davis et al. [DaEtAl09] focused their quality assessment on contrast and luminance
features. A method based on sharpness and illumination parameters was proposed
by Bartling [BaWaMa09] in 2009. Illumination was measured through evaluation
of contrast and brightness and the degree of sharpness was calculated from the
spatial frequencies of the image. Image structure clustering, Heralick features, and
sharpness measures based on image gradient magnitudes were used by Paulus et al.
[PaEtAl10] to classify poor quality retinal images. In 2012, Dias et al. [PiOlDa12]
introduced a method based on fusion of generic image quality indicators such as
image color, focus, contrast, and illumination.

The advantage of the image quality assessments based on generic image quality
measures is their algorithmic simplicity which translates into reduced computational
complexity [PiOlDa12].

The second group is based on the structural information of the image which
requires segmentation of anatomical landmarks in retinal images. In 2005, Fleming
et al. [FlEtAl06] developed a method based on field definition and image clarity.
The clarity analysis is based on the vasculature of a circular area around the
macula. The authors whether or not a given image has enough quality using
presence/absence of small vessels in the selected circular areas. In 2006, Niemeijer
[NiAbVa06] proposed a method based on clustering the filter bank response vectors
in order to obtain a compact representation of the image structures. In 2008,
Giancardo et al. [GiEtAl08] assessed the quality of retinal images based on the
eye vasculature. Giancardo concluded used vessel density in local patches as a
feature vector for quality assessment. In 2011, Hunter et al. [HuEtAl11] proposed a
method based on the clarity of retinal vessels within the macula region and contrast
between the fovea region and retina background. The methods based on structural
information require anatomical landmarks segmentation which is complex and error
prone, especially in the case of poor quality images. This is the major disadvantage
of such approaches [PiOlDa12].

The rest of the chapter is organized as follows. In Section 28.2, we give a brief
introduction to shearlet transform. In Section 28.3, we propose a retinal image
quality assessment based on generic parameters with the usage of shearlet transform.
We evaluate the performance of the developed approach in Section 28.5. The results
are compared against state-of-the-art retinal image quality assessment methods. In
Section 28.6, we finish the paper with some conclusions.

28.2 Prerequisites

One of the most useful features of wavelets is their ability to efficiently approximate
signals containing pointwise singularities. Consider a one-dimensional signal which
is smooth away from point discontinuities. If the signal is approximated using the
best M-term wavelet expansion, then the rate of decay of the approximation error, as
a function of M, is optimal. In particular, it is significantly better than corresponding
Fourier approximation error [Li10]. Since wavelets have isotropic supports, they
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fail to capture the geometric regularity along edges. Recently, the novel directional
representation system of shearlets [LaEtAl05] proposed to provide efficient tools for
analyzing the geometrical structures of a signal using anisotropic window functions.
Among directional representation systems, shearlets are the most versatile and
successful systems, the reason for this being an extensive list of desirable properties:
shearlet systems are generated by one function, they provide precise resolution
of wavefront sets, they allow compactly supported analyzing elements, they are
associated with fast decomposition algorithms, and they provide a unified treatment
of the continuum and the digital realm [KuLeLi12].

28.2.1 Brief Introduction to Shearlet Transform

In many applications in image processing, the important information is often located
around edges separating image objects from background. These features correspond
to the anisotropic structures in the image. Shearlets are designed to efficiently
encode such anisotropic features [KuLeLi12]. For j≥ 0,k ∈ Z, let

A2j =

(
2j 0

0 2
j
2

)

Sk =

(
1 k
0 1

)

Mc =

(
c1 0
0 c2

)

where c = (c1,c2) and c1,c2 are positive constants. Similarly,

Ã2j =

(
2j 0

0 2
j
2

)

S̃k =

(
1 k
0 1

)

M̃c =

(
c1 0
0 c2

)

We are now ready to define a shearlet transform as follows. Let c = (c1,c2) ∈
(R+)

2. For φ ,ψ, ψ̃ ∈ L2(R2) the cone-adapted discrete shearlet system SH(φ ,ψ, ψ̃)
is defined by

SH(φ ,ψ, ψ̃;c) =Φ(φ ;c1)Ψ(ψ;c)Ψ̃(ψ;c)

where

Φ(φ ;c) = {φm = φ(.−m) : m ∈ Z2}
Ψ(ψ;c) = {ψj,k,m = 23j/4ψ(SkA2j .−m) : j≥, |k| ≤ &2j/2',m ∈McZ2}
Ψ̃(ψ̃;c) = {ψ̃j,k,m = 23j/4ψ̃(S̃kÃ2j .−m) : j≥, |k| ≤ &2j/2',m ∈McZ2}

If SH(φ ,ψ, ψ̃;c) is a frame for L2(R2), we refer to φ as a scaling function and ψ
and p̃si as shearlets. Observe that shearlets are obtained by applying translation,
anisotropic scaling matrices A2j and shear matrices Sk to the fixed generating
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Fig. 28.2 The tilting of the
frequency plane introduce by
shearlets inΨ .

functions ψ . The matrices A2j and Sk lead to windows which can be elongated
along arbitrary directions and the geometric structures of singularities in images
can be efficiently represented using them [Li10]. Figure 28.2 shows the tilting of
the frequency plane using shearlet system ψ . It was shown that shearlet ψ can
provide nearly optimal approximation for a piecewise smooth function f with C2

smoothness except at points lying on C2 curves [Li10].

28.3 Proposed Method

In this work, an automated retinal image quality assessment system is presented.
Input to the developed system is a color image of human retina, which is acquired by
using a fundus camera, and its output is the quality level of the input image, as shown
in Figure 28.3. The proposed method follows a sequences of steps: preprocessing,
feature extraction, and classification. In preprocessing step, we remove useless
image information in order to decrease the processing time and the green channel
of the retinal image selected for further processing. In the second step, we extract
generic features with the usage of shearlet transform. Finally by using these features
and a supervised classifier, we specify whether the image is of poor or good quality.
In this section, the proposed algorithm is described in detail.

28.3.1 Preprocessing

Since green channel of the image provides maximum contrast for retinal landmarks
such as vessels among other color image components, this channel is chosen to
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Classification

Feature
Extraction

Quality Level

Retinal Image Image Cropping
Green Channel Selection

Preprocessing

Fig. 28.3 Block diagram of the proposed method

apply the proposed algorithm. We remove useless information of the retinal image
by cropping it in order to include retinal region only. A mask for cropping the retinal
image is created using a threshold value and morphological operations. The binary
mask is created by applying a threshold value of 3 to green plane of the retinal
images. Afterwards, noisy regions on the background and foreground are removed
using morphological opening and closing. After creating the retinal mask, we find
the bounding box containing the retinal region. Cropping the useful part of retinal
image accelerates other processing stages. Finally, the images are resized to 512×
512 pixels.

28.3.2 Feature Extraction

Visual perception is very sensitive to local image structures such as edges. The
quality of the image is a function of edge strength. In blurred and low contrast
images, the strength of edges is very weak. Thus evaluation of retinal image quality
can be made by edge features. In retinal images, these edges arise from vasculature,
optic disk, and lesions. The proposed method assesses the quality of retinal images
using edge information. The edge features correspond to the anisotropic structures
in the data. Since shearlet systems capture such anisotropic features efficiently
[KuLeLi12], we use shearlet transform to detect retinal edge features. The degree
of image quality could be specified by measuring the alterations in the statistical
characteristics of the shearlet coefficients.

We classify retinal images as good quality or poor quality. Some instances of
poor quality retinal images are shown in Figure 28.1. As it is shown in this figure,
the strength of the edges in poor quality images is lower than good quality ones.
Thus, the image quality level can be specified by measuring the changes in statistical
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characteristics of the edge information. The retinal image is decomposed using
shearlet transform. Each coefficient in shearlet expansion of an image is the result of
convolution of the associated shearlet and the image. If a shearlet of a given scale,
angle, and location is approximately aligned along a curve, its shearlet coefficient
is large, otherwise it is close to zero [KuSa07]. Since changes in image quality
level affect the property of curve singularities in the image, the corresponding large
shearlet coefficients will be also affected. Hence, the quality of retinal image could
be assessed using statistical characteristics of shearlet coefficients.

In order to demonstrate that sub-band statistics are affected by changing in
quality levels of the image, Figure 28.5 plots the coefficients distribution of good
and poor quality retinal images which were shown in Figure 28.4. As it has been
indicated in Figure 28.5, the coefficients distribution of the poor quality retinal

Fig. 28.4 Some instances of retinal images with different quality level. (a): a good quality retinal
image. (b-d): poor quality retinal images.
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Fig. 28.6 VSCF values of 400 retinal images with different quality level.

images is more concentrated around zero and falls rapidly. The Variance of the
Shearlet Coefficients Frequency (VSCF) is computed to evaluate the quality of the
images. By decreasing the quality level of image, the value of VSCF increases. In
order to demonstrate the effect of quality level on the VSCF value, Figure 28.6
shows the value of VSCF for 400 images with 200 good quality and 200 poor
quality. As it can be seen from Figure 28.6, the VSCF values for good quality retinal
images are less than VSCF values for poor quality ones. Thus, VSCF value could
be used to classify retinal images as good quality or poor quality.

The images are decomposed into three scales and 8 orientations to form oriented
responses. Since the finer scales are more sensitive to noise, the coefficients of the
second scale of shearlet transform are used to extract statistical features.

28.4 Material

Several retinal image datasets were used to develop and test the retinal image quality
assessment. All of the images have been manually graded by ophthalmologists from
the Khatam-Al-Anbia eye hospital of Mashhad, Iran, using a software tool provided
for image annotation.
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28.4.1 Messidor Dataset

The images in this dataset were obtained using a color video 3CCD camera on
Topcon TRC NW6 non-mydriatic retinograph with a 45 degree field of view. The
dataset consists of 1200 eye fundus color images with the size of 1440×960, 2240×
1488 or 2304×1536 pixels.

28.4.2 Khatam-Al-Anbia Dataset

Khatam-Al-Anbia dataset were obtained in Khatam-Al-Anbia eye hospital of
Mashhad, Iran. This dataset includes 1000 retinal images with the resolution of
3872×2592 pixels.

28.5 Results

This section presents the classification results of the image quality assessment
algorithm. The retinal images are classified as good quality and poor quality using a
supervised classifier and extracted feature vector. A support vector machine (SVM)
with different kernels was used as a classifier. Classifier testing was performed by
5-fold cross validation, using 80% of the dataset for training and 20% of the dataset
for testing. In order to assess the algorithm performance, three measures were used:
sensitivity, specificity, and accuracy. These performance measures are defined as
follows:

sensitivity =
TP

TP+FN

specificity =
TN

TN +FP

accuracy =
TP+TN

TP+FP+TN +FN

Where TP, TN, FP, and FN represent true positive, true negative, false positive,
and false negative, respectively. The results of the retinal quality assessment using
SVM classifier with different kernels on Messidor and Khatam-Al-Anbia datasets
are shown in Table 28.1 and Table 28.2. As it is shown in Table 28.1, the best
results are obtained using rbf and polynomial kernels on Messidor and Khatam-
Al-Anbia datasets. Table 28.3 compares the performance of the proposed method
with the method presented in [NiAbVa06], in terms of sensitivity, specificity on
Messidor dataset. Results of Niemeijer et al. [NiAbVa06] is provided by the authors.
The results show that the performance of the proposed method is higher than this
algorithm.
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Table 28.1 Performance
achieved by the proposed
method on Messidor dataset.

sensitivity specificity accuracy

linear 96.00 93.59 93.58

quadratic 96.00 92.83 92.83

polynomial 92.00 93.17 93.08

rfb 96.00 93.76 93.75

Table 28.2 Performance
achieved by the proposed
method on Khatam-Al-Anbia
dataset.

sensitivity specificity accuracy

linear 96.34 97.46 96.90

quadratic 96.72 97.26 97.00

polynomial 97.15 96.69 96.90

rfb 96.34 97.46 96.90

Table 28.3 Performance
achieved by the proposed
method and Neimeijter et al
method.

sensitivity specificity

Proposed Method 96.00 93.76

Niemeijer et al. Method 84.44 90.73

28.6 Conclusions

The proposed method evaluates the retinal image quality with the usage of shearlet
transform. Changes in quality level of the retinal image affect the properties of
image edges. Therefore, edge information for the images could be used to assess
their quality. The edge and curve information of the image are detected using
shearlet transform. Image quality levels were specified by measuring the alterations
of the statistical characteristics of shearlet coefficients. Experimental results have
shown that the proposed method gives comparable results (93.75% for Messidor
and 96.90% for Khatam-Al-Anbia) on Messidor and Khatam-Al-Anbia datasets.
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Chapter 29
The Radiative–Conductive Transfer Equation
in Cylinder Geometry and Its Application
to Rocket Launch Exhaust Phenomena

C.A. Ladeia, B.E.J. Bodmann, and M.T.B. Vilhena

29.1 Introduction

Evolution of aerospace engineering during the last decades includes among others
extensive research on rocket launches [BiLi04]. During launch thrust is produced
by burning solid or liquid fuel, where hot combustion products are released into
the atmosphere. In particular, we are interested in thermal effects behind the nozzle
exit, which is predominantly characterized by radiation and thermal conduction.
In this context, we derive a solution for the radiative–conductive transfer problem
in a co-moving cylindrical coordinate system. The solution allows to simulate
the radiation and temperature field together with conductive and radiative energy
transport originating from the exhaust released in the rocket launches. In general,
the equation of radiative–conductive transfer in cylinder geometry is difficult to
solve without introducing some approximations, such as linearization or discretizing
angular terms, that turn the construction of an acceptably precise solution to
an approximate problem feasible. Solutions found in the literature are typically
determined by numerical means, see, for instance, [Li00, MiKrKi11].

In the sequel, we discuss a semi-analytical approach reducing the original
equation, which is continuous in the angular variables, into an equation similar to the
Cartesian SN radiative–conductive transfer problem, but considering cylinder geom-
etry. The solution is constructed using a composite method by Laplace transform
and Adomian decomposition method [Ad88]. The Laplace method gives way to
use established procedures for linear problems, while the Adomian decomposition
method allows to treat the nonlinear contribution as source term of a linear recursive
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problem. This recursive scheme opens a pathway to determine a solution, in
principle to any prescribed precision. It is noteworthy that this methodology was
also successfully applied to attain the solution of the SN nodal equations in Cartesian
geometry [BoViSe11, PaViHa02, PaViHa03].

29.2 The Radiative Conductive Transfer Equation
in Cylindrical Geometry

We consider the one-dimensional problem in cylindrical geometry and assume that
the problem is independent of time t. Further, the intensity is integrated over the
entire spectrum. This problem of energy transfer is described in [Oz73] by the
conductive-radiative transfer equation coupled with the energy equation,

√
1−ξ 2

[

γ
∂I (r,ξ ,γ)

∂ r
+

1− γ2

r
∂I (r,ξ ,γ)

∂γ

]

+I (r,ξ ,γ)

=
ω(r)

2

∫ 1

0

∫ 1

−1
P(ξ ,ξ ′)I (r,ξ ′,γ ′)dξ ′

dγ ′
√

1− γ ′2 +(1−ω(r))Θ 4(r). (29.1)

Here, I is the radiation intensity, ω is the single scattering albedo and P(ξ )
signifies the differential scattering coefficient, also called the phase function. The
integral on the right-hand side of (29.1) can be written as

∫ 1

−1
P(ξ ,ξ ′)I (r,ξ ′,γ ′)dξ ′ =

∞

∑
l=0
βl

∫ 1

−1
Pl(ξ )Pl(ξ ′)I (r,ξ ′,γ ′)dξ ′ ,

where the summation index refers to the degree of anisotropy, for details see
[BoViSe11]. The energy equation for the temperature that connects the radiative
flux to a temperature gradient is

r
d2

dr2Θ(r)+
d
dr
Θ(r) =

1
4πNc

d
dr

[rq∗r ] . (29.2)

Here, Nc is the conduction-radiation parameter

Nc =
kβext

4σn2T3
r
,

with k the thermal conductivity, βext the extinction coefficient, σ the Stefan-
Boltzmann constant and n the refractive index. The dimensionless radiative flux
is expressed in terms of the intensity by

q∗r = 4
∫ 1

0

∫ 1

−1
I(r,ξ ′,γ ′)dξ ′

dγ ′
√

1− γ ′2 .
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The boundary conditions of equation (29.1) are

I (r,ξ ,γ)|r∈{0,R} = ε(r)Θ 4(r)+ρd(r)
∫ 1

0

∫ 1

−1
I (r,ξ ′,γ ′)dξ ′

dγ ′
√

1− γ ′2

∣
∣
∣
∣
∣
r∈{0,R}

,

where ρd is the diffuse reflectivity, ε is the emissivity and the boundary conditions
of equation (29.2) are

d
dr
Θ(r)

∣
∣
∣
∣
r=0

=ΘT and Θ(r)|r=R =ΘB .

29.3 Solution by the Decomposition Method

The equations (29.1) and (29.2) can be simplified using a discrete countable set of
angles following the collocation method, which defines the problem of radiative–
conductive transfer in cylindrical geometry in the so-called SN approximation
extended by an additional angular variable In,m(r,ξn,γn,m) and represented by the
following equations.

γn,m
∂In,m

∂ r
+

(
1− γ2

n,m

r

)
∂In,m

∂γ
+

1
√

1−ξ 2
n

In,m = (29.3)

=
ω(r)
√

1−ξ 2
n

L

∑
l=0
βlPl(ξn)

N/2

∑
p=1

(N/2)−n+1

∑
q=1

ϖp,qPl(ξp)Ip,q +
(1−ω(r))
√

1−ξ 2
n

Θ 4(r) ,

d
dr
Θ(r)− d

dr
Θ(r)

∣
∣
∣
∣
r=0

=
1

Nc

N/2

∑
p=1

(N/2)−n+1

∑
q=1

ϖp,q[Ip,q(r)−Ip,q(0)] , (29.4)

where ξn and γn,m are evaluation points. A sketch of the cylindrical domain together
with the definition of the discrete angular variable is shown in figure 29.1.

The integration is carried out over two octants with 1≤ n≤ N/2 and 1≤ m≤ N
and subject to the boundary conditions

In,m(0) = ε(0)Θ 4(0)+ρd(0)
N/2

∑
p=1

(N/2)−n+1

∑
q=1

ϖp,qIN/2−p+1,q(0),

IN/2−n+1,m(R) = ε(R)Θ 4(R)+ρd(R)
N/2

∑
p=1

(N/2)−n+1

∑
q=1

ϖp,qIp,q(R),
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Fig. 29.1 Representation of
the physical domain in
cylinder geometry.

Note that the integrals over the angular variables are replaced by a system of
Gaussian quadrature with weights ϖp using

ϖp,q = π
ϖp

N
,

where weights ϖp are normalized to one so that ϖp,q is normalized to the solid angle
of an octant.
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N/2

∑
p=1

ϖp = 1
N/2

∑
p=1

N

∑
q=1

ϖp = π

Here, p indicates a discrete direction of ξp and q a discrete direction of γp,q, respec-
tively. The equation system (29.3) and (29.4) may be cast in matrix representation

A
d
dr

Ip,q +

{

B
d
dγ

Ip,q

}

γ=γp
−CIp,q =Ψ , (29.5)

with A = γn,m, B = (1− γ2
n,m) and C is a square matrix,

C(i, j) =

⎧
⎨

⎩

1√
1−ξi

+
ωj(r)√

1−ξi

[
∑L

l=0βlPl(ξi)Pl(ξj)
]

for i = j

ωj(r)√
1−ξi

[
∑L

l=0βlPl(ξi)Pl(ξj)
]

for i �= j.

The nonlinear terms are

Ψ =

⎛

⎝ (1−ω(r))
√

1−ξ 2
1

Θ 4(r), . . . ,
(1−ω(r))
√

1−ξ 2
N

Θ 4(r)

⎞

⎠

T

.

For each direction γ = γq in equation (29.5), the angular derivative term is
discretized by a central difference scheme.

{

B
d
dγ

Ip,q

}

γ=γq
≈ αq+1/2Iq+1/2−αq−1/2Iq−1/2

ϖq

where Iq±1/2 are the angular intensities in the directions q± 1/2, and the central
difference scheme is adopted to correlate them to the unknown Iq, i.e., Iq =
1
2 (Iq+1/2 +Iq−1/2). The coefficients αq±1/2 result from azimuthal difference
terms. These terms are chosen such so as to establish energy conservation, i.e., the

integration of the term
(

B d
dγIp,q

)
over the whole azimuthal angle shall be equal

zero. Details about the selection of αq±1/2 are explicitly given in ref. [LiOz91]. In
shorthand notation equation (29.5) reads now

A
d
dr

Ip,q−EIp,q =Ψ , (29.6)

where E =−[B+C] with B a tridiagonal matrix.
According to Adomian’s prescription [Ad88] the intensity of radiation is

expanded in an infinite series:

Ip,q =
∞

∑
l=0

Yl (29.7)
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Equation (29.6) is then

∞

∑
l=0

(

A
d
dr

Yl−EYl

)

=

=

⎛

⎝ (1−ω(r))
√

1−ξ 2
1

, . . . ,
(1−ω(r))
√

1−ξ 2
N

⎞

⎠
∞

∑
l=0

Al−1 ({Yl}∞l=0) . (29.8)

In order to solve the equation system (29.8) in a recursive fashion, initialization
is chosen to be

A
d
dr

Y0−EY0 = 0

together with the boundary conditions and then entering a recursive process of the
equations for the remaining components Yl,

A
d
dr

Yl−EYl =

⎛

⎝ (1−ω(r))
√

1−ξ 2
1

, . . . ,
(1−ω(r))
√

1−ξ 2
N

⎞

⎠Al−1 ({Yl}∞l=1) ,

with l = 1,2, . . . ,L.
Upon applying the Laplace transformation in the radial variable in equation

(29.9) together with the boundary conditions, one obtains the solution

Yl(r) =L −1((sI−U)A−1Yl(0))+L −1((sI−U)Ψ(s)),

where L −1 denotes the inverse Laplace transformation operator, s is a complex
parameter, U = A−1E and the decomposed matrix U = XDX−1, D is the diagonal
matrix with distinct eigenvalues and X is the eigenvector matrix. Thus, the general
solution is given by

Yl(r) = XeDr Vl +

+XeDr X−1*Al−1 ({Yl}∞l=1)

⎛

⎝ (1−ω(r))
√

1−ξ 2
1

, . . . ,
(1−ω(r))
√

1−ξ 2
N

⎞

⎠ ,

with l = 0,1,2, . . . ,L. The nonlinearity is represented by the termΘ 4(r) and will be
represented by Adomian polynomials, given by

LY =
L

∑
l=0

Âl(r) =Θ 4(r).
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Note that one can write the nonlinear term in a generic fashion,

LY =
∞

∑
l=0

Âl(r) =
∞

∑
l=0

1
l!
∂ l(LY)
∂Yl

∣
∣
∣
∣
∣
Y=Y0︸ ︷︷ ︸

f (l)0

(
∞

∑
ν=1

Yν

)l

= lim
a→∞

∞

∑
l=0

1
l!

f (l)0 ∑
b1,...,ba
∑bi=l

((
l
{bi}a

1

) a

∏
ν=1

Ybν
ν

)

= f (0)0 +
∞

∑
l=1

⎛

⎜
⎜
⎝f (1)0 Yl +

l

∑
j=2

1
j!

f (j)0 ∑
b1,...,bl−1
∑bi=j

((
j

{bi}l−1
1

) l−1

∏
ν=1

Ybν
ν

)
⎞

⎟
⎟
⎠ , (29.9)

where the notation f (l)0 for the l-th derivative at Y = Y0. Already in the last line of

equation (29.9) the terms are reorganized so that one identifies the first term f (0)0 and
all the subsequent terms of the series that define the Adomian polynomials Âl.

Â0(r) = f (0)0 = f (Y0),

Â1(r) = f (1)0 Y1 = Y1
d

dY0
f (Y0)

Â2(r) = f (1)0 Y2 + f (2)0 Y2
1 = Y2

d
dY0

f (Y0)+
Y2

1

2!
d

dY0
f (Y0)

...

Âl(r) = f (1)0 Yl +
l

∑
j=2

1
j!

f (j)0 ∑
b1,...,bl−1
∑bi=j

((
j

{bi}l−1
1

) l−1

∏
ν=1

Ybν
ν

)

Accordingly, we apply the Adomian decomposition taking the binomial expansion
of the termΘ 4(r)

Θ 4(r) =

(
L

∑
l=0

Yl(r)

)4

= Y4
0 +4Y3

0

(
L

∑
i=0

Yi(r)

)

+

+
12
2!

Y2
0

(
L

∑
i=0

Yi(r)

)2

+
24
3!

Y0

(
L

∑
i=0

Yi(r)

)3

+
24
4!

(
L

∑
i=0

Yi(r)

)4

.
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29.4 Numerical Results

Below, we implement a fictitious scenario to test consistency of the proposed
method. To this end we determine characteristic quantities for the radiative–
conductive transfer problem, which are the profiles of the temperature, the radiative,
conductive and total heat fluxes, respectively.

Qr(r) =
1

4πNc
q∗r , Qc(r) =− d

dr
Θ(r)

Q(r) = Qr(r)+Qc(r)

All the calculations that follow are based on the parameter set given in table 29.1. As
already mentioned at the present stage of the work the parameters ω , ε , ρ and Nc are
somehow arbitrary but in a subsequent work we will correlate these parameters to
the concentration of pollutant in the exhaust that allows to model the near field,
the source term for pollutant dispersion during rocket launch. We further use a
normalized temperature distribution:

The numerical results for the profile of the temperature, for the conductive heat
flux (Qc), the radiative flux (Qr) and the total flux (Qt) along the radial optical depth
are shown in Figures 29.2, 29.3, 29.4 and 29.5, respectively, where we consider r in
units of r/R that varies between 0 and 1.

Table 29.1 Parameters of
the Problem.

ω(r) ε ρ Nc
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Fig. 29.2 Temperature profile along the radial optical depth.
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Fig. 29.3 Conductive heat flux along the radial optical depth.
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Fig. 29.4 Radiative heat flux along the radial optical depth.

29.5 Conclusions

The present study demonstrates a novel procedure to solve the radiative–conductive
transfer equation in cylindrical geometry approximated in form of the doubly
discrete ordinate representation analogue to the SN equation. The original non-
linear problem was decomposed in a recursive scheme of equation systems similar
to the decomposition description by Adomian. The initialization of the recursion
is a linear equation system with known solution. All the subsequent equation
systems to be solved are of linear type, where the nonlinearity appears as source
term but containing only terms with the solutions from all previous solutions.
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Fig. 29.5 The total heat flux against the radial optical depth.

The recursive scheme is manifest exact in the infinite recursion depth limit, so
that truncation at an adequate finite depth yields an acceptable solution to the
approximate problem. We have not discussed the important issue of convergence,
however, so far various trials have shown us that for polynomial nonlinearities the
recursive scheme converges already for a small recursion depth. A rigorous proof of
convergence is in preparation and will be discussed in future work.

From the physical point of view, we have chosen only an arbitrary set of
parameter for which we found that the total heat flux increases linearly with
increasing radial optical depth as expected. However, future investigations have to
show what are the adequate correlations between the physical parameters emissivity,
reflectivity and albedo among others, that can be related to the density or pollutant
concentration profile in the exhaust released in rocket launch. Such a relation is
essential since existing pollutant dispersion models are characterized by the absence
of thermal properties of the source, so that an extension of the present study in this
direction could open pathways to reduce this shortcoming. In this context the present
approach is a first step in this direction.
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Chapter 30
A Functional Analytic Approach
to Homogenization Problems

M. Lanza de Cristoforis and P. Musolino

30.1 Introduction and Statement of the Problem

We plan to illustrate a functional analytic approach to analyze homogenization
problems, which has already been developed for singular perturbation problems
in bounded domains with small holes (cf. e.g., [La02, La08, La10, La12].) In
the frame of linearized elastostatics and of the Stokes equations, we mention
[DaLa10, DaLa11], and [Da13]. Later on, such an approach has been exploited for
the analysis of problems in unbounded perforated domains with a fixed periodic
structure, for example in [LaMu13, LaMu14, Mu12]. Instead, here we consider the
case where also the size of the periodicity cell tends to zero. The results in this
chapter are based on the work of [LaMu].

We consider a simple linear model problem, which we now introduce. We fix

n ∈ N\{0,1} ,

and introduce a periodicity cell

Q≡]0,1[n .

Clearly, Zn is the set of vertices of a periodic subdivision of Rn corresponding to the
fundamental cell Q.

We plan to perform a periodic set of perforations in R
n. To do so, we fix a point

p ∈ Q.
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Then we fix

α ∈]0,1[ .

For the definition of functions of class C0,α or C1,α in the closure or on the boundary
of an open set, and for the norm on the corresponding Schauder spaces, we refer to
Gilbarg and Trudinger [GiTr83] (see also [Mu12, §2] for the periodic case.)

Next we select a subset Ω of Rn satisfying the following assumption.

Let Ω be a bounded open connected subset of Rn of class C1,α .

Let Rn \ clΩ be connected. Let 0 ∈Ω .

Then there exists ε0 ∈]0,+∞[ such that

p+ εclΩ ⊆ Q ∀ε ∈]− ε0,ε0[ ,

where cl denotes the closure. To shorten our notation, we set

Ωp,ε ≡ p+ εΩ ∀ε ∈ R .

Then we introduce the periodic domains

S[Ωp,ε ] ≡
⋃

z∈Zn

(z+Ωp,ε) ,

S[Ωp,ε ]
− ≡ R

n \ clS[Ωp,ε ] ,

for all ε ∈]− ε0,ε0[. Then a function u from clS[Ωp,ε ]
− to R is q-periodic if

u(x+ eh) = u(x) ∀x ∈ clS[Ωp,ε ]
− ,

for all h ∈ {1, . . . ,n}. Here {e1,. . . , en} denotes the canonical basis of R
n. Next

we introduce a second parameter δ ∈]0,+∞[ and we consider the rescaled periodic
domains

S(ε ,δ )− ≡ δS[Ωp,ε ]
− , S(ε ,δ )≡ δS[Ωp,ε ] ,

which are associated with the periodicity cell δQ. We say δq-periodic the functions
which are periodic with respect to the cell δQ.

We now turn to introduce the data of our problem. Let f be a q-periodic real
analytic function from R

n to R such that

∫

Q
f dx = 0 .
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Let

g ∈ C1,α(∂Ω) .

Then we consider the Dirichlet problem

⎧
⎨

⎩

Δu(x) = f (δ−1x) ∀x ∈ S(ε ,δ )− ,
u is δq−periodic in clS(ε ,δ )− ,
u(x) = g(δ−1ε−1(x−δp)) ∀x ∈ δ∂Ωε ,p ,

(30.1)

for each (ε ,δ ) ∈]0,ε0[×]0,+∞[. As is well known, for each (ε ,δ ) in the set
]0,ε0[×]0,+∞[ problem (30.1) has one and only one solution u(ε ,δ , ·) in the space

C1,α
δq (clS(ε ,δ )−)

of δq-periodic functions of class C1,α in the domain clS(ε ,δ )−. We are interested
into the behavior of u(ε ,δ , ·) and of its energy integral as (ε ,δ ) degenerates to
(0,0). Most of the results in the vast literature on homogenization problems aim
at computing the limiting behavior as (ε ,δ ) degenerates to (0,0), or at writing
asymptotic expansions.

Here instead, we wish to represent u(ε ,δ , ·) or its energy integral in terms of real
analytic maps and in terms of possibly singular at ε = 0, δ = 0, but known functions
of ε , δ in the same spirit of the papers cited at the beginning of the present section.

The chapter is organized as follows. In the next section 30.2, we analyze the
behavior of u(ε ,δ , ·). In the following section 30.3, we analyze the behavior of its
energy integral.

30.2 Analysis of the Solution of Problem (30.1) as (ε,δ )
Degenerates to (0,0)

Let (ε ,δ ) ∈]0,ε0[×]0,+∞[. Then the solution u(ε ,δ , ·) of (30.1) is defined on the
domain clS(ε ,δ )−, which depends upon (ε ,δ ). In order to study the dependence
of u(ε ,δ , ·) upon (ε ,δ ), we find convenient to deal with a domain which does not
depend upon (ε ,δ ). One way is to extend each function defined on clS(ε ,δ )− to be
zero outside of clS(ε ,δ )−. Thus if v is a function from clS(ε ,δ )− to R, we denote
by E(ε ,δ )[v] the function from R

n to R defined by

E(ε ,δ )[v](x)≡
{

v(x) ∀x ∈ clS(ε ,δ )− ,
0 ∀x ∈ R

n \ clS(ε ,δ )− .

Then we can prove the following well-known ‘classical’ result.
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Theorem 1. There exists a constant c̃ which depends only on Ω and g such that

lim
j→∞

E(εj,δj)[u(εj,δj, ·)] = c̃ in Lr(V) ,

for all bounded open subsets V of Rn, and for all r ∈ [1,+∞[, and for all sequences
{(εj,δj)}j∈N in ]0,ε0[×]0,+∞[ which converge to (0,0).

However, in the spirit of this chapter, we want to describe the behavior of the
function E(ε ,δ )[u(ε ,δ , ·)] when (ε ,δ ) is close to (0,0) by means of analytic maps of
(ε ,δ ).

As a first step, we can try to do so in a ‘weak form.’ More precisely, we can try
to describe the behavior of the function

(ε ,δ ) �→
∫

Rn
E(ε ,δ )[u(ε ,δ , ·)]φ dx ,

for all φ ∈ Lr′(Rn) with compact support. Here (1/r)+(1/r′) = 1.
At the moment however, we cannot do so for all elements φ of Lr′(Rn) with

compact support, but only for all the elements φ which belong to a certain dense
subspace Tq of Lr′(Rn) which we now turn to introduce by means of the following.

Proposition 1. The vector subspace Tq of L∞(Rn)∩L1(Rn) generated by the set of
functions

{
χy+sQ : (y,s) ∈ R

n× (Q∩]0,+∞[)} ,

is dense in Lr′(Rn) for all r′ ∈ [1,+∞[.

Then we can prove the following.

Theorem 2. Let φ ∈Tq. Then there exist ε ′, δ ′, s ∈]0,+∞[ and a real analytic map

H : ]− ε ′,ε ′[×]−δ ′,δ ′[→ R ,

such that
∫

Rn
E(ε ,l−1s)[u(ε , l

−1s, ·)]φ dx = snH[ε , l−1s]

for all l ∈ N\{0} such that l > s/δ ′ and for all ε ∈]0,ε ′[.
As a consequence, we can expand the integral

∫

Rn
E(ε ,l−1s)[u(ε , l

−1s, ·)]φ dx

into a convergent expansion of powers of ε and l−1s for ε > 0 small enough and for
l ∈ N\{0} large enough.
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30.3 Analysis of the Energy Integral of the Solution
of Problem (30.1) as (ε,δ ) Degenerates to (0,0)

We now consider the energy integral of the solution u(ε ,δ , ·) in the periodic cell Q.
Namely, we are interested in the behavior of the integral

En[ε ,δ ]≡
∫

Q∩S(ε ,δ )−
|Dxu(ε ,δ ,x)|2 dx ,

as (ε ,δ ) approaches (0,0), and we have the following result, which in the spirit of
the present chapter describes the behavior of En[ε ,δ ] in terms of analytic functions
of (ε ,δ ) evaluated on a discrete set of values of δ .

Theorem 3. There exist εe ∈]0,ε0[, δ ′ ∈]0,+∞[, and le ∈N\{0}, and real analytic
functions

E � : ]− εe,εe[×]−δ ′,δ ′[→ R

P� : ]− εe,εe[→ R

such that

En[ε , l−1] = l2
{
E �[ε , l−1]εn−2 + l−4P�[ε ]

}
,

for all ε ∈]0,εe[ and l ∈ N\{0} such that l≥ le.

In particular, we can expand the term in braces into a convergent expansion of
powers of ε and l−1 for ε > 0 small enough and for l ∈ N\{0} large enough.

We note that the coefficient of the term in braces is l2, which diverges as l tends to

infinity. However, if n≥ 3 and if we choose ε = l−
2

n−2 , we can prove a convergence
result for the energy integral. However, to do so, we need to introduce the following.

Lemma 1. Let n≥ 3. Le c̃ be the constant of Theorem 1. Then there exists a unique
function ũ in C1,α

loc (R
n \Ω) which solves the ‘limiting’ exterior Dirichlet problem

⎧
⎨

⎩

Δu(x) = 0 ∀x ∈ R
n \ clΩ ,

u(x) = g(x) ∀x ∈ ∂Ω ,

limx→∞ u(x) = c̃ .
(30.2)

Then we can state the following.

Corollary 1. Let n ≥ 3. There exist ε̃ ∈]0,εe[, and l̃ ∈ N\{0}, and a real analytic
function

F : ]− ε̃, ε̃ [→ R



358 M. Lanza de Cristoforis and P. Musolino

such that

En[l−
2

n−2 , l−1] =F [l−
1

n−2 ]

for all l ∈ N\{0} such that l≥ l̃. Moreover,

F [0] =
∫

Rn\clΩ
|Dũ|2 dx ,

where ũ is as in Lemma 1.

As a consequence, we can expand the integral

En[l−
2

n−2 , l−1]

into a convergent expansion of powers of l−
1

n−2 for l ∈ N\{0} large enough.
We note that the criticality of the exponent 2

n−2 has been observed a long time
ago by Marčenko and Khruslov [MaKh74] and by Cioranescu and Murat [CiMu82a,
CiMu82b] for related problems (see also Maz’ya and Movchan [MaMo10], where
the assumption of periodicity of the array of holes is relaxed.) Here, we can deduce
by our results, the following corollary, which is in the spirit of those papers, and that
no doubt could be proved with those methods.

Corollary 2. Let n≥ 3. Assume that the boundary datum g of problem (30.1) is not
a constant function. Let h ∈]0,+∞[. Then

lim
δ→0

En[δ h,δ ] =

⎧
⎪⎨

⎪⎩

0 if h > 2
n−2 ,∫

Rn\clΩ |Dũ|2 dx if h = 2
n−2 ,

+∞ if h < 2
n−2 ,

where ũ is the unique solution in C1,α
loc (R

n \Ω) of the ‘limiting’ exterior Dirichlet
problem (30.2).
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Chapter 31
Anisotropic Fundamental Solutions for Linear
Elasticity and Heat Conduction Problems Based
on a Crystalline Class Hierarchy Governed
Decomposition Method

T.V. Lisboa, R.J. Marczak, B.E.J. Bodmann, and M.T.M.B. Vilhena

31.1 Introduction

Fundamental solutions play an essential role in numerical methods such as the
Boundary Elements Method (BEM) and Fundamental Solutions Method (FSM).
Important properties and their efficiency come from these solutions, which can
be the response of an infinite or semi-infinite domain subject to a point load and
submitted to radiation boundary conditions (Sommerfeld Type).

The influence of material on mechanical and thermal responses of structures
has been studied for decades. The generalized Hooke’s Law describes a stress-
strain linear relationship in elastic solids, in which several crystals and metals can
be included. Due to the internal symmetries and to the crystalline lattice form,
all the elastic materials can be arranged into eight different symmetry groups
([CoMe95, ChVi01]). The Hooke’s Law counterpart in heat conduction in solids
is known as Fourier’s Law, which describes a relationship between the heat flux and
the temperature distribution. Elasticity problems can be expressed in a similar way
and can be divided into three symmetric groups.

Based on Smith et al. work [SmSm63], Tu [Tu68] has presented an additive
decomposition of the fourth-order and second-order flexibility and constitutive
tensors, where the symmetries are the criteria for their superposition. Another
additive decomposition has been presented by Browaeys & Chevrot [BrCh04].
A constitutive tensor vectorial representation has been used and, with specific
matrices, this vector was operated to change its symmetry.
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The constitutive symmetries’ significance to fundamental solutions lies on the
additional complexity, or even the impossibility, of their determination in an
analytical closed form. Many researchers have worked on ways to develop these
solutions and have presented the use of several analytical and numerical methods
to their determination: derivation through the Fourier Transform ([MaDe11]), the
Radon Transform ([MaDe11, BuMa14]), the use of auxiliary tensors ([NaTu97,
LiSu07]), Stroh’s Formalism ([Ti96, ChRe02, BuOr10]), the direct integration of
the equations, other complex-variable formalisms [BuMa14], etc.

For three-dimensional elasticity, only two analytical closed form fundamental
solutions are known and both are for the simpler materials symmetry: isotropy and
transverse homogeneity ([NaTu97, Ti96, Wa97]). Furthermore, internal relations of
material properties can originate singularities in anisotropic fundamental solutions,
which cause their non-reduction to simpler/higher symmetry cases. This effect is
called degeneracy and almost all known anisotropic fundamental solutions can
develop it. This degeneracy is related to the differential operator’s characteristic
equation roots and their associated multiplicity [NaTu97].

Wang [Wa97] has presented three-dimensional fundamental solutions using an
integral representation of the Dirac delta distribution together with the residual
theorem integration scheme. The derivation process of the fundamental solutions
and its first and second derivative has been presented, however not explicitly. Tonon
et al. [ToPa01] have used the aforementioned methodology and have presented
numerical applications of these solutions in a BEM code. Results were presented
for a transversally homogeneous symmetry and have shown good correlations to
solutions known in the literature.

Buroni et al. [BuOr10] have presented a methodology using the residual inte-
gration theorem scheme to avoid the problem of multiple roots in the integrand’s
denominator, as done by Wang [Wa97], and have used the second Barnett–Lothe
tensor, as done by Távara et al. [TaOr08]. The three-dimensional fundamental
solution can be written in a unique formula for all constitutive symmetries, in which
the roots multiplicity enters as a parameter for differentiation.

Two anisotropic thin plate fundamental solutions have been introduced by Shi &
Bezini [ShBe88]: one for a fully anisotropic material and one for a degenerated case
similar to cubic materials. So far, both fundamental solutions cannot be reduced to
the isotropic fundamental solution [PaSo02]. As a result, for example, in a BEM
code that solves thin plates, three different fundamental solutions are needed.

Two new methods to determine fundamental solutions for anisotropic heat
conduction have been proposed by Marczak & Denda [MaDe11]. A new anisotropic
fundamental solution has been determined and it has been expressed by a line
integral over a unit circle. Buroni et. al [BuMa14] have developed a new complex
variable formalism that, along with the Radon Transform, has been produced to
analyze heat conduction problems in homogeneous anisotropic solids. For the first
time, fundamental solutions for infinite media, half-space, and bi-material system
due to heat dipole sources have been developed.

The Adomian decomposition [Ad98] is a recursive methodology to solve,
mainly, nonlinear ordinary differential equations. Its three central ideas are: the
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differential operator’s splitting in a linear, remainder and nonlinear terms; an
infinite superposition of the response in which each term is obtained via the
previous ones; a nonlinear terms interpolation via polynomial functions known
as Adomian polynomials. Removing the nonlinear part, the constitutive tensor’s
additive decomposition herein presented (Tu [Tu68] and Browaeys & Chevrot
[BrCh04]) is exactly what is according to Adomian decomposition prescription with
respect to the split of the differential operators.

In this chapter, the constitutive tensor, both for heat conduction and elasticity,
is additively decomposed using the hierarchy proposed by Cowin & Mehrabadi
[CoMe95] and Chadwick et. al [ChVi01] as a criterion. The decomposition method-
ology can be the one proposed by Tu [Tu68], Browaeys & Chevrot [BrCh04] or any
other additive decomposition. The structural theories of thin plates, two- and three-
dimensional elasticity as well as the two- and three-dimensional heat conduction on
solids are focused upon in this paper. This methodology, however, can be applied
to several other linear operators in Physics and Engineering. Given the differential
equations’ linearity, the decomposition separates the equations in an identical way
to apply the Adomian decomposition for linear operators.

31.2 Differential Equations Subject to Decomposition

Any linear Partial Differential Equation (PDE), for a physical problem, can be
written as

L(∂ x)f(x) = g(x), L(∂ x) = ∂TC∂ (31.1)

in which the vector ∂ arranges the partial differentials ∂ x, C denotes the constitutive
tensor, f(x) is the elastic/thermal response, and g(x) is the source term. L(∂ x) is
the differential operator and the material is homogeneous through the domain. The
dimensions of all the variables as well as the boundary conditions depend on the
particular case: the eq. (31.1) can be related to three- and two-dimensional elasticity,
to thin plate theory and three- and two-dimensional heat conduction. The three-
dimensional elasticity is used in this paper to present the method’s procedure. For
the other operators, the modifications are obvious and are discussed throughout the
text.

The Fourier transformation is applied in eq. (31.1) and for fundamental solutions,
the source term g(x) can be replaced by the Dirac delta for the infinitesimal load
simulation. Due to the domain homogeneity and the Fourier Transform property
that converts partial differentials into algebraic-complex functions, the result can be
directly written as

L̂(ξ )û(ξ ) = Iq, L̂(ξ ) = ζTCζ (31.2)
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where ζ arranges the transformed differentials, ξ maps the spatial into frequency
domain, and the hat denotes their definition in the frequency domain. I is the
identity matrix, q a unity vector containing the direction of the infinitesimal load,
when applicable (for a scalar problem, both are equal to unity), and û(ξ ) is the
fundamental solution in the transformed domain. The PDE (31.1) is elliptic, thus
eq. (31.2) is a real-value function and can be manipulated algebraically. Upon
application of the inverse Fourier transformation, the fundamental solution u(x) can
be written as

u(x) =
1

(2π)m

∫

Ωξ

[L̂(ξ )]−1q eix·ξ dξ (31.3)

where m is the dimension of the problem, Ωξ is the integral domain, dξ =

dξ1.dξ2. · · · .dξm and i =
√−1. The transformed operator’s inverse - [L̂(ξ )]−1 -

exists due to the constitutive tensor’s positivity. Equation (31.3) is also found in
Ting [Ti96] for three-dimensional elasticity. In that case, eq. (31.3) can be modified
to represent the fundamental solution as a tensor, written as

L̂(ξ )Û(ξ ) = IthereforeU(x) =
1

(2π)m

∫

Ωξ

[L̂(ξ )]−1 eix·ξ dξ , u(x) = U(x)q

in which U(x) is the tensor fundamental solution.

31.3 Constitutive Tensor Decomposition

31.3.1 Hooke’s Law, Fourier’s Law, and Constitutive Tensors

Hooke’s Law describes the mechanical behavior of crystalline solids via a linear
stress–strain relation, in which the linearity coefficients are the constitutive proper-
ties. These can be written as a second-order tensor:

C =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

C11 C12 C13 C14 C15 C16

C22 C23 C24 C25 C26

C33 C34 C35 C36

C44 C45 C46

C55 C56

sym C66

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(31.4)

For thin plate theory, the third, fourth, and fifth column/line are excluded from
the eq. (31.4) and the influences of the transversal properties are inserted into its
constitutive tensor as
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C̃ =

⎛

⎝
C̃11 C̃12 C̃16

C̃22 C̃26

sym C̃66

⎞

⎠ , C̃ij = Cij− Ci3C3j

C33
(31.5)

in which i and j vary as 1, 2 and 6. The tensor on eq. (31.5) is called reduced
constitutive tensor and the tilde over the constitutive properties denotes reduced
materials property.

Depending on the internal symmetries of the material, the tensors in eq. (31.4) -
(31.5) can change. Cowin & Meharabadi [CoMe95] and Chadwick et. al [ChVi01]
described the symmetry classes, and both have shown that there are eight types of
constitutive symmetries (Figure 31.1). Symmetry is defined as an invariant spatial
transformation on a unitary material cell. It is mathematically defined as an invariant
transformation on the constitutive tensor

RTC′R = C, C′ = C (31.6)

in which R is a unitary transformation matrix, and its size depends on the
constitutive tensor. The transformations matrices have the following properties:
closedness, associativity, identity, and inversion [CoMe95].

Figure 31.1 shows the symmetric planes for each crystal class on three-dimen-
sional elasticity. Other structural theories have lesser symmetries due to the
geometric simplifications which make some symmetries reduce to another. In thin
plates theory, for example, the triclinic and the monoclinic materials generate the
same reduced constitutive tensor.

In heat conduction, the tensor that gathers the constitutive parameters can be
decomposed into their singular values. Given the nature of the differential operator,
this modification just rotates the global coordinate system into the principal
direction of the material and it reduces mathematically the number of possible
symmetries. The constitutive tensor for heat conduction problems is

C =

⎛

⎝
k11 0 0

k22 0
sym k33

⎞

⎠ (31.7)

The heat conduction constitutive symmetries are presented in Figure 31.1. For the
two-dimensional case, the 3rd line/column is excluded and the constitutive tensor’s
size is 2 × 2. The transformation of the constitutive tensor on heat conduction is
exactly the same as presented in eq. (31.6). The tensors in eq. (31.4)–(31.5) and eq.
(31.7) are positive and symmetric due to the energy’s positivity and the reciprocity’s
theorem, respectively.
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Fig. 31.1 Symmetric classes
and their hierarchy on
Tridimensional Elasticity and
Heat Conduction.

31.3.2 Hierarchy and Decompositions

The hierarchy of the constitutive symmetries for both elasticity and heat conduction
can be condensed into one rule as presented in Figure 31.1. Each cube shows the
geometry of the symmetric planes and, when applicable, the angles between them.
The four arcs divide the eight classes in terms of necessary planes to develop the
symmetry. The arrows address the hierarchy level: the pointed material has all the
symmetric planes of the pointing one. In other words, the intersection between
the symmetry groups of the two materials is equal to the pointer symmetry group,
having consequently a higher hierarchy.

This hierarchy is important in the presented decompositions. The constitutive
tensor superposition follows the hierarchy and, hence, the arrows’ system. For
example: an orthorhombic material can be decomposed into a superposition of an
isotropic, a transversally isotropic and an orthorhombic symmetry or, a cubic and an
orthorhombic material. It is important to highlight that the decomposed symmetries
are fictitious materials that hold only the properties of a specific symmetry. They do
not represent any natural or synthetic material.

Tu [Tu68] has developed an additive decomposition of the fourth-order and
second-order constitutive and flexibility elasticity tensors. Five types of orthonormal
basis have been created and all symmetries but the triclinic can be decomposed.
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Browayes & Chevrot [BrCh04] have decomposed the constitutive tensor in a similar
way as shown in [Tu68]. However, it has been used a different criterion to categorize
the symmetries. Five matrices were used to project the constitutive tensor, described
as a 21-D vector form of a given symmetry, to another. Expanding the ideas from
both works and knowing that some tensors can be null (which is not possible on the
cited papers), a constitutive tensor is decomposed into eight existent symmetries as

C = Ciso +Ccub +Ctis +Ctgo +Ctet +Cort +Cmon +Ctri (31.8)

where the superscripts correspond to the constitutive symmetries in Figure 31.1
and, from the left to the right are: isotropic, cubic, transversally isotropic, trigonal,
tetragonal, orthorhombic, monoclinic and triclinic.

Hence, the decompositions can be described by

C = C(1) +C(2) (31.9)

It is noteworthy that eq. (31.9) does not simplify eq. (31.8). In symmetry (2), all
remaining symmetries could be superposed, and could be decomposed again, if
necessary. For example,

C(1) = Ciso, C(2) = Ccub +Ctis +Ctgo +Ctet +Cort +Cmon +Ctri

or could be symmetry (1) adding Ciso and Ctis and the remaining terms are added to
symmetry (2).

Both decompositions do not generate positive tensors: only the isotropic tensor
has this property. For application of the methodology, the tensor C(1) needs to
be positive. Hence, the isotropic tensor must be in symmetry (1) when the cited
decompositions are used.

31.4 Recursive Methodology

The recursive methodology used to obtain the fundamental solutions is based on the
Adomian decomposition. For nonlinear differential equations, in which this method
is normally used, the operator can be divided into three parts: a linear in which the
inverse is known, a linear where the inverse is not known (remainder term), and a
nonlinear one. The considered PDEs are linear, so are the decomposition terms. The
procedure of the recursive decomposition is simple and it is based on five steps:

1. The decomposition of the constitutive tensor into two or more constitutive tensors
and the determination of the linear and remainder terms.

2. The remainder part, applied to the response, is placed together with the source
term.

3. The fundamental solution is superposed by an infinite sum of terms.



368 T.V. Lisboa et al.

4. Recursively, each of the superposed fundamental solution terms is solved in a
manner so that the previous solutions may be used.

5. By using a defined truncation rule, the obtained terms are added to determine the
approximate fundamental solution.

The original constitutive tensor is decomposed into two or more symmetries
(step 1). Inserting eq. (31.9) into eq. (31.1) yields:

L(∂ x) = ∂TC∂ = ∂T
[
C(1) +C(2)

]
∂ =

= ∂TC(1)∂ +∂TC(2)∂ = L(1)(∂ x)+L(2)(∂ x)

in which the L(1)(∂ x) and L(2)(∂ x) are related to symmetry (1) and (2) of eq. (31.9),
respectively. The L(1)(∂ x) fundamental solution is known, therefore, the PDE can
be rewritten (step 2) as:

L(1)(∂ x)U(x) = Iδ (x)−L(2)(∂ x)U(x)

The fundamental solution is expanded in an infinite series (step 3):

U(x) = U(0)(x)+U(1)(x)+U(2)(x)+ · · ·+U(n)(x)+ · · · (31.10)

Each term of eq. (31.10) is solved, recursively, (step 4):

L(1)(∂ x)U(0)(x) = Iδ (x) (31.11)

L(1)(∂ x)U(n)(x) =−L(2)(∂ x)U(n−1)(x), n≥ 1 (31.12)

Equation (31.11) is identical to (31.1) when the source term, in the last, is the
Dirac delta. The initial condition for the recursive system is the knowledge of
the L(1)(∂ x) fundamental solution, as mentioned before. Using the fundamental
solution’s identity element property, eqs. (31.11) - (31.12) are defined as

U(1)(x) =−U(0)(x)∗FAN(x) (31.13)

U(2)(x) = U(0)(x)∗ [FAN(x)∗FAN(x)] (31.14)

...

U(n)(x) = (−1)nU(0)(x)∗
⎡

⎣FAN(x)∗FAN(x)∗ · · · ∗FAN(x)
︸ ︷︷ ︸

n times

⎤

⎦ (31.15)

where ∗ is the convolution operator and
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FAN(x) = L(2)(∂ x)U(0)(x) (31.16)

Equation (31.16) denotes the partial insertion of the second symmetry’s influence on
the first symmetry fundamental solution. This term has an essential importance on
the method’s convergence. Inserting eq. (31.13) - (31.15) into eq. (31.10), one can
find the complete solution, expressed as (step 5)

U(x) = U(0)(x)∗{Iδ (x)−FAN(x)+ [FAN(x)∗FAN(x)]+

+ · · ·+(−1)n

⎡

⎣FAN(x)∗ · · · ∗FAN(x)
︸ ︷︷ ︸

n times

⎤

⎦} (31.17)

As presented, eq. (31.17) can describe a fundamental solution through a con-
stitutive tensor’s decomposition in two different materials. Moreover, the second
constitutive tensor does not need to be positive: it does not need to be inverted and
hence it may be able to have null eigenvalues. Therefore, the fundamental solution
in eq. (31.17) does not develop degeneracy. The only singular behavior, due to
the material’s symmetry, is that U(0)(x) holds. Equation (31.16) shows clearly this

statement: if L(2)(∂ x) possess multiples roots, it will be indifferent to FAN(x) and
therefore to U(x). The singularities of U(0)(x), on the other hand, will be carried out
through the recursive solution and to the final solution in the eq. (31.17).

The hierarchy from Figure 31.1 enters as a parameter when the recursive method-
ology is used multiple times. That is the reason for describing the symmetries as (1)
and (2). The only necessity in the method is the symmetry (1) fundamental solution
knowledge. In eq. (31.13)–(31.15), the influence of the symmetry is inserted into
the aforementioned solution. At the end, the fundamental solution obtained is with
respect to the sum of the two symmetries. Then this solution can be used as initial
parameter to a new analysis and to develop a new and less symmetric solution.

31.5 Errors, Convergence Criterion, and Its Rate

To describe the proposed method’s errors, convergence criterion and its rate, one
may employ the Fourier Transform. The error can be calculated in the frequency
domain by the Plancherel theorem. First of all, the norm for a tensor and an inner
product between two equal tensors are defined as

〈A(y) ,A(y)〉=
∫

Ω y

tr
(
A(y)AT (y)

)
dy =

∫

Ω y

|A(y) |2dy (31.18)

in which A is a second-order tensor. The absolute error is calculated as the direct
difference between the analytical and the approximate fundamental solution. Then
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E(x) = Uana (x)−Uapr (x)

where Uana (x) and Uapr (x) are the analytical and approximate fundamental
solutions, respectively. By Plancherel theorem, the inner product of the error norm
by itself in eq. (31.18) is expressed as

〈E(x) ,E(x)〉=
∫

Ωx

|E(x) |2dx (31.19)

and can be manipulated in the frequency domain.

∫

Ωx

|Uana (x)−Uapr (x) |2dx =
∫

Ωζ

|Ûana
(ξ )− Û

apr
(ξ ) |2dξ

The difference between the analytical and the approximate solution, on the fre-
quency domain, is

Û
ana

(ξ )− Û
apr

(ξ ) = (−1)n+1
(

L̂
(1)
(ξ )+ L̂

(2)
(ξ )
)−1 (

F̂AN(ξ )
)n+1

(31.20)

considering that the Uapr (x) is truncated in some n approximation. Decomposing
F̂AN(ξ ) into its principal values (eigenvalues), it can be written as

F̂AN(ξ ) = QΛQ−1

where Q is a square matrix where the columns contain eigenvectors of F̂AN(ξ ) and
Λ is a diagonal matrix whose elements correspond to the eigenvalues of F̂AN(ξ ).
Therefore, any power of F̂AN(ξ ) can be calculated as:

F̂
n
AN(ξ ) =

[
QΛQ−1]n = QΛ nQ−1 (31.21)

Using eq. (31.21) in eq. (31.20) and applying the result in eq. (31.19), the inner
product of the error norm is found as:

〈E(x) ,E(x)〉=
∫

Ωζ

(
L̂
(1)
(ξ )+ L̂

(2)
(ξ )
)−1
·

· F̂2(n+1))
AN (ξ ) ·

(
L̂
(1)
(ξ )+ L̂

(2)
(ξ )
)−1

dξ (31.22)

Via eq. (31.22), the quadratic error norm can be determined given a recursion
truncation n. Equations (31.20) and (31.22) impose that:

− I <Λ < I (31.23)
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for the methodology’s absolute convergence. This is also the criterion for all PDE
that make use of this recursive method.

For the scalar case, eq. (31.16), transformed into the frequency domain, can be
expressed as

F̂AN(ξ ) =
L̂(2)(ξ )
L̂(1)(ξ )

And the quadratic norm of the error is:

〈E (x) ,E (x)〉=
∫

Ωξ

(
L̂(2)(ξ )
L̂(1)(ξ )

)2(n+1)

· 1
(
L̂(1)(ξ )+ L̂(2)(ξ )

)2 dξ

and thus,

−1 <
L̂(2)(ξ )
L̂(1)(ξ )

< 1 (31.24)

To corroborate eq. (31.23) and eq. (31.24), we recognize that the recursive method-
ology, in which the solution is presented in eq. (31.17), generates an alternative
series. If C(2) is positive-definite, eq. (31.23) and eq. (31.24) can be simplified to

Λ < I

C(1)−C(2) > 0.

The relative error and the convergence rate depend uniquely on eq. (31.16), as
well as the convergence criterion. For the relative error, the eq. (31.20) can be pre-

multiplied by Û
ana

(ξ ) resulting in
(
F̂AN(ξ )

)n+1
. The convergence rate will depend

on the highest eigenvalue of F̂AN(ξ ) and how close it is to unity.

31.6 Summary and Conclusions

The aim of this chapter was the development of an anisotropic fundamental solution
based on a crystalline class hierarchy. An additive decomposition of the constitutive
tensor was proposed to simplify the calculus of an anisotropic solution. A known
solution is used and recursively, the remainder term is inserted as a source term. The
methodology’s error and convergence were presented. Even though the solutions
obtained through this methodology do not have an analytical close form, they do
not degenerate and, due to the solutions’ superimposed form, the first and second
derivatives can be easily determined. Nevertheless, the solutions reduce themselves
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to other more symmetric cases given the fact that the materials’ singularities
stay in the base solution. The problem in the methodology herein presented are
the convolution operations. These have high computational costs, however, they
can be solved by semi-analytical or numerical procedures. Future steps are the
development of a numerical procedure to determine anisotropic solutions via an
isotropic response. Using the results, semi-analytical procedures will pursuit to put
the material properties in evidence.
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Chapter 32
On a Model for Pollutant Dispersion
in the Atmosphere with Partially
Reflective Boundary Conditions

J.F. Loeck, B.E.J. Bodmann, and M.T.B. Vilhena

32.1 Introduction

Air pollutant release of either anthropogenic or natural sources is of increasing
relevance because of its possible adverse effects and consequences on the ecosystem
including humans. Initiatives related to environmental protocols are one witness to
testify the necessity to understand and predict impact of dispersion of substances
on environmental health and in case of incidents or accidents evaluate its risks on
habitats.

Atmospheric pollution dispersion is commonly modelled by deterministic equa-
tions, where the most widely employed approach is based on the advection-diffusion
equation. Several works exist in the literature that solve the equation analytically,
semi-analytically or numerically (see, for instance, [BuEtAl11, ThMc06, TiVi12]
and the references therein). These equations are usually linear equations with a
solution that describes the mean value of substance concentrations and some of
them are restricted to a compact support others valid on an infinite support, where
the present approach is of the second type.

It is noteworthy that the phenomenon of pollutant transport in the atmosphere
is nonlinear by virtue of turbulence and second stochastic which is best visible by
comparison of experimental findings with theoretical predictions. If a deterministic
model was adequate to describe the dispersion process, an improvement of the
model should approach unity for the correlation between observed and predicted
values. However, publications on the subject suggest that there is an asymptotic limit
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of approximately R = 0.9, which may indicate that besides possible model errors,
there are also natural fluctuations present that evidently cannot be reproduced by a
purely deterministic model.

The present work is thus an attempt to introduce effects into that model that
shall to some extent mimic some stochastic properties. To this end we modify
the originally purely geometrical boundary conditions, i.e. the ground level and
the boundary layer height, respectively. More specifically, turbulent mixture is
believed to take place in various scales, where the largest scale is limited by the
boundary layer height, but also smaller scales shall be present. One could think of
the boundary layer as a superposition of various boundary layers, however with
different ground and upper layer heights. Such a construction could model the
escape of pollutant substances across the boundary layer horizon on the one side
and the surface boundary on the other side and are modelled by probabilities to
quantify the fraction of pollutant that returns into the boundary layer from above
and the process of adsorption or deposition on the ground layer. These effects are
represented by reflective and distributed boundary conditions that together with
advection–diffusion dispersion define the model in consideration. The consequences
of the reflections are analyzed using the meteorological conditions and data of the
Hanford experiment.

32.2 A Locally Gaussian Model

The advection–diffusion equation may be derived in the standard fashion starting
from the continuity equation and using the Reynolds decomposition to separate
the mean components for the concentration and the velocity fields, respectively.
Upon taking averages and substitution of the average fluctuations by Fick’s closure,
one arrives at the desired equation for mean concentrations and an a priori known
wind field and with all turbulent characteristics parametrized in a time dependent
eddy diffusivity matrix coefficient K. For the present study we further simplify
eddy diffusion using locally constant coefficients, which may be justified by the
fact that the coefficients vary softly only with changing coordinates and is typical
for homogeneous turbulence. For details of the derivation, see, for instance, the
textbook by Arya [Ar99].

∂ c̄
∂ t

+ ū∇c̄ = ∇K∇c̄+ S̄ (32.1)

where c̄ represents the mean concentration of a contaminant (g/m3), ū = (ū, v̄, w̄)
are the mean wind speeds (in m/s) in the longitudinal, vertical and cross wind
directions, the nabla symbol ∇ signifies the usual vector differential operator, the
eddy diffusivity coefficient is represented by a diagonal matrix K = diag(Kx,Ky,Kz)
and S̄ is a source term.



32 Dispersion with Reflective Boundary Conditions 377

Considering a point source at height Hs that releases instantaneously a pollutant
at a time t = 0, and a fixed quantity Q, then the source term can be cast in an initial
condition and equation (32.1) simplifies to the initial value problem, neglecting
further the slowly varying terms ∇K∇c̄.

∂ c̄
∂ t

+ ū
∂ c̄
∂x

+ v̄
∂ c̄
∂y

+ w̄
∂ c̄
∂ z

= Kx
∂ 2c̄
∂x2 +Ky

∂ 2c̄
∂y2 +Kz

∂ 2c̄
∂ z2

c̄(x,y,z,0) = Qδ (x− x0)δ (y− y0)δ (z−Hs)

This approximate problem can be solved analytically by separation of variables
[Oz74] and Fourier transform [SePa06].

c̄(x,y,z, t) =
Q

√
64π3KxKyKzt3

exp

{

− (x− x0− ūt)2

4Kxt

− (y− y0− v̄t)2

4Kyt
− (z−Hs− w̄t)2

4Kzt

}

(32.2)

However, most dispersion problems are due to continuous emissions, which can be
idealized by the superposition of instantaneous emissions. Considering a small time
interval dτ with an instantaneous emission, then the continuous emission is

C̄(x,y,z, t) ∝
∫ t

0
c̄(x,y,z, t− τ) dτ ,

where c̄ is the concentration for the instantaneous and C̄ for the continuous emission.
Note that such an approach is valid for cases where the concentrations do not
influence in the flow characteristics. Considering now an emission rate Q̇ instead
of the quantity Q and the solution for the instantaneous emission (32.2), then the
solution for the continuous emission is

C̄(x,y,z, t) =
Q̇

√
64π3KxKyKz

∫ t

0

1
√

(t− τ)3
exp

{

− [x− x0− ū(t− τ)]2
4Kx(t− τ)

− [y− y0− v̄(t− τ)]2
4Ky(t− τ) − [z−Hs− w̄(t− τ)]2

4Kz(t− τ)
}

dτ . (32.3)

Recalling that the solutions (32.2) and (32.3) were obtained by Fourier transform,
they are valid for the infinite ranges x ∈ (−∞,∞),y ∈ (−∞,∞),z ∈ (−∞,∞) in
contrast to [BuEtAl11]. However, as a matter of fact the dispersion of contaminants
is limited by the ground (z = 0) and the top of the atmospheric boundary layer
(z = zi) so that the infinite range has to be mapped into a finite range.
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32.3 Reflective Boundary Conditions

To justify the mapping of the infinite range z ∈ (−∞,∞) to the finite z ∈ [0,zi] we
first consider a cut of the distribution at z = 0 and z = zi, respectively. The fact
that a non-zero concentration at the boundaries is possible is not a serious problem,
but if Fick’s hypothesis is understood one expects a flux across these boundaries
which contradicts the boundary layer conception. In a second step we copy from
observation which suggests that the layer until the height where temperature
inversion occurs may be considered at least partially decoupled from the wind flux
system beyond. Hence, in an ideally decoupled system the lost contributions should
be recovered, which could be obtained by a time dependent normalization (the total
amount of pollutant shall be equal to the quantity released until that time) but we
adopt another reasoning, namely adopting reflecting boundaries, which intuitively
agrees with a simple particle ensemble picture where the pollutant that reaches the
ground or the top of the atmospheric boundary layer bounces completely back into
the domain. For the distributions that means that even after reflections the Gaussian
tails exceeding the allowed domain are mirrored back into the finite range z ∈ [0,zi].

Formally, the reflection on the ground and in the atmospheric boundary layer
may be viewed as contributions due to a virtual source in some effective heights to
both sides below ground and above the boundary layer[Ba01]. The sequences that
represent the mirror maxima are

Hs → −Hs−2nzi

Hs → Hs +2nzi

}

∀n ∈ Z. (32.4)

Substituting these two sequences in the solution for the continuous emission (32.3),
the solution for continuous emission with complete reflection is obtained

C̄(x,y,z, t) =
Q̇

√
64π3KxKyKz

∫ t

0

[
1

√
(t− τ)3

exp

{

− [x− x0− ū(t− τ)]2
4Kx(t− τ)

− [y− y0− v̄(t− τ)]2
4Ky(t− τ)

}( ∞

∑
n=−∞

exp

{

− [z−Hs−2nzi− w̄(t− τ)]2
4Kz(t− τ)

}

+exp

{

− [z+Hs +2nzi− w̄(t− τ)]2
4Kz(t− τ)

})]

dτ ,

and is now valid for x ∈ (−∞,∞),y ∈ (−∞,∞),z ∈ [0,zi].
So far the model still does not represent any property that might be associated

with an effect from a stochastic feature. As already argued before, instead of a
boundary layer with rigid limits one could mimic a sample of a distribution with
different boundary layer heights upon changing the position of the mirror images
that compose the total distributions. To this end we introduce the reduction factor ωb
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and ωg in the sequences (32.4). Note that the system still maintains its deterministic
character, but a finite sample of boundary layer configurations with different heights
and center could be interpreted as a manifestation of its stochastic nature and are
used to study the behavior of the new solution:

C̄(x,y,z, t) =
Q̇

√
64π3KxKyKz

∫ t

0

[
1

√
(t− τ)3

exp

{

− [x− x0− ū(t− τ)]2
4Kx(t− τ)

− [y− y0− v̄(t− τ)]2
4Ky(t− τ)

}( ∞

∑
n=−∞

exp

{

− [z−Hs−2nωgzi− w̄(t− τ)]2
4Kz(t− τ)

}

+exp

{

− [z+Hs +2nωbzi− w̄(t− τ)]2
4Kz(t− τ)

})]

dτ

32.4 Turbulent Diffusivity Parametrization

To validate the proposed model, more specifically to analyze the impact of
reflections on the results, turbulent diffusivity was parametrized to represent
meteorological conditions of the Hanford experiment [DoHo85]. This campaign
is a low source experiment (the height of the source Hs was 2 m) with stable to
quasi-neutral conditions. A non-depositing tracer was released with an average rate
of Q̇ = 0.3 g/s and release time interval of 30 minutes, except for experiment run
05, where the release time was 22 minutes. The measurements were performed at
distances 100 m, 200 m, 800 m, 1600 m, and 3200m from the source. The necessary
micro-meteorological data for the parametrization were provided by the experiment
and are presented in Table 32.1. The height of the stable boundary layer (zi,s) was
calculated using the relation zi,s = 0.4(u∗L/fc)1/2, where fc = 1.46×10−4 s−1 is the
Coriolis parameter.

The eddy diffusion coefficient for stable conditions proposed by Degrazia and
Moraes [DeMo92] is based on the diffusion theory of Taylor [Ta22] and the
turbulent kinetic energy spectrum [PaSm83] and can be computed using the micro-
meteorological data set from table 32.1.

Table 32.1
Micro-meteorological data
for the Hanford experiment.

ū (2 m) u∗ L zi,s

Expt (ms−1) (ms−1) (m) (m)

01 3.63 0.40 166 269

02 1.42 0.26 44 112

03 2.02 0.27 77 151

04 1.50 0.20 34 86

05 1.41 0.26 59 129

06 1.54 0.30 71 152
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Kz =
0.644u∗(1− z

zi,s
)
α1
2 1.58z

8
√
π(fm)w

×
∫ ∞

0

sin

{

8
√
π1.58(1− z

zi,s
)
α1
2 (fm)wn′X zi,s

(1.5)
3
5

z

}

(1+n′
5
3 )n′

dn′

Here u∗ is the friction velocity, z is the observation height, zi,s is the height of the
stable boundary layer, the parameter α1 = 1.5, (fm)w is the frequency of the spectral
peak in the vertical eddy spectrum, X is the dimensionless distance, and n′ is the
dimensionless frequency of the turbulent kinetic energy spectrum.

In the further, we introduce a simplification, without imposing restrictions on
our numerical findings. We assume that our coordinate system has its x-axis aligned
with the average wind speed, which is to a good approximation horizontal with
respect to the Earth’s surface. In order to determine the velocity field ū = U(z)x̂
with x̂ a unit vector, we need to fix the vertical wind speed profile. The latter has
been parametrized following Obukhov’s similarity theory manifest in the so-called
OML-model [BeOl86], where close to the surface and because of its roughness,
there is a raising profile, whereas sufficiently far from the surface the wind speed
remains approximately constant. If zb = min(|L|,0.1zi,s), then

U =
u∗
k

(

ln

[
z
z0

]

−Ψm(
z
L
)+Ψm(

z0

L
)

)

, z≤ zb ,

U = ū(z) , z > zb ,

whereΨm =−4.7 z
L is the stability function for stable conditions.

32.5 Validation of the Model

To simulate the results, the complete data set of the Hanford experimental data
was used, except those for the distances x = 100m and x = 200m. The comparison
of observed (Co) against predicted (Cp) concentrations for a variety of reflection
parameter ωb,g and number of reflections is shown in figures 32.1 and 32.3. The
corresponding statistical indices [Ha89], i.e. the normalized mean square error

(NMSE =
(Co−Cp)2

C̄oC̄p
), the correlation coefficient (COR =

(Co−C̄o)(Cp−C̄p)
σoσp

), the frac-

tional bias (FB =
C̄o−C̄p

1
2 (C̄o+C̄p)

), and the fractional standard deviation (FS =
σ0−σp

1
2 (σ0+σp)

are shown in the tables 32.2 and 32.3. Further, the saturation effect for after a certain
number of reflections is shown in figures 32.2 and 32.4, where the normalized mean
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Fig. 32.1 Scatter plot for observed (Co) and predicted (Cp) concentrations for one and 42
reflections with the parameters ωg = 0.1 and ωb = 0.005.

Table 32.2 Statistical evaluation for observed (Co) and predicted (Cp) concentrations with R =
1, . . . ,8,14,20,30 and 42 reflections for the parameters ωg = 0.1 and ωb = 0.005.

R 1 2 3 4 5 6 7 8 14 20 30 42

NMSE 1.24 0.50 0.27 0.18 0.13 0.11 0.09 0.08 0.07 0.07 0.07 0.07

COR 0.52 0.62 0.69 0.75 0.78 0.81 0.83 0.84 0.88 0.88 0.88 0.88

FB 0.73 0.39 0.20 0.09 0.02 −0.02 −0.06 −0.08 −0.14 −0.16 −0.16 −0.16

FS 0.78 0.44 0.28 0.19 0.14 0.10 0.08 0.01 0.05 0.05 0.04 0.04

Table 32.3 Statistical evaluation for observed (Co) and predicted
(Cp) concentrations with R = 1, . . . ,4,10,20, and 28 reflections for
the parameters ωg = 0.2 and ωb = 0.01.

R 1 2 3 4 10 20 28

NMSE 0.39 0.16 0.10 0.08 0.06 0.06 0.06

COR 0.66 0.77 0.82 0.85 0.88 0.88 0.88

FB 0.32 0.10 0.00 −0.05 −0.12 −0.12 −0.12

FS 0.37 0.19 0.12 0.10 0.08 0.07 0.07

square error (the scale is given by the left vertical axis) as well as the correlation
coefficient (the scale is given by the right vertical axis) is plotted against the number
of reflections.

A general comment is in order here, although the statistical evaluations men-
tioned above are similar to those from parametric inference procedures, their
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Fig. 32.2 NMSE (scale left) and COR (scale right) versus number of reflections for ωg = 0.1 and
ωb = 0.005.

interpretations are different in the present context. In parametric inference the
best estimates for parameters were attained for NMSE → 0, but in the present
consideration a deterministic model is compared to a relatively small data set from a
stochastic phenomenon, so that one does not expect vanishing values for this error.
Further, the correlation coefficient does not converge to unity, recalling that the
observed data are one sample out of a distribution for a specific situation, that are
parametrized using their specific micro-meteorological data. The fractional bias may
be interpreted in terms of model fidelity, significant deviations from zero indicate
that the model lacks some relevant physical features. Last but not least, figures 32.2,
32.3, 32.4 show the apparent asymptotic limit for the normalized mean square error
as well as the correlation coefficient with limit ∼ 0.9. One observes in the two
presented cases that after inclusion of reflections the correlation of experimental
and predicted data improves, which may be interpreted as an indication that with
our reasoning we have at least made some point, even though we have not solved
the important question of how the best values for ωb and ωg shall be obtained.

32.6 Conclusions

This chapter may be considered an attempt to introduce stochastic characteris-
tics in an originally deterministic model, i.e. pollutant dispersion by advection–
diffusion dynamics in the planetary boundary layer. One may argue that the effective
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boundary layer height is not necessarily a fixed quantity but varies according
to the turbulent flow dynamics it incorporates. Thus the layer boundary shall
have stochastic character, so that a more realistic flow may be thought of as
a superposition of various boundary layer problems but with different effective
boundary layer heights. Such a procedure may be interpreted as a discrete set of
samples that represent an unknown distribution, which needs an additional model or
parametrization hypothesis (for ωb and ωg) and is beyond the scope of the present
analysis. So far the goal was to introduce geometrically motivated mirror images
as virtual sources and superimpose them such as to mimic a finite size sample of a
distribution from different boundary layer height realizations.

At this stage of the work, we are completely aware of the fact that some
of the parameters (ωb, ωg) need a physically motivated prescription on how to
determine them from experimental data. Although one would like to have this kind
of information for our model right from the beginning, we think that our reasoning
shows that it is well plausible and the boundary layer height distributions exist,
however we leave the discussion on this issue for a future work. Nevertheless, a
variety of trials have shown us that reflections on the boundary layer horizon and
on the ground obtain significant correlations between model and data suggesting
that effects on the boundary are essential to model dispersion processes in the
atmospheric boundary layer, even though the values for the reflection parameters
were established ad hoc.

This improvement in the solution can be related to the fact that the deterministic
equation predicts only mean values of an unknown distribution and is not capable at
all to reproduce stochastic properties, which in our case were modeled by the effects
of the considered reflections. Moreover, the model does not consider deposition
and adsorption on the ground, but due to the fact that concentration and vertical
concentration fluxes are different from zero on the ground level one may reason that
the parameter ωg is somehow incorporating these properties.
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Chapter 33
Asymptotic Approximations for Chemical
Reactive Flows in Thick Fractal Junctions

T.A. Mel’nyk

33.1 Introduction

It is known that if some problem under consideration involved a reaction process
accompanied by diffusion, then it can be mathematically described with a set
of partial differential equations for the unknown quantities of the system. These
quantities may be mass concentrations in chemical reaction processes, temperature
in heat conduction, population densities in population dynamics, and many others.

To our knowledge, the first works on the study of a reaction-diffusion equation
were papers by Kolmogorov, Petrovskii, Piskunov [KoPePi37] and Fisher [Fish37].
As turned out over the years, reaction-diffusion systems are useful models to
describe very different phenomena in physics, chemistry, biology, and medicine.
At the present time, this field is a well-developed area of the theory of partial
differential equations which includes qualitative properties of solutions both for the
reaction-diffusion equation and system of equations.

In recent years, materials with complex structure are widely used in engineering
devices, biology, and other fields of science. It is known that many properties
of materials are controlled by their geometrical structure. Therefore, the study
of the influence of the material microstructure can improve its useful properties
and reduce undesirable effects. The main methods for this study are asymptotic
methods for boundary value problems (BVPs) in domains with complex structure:
perforated domains, grid-domains, domains with rapidly oscillating boundaries,
thick junctions, etc.
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Successful applications of thick-junction constructions in nanotechnologies and
microtechnique have stimulated active investigation of BVPs in thick junctions with
more complex (see [Mel08, BlGaMe08, DurMel12, CheMel14] and the references
therein).

In this chapter, new results for a reaction-diffusion system in a thick junction
of a new type, namely thick fractal junction, are presented. Many nerve and
blood systems, root systems, and industrial systems have structure of thick fractal
junctions.

33.2 Statement of the Problem

LetΩ0 be a bounded domain in R
2 with the Lipschitz boundary ∂Ω0 andΩ0⊂{x :=

(x1,x2) ∈R
2 : x2 > 0}. Let ∂Ω0 contain the segment I0 = {x : x1 ∈ [0,a], x2 = 0}.

We also assume that there exists a positive number δ0 such that Ω0∩{x : 0 < x2 <
δ0}= {x : x1 ∈ (0,a), x2 ∈ (0,δ0)}.

Let a, l1, l2, l3 be positive numbers, h0,h1,1,h1,2,h2,1,h2,2,h2,3,h2,4 be fixed num-
bers from the interval (0,1) and h1,1+h1,2 < h0, h2,1+h2,2 < h1,1, h2,3+h2,4 < h1,2.
Let us also introduce a small parameter ε = a

N , where N is a large positive integer.
A model thick fractal junction Ωε (see Figure 33.1) consists of the junction’s

body Ω0,

Fig. 33.1 A model thick
fractal junction Ωε .
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• a large number of the thin rods G(0)
ε =

⋃N−1
j=1 G(0)

j (ε),

G(0)
j (ε) =

{
x :
∣
∣
∣x1− ε(j+ 1

2 )
∣
∣
∣<

εh0

2
, x2 ∈ (−l1,0]

}
,

from the zero layer,

• a large number of the thin rods G(1,m)
ε =

⋃N−1
j=1 G(1,m)

j (ε),

G(1,m)
j (ε) =

{
x : |x1− ε(j+b1,m)|< εh1,m

2
, x2 ∈

(− l2− l1,−l1
]}

,

from the first branching layer, where m ∈ {1,2} and

b1,1 =
1−h0 +h1,1

2
, b1,2 =

1+h0−h1,2

2
,

• and a large number of the thin rods G(2,m)
ε =

⋃N−1
j=1 G(2,m)

j (ε),

G(2,m)
j (ε) =

{
x : |x1− ε(j+b2,m)|< εh2,m

2
,

x2 ∈
(− l3− l2− l1,−l2− l1

]}
,

from the second branching layer, where m ∈ {1,2,3,4} and

b2,1 =
1−h0 +h2,1

2
, b2,2 =

1−h0 +2h1,1−h2,2

2
,

b2,3 =
1+h0−2h1,2 +h2,3

2
, b2,4 =

1+h0−h2,4

2
.

Thus, Ωε = Ω0
⋃

G(0)
ε
⋃

G(1)
ε
⋃

G(2)
ε , where G(1)

ε =
⋃2

m=1 G(1,m)
ε , and G(2)

ε =
⋃4

m=1 G(2,m)
ε . The parameter ε characterizes the distance between neighboring thin

branches and also their thickness. Precisely, each branch G(i,m)
j (ε) has small cross-

section of size O(ε) and constant height. In addition, at fixed j ∈ {0,1, . . . ,N−1}
branches G(0)

j (ε), {G(1,m)
j (ε)}2

m=1, {G(2,m)
j (ε)}4

m=1 form the tree with two branch-
ing levels. These trees are ε-periodically distributed along the segment I0.

In Ωε we consider the following reaction–diffusion system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂tuε −DΔxuε +k(uε) = f(x, t) in Ωε × (0,T),

∂νuε + εακ(uε) = εβg(x, t) onϒε × (0,T),

∂νuε = 0 on (∂Ωε \ϒε)× (0,T),

uε |t=0 = 0 in Ωε ,

(33.1)
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where uε = (uε1, . . . ,u
ε
N) is an unknown vector-valued function; the reaction terms

k = (k1, . . . ,kN) and κ = (κ1, . . . ,κN) model the chemistry inside of Ωε and
on the vertical boundaries ϒε of the thin rods, respectively; the diagonal matrix
D= diag(D1, . . . ,DN) introduces the diffusion positive constants D1, . . . ,DN ; and
the parameters α,β ≥ 1.

The main assumptions: given vector-functions

1. f ∈ L2
(
0,T;L2(Ωε ;RN)

)
, g ∈ L2

(
0,T;L2(D�;RN)

)
and supp(fj) ⊆ Ω0, j =

1, . . . ,N, where D� = (0,a)× (−l1− l2− l3,0);
2. the reaction terms k : RN �→ R

N and κ : RN �→ R
N are smooth Lipschitz vector-

functions such that their Jacobian matrices are positive defined in the following
sense: ∃χ1, χ2 > 0 ∀p ∈ R

N ∀q ∈ R
N :

χ1|q|2 ≤
N

∑
i,j=1

∂uikj(p)qiqj ≤ χ2|q|2, (33.2)

the similar inequalities for κ .

Our aim is to develop an asymptotic efficient method allowing us to reproduce
qualitative properties of the solution to the nonlinear reaction–diffusion system
(33.1) in the thick fractal junctionΩε as ε→ 0, i.e., when the number of the attached
thin trees infinitely increases and their thickness vanishes. In particular, we want

• to construct the asymptotic approximation for the solution uε ,
• to find the corresponding homogenized (limit) problem for problem (33.1) as
ε → 0,

• to prove the corresponding asymptotic estimate for the difference between the
solution uε and constructed approximation,

• to study the influence of the parameters α and β on the asymptotic behavior of
the solution.

33.2.1 Comments on the Statement

Standard assumptions for nonlinear terms of BVPs are as follows: k and κ are
Lipschitz continuous. This hypothesis in particular implies |k(p)| ≤ C(1+ |p|) for
each p ∈R

N and some constant C. This is enough to state that problem (33.1) has a
unique solution. But, if we want to construct some approximation for a solution and
to prove the corresponding estimate, we need some kind of a coercivity condition on
the nonlinearity. Usually it reads as follows: k(p) ·p ≥ C1|p|2−C2 for all p ∈ R

N

and appropriate constants C1 > 0, C2 ≥ 0.
Many physical processes, especially in chemistry and medicine, have monotonic

nature. Therefore, it is naturally to impose special monotonicity conditions on the
nonlinear terms. In our case we propose (33.2). If N = 1, then condition (33.2) is
equivalent to χ1 ≤ k′(p)≤ χ2 for a.e. p ∈ R. For instance, the following functions



33 Asymptotic Approximations for Reactive Flows 391

k(p) = λp+ cosp (λ > 1); k(s) =
λp

1+νp
, p ∈ R+ (λ ,ν > 0)

satisfy this condition. The last one corresponds to the Michaelis–Menten hypothesis
in biochemical reactions and to the Langmuir kinetics adsorption models (see
[Pao92]).

From condition (33.2) it is easy to deduce the inequalities

χ1|p−q|2 ≤ (k(p)−k(q)
) · (p−q)≤ χ2|p−q|2,

|k(p)| ≤ c1(1+ |p|), k(p) ·p≥ c2|p|2− c3,
(33.3)

where c1 > 0, c2 > 0, c3 ≥ 0.
Using these inequalities, we verify that the operator Aε(t), which corresponds to

problem (33.1) and defined by

〈Aε(t)u,v〉ε :=
∫

Ωε

( N

∑
j=1

Dj∇xuj ·∇xvj +k(u) ·v
)

dx+ εα
∫

ϒε

κ(u) ·vdx2

for all u,v ∈ H1(Ωε ;RN) and a.a. t ∈ [0,T], is bounded, strictly monotonic,
semicontinuous, and coercive. Here the brackets 〈·, ·〉ε denote the pairing of the
adjoint

(
H1(Ωε ;RN)

)∗
with H1(Ωε ;RN).

Thus, according to Corollary 4.1 in [Sho97], the problem (33.1) has a unique
weak solution for each fixed value of ε .

A function uε ∈ L2
(
0,T; H1(Ωε ;RN)

)
, ∂tuε ∈ L2

(
0,T;
(
H1(Ωε ;RN)

)∗)
, is a

weak solution to the problem (33.1) if

〈∂tuε ,v〉ε + 〈Aε(t)uε ,v〉ε = 〈Fε(t),v〉ε a.e. t ∈ (0,T)

for each v ∈H1(Ωε ;RN) and uε |t=0 = 0. Here, Fε(t) ∈
(
H1(Ωε ;RN)

)∗
is the linear

functional defined by

〈Fε(t),v〉ε :=
∫

Ω0

f ·vdx+ εβ
∫

ϒε
g ·vdx2, ∀v ∈ H1(Ωε ;RN),

for a.e. t ∈ [0,T]. In addition, it is known that uε ∈ C([0,T];L2(Ωε ;RN)) and thus
the equality uε |t=0 = 0 makes sense.

It should be noted here that the asymptotic behavior of solutions to the reaction–
diffusion equation in different kind of thin domains with the uniform Neumann
conditions was studied in [MarRyb01, ACPS11]. The convergence theorems were
proved under the following assumptions for the nonlinear function f : in [ACPS11]
it is a C2-function with bounded derivatives and

limsup
|p|→+∞

f (p)
p

< 0; (33.4)

in [MarRyb01] it is a C1-function, |f ′(p)| ≤ C(1+ |p|q), where q ∈ (0,+∞), and the
dissipative condition (33.4) is satisfied.
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Let us note that the convergence theorem for the solution to our problem (33.1)
can be proved under weaker assumptions on the vector-functions k and κ , namely
k(0) = 0 and κ(0) = 0, all their components are increasing functions from C1(R),
and

|∇k(p)|+ |∇κ(p)| ≤ C
(
1+ |p|q−1),

where q ∈ [1,+∞).

33.3 Formal Asymptotics and Homogenized Problem

In this and next sections, for simplicity and clarity the scalar case (N = 1) is
considered. We propose the following asymptotic expansions for the solution:

uε(x, t)≈ u+0 (x, t)+
+∞

∑
n=1

εnu+n (x, t) (33.5)

in Ω0× (0,T); and

uε(x, t)≈ u(i,m)
0 (x, t)+

+∞

∑
n=1

εnu(i,m)
n (x, x1

ε − j, t) (33.6)

in every thin rod G(i,m)
j (ε)×(0,T), j= 0, . . . ,N−1, from each layer (i= 0,1,2). The

index m ∈ {1,2} for i = 1, m ∈ {1,2,3,4} for i = 2, and it is omitted for i = 0, i.e.,

G(0,m)
j (ε) = G(0)

j (ε) and u(0,m)
n = u(0)n in (33.6). The asymptotic expansions (33.5)

and (33.6) are usually called outer expansions.
To find transmission conditions both in the joint zone I0 and in each of the

branching zones I1 = {x : x1 ∈ [0,a], x2 = −l1} and I2 = {x : x1 ∈ [0,a], x2 =
−l1− l2}, we should construct inner expansions for the solution in neighborhoods
of these zones.

In a neighborhood of I0∩Ωε , we propose the ansatz

uε ≈ u+0 (x1,0, t)+ε
(

Z1
(

x
ε
)
∂x1u+0 (x1,0, t)+Z2

(
x
ε
)
∂x2u+0 (x1,0, t)

)
+ . . . , (33.7)

where Z1 and Z2 are 1-periodic junction-layer solutions to problems

−Δξ Zq(ξ ) = 0, ξ ∈Π0,

∂ p
ξ1

Zq(ξ )|ξ1=0 = ∂ p
ξ1

Zq(ξ )|ξ1=1, ξ ∈ ∂Π+ , ξ2 > 0, p = 0,1.

∂ξ2
Zq(ξ1,0) = 0, ξ1 ∈ (0,1)\ ( 1

2 − h0
2 ,

1
2 − h0

2

)
,

∂ξ1
Zq(ξ ) = −δq,1, ξ ∈ ∂Π−h1

∩{ξ : ξ2 < 0}, q = 1,2.

(33.8)

Here Π0 is the union of two semi-strips Π+ := (0,1) × (0,+∞) and Π−h0
:=

(
1
2 − h0

2 ,
1
2 +

h0
2

)× (−∞,0].
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The existence and the main asymptotic relations for solutions of problems (33.8)
can be obtained from general results about the asymptotic behavior of solutions to
elliptic problems in domains with different exits to infinity [KonOle83, NazPla94].
But, thanks to the symmetry of Π0 with respect to 1

2 we can define more exactly
the asymptotic relations and detect other properties of junction-layer solutions (see
Lemma 4.1 and Corollary 4.1 from [Mel99], see also [MelNaz96]). From those
results it follows the following proposition.

Lemma 1. There exist unique solutions Z(0)
1 ,Z(0)

2 ∈H1
loc,ξ2

(Π0) to problems (33.8),
respectively, which have the following differentiable asymptotics

Z(0)
1 (ξ ) =

{
O(exp(−2πξ2)), ξ2→+∞,
(−ξ1 +

1
2

)
+O(exp(πh−1

0 ξ2)), ξ2→−∞,

Z(0)
2 (ξ ) =

{
ξ2 +O(exp(−2πξ2)), ξ2→+∞,
ξ2
h0
+C2 +O(exp(πh−1

0 ξ2)), ξ2→−∞,

Moreover, function Z(0)
1 is odd in ξ1 and function Z(0)

2 is even in ξ1 with respect to 1
2 .

Recall that a function Z belongs to the Sobolev space H1
loc,ξ2

(Π0) if for every

R > 0 this function Z ∈ H1(Π0∩{ξ : |ξ2|< R}).
In a neighborhood of I1∩Ωε , we propose the ansatz

uε(x, t)≈ u(0)0 (x1,−l1, t)+ ε
(

Z(1)
1

( x1
ε ,

x2+l1
ε
)
∂x1 u(0)0 (x1,−l1, t)

+
{
η1(x1, t)Ξ

(1)
1

( x1
ε ,

x2+l1
ε
)
+(1−η1(x1, t))Ξ

(1)
2

( x1
ε ,

x2+l1
ε
)}

×∂x2u(0)0 (x1,−l1, t)
)
+ . . . (33.9)

where the coefficients Ξ (1)
1 and Ξ (1)

2 are solutions of the problem

Δξ Ξ(ξ ) = 0 on Π1, ∂νξ Ξ(ξ ) = 0 on ∂Π1. (33.10)

Here Π1 = Π+
h0
∪Π−1,1 ∪Π−1,2, Π+

h0
=
(

1
2 − h0

2 ,
1
2 +

h0
2

)× (0,+∞), Π−1,m =
(
b1,m−

h1,m
2 ,b1,m +

h1,m
2

)× (−∞,0], m = 1,2.
Again using the approach mentioned before Lemma 1, we prove Lemma 2.

Lemma 2. There exist two solutions Ξ1, Ξ2 ∈ H1
loc,ξ2

(Π1) to problem (33.10),
which have the differentiable asymptotics
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Ξ1(ξ ) =

⎧
⎪⎪⎨

⎪⎪⎩

ξ2 +O
(

exp(−πξ2
h0

)
)
, ξ2→+∞, ξ ∈Π+

h0
,

h0
h1,1

ξ2 +C(1)
1 +O

(
exp( πξ2

h1,1
)
)
, ξ2→−∞, ξ ∈Π−1,1,

C(1)
2 +O

(
exp( πξ2

h1,2
)
)
, ξ2→−∞, ξ ∈Π−1,2,

(33.11)

Ξ2(ξ ) =

⎧
⎪⎪⎨

⎪⎪⎩

ξ2 +O
(

exp(−πξ2
h0

)
)
, ξ2→+∞, ξ ∈Π+

h0
,

C(2)
1 +O

(
exp( πξ2

h1,1
)
)
, ξ2→−∞, ξ ∈Π−1,1,

h0
h1,2

ξ2 +C(2)
2 +O

(
exp( πξ2

h1,2
)
)
, ξ2→−∞, ξ ∈Π−1,2.

(33.12)

Any other solution to the homogeneous problem (33.10), which has polynomial grow
at infinity, can be presented as a linear combination c0 + c1Ξ1 + c2Ξ2.

The function Z(1)
1 is a solution to the problem

−Δξ Z(ξ ) = 0, ξ ∈Π1,

∂ξ1
Z(ξ ) = −1, ξ ∈ ∂‖Π1,

∂ξ2
Z(ξ1,0) = 0, (ξ1,0) ∈ ∂Π1 \∂‖Π1.

(33.13)

Lemma 3. There exists the unique solution Z ∈ H1
loc,ξ2

(Π1) to problems (33.13),
which has the differentiable asymptotics

Z(ξ ) =

⎧
⎪⎪⎨

⎪⎪⎩

−ξ1 +
1
2 +O

(
exp(−πξ2

h0
)
)
, ξ2→+∞, ξ ∈Π+

h0
,

−ξ1 +b1,1 +C1 +O
(

exp( πξ2
h1,1

)
)
, ξ2→−∞, ξ ∈Π−1,1,

−ξ1 +b1,2 +C2 +O
(

exp( πξ2
h1,2

)
)
, ξ2→−∞, ξ ∈Π−1,2,

(33.14)

where C1,C2 are some fixed constants.

Thus, we set Ξ (1)
1 = Ξ1, Ξ

(1)
2 = Ξ2 and Z(1)

1 = Z in (33.9).
In a neighborhood of I2∩Ωε , we propose the two ansatzes

uε(x, t)≈ u(1,1)0 (x1,0, t)+ ε
(

Z(2,1)
1

( x1
ε ,

x2+l1+l2
ε
)
∂x1u(1,1)0 (x1,0, t)

+
{
η2,1(x1, t)Ξ

(2,1)
1

( x1
ε ,

x2+l1+l2
ε
)

+(1−η2,1(x1, t))Ξ
(2,1)
2

( x1
ε ,

x2+l1+l2
ε
)}
∂x2u(1,1)0 (x1,0, t)

)
+ . . . (33.15)
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in a neighborhood of I2∩
(

G(1,1)
ε
⋃(⋃2

m=1 G(2,m)
ε
))

, and the second one

uε(x, t)≈ u(1,2)0 (x1,0, t)+ ε
(

Z(2,2)
1

( x1
ε ,

x2+l1+l2
ε
)
∂x1u(1,2)0 (x1,0, t)

+
{
η2,2(x1, t)Ξ

(2,2)
1

( x1
ε ,

x2+l1+l2
ε
)

+(1−η2,2(x1, t))Ξ
(2,2)
2

( x1
ε ,

x2+l1+l2
ε
)}
∂x2u(1,2)0 (x1,0, t)

)
+ . . . (33.16)

in a neighborhood of I2∩
(

G(1,2)
ε
⋃(⋃4

m=3 G(2,m)
ε
))

.

The coefficients Ξ (2,1)
1 ,Ξ (2,1)

2 and Ξ (2,2)
1 ,Ξ (2,2)

2 are solutions to problem (33.10)

but now in Π (1)
2 and Π (2)

2 , respectively, where Π (1)
2 = Π+

1,1 ∪Π−2,1 ∪Π−2,2 and

Π (2)
2 = Π+

1,2 ∪Π−2,3 ∪Π−2,4, Π+
1,m =

(
b1,m− h1,m

2 ,b1,m +
h1,m

2

)× (0,+∞), m = 1,2,

Π−2,m =
(
b2,m− h2,m

2 ,b2,m+
h2,m

2

)×(−∞,0], m = 1,2,3,4. From Lemma 2 it follows
that they have the corresponding differentiable asymptotics (33.11) and (33.12).
Functions η2,1 and η2,2 are defined from matching conditions.

The coefficients Z(2,1)
1 and Z(2,2)

1 are solutions to problem (33.13) in Π (1)
2 and

Π (2)
2 , respectively. Applying results of Lemma 3, we can state that there exist the

unique solutions with the differentiable asymptotics

Z(2,1)
1 (ξ ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−ξ1 +b1,1 +O
(

exp(− πξ2
h1,1

)
)
, ξ2→+∞, ξ ∈Π+

1,1,

−ξ1 +b2,1 +C(3)
1 +O

(
exp( πξ2

h2,1
)
)
, ξ2→−∞, ξ ∈Π−2,1,

−ξ1 +b2,2 +C(3)
2 +O

(
exp( πξ2

h2,2
)
)
, ξ2→−∞, ξ ∈Π−2,2,

Z(2,2)
1 (ξ ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−ξ1 +b1,2 +O
(

exp(− πξ2
h1,2

)
)
, ξ2→+∞, ξ ∈Π+

1,2,

−ξ1 +b2,3 +C(4)
1 +O

(
exp( πξ2

h2,3
)
)
, ξ2→−∞, ξ ∈Π−2,3,

−ξ1 +b2,4 +C(4)
2 +O

(
exp( πξ2

h2,4
)
)
, ξ2→−∞, ξ ∈Π−2,4.

If we put (33.5) and (33.6) in problem (33.1) and collect the coefficients of
the same power of ε considering (33.2) and then apply the method of matched
asymptotic expansions (the asymptotics of the leading terms of each outer expan-
sions (33.5) and (33.6) as x2 → ±− li have to coincide with the corresponding
asymptotics of the leading terms of the inner expansions (33.7), (33.9), (33.15),
(33.16) as ξ2→±∞, respectively), we derive the following homogenized problem
(for more detail, see [Mel14]):
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∂tu
+
0 −Δu+0 + k(u+0 ) = f in Ω0× (0,T),
∂νu+0 = 0 on

(
∂Ω0 \ I0

)× (0,T),

∂tu
(i,m)
0 −∂ 2

x2x2
u(i,m)

0 + k
(
u(i,m)

0

)
+

2δα,1
hi,m

κ
(
u(i,m)

0

)
=

2δβ ,1
hi,m

g in Di× (0,T),

m ∈ {1, . . . ,2i}, i = 0,1,2,

u+0 = u(0)0 , ∂x2u+0 = h0∂x2u(0)0 on I0× (0,T),

u(0)0 = u(1,m)
0 on I1× (0,T), m = 1,2,

h0∂x2u(0)0 = h1,1∂x2u(1,1)0 +h1,2∂x2 u(1,2)0 on I1× (0,T),

u(1,1)0 = u(2,m)
0 on I2× (0,T), m = 1,2,

h1,1∂x2u(1,1)0 = h2,1∂x2u(2,1)0 +h2,2∂x2u(2,2)0 on I2× (0,T),

u(1,2)0 = u(2,m)
0 on I2× (0,T), m = 3,4,

h1,2∂x2u(1,2)0 = h2,3∂x2u(2,3)0 +h2,4∂x2u(2,4)0 on I2× (0,T),

∂x2u(2,m)
0

(
x1,−(l1 + l2 + l3), t

)
= 0, (x1, t) ∈ (0,a)× (0,T), m = 1,2,3,4,

u+0 |t=0 = u(0)0 |t=0 = {u(1,m)}2
m=1|t=0 = {u(2,m)}4

m=1|t=0 = 0.
(33.17)

Recall that the index m ∈ {1,2} for i = 1, m ∈ {1,2,3,4} for i = 2, and m is absent
if i = 0.

To give appropriately the definition of a weak solution of the homogenized
problem, let us first introduce an anisotropic Sobolev space H of multi-sheeted
functions. A multi-sheeted function

ϕ(x) :=

⎧
⎪⎪⎨

⎪⎪⎩

ϕ+(x), x ∈ Ω0,

ϕ(0)(x), x ∈ D0,

ϕ(1,m)(x), x ∈ D1, m = 1,2,
ϕ(2,m)(x), x ∈ D2, m = 1,2,3,4,

belongs to H if ϕ+ ∈ H1(Ω0), {ϕ(i,m)}2i
m=1 ⊂ L2(Di), there exist weak derivatives

{∂x2ϕ(i,m)}2i
m=1 ⊂ L2(Di), i = 0,1,2, and

ϕ+|I0 = ϕ(0)|I0 , ϕ(0)|I1 = ϕ(1,1)|I1 = ϕ(1,2)|I1 ,

ϕ(1,1)|I2 = ϕ(2,1)|I2 = ϕ(2,2)|I2 , ϕ(1,2)|I2 = ϕ(2,3)|I2 = ϕ(2,4)|I2 .

Obviously, the space H is continuously and densely embedded in the Hilbert
space V of multi-sheeted functions whose components belong to the corresponding
L2-spaces. The scalar products in these spaces are defined as follows:
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(ϕ ,ψ)V := (ϕ+,ψ+)L2(Ω0)
+

2

∑
i=0

2i

∑
m=1

(ϕ(i,m),ψ(i,m))L2(Di)
,

(ϕ,ψ)H := (ϕ,ψ)V +(∇ϕ+,∇ψ+)L2(Ω0)
+

2

∑
i=0

2i

∑
m=1

(∂x2ϕ
(i,m),∂x2ψ

(i,m))L2(Di)
.

For a.e. t ∈ (0,T) we introduce the following operator A (t) : H �→H∗:

〈A (t)ϕ,ψ〉 :=
∫

Ω0

(
∇ϕ+ ·∇ψ++ k(ϕ+)ψ+

)
dx+

2

∑
i=0

2i

∑
m=1

∫

Di

(
hi,m∂x2ϕ

(i,m) ∂x2ψ
(i,m) +hi,mk(ϕ(i,m))ψ(i,m) +2δα ,1κ(ϕ(i,m))ψ(i,m)

)
dx

for all ϕ ,ψ ∈ L2(0,T;H), and a linear functional F(t) ∈H∗

〈F(t),ψ〉 :=
∫

Ω0

f ψ+ dx+2δβ ,1
2

∑
i=0

2i

∑
m=1

∫

Di

gψ(i,m) dx.

Here 〈·, ·〉 is the pairing of H∗ and H.

Definition 1. A multi-sheeted function u ∈ L2(0,T;H), with u′ ∈ L2(0,T;H∗), is
called a weak solution to the homogenized problem (33.17) if

〈u′(t),v〉+ 〈A (t)u,v〉= 〈F(t),v〉 ∀ v ∈H and for a.e. t ∈ (0,T),

and u|t=0 = 0.

With the help of (33.2) we prove that for a.e. t ∈ (0,T) the operator A is
bounded, strictly monotone, hemicontinuous, and coercive. Thus, due to Corollary
4.1 [Sho97] problem (33.17) has a unique weak solution.

33.4 The Main Results

Let u =
(

u+,u(0),
{

u(1,m)
}2

m=1,
{

u(2,m)
}4

m=1

)
∈ L2(0,T;H) be a unique weak

solution to the homogenized problem (33.17).
An approximating function Rε is constructed as the sum of the leading terms of

the outer expansions (33.5), (33.6) and the inner expansion (33.7), (33.9), (33.15),
(33.16) in neighborhoods of the joint zone I0 and branching zones I1, I2, respectively,
with the subtraction of the identical terms of their asymptotics because they are
summed twice (for more detail, see [Mel14]).
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Theorem 1. Suppose that in addition to the assumptions made in § 33.2, the
following conditions hold: the function f ∈ C1(Ω0× [0,T]) and if the parameter
β = 1, then the function g ∈ C1(D�× [0,T]) and it and its derivative with respect to
x2 vanish at x2 = 0.

Then for any ρ ∈ (0,1) there exist positive constants C0,ε0 such that for all
values ε ∈ (0,ε0) the difference between the solution uε to problem (33.1) and the
approximating function Rε satisfies the following estimate

max
0≤t≤T

‖Rε(·, t)− vε(·, t)‖L2(Ωε ) +‖Rε − vε‖L2(0,T;H1(Ωε ))

≤ C0

(
ε+ ε1−ρ + εδα,1(2−α)+α−1 + εδβ ,1(2−β )+β−1

)
. (33.18)

From Theorem 1 it follows directly the Corollary.

Corollary 1. Let assumptions from Theorem 1 hold. Then

max
t∈[0,T]

(
‖uε(·, t)−u+0 (·, t)‖L2(Ω0)

+
2

∑
i=0

2i

∑
m=1
‖uε(·, t)−u(i,m)

0 (·, t)‖
L2(G(i,m)

ε )

)

≤ C0

(
ε+ ε1−ρ + εδα,1(2−α)+α−1 + εδβ ,1(2−β )+β−1

)
,

where uε is the solution to problem (33.1),

u(x) :=

⎧
⎪⎪⎨

⎪⎪⎩

u+(x), x ∈ Ω0,

u(0)(x), x ∈ D0,

u(1,m)(x), x ∈ D1, m = 1,2,
u(2,m)(x), x ∈ D2, m = 1,2,3,4,

is the weak multi-sheeted solution to the homogenized problem (33.17).
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Chapter 34
BDIE System in the Mixed BVP for the Stokes
Equations with Variable Viscosity

S.E. Mikhailov and C.F. Portillo

34.1 Introduction

The mixed (Dirichlet-Neumann) boundary value problem for the steady-state
Stokes system of PDEs for an incompressible viscous fluid with variable viscosity
coefficient is reduced to a system of direct segregated Boundary-Domain Integral
Equations (BDIEs). Mapping properties of the potential-type integral operators
appearing in these equations are presented in appropriate Sobolev spaces. We also
prove the equivalence between the original BVP and the corresponding BDIE
system.

Let Ω = Ω+ ⊂ R
3 be a bounded connected domain with boundary ∂Ω = S,

which is a closed and simply connected infinitely differentiable manifold of
dimension 2, and Ω = Ω ∪ S. The exterior of the domain Ω is denoted as Ω− =
R

3 \Ω . Moreover, let S = SD ∪ SN where both SN and SD are nonempty disjointed
and simply connected open manifolds of S.

Let v be the velocity vector field p the pressure scalar field and μ ∈ C ∞(Ω) be
the variable kinematic viscosity of the fluid such that μ(x)> c > 0.

For a compressible fluid the stress tensor operator, σij, for an arbitrary couple
(v,p) is defined as

σji(v,p)(x) :=−δ j
i p(x)+μ(x)

(
∂vi(x)
∂xj

+
∂vj(x)
∂xi

− 2
3
δijdivv

)

,
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and the Stokes operator is defined as

Aj(v,p)(x) : =
∂
∂xi

σji(v,p)(x)

=
∂
∂xi

(

μ(x)
(
∂vj

∂xi
+
∂vi

∂xj
− 2

3
δijdivv

))

− ∂p
∂xj

, j, i ∈ {1,2,3},

where δ j
i is Kronecker symbol. Here and henceforth we assume the Einstein

summation in repeated indices from 1 to 3. We also denote the Stokes operator
as A = {Aj}3

j=1.
For an incompressible fluid divv = 0, which reduces the stress tensor operator

and the Stokes operator, respectively, to

σij(v,p)(x) =−δ j
i p(x)+μ(x)

(
∂vi(x)
∂xj

+
∂vj(x)
∂xi

)

,

Aj(v,p)(x) =
∂
∂xi

(

μ(x)
(
∂vj

∂xi
+
∂vi

∂xj

))

− ∂p
∂xj

.

In what follows Hs(Ω) = Hs
2(Ω), Hs(∂Ω) = Hs

2(∂Ω) are the Bessel potential
spaces, where s ∈ R is an arbitrary real number (see, e.g., [LiMa73, McL00]).
We recall that Hs coincide with the Sobolev–Slobodetski spaces Ws

2 for any non-
negative s. We denote by H̃s(Ω) the subspace of Hs(R3), H̃s(Ω) := {g : g ∈
Hs(R3), suppg⊂Ω}; similarly, H̃s(S1) = {g ∈Hs(S), supp g⊂ S1} is the Sobolev
space of functions having support in S1 ⊂ S = ∂Ω . We will also use the notation like
Hs(Ω) = [Hs(Ω)]n for the n-dimensional counterparts of all the aforementioned
spaces. Let Hs

div(Ω) = {v ∈ Hs(Ω) : divv = 0} be the divergence-free Sobolev
space.

We will also make use of the following spaces (cf., e.g., [Co88] [CMN09])

H
1,0(Ω ;A ) := {(v,p) ∈H1(Ω)×L2(Ω) : A (v,p) ∈ L2(Ω)},

H
1,0
div(Ω ;A ) := {(v,p) ∈H1

div(Ω)×L2(Ω) : A (v,p) ∈ L2(Ω)},

endowed with the same norm, ‖(v,p)‖
H

1,0
div(Ω ;L)

= ‖(v,p)‖
H1,0(Ω ;L), where

‖(v,p)‖
H1,0(Ω ;L) :=

(
‖p‖2

L2(Ω) +‖v‖2
H1(Ω)

+‖A (v,p)‖2
L2(Ω)

) 1
2
.

For sufficiently smooth functions v and p in Ω±, we can write the classical
traction operators on the boundary S as

T±i (v,p)(x) := γ±σij(v,p)(x)nj(x), (34.1)
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where nj(x) denote components of the unit outward normal vector n(x) to the
boundary S of the domain Ω and γ± are the trace operators from inside and
outside Ω .

Traction operators (34.1) can be continuously extended to the canonical traction

operators T± : H1,0(Ω±,A )→H−
1
2 (S) defined in the weak form similar to [Co88,

Mi11, CMN09] as

〈T±(v,p),w〉S :=±
∫

Ω±

[
A (v,p)γ−1w+E

(
(v,p),γ−1w

)]
dx,

∀(v,p) ∈H
1,0(Ω±,A ), ∀w ∈H

1
2 (S).

Here the operator γ−1 : H
1
2 (S)→H1(R3) denotes a continuous right inverse of the

trace operator γ : H1(R3)→H
1
2 (S), and the bilinear form E is defined as

E ((v,p),u)(x) : =
1
2
μ(x)
(
∂ui(x)
∂xj

+
∂uj(x)
∂xi

)(
∂vi(x)
∂xj

+
∂vj(x)
∂xi

)

− 2
3
μ(x)divv(x)divu(x)−p(x)divu(x).

Furthermore, if (v,p) ∈ H
1,0(Ω ,A ) and u ∈ H1(Ω), the following first Green

identity holds, cf. [Co88, Mi11, CMN09],

〈T+(v,p),γ+u〉S =
∫

Ω
[A (v,p)u+E ((v,p),u)(x)]dx. (34.2)

For (v,p)∈H1,0
div(Ω

±,A ) the canonical traction operators can be reduced to T± :

H
1,0
div(Ω

±,A )→H−
1
2 (S) defined as

〈T±(v,p),w〉S :=±
∫

Ω±

[
A (v,p)γ−1

divw+E (v,γ−1
divw)

]
dx

∀(v,p) ∈H
1,0
div(Ω

±,A ), ∀w ∈H
1
2 (S).

Here the operator γ−1
div : H

1
2 (S)→H1

div(R
3) denotes a continuous right inverse of the

trace operator γ : H1
div(R

3)→H
1
2 (S), and the bilinear form E reduces to

E (v,u)(x) :=
μ(x)

2

(
∂ui(x)
∂xj

+
∂uj(x)
∂xi

)(
∂vi(x)
∂xj

+
∂vj(x)
∂xi

)

.

For (v,p) ∈ H
1,0
div(Ω ,A ) and u ∈ H1

div(Ω), the first Green identity takes the same
form (34.2), where E ((v,p),u)(x) reduces to E (v,u)(x).
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Applying the identity (34.2) to the pairs of elements (v,p) ∈ H
1,0
div(Ω ,A ) and

(u,q) ∈ H
1,0
div(Ω ,A ) with exchanged roles and subtracting the one from the other,

we arrive at the second Green identity, cf. [McL00, Mi11],

∫

Ω
[Aj(v,p)uj−Aj(u,q)vj]dx =

∫

S
[Tj(v,p)uj−Tj(u,q)vj]dS. (34.3)

Now we are ready to define the mixed boundary value problem for which we
aim to derive equivalent boundary-domain integral equation systems (BDIEs) and
investigate the existence and uniqueness of their solutions.

For f ∈ L2(Ω), ϕ0 ∈H
1
2 (SD) and ψ0 ∈H−

1
2 (SN), find (v,p) ∈H1,0

div(Ω ,A ) such
that:

A (v,p)(x) = f(x), x ∈Ω , (34.4a)

rSDγ
+v(x) = ϕ0(x), x ∈ SD, (34.4b)

rSN T+(v,p)(x) = ψ0(x), x ∈ SN . (34.4c)

The following assertion can be easily proved by the Lax-Milgram lemma.

Theorem 1. Mixed boundary value problem (34.4) is uniquely solvable.

34.2 Parametrix and Parametrix-Based Hydrodynamic
Potentials

When μ(x) = 1, the operator A becomes the constant-coefficient Stokes operator
˚A , for which we know an explicit fundamental solution defined by the pair of

distributions (ůk, q̊k) where ůk
j represent the components of the incompressible

velocity fundamental solution and q̊k represent the components of the pressure
fundamental solution (see, e.g., [La69, KoWe06], [HsWe08]).

ůk
j (x,y) =−

1
8π

{
δ k

j

|x− y| +
(xj− yj)(xk− yk)

|x− y|3
}

,

q̊k(x,y) =
xk− yk

4π|x− y|3 , j,k ∈ {1,2,3}.

Therefore (ůk, q̊k) satisfy

˚Aj(ů
k, q̊k)(x) =

3

∑
i=1

∂ 2ůk
j

∂x2
i

− ∂ q̊k

∂xj
= δ k

j δ (x− y)
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Let us denote σ̊ij(v,p) := σij(v,p)|μ=1. Then in the particular case, for μ = 1
and the fundamental solution (ůk, q̊k)k=1,2,3 of the operator ˚A , the stress tensor
σ̊ij(ů

k, q̊k)(x− y) reads

σ̊ij(ů
k, q̊k)(x− y) =

3
4π

(xi− yi)(xj− yj)(xk− yk)

|x− y|5 ,

and the boundary traction becomes

T̊i(x; ůk, q̊k)(x,y) : = σ̊ij(ů
k, q̊k)(x− y)nj(x)

=
3

4π
(xi− yi)(xj− yj)(xk− yk)

|x− y|5 nj(x).

Let us define a pair of functions (uk,qk)k=1,2,3 as

uk
j (x,y) =

1
μ(y)

ůk
j (x,y) =−

1
8πμ(y)

{
δ k

j

|x− y| +
(xj− yj)(xk− yk)

|x− y|3
}

, (34.5)

qk(x,y) =
μ(x)
μ(y)

q̊k(x,y) =
μ(x)
μ(y)

xk− yk

4π|x− y|3 , j,k ∈ {1,2,3}. (34.6)

Then

σij(x;uk,qk)(x,y) =
μ(x)
μ(y)

σ̊ij(ů
k, q̊k)(x− y),

Ti(x;uk,qk)(x,y) := σij(x;uk,qk)(x,y)nj(x) =
μ(x)
μ(y)

T̊i(x; ůk, q̊k)(x,y).

Substituting (34.5)-(34.6) in the Stokes system gives

Aj(x;uk,qk)(x,y) = δ k
j δ (x− y)+Rkj(x,y), (34.7)

where

Rkj(x,y) =
1
μ(y)

∂μ(x)
∂xi

σ̊ij(ů
k, q̊k)(x− y) = O(|x− y|)−2)

is a weakly singular remainder. This implies that (uk,qk) is a parametrix of the
operator A .

Let us define the parametrix-based Newton-type and remainder vector potentials

Ukρ(y) =Ukjρj(y) :=
∫

Ω
uk

j (x,y)ρj(x)dx,

Rkρ(y) =Rkjρj(y) :=
∫

Ω
Rkj(x,y)ρj(x)dx, x ∈ R

3,
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for the velocity, and the scalar Newton-type and remainder potentials

Qρ(y) =Qjρj(y) :=
∫

Ω
q̊j(x,y)ρj(x)dx, (34.8)

R•ρ(y) =R•j ρj(y) := 2
∫

Ω

∂ q̊j(x,y)
∂xi

∂μ(x)
∂xi

ρj(x)dx, x ∈ R
3, (34.9)

for the pressure. The integral in (34.9) is understood as a 3D strongly singular
integral in the Cauchy sense.

For the velocity, let us also define the parametrix-based single-layer potential,
double-layer potential and their respective direct values on the boundary, as follows:

Vkρ(y) = Vkjρj(y) :=−
∫

S
uk

j (x,y)ρj(x)dSx, y /∈ S,

Wkρ(y) = Wkjρj(y) :=−
∫

S
Tj(x;uk,qk)(x,y)ρj(x)dSx, y /∈ S,

Vkρ(y) = Vkjρj(y) :=−
∫

S
uk

j (x,y)ρj(x)dSx, y ∈ S,

Wkρ(y) =Wkjρj(y) :=−
∫

S
Tj(x;uk,qk)(x,y)ρj(x)dSx, y ∈ S.

Let us also denote

W ′
k ρ(y) =W ′

kjρj(y) :=−
∫

S
Tj(y;uk, q̊k)(x,y)ρj(x)dSx, y ∈ S.

For pressure in the variable coefficient Stokes system, we will need the following
single-layer and double-layer potentials:

Pρ(y) =Pjρj(y) :=−
∫

S
q̊j(x,y)ρj(x)dSx,

Πρ(y) =Πjρj(y) :=−2
∫

S

∂ q̊j(x,y)
∂n(x)

μ(x)ρj(x)dSx, y /∈ S.

The parametrix-based integral operators, depending on the variable coefficient
μ(x), can be expressed in terms of the corresponding integral operators for the
constant coefficient case, μ = 1,

Ukρ(y) =
1
μ(y)

Ůkρ(y), (34.10)

Rkρ(y) =
−1
μ(y)

[
2
∂
∂yj

Ůki(ρj∂iμ)(y)+2
∂
∂yi

Ůkj(ρj∂iμ)(y)

+ Q̊k(ρj∂jμ)(y)
]
, (34.11)
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Qjρj(y) = Q̊jρj(y), R•j ρj(y) =−2
∂
∂yi

Q̊j(ρj∂iμ)(y), (34.12)

Vkρ(y) =
1
μ(y)

V̊kρ(y), Wkρ(y) =
1
μ(y)

W̊k(μρ)(y), (34.13)

Vkρ(y) =
1
μ(y)

V̊kρ(y), Wkρ(y) =
1
μ(y)

W̊k(μρ)(y), (34.14)

Pjρj(y) = P̊jρj(y), Πjρj(y) = Π̊j(μρj)(y), (34.15)

W ′
k ρ = W̊ ′

k ρ−
(
∂iμ
μ

V̊kρ+
∂kμ
μ

V̊iρ− 2
3
δ k

i
∂jμ
μ

V̊jρ
)

ni. (34.16)

Note that the velocity potentials defined above are not incompressible for the
variable coefficient μ(y).

The following assertions of this section are well known for the constant
coefficient case, see, e.g., [KoWe06, HsWe08]. Then by relations (34.10)-(34.16)
we obtain their counterparts for the variable-coefficient case.

Theorem 2. The following operators are continuous.

Uik : H̃s(Ω)→ Hs+2(Ω), s ∈ R, (34.17)

Uik : Hs(Ω)→ Hs+2(Ω), s >−1
2
, (34.18)

Rik : H̃s(Ω)→ Hs+1(Ω), s ∈ R, (34.19)

Rik : Hs(Ω)→ Hs+1(Ω), s >−1
2
, (34.20)

Pk : Hs− 3
2 (S)→ Hs−1(Ω), s ∈ R, (34.21)

Πk : Hs− 1
2 (S)→ Hs−1(Ω), s ∈ R, (34.22)

Qk : H̃s−2(Ω)→ Hs−1(Ω), s ∈ R, (34.23)

R•k : Hs(Ω)→ Hs(Ω), s >−1
2
. (34.24)

Let us also denote

L ±
k ρ(y) := T±k (Wρ ,Πρ)(y), y ∈ S,

where T±k are the traction operators for the compressible fluid.

Theorem 3. Let s∈R. Let S1 and S2 be two non empty manifolds on S with smooth
boundary ∂S1 and ∂S2, respectively. Then the following operators are continuous:
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Vik : Hs(S)→ Hs+ 3
2 (Ω), Wik : Hs(S)→ Hs+ 1

2 (Ω),

Vik : Hs(S)→ Hs+1(S), Wik : Hs(S)→ Hs+1(S),

rS2Vik : H̃s(S1)→ Hs+1(S2), rS2Wik : H̃s(S1)→ Hs+1(S2),

L ±
ik : Hs(S)→ Hs−1(S), W ′

ik : Hs(S)→ Hs+1(S).

Theorem 4. If τ ∈H1/2(S), ρ ∈H−1/2(S), then the following jump relations hold,

γ±Vkρ = Vkρ, γ±Wkτ =∓1
2
τk +Wkτ

T±k (Vρ ,Pρ) =±1
2
ρk +W ′

kρ,

(L ±
k − L̂k)τ =−γ±

[

(∂iμ)Wk(τ)+(∂kμ)Wi(τ)− 2
3
δ k

i (∂jμ)Wjτ
]

ni,

L̂k(τ) = L̊k(μτ).

Proposition 1. The following operators are compact,

Rik : Hs(Ω)→ Hs(Ω), R•k : Hs(Ω)→ Hs−1(Ω), s ∈ R,

γ+Rik : Hs(Ω)→ Hs− 1
2 (S), T±ik (R,R•) : Hs(Ω)→ Hs− 3

2 (S), s >
1
2
.

Proposition 2. Let s ∈ R and S1 be a nonempty submanifold of S with smooth
boundary. Then the following operators are compact:

(L ±
ik − L̂ik) : H̃s(S1)→ Hs−1(S).

34.3 The Third Green Identities

Let B(y,ε) ⊂ Ω be a ball of a radius ε around a point y ∈ Ω . Applying the second
Green identity (34.3) in the domainΩ \B(y,ε) to any (v,p)∈H1,0

div(Ω ;A ) and to the
fundamental solution (uk,qk) and taking the limit as ε→ 0, we obtain the following
third Green identity

v+Rv−VT+(v,p)+Wγ+v =UA (v,p) in Ω . (34.25)

Similarly, applying the first Green identity (34.2) in the domain Ω \B(y,ε) to any
(v,p)∈H1,0

div(Ω ;A ) and to the pressure part of the constant-coefficient fundamental
solution q̊k, for uk, and taking the limit as ε→ 0, we obtain the following parametrix-
based third Green identity for pressure,
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p+R•v−PT+(v,p)+Πγ+v =QA (v,p) in Ω . (34.26)

If the couple (v,p) ∈ H
1,0
div(Ω ;A ) is a solution of the Stokes PDE (34.4a) with

variable coefficient, then (34.25) and (34.26) give

v+Rv−VT+(v,p)+Wγ+v =U f , (34.27)

p+R•v−PT+(v,p)+Πγ+v =Qf in Ω . (34.28)

We will also need the trace and traction of the third Green identities for (v,p) ∈
H

1,0
div(Ω ;A ) on S:

1
2
γ+v+R+v−V T+(v,p)+W γ+v = γ+U f , (34.29)

1
2

T+(v,p)+T+(R,R•)v−W ′T+(v,p)+L +γ+v = T+(U ,Q)f . (34.30)

One can prove the following two assertions that are instrumental for proof of
equivalence of the BDIEs and the mixed PDE.

Lemma 1. Let v ∈H1
div(Ω), p ∈ L2(Ω), f ∈ L2(Ω),Ψ ∈H−

1
2 (S) and Φ ∈H

1
2 (S)

satisfy the equations

p+R•v−PΨ +ΠΦ =Qf in Ω ,

v+Rv−VΨ +WΦ =U f in Ω .

Then (v,p) ∈ H
1,0
div(Ω ,A ) and solve the equation A (y;v,p) = f . Moreover, the

following relations hold true:

V(Ψ −T+(v,p))(y)−W(Φ− γ+v)(y) = 0, y ∈Ω ,

P(Ψ −T+(v,p))(y)−Π(Φ− γ+v)(y) = 0, y ∈Ω .

Lemma 2. Let S = S1 ∪ S2, where S1 and S2 are open nonempty non-intersecting
simply connected submanifolds of S with infinitely smooth boundaries. Let Ψ ∗ ∈
H̃
− 1

2 (S1), Φ∗ ∈ H̃
1
2 (S2). If

VΨ ∗(x)−WΦ∗(x) = 0 P(Ψ ∗)−Π(Φ∗) = 0 in Ω ,

thenΨ ∗ = 0 and Φ∗ = 0 on S.
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34.4 Boundary–Domain Integral Equation System
for the Mixed Problem

We aim to obtain a segregated boundary-domain integral equation system for

mixed BVP (34.4). To this end, let the functions Φ0 ∈ H
1
2 (S) and Ψ 0 ∈ H−

1
2 (S)

be respective continuations of the boundary functions ϕ0 ∈ H
1
2 (SD) and ψ0 ∈

H−
1
2 (SN) from (34.4b) and (34.4c). Let us now represent

γ+v =Φ0 +ϕ, T+(v,p) =Ψ 0 +ψ on S, (34.31)

where ϕ ∈ H̃
1
2 (SN) and ψ ∈ H̃

− 1
2 (SD) are unknown boundary functions.

Let us now take equations (34.27) and (34.28) in the domain Ω and restrictions
of equations (34.29) and (34.30) to the boundary parts SD and SN , respectively.
Substituting there representations (34.31) and considering further the unknown
boundary functions ϕ and ψ as formally independent of (segregated from) the
unknown domain functions v and p, we obtain the following system of four
boundary-domain integral equations for four unknowns, (v,p) ∈ H

1,0
div(Ω ,A ),

ϕ ∈ H̃
1
2 (SN) and ψ ∈ H̃

− 1
2 (SD):

p+R•v−Pψ+Πϕ = F0 in Ω , (34.32a)

v+Rv−Vψ+Wϕ = F in Ω , (34.32b)

rSDγ
+Rv− rSDV ψ+ rSDW ϕ = rSDγ

+F−ϕ0 on SD, (34.32c)

rSN T+(R,R•)v− rSNW
′ψ+ rSNL

+ϕ = rSN T+(F,F0)−ψ0 on SN ,
(34.32d)

where

F0 =Qf +PΨ 0−ΠΦ0, F =U f +VΨ 0−WΦ0. (34.33)

Applying Lemma 1 to (34.33) and taking into account the continuity of operators
(34.20) and (34.24), one can prove that (F0,F) ∈H

1,0(Ω ,A ).
We denote the right-hand side of BDIE system (34.32) as

F 11 := [F0,F,rSDγ
+F−ϕ0,rSN T+

F,F−ψ0]
�, (34.34)

which implies F 11 ∈H
1,0(Ω ,A )×H

1
2 (SD)×H−

1
2 (SN).

Note that BDIE system (34.32) can be split into the BDIE system of 3 vector
equations (34.32b), (34.32c), (34.32d) for 3 vector unknowns, v, ψ and ϕ , and the
separate equation (34.32a) that can be used, after solving the system, to obtain the
pressure, p. However since the couple (v,p) shares the space H1,0

div(Ω ,A ), equations
(34.32b), (34.32c), (34.32d) are not completely separate from equation (34.32a).
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Theorem 5 (Equivalence Theorem). Let f ∈ L2(Ω) and let Φ0 ∈ H−
1
2 (S) and

Ψ 0 ∈ H−
1
2 (S) be some fixed extensions of ϕ0 ∈ H

1
2 (SD) and ψ0 ∈ H−

1
2 (SN),

respectively.

(i) If (v,p) ∈H
1,0
div(Ω ;A ) solve (34.4), then

(p,v,ψ,ϕ) ∈H
1,0
div(Ω ;A )× H̃

− 1
2 (SD)× H̃

1
2 (SN),

where

ϕ = γ+v−Φ0, ψ = T+(v,p)−Ψ 0 on S, (34.35)

solve BDIE system (34.32).

(ii) If (p,v,ψ,ϕ) ∈ H
1,0
div(Ω ;A )× H̃

− 1
2 (SD)× H̃

1
2 (SN) solve the BDIE system

(34.32), then (v,p) solve mixed BVP (34.4) and the functions ψ,ϕ satisfy (34.35).

(iii) System (34.32) is uniquely solvable in H
1,0
div(Ω ;A )× H̃

− 1
2 (SD)× H̃

1
2 (SN).

Proof. (i) Let (v,p) ∈ H
1,0
div(Ω ;A ) be a solution of the BVP. Let us define the

functions ϕ and ψ by (34.35). By the BVP boundary conditions, γ+v =
ϕ0 = Φ0 on SD and T+(v,p) = ψ0 =Ψ 0 on SN . This implies that (ψ,ϕ) ∈
H̃
− 1

2 (SD)× H̃
1
2 (SN). Taking into account the Green identities (34.26)-(34.30),

we immediately obtain that (p,v,ϕ,ψ) solve system (34.32).

(ii) Conversely, let (p,v,ψ,ϕ) ∈ H
1,0
div(Ω ;A )× H̃

− 1
2 (SD)× H̃

1
2 (SN) solve BDIE

system (34.32). If we take the trace of (34.32b) restricted to SD, use the jump
relations for the trace of W, see Theorem 5, and subtract it from (34.32c), we

arrive at rSDγ+v− 1
2

rSDϕ = ϕ0 on SD. As ϕ vanishes on SD, therefore the

Dirichlet condition of the BVP is satisfied.
Repeating the same procedure but taking the traction of (34.32a) and

(34.32b), restricted to SN , using the jump relations for the traction of V and

subtracting it from (34.32d), we arrive at rSN T(v,p)− 1
2

rSNψ = ψ0 on SN . As

ψ vanishes on SN , therefore the Neumann condition of the BVP is satisfied.
Since ϕ0 =Φ0 on SD and ψ0 =Ψ 0 on SN , the conditions (34.35) are satisfied,
respectively, on SD and SN .

Also we have thatΨ ∈H−
1
2 andΦ ∈H−

1
2 . We note that if (v,p)∈ L2(Ω)×

H1
div(Ω) then A (v,p) = f ∈ L2(Ω). Due to relations (34.32a) and (34.32b) the

hypotheses of the Lemma 1 are satisfied withΨ = ψ+Ψ 0 and Φ = ϕ+Φ0 .
As a result we obtain that (v,p) is a solution of A (v,p) = f satisfying

V(Ψ ∗)−W(Φ∗) = 0, P(Ψ ∗)−Π(Φ∗) = 0 in Ω , (34.36)
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where

Ψ ∗ = ψ+Ψ 0−T+(v,p) Φ∗ = ϕ+Φ0− γ+v

Since Ψ ∗ ∈ H̃
− 1

2 (SD) and Φ∗ ∈ H̃
1
2 (SN), and (34.36) hold true, applying

Lemma 2 for S1 = SD and S2 = SN we obtainΨ ∗ =Φ∗ = 0 on S. This implies
conditions (34.35).

(iii) The uniqueness of the BDIEs (34.32) follows from the uniqueness of the BVP,
see Theorem 1, and items (i) and (ii). !"
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Chapter 35
Calderón–Zygmund Theory for Second-Order
Elliptic Systems on Riemannian Manifolds

D. Mitrea, I. Mitrea, M. Mitrea, and B. Schmutzler

35.1 Background Assumptions and Basic Definitions

The aim of this chapter is to develop a Calderón–Zygmund theory for the layer
potential operators naturally associated with second-order elliptic systems on
Riemannian manifolds, which is effective in the treatment of boundary value
problems in rough settings. Our main results are described in §35.2, while in §35.3
we illustrate the scope of this theory by presenting a number of concrete examples,
of independent interest. We begin by introducing notation and making a series of
basic assumptions of analytic and geometric nature.

Throughout the paper, we let M denote a compact, oriented, boundaryless
Riemannian manifold of class C 2 and real dimension n ∈ N, n ≥ 2. Also, we let
Hs,p stands for the Lp-based Sobolev space of (smoothness) order s ∈R, and denote
by Hs,p

loc the local version of this scale.

Hypothesis 1 (Analytic Assumptions). Consider a second-order differential oper-
ator L : E → E acting between sections of a given C 2 Hermitian vector bundle
E →M , satisfying the following properties:
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(i) One has the quasi-factorization

L = D̃D+Q, (35.1)

where D̃, D are first-order differential operators

D : E −→ G , D̃ : G −→ E (35.2)

for some Hermitian vector bundle G →M which, in any local coordinate chart
U on M and with respect to local trivializations of E ,G , may be represented as

Du(x) = ∑
j

Aj(x)∂ju(x)+B(x)u(x) where, for some r > n,

Aj ∈ H2,r
loc

(
U,CrankG×rankE

)
, B ∈ H1,r

loc

(
U,CrankG×rankE

)
,

(35.3)

and

D̃v(x) = ∑
j

Ãj(x)∂jv(x)+ B̃(x)v(x) where, for some r > n,

Ãj ∈ H2,r
loc

(
U,CrankE×rankG

)
, B̃ ∈ H1,r

loc

(
U,CrankE×rankG

)
,

(35.4)

while

Q ∈ Hom
(
E ,E
)

has coefficients in Lr for some r > n. (35.5)

(ii) The operator L is elliptic, in the sense that its principal symbol satisfies

Sym(L,ξ ) : E → E is invertible for each ξ ∈ T∗M \0. (35.6)

(iii) The operator L is invertible as a mapping

L : H1,2(M ,E )−→ H−1,2(M ,E ). (35.7)

Throughout, we let 〈·, ·〉 denote the real pointwise inner product in the various
vector bundles (a pairing not involving any complex conjugation). Next, given a
differential operator R of order m, locally written as

Ru(x) =
(

∑
|γ |≤m

aαβγ (x)∂ γuβ (x)
)

α
(35.8)

its real transposed is given by R�v =
(
∑|γ |≤m(−1)|γ |∂ γ

(
aαβγ vα

))

β
. Also, the
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principal symbol of (35.8) is the mapping sending a section u into

Sym(R,ξ )u :=
(

im ∑
|γ |=m

aαβγ ξ γuβ
)

α
∀ξ ∈ T∗M , (35.9)

where i :=
√−1 ∈ C. It follows that for ξ ∈ T∗M ,

Sym(R�,ξ ) = (−1)m Sym(R,ξ )� and

Sym(R1R2,ξ ) = Sym(R1,ξ )Sym(R2,ξ ),
(35.10)

whenever the latter composition is meaningful.
In view of the quasi-factorization (35.1) and the subsequent assumptions on the

operators D̃,D, it follows that L may be locally written as

Lu(x) =∑
j,k

∂j
(
Ajk(x)∂ku(x)

)
+∑

j

Bj(x)∂ju(x)+V(x)u(x), (35.11)

with coefficients

Ajk := ÃjAk ∈ C 1+γ
loc , for some γ > 0,

Bj :=−∑
k
(∂kÃk)Aj + ÃjB+ B̃Aj ∈ H1,r

loc,

V := ∑
j

Ãj∂jB+ B̃B+Q ∈ Lr
loc.

(35.12)

If EL denotes the Schwartz kernel of the inverse L−1 of L in (35.7), then

EL ∈D ′(M ×M , E ⊗E )∩C 1+γ
loc

(
M ×M \diag,E ⊗E

)
(35.13)

for some γ > 0; see [MiMiTa01, Proposition 2.3, p. 15] in this regard.
Associated with the quasi-factorization (35.1), introduce the family of first-order

differential operators indexed by sections in the cotangent bundle

∂ L
ξ := (−i)Sym

(
D̃,ξ
)
D, ξ ∈ T∗M . (35.14)

Whenever L is as in Hypothesis 1, it follows that L�, the real transposed of L,
also satisfies all conditions in Hypothesis 1. In particular, we now have the quasi-
factorization

L� = D�D̃�+Q�. (35.15)

We shall denote by EL� the Schwartz kernel of the inverse
(
L�
)−1

of the operator
L� : H1,2(M ,E )→ H−1,2(M ,E ) (which continues to enjoy a regularity property
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analogous to (35.13)). Also, associated with the quasi-factorization (35.15), we
introduce the family of first-order differential operators indexed by sections in the
cotangent bundle

∂ L�
ξ := (−i)Sym

(
D�,ξ

)
D̃�, ξ ∈ T∗M . (35.16)

We now turn to assumptions of a geometric nature.

Hypothesis 2 (Geometric Assumptions). Let Ω ⊂ M be an Ahlfors regular
domain, with outward unit conormal ν ∈ T∗M and surface measure σ :=
H n−1)∂Ω , satisfying a two-sided local John condition (cf. [HoMiTa10] ).

Above, H n−1 denotes the (n− 1)-dimensional Hausdorff measure induced by
the geodesic distance on M . With dist(x,y) denoting the geodesic distance between
points x,y ∈M , we define the non-tangential approach region

Γ (x) :=
{

y ∈Ω : dist(x,y)< 2dist(y,∂Ω)
}
, x ∈ ∂Ω . (35.17)

Also, consider the non-tangential maximal operator acting on a vector bundle-
valued function u defined in Ω according to

(N u)(x) := sup
y∈Γ (x)

|u(y)|, x ∈ ∂Ω , (35.18)

and define the non-tangential boundary trace, whenever meaningful, as

(
u
∣
∣
∣
n.t.

∂Ω

)
(x) := lim

Γ (x)*y→x
u(y), x ∈ ∂Ω . (35.19)

Given Ω as in Hypothesis 2, we define

Ω+ :=Ω and Ω− :=M \Ω . (35.20)

Then the set Ω− also satisfies all conditions specified in Hypothesis 2. In fact,
∂Ω− = ∂Ω+ = ∂Ω , and the outward unit conormal to Ω− is −ν .

By Lp(∂Ω ,E ), 0 < p ≤ ∞, we shall denote the space of measurable sections
f : ∂Ω → E which are p-th power integrable with respect to the surface measure σ .
Also, for p ∈ (1,∞) we let Lp

1(∂Ω ,E ) stand for the Lp-based Sobolev space of order
one on ∂Ω , defined as the collections of functions from Lp possessing first-order
tangential derivatives along ∂Ω in Lp (cf. [HoMiTa10, MiEtAl14], for more details).
Here we remark that if p′ denotes the Hölder conjugate exponent of p ∈ (1,∞), then

Lp
−1(∂Ω ,E ) :=

(
Lp′

1 (∂Ω ,E )
)∗

.
Moving on, we introduce boundary layer potentials, starting with the double-

layer potential defined below.
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Definition 1 (Double Layers). Assume Hypotheses 1-2. In this context, define the
double-layer associated with the quasi-factorization of L in (35.1) as the integral
operator sending any f ∈ L1(∂Ω ,E ) into the function defined at each x∈M \∂Ω by

DLf (x) :=
∫

∂Ω

〈(
Ix⊗ (−i)Sym

(
D�,ν(y)

)
D̃�y
)
EL(x,y), f (y)

〉

Ey
dσ(y)

=

∫

∂Ω

〈(
Ix⊗∂ L�

ν(y)
)
EL(x,y), f (y)

〉

Ey
dσ(y), (35.21)

(where I denotes the identity, here acting in the variable x, etc.). In addition, consider
its principal value version on ∂Ω (in the sense of removing a geodesic ball centered
at the singularity and taking the limit as the radius goes to zero) acting on some
f ∈ L1(∂Ω ,E ) according to

KLf (x) := P.V.
∫

∂Ω

〈(
Ix⊗ (−i)Sym

(
D�,ν(y)

)
D̃�y
)
EL(x,y), f (y)

〉

Ey
dσ(y)

= P.V.
∫

∂Ω

〈(
Ix⊗∂ L�

ν(y)
)
EL(x,y), f (y)

〉

Ey
dσ(y), (35.22)

at σ -a.e. x ∈ ∂Ω .

We continue by considering the single-layer potential.

Definition 2 (Single Layers). Assuming Hypotheses 1-2, define the single-layer
operator as the integral operator sending any f ∈ L1(∂Ω ,E ) into the function defined
at each x ∈M \∂Ω by

SLf (x) :=
∫

∂Ω

〈
EL(x,y), f (y)

〉
Ey

dσ(y). (35.23)

Moreover, define the boundary version of (35.23) by setting, at σ -a.e. x ∈ ∂Ω ,

SLf (x) :=
∫

∂Ω

〈
EL(x,y), f (y)

〉
Ey

dσ(y). (35.24)

35.2 Formulation of the Main Results

This section contains the principal results of this chapter, dealing with properties of
the single-layer and double-layer potential operators associated with a second-order
elliptic system, such as non-tangential maximal function estimates, jump formulas,
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square-function estimates, Carleson measure estimates, operator identities, integral
representation formulas, and Green-type identities. Our first theorem of this flavor
concerns the double-layer potential operator.

Theorem 1 (Properties of the Double Layer). Assume Hypotheses 1-2. Then for
each integrability exponent p ∈ (1,∞) the following conclusions hold.

(1) Given any covariant derivative ∇ on E , there exists a constant C ∈ (0,∞) with
the property that

‖N (DLf )‖Lp(∂Ω) ≤ C‖f‖Lp(∂Ω ,E ), ∀ f ∈ Lp(∂Ω ,E ), (35.25)

‖N (∇DLf )‖Lp(∂Ω) ≤ C‖f‖Lp
1(∂Ω ,E ), ∀ f ∈ Lp

1(∂Ω ,E ). (35.26)

(2) The following operators are well defined, linear, and bounded:

KL : Lp(∂Ω ,E )→ Lp(∂Ω ,E ), KL : Lp
1(∂Ω ,E )→ Lp

1(∂Ω ,E ). (35.27)

(3) For each f ∈ Lp(∂Ω ,E ), one has

(DLf )
∣
∣
∣
n.t.

∂Ω±
=
(± 1

2 I +KL
)
f at σ -a.e. point on ∂Ω . (35.28)

(4) For each f ∈ Lp
1(∂Ω ,E ), the non-tangential traces

(
∇DLf

)∣∣
∣
n.t.

∂Ω±
exist σ -a.e. on ∂Ω . (35.29)

(5) The conormal derivative of the double-layer does not jump across the bound-
ary. That is, for every f ∈ Lp

1(∂Ω ,E ), at σ -a.e. point on ∂Ω , one has

(−i)Sym(D̃,ν)
(

DDLf
)∣
∣
∣
n.t.

∂Ω+

= (−i)Sym(D̃,ν)
(

DDLf
)∣
∣
∣
n.t.

∂Ω−
. (35.30)

In particular, for every f ∈ Lp
1(∂Ω) it is meaningful to abbreviate

∂ L
νDLf := (−i)Sym(D̃,ν)

(
DDLf

)∣
∣
∣
n.t.

∂Ω±
, σ -a.e. on ∂Ω . (35.31)

Defined as such, the conormal derivative of the double-layer potential induces
a bounded mapping

∂ L
νDL : Lp

1(∂Ω ,E )−→ Lp(∂Ω ,E ). (35.32)
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(6) Given a first-order differential operator P : E →F , for some vector bundle
F →M , define the tangential derivative operator ∂τP induced by P on ∂Ω
according to

∂τP := P−Sym(P,ν)Sym(L,ν)−1Sym(D̃,ν)D

= P+(−i)Sym(P,ν)Sym(L,ν)−1∂ L
ν . (35.33)

Then for every f ∈ Lp
1(∂Ω ,E ) one has at σ -a.e. point on ∂Ω

(
PDLf

)∣∣
∣
n.t.

∂Ω±
= ∂τP

(± 1
2 I +KL

)
f

− (−i)Sym(P,ν)Sym(L,ν)−1∂ L
νDLf . (35.34)

As a consequence, for every f ∈ Lp
1(∂Ω ,E ),

(
PDLf

)∣∣
∣
n.t.

∂Ω+

− (PDLf
)∣∣
∣
n.t.

∂Ω−
= ∂τP f at σ -a.e. point on ∂Ω . (35.35)

(7) There exists C ∈ (0,∞) such that for every f ∈ L2(∂Ω ,E ) one has the square-
function estimate (hereafter dV denotes the volume element on M )

∫

M \∂Ω

∣
∣∇(DLf )(x)

∣
∣2 dist(x,∂Ω)dV(x)≤ C

∫

∂Ω
|f |2 dσ .

(35.36)

(8) Whenever p ∈ (2,∞), there exists C ∈ (0,∞) with the property that for every
f ∈ Lp(∂Ω ,E ) one has (abbreviating Δ(x,r) := B(x,r)∩∂Ω )

∫

∂Ω

sup
r>0

(
1

σ
(
Δ(x,r)

)
∫

B(x,r)∩Ω

∣
∣∇(DLf )

∣
∣2dist(·,∂Ω)dV

)p
2

dσ(x)≤ C
∫

∂Ω

|f |pdσ . (35.37)

Moreover, corresponding to p = ∞, for each f ∈ L∞(∂Ω ,E ) the measure
|(∇DLf )(x)|2 dist(x,∂Ω)dV(x) is Carleson in Ω in the precise sense that

sup
r>0

x∈∂Ω

(
1

σ
(
Δ(x,r)

)
∫

B(x,r)∩Ω

∣
∣∇DLf

∣
∣2dist(·,∂Ω)dV

)1
2

≤ C‖f‖L∞(∂Ω). (35.38)

(9) For each f ∈ L1(∂Ω ,E ) one has

L(DLf ) = 0 in M \∂Ω . (35.39)
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(10) For a local frame {Xj}j in TM , consisting of vector fields with continuous
coefficients, define the tangential derivatives

∂τjk := ν(Xj)∇Xk −ν(Xk)∇Xj , j,k ∈ {1, . . . ,n}, (35.40)

and view them as mappings from Lp
1(∂Ω ,E ) into Lp(∂Ω ,E ). Then, locally,

for each fixed pair of indices j,k ∈ {1, . . . ,n}, the commutator

[
∂τjk ,KL

]
: Lp

1(∂Ω ,E )−→ Lp(∂Ω ,E ) (35.41)

may be written as a linear combination of terms of the form [Mν� ,T�]∂τrs plus
a compact mapping from Lp

1(∂Ω ,E ) into Lp(∂Ω ,E ). Here, [Mν� ,T�] is the
commutator between Mν� , the operator of pointwise multiplication with the
component ν� of ν , and a Calderón–Zygmund singular integral operator T�,
bounded on Lp(∂Ω).

(11) With VMO(∂Ω) denoting the Sarason space of functions with vanishing mean
oscillations on ∂Ω , one has the implication

ν ∈ VMO(∂Ω ,T∗M ) and

KL compact on Lp(∂Ω ,E )

}

⇒ KL compact on Lp
1(∂Ω ,E ). (35.42)

Going further, we turn our attention to the single-layer potential operator.

Theorem 2 (Properties of the Single Layer). Assume Hypotheses 1-2. Then for
each integrability exponent p ∈ (1,∞) the following conclusions hold.

(1) Given any covariant derivative ∇ on E , there exists a constant C ∈ (0,∞) with
the property that for each f ∈ Lp(∂Ω ,E ), one has

‖N (SLf )‖Lp(∂Ω) +‖N (∇SLf )‖Lp(∂Ω) ≤ C‖f‖Lp(∂Ω ,E ). (35.43)

Moreover

‖N (SLf )‖Lp(∂Ω) ≤ C‖f‖Lp
−1(∂Ω ,E ), ∀ f ∈ Lp

−1(∂Ω ,E ). (35.44)

(2) The operators

SL : Lp(∂Ω ,E )→ Lp
1(∂Ω ,E ), SL : Lp

−1(∂Ω ,E )→ Lp(∂Ω ,E ), (35.45)

are well defined, linear, and bounded.
(3) For each f ∈ Lp(∂Ω ,E ), the non-tangential traces

(
∇SLf

)∣∣
∣
n.t.

∂Ω±
exist σ -a.e. on ∂Ω . (35.46)
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(4) For each f ∈ Lp(∂Ω ,E ), one has

(
∂ L
νSLf

)∣∣
∣
n.t.

∂Ω±
:= (−i)Sym(D̃,ν)

(
DSLf

)∣
∣
∣
n.t.

∂Ω±
(35.47)

=
(
∓ 1

2 I +
(
KL�
)�)

f at σ -a.e. point on ∂Ω ,

where
(
KL�
)�

denotes the (real) transposed of KL� , the principal value of the
double-layer potential associated with L� (much as KL has been associated
with L in Definition 1, this time making use of the quasi-factorization (35.15)).

(5) Given a first-order differential operator P : E → F , for some vector bundle
F →M , recall the tangential derivative operator ∂τP induced by P on ∂Ω as
in (35.33). Then for every f ∈ Lp(∂Ω ,E ), one has

(
PSLf

)∣∣
∣
n.t.

∂Ω±
= iSym(P,ν)Sym(L,ν)−1

(
∓ 1

2 I +
(
KL�
)�)

f

+∂τP

(
SLf
)
, at σ -a.e. point on ∂Ω . (35.48)

As a consequence, given f ∈ Lp(∂Ω ,E ), at σ -a.e. point on ∂Ω , one has

(
PSLf

)∣∣
∣
n.t.

∂Ω+

− (PSLf
)∣∣
∣
n.t.

∂Ω−
= (−i)Sym(P,ν)Sym(L,ν)−1f . (35.49)

(6) There exists C ∈ (0,∞) with the property that one has the square-function
estimates

∫

M \∂Ω

∣
∣∇2(SLf )(x)

∣
∣2 dist(x,∂Ω)dV(x)≤ C

∫

∂Ω
|f |2 dσ

(35.50)

for every f ∈ L2(∂Ω ,E ), and for every f ∈ L2
−1(∂Ω ,E )

(∫

M \∂Ω

∣
∣∇(SLf )(x)

∣
∣2 dist(x,∂Ω)dV(x)

) 1
2 ≤ C‖f‖L2−1(∂Ω ,E ).

(35.51)

(7) For each f ∈ L1(∂Ω ,E ) one has

L(SLf ) = 0 in M \∂Ω . (35.52)

(8) The following Fredholm property result holds:

if ν ∈ VMO(∂Ω ,T∗M ) and KL, KL� are compact on Lp(∂Ω ,E )

then SL : Lp(∂Ω ,E )→ Lp
1(∂Ω ,E ) is a Fredholm operator.

(35.53)
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We next discuss integral representation formulas involving volume and boundary
layer potential operators.

Theorem 3 (Layer Potential Integral Representation Formula). Assume
Hypotheses 1-2. For a given function u ∈ C 1(Ω ,E ), define the boundary conormal
derivative as

∂ L
ν u := (−i)Sym(D̃,ν)

(
Du
)∣∣
∣
n.t.

∂Ω
on ∂Ω , (35.54)

whenever this is meaningful in a pointwise, a.e. sense (with respect to the surface
measure). Also, define the Newtonian (volume) potential ΠL acting on a function
v ∈ L1(Ω ,E ) by

ΠLv(x) :=
∫

Ω

〈
EL(x,y),v(y)

〉
Ey

dV(y), x ∈Ω . (35.55)

Then every function satisfying

u ∈ C 1(Ω ,E ), Lu ∈ L1(Ω ,E ), N (u),N (Du) ∈ L1(∂Ω)

and such that there exist u
∣
∣n.t.
∂Ω and (Du)

∣
∣n.t.
∂Ω σ -a.e. on ∂Ω ,

(35.56)

admits the integral representation formula

u =ΠL(Lu)+DL
(
u
∣
∣n.t.
∂Ω
)−SL

(
∂ L
ν u
)

in Ω . (35.57)

Our next theorem establishes a basic Green-type identity.

Theorem 4 (Green’s Identity). Assume Hypotheses 1-2. If u,v ∈ C 1(Ω ,E ) are
two functions such that, for p,p′ ∈ (1,∞) with 1/p+1/p′ = 1, one has

Lu ∈ Lnp/(n+p−1)(Ω ,E ), L�v ∈ Lnp/(np−n+1)(Ω ,E ),

N (u),N (Du) ∈ Lp(∂Ω), N (v),N (D̃v) ∈ Lp′(∂Ω), and

there exist u
∣
∣n.t.
∂Ω , (Du)

∣
∣n.t.
∂Ω , v

∣
∣n.t.
∂Ω , (D̃v)

∣
∣n.t.
∂Ω , σ -a.e. on ∂Ω ,

(35.58)

then
∫

Ω

〈
Lu,v
〉

dV−
∫

Ω

〈
u,L�v

〉
dV

=
∫

∂Ω

〈
∂ L
ν u , v

∣
∣n.t.
∂Ω
〉

dσ −
∫

∂Ω

〈
u
∣
∣n.t.
∂Ω , ∂ L�

ν v
〉

dσ . (35.59)

Finally, in our last result in this section we collect some fundamental operator
identities involving boundary layer potentials and their transpositions.
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Theorem 5 (Operator Identities). Assume Hypotheses 1-2. Then the following
boundary layer operator identities hold.

(1) For each p ∈ (1,∞) one has the intertwining formula

SL
(
KL�
)�

= KLSL on Lp(∂Ω ,E ), and on Lp
−1(∂Ω ,E ). (35.60)

(2) If the exponents p,p′ ∈ (1,∞) are such that 1/p+1/p′ = 1, then

∫

∂Ω

〈
∂ L
νDLf , g

〉
dσ =

∫

∂Ω

〈
f , ∂ L�

ν DL�g
〉

dσ (35.61)

for every f ∈ Lp
1(∂Ω ,E ) and g ∈ Lp′

1 (∂Ω ,E ). As a consequence, for each
p ∈ (1,∞) the operator (35.32) further extends to a well-defined, linear, and
bounded mapping

∂ L
νDL : Lp(∂Ω ,E )−→ Lp

−1(∂Ω ,E ) (35.62)

whose transposed is the operator

(
∂ L
νDL
)�

= ∂ L�
ν DL� : Lp′

1 (∂Ω ,E )−→ Lp′(∂Ω ,E ). (35.63)

(3) For each p ∈ (1,∞) the mapping

SL : Lp(∂Ω ,E )−→ Lp(∂Ω ,E ) (35.64)

is compact, and its (real ) transposed is the operator

(SL)
� = SL� : Lp′(∂Ω ,E )−→ Lp′(∂Ω ,E ), 1/p+1/p′ = 1. (35.65)

(4) For each p ∈ (1,∞) the following operator identities hold on Lp(∂Ω ,E ):

(
1
2 I +KL

)(− 1
2 I +KL

)
= SL
(
∂ L
νDL
)
, (35.66)

(
1
2 I +
(
KL�
)�)(− 1

2 I +
(
KL�
)�)

=
(
∂ L
νDL
)
SL, (35.67)

(
KL�
)�(∂ L

νDL
)
=
(
∂ L
νDL
)
KL. (35.68)

35.3 Examples

On the geometrical side, classes of domains satisfying the conditions listed in
Hypothesis 2 include Lipschitz domains or, more generally, domains locally given
as the upper-graphs of continuous functions with gradients in BMO, the John–
Nirenberg space of functions with bounded mean oscillations. This being said,
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domains satisfying the conditions in Hypothesis 2 need not be locally of upper-graph
type. Examples include the category of chord-arc domains satisfying a two-sided
corkscrew condition in the plane and, in higher dimensions, two-sided NTA domains
(in the sense of Jerison–Kenig [JeKe82]), with an Ahlfors regular boundary.

On the analytical side, consider first the case of the zero-th order perturbation

L := ΔLB−V (35.69)

of the Laplace–Beltrami operator ΔLB on the manifold M , by a scalar function V .
This Schrödinger type operator satisfies the quasi-factorization as in (35.1) with

D := grad, D̃ :=−D� = div, Q :=−V. (35.70)

In turn, this quasi-factorization yields the conormal (cf. (35.16) with ξ = ν)

∂ L�
ν = (−i)Sym

(
D�,ν

)
D̃� = 〈ν ,grad〉= ∂ν , (35.71)

the ordinary covariant derivative in the direction of ν . Via the recipe from
Definition 1, this conormal then produces (with E denoting the Schwartz kernel
of L−1) the principal value double-layer potential

(Kf )(x) := P.V.
∫

∂Ω
∂ν(y)
[
E(x,y)

]
f (y)dσ(y) x ∈ ∂Ω , (35.72)

which has been studied in [MiTa99] in the context of Lipschitz domains.
Another natural example is obtained starting with the Hodge-Laplacian ΔHL =

−(δd+dδ ), acting on l-forms for some fixed l ∈ {0,1, . . . ,n}, and then considering
L := ΔHL−V where V is a scalar potential. A quasi-factorization of L as in (35.1) is
then obtained by taking

D :=

(
δ

d

)

(35.73)

mapping sections of the vector bundle E := Λ lTM into sections of the vector
bundle G :=Λ l+1TM ⊕Λ l−1TM , then taking

D̃ :=−D� =−(d δ ) (35.74)

and, finally, Q := −V . Indeed, in this scenario D̃D+Q = −dδ − δd−V = L, as
wanted. Moreover, since

iSym(D�,ν) =
(
iSym(d,ν) iSym(δ ,ν)

)
= (−ν ∧· ν ∨·), (35.75)

this quasi-factorization yields the conormal

∂ L�
ν = (−i)Sym

(
D�,ν

)
D̃� =−ν ∧δ +ν ∨d. (35.76)
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As such, the specific format of the double layer associated with this factorization of
the perturbed Hodge-Laplacian L = ΔHL−V is

KLf (x) = P.V.
∫

∂Ω

〈
ν(y)∨dyΓl(x,y)−ν(y)∧δyΓl(x,y), f (y)

〉
y dσ(y) (35.77)

for each f ∈ L1(∂Ω ,Λ lTM ) and x ∈ ∂Ω , where Γl is the Schwartz kernel of L−1

on l-forms.
Another important quasi-factorization of the Hodge-Laplacian is offered by

Weitzenböck’s formula

ΔHL =−∇�∇−Ric. (35.78)

Here ∇ denotes the Levi-Civita connection (or covariant derivative) on M , whose
action is extended to differential forms in a canonical fashion. Also, Ric is the so-
called Weitzenböck operator, a curvature term of order zero (depending linearly
on the Riemann curvature, via real coefficients) that preserves l-forms, and is self-
adjoint. In this scenario, the quasi-factorization of L := ΔHL as in (35.1) is satisfied
with

D̃ :=−∇�, D := ∇, Q :=−Ric. (35.79)

Given that

Sym(∇,ξ )u = iξ ⊗u, ∀ξ ∈ T∗M , (35.80)

and

Sym(∇�,ξ )(η⊗u) =−i〈ξ ,η〉u, ∀ξ ,η ∈ T∗M , (35.81)

this quasi-factorization yields the conormal

∂ L�
ν = (−i)Sym

(
D�,ν

)
D̃� = i∑

j

Sym(∇�,ν)
(
dxj⊗∇∂j

)

=∑
j

〈ν ,dxj〉∇∂j
=∑

j

ν�j ∇∂j
= ∇ν� (35.82)

where ν� is the outward unit normal to Ω (i.e., the metric identification of the
conormal ν ∈ T∗M with a tangent vector). Granted this, formula (35.22) yields the
following specific format of the double-layer potential associated with the above
factorization of the Hodge-Laplacian L = ΔHL:

KLf (x) = P.V.
∫

∂Ω

〈(
Ix⊗∇ν�(y)

)
EL(x,y), f (y)

〉
ydσ(y) (35.83)

at σ -a.e. x ∈ ∂Ω , where EL is the Schwartz kernel of L−1.
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As a final conclusion, all results in §35.2 apply to the above double-layer
potentials when considered in the geometric context described in Hypothesis 2.
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Chapter 36
The Regularity Problem in Rough Subdomains
of Riemannian Manifolds

M. Mitrea and B. Schmutzler

36.1 Formulation of the Regularity Problem

Let (M ,g) denote a compact, oriented, boundaryless Riemannian manifold of class
C 2 and real dimension n ∈ N, n ≥ 2. The convention of summing over repeated
indices is used throughout. In particular, the local expression of the Riemannian
metric tensor is g= gjk dxj⊗dxk. As is customary, we also use the symbol g to denote
det(gjk), and the inverse of (gjk) is denoted by (gjk). The Riemannian volume form
dVol has the local expression dVol =

√
gdx, where dx is n-dimensional Lebesgue

measure and g = det(gjk).
Throughout this paper,Ω ⊂M is a regular Semmes–Kenig–Toro (SKT) domain.

This means thatΩ is an open, nonempty subset of M that satisfies a two-sided local
John condition, has Ahlfors regular boundary ∂Ω , and its outward unit conormal
ν : ∂Ω → T∗M belongs to the Sarason space VMO(∂Ω ,σ) consisting of functions
with vanishing mean oscillations; see [MiEtAl14] for details. The measure σ on ∂Ω
is defined by setting σ :=H n−1)∂Ω , where H n−1 denotes the (n−1)-dimensional
Hausdorff measure (which depends on the metric g). Regular SKT domains provide
the most general environment that supports compactness results such as Theorem 3,
one of the key results of this paper.

For distinct points x,y ∈M , a rectifiable curve joining x and y is a curve γ in
M which has a Lipschitz parametrization γ : [0,1]→M such that γ(0) = x and
γ(1) = y. The length of such a curve is defined by

L(γ) :=
∫ 1

0

√
〈γ̇(t), γ̇(t)〉dt. (36.1)
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The geodesic distance between distinct points x,y ∈M is given by

dist(x,y) := inf
{

L(γ) : γ is a rectifiable curve joining x and y
}
. (36.2)

Throughout the paper fix κ > 0 and define the non-tangential approach region

Γ (x) :=
{

y ∈Ω : dist(x,y)< (1+κ)dist(y,∂Ω)
}
, x ∈ ∂Ω . (36.3)

If u :Ω → C, define the non-tangential maximal function by

(N u)(x) := sup
y∈Γ (x)

|u(y)|, x ∈ ∂Ω , (36.4)

and the non-tangential boundary trace by setting, whenever meaningful,

u
∣
∣
∣
n.t.

∂Ω
(x) := lim

Γ (x)*y→x
u(y), x ∈ ∂Ω . (36.5)

We now proceed to define an appropriate Lp-based Sobolev space of order one
on ∂Ω . The first step is to define such a space in the Euclidean context. Specifically,
given any ϕ ∈ C 1

0 (R
n), set

∂τjkϕ := νj
(
∂kϕ
)∣∣
∣
∂Ω
−νk
(
∂jϕ
)∣∣
∣
∂Ω

, ∀ j,k ∈ {1, . . . ,n}. (36.6)

For any p ∈ (1,∞), the Euclidean Sobolev space Lp
1(∂Ω) is then defined to be the

collection of all functions f ∈ Lp(∂Ω) with the property that, for each pair of indices
j,k ∈ {1, . . . ,n}, there exists fjk ∈ Lp(∂Ω) such that

∫

∂Ω
ϕfjk dσ =−

∫

∂Ω
(∂τjkϕ)f dσ , ∀ϕ ∈ C 1

0 (R
n). (36.7)

Such functions fjk are called tangential derivatives of f ∈ Lp
1(∂Ω) and denoted by

∂τjk f . The Euclidean tangential gradient of f ∈ Lp
1(∂Ω) is defined by

∇tanf :=
(
νk ∂τkj f

)
1≤j≤n. (36.8)

Finally, given a suitable subdomain Ω of the manifold M , the corresponding
Sobolev space Lp

1(∂Ω), 1 < p < ∞, is defined as the collections of functions which
locally belong to the Euclidean version of this space (discussed above).

We are now in a position to formulate the boundary value problem which
is the subject of this article. The Laplace–Beltrami operator is the second-order
differential operator defined by

Δ := divgrad . (36.9)
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Given u :Ω → C, the local coordinate expression for Δu is

Δu =
1√
g
∂j
(√

ggjk∂ku
)
. (36.10)

For each p ∈ (1,∞), the regularity problem (Rp) for Δ is the task of finding a unique
function u ∈ C 1(Ω) that satisfies

(Rp)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Δu = 0 in Ω ,

N u,N (∇u) ∈ Lp(∂Ω),

u
∣
∣
∣
n.t.

∂Ω
= f ∈ Lp

1(∂Ω),

(36.11)

where ∇ is the Levi–Civita connection associated with the metric g.
The main result in this paper, Theorem 1, pertains to the unique solvability of

(Rp). This complements work done in [HoMiTa10], where the Dirichlet problem
has been considered. For a proof of Theorem 1, the reader is referred to §36.3.

Theorem 1. The regularity problem (Rp) is well-posed for each p ∈ (1,∞). More-
over, given f ∈ Lp

1(∂Ω), the solution to (Rp) is given by

u :=D
[(

1
2 I +K

)−1
f
]

in Ω , (36.12)

and satisfies

‖N u‖Lp(∂Ω) +‖N (∇u)‖Lp(∂Ω) � ‖f‖Lp
1(∂Ω). (36.13)

36.2 Layer Potential Method

Assume V ∈ L∞(M ) is such that V ≥ 0, V �= 0 on M , and V = 0 near Ω . Set
L := Δ −V . Then L is invertible in the sense of pseudo-differential operator theory
with inverse L−1 ∈ OPS−2

cl , where L−1 : W−1,2(M )→W1,2(M ); see [MiTa99] for
details. Let E denote the Schwartz kernel of L−1, i.e.,

(L−1f )(x) =
∫

M
E(x,y)f (y)dVol(y), x ∈M , f ∈W−1,2(M ), (36.14)

with

E ∈D ′(M ×M )∩C γ(M ×M \diag), γ < 2. (36.15)
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The local coordinate expression for E(x,y) is given by (cf. [MiEtAl14], p. 41)

E(x,y) = e0(x,x− y)+ e1(x,y), x,y ∈M , x �= y. (36.16)

The leading term e0(x,x− y) is O(|x− y|)−(n−2) and, for any x,y ∈M with x �= y,
has the explicit form

e0(x,x− y) =
−1

(n−2)ωn−1
√

g(x)

[
gjk(x)(xj− yj)(xk− yk)

]− n−2
2
. (36.17)

A direct computation using the chain rule gives

∂xj∂ym

[
e0(x,x− y)

]
=−∂yj∂ym

[
e0(x,x− y)

]
+O
(|x− y|−(n−1)). (36.18)

Another straightforward calculation using the chain rule yields

g�m(x)∂y�∂ym

[
e0(x,x− y)

]≡ 0. (36.19)

The lower-order term e1(y,x) satisfies the following estimates. For each ε > 0 there
is Cε ∈ (0,∞) for which (cf. [MiEtAl14], p. 42)

|e1(x,y)| ≤ Cε |x− y|−(n−3+ε), (36.20)

|(∇xe1)(x,y)|+ |(∇ye1)(x,y)| ≤ Cε |x− y|−(n−2+ε), (36.21)

|(∇x∇ye1)(x,y)| ≤ Cε |x− y|−(n−1+ε). (36.22)

Let p ∈ (1,∞) and f ∈ Lp(∂Ω). The double-layer potential is defined by

(D f )(x) :=
∫

∂Ω
∂ν(y)
[
E(x,y)

]
f (y)dσ(y), x ∈Ω , (36.23)

where ∂ν(y)
[
E(x,y)

]
denotes the conormal derivative of E with respect to y. The

principal value double-layer potential is defined by

(Kf )(x) := P.V.
∫

∂Ω
∂ν(y)
[
E(x,y)

]
f (y)dσ(y) (36.24)

:= lim
ε→0+

∫

y∈∂Ω
d(x,y)>ε

∂ν(y)
[
E(x,y)

]
f (y)dσ(y), x ∈ ∂Ω , (36.25)

where d(x,y) is the geodesic distance defined in (36.2).
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Below we collect some of the fundamental properties of the double-layer
operator which have been established in [HoMiTa10] (cf., e.g., Theorem 5.6 on
pp. 2770–2772, Corollary 3.28 on p. 2681, and Proposition 3.37 on p. 2680).

Theorem 2. For each p ∈ (1,∞), the following statements hold:

(1) K is compact (hence bounded) on Lp(∂Ω) and bounded on Lp
1(∂Ω).

(2) For any f ∈ Lp(∂Ω),

(D f )
∣
∣
∣
n.t.

∂Ω
=
(

1
2 I +K

)
f σ -a.e. on ∂Ω . (36.26)

(3) There exists C ∈ (0,∞) such that

‖N (D f )‖Lp(∂Ω) ≤ C‖f‖Lp(∂Ω), ∀ f ∈ Lp(∂Ω), (36.27)

∥
∥N
(
∇D f

)∥
∥

Lp(∂Ω)
≤ C‖f‖Lp

1(∂Ω), ∀ f ∈ Lp
1(∂Ω). (36.28)

(4) For f ∈ Lp
1(∂Ω), at σ -a.e. point on ∂Ω , the trace

(
∇D f

)∣
∣n.t.
∂Ω exists and

∂τjk(D f )
∣
∣
∣
n.t.

∂Ω
= νj
(
∂kD f

)∣∣
∣
n.t.

∂Ω
−νk
(
∂jD f

)∣∣
∣
n.t.

∂Ω
. (36.29)

We are now ready to state and prove the main result of this section.

Theorem 3. For each p ∈ (1,∞),

K : Lp
1(∂Ω)−→ Lp

1(∂Ω) is compact. (36.30)

Proof. Fix p∈ (1,∞). To prove (36.30), we work locally in a small coordinate patch
U of an arbitrary fixed point x0 ∈ ∂Ω and use the decomposition (36.57).

A few conventions about notation used throughout this proof are in order.
Whenever convenient, we shall identify the portion of Ω contained in U with
its Euclidean image under the coordinate chart. In this scenario, we denote by
νE = (νE

j )1≤j≤n the outward unit normal to ∂Ω with respect to the Euclidean

metric in R
n, and let σE :=H n−1

Rn )∂Ω be the surface measure induced by the flat
Euclidean metric δjk on ∂Ω . These are related to the manifold conormal ν and
surface measure σ (associated with the original Riemannian metric g on M ) via
explicit formulas (cf. [HoMiTa10], p. 2771)

νE
j (y) =

√
G
(
y,νE(y)

)
νj(y), ∀ j ∈ {1, . . . ,n}, (36.31)

dσE(y) =
[
g(y)G

(
y,νE(y)

)]− 1
2

dσ(y), (36.32)
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where

G(y,ξ ) := gjk(y)ξjξk, y ∈ ∂Ω , ξ ∈ R
n. (36.33)

The conormal derivative ∂ν(y) is related to partial derivatives ∂ym by

∂ν(y) =
g�m(y)νE

� (y)√
G
(
y,νE(y)

) ∂ym . (36.34)

Now assume f ∈ Lp
1(∂Ω) is supported in ∂Ω ∩U. Using (36.31)-(36.32) and

(36.34), for each x ∈Ω ∩U we may write

(D f )(x) =
∫

∂Ω
g�m(y)νE

� (y)∂ym

[
E(x,y)

]
f (y)
√

g(y)dσE(y). (36.35)

Now fix an arbitrary point z ∈ ∂Ω ∩U. Then for each x ∈Ω ∩U split

(D f )(x) = A1 + f (z)A2, (36.36)

where

A1 :=
∫

∂Ω
g�m(y)νE

� (y)∂ym

[
E(x,y)

][
f (y)− f (z)

]√
g(y)dσE(y), (36.37)

A2 :=
∫

∂Ω
g�m(y)νE

� (y)∂ym

[
E(x,y)

]√
g(y)dσE(y). (36.38)

Use the Divergence Theorem to write A2 = B1 +B2, where

B1 :=
∫

Ω
∂y�

{
g�m(y)∂ym

[
E(x,y)

]}√
g(y)dy, (36.39)

B2 :=
∫

Ω
g�m(y)∂ym

[
E(x,y)

]
∂y�

{√
g(y)
}

dy. (36.40)

From (36.10) we see that

∂y�

{
g�m(y)∂ym

[
E(x,y)

]}

= Δy
[
E(x,y)

]− 1
√

g(y)
g�m(y)∂y�

{√
g(y)
}
∂ym

[
E(x,y)

]

= Diracx(y)− 1
√

g(y)
g�m(y)∂ym

[
E(x,y)

]
∂y�

{√
g(y)
}
. (36.41)



36 Regularity Problem in Rough Domains 433

Thus, by (36.39)-(36.40) and (36.41) it follows that A2 =
√

g(x). Given any index
j ∈ {1, . . . ,n}, at each x ∈Ω ∩U write

(∂xjD f )(x) = Ij(x,z)+ IIj(x,z), (36.42)

where

Ij(x,z) :=
∫

∂Ω
g�m(y)νE

� (y)∂xj∂ym

[
E(x,y)

][
f (y)− f (z)

]√
g(y)dσE(y),

IIj(x,z) := f (z)∂xj

{√
g(x)
}
. (36.43)

To handle Ij(x,z), first observe from (36.16),(36.17), (36.18), (36.20), and (36.21)
that for each j,m ∈ {1, . . . ,n} it follows that

∂xj∂ym

[
E(x,y)

]
= ∂xj∂ym

[
e0(x,x− y)

]
+Rjm(x,y)

=−∂yj∂ym

[
e0(x,x− y)

]
+Rjm(x,y), (36.44)

where Rjm(x,y) are residual terms (changing from line to line) that satisfy

Rjm(x,y) = O
(|x− y|−(n−1+ε)), ∀ε > 0. (36.45)

Use (36.44) to re-write Ij(x,z) as

Ij(x,z) =−
∫

∂Ω
g�m(y)νE

� (y)∂yj∂ym

[
e0(x,x− y)

][
f (y)− f (z)

]√
g(y)dσE(y)

+
∫

∂Ω
g�m(y)νE

� (y)Rjm(x,y)
[
f (y)− f (z)

]√
g(y)dσE(y)

=: I(1)j (x,z)+ I(2)j (x,z). (36.46)

Since −νE
� (y)∂yj = ∂τj�(y)−νE

j (y)∂y� , we may further express I(1)j (x,z) as

I(1)j (x,z) =
∫

∂Ω
g�m(y)∂τj�(y)∂ym

[
e0(x,x− y)

][
f (y)− f (z)

]√
g(y)dσE(y)

−
∫

∂Ω
g�m(y)νE

j (y)∂y�∂ym

[
e0(x,x− y)

][
f (y)− f (z)

]√
g(y)dσE(y)

=
∫

∂Ω
g�m(y)∂τj�(y)∂ym

[
e0(x,x− y)

][
f (y)− f (z)

]√
g(y)dσE(y), (36.47)
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making use of the cancelation property recorded in (36.19). To handle the integral
in (36.47), integrate by parts on ∂Ω in order to relocate the boundary tangential
derivative operator ∂τj�(y) away from ∂ym

[
e0(y,x− y)

]
, thus obtaining

I(1)j (x,z) =
∫

∂Ω
∂ym

[
e0(x,x− y)

]
∂τ�j(y)

{
g�m(y)

[
f (y)− f (z)

]√
g(y)
}

dσE(y)

=
∫

∂Ω
∂ym

[
e0(x,x− y)

]
∂τ�j
(
g�m
√

g
)
(y)
[
f (y)− f (z)

]
dσE(y)

+

∫

∂Ω
g�m(y)∂ym

[
e0(x,x− y)

](
∂τ�j f
)
(y)
√

g(y)dσE(y)

=: I(11)
j (x,z)+ I(12)

j (x). (36.48)

The idea for handling the term I(12)
j (x) is to reverse-engineer E(x,y) starting from

e0(x,x− y). Indeed, invoking (36.16) and (36.21), for each m ∈ {1, . . . ,n} we see
that

∂ym

[
e0(x,x− y)

]
= ∂ym

[
E(x,y)

]
+Qm(x,y), (36.49)

where the residual term Qm(x,y) satisfies

Qm(x,y) = O
(|x− y|−(n−2+ε)), ∀ε > 0. (36.50)

We may then use (36.49) to rewrite I(12)
j (x) as

I(12)
j (x) =

∫

∂Ω
g�m(y)∂ym

[
E(x,y)

](
∂τ�j f
)
(y)
√

g(y)dσE(y)

+
∫

∂Ω
g�m(y)Qm(x,y)

(
∂τ�j f
)
(y)
√

g(y)dσE(y)

=: I(121)
j (x)+ I(122)

j (x). (36.51)

Upon observing that

∂τ�j f = νE
�

(
∇E

tanf
)

j−νE
j

(
∇E

tanf
)
�
, (36.52)

we may further recast I(121)
j (x) in the form

I(121)
j (x) = I(1211)

j (x)− I(1212)
j (x), (36.53)
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where

I(1211)
j (x) :=

∫

∂Ω
νE
� (y)g

�m(y)∂ym

[
E(x,y)

](
∇E

tanf
)

j(y)
√

g(y)dσE(y), (36.54)

I(1212)
j (x) :=

∫

∂Ω
νE

j (y)g�m(y)∂ym

[
E(x,y)

](
∇E

tanf
)
�
(y)
√

g(y)dσE(y). (36.55)

Finally, from (36.54) and (36.35) we recognize that

I(1211)
j (x) =D(∇E

tanf )j(x). (36.56)

Thus, given j ∈ {1, . . . ,n}, at each x ∈Ω ∩U we have the decomposition

(∂xjD f )(x) =D(∇E
tanf )j(x)− I(1212)

j (x)+ I(122)
j (x)+ I(11)

j (x,z)

+ I(2)j (x,z)+ IIj(x,z). (36.57)

This decomposition will be important for proving that K : Lp
1(∂Ω)→ Lp

1(∂Ω) is
compact, as shown below.

Continuing to work in Euclidean coordinates, for any j,k ∈ {1, . . . ,n}, first write

∂τjk(Kf )(z) = ∂τjk(
1
2 f +Kf )(z)− 1

2 (∂τjk f )(z)

= νE
j (z)
(
∂kD f

)∣∣
∣
n.t.

∂Ω
(z)−νE

k (z)
(
∂jD f

)∣∣
∣
n.t.

∂Ω
(z)

− 1
2 (∂τjk f )(z), (36.58)

where we have made use of (36.27), (36.26), (36.28), (36.29), and Theorem 13.3 in
[MiEtAl14]. Second, observe that from (36.26) and

∂τjk f = νE
j (∇

E
tanf )k−νE

k (∇
E
tanf )j, (36.59)

we have

νE
j (z)
(
D(∇E

tanf )k
)∣∣
∣
n.t.

∂Ω
(z)−νE

k (z)
(
D(∇E

tanf )j
)∣∣
∣
n.t.

∂Ω
(z)

= νE
j (z)
(

1
2 (∇

E
tanf )k +K(∇E

tanf )k

)
(z)−νE

k (z)
(

1
2 (∇

E
tanf )j +K(∇E

tanf )j

)
(z)

= 1
2

{
νE

j (∇
E
tanf )k−νE

k (∇
E
tanf )j

}
(z)

+νE
j (z)
(
K(∇E

tanf )k
)
(z)−νE

k (z)
(
K(∇E

tanf )j
)
(z)
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= 1
2 (∂τjk f )(z)+

(
K
(
νE

j (∇
E
tanf )k

))
(z)− (K(νE

k (∇
E
tanf )j

))
(z)

+
([

MνE
j
,K
]
(∇E

tanf )k

)
(z)−

([
MνE

k
,K
]
(∇E

tanf )j

)
(z)

= 1
2 (∂τjk f )(z)+

(
K(∂τjk f )

)
(z)

+
([

MνE
j
,Kl
]
(∇E

tanf )k

)
(z)−

([
MνE

k
,K
]
(∇E

tanf )j

)
(z). (36.60)

The above formula is relevant when assessing the contribution from I(1211)
j (x),

written as in (36.56), in the context of

νE
j (z)
(
∂kD f

)∣∣
∣
n.t.

∂Ω
(z)−νE

k (z)
(
∂jD f

)∣∣
∣
n.t.

∂Ω
(z). (36.61)

Specifically, starting with (36.58), then recalling the decomposition (36.42) along
with the subsequent analysis of the intervening pieces, for any given pair of indices
j,k ∈ {1, . . . ,n}, at σ -a.e. point z ∈ ∂Ω we obtain

∂τjk(Kf )(z) =
(
K(∂τjk f )

)
(z)

+
([

MνE
j
,K
]
(∇E

tanf )k

)
(z)−

([
MνE

k
,K
]
(∇E

tanf )j

)
(z)

−νE
j (z) I(1212)

k

∣
∣
∣
n.t.

∂Ω
(z)+νE

k (z) I(1212)
j

∣
∣
∣
n.t.

∂Ω
(z)

+νE
j (z) I(122)

k (·,z)
∣
∣
∣
n.t.

∂Ω
(z)−νE

k (z) I(122)
j (·,z)

∣
∣
∣
n.t.

∂Ω
(z)

+νE
j (z) I(11)

k (·,z)
∣
∣
∣
n.t.

∂Ω
(z)−νE

k (z) I(11)
j (·,z)

∣
∣
∣
n.t.

∂Ω
(z)

+νE
j (z) I(2)k (·,z)

∣
∣
∣
n.t.

∂Ω
(z)−νE

k (z) I(2)j (·,z)
∣
∣
∣
n.t.

∂Ω
(z)

+νE
j (z) IIk(·,z)

∣
∣
∣
n.t.

∂Ω
(z)−νE

k (z) IIj(·,z)
∣
∣
∣
n.t.

∂Ω
(z). (36.62)

The compactness of K on Lp
1(∂Ω) will be read off the decomposition in (36.62),

considering each line individually. Specifically, the idea is to ensure that

∂τjk(Kf ) = K(∂τjk f )+Cjkf , (36.63)

for a compact operator Cjk : Lp
1(∂Ω)→ Lp(∂Ω), from which the compactness of K

on Lp
1(∂Ω) follows from standard functional analysis.
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To implement this strategy, first observe that the assignment

Lp
1(∂Ω) * f �−→ K(∂τjk f ) ∈ Lp(∂Ω) is compact, (36.64)

thanks to part (1) of Theorem 2 and the fact that, for each j,k ∈ {1, . . . ,n},

∂τjk : Lp
1(∂Ω)−→ Lp(∂Ω) is bounded. (36.65)

Next, (36.65) and Theorem 4 imply that for each j,k ∈ {1, . . . ,n} the mapping

Lp
1(∂Ω) * f �−→ [MνE

j
,K
]
(∇E

tanf )k ∈ Lp(∂Ω) is compact. (36.66)

This takes care of the second line of (36.62).
Regarding the third line of (36.62), note that from (36.55) we obtain (bearing

in mind that the jump-terms produced after taking non-tangential boundary traces,
within the context of formula (2.73) on p. 21 of [MiMiTa01], actually cancel in the
combination considered in (36.67) below)

νE
j (z) I(1212)

k

∣
∣
∣
n.t.

∂Ω
(z)−νE

k (z) I(1212)
j

∣
∣
∣
n.t.

∂Ω
(z)

= P.V.
∫

∂Ω
g�m(y)∂ym

[
E(x,y)

]
νE

j (z)νE
k (y)
(
∇E

tanf
)
�
(y)
√

g(y)dσE(y)

−P.V.
∫

∂Ω
g�m(y)∂ym

[
E(x,y)

]
νE

k (z)νE
j (y)
(
∇E

tanf
)
�
(y)
√

g(y)dσE(y)

= P.V.
∫

∂Ω
g�m(y)∂ym

[
E(x,y)

]
νE

j (z)
[
νE

k (y)−νE
k (z)
]×

× (∇E
tanf
)
�
(y)
√

g(y)dσE(y)

−P.V.
∫

∂Ω
g�m(y)∂ym

[
E(x,y)

]
νE

k (z)
[
νE

j (y)−νE
j (z)
]×

× (∇E
tanf
)
�
(y)
√

g(y)dσE(y). (36.67)

Each of the principal value singular integral operators on the right-hand side of
(36.67) are of commutator-type, and thus amenable to treatment by Theorem 4.
Mindful of (36.65), we conclude that the fourth line in (36.62) is also of a nature
which is in line with the goal of verifying that (36.63) holds.

Next, recall I(122)
I, j (x,z) defined in (36.51). Given the weakly singular nature of

the integral kernel in I(122)
I, j (·,z)∣∣n.t.∂Ω (cf. (36.50)), it follows from Theorem 5 that for

each j,k ∈ {1, . . . ,n} the mapping

Lp
1(∂Ω) * f �−→ νE

j (z) I(122)
k (·,z)

∣
∣
∣
n.t.

∂Ω
(z) ∈ Lp

z (∂Ω) is compact. (36.68)

Thus, the fourth line of (36.62) is also of the right nature according to (36.63).
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Going further, recall I(11)
I, j (x,z) from (36.48). In relation to this, Theorem 6 applies

(with ε = 0) and gives that, for each j,k ∈ {1, . . . ,n}, the assignment

Lp
1(∂Ω) * f �−→ νE

j (z) I(11)
k (·,z)

∣
∣
∣
n.t.

∂Ω
(z) ∈ Lp

z (∂Ω) is compact, (36.69)

taking care of the fifth line in (36.62). Now recall I(2)I, j (x,z) from (36.46). Aware of
(36.45) and making use of the full strength of Theorem 6, we also have that for each
j,k ∈ {1, . . . ,n} the operator

Lp
1(∂Ω) * f �−→ νE

j (z) I(2)k (·,z)
∣
∣
∣
n.t.

∂Ω
(z) ∈ Lp

z (∂Ω) is compact. (36.70)

This clarifies matters with regard to the sixth line in (36.62). The nature of the
seventh line in (36.62), involving IIj(x,z) originally defined in (36.43), is easily
elucidated by relying on the fact that the following inclusions are well-defined,
linear, and compact (cf. [MiEtAl14]):

Lp
1(∂Ω) ↪→ Lr(∂Ω) if 0 < r <

(
max
{

0, 1
p − 1

n−1

})−1
, (36.71)

Lp
1(∂Ω) ↪→ L∞(∂Ω) if n−1 < p < ∞. (36.72)

With all lines of (36.62) accounted for according to (36.63), the final conclusion is
that K is compact on Lp

1(∂Ω). This analysis yields (36.30), as desired.

36.3 The Proof of the Main Well-Posedness Result

This section is devoted to presenting the proof of Theorem 1. Existence follows from
Theorem 3 and Fredholm theory. Indeed, since K : Lp

1(∂Ω)→ Lp
1(∂Ω) is compact,

it follows that 1
2 I +K : Lp

1(∂Ω)→ Lp
1(∂Ω) is Fredholm of index zero. Moreover,

the latter operator has a trivial null-space since in [HoMiTa10] it has been shown
that 1

2 I +K : Lp(∂Ω)→ Lp(∂Ω) is injective. Ultimately, this implies that 1
2 I +K is

invertible on Lp
1(∂Ω). Granted this, given f ∈ Lp

1(∂Ω), the function

u :=D
[(

1
2 I +K

)−1
f
]

in Ω (36.73)

is a well-defined solution of (Rp). Moreover, u ∈ C γ(Ω) for every γ < 2, by elliptic
regularity. Furthermore, Theorem 2 provides estimate (36.13) (which, in particular,
ensures that the solution u depends continuously on the boundary datum f ).

To prove that u is unique, one may use the argument in Step 3 of the proof of
Theorem 7.2 on pp. 2832–2837 in [HoMiTa10] by constructing a Green’s function
of the form
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G(x,y) := E(x,y)−D
((

1
2 I +K

)−1
(

E(x, ·)
∣
∣
∣
n.t.

∂Ω

))
(y), x,y ∈Ω . (36.74)

Altogether, this shows that (Rp) is well-posed.

36.4 Auxiliary Results

Theorem 4. Let Ω ⊂ R
n be a regular SKT domain with compact boundary. Set

σ :=H n−1)∂Ω . Let M(n) ∈ N and b : Rn× (Rn \{0})→ R be such that

b(x,z) is odd and positive homogeneous of degree 1−n in z,

while (∂αz b)(x,z) is continuous and bounded on R
n×Sn−1

for every multiindex α ∈ N
n
0 with length |α| ≤M(n).

(36.75)

Define the integral operators T on functions f : ∂Ω → C by

(Tf )(x) := P.V.
∫

∂Ω

[
ν(x)−ν(y)]b(x,x− y)f (y)dσ(y), x ∈ ∂Ω . (36.76)

Then for each p ∈ (1,∞) the operator T : Lp(∂Ω)→ Lp(∂Ω) is compact.

Proof. See Theorem 13.9 on p. 167 in [MiEtAl14].

Theorem 5. Let Ω ⊂ R
n be a bounded domain with compact Ahlfors regular

boundary. Set σ :=H n−1)∂Ω . Suppose k : ∂Ω ×∂Ω \diag→ R is σ -measurable
and has the property that there exists ε > 0 and C ∈ (0,∞) such that

|k(x,y)| ≤ C
|x− y|n−1−ε , ∀x,y ∈ ∂Ω , x �= y. (36.77)

Define the integral operator T acting on functions f : ∂Ω → C by

(Tf )(x) :=
∫

∂Ω
k(x,y)f (y)dσ(y), x ∈ ∂Ω . (36.78)

Then for each p ∈ (1,∞), the operator T : Lp(∂Ω)→ Lp(∂Ω) is compact.

Proof. This follows from Lemma 2.20 on p. 2608 of [HoMiTa10].

Theorem 6. LetΩ ⊂R
n be an open set satisfying a two-sided local John condition

and whose boundary is compact and Ahlfors regular. Set σ :=H n−1)∂Ω . Assume
k : ∂Ω ×∂Ω \diag→ C is a kernel that satisfies

|k(x,y)|= O
(|x− y|−(n−1+ε)) for some ε ∈ [0,1). (36.79)
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Then the integral operator T defined on functions f : ∂Ω → C by

(Tf )(x) :=
∫

∂Ω
k(x,y)

[
f (y)− f (x)

]
dσ(y), x ∈ ∂Ω , (36.80)

has the property that T : Lp
1(∂Ω)→ Lp(∂Ω) is compact for each p ∈ (1,∞).

Proof. See Lemma 13.10 in [MiEtAl14].
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Chapter 37
A Collocation Method Based on the Central Part
Interpolation for Integral Equations

K. Orav-Puurand, A. Pedas, and G. Vainikko

37.1 Integral Equation and Smoothness of the Solution

Consider the integral equation

u(x) =

1∫

0

[a(x,y)|x− y|−ν +b(x,y)]u(y)dy+ f (x), 0≤ x≤ 1, 0 < ν < 1,

(37.1)

where f ∈C[0,1]∩Cm(0,1), a,b∈Cm([0,1]×(0,1)), m∈N= {1,2, ...}. By Cm(Ω)
is meant the set of all m times continuously differentiable functions onΩ . By C[0,1]
is meant the Banach space of continuous functions u : [0,1]→ R = (−∞,∞) with
the usual norm ‖u‖∞ = {max |u(x)| : 0≤ x≤ 1}.

Denote by T the integral operator of equation (37.1):

(Tu)(x) =

1∫

0

[a(x,y)|x− y|−ν +b(x,y)]u(y)dy 0≤ x≤ 1, 0 < ν < 1. (37.2)

We refer to [PeVa06a] for the proofs of the following two lemmas.

Lemma 1. Let T be defined by (37.2) with a fixed ν ∈ (0,1). Let λ0, λ1 ∈ R, λ0 +
ν < 1, λ1 +ν < 1. Assume that a, b ∈ C([0,1]× (0,1)) and
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|a(x,y)|+ |b(x,y)| ≤ cy−λ0(1− y)−λ1 , (x,y) ∈ [0,1]× (0,1),

where c = c(a,b) is a positive constant.
Then T maps C[0,1] into C[0,1] and T : C[0,1]→ C[0,1] is compact.

For m ∈ N, θ0,θ1 ∈ R, θ0 < 1, θ1 < 1, denote by Cm,θ0,θ1(0,1) the weighted
space of functions u ∈ C[0,1]∩Cm(0,1) such that

|u|m,θ0,θ1
:=

m

∑
k=1

sup
0<x<1

ωk−1+θ0(x)ωk−1+θ1(1− x)
∣
∣
∣u(k)(x)

∣
∣
∣< ∞.

Here

ωρ(r) =

⎧
⎪⎨

⎪⎩

1 for ρ < 0
1

1+|logr| for ρ = 0

rρ for ρ > 0

⎫
⎪⎬

⎪⎭
, r, ρ ∈ R, r > 0.

Equipped with the norm

‖u‖Cm,θ0,θ1 (0,1) := ‖u‖∞+ |u|m,θ0,θ1
, u ∈ Cm,θ0,θ1(0,1),

Cm,θ0,θ1(0,1) it is a Banach space. Clearly, Cm[0,1]⊂ Cm,θ0,θ1(0,1) for any m ∈ N,
θ0 < 1, θ1 < 1.

Denote ∂ k
x ∂ l

y =
(
∂
∂x

)k( ∂
∂y

)l
, k, l ∈ N0 = {0}∪N.

Lemma 2. Let T be defined by (37.2) with ν ∈ (0,1). Let m ∈ N, λ0,λ1 ∈ R, λ0 +
ν < 1, λ1 +ν < 1. Assume that a, b ∈ Cm([0,1]× (0,1)) and satisfy

∣
∣∂ k

x ∂ l
ya(x,y)

∣
∣+
∣
∣∂ k

x ∂ l
yb(x,y)

∣
∣≤ cy−λ0−l(1− y)−λ1−l, (x,y) ∈ [0,1]× (0,1),

with a positive constant c = c(a,b) for all k, l ∈ N0 such that k+ l≤ m.
Then operator T maps Cm,θ0,θ1(0,1) with θ0 = λ0 + ν and θ1 = λ1 + ν into

Cm,θ0,θ1(0,1) and T : Cm,θ0,θ1(0,1)→ Cm,θ0,θ1(0,1) is compact.

Denote

N (I−T) = {u ∈ C[0,1] : u = Tu} .

The following theorem is a consequence of Lemmas 1 and 2.

Theorem 1. Assume the conditions of Lemma 2 and N (I − T) = {0} . Let f ∈
Cm,θ0,θ1(0,1), θ0 = λ0 +ν , θ1 = λ1 +ν .
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Then equation (37.1) has a solution u ∈ Cm,θ0,θ1(0,1) which is unique in C[0,1].
In particular, it holds for 0 < λ0 +ν < 1, 0 < λ1 +ν < 1 that

∣
∣
∣u(k)(x)

∣
∣
∣≤ cx1−ν−λ0−k(1− x)1−ν−λ1−k, 0 < x < 1, k = 1, . . . ,m,

where c = c(u)> 0 is a constant.

37.2 Smoothing Transformation

Possible boundary singularities of the solution u ∈ Cm,λ0+ν ,λ1+ν(0,1) of equation
(37.1) are generic, they occur for most of free terms f even if f has no boundary
singularities. To suppress the singularities of the solution we perform in equation
(37.1) the change of variables (cf. [MoSc98, PeVa06b, VaVa08, OrVa09, OrPeVa10,
Or13])

x = ϕ(t), y = ϕ(s), 0≤ t ≤ 1, 0≤ s≤ 1, (37.3)

where ϕ : [0,1]→ [0,1] is defined by the formula

ϕ(t) = 1
c∗

t∫

0
σp0−1(1−σ)p1−1dσ , 0≤ t ≤ 1, p0,p1 ∈ N,

c∗ =
1∫

0
σp0−1(1−σ)p1−1dσ = Γ (p0)Γ (p1)

Γ (p0+p1)
,

(37.4)

where Γ is the Euler gamma function.
If p0 = p1 = 1 then ϕ(t) = t for 0 ≤ t ≤ 1. We are interested in transformations

(37.4) with p0 > 1 or/and p1 > 1 since then this transformation possesses a
smoothing property for functions u(x) with singularities of derivatives of u(x) at
x = 0 or/and x = 1 (see Lemma 3 below, the proof of it can be found in [VaVa08]).

Lemma 3. Let m ∈ N, θ0,θ1 ∈ R, θ0 < 1, θ1 < 1. If u ∈ Cm,θ0,θ1 (0,1) and
v(t) = u(ϕ (t)), with ϕ defined by (37.4), then for j = 1, . . . ,m, 0 < t < 1,

∣
∣
∣v(j) (t)

∣
∣
∣≤ c‖u‖Cm,θ0 ,θ1 (0,1)

⎧
⎨

⎩

tp0−j, θ0 < 0
tp0−j(1+ |log t|), θ0 = 0

t(1−θ0)p0−j, θ0 > 0

⎫
⎬

⎭
×

×
⎧
⎨

⎩

(1− t)p1−j, θ1 < 0
(1− t)p1−j(1+ |log(1− t)|), θ1 = 0

(1− t)(1−θ1)p1−j, θ1 > 0

⎫
⎬

⎭
.
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The following result is a consequence of Lemma 3.

Theorem 2. Let m ∈ N, 0 < ν < 1, λ0,λ0 ∈ R, λ0 < 1− ν , λ1 < 1− ν . Let
u ∈ Cm,ν+λ0,ν+λ1 (0,1) and v(t) = u(ϕ (t)), where ϕ is defined by (37.4) with the
parameters p0,p1 ∈ N satisfying

pi >

{
m for λi +ν ≤ 0
m

1−ν−λi
for 0 < λi +ν < 1

}

, i = 0, i = 1. (37.5)

Then v ∈ Cm[0,1] and

v(j)(0) = v(j)(1) = 0, j = 1, . . . ,m. (37.6)

It follows from (37.4) that ϕ(0) = 0, ϕ(1) = 1 and ϕ is strictly increasing. Hence,
for s �= t we have

ϕ(t)−ϕ(s)
t− s

> 0, |ϕ(t)−ϕ(s)|−ν =
[
ϕ(t)−ϕ(s)

t− s

]−ν
|t− s|−ν .

After change of variables (37.3) equation (37.1) takes the form

v(t) =

1∫

0

Kϕ(t,s)v(s)ds+ fϕ(t), 0≤ t ≤ 1, 0 < ν < 1, (37.7)

where fϕ(t) = f (ϕ(t)),

Kϕ(t,s) =A (t,s)|t− s|−ν +B(t,s), (37.8)

A (t,s) = a(ϕ(t),ϕ(s))Φ(t,s)−νϕ ′(s), B(t,s) = b(ϕ(t),ϕ(s))ϕ ′(s),

and

Φ(t,s) =

{
ϕ(t)−ϕ(s)

t−s for t �= s
ϕ ′(s) for t = s

}

, 0≤ t,s≤ 1;

the solutions of (37.1) and (37.7) are related by the equalities

v(t) = u(ϕ(t)), u(x) = v(ϕ−1(x)).

Under the conditions of Theorems 1 and 2 the solution v(t) = u(ϕ(t)) (t ∈ [0,1])
of (37.7) belongs Cm[0,1] and satisfies (37.6). Continuing v for t < 0 by the constant
value v(0) and for t > 1 by the constant value v(1), the extended function belongs
to Cm(R). This circumstance is helpful for the ‘central part’ interpolation on the
uniform grid by piecewise polynomials treated in next sections.
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37.3 Central Part Interpolation by Polynomials

Given an interval [a,b] (a < b) and an integer m ≥ 2, introduce the uniform grid
consisting of m points

xi = a+

(

i− 1
2

)

h, i = 1, . . . ,m, h =
b−a

m
. (37.9)

Denote by Pm−1 the set of polynomials of degree not exceeding m− 1 and by
Πm the Lagrange interpolation projection operator assigning to any v ∈ C [a,b] the
polynomial Πmv ∈Pm−1 that interpolates v at points (37.9):

(Πmv)(x) =
m

∑
j=1

v(xj)
m

∏
k=1
k �=j

x− xk

xj− xk
, a≤ x≤ b.

Lemma 4. In the case of interpolation knots (37.9) with m ∈ N, m ≥ 2, for v ∈
Cm [a,b] it holds

max
a≤x≤b

|v(x)− (Πmv)(x)| ≤ θmhm max
a≤x≤b

∣
∣
∣v(m) (x)

∣
∣
∣ , (37.10)

with

θm =
1 ·3 · . . . · (2m−1)

2m m!
=

(2m)!
2m m!(2 ·4 · . . . ·2m)

∼= (πm)−
1
2 ,

where θm
∼= εm means that θm/εm→ 1 as m→ ∞.

Further, for m = 2k, k ≥ 1,

max
xk≤x≤xk+1

|v(x)− (Πmv)(x)| ≤ ϑmhm max
a≤x≤b

∣
∣
∣v(m) (x)

∣
∣
∣ , (37.11)

with

ϑm = 2−2m m!
((m/2)!)2

∼=
√

2/π m−
1
2 2−m, (37.12)

whereas for m = 2k+1, k ≥ 1,

max
xk≤x≤xk+2

|v(x)− (Πmv)(x)| ≤ ϑmhm max
a≤x≤b

∣
∣
∣v(m) (x)

∣
∣
∣ , (37.13)

with

ϑm =
2
√

3
9

(k!)2

(2k+1)!
∼= 2
√

6π
9

m−
1
2 2−m. (37.14)
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Proof. These estimates are consequences of the error formula

v(x)− (Πmv)(x) =
v(m)(ξ )

m!
(x− x1) . . .(x− xm), x ∈ [a,b], ξ = ξ (x) ∈ (a,b).

Comparing estimates (37.10), (37.11) and (37.13) we observe that in the central
parts of [a,b], the estimates for the error v−Πmv are approximately 2m times more
precise than on the whole interval. Although m is fixed in our consideration, it is
useful to know that in the central parts of [a,b], the interpolation process on the
uniform grid has also good stability properties as m increases: in contrast to an
exponential growth [Da77] of ‖Πm‖L (C[a,b],C[a,b]) as m→∞, it holds by the Runck’s
theorem (see [Da77, Ru61]) that

‖Πm‖L (C[a,b],C[ a+b
2 −rh1/2, a+b

2 +rh1/2]) ≤ cr (1+ logm) , rh
1
2 ≤ b−a

2
, (37.15)

where the constant cr depends only on r > 0. It is known (see, e.g., [Da77]) that a
logarithmic growth is the slowest one that holds for the norm of any projector Pm :
C[a,b]→Pm−1 as m→∞ and, for example, the Chebyshev interpolation projectors
have this slowest order of growth of norms.

37.4 Central Part Interpolation by Piecewise Polynomials

Introduce in R the uniform grid

{jh : j ∈ Z} , h =
1
n
, n ∈ N.

Let m ∈ N, m ≥ 2 be fixed. Given a function v ∈ C [−δ ,1+δ ], δ > 0, we define
a piecewise polynomial interpolant Πh,mv ∈ C [0,1] for h = 1

n < 2δ
m as follows.

On every subinterval [jh,(j+1)h], 0 ≤ j ≤ n− 1, the function Πh,mv is defined

independently of other subintervals as a polynomial Π [j]
h,mv ∈ Pm−1 of degree

≤ m−1 by the conditions

Π [j]
h,mv(lh) = v(lh) , for l ∈ Z such that l− j ∈ Zm, (37.16)

where Zm =
{

k ∈ Z :−m
2 < k ≤ m

2

}
. Observe that Zm contains the following m

elements (integers):

Zm =
{
−m

2
+1,−m

2
+2, . . . ,

m
2

}
if m is even,
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Zm =

{

−m−1
2

,−m−1
2

+1, . . . ,
m−1

2

}

if m is odd.

For an ‘interior’ knot jh, 1 ≤ j ≤ n− 1, interpolation conditions (37.16) contain

the condition
(
Π [j−1]

h,m v
)
(jh) = v(jh) as well as the condition

(
Π [j]

h,mv
)
(jh) = v(jh).

Thus Πh,mv is uniquely defined at interior knots and Πh,mv is continuous on [0,1].
Namely, for the ‘interior’ knots jh, 1 ≤ j ≤ n− 1, interpolation conditions (37.16)
yield

(Πh,mv)(jh) = v(jh)

for Πh,mv as a function on [(j−1)h, jh] as well as a function on [jh,(j+1)h]. The
one side derivatives of the interpolant Πh,mv at the interior knots may be different.

Introduce the Lagrange fundamental polynomials Lk,m ∈Pm−1, k ∈ Zm, satisfy-
ing Lk,m (l) = δk,l for l ∈ Zm, where δk,l is the Kronecker symbol, δk,l = 0 for k �= l
and δk,k = 1. An explicit formula for Lk,m is given by

Lk,m (t) = ∏
l∈Zm\{k}

t− l
k− l

, k ∈ Zm. (37.17)

We claim that
(
Π [j]

h,mv
)
(t) = ∑

k∈Zm

v((j+ k)h)Lk,m (nt− j) , t ∈ [jh,(j+1)h],

j = 0, . . . ,n−1.
(37.18)

Indeed, Π [j]
h,mv defined by (37.18) is really a polynomial of degree ≤ m− 1 and it

satisfies interpolation conditions (37.16): for l with l− j ∈ Zm, it holds that
(
Π [j]

h,mv
)
(lh) = ∑

k∈Zm

v((j+ k)h)Lk,m (l− j) = ∑
k∈Zm

v((j+ k)h)δk,l−j

= v((j+(l− j))h) = v(lh) .

For m = 2, the interpolant Πh,2v is the usual piecewise linear function joining for
0≤ j≤ n−1 the pair of points

(jh,v(jh)) ∈ R
2 and ((j+1)h,v((j+1)h)) ∈ R

2

by a straight line; Πh,2v does not use the values of f outside [0,1], and Πh,2v is a
projection operator in C [0,1], i.e. Π 2

h,2 =Πh,2.
For m≥ 3, Πh,mv uses values of v outside [0,1]. For v ∈ C [0,1], Πh,mv obtains a

sense after an extension of v onto [−δ ,1+δ ] with δ ≥ m
2 h for even m and δ ≥ m−1

2 h
for odd m. In the case of functions v ∈ Cm [0,1], satisfying the boundary conditions
(cf. Theorem 2)
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v(j) (0) = v(j) (1) = 0, j = 1, . . . ,m,

we are in a lucky situation since the simplest extension operator

Eδ : C [0,1]→ C [−δ ,1+δ ] , (Eδ v)(t) =

⎧
⎨

⎩

v(0) , −δ ≤ t ≤ 0
v(t) , 0≤ t ≤ 1
v(1) , 1≤ t ≤ 1+δ

⎫
⎬

⎭
(37.19)

maintains the Cm-smoothness of v. The operator

Ph,m :=Πh,mEδ : C [0,1]→ C [0,1] (37.20)

is well defined and P2
h,m = Ph,m, i.e., Ph,m is a projector in C [0,1].

For wh ∈R (Ph,m) (the range of Ph,m) we have

wh = Ph,mwh =Πh,mEδwh,

and due to (37.18) we get for t ∈ [jh,(j+1)h] (j = 0, . . . ,n−1) that

wh(t) = ∑
k∈Zm

(Eδwh)((j+ k)h)Lk,m(nt− j) (37.21)

where

(Eδwh)(ih) =

⎧
⎨

⎩

wh(ih) for i = 0, . . . ,n
wh(0) for i < 0
wh(1) for i > n

⎫
⎬

⎭
.

Thus, wh ∈ R (Ph,m) is uniquely determined on [0,1] by its knot values wh (ih),
i = 0, . . . ,n. We conclude that dimR (Ph,m) = n + 1. It is also clear that for a
wh ∈R (Ph,m) we have wh = 0 if and only if wh (ih) = 0, i = 0, . . . ,n.

For v ∈ C [−δ ,1+δ ], the interpolant Πh,mv is closely related to the central part
interpolation of v on the uniform grid treated in previous section. On [jh,(j+1)h],

the interpolant Πh,mv = Π [j]
h,mv coincides with the polynomial interpolant Πmv

constructed for f on the interval [aj,bj] where

aj =

(

j− m−1
2

)

h, bj =

(

j+
m+1

2

)

h for even m,

aj =
(

j− m
2

)
h, bj =

(
j+

m
2

)
h for odd m.
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Moreover, [jh,(j+1)h] is contained in the central part of [aj,bj] on which the
interpolation error can be estimated by (37.11) or (37.13). On this way we obtain
the following result (cf. [OrVa09]).

Lemma 5. (i) For v ∈ Cm [−δ ,1+δ ] (m≥ 2,δ > 0,h = 1
n ),

max
0≤t≤1

|v(t)− (Πh,mv)(t)| ≤ ϑmhm max
−δ≤t≤1+δ

∣
∣
∣v(m) (t)

∣
∣
∣ , (37.22)

with ϑm defined by (37.12) and (37.14), respectively, for even and odd m.

(ii) For v ∈ V(m) :=
{

w ∈ Cm [0,1] : w(j) (0) = w(j)(1) = 0, j = 1, . . . ,m
}

,

max
0≤t≤1

|v(t)− (Ph,mv)(t)| ≤ ϑmhm max
0≤t≤1

∣
∣
∣v(m) (t)

∣
∣
∣ . (37.23)

Proof. The claim (i) is a direct consequence of Lemma 4. Further, to prove the
estimate (37.23), we have Eδ v ∈ Cm[−δ ,1+δ ] for v ∈ V(m) and

max
−δ≤t≤δ

∣
∣
∣(Eδ v)(m)(t)

∣
∣
∣= max

0≤t≤1

∣
∣
∣v(m)(t)

∣
∣
∣ , (Eδ v)(t) = v(t) for 0≤ t ≤ 1.

Applying (37.22) to Eδ v, it takes the form

max
0≤t≤1

|(Eδ v)(t)− (Πh,mEδ v)(t)| ≤ ϑmhm max
−δ≤t≤1+δ

∣
∣
∣(Eδ v)(m)(t)

∣
∣
∣ ,

max
0≤t≤1

|v(t)− (Ph,mv)(t)| ≤ ϑmhm max
0≤t≤1

∣
∣
∣v(m)(t)

∣
∣
∣

completing the proof.

From (37.15), (37.19), (37.20) we obtain that the norms ‖Ph,m‖L (C[0,1],C[0,1]) are

uniformly bounded with respect to n, h = 1
n :

‖Ph,m‖L (C[0,1],C[0,1]) ≤ c(1+ logm) ,

with a constant c which is independent of h (of n).
Together with (37.23), noticing that V(m) is dense in C [0,1], Banach–Steinhaus

theorem yields the following result.

Lemma 6. For any v ∈ C [0,1],

max
0≤t≤1

|v(t)− (Ph,mv)(t)| → 0 as n =
1
h
→ ∞.
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37.5 Collocation Based on the Central Part Interpolation

We rewrite (37.7) in the operator form

v = Tϕv+ fϕ , (37.24)

with Tϕ defined by the formula

(Tϕv)(t) =

1∫

0

Kϕ(t,s)v(s)ds, 0≤ t ≤ 1, (37.25)

where Kϕ(t,s) is given by the formula (37.8). Using the interpolation projector Ph,m

defined in (37.20), we approximate equation (37.24) by equation

vh = Ph,mTϕvh +Ph,mfϕ . (37.26)

This is the operator form of our piecewise polynomial collocation method based on
a central part interpolation on the uniform grid.

Theorem 3. Let the assumptions of Lemma 2 be fulfilled. Moreover, assume that
f ∈Cm,θ0,θ1(0,1), with m∈N, m≥ 2, θ0 = λ0+ν , θ1 = λ1+ν . Let N (I−T) = {0}
or equivalently, N (I−Tϕ) = {0}. Finally, let ϕ be defined by the formula (37.4)
with parameters p0,p1 ∈ N satisfying (37.5).

Then equation (37.24) (equation (37.7)) has a unique solution v ∈ C[0,1] and
there exists an n0 such that for n≥ n0, the collocation equation (37.26) has a unique
solution vh. The accuracy of vh can be estimated by

‖v− vh‖∞ ≤ chm‖v(m)‖∞, n =
1
h
≥ n0, (37.27)

where c is a positive constant not depending on n = 1
h and f .

Proof. It follows from [VaVa08] that A ,B ∈ C([0,1]× [0,1]) and therefore Tϕ
given by (37.25) is compact as an operator from : C[0,1] into C[0,1]. Since N (I−
Tϕ)= {0}, the bounded inverse (I−Tϕ)−1 : C[0,1]→C[0,1] exists due to Fredholm
alternative. Denote

κ :=
∥
∥(I−Tϕ)

−1
∥
∥
L (C[0,1],C[0,1]) .

The compactness of Tϕ : C[0,1]→ C[0,1] and the pointwise convergence Ph,m to I
(the identity mapping) in C[0,1] (see Lemma 6) imply the norm convergence

εh :=
∥
∥Tϕ −Ph,mTϕ

∥
∥
L (C[0,1],C[0,1])→ 0 as n→ ∞ (as h =

1
n
→ 0).
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Hence there is an n0 such that κεh < 1 for n > n0. We conclude that I−Ph,mTϕ is
invertible in C[0,1] for n≥ n0 and

κh :=
∥
∥(I−Ph,mTϕ)

−1
∥
∥
L (C[0,1],C[0,1])→ κ as n→∞ (as h =

1
n
→ 0), (37.28)

since,

∥
∥(I−Ph,mTϕ)

−1
∥
∥
L (C[0,1],C[0,1]) ≤

κ
1−κεh

→ κ as h→ 0.

This proves the unique solvability of the collocation equation (37.26) for n≥ n0.
Let v and vh be the solutions of (37.24) and (37.26), respectively. Then

(I−Ph,mTϕ)(v− vh) = v−Ph,mTϕv−Ph,mfϕ = v−Ph,mv,

v− vh = (I−Ph,mTϕ)
−1(v−Ph,mv)

and

‖v− vh‖∞ ≤ κh ‖v−Ph,mv‖∞ , n =
1
h
≥ n0. (37.29)

By Theorem 1, for the solution u of (37.1) we have u∈Cm,θ0,θ1(0,1); by Theorem 2,
for v(t) = u(ϕ(t)) we have v ∈ Cm[0,1] and v(j)(0) = v(j)(1) = 0, j = 1, . . . ,m; by
Lemma 5(ii),

‖v−Ph,mv‖∞ ≤ ϑmhm‖v(m)‖∞.

Now (37.29) yields

‖v− vh‖∞ ≤ κhϑmhm‖v(m)‖∞

that together with (37.28) implies (37.27). The proof is complete.
Numerical examples (omitted here) confirm the theoretical accuracy.

Remark 1. With respect to

uh(x) := vh(ϕ−1(x)), 0≤ x≤ 1,

estimate (37.27) reads

max
0≤x≤1

|u(x)−uh(x)|= max
0≤t≤1

|v(t)− vh(t)| ≤ c1hm, n =
1
h
≥ n0,

where c1 is a positive constant which does not depend on n = 1
h .
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37.6 Matrix Form of the Method

The solution vh of equation (37.26) belongs to R(Ph,m), so the knot values

vh(ih), i = 0, . . . ,n,

determine vh uniquely. Equation (37.26) is equivalent to a system of linear algebraic
equation with respect to vh(ih), i = 0, . . . ,n, and our task is to write down this
system.

For wh ∈R(Ph,m) we have wh = 0 if and only if wh(ih) = 0, i = 0, . . . ,n. Since
(Ph,mw)(ih) = w(ih), i = 0, . . . ,n, equation (37.26) is equivalent to the conditions

vh(ih) = (Tϕvh)(ih)+ fϕ(ih), i = 0, . . . ,n,

i.e., vh ∈ R(Ph,m) satisfies equation (37.24) (equation (37.7)) at the knots ih,
i = 0, . . . ,n. Using for vh the representation (37.21) we obtain

(Tϕvh)(ih) =

1∫

0

Kϕ(ih,s)vh(s)ds =
n−1

∑
j=0

(j+1)h∫

jh

Kϕ(ih,s)vh(s)ds

=
n−1

∑
j=0
∑

k∈Zm

(j+1)h∫

jh

Kϕ(ih,s)Lk,m(ns− j)ds(Eδ vh)((j+ k)h)

=
n−1

∑
j=0
∑

k∈Zm

αi,j,k ·
⎧
⎨

⎩

vh(0) for j+ k ≤ 0
vh((j+ k)h) for 1≤ j+ k ≤ n−1

vh(1) for j+ k ≥ n

⎫
⎬

⎭

=
n

∑
l=0

bi,lvh(lh), i = 0, . . . ,n,

where for k ∈ Zm we denoted

αi,j,k =

(j+1)h∫

jh

Kϕ(ih,s)Lk,m(ns− j)ds, i = 0, . . . ,n, j = 0, . . . ,n−1, (37.30)

bi,l =

⎧
⎪⎨

⎪⎩

∑k∈Zm ∑{j:0≤j≤n−1, j+k≤0}αi,j,k, for l = 0

∑k∈Zm ∑{j:0≤j≤n−1, j+k=l}αi,j,k, for l = 1, . . . ,n−1

∑k∈Zm ∑{j:0≤j≤n−1, j+k≥n}αi,j,k, for l = n

⎫
⎪⎬

⎪⎭
,

i, l = 0, . . . ,n.

(37.31)
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Thus the matrix form of method (37.26) is given by

vh(ih) =
n

∑
l=0

bi,lvh(lh)+ fϕ(ih), i = 0, . . . ,n, (37.32)

with bi,l defined by (37.30)–(37.31). Having determined vh(ih) (i= 0, . . . ,n) through
solving the system (37.32), the collocation solution vh(t) at any intermediate point
t ∈ [jh,(j+1)h], j = 0, . . . ,n−1, is given by

vh(t) = ∑
k∈Zm

⎧
⎨

⎩

vh(0) for j+ k ≤ 0
vh((j+ k)h) for 1≤ j+ k ≤ n−1

vh(1) for j+ k ≥ n

⎫
⎬

⎭
·Lk,m(nt− j),

with Lk,m, k ∈ Zm, defined by (37.17).
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Chapter 38
Evolutional Contact with Coulomb Friction
on a Periodic Microstructure

J. Orlik and V. Shiryaev

38.1 Statement of Quasi-Static Multi-Scale Contact Problem

Assumption 38.1.1 (on geometry) We consider an εY−periodic domain Ωε ⊂ R
n

consisting of a connected domain Ωε
0 and s periodically distributed inclusions Ωε

l ,
l = 1, . . . ,s with cracks on the interface between Ωε

0 and the inclusions.

We denote the contact boundary of each domain by Sj
ε , j = 0, . . . ,N and the

complete contact boundary by Sε , which are Lipschitz continuous. We denote by
Y a unit periodicity cell and 0 < ε � 1 is a scaling parameter. We suppose for
Ωε a Lipschitz external boundary ∂Ωε , which is decomposed in two parts ∂Ωε =
ΓD ε ∪ΓN ε , on which Dirichlet and Neumann boundary conditions are imposed,
respectively. We denote by j= 0 domains touching the Dirichlet part of the boundary.

Assume we have the symmetric bilinear form

aε(e(u),e(v)) .
=

∫

Ω j
ε

3

∑
α ,β ,γ ,δ=1

aεαβγδ (x)e(u)γδ (x)e(v)αβ (x)dx,

where the tensor field aε = (aεαβγδ ), aεαβγδ ∈ L∞(Ωε) has the usual properties
of symmetry, boundedness (with constant CA), and coercivity (with constant α)
when operating on symmetric tensors of order two: aεαβγδ = aεβαγδ = aεαβδγ =
aεγδαβ ,α ηαβηαβ ≤ aεαβγδ ηαβηγδ ≤CAηαβηγδ . Let K ε be the convex set, defined

for non-negative gj
ε ∈ H1/2(Sj

ε), by K ε .
=
{

v
∣
∣ v ∈ H1(Ω 0

ε ;ΓD), [vν ]Sj ≤ gj
ε
}

.
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The vector fields v are the admissible displacement fields with respect to the
reference configuration Ωε . We will denote by [v]

Sj
ε

the jump of the vector field

across the surface Sj
ε . By standard trace theorems, these jumps belong to H1/2(Sj

ε).

The tensor field σεαβ (v)
.
=

3

∑
γ ,δ=1

aεαβγδ e(v)γδ is the stress tensor associated with

the deformation e(v) (not to be confused with the surface measures dσ !).
The function gj

ε(x) = εgj(x/ε) is the original gap (in the reference configuration),
and the corresponding inequality in the definition of K ε represents the non-
penetration condition. In case there is contact in the reference configuration, these
functions are just 0. fε ∈ L2(Ωε) represents the volume force. In the case of Coulomb
friction, the dissipative termΨε(v, [v̇τ ])

.
=−∫Sε μσν(v)|[v̇τ ]| depends not only on the

sliding [v̇ε τ ], but also on a function σν of the state variable v.
The strong formulation of the quasi-static contact problem reads: Find uε in K ε

such that
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−divσε = f̄ε in Ω ∗ε ,

[(u̇ε)ν ]Sε −gj
ε ≤ 0, σε(ν)ν ≤ 0,

σε(ν)ν
(
[(u̇ε)ν ]S0

ε
−gε
)
= 0

σε(ν)τ ∈ ∂Ψε(u, [(u̇ε)τ ]Sε ) on Sε ,

u̇ε = ġ on ΓDε ,

σε ·ν = 0 on ΓNε ,

uε(0,x) = u0ε(x), x ∈Ωε ,

where ∂Ψε denotes the subdifferential of Ψε (here taken in the sense of the

L2(Sε) duality), f̄ j = f j
ε − ∂

∂yh

(
ajihk

∂χi(y)
∂yk

)
, where f̄ j denotes the given volume

force and χ denotes a H1(Ω)-extension of the Dirichlet values g ∈ H1/2(ΓD), with

ajihk
∂χi(y)
∂yk

nh|ΓN = 0, which exists due to the trace theorem.

We define σν ∈ H−1/2(S) as the normal component of the co-normal derivative
on the contact interface of the solution of divσ(u) =−f in Y \S, uτ = 0 on S, or

(σν(u),wν)|S = a(u,w)− (f ,w), wτ ∈ H1(Y \S), wτ = 0 on S. (38.1)

The weak formulation will be then as follows:
Problem P ′′

ε : Find uε ∈K ε such that for every v ∈ H1(Ωε ;ΓD)

aε(e(uε),e(v− u̇ε))+Ψε(uε , [vτ ]Sε − [(u̇ε)τ ]Sε )
)≥ (fε ,(v− u̇ε)), v ∈K ε .

(38.2)

The problem can further be discretized in time similar to the formulation (3.4.10)
from [EcJaKr05] and inequality (6) from [CoRo00]. We consider a partition of the
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time interval IT with time steps of equal step size Δ t = T/L. Let tl = lΔ t, l= 0, . . . ,L.
Let ul be an approximation for u(tl)) and Δu(l) ≡ u(l)−u(l−1) be the time difference
operator. The time discretized problem is obtained from (3.4.9) by replacing u with
u(l) and u̇(l)) with Δu(l)/Δ t. If the result is multiplied by the time step Δ t, the
following variational inequality is obtained:

Problem P ′′′
ε : For ui−1

ε ∈K ε , find ui
ε ∈K ε such that ∀v ∈ H1(Ωε ;ΓD)

aε(e(ui
ε),e(v−ui

ε))+Ψε(ui
ε , [vτ ]Sε − [(ui−1

ε )τ ]Sε )

−Ψε(ui
ε , [(u

i
ε)τ ]Sε − [(ui−1

ε )τ ]Sε )≥ (fε ,(v−ui
ε)), v ∈K ε . (38.3)

38.1.1 Auxiliary Inequalities

Lemma 1. There is a constant γ0 such that

‖[v]‖H1/2(S) ≤ γ0‖∇v‖Lp(Y\S)

Proof is given by Poincaré–Wirtinger inequality in [CiDaOr13]. We define also the
inverse trace-jump operator, i.e. an extension of a jump-function. It can be extended
in the different ways. We consider an auxiliary problem (38.1), but put f = 0 and
apply a given Dirichlet boundary and normal-jump values {v0|∂ΩD

, [vj
n]|Sj} = gj,

j = 0, . . . ,m. Then, the existence of the extension and inverse trace-jump inequal-
ity comes from the preliminary estimate for such a problem ∑m

j=0 ‖vj‖H1(Ω j) ≤
γ1∑m

j=0 ‖gj‖H1/2(Sj).

We define the space H1,α =
{

w ∈ H1(Ωs);‖w‖H1,α <+∞
}

, for 0<α < 1, where

‖w‖2
H1,α (Ωs)

= ‖w‖2
H1(Ωs)

+
∫

Rn

∫

Ωs

1

|h|n+2α

n

∑
i=1

[(
∂w
∂xi

)

−h
−
(
∂w
∂x i

)]2

dxdh,

with v−h(x) = v(x+h), for x ∈ R
n and h ∈ R

n.
We consider equally the space Hα(Rn) =

{
w ∈ L2(Rn);‖w‖Hα <+∞

}
with

‖w‖2
Hα (Rn) = ‖w‖2

L2(Rn) +
∫

Rn

∫

Rn

(w(x+h)−w(x))2

|h|n+2α dxdh.

We consider cn(α) such that |ξ |2α cn(α) =
∫
Rn
|eih·ξ −1|2
|h|n+2α dh, ∀ξ ∈ R and

denoting by F[w] the Fourier transform of w, we have that

‖w‖2
Hα (Rn) =

∫

Rn
|F[w](ξ )|2 (1+ cn(α) |ξ |2α)dξ .
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We define H−α(Rn) as the dual space of Hα(Rn). Thus its norm satisfies

‖w‖2
H−α (Rn) =

∫

Rn
|F[w](ξ )|2 (1+ cn(−α) |ξ |−2α)−1dξ .

Definition 1. For a function u defined on R
n−1 and any h ∈ R

n−1 we introduce the
translation (shift) operator and the difference operator

Shu = u−h : x �→ u(x+h), x ∈ R
n−1,

Δh : x �→ u(x+h)−u(x), x ∈ R
n−1

Furthermore, we define by || · ||′ a semi-norm, for α,β > 0 and α+β < 1,

∫

Rn

||Δhw||′2
Hβ (Rn)

|h|n+2α dh = dn(α,β )||w||′2Hα+β (Rn)
, (38.4)

with dn(α,β ) = cn(α)cn(β )
cn(α+β ) .

∫

Rn

||Δhw||2
H−β (Rn)

|h|n+2α dh = d∗n(α,β )||w||2Hα−β (Rn)
+Rα ,β (u),

with d∗n(α,β ) =
cn(α)cn(β−α)

cn(β ) , |Rα ,β (u)| ≤ c(α,β )||w||2
H2(α−β )(Rn)

.

∫

Rn−1

||Δhw||′2
Hβ (Rn)

|h′|n+2α dh′ = dn−1(α,β )||w||′2Hα+β ,α (Rn)
, (38.5)

with h = (h′,0).
The following theorem is recalled from [CoRo00], it proves the existence of the

solution to the incremental problem if the normal stress on the interface has a fixed
point w.r.t. the time iterations.

Theorem 1. Let tangential rigid displacements, rτ be fixed on Γ1 ⊂ S with
measΓ1 > 0, ε be fixed. Furthermore, let coefficients ||μ ||L∞(S) < α

γ0γ1CA
, where CA, α

are the constants from the continuity and coercivity condition for the elastic bilinear
form, γ0 and γ1 are the constants from the jump and inverse jump inequalities and
f ∈ L2(Ω), g ∈ H1/2(ΓD∪S).
Then there exists a constant C such that

∥
∥e(ui)

∥
∥

L2(Ω\S) +‖σν(u)‖H−1/2(S) ≤ C(‖f̄‖L2(Ω +‖g‖H1/2(ΓD,S)
). (38.6)
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Proof. For v = 0, (38.3) can be rewritten as

a(e(ui),e(ui))+Ψε
(
ui, [(ui)τ ]S

)≤ (f ,ui)

For the Coulomb friction, the way to find a solution continuous in time and to get
an estimate in some Hölder-spaces, the frictional term is shifted to the right-hand
side and estimated from below (see Theorem 3.4.4 in [EcJaKr05] or Lemma 2.1
in [CoRo00]).

−(μσν(ui)|[(ui)τ ]|
)

S ≥−‖μ‖H−1/2(S)→H−1/2(S)||σν(ui)‖H−1/2(S)‖[(ui)τ ]‖H1/2(S).

Owing to the Korn’s and jump inequalities,

ᾱ
∥
∥e(ui)

∥
∥

L2(Ω\S)

≤ ∥∥f i
∥
∥

L2(Ω)
+‖gi‖H1/2(ΓD,S)

+‖μ‖H−1/2(S)→H−1/2(S) γ0
∥
∥σν(ui)

∥
∥

H−1/2(S) .

Relation (38.1) together with the inverse jump theorem with the constant γ1 enables
us to obtain that

‖σν(ui)‖H−1/2(S) ≤ γ1(‖f i‖L2(Ω) +CA‖e(ui)‖L2(Ω\S)).

The statement of the lemma is obtained simply by multiple applications of the
classical inequality ab≤ � a2 +(1/(4�))b2 (for � > 0).

38.2 Scaling of Korn Inequalities and Trace Theorem via
Unfolding

Let us now recall some formulas related to the unfolding operator (see for more
details [CiEtAl12]) defined for any function φ Lebesgue measurable on Ω , as

Tε(φ)(x,y) = φ
(
ε
[

x
ε

]

Y
+εy
)

For ϕ ∈H1(Ω j
ε), recall that ∇y(Tε(ϕ)) = εTε(∇ϕ)

onΩ×Yj. In a similar way, ey(Tε(ϕ)) = εTε(e(ϕ)). The following equalities hold:

‖Tε(u)‖L2(Ω×Yj) =
√
|Y|‖u‖

L2(Ω j
ε )
, ‖∇yTε(u)‖L2(Ω×Yj) = ε

√
|Y|‖∇u‖

L2(Ω j
ε )
,

‖Tε(e(u))‖L2(Ω×Yj) =
√
|Y|‖e(u)‖

L2(Ω j
ε )
, ‖T b

ε uε‖Lp(Ω×Sj) = (ε |Y|)1/p‖u‖
Lp(Sj

ε )
.

The following inequality was proved in Prop. 5.1. in [CiDaOr13].
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Proposition 1. There exists a constant C1 such that for all u in H1(Ω j
ε), with Ω j

ε
non-locked periodic Lipschitz domains, j = 1, . . . ,m,

‖uj‖
L2(Ω j

ε )
+ ε‖∇uj‖

L2(Ω j
ε )
≤ C1

(‖e(u0)‖L2(Ω0
ε )
+ ε‖e(uj)‖

L2(Ω j
ε )

+ ε1/2‖gj
ε‖L1(∂Sj

ε )
+ ε−1/2

∥
∥[u]τ

∥
∥

L1(Sj
ε )

)
.

While scaling of the trace theorem was done in [GaKnNe14]:

ε ||uε ||2L2(Sε )
≤ γ(||uε ||2L2(Ωε ))+ ε

2||∇uε ||2L2(Ωε ))

∫

Sε

∫

Sε

|uε(x)−uε(y)|2
|x− y|n dσxdσy ≤ γ2(

1
ε2 ||uε ||2L2(Ωε ))+ ε

2||∇uε ||2L2(Ωε )).

However for jumps, considering in this paper, we again get a better (see
[CiDaOr13]) estimate via the semi-norm

Lemma 2. We have

||[uε ]||2L2(Sε )
≤ εγ0||∇uε ||2L2(Ωε )

∫

Sε

∫

Sε

|[uε ](x)− [uε ](y)|2
|x− y|n dσxdσy ≤ γ2ε2||∇uε ||2L2(Ωε ).

And the following rule is valid [GaKnNe14] for the unfolding. For uε ∈Hs(Sε) with
s ∈ (0,1), we have Tb

ε uε ∈ Hs(S)), and we have the equality

∫

Ω

∫

S

∫

S

|T b
ε uε(x,y)−T b

ε uε(x,z)|2
|y− z|n−1+2s dσydσz dx

= ε1+2s
∫

Sε

∫

Sε

|uε(y)−uε(z)|2
|y− z|n−1+2s dσydσz. (38.7)

We define also the inverse trace-jump operator and scale it.

Lemma 3.

m

∑
j=0
‖e(uj

ε)‖L2(Ω j
ε )
≤ 1√

ε
γ1

m

∑
j=0
‖[uj

ε ]n‖H1/2(Sj)
.

Proof. We extend the jumps, set v≡Tεuε and then pass to uε :

ε
m

∑
j=0
‖e(uj

ε)‖L2(Ω j
ε )
≤√εγ1

m

∑
j=0
‖[uj

ε ]n‖H1/2(Sj)
.
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Let χε(x) = χ1(x/ε). This was shown in [Mi14]: Denote by Fx→ξ
[
χ(x)
]

the

Fourier transform. It can be scaled according to the following:

Fx→ξ
[
χε(x)

]
=− 1

4 π

∫

Rn

χε(x)e−2πi x·ξ dx

=− 1
4 π

∫

Rn

χ1(x̃)e−2πiε x̃·ξ εn dx̃ = εnχ̂1(εξ ).

Let us consider a shifting hε = εh and scale the expression for definition of the
constant cn(α)

Lemma 4. For ε-periodic function

‖χ1

( x
ε

)
‖2

Hα (Rn) = εn
∫

Rn
(1+ ε−2αcn,ξ (α)|εξ |2α)|χ̂1(εξ )|2d(εξ )

= εn
∫

Rn
(1+ ε−2αcn,ζ (α)|ζ |2α)|χ̂1(ζ )|2dζ

cn(α) = |εξ |−2α
∫

Rn

eih(εξ )−1
|h|n+2α dh, cn,ε(α) = εn−2αcn(α).

We would like to estimate this constant for the semi-norm of the unfolding operator
of a function defined on a periodic structure, like in (38.7). The purpose of this
constant is to make the norm of the Bessel potential space equivalent to the one of
the Sobolev–Slobodetski space with the same α . From the scaling of the last one
above, we may expect this constant to be cn,ε(α)≈ ε−1−2αcn(α).

However, the proof will contain two steps: first in Lemma 4, we replace R
n by

Sε ∈Rn−1 by finite covering of the surface Sε and approximation of a function uε on
Sε by {ρj}j∈i ∈ C∞-partition of unity subordinate to the finite covering. It is known
from, e.g., [CoRo00], that ‖uε‖H−1/2+α (Sε )

is equivalent to ∑j∈i ‖ρjuεJj‖H−1/2+α (Rn).
Let us now define the diffeomorphism as follows: at each point of the interface

translate the global coordinate system to the point on the boundary and rotate it in
such a way that xn-direction coincides with the outer normal of the boundary Sx, like
in [CoRo00] or [EcJaKr05]. Then, the transformation will be given by

Sx(x) : x̄ �→ ax +ωxx̄, x̄ ∈ R
n−1 and xn �→ ax +ωxS′x(x̄).

Here ax is a bounded translation vector and ωx is a bounded rotation matrix,
depending just on the point x on the surface and Sx ∈ C1,β (Rn), since S ∈ C1,β .

According to [CoRo00], there exists a finite covering and a partition of unity
to approximate function Tεσν on S, such that the estimate (38.8) will be valid for
curved S ∈ C1,β (R).
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The following tools are well known in the literature on shape derivatives (see, for
example, [DeZo83]) and mathematical theory of nonlinear elasticity [Ci88].

For an arbitrary (sufficiently regular) domain Ω , part (sufficiently regular) of its
boundary Γ , and a (sufficiently regular) diffeomorphism Sx, the volume integral
transformation rule is

∫

Sx(Ω)
f(y)dy =

∫

Ω
f◦Sx(x) |det(∇Sx(x))| dx,

the surface integral transformation rule is

∫

Sx(Γ )
k(sy)dsy =

∫

Γ
k◦Sx(ss) |cof(∇Sx(sx))ν | dsx,

the function’s gradient and symmetrized gradient transformation rule is

∇u◦Sx = ∇(u◦Sx)(Sx)
−1,

e(u)◦Sx =
1
2

(
∇(u◦Sx)(∇Sx)

−1 +
(
∇(u◦Sx)(∇Sx)

−1)T
)
,

where cofactor matrix is defined as cof(A) = det(A)A−T .
And the next step deals with the estimate for the Jacobi matrix for the transfor-

mation, depending on the small parameter ε:

Lemma 5. Let Sx ε(x) : x̄ �→ ax +ωxx̄, x̄ ∈ R
n−1 and xn �→ ax +ωxS′x ε(x̄) with

Sx ε(x̄) = εSx(
x̄
ε ). Then the Jacobi and the cofactor matrix for this transformation,

will be the finite matrices, depending just on the point on the surface x, but not on ε .

Proof. The proof is based on a simple computation ∇
(
εSx
(

x
ε
))

= (∇ySx)
(

x
ε
)
. See

also [ShOrPa] for more details.

Now we can replace Rn by Se∩εY in Lemma 4 and sum up over all cells, N ≈ ε−n.

Lemma 6. For real α ,

||uε(x)||2Hα (Sε )
= ε−1

∫

Sε
(1+ ε−2αcn−1,ζ (α)|ζ |2α)|ûε(ζ )|2dζ ,

cn,ε(α) = ε−1−2αcn(α).

The unfolded semi-norm is then

‖Tεu(x,y)‖′2L2(Ω ,Hα (S)) = ε1+2α‖uε(x)‖′2Hα (Sε )
,
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Corollary 1. So, the scaling of the unfolding operator in the semi-norm of the
Bessel potentials coincides with the one for the semi-norm in the Sobolev–
Slobodetski spaces, but it allows to scale the norms also for negative α .

38.3 Boundedness of the Solution and the Normal Conormal
Derivatives on the Contact Interface

Boundedness and compactness results for stationary periodic contact problems with
the Tresca friction were obtained in [CiDaOr13] under some restrictions on the
volume force given on the inclusions. In this section we fix a tangential rigid rotation
on a piece of the boundary, in order to be able to use the Korn’s inequality without
traces and concentrate ourselves on the boundedness w.r.t. ε . Further, we estimate
the normal component of the conormal derivative (tractions) on the contact interface
by the solution and the normal traction from the previous step.

Proposition 2. Let rτ be fixed on γε ⊂ Sε with measγ > 0, or the force on the
inclusions will be orthogonal to the rigid displacements. Then there exists a fixed
constant C such that for u element of a minimizing sequence

∥
∥e(uε)

∥
∥

L2(Ωε\Sε ) ≤ C(‖f̄ε‖L2(Ωε ) + ε
−1/2
∥
∥(gε)

∥
∥

L2((Sj
ε )
),

Proof. We start with the usual estimate obtained for the variational inequality, by
taking into account that v = 0 belongs to K ε ,

α
m

∑
j=0
‖e(uj)‖2

L2(Ω j
ε )
≤
∫

Ω0
ε

f̄ 0
ε u0 dx+

m

∑
j=1

∫

Ω j
ε

f j
ε uj dx.

Furthermore, the friction term is bounded from below by zero.
Owing to Korn’s inequality

α
m

∑
j=0
‖e(uj)‖2

L2(Ω j
ε )
≤ C

( m

∑
j=0
‖f j
ε‖L2(Ω j

ε )
‖e(uj)‖L2(Ω0

ε )

+ ε
m

∑
j=1
‖f j
ε‖L2(Ω j

ε )
‖e(uj)‖

L2(Ω j
ε )
+ ε−1/2‖gεj ‖L1(Sj

ε )

)

.

Estimate from (38.8) is obtained simply by multiple applications of the classical
inequality ab≤ � a2 +(1/(4�))b2 (for � > 0).

The next assertion is a corollary of the preceding estimate and was established in
[GaKnNe14]. Here we modify it to account for jumps.
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Lemma 7. Owing to the preliminary estimate the following estimates hold:

1
ε2|Y| ‖[T

b
ε uε ]‖2

L2(Ω×S) =
1
ε
‖[uε ]‖2

L2(Sε )
≤ C,

1
ε2 ‖[T b

ε uε ]‖2
L2(Ω ,H1/2(S)

=
1
ε2 ||[T b

ε uε ]||2L2(Ω×S)

+
1
ε2

∫

Ω

∫

S

∫

S

|[T b
ε uε(x,y)]− [T b

ε uε(x,z)]|2
|y− z|n dσydσzdx≤ C.

Proof. For the first statement we use just the definition of the unfolding operator on
the boundary, the scaled jump theorem

1
ε
‖[uε ]‖2

L2(Sε )
≤ γ‖∇uε‖2

L2(Ωε\S)

and the preliminary estimate from the previous theorem.
The second inequality can again be rescaled

1
ε2

∫

Ω

∫

S

∫

S

|[T b
ε uε(x,y)]− [T b

ε uε(x,z)]|2
|y− z|n dσydσz dx

=
∫

Sε

∫

Sε

|[uε(y)]− [uε(z)]|2
|y− z|n dσydσz ≤ ε2γ2||∇uε ||2L2(Ωε ) ≤ C.

Proposition 3. Let in Prop. 2 additionally ‖μ‖L∞(S) <
α

γ0γ1CA
. Then also

‖Tε(σν(uε))‖L2(Ω ,H−1/2(S)) = ε1/2
∥
∥σν(uε)

∥
∥

H−1/2(Sε )

≤ C1(‖f̄ε‖L2(Ωε ) +
√
ε
∥
∥(gε)

∥
∥

L2((Sj
ε )
), (38.8)

Proof. Like in (38.6) we estimate

α
m

∑
j=0
‖e(uj)‖2

L2(Ω j
ε )
≤ C

( m

∑
j=0
‖f j
ε‖L2(Ω j

ε )
‖e(uj)‖L2(Ω0

ε )

+ ε
m

∑
j=1
‖f j
ε‖L2(Ω j

ε )
‖e(uj)‖

L2(Ω j
ε )
+ ε1/2‖gεj ‖L1(Sj

ε )

)

+‖με‖H−1/2(Sε )→H−1/2(Sε )
γ0
∥
∥σν(ui

ε)
∥
∥

H−1/2(Sε )

∥
∥[ui

ε)]τ
∥
∥

H1/2(Sε )
.

Using the direct scaled jump theorem in the last term for estimating the interface
tangential jump by the semi-norm in H1, we arrive at the estimate
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α
m

∑
j=0
‖e(uj)‖

L2(Ω j
ε )
≤ C

(
m

∑
j=0
‖f j
ε‖L2(Ω j

ε )
+ ε1/2‖(gεj )‖L1(Sj

ε )

)

.

+
√
ε ‖με‖L∞(S)→H−1/2(Sε )

γ0
∥
∥σν(ui

ε)
∥
∥

H−1/2(Sε )
.

Relation (38.1) together with the inverse scaled jump theorem with the constant
ε−1/2γ1 enables us to obtain that

‖σν(ui)‖H−1/2(Sε )
≤ ε−1/2 γ1(‖f i

ε‖L2(Ωε ) +CA‖e(ui
ε)‖L2(Ωε\Sε )).

substituting the last inequality in the previous one provides the estimate.

38.4 Homogenization

The aim of this section now is to pass to the limit as ε → 0 in our problem. We
will obtain a limit “homogenized” problem that is given in Theorem 4 below. We
omit here the rigid rotation of particles, which were considered in [CiDaOr13]
in detail and whose convergence leads to the convergence of measures. Our
main achievement in this section is an extension of the previous results to the
convergence of the co-normal derivatives on the oscillating interface, which justify
the convergence of the interface traces of the stresses and can be used for the
convergence proof for the Coulomb friction.

As mentioned in the Introduction, we use for the proof the unfolding method and
the results from the sections above.

For simplicity, the notation W1
per(Y

0) indicates the subspace of Y-periodic
elements of W1(Y0).

Proposition 4. Up to a subsequence, there exists

u0 ∈ H1(Ω ;ΓD), û0 ∈ L2(Ω ;W1
per(Y

0))

such that

(i) Tε(u
0
e)→ u0 strongly in L2

loc(Ω ;H1(Y0)),

(ii) Tε(e(u
0
ε))⇀ e(u0)+ ey(û

0) weakly in L2(Ω ×Y0),

(iii) Tε(a
εe(u0

ε))⇀ a0(e(u0)+ ey(û
0)) weakly in L2(Ω ×Y0),

(iv)
1
ε
[Tε(u

0
ε)]S0 ⇀ [û0]S0 weakly in L2(Ω ;H1/2(S0)),
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and consequently

[û0
ν ]S0 ≤ g0 on S0.

The proof is given in [CiDaOr13].

Proposition 5. Let ∂uε
∂ν ≡ Aε∇uε ≡ σν(uε), and let T b

ε

(
∂uε
∂ν

)
be bounded in the

space L2(Ω ,H−1/2(S)). Then

T b
ε (
∂uε
∂ν

)⇀ a0(x,y)(∇u0 +∇yû(x,y))νy(x,y) in L2(Ω ,H−1/2(S)).

Proof. According to the Gauss identity,

(σν(uε),φε )Sε = a(uε ,φε)Ωε − (fε ,φε)Ωε

Applying the unfolding operators to both sides of the identity, we find that for all
φε ∈ H1(Ωε),

1
ε |Y|

∫

Ω

∫

S
T b
ε (σν(uε))T b

ε (φε)dσydx

Gauss in Y
=

1
|Y|
∫

Ω

∫

Y
Tε(fε)Tε(φε)+Tε(Aε)Tε(∇uε)Tε(∇φε)dydx.

Let us choose φε = εψ(x, x
ε ) and pass to the limit with respect to ε→ 0 in each term

of the last expression,

1
|Y|
∫

Ω

∫

Y
a0(∇u0 +∇yû)∇yψdydx =

1
|Y|
∫

Ω

∫

S
L(x,y)ψ(x,y)dσydx,

and with respect to Green’s formula the co-normal derivative L(x,y) = a0(∇u0 +
∇yû)νy(x,y)|S.

Corollary 2. Let

Tε

(
∂uε
∂ν

)

⇀ a0(x,y)(∇u0 +∇yû(x,y))νy(x,y) in L2(Ω),H−1/2(S)).

and

1
ε
Tε [uε ]⇀ [û](x,y) in L2(Ω),H1/2(S)).

If additionally one of the convergences is strong, then

lim
ε→0

∫

Ωε

∂uε
∂ν

[uε ](x)dx =
∫

Ω

∫

S
a0(x,y)(∇u0 +∇yû(x,y))νy(x,y)[û(x,y)]dxdy.
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Furthermore,

lim
ε→0

∫

Ωε
σε ν |[uε ]τ |(x)dx =

∫

Ω

∫

S
σν(x,y)|[û]τ(x,y)|dxdy,

where σε ν = ∂uε
∂ν ·νε(x)) and σν(x,y) = a0(x,y)(∇u0 +∇yû(x,y))νy(x,y) ·νy(x,ξ )

Remark 1. The strong convergence of the trace of the solution on the oscillating
interface was proven in [GaKnNe14] by the shifting technique. So, for the static
contact problem we can pass to Section 38.6.

However, for the quasi-static problem, it is necessary to estimate the conormal
derivatives (normal interface tractions) by the normal tractions from the previous
step and obtain a fixed point result as in [EcJaKr05, CoRo00] uniformly in ε .

38.5 Boundedness under Additional Regularity Assumptions

We assume a better regularity for the contact interface, friction coefficient, and the
elastic coefficients in a δ -neighborhood of the contact interface:

Assumption 38.5.1 S ∈ C1,β (R), aijkl ∈ L∞(∪m
j=0Yj), furthermore, aijkl ∈ C0,α ,

0 < α < 1/2 in a δ -neighborhood of S, μ ∈ C1(S) with compact support in S.
Furthermore, let coefficients ||μ ||L∞(S) < α

CAγ0γ1
, where CA, α are the constants from

the continuity and coercivity condition for the elastic bilinear form, γ0 and γ1 are
the constants from the jump and inverse jump inequalities, Tε(fε) ∈ Hα(Ω × Y),
Tε(gε) ∈ H1/2+α(ΓD∪S).

Further, we estimate the normal component of the co-normal derivative in the
space H−1/2+α by shifting argument. This technique was used for the proof of the
existence of the solution to the contact problems with Coulomb friction in [Ja83,
Ro99, CoRo00].

Let us fix ε . For a fixed domain, the following assertion was proved in [CoRo00],
Lemmas 2.5 and 2.6, and in [EcJaKr05], Sect. 1.7.2.

Lemma 8. Let u be a solution of the contact problem with G ∈ H−1/2+α(S) ∩
C1(R) — normal friction traction on the contact interface known form the previous
step. Then for an arbitrary δ > 0 we have

‖σν(u)‖H−1/2+α (Rn−1) ≤ (1+δ )
(∫

Rn−1

CAa(u−h−u,u−h−u)

cn−1(α)cn−1
(

1
2 −α

) |h|n−1+2α dh

) 1
2

+ k1(δ ,α)
[∥
∥f i+1

∥
∥

L2(Ω)
+‖u‖H1(Ωs)

]
.
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and

(
ᾱa(u−h−u,u−h−u)

2cn−1(α)cn−1
(

1
2 −α

) |h|n−1+2α dh

) 1
2

≤ (1+δ )‖μ‖L∞(S) ‖G‖H−1/2+α (Rn−1)

+ k2(δ ,α)
[∥
∥f i+1

∥
∥2

L2(Ω)
+‖u‖2

H1(Ωs)

]
.

Theorem 2. Under the regularity Assumption (38.5.1),

ε1/2||σν(uε)||H−1/2+α (Se)
≤ const(CA,μ , ||f̄ε ||L2(Ω) +

√
ε ||gε ||H1/2(Se,∂ΩD)

).

Proof. We just scale the previous Lemma with respect to the auxiliary scaling rules
recalled and derived in the beginning of the paper. Owing to Lemma 6,

cn−1, ε(α)cn−1, ε(1/2−α) = ε−1cn−1(α)cn−1(1/2−α).

Furthermore, we can scale constants in inequalities (38.4)–(38.5):

dn ε(α,β ) =
ε−2−2(α+β )

ε−1−2(α+β ) dn(α,β ) = ε−1dn(α,β ).

d∗n ε(α,β ) =
ε−2−2(α+β−α

ε−1−2(β ) d∗n(α,β ) = ε−1d∗n(α,β ).

We overcome from R
n−1 to Sε , according to Lemma 6. Application of scaled

inequality (38.4) together with the scaled constants cn in the previous lemma and
combination of it with Lemma 38.8 completes the proof.

Theorem 3. (Equicontinuity of the solution) Let ‖μ‖L∞(Sε ) < α/(CAγ0,γ1),
where CA, α are the constants from the continuity and coercivity condition for the
elastic bilinear form, fε ∈C1([0,T],L2(Ωε)), gε ∈C1([0,T],L2(Sε)), aijkl ∈ L∞(Ωε),
furthermore, aijkl ∈ C0,α , 0 < α < 1/2 in a neighborhood of Sε , μ ∈ C1(Sε) with
compact support in Sε , and the initial values uε0 be stable. Then any solution of
problem Pε is Lipschitz continuous and the constant in the bound is independent
of ε .

Proof is similar to the one from [Or02, Or00].

38.6 Homogenized Problem

Let us now consider the following problem, called corrector problem: for every
symmetric tensor U and for a.e. x ∈Ω , find χ(x, ·) in K̂ such that
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1
|Y|
∫

Y0

a0(U + ey(χ)
)(

ey(W)− ey(χ)
)

dy

+ψ0(a0(U + ey(χ)
)
ν , [(W

0)τ ]S0

)−ψ0(a0(U + ey(χ)
)
ν , [(χ)τ ]S0

) ≥ 0,

for all W in K̂ , the convex set defined by

K̂
.
=
{

w | w ∈ L2(Ω ;H1
per(Y

0)),MY0(w) = 0,

[w]ν |S0
≤ g0 in L2(Ω ;H1/2(S0)).

}

This problem is equivalent to minimizing over the set K̂ the functional

1
2|Y|

∫

Y∗
a0(U + ey(W)

)(
U + ey(W)

)
dy+ψ0(a0(U + ey(χ)

)
ν , [(W)τ ]|S0

)
.

(38.9)
The corrector problem (38.9) has at least one solution χ .

Theorem 4. Let uε ∈ K ε be solution of Problem P ′′′
ε and u0 ∈ H1(Ω ;ΓD) be

the limit function. Then there exists a strictly convex Carathéodory function E hom,
defined onΩ×MS

3(R)
1 such that u0 is a minimizer over H1(Ω ;ΓD) of the functional

∫

Ω

(
E hom(x,e(v))−F v

)
dx.

The functional E hom is the minimum in (38.9), i.e.

E hom(x,U )

.
=

1
2|Y|

∫

Y∗
a0(U + ey(χ)

)(
U + ey(χ)

)
dy+ψ

(
a0(U + ey(χ)

)
ν , [(χ)τ ]|S0

)

for every symmetric tensor U and for a.e. x ∈Ω , and the corrector function χ(x, ·)
in K̂ is a solution of (38.9).

And the following theorem extends the spacial convergences above to the
uniform convergence in time. It can also be found as Prop. 4.3 in [MiTi07].

Theorem 5. Let the right-hand side functions and elastic coefficients be Banach-
valued or Sobolev-valued functions continuous in time t∈ [0,T], then it is possible to
find a subsequence of the solution convergent for all time-points and this sequence
will be continuous in t ∈ [0,T].

1This means that it is continuous with respect to its second argument and measurable with respect
to its first one.
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The proof, like in the original theorem, is based on the Arzela–Ascoli theorem for
the weak topology and the Lebesgue’s theorem of dominated convergence for the
dissipative term, as the integrands are uniformly bounded and converge pointwise.
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Chapter 39
Piecewise Polynomial Collocation for a Class
of Fractional Integro-Differential Equations

A. Pedas, E. Tamme, and M. Vikerpuur

39.1 Fractional Integro-Differential Equation

We consider a linear fractional integro-differential equation of the form

(D
αp∗ y)(t)+

p−1

∑
i=0

hi(t)(D
αi∗ y)(t)+

∫ t

0
K(t,s)y(s)ds = f (t), 0≤ t ≤ b, (39.1)

with

γ0y(0)+
l

∑
k=1

γky(bk) = γ , 0 < b1 < · · ·< bl ≤ b, γ ,γk ∈ R := (−∞,∞). (39.2)

Here

p ∈ N= {1,2, . . .}

and Dαi∗ y (i = 0, . . . ,p) are the Caputo fractional derivatives of y of order αi with

0 = α0 < α1 < · · ·< αp < 1; (39.3)

in the case α0 = 0 we set D0∗ = I where I is the identity mapping.
We assume that f ,hi (i = 0, . . . ,p−1) and K are some given continuous functions

on [0,b] and Δ , respectively: f ,hi ∈ C[0,b] (i = 0, . . . ,p−1) and K ∈ C(Δ),

Δ = {(t,s) : 0≤ s≤ t ≤ b}.
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The Caputo differential operator Dα∗ of order α ∈ (0,1) is defined by (see, e.g.,
[Di10])

(Dα
∗ y)(t) := (Dα [y− y(0)])(t), t > 0.

Here Dαy is the Riemann–Liouville fractional derivative of y :

(Dαy)(t) :=
d
dt
(J1−αy)(t), 0 < α < 1, t > 0,

with Jβ , the Riemann–Liouville integral operator, defined by the formula

(Jβ y)(t) :=
1

Γ (β )

∫ t

0
(t− s)β−1 y(s)ds, t > 0, β > 0, (39.4)

where Γ is the Euler gamma function.
It is well known (see, e.g. [BrPeVa01]) that Jβ , β > 0, is linear, bounded, and

compact as an operator from L∞(0,b) into C[0,b], and we have for any y ∈ L∞(0,b)
that (see, e.g. [KiSrTr06])

Jβ y ∈ C[0,b], (Jβ y)(0) = 0, β > 0, (39.5)

Dδ Jβ y = Dδ
∗ Jβ y = Jβ−δ y, 0 < δ ≤ β , (39.6)

with J0 = I.
Fractional differential equations arise in various areas of science and engineering.

In the last few decades theory and numerical analysis of fractional differential
equations have received increasing attention (see, e.g. [Di10, KiSrTr06, Po99,
AgBeHa10]). Some recent results about the numerical solution of fractional dif-
ferential equations can be found in [Di10, PeTa11, FoMo11, FoMo14, DoBhEz11,
PeTa12, PeTa14a, PeTa14b, MaHu14, YaPaFo14].

In this chapter, the numerical solution of (39.1)-(39.2) by piecewise polynomial
collocation techniques is considered. We use an integral equation reformulation
of the problem and special non-uniform grids reflecting the possible singular
behavior of the exact solution. Our aim is to study the attainable order of the
proposed algorithms in a situation where the higher-order (usual) derivatives of
hi(t)(i = 0, . . . ,p− 1) and f (t) may be unbounded at t = 0. Our approach is based
on some ideas and results of [PeTa12]. In particular, the case where (39.1)-(39.2)
is an initial value problem (γ0 �= 0, γ1 = · · · = γl = 0), a boundary value problem
(γ0 �= 0,γl �= 0,bl = b) or a terminal value problem (γ0 = · · ·= γl−1 = 0,γl �= 0,bl = b,
see [FoMo11, FoMo14]) is under consideration.
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39.2 Existence and Regularity of the Solution

In order to characterize the behavior of higher-order derivatives of a solution of
equation (39.1), we introduce a weighted space of smooth functions Cq,ν(0,b]
(cf., e.g., [BrPeVa01, Va93]). For given q ∈ N and ν ∈ R, ν < 1, by Cq,ν(0,b] we
denote the set of continuous functions y : [0,b]→R which are q times continuously
differentiable in (0,b] and such that for all t ∈ (0,b] and i = 1, . . . ,q the following
estimates hold:

∣
∣y(i)(t)

∣
∣≤ c

⎧
⎨

⎩

1 if i < 1−ν ,
1+ | log t| if i = 1−ν ,
t1−ν−i if i > 1−ν .

Here c = c(y) is a positive constant.
Clearly,

Cq[0,b]⊂ Cq,ν(0,b]⊂ Cm,μ(0,b]⊂ C[0,b], q≥ m≥ 1, ν ≤ μ < 1. (39.7)

Note also that a function of the form

y(t) = g1(t) tμ +g2(t)

is included in Cq,ν(0,b] if μ ≥ 1−ν > 0 and gj ∈ Cq[0,b] , j = 1,2.
In what follows we use an integral equation reformulation of (39.1)-(39.2). Let

y∈C[0,b] be such that D
αp∗ y∈C[0,b]. Introduce a new unknown function z :=D

αp∗ y.
Then (see [Di10, KiSrTr06])

y(t) = (Jαpz)(t)+ c, 0≤ t ≤ b, (39.8)

where c is an arbitrary constant. Denote

γ∗ =
l

∑
k=0

γk.

The function y given by (39.8) satisfies (39.2) if and only if (see (39.5))

cγ∗ = γ−
l

∑
k=1

γk(J
αp z)(bk).

In the sequel, we assume that γ∗ �= 0. Therefore

c =
1
γ∗

(

γ−
l

∑
k=1

γk(J
αp z)(bk)

)

. (39.9)
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Thus, the function y of the form (39.8) satisfies the conditions (39.2) if and only if

y(t) = (Jαpz)(t)+
1
γ∗

(

γ−
l

∑
k=1

γk(J
αpz)(bk)

)

, 0≤ t ≤ b. (39.10)

Substituting (39.10) into (39.1) and using (39.6), (39.4), we obtain for z an
operator equation of the form

z = Tz+g, (39.11)

with an operator T , defined by formula

(Tz)(t) =− h0(t)
Γ (αp)

[
∫ t

0
(t− s)αp−1z(s)ds− 1

γ∗

l

∑
k=1

γk

∫ bk

0
(bk− s)αp−1z(s)ds

]

−
p−1

∑
i=1

hi(t)
Γ (αp−αi)

∫ t

0
(t− s)αp−αi−1z(s)ds

− 1
Γ (αp)

∫ t

0
K(t,s)

∫ s

0
(s− τ)αp−1z(τ)dτds

+
1

γ∗Γ (αp)

l

∑
k=1

γk

∫ bk

0
(bk− s)αp−1z(s)ds

∫ t

0
K(t,s)ds, 0≤ t ≤ b,

(39.12)

and

g(t) = f (t)− γ
γ∗

(

h0(t)+
∫ t

0
K(t,s)ds

)

, 0≤ t ≤ b. (39.13)

We observe that equation (39.11) is a linear weakly singular Fredholm integral
equation of the second kind with respect to z.

The existence and regularity of a solution to (39.1)-(39.2) is described by the
following theorem which can be proved similarly to Theorem 2.1 in [PeTa12].

Theorem 1. Assume that K ∈ Cq(Δ), hi ∈ Cq,μ(0,b] (i = 0, . . . ,p − 1), f ∈
Cq,μ(0,b], q ∈ N, μ ∈ R, μ < 1. Moreover, assume that γ∗ = ∑l

k=0 γk �= 0 and
problem (39.1)-(39.2) with f = 0 and γ = 0 has in C[0,b] only the trivial solution
y = 0.

Then problem (39.1)-(39.2) possesses a unique solution y ∈ C[0,b] such that
D
αp∗ y ∈ Cq,ν(0,b], where

ν := max{μ ,1−αp +αp−1}. (39.14)
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39.3 Numerical Method

Let N ∈ N and let ΠN := {t0, . . . , tN} be a partition (a graded grid) of the interval
[0,b] with the grid points

tj := b

(
j
N

)r

, j = 0,1, . . . ,N , (39.15)

where the grading exponent r ∈ R, r ≥ 1. If r = 1, then the grid points (39.15) are
distributed uniformly; for r > 1 the points (39.15) are more densely clustered near
the left endpoint of the interval [0,b].

For given integer k ≥ 0 by S(−1)
k (ΠN) is denoted the standard space of piecewise

polynomial functions :

S(−1)
k (ΠN) :=

{
v : v
∣
∣
(tj−1,tj)

∈ πk, j = 1, . . . ,N
}
.

Here v
∣
∣
(tj−1,tj)

is the restriction of v : [0,b] → R onto the subinterval (tj−1, tj)

⊂ [0,b] and πk denotes the set of polynomials of degree not exceeding k. Note

that the elements of S(−1)
k (ΠN) may have jump discontinuities at the interior points

t1, . . . , tN−1 of the grid ΠN .
In every interval [tj−1, tj], j = 1, . . . ,N, we define m ∈ N collocation points

tj1, . . . , tjm by formula

tjk := tj−1 +ηk(tj− tj−1) , k = 1, . . . ,m, j = 1, . . . ,N, (39.16)

where η1 . . . ,ηm are some fixed (collocation) parameters which do not depend on j
and N and satisfy

0≤ η1 < η2 < .. . < ηm ≤ 1 . (39.17)

We look for an approximate solution yN to (39.1)-(39.2) in the form (cf. (39.10))

yN(t) = (Jαp zN)(t)+
1
γ∗

(

γ−
l

∑
k=1

γk(J
αp zN)(bk)

)

, 0≤ t ≤ b, (39.18)

where zN ∈ S(−1)
m−1(ΠN) (m,N ∈ N) is determined by the following collocation

conditions:

zN(tjk) = (TzN)(tjk)+g(tjk), k = 1, . . . ,m, j = 1, . . . ,N. (39.19)

Here T,g and tjk are defined by (39.12),(39.13), and (39.16), respectively. If η1 = 0,
then by zN(tj1) we denote the right limit limt→tj−1,t>tj−1 zN(t). If ηm = 1, then zN(tjm)
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denotes the left limit limt→tj,t<tj zN(t). Conditions (39.19) have an operator equation
representation

zN =PNTzN +PNg (39.20)

with an interpolation operator PN = PN,m : C[0,T]→ S(−1)
m−1(ΠN) defined for any

v ∈ C[0,b] by the following conditions:

PNv ∈ S(−1)
m−1(ΠN), (PNv)(tjk) = v(tjk), k = 1, . . . ,m, j = 1, . . . ,N. (39.21)

The collocation conditions (39.19) form a system of equations whose exact form

is determined by the choice of a basis in S(−1)
m−1(ΠN). If η1 > 0 or ηm < 1 then we

can use the Lagrange fundamental polynomial representation:

zN(t) =
N

∑
λ=1

m

∑
μ=1

cλμϕλμ(t) , t ∈ [0,b] , (39.22)

where ϕλμ(t) := 0 for t �∈ [tλ−1, tλ ] and

ϕλμ(t) :=
m

∏
i=1,i �=μ

t− tλ i

tλμ − tλ i
for t ∈ [tλ−1, tλ ], μ = 1, . . . ,m, λ = 1, . . . ,N.

Then zN ∈ S(−1)
m−1(ΠN) and zN(tjk) = cjk, k = 1, . . . ,m, j = 1, . . . ,N. Searching the

solution of (39.19) in the form (39.22), we obtain a system of linear algebraic
equations with respect to the coefficients cjk = zN(tjk):

cjk =
N

∑
λ=1

m

∑
μ=1

(Tϕλμ)(tjk)cλμ +g(tjk), k = 1, . . . ,m, j = 1, . . . ,N. (39.23)

Note that this algorithm can be used also in the case if in (39.17) η1 = 0 and
ηm = 1. In this case we have

tjm = tj+1,1 = tj, cjm = cj+1,1 = zN(tj), j = 1, . . . ,N−1,

and hence in the system (39.23) there are (m−1)N +1 equations and unknowns.

39.4 Convergence Estimates

In this section we formulate two theorems about the convergence and convergence
order of the proposed algorithms.
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Theorem 2. (i) Let m ∈ N and assume that the collocation points (39.16) with
grid points (39.15) and arbitrary parameters η1, . . . ,ηm satisfying (39.17) are
used. Assume that hi ∈ C[0,b] (i = 0, . . . ,p− 1), f ∈ C[0,b] and K ∈ C(Δ).
Moreover, assume that γ∗ = ∑l

k=0 γk �= 0 and the problem (39.1)-(39.2) with
f = 0 and γ = 0 has in C[0,b] only the trivial solution y = 0.

Then (39.1)-(39.2) has a unique solution y∈C[0,b] such that D
αp∗ y∈C[0,b].

Moreover, there exists an integer N0 such that for all N ≥ N0 equation (39.20)
possesses a unique solution zN ∈ S(−1)

m−1(ΠN) and

‖y− yN‖∞→ 0 as N→ ∞

where yN is defined by (39.18).
(ii) If, in addition, hi ∈Cm,μ(0,b] (i= 0, . . . ,p−1), f ∈Cm,μ(0,b], K ∈Cm(Δ), with

μ ∈ R,μ < 1, then for all N ≥ N0 and r ≥ 1 (given by (39.15)) the following
error estimate holds:

‖y− yN‖∞ ≤ c

{
N−r(1−ν) for 1≤ r < m

1−ν ,
N−m for r ≥ m

1−ν .

Here c is a constant which does not depend on N, ν is given by formula (39.14)
and

‖v‖∞ := sup
0<t<b

|v(t)|, v ∈ L∞(0,b).

Note that on conditions of Theorem 2(ii) equation (39.20) has for sufficiently

large N a unique solution zN ∈ S(−1)
m−1(ΠN) and

‖z− zN‖∞ ≤ c

{
N−r(1−ν) for 1≤ r < m

1−ν ,
N−m for r ≥ m

1−ν
(39.24)

where z = D
αp∗ y and c is a positive constant not depending on N.

It follows from Theorem 1 that in the case of sufficiently smooth hi (i= 0, . . . ,p−
1), f and K, using sufficiently large values of the grid parameter r, for method
(39.18),(39.20) by every choice of collocation parameters 0≤ η1 < · · ·< ηm ≤ 1 a
convergence of order O(N−m) can be expected. The following result shows that
by a careful choice of parameters η1, . . . ,ηm it is possible to establish a faster
convergence of this method.

Theorem 3. Let the following conditions be fulfilled:

(i) PN = PN,m (N,m ∈ N) is defined by (39.21) where the interpolation nodes
(39.16) with grid points (39.15) and parameters (39.17) are used;

(ii) the assumptions of Theorem 1 hold with q := m+1;
(iii) the quadrature approximation
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∫ 1

0
F(x)dx≈

m

∑
k=1

wk F(ηk), (39.25)

with the knots {ηk} satisfying (39.17) and appropriate weights {wk} is exact
for all polynomials of degree m.

Then (39.1)–(39.2) has a unique solution y ∈ C[0,b] such that D
αp∗ y ∈ Cq,ν(0,b].

There exists an integer N0 such that, for N≥N0, equation (39.20) possesses a unique

solution zN ∈ S(−1)
m−1(ΠN), determining by (39.18) a unique approximation yN to y,

the solution of (39.1)-(39.2), and the following error estimate holds:

‖y− yN‖∞ ≤ c

{
N−r(1+αp−αp−1−ν) for 1≤ r <

m+αp−αp−1
1+αp−αp−1−ν ,

N−m−(αp−αp−1) for r ≥ m+αp−αp−1
1+αp−αp−1−ν .

(39.26)

Here r ∈ [1,∞) is the grading exponent of the grid (see (39.15)), ν is given by
formula (39.14) and c is a positive constant not depending on N.

The proofs of Theorems 2 and 3 are based on Theorem 1 and are similar to the
corresponding proofs of Theorems 4.1 and 4.2 in [PeTa12].

39.5 Numerical Illustration

We consider the following boundary value problem:

(D
1
2∗ y)(t)+h1(t)(D

1
4∗ y)(t)+h0(t)y(t)+

∫ t

0
K(t,s)y(s)ds = f (t), 0≤ t ≤ 1,

(39.27)

with

y(0)+ y(1) = 1,

where K(t,s) := 1 for 0≤ s≤ t ≤ 1 and

h0(t) := t
1
4 ,h1(t) := 1, 0≤ t ≤ 1,

f (t) :=
5Γ ( 7

4 )

4Γ ( 9
4 )

t
1
4 +

3Γ ( 3
4 )

2
√
π

t
1
2 + t+

4
7

t
7
4 , 0≤ t ≤ 1.

This is a special problem of (39.1)–(39.2) with

p = 2, l = 1,α2 =
1
2
,α1 =

1
4
,b = 1,b1 = 1,γ0 = γ1 = 1,γ = 1.
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Clearly

h0,h1, f ∈ Cq,μ(0,1],

with μ = 3
4 and arbitrary q ∈ N.

To solve (39.27) by (39.18)–(39.20) we set

z := D
1
2∗ y.

For z we have equation (39.11) with T and g given by (39.12) and (39.13),

respectively. Approximations zN ∈ S(−1)
m−1(ΠN) for m = 2 and N ∈ N to the solution

z of equation (39.11) on the interval [0, 1] are found by (39.19) using m = 2 and
(39.16) with

η1 =
3−√3

6
, η2 = 1−η1,

the knots of the Gaussian quadrature formula (39.25). Actually,

zN(tjk) = cjk, k = 1,2, j = 1, . . . ,N,

and zN(t) for t ∈ [0, 1] are determined by (39.23) and (39.22), respectively. After
that the approximate solution yN for the boundary value problem (39.27) has been
found by formula (39.18).

In the following tables (Tables 39.1 and 39.2), some results of numerical
experiments for different values of the parameters N and r are presented. The errors
εN in the first table and the errors ε̂N in the second table are calculated as follows:

εN := max
j=1,...,N

max
k=0,...,10

|y(τjk)− yN(τjk)| , (39.28)

Table 39.1 Numerical results for the problem (39.27).

r = 1 r = 2 r = 5 r = 8

N εN ρN εN ρN εN ρN εN ρN

16 4.88 ·10−3 1.64 6.26 ·10−4 3.68 2.72 ·10−4 5.34 8.17 ·10−4 4.76

32 2.96 ·10−3 1.65 2.28 ·10−5 2.74 4.86 ·10−5 5.60 1.52 ·10−4 5.36

64 1.78 ·10−3 1.66 8.21 ·10−5 2.79 8.54 ·10−6 5.69 2.72 ·10−5 5.59

128 1.07 ·10−3 1.66 2.94 ·10−5 2.80 1.49 ·10−6 5.72 4.80 ·10−6 5.67

256 6.44 ·10−4 1.67 1.05 ·10−5 2.81 2.61 ·10−7 5.72 8.43 ·10−7 5.69

512 3.86 ·10−4 1.67 3.72 ·10−6 2.82 4.58 ·10−8 5.70 1.48 ·10−7 5.69

1024 2.31 ·10−4 1.67 1.32 ·10−6 2.82 8.05 ·10−9 5.69 2.60 ·10−8 5.69

1.41 2 4.76 4.76
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Table 39.2 Numerical results for the problem (39.27).

r = 1 r = 2 r = 5 r = 8

N ε̂N ρ̂N ε̂N ρ̂N ε̂N ρ̂N ε̂N ρ̂N

16 2.69 ·10−2 1.14 1.49 ·10−2 1.38 3.74 ·10−3 2.31 4.33 ·10−3 3.22

32 2.34 ·10−2 1.15 1.08 ·10−2 1.39 1.60 ·10−3 2.34 1.15 ·10−3 3.78

64 2.02 ·10−2 1.16 7.80 ·10−3 1.39 6.76 ·10−4 2.36 2.88 ·10−4 3.98

128 1.74 ·10−2 1.16 5.59 ·10−3 1.40 2.85 ·10−4 2.37 7.10 ·10−5 4.05

256 1.49 ·10−2 1.17 4.00 ·10−3 1.40 1.20 ·10−4 2.38 1.74 ·10−5 4.08

512 1.27 ·10−2 1.17 2.85 ·10−3 1.40 5.05 ·10−5 2.38 4.28 ·10−6 4.08

1024 1.08 ·10−2 1.17 2.02 ·10−3 1.41 2.12 ·10−5 2.38 1.05 ·10−6 4.07

1.19 1.41 2.38 4

ε̂N := max
j=1,...,N

max
k=0,...,10

|z(τjk)− zN(τjk)|, (39.29)

where

τjk := tj−1 + k(tj− tj−1)/10, k = 0, . . . ,10, j = 1, . . . ,N

with grid points tj given by (39.15). In (39.28) and (39.29) we have taken into
account that the exact solution of (39.27) is

y(t) = t
3
4 , t ∈ [0,1],

and thus

z(t) = (D
1
2∗ y)(t) =

5Γ ( 7
4 )

4Γ ( 9
4 )

t
1
4 , t ∈ [0,1].

The ratios

ρN :=
εN/2

εN
, ρ̂N :=

ε̂N/2

ε̂N
,

characterizing the observed convergence rate are also presented. Since

α2 =
1
2
,α1 =

1
4
,μ =

3
4
,ν = max{μ ,1−α2 +α1}= 3

4
,

we obtain from Theorem 3 (see (39.26)) that, for sufficiently large N,

εN ≤ c0

{
N−

r
2 if 1≤ r < 9

2 ,

N−
9
4 if r ≥ 9

2 ,
(39.30)



39 Collocation for Fractional Integro-Differential Equations 481

and from (39.24) that

ε̂N ≤ c1

{
N−

r
4 if 1≤ r < 8,

N−2 if r ≥ 8.
(39.31)

Due to (39.30) the ratios ρN for r = 1, r = 2, r = 5 and r = 8 ought to be
approximatively 2

1
2 ≈ 1.41, 21 = 2, 2

9
4 ≈ 4.76 and 2

9
4 ≈ 4.76, respectively. These

values are given in the last row of the first table. Due to (39.31) the ratios ρ̂N for
r = 1, r = 2, r = 5 and r = 8 ought to be approximatively 2

1
4 ≈ 1.19, 2

1
2 ≈ 1.41,

2
5
4 ≈ 2.38 and 22 = 4, respectively. These values are given in the last row of the

second table. We can see from the tables that the actual rate of convergence of zN

to z is in good agreement with the estimate (39.24), but the convergence of yN to y
is faster than it is predicted by the theoretical estimate (39.26). This phenomenon is
worth studying in a separate paper.
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Chapter 40
A Note on Transforming a Plane Strain
First-Kind Fredholm Integral Equation
into an Equivalent Second-Kind Equation

S. Pomeranz

40.1 Introduction

Methods to convert Fredholm integral equations of the first kind into equivalent
Fredholm integral equations of the second kind are used to study issues of existence
and uniqueness of solutions. For some examples applied to plane strain problems,
see [Co95] and [Co00, Sec. 2.12]. In this paper, another technique to convert the
Fredholm integral equation of the first kind that arises in a direct boundary integral
formulation for the plane strain Dirichlet problem into an equivalent Fredholm
integral equation of the second kind is developed. The technique presented in this
paper generalizes work of Y. Yan and I.H. Sloan that was done for the scalar Laplace
equation [YaSl88] to the plane strain system of displacement equations.

In Section 40.2, the plane strain boundary integral equations are developed. In
Section 40.3, the Somigliana equations are expressed in a convenient form, and a
Fredholm integral equation of the first kind is obtained. Adaptation of the work from
[YaSl88] is implemented in Section 40.4 in formulating an equivalent Fredholm
integral equation of the second kind. Results are summarized in Section 40.5.

40.2 Boundary Integral Equations for Plane Strain

The notation and presentation from [PaBrWr92, Sec. 6.2.1] is followed and is
summarized here for completeness. Einstein summation notation is used, so that a
repeated letter subscript in a term implies summation, and differentiation is denoted
by commas within expressions.
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The system of plane strain equations for a linear, homogeneous, isotropic
material, expressed in terms of the displacement components (Navier equations), is

Guj,kk +
G

1−2ν
uk,kj +bj = 0, (40.1)

and the surface traction is given by

pi =
2Gν

1−2ν
uk,kni +G(ui,j +uj,i)nj,

where i, j,k = 1,2; ν is Poisson’s ratio; G is the shear modulus; ui are the dis-
placement components; pi are the surface traction components; and bi are the load
components.

The boundary integral equations are obtained using a weighted residual method
in which the weighting function is chosen to be u∗, the Kelvin fundamental solution
for (40.1). Quantities associated with the fundamental solution are indicated with an
asterisk superscript. The fundamental solution satisfies

Gu∗lj,kk(r)+
G

1−2ν
u∗lk,kj(r) =−δlj δ (r), (40.2)

where j,k, l = 1,2; δlj is the Kronecker delta; r is the distance between the load
and field points; and δ (r) is the Dirac delta generalized function expressed as a
function of r. The fundamental solution and the fundamental surface traction have
components, respectively,

u∗k = u∗1k +u∗2k, (40.3)

p∗k = p∗1k +p∗2k, (40.4)

for k = 1,2. The double subscripts in (40.3) and (40.4) use the first subscript for the
direction of the Dirac delta generalized function load and the second subscript for
the direction of the resulting displacement or surface traction at the field point.

The plane strain fundamental solution and fundamental surface traction compo-
nents are, respectively,

u∗ij =
1

8π(1−ν)G
(

(3−4ν)δij ln

(
1
r

)

+ r,ir,j

)

, (40.5)

p∗ij =
−1

4π(1−ν)r
(

[(1−2ν)δij +2r,ir,j]
∂ r
∂n
− (1−2ν)(r,inj− r,jni)

)

, (40.6)

where i, j = 1,2, and n = (n1,n2) is the unit outward normal vector on the boundary
[PaBrWr92, p. 227, Eq. 6.23].

For this Dirichlet problem there are two basic unknown quantities, the surface
traction and the interior displacement. The surface traction can be determined first.
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The surface traction is then used to obtain the interior displacement. The process on
which we focus in this paper is that of determining the surface traction. To determine
the surface traction, equation (40.1) is multiplied by the fundamental solution, u∗,
and integrated over the two-dimensional domain. Green’s second identity is used,
and the boundary integral involving the Dirac delta generalized function from (40.2)
is simplified. The two displacement components evaluated at a load point, xi =
(xi

1,x
i
2), are described by the resulting Somigliana equations,

ci
lkui

k =
∫

Γ
u∗il k pk dΓ −

∫

Γ
p∗il k uk dΓ +

∫

Ω
u∗il k bk da, (40.7)

where l,k = 1,2; dΓ is the differential element of arc length; and da is the
differential element of area. The domain isΩ and its boundary isΓ . If the evaluation
(load) point xi is a smooth boundary point, then ci

lk = 1
2 δl k. If xi is an interior

boundary point, then ci
lk = δl k.

In matrix-vector form, (40.7) becomes

ci ui =
∫

Γ
u∗i pdΓ −

∫

Γ
p∗i udΓ +

∫

Ω
u∗i bda,

with

u =

(
u1

u2

)

, p =

(
p1

p2

)

, b =

(
b1

b2

)

,

and

u∗i =
(

u∗i11 u∗i12
u∗i21 u∗i22

)

, p∗i =
(

p∗i11 p∗i12
p∗i21 p∗i22

)

.

40.3 Fredholm Integral Equation of the First Kind

The following material describes the technique to convert the Fredholm integral
equation of the first kind, arising in the direct boundary integral formulation for
the plane strain Dirichlet problem, into an equivalent Fredholm integral equation
of the second kind. A Fredholm integral equation of the second kind is desired, for
example, so that the Fredholm alternative can be applied to investigate existence and
uniqueness of the solution for the surface traction. We adapt material from [YaSl88]
for a scalar Dirichlet problem for Laplace’s equation to apply to the vector-valued
Dirichlet problem for plane strain, a system of equations. The same ideas can be
applied to plane stress problems. The load term here should not depend on the
unknown.
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The Somigliana equations, expressed in notation from [PaBrWr92, p. 226, Eq.
6.25], are as given in (40.7). In matrix form, the fundamental displacement solution
for the plane strain problem is

u∗ =
1

8π(1−ν)G
(
(3−4ν) ln 1

r +(r,1)2 r,1 r,2
r,2 r,1 (3−4ν) ln 1

r +(r,2)2

)

,

which is equivalent to (40.5). The fundamental surface traction is (40.6). The
boundary, Γ , must be a smooth, simple, closed curve [YaSl88, p. 562] and [Co00,
p. 1 and p. 4]. We rearrange (40.7) in order to isolate the unknown surface traction
components, pk, k = 1,2, and to more clearly observe that this is a Fredholm integral
equation of the first kind,

∫

Γ
u∗ilkpkdΓ = ci

lkui
k +
∫

Γ
p∗ilkukdΓ −

∫

Ω
u∗il k bk da. (40.8)

Since the right-hand side of (40.8) is known, we can relabel the entire right-hand
side as f (xi) = f (x) = (f1(x), f2(x))T , and (40.8) can be expressed as the system

1
8π(1−ν)G

∫

Γ

([

(3−4ν) ln

(
1

|x− y|
)

+
(x1− y1)

2

|x− y|2
]

p1(y)

+
(x1− y1)(x2− y2)

|x− y|2 p2(y)

)

dΓ (y) = f1(x),

(40.9)

1
8π(1−ν)G

∫

Γ

(
(x1− y1)(x2− y2)

|x− y|2 p1(y)

+

[

(3−4ν) ln

(
1

|x− y|
)

+
(x2− y2)

2

|x− y|2
]

p2(y)

)

dΓ (y) = f2(x)

and, equivalently, in matrix-vector form, as

∫

Γ

⎛

⎝
(−3+4ν) ln |x− y| + (x1−y1)

2

|x−y|2
(x1−y1)(x2−y2)

|x−y|2
(x1−y1)(x2−y2)

|x−y|2 (−3+4ν) ln |x− y| + (x2−y2)
2

|x−y|2

⎞

⎠

(
p1(y)
p2(y)

)

dΓ (y) =
(

f̂1(x)
f̂2(x)

)

,

where x ∈ Γ and f̂ (x)≡ 8π(1−ν)Gf (x).
We want to transform (40.9), a Fredholm integral equation of the first kind, into

an equivalent Fredholm integral equation of the second kind. This will be done now
by adapting a technique used for Laplace’s equation in [YaSl88] and [AtHa01, p.
431, Sec. 12.3]. Also see [At97, Chpt. 7], [AtSl91, Secs. 1 and 2], [Ch83, Sec. 2],
and [Sl91, Sec. 3].
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40.4 Fredholm Integral Equation of the Second Kind

Let the function v = (v1,v2) be a smooth, invertible, 2π-periodic function that
parameterizes the smooth boundary curve Γ . Specifically, v : R/2πZ→ Γ ⊂ R

2

with |v′(s)| =√v′1(s)2 + v′2(s)2 ≥ ρ > 0, where the scalar parameter s ∈ [−π,π],
and ρ is an arbitrary positive constant [YaSl88, p. 562, Sec. 4]. Z and R denote the
integers and real numbers, respectively. The default amount of smoothness required
of v and other quantities stipulated as smooth is C∞, unless specified otherwise.
Rewrite (40.9) in terms of this parameterization with x = v(s), y = v(σ), and
σ ,s∈ [−π,π]. For convenience, define wi(σ) = |v′(σ)|pi(v(σ)) and f̄i(s) = f̂i(v(s)),
for i = 1,2, with w = (w1,w2)

T and f̄ = (f̄1, f̄2)T . We obtain

∫ π

−π

([

(−3+4ν) ln |v(s)− v(σ)| + (v1(s)− v1(σ))2

|v(s)− v(σ)|2
]

w1(σ)

+
(v1(s)− v1(σ))(v2(s)− v2(σ))

|v(s)− v(σ)|2 w2(σ)
)

dσ

= f̄1(s),

(40.10)
∫ π

−π

(
(v1(s)− v1(σ))(v2(s)− v2(σ))

|v(s)− v(σ)|2 w1(σ)

+

[

(−3+4ν) ln |v(s)− v(σ)| + (v2(s)− v2(σ))2

|v(s)− v(σ)|2
]

w2(σ)
)

dσ

= f̄2(s).

The form of the system of equations (40.10) can be compared with that of
the analogous scalar equation [YaSl88, p. 562, Eq. 12*]. From (40.10), define the
symmetric integral matrix operator K,

(K w)(s) =
∫ π

−π
k(s,σ)w(σ)dσ

=
∫ π

−π

(
k11(s,σ) k12(s,σ)
k21(s,σ) k22(s,σ)

)(
w1(σ)
w2(σ)

)

dσ (40.11)

= f̄ (s),

where s ∈ [−π,π].
We introduce an invertible operator adapted from the corresponding operator for

Laplace’s equation in [YaSl88, pp. 560–561] and [AtHa01, Chap. 12], A, modified
here for use with the plane strain equations. Our operator is represented using a
diagonal 2×2 matrix, also denoted by A,
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Kw(s) = Aw(s)+(K−A)w(s)

= Aw(s)+Bw(s)+Cw(s) (40.12)

= f̄ (s),

where K = A+B+C.
Let

(Aw)(s) =
∫ π

−π
a(s,σ)w(σ)dσ

=
∫ π

−π

(
a11(s,σ) a12(s,σ)
a21(s,σ) a22(s,σ)

)(
w1(σ)
w2(σ)

)

dσ ,

(Bw)(s) =
∫ π

−π
b(s,σ)w(σ)dσ

=
∫ π

−π

(
b11(s,σ) b12(s,σ)
b21(s,σ) b22(s,σ)

)(
w1(σ)
w2(σ)

)

dσ ,

and

(C w)(s) =
∫ π

−π
c(s,σ)w(σ)dσ

=

∫ π

−π

(
c11(s,σ) c12(s,σ)
c21(s,σ) c22(s,σ)

)(
w1(σ)
w2(σ)

)

dσ ,

for s ∈ [−π,π]. As will be discussed in the following material, these integral
operators have kernel components, respectively,

a11(s,σ) = a22(s,σ) = (−3+4ν) ln |2e−1/2 sin(
s−σ

2
)|,

a12(s,σ) = a21(s,σ) = 0,

b11(s,σ) = b22(s,σ)

=

{
(−3+4ν) ln | v(s)−v(σ)

2e−1/2 sin( s−σ
2 )
|, if s−σ �∈ 2πZ,

(−3+4ν) ln |e1/2 v′(s)|, if s−σ ∈ 2πZ,

b12(s,σ) = b21(s,σ) = 0,
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and

c11(s,σ) =

⎧
⎨

⎩

(v1(s)−v1(σ))2

|v(s)−v(σ)|2 , if s−σ �∈ 2πZ,
v′1(s)2

v′1(s)2+v′2(s)2 , if s−σ ∈ 2πZ,

c12(s,σ) = c21(s,σ) =

⎧
⎨

⎩

(v1(s)−v1(σ))(v2(s)−v2(σ))
|v(s)−v(σ)|2 , if s−σ �∈ 2πZ,

v′1(s)v′2(s)
v′1(s)2+v′2(s)2 , if s−σ ∈ 2πZ,

(40.13)

c22(s,σ) =

⎧
⎨

⎩

(v2(s)−v2(σ))2

|v(s)−v(σ)|2 , if s−σ �∈ 2πZ,
v′2(s)2

v′1(s)2+v′2(s)2 , if s−σ ∈ 2πZ.

Therefore, we have for the kernel in (40.11),

(
k11(s,σ) k12(s,σ)
k21(s,σ) k22(s,σ)

)

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(−3+4ν) ln |2e−1/2 sin( s−σ
2 )|

+(−3+4ν) ln | v(s)−v(σ)
2e−1/2 sin( s−σ

2 )
|

+(v1(s)−v1(σ))2

|v(s)−v(σ)|2

v1(s)−v1(σ))(v2(s)−v2(σ))
|v(s)−v(σ)|2

v1(s)−v1(σ))(v2(s)−v2(σ))
|v(s)−v(σ)|2

(−3+4ν) ln |2e−1/2 sin( s−σ
2 )|

+(−3+4ν) ln | v(s)−v(σ)
2e−1/2 sin( s−σ

2 )
|

+(v2(s)−v2(σ))2

|v(s)−v(σ)|2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

if s−σ �∈ 2πZ.
The following kernel matrix is included here only to emphasize the fact that

functions bij and cij, i, j = 1,2, and all their derivatives have only isolated removable
discontinuities that arise if s− σ is an integer multiple of 2π , and this is not
problematic. The derivation of the new terms in the following matrix is given in
the remaining material in this section:

(
k11(s,σ) k12(s,σ)
k21(s,σ) k22(s,σ)

)

=
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⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(−3+4ν) ln |2e−1/2 sin( s−σ
2 )|

+(−3+4ν) ln |e1/2 v′(s)|
+

v′1(s)2

v′1(s)2+v′2(s)2

v′1(s)v′2(s)
v′1(s)2+v′2(s)2

v′1(s)v′2(s)
v′1(s)2+v′2(s)2

(−3+4ν) ln |2e−1/2 sin( s−σ
2 )|

+(−3+4ν) ln |e1/2 v′(s)|
+

v′2(s)2

v′1(s)2+v′2(s)2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

if s−σ ∈ 2πZ.
Our operators A, B, and C are adapted from the corresponding operators used in

the scalar Laplace’s equation problem in [YaSl88, p. 560, p. 563, and p. 567], A, B,
and F. Integral operator A has a weak singularity for s−σ ∈ 2πZ. The associated
improper integral exists. Integral operator kernels b and c can be defined at their
singular points so as to be arbitrarily smooth, as will now be discussed.

Except for a multiplicative constant, our integral operator A has nonzero kernel
components that are identical to that of scalar operator A in [YaSl88, p. 560]. It is
proved there, using an equivalent Fourier series expansion, that A is an invertible
bounded linear operator. Therefore, our matrix operator A inherits this property for
its nonzero components, and we have an invertible bounded linear operator,

A : Ht[−π,π]→ Ht+1[−π,π],

where t ∈ R and Ht[−π,π] is the standard Sobolev space that is defined as the
completion of C∞[−π,π] with respect to the Sobolev norm || · ||t.

Operating with A−1 on K in (40.12) yields

(A−1Kw)(s) = (A−1(A+B+C)w)(s)

=
(
(I +A−1B+A−1C)w

)
(s)

= A−1 f̄ (s).

Let M = A−1B+A−1C and f̄ = A−1 f̄ . We have a Fredholm integral equation of the
second kind,

((I +M)w)(s) = f̄ (s). (40.14)

The following analysis of operators B and C is of a numerical nature and is
a new/different approach to material that has been developed in a more analytic
manner by other researchers. Except for a multiplicative constant, our integral
operator B has nonzero kernel components that are identical to that of the scalar
operator B in [YaSl88, p. 563]. We have, as in [YaSl88], that the kernel func-
tion b11(s,σ) = b22(s,σ) is better behaved than the respective kernel function
k11(s,σ) = k22(s,σ). In order to more clearly observe that b11 has a finite limit at



40 Equivalent Fredholm Integral Equations 491

s−σ ∈ 2πZ, Taylor-expand the logarithm factor for σ close to s (and more generally
for s−σ ∈ 2πZ ), and take the limit (or use L’Hospital’s rule):

lim
σ→s

ln

∣
∣
∣
∣e

1/2 v(s)− v(σ)
2sin s−σ

2

∣
∣
∣
∣ = lim

σ→s
ln

∣
∣
∣
∣e

1/2 v(s)− v(σ)
s−σ

∣
∣
∣
∣

= ln |e1/2v′(s)|

= ln

(

e1/2
√

v′1(s)2 + v′2(s)2

)

where
√

v′1(s)2 + v′2(s)2 ≥ ρ > 0.
Investigating numerically using the computer algebra system (CAS) Mathemat-

ica (and mathematical induction), successive derivatives of b(s,σ) with respect to
σ in the limit as σ → s are shown to be finite and such that the denominator of
the simplified nth derivative is (v′1(s)

2 + v′2(s)
2)n, n = 0,1, . . . . This demonstrates

that b11(s,σ) ≡ b22(s,σ) and their derivatives can be defined to be their respective
limiting values at what originally were singular points, and b11 and b22 are then
smooth for all s,σ ∈ [−π,π], provided the parameterization v is smooth and that
|v′(s)| = √v′1(s)2 + v′2(s)2 ≥ ρ > 0. Recall that these two conditions have been
assumed.

The mathematical arguments from [YaSl88, p. 563, Props. 4.1 and 4.2] for
the operator B in that paper apply to the nonzero components of our operator B.
Our operator kernel b(s,σ) ∈ C∞([−π,π]× [−π,π]) and is 2π-periodic in each
variable. For any w ∈ Ht[−π,π] and any t ∈ R, the function Bw(s) has derivatives
of all orders, and B : Ht[−π,π] → Ht+r[−π,π] is a bounded linear operator
for any t ∈ R and r ∈ Z. Applying a Sobolev embedding theorem, we have
that Ht+2[−π,π] is compactly embedded in Ht+1[−π,π], and, consequently, B :
Ht[−π,π]→ Ht+1[−π,π] is a compact operator.

It remains to consider the integral operator C, defined in (40.13). It turns out that
the components comprising kernel c are also well behaved in the limit as σ − s→
2πn, n ∈ Z (and they are well behaved elsewhere). Therefore, the kernel c can be
treated similarly to the treatment of kernel b.

Using a CAS (e.g., Mathematica) to repeatedly apply L’Hospital’s rule to a cij

term, i, j = 1,2, and its successively higher order derivatives, it is observed that each
cij and its derivatives have finite limits as σ− s→ 2πn, n ∈ Z. A pattern is observed
in which 2(n + 1) applications of L’Hospital’s rule show that ∂ ncij/∂σn(s,σ),
n = 0,1, . . ., has a finite limit at singular points. The denominator of the finite
limiting expression for each nth partial derivative has the simplified form (up to
a multiplicative constant) of (v′1(s)

2 + v′2(s)
2)n+1, which is nonzero by the previous

assumption that |v′(s)|=√v′1(s)2 + v′2(s)2 ≥ ρ > 0. Define each ∂ ncij/∂σn(s,s) to
be the corresponding limit. A proof by induction concludes the argument that

cij(s,σ) ∈ C∞([−π,π]× [−π,π]),
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for each term i, j = 1,2. Therefore, we have the desired result that the behavior of
the cij terms is similar to that of the bij terms in the sense that the operator C :
Ht[−π,π]→ Ht+1[−π,π] is a compact operator.

The integral operators B and C are each compact operators [YaSl88, p. 563],
[Co00, pp. 3–4, Thm. 1.7]. The composition of bounded linear operator A−1

with compact integral operators B and C preserves the compactness, so that
M = A−1(B+C) in (40.14) is a compact operator on Ht[−π,π]→Ht[−π,π], t ∈R.

One motivation for transforming the original equation (40.9), a Fredholm integral
equation of the first kind, into an equivalent Fredholm integral equation of the
second kind, is to be able to apply the Fredholm alternative. This theorem can
now be applied. Use the invertibility of the coordinate transformation to conclude
that, since existence and uniqueness of the surface traction solution in the original
coordinate system does not depend upon the specific parameterization, the result
holds in the original Cartesian coordinates for p(x).

40.4.1 Example of a Suitable Parameterization

For the special case in which the boundary curve, Γ , is a circle parameterized
by (x,y) = (v1(t),v2(t)) = (cos t,sin t), t ∈ [−π,π], a direct computation (e.g.,
with Mathematica) shows that the cij terms, i, j = 1,2, have the desired form. For
example, for the c11(s,σ) term,

c11(s,σ) =
(v1(s)− v1(σ))2

|v(s)− v(σ)|2

=
(coss− cosσ)2

(coss− cosσ)2 +(sins− sinσ)2 = sin2
(

s+σ
2

)

,

if s−σ �∈ 2πZ. Therefore,

c11(s,σ)→ sin2 s, as σ → s+2πn, n ∈ Z.

This function c11 has a removable discontinuity when s−σ is an integer multiple
of 2π , and c11 can be defined at such points to be its limiting value to create a
continuous function. Similarly, since all derivatives are constant multiples of cos2s
or sin2s at such points, this implies that, with this definition, ∂ nc11/∂ sn(s,σ) is
arbitrarily smooth for all n = 0,1,2, . . ..
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40.5 Summary

By adapting the development for Laplace’s equation presented in [YaSl88], we
have demonstrated how to convert the Fredholm integral equation of the first kind
arising in a direct boundary integral formulation for the plane strain (stress) Dirichlet
problem into an equivalent Fredholm integral equation of the second kind.

Acknowledgements The author thanks Dr. Christian Constanda, the Charles W. Oliphant
Endowed Chair in Mathematical Sciences at The University of Tulsa, for his assistance.
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Chapter 41
Asymptotic Analysis of the Steklov Spectral
Problem in Thin Perforated Domains
with Rapidly Varying Thickness and
Different Limit Dimensions

A. Popov

41.1 Introduction

A rigorous method for constructing asymptotic approximations in thin domains
was first proposed by Gol’denveizer [Go76, Go62]; it was further developed for
thin domains of cylindrical type in [Dz72, Ca84, VaBu90, Na82]. These authors
considered thin domains of cylindrical type and the main approach to asymptotic
analysis was to make a special change of coordinates after which the scaled domain
was independent of the small parameter. Then a small parameter appeared in the
higher derivatives of the differential equations and the Lyusternik–Vishik method
[ViLy67] was used.

These methods do not work for boundary value problems in thin perforated
domains with rapidly changing thickness. Methods of homogenization theory were
first used for thin domains by Panasenko and Reztsov [PaRe87] to investigate
the three-dimensional elasticity problem in a thin inhomogeneous cylindrical
plate. Mel’nik in [Me91] investigated elliptic and spectral problems with rapidly
oscillating coefficients in thin perforated domains with rapidly changing thickness.
The analysis of the asymptotic behavior of solutions to various boundary value
problems in thin domains with rapidly changing thickness was also the subject of
[AkNa04, CiCh02, Ko99, Ko85].

The monograph [Na02] contains a detailed presentation of the asymptotic theory
of thin elastic plates and rods. The leading terms of the asymptotic solutions were
considered, new methods for investigating boundary value and spectral problems
were described.
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Fig. 41.1 Periodicity cell ω0.

Steklov spectral problem in thin domain with non-smooth boundary was con-
sidered by Isakov in [Is88], where the leading terms of asymptotic expansion for
eigenvalues were constructed.

In the papers mentioned above, asymptotic methods for boundary value problems
in thin domains were developed separately depending on their limiting dimension
(a thin plate or a thin bar). In this chapter, independently of the limit dimension of
the thin perforated domain, we study the asymptotic behavior of eigenvalues and
eigenfunctions of the Steklov spectral problem in such domains.

41.2 Description of a Thin Perforated Domain with Rapidly
Oscillating Thickness and Statement of the Problem

Let h(1)± (ξ ′), h(2)± (ξ ′), . . . , h(d)± (ξ ′) be smooth positive functions that are 1-periodic
in all variables, where ξ ′ := (ξ1, . . . ,ξn−d) ∈ R

n−d, d,n ∈ N, d < n. We consider
the following domain:

ω =
{
ξ ∈ R

n : ξ ′ ∈ (0,1)n−d ; −h(k)− (ξ ′)< ξn−d+k < h(k)+ (ξ ′), k = 1,d
}
.

Let T0 be a finite family of closed and disjoint domains with smooth boundary
such that T0 ⊂ ω . With the help of ω and T0 we define the following sets: ω0 =
ω \ T0, Tε0 = ε · T0 = {x : ε−1x ∈ T0}, Tε =

⋃
z0∈Zn

(
Tε0 + εz0

)
, where z0 =

(z1, . . . ,zn−d,0, . . . ,0) ∈ Z
n, ε is a small positive parameter (see Figures 41.1).

Let Ω be a bounded domain in R
n−d with smooth boundary. A model thin

perforated domain with limiting dimension n− d is defined as follows: Ω n−d
ε =

Qε \Tε (see Figures 41.2, 41.3), where

Qε =
{

x = (x1, . . . ,xn−d,xn−d+1, . . . ,xn) ∈ R
n :

x′ := (x1, . . . ,xn−d) ∈Ω ,

−ε h(k)− ( x′
ε )< xn−d+k < ε h(k)+ ( x′

ε ), k = 1,d
}
.
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Fig. 41.2 Examples of thin perforated domains Ω n−d
ε .

Fig. 41.3 Thin perforated domain Ω n−d
ε , n = 2, d = 1.

Without loss of generality and in order to avoid additional technical difficulties,
we assume that ∂Tε ∩ ∂Qε = /0. For different parts of the boundary of Ω n−d

ε we
introduce the following notations:

S±,iε =
{

x : x′ ∈Ω , xn−d+i =±ε h(i)± ( x′
ε ),

xn−d+k ∈
(
− ε h(k)− ( x′

ε ), ε h(k)+ ( x′
ε )
)
, k ∈ {1,d}\{i}

}
,

S±ε =
⋃d

i=1
S±,iε , Gε = ∂Tε ∩Qε , Γε = ∂Ω n−d

ε \ (S±ε ∪Gε
)
.

Let Lε ≡ ∑n
i,j=1

∂
∂xi

(
aij
(

x
ε
) ∂
∂xj

)
be a symmetric uniformly elliptic differential

operator.

Remark 1. Here and in what follows summation over repeated indexes from 1 to n
is assumed. Also we will denote ∂xi := ∂

∂xi
.
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In the thin perforated domain Ω n−d
ε we consider the following Steklov spectral

problem:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Lε(uε) = 0 in Ω n−d
ε ,

σε(uε) = λ (ε)ρε uε on Gε ,

σε(uε) = 0 on S±ε ,
uε = 0 on Γε ,

(41.1)

where λ (ε) is the spectral parameter; the functions {aij(ξ )}n
i,j=1 and ρ(ξ ) (ξ ∈

R
n) are smooth and 1-periodic with respect to variables ξ ′, ρ is bounded by the

positive constants: 0 < ρ0 ≤ ρ ≤ ρ1; σε(uε) ≡ aεij ∂xjuε νi
(

x
ε
)

; (ν1, . . . ,νn) is the

unit outward normal to ∂Ω n−d
ε ; ρε(x) := ρ( x

ε ), aεij(x) := aij(
x
ε ), x ∈ R

n.
Our aim is to study asymptotic behavior of the eigenvalues and eigenfunctions of

the problem (41.1) as ε → 0.

41.3 An Auxiliary Integral Identity

Consider the following problem: find a function N ∈ H1
� (ω0) such that

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

LξξN(ξ ) = F0(ξ )+∂ξi
Fi(ξ ), ξ ∈ ω0,

σξ (N(ξ )) = Φ±0 (ξ )+Fi(ξ )νi(ξ ), ξ ∈ S±,
σξ (N(ξ )) = Φ1(ξ )+Fi(ξ )νi(ξ ), ξ ∈ ∂T0,

〈N〉ω0
= 0.

(41.2)

Here H1
� (ω0) := {v ∈ H1(ω0) : v – 1-periodic with respect to ξ ′ };

Lξξ (N) := ∂ξi

(
aij(ξ )∂ξj

N
)
, σξ (N) := aij(ξ )∂ξj

N νi(ξ );

〈N〉ω0 =
1
|ω0|

∫

ω0

N(ξ )dξ ;

(ν1(ξ ), . . . ,νn(ξ )) — outer normal to ∂ω0; |ω0| — Lebesgue measure of domain
ω0; {F0,F1, . . . ,Fn} ⊂ L2(ω0); Φ1 ∈ L2(∂T0); Φ±0 ∈ L2(S±); S± =

⋃d
i=1 S±,i;

S±,i =
{

ξ : ξ ′ ∈ [0,1]n−d, ξn−d+i =±h(i)± (ξ ′),

ξn−d+k ∈
(
−h(k)− (ξ ′), h(k)+ (ξ ′)

)
, k ∈ {1, . . . ,d}\{i}

}

.
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Definition 1. Function N ∈H1
� (ω0) is called a weak solution to the problem (41.2),

if for any function ψ ∈ H1
� (ω0)

∫

ω0

aij ∂ξj
N ∂ξi

ψ dξ =
∫

ω0

(
Fi ∂ξi

ψ−F0ψ
)

dξ +
∫

∂T0

Φ1ψ dσξ +
∫

S±
Φ±0 ψ dσξ .

Similarly as in [BaPa84, p. 339] it can be shown that the problem (41.2) has a
unique solution if and only if

∫

ω0

F0(ξ )dξ =
∫

S±
Φ±0 (ξ )dσξ +

∫

∂T0

Φ1(ξ )dσξ . (41.3)

Let ψ0 ∈ H1
� (ω0) be a weak solution (such that can be extended on ϒ =

∪z0∈Zn(ω0 + z0) ) to the following problem on the periodicity cell ω0:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Lξξ (ψ0) = Θ in ω0,

σξ (ψ0) = ρ on ∂T0,

σξ (ψ0) = 0 on S±,
〈ψ0〉ω0 = 0,

where Θ = ρ̂ · |ω0|−1, ρ̂ =
∫

∂T0

ρ dσx. This problem satisfies solvability condi-

tion (41.3). Then ε-periodic function ψ0(
x
ε ), x ∈Ω n−d

ε is a solution to the following
problem:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂xi

(
aεij(x)∂xjψ0(

x
ε )
)
= Θ ε−2, x ∈Ω n−d

ε ,

aεij(x)∂xjψ0(
x
ε )νi(

x
ε ) = ρε ε−1, x ∈ Gε ,

aεij(x)∂xjψ0(
x
ε )νi(

x
ε ) = 0, x ∈ S±ε ,

ψ0(
x
ε ) = 0, x ∈ Γε .

Multiplying the equation of this problem by an arbitrary function ϕ ∈ H1(Ω n−d
ε )

such that ϕ|Γε = 0 and integrating over the domain Ω n−d
ε we obtain the following

integral identity:

Θ ε−1
∫

Ωn−d
ε

ϕ dx+
∫

Ωn−d
ε

aεij(x)∂ξj
ψ0(

x
ε )∂xiϕ dx =

∫

Gε

ρεϕ dσx. (41.4)
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41.4 Equivalent Problem and Homogenized Problem

Let Hε :=
{

u ∈ H1(Ω n−d
ε ) : u|Γε = 0

}
be a Hilbert space equipped with scalar

product

〈u, v〉ε :=
∫

Ωn−d
ε

aεij ∂xiu ∂xjv dx, u,v ∈ Hε .

We denote by L2(Gε ,ρε) the weighted Lebesgue space with the scalar product

(u,v)ε :=
∫

Gε

ρε uvdσx, u,v ∈ L2(Gε ,ρε).

Consider the following problem:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Lε(uε) = 0 in Ω n−d
ε ,

σε(uε) = ρε ϕε on Gε ,

σε(uε) = 0 on S±ε ,
uε = 0 on Γε .

(41.5)

Multiplying the equation of problem (41.5) by an arbitrary function Ψε ∈ Hε and
integrating over Ω n−d

ε , we obtain the following identity:

〈uε ,Ψε〉ε = (ϕε ,BεΨε)ε , ∀Ψε ∈ Hε , (41.6)

where Bε : Hε → L2(Gε ,ρε) is the trace operator.

Definition 2. Function uε ∈ Hε is called a weak solution to the problem (41.5), if
the identity (41.6) holds.

Definition 3. λ (ε) is called an eigenvalue of problem (41.1), if there exists uε ∈
Hε , uε �= 0, such that

〈uε ,Ψε〉ε = λ (ε)(Bεuε ,BεΨε)ε , ∀Ψε ∈ Hε ; (41.7)

and uε is called an eigenfunction corresponding to the eigenvalue λ (ε).

We define Aε := εBεB∗ε , where B∗ε is conjugate to Bε . By virtue of Proposition 1.1
from [Me94] Aε is self-adjoint, positive, and compact operator. It is easy to show
that spectral problem for Aε is equivalent to the problem (41.1).

For every fixed ε , we can arrange the eigenvalues of the problem (41.1) in such
a way that each eigenvalue is counted as many times as its multiplicity:

0 < λ1(ε)< λ2(ε)≤ λ3(ε)≤ ·· · ≤ λm(ε)≤ ·· · →+∞, m→+∞. (41.8)
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Let us choose the respective eigenfunctions uεm ∈ Hε , m ∈ N such that

(Bεu
ε
m,Bεu

ε
k)ε = εd−1δm,k ∀m,k ∈ N. (41.9)

Similarly, as it was made in [Me94], we obtain homogenized problem for (41.1):

{
L̂u+Θ λ u = 0 in Ω ,

u = 0 on ∂Ω ,
(41.10)

where

L̂u =
n−d

∑
p,q=1

âpq
∂ 2u

∂xp ∂xq
; âpq =

〈

apq +
n

∑
j=1

apj
∂Nq

∂ξj

〉

ω0

, p,q = 1,n−d.

Functions Np ∈ H1
� (ω0), p ∈ {1, . . . ,n−d} are the solutions to such problems on

the periodicity cell ω0:

⎧
⎪⎨

⎪⎩

Lξξ (Np(ξ )) = −∂ξi
aip(ξ ), ξ ∈ ω0,

σξ (Np(ξ )) = −aip(ξ )νi(ξ ), ξ ∈ S± ∪∂T0,

〈Np〉ω0 = 0.

(41.11)

41.5 Convergence Theorem

Lemma 1 ([PoMe12]). There exists a linear operator Pε : Hε �→ H1
0(Ω) such that

for any function u ∈ Hε

‖Pεu‖H1(Ω) ≤ cε−
d
2 ‖u‖H1(Ωn−d

ε ). (41.12)

Lemma 2 ([PoMe12]). Suppose that the sequence {uε}ε>0 ⊂ Hε satisfies the

inequality supε>0 ‖uε‖H1(Ωn−d
ε ) ≤ cε d

2 . Then

ε−d/2 ‖uε −Pεuε‖L2(Ωn−d
ε )→ 0 as ε → 0.

Using Lemmas 1 and 2 we prove the following theorem.

Theorem 1. Let {λm(ε)}m∈N and {λm}m∈N be the ordered sequences of eigenval-
ues and eigenfunctions of the problem (41.1) and (41.10), respectively; {uεm}m∈N is
the sequence of respective eigenfunctions of problem (41.1), that are orthonormal-
ized by condition (41.9).
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Then for any m ∈ N

lim
ε→0

λm(ε)
ε

= λm.

There is a subsequence of the sequence {ε}, which is again denoted by {ε}, such
that for any m ∈ N

Pεu
ε
m→ um weakly in H1

0(Ω) as ε → 0,

where {um}m∈N — are the corresponding eigenfunctions of problem (41.10) such
that

ρ̂
∫

Ω

um uk dx′ = δm,k, m,k ∈ N.

Proof. Using the minimax principle for eigenvalues similarly as in [Me94] we
deduce that for arbitrary m ∈ N there exists a positive constant Cm (independent
of ε) such that for ε small enough the following estimate holds

C0 ε ≤ λm(ε)≤ Cm ε , (41.13)

where C0 is the positive constant independent of ε and m.
From the relations (41.7) and (41.9) we have ‖uεm‖2

H1(Ωn−d
ε )
≤ cεd, and hence

‖Pεuεm‖H1(Ωn−d
ε ) ≤ C. We denote

γ εim(x
′) := ε−d

∫

Π (d)
ε

χΩn−d
ε
·aεij ·∂xj (Pεu

ε
m)dx′′, i = 1, . . . ,n−d.

whereΠ (d)
ε =

(
−εh(1)− ( x′

ε ), εh(1)+ ( x′
ε )
)× . . .×(−εh(d)− ( x′

ε ), εh(d)+ ( x′
ε )
)

, χΩn−d
ε

is the

characteristic function of domain Ω n−d
ε , Pε : H1(Ω n−d

ε ) �→ H1(Qε) is a uniformly
bounded extension operator. Making use of the diagonal process, we can extract
a subsequence from the sequence {ε} (again denoting it by {ε}) for which the
following limits are valid:

λ (ε)
ε
→ λ ∗m, (41.14)

Pεu
ε
m→ um weakly in H1(Ω), (41.15)

γ εim→ γim weakly in L2(Ω) as ε → 0.
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Let us rewrite the identity (41.9) in the following form, using the formula (41.4)
with ϕ = uεk ·uεm

Θε−d
∫

Ωn−d
ε

uεk uεm dx+ ε1−d
∫

Ωn−d
ε

aεij ∂ξj
ψ0(

x
ε )∂xi(u

ε
k uεm)dx = δm,k. (41.16)

It is easy to prove that the second term in the left-hand side of (41.16) vanishes as
ε → 0. Let us prove that

Θε−d
∫

Ωn−d
ε

uεk uεm dx → ρ̂
∫

Ω

um ukdx′.

Indeed:
∫

Ωn−d
ε

uεk uεm dx ±
∫

Ωn−d
ε

uk um dx ±
∫

Ωn−d
ε

uεk um dx =

=
∫

Ωn−d
ε

uk um dx+
∫

Ωn−d
ε

uεk (u
ε
m−um)dx+

∫

Ωn−d
ε

um (uεk −uk)dx.

Consider obtained terms, multiplied byΘε−d:

Θε−d
∫

Ω

uk um

h(1)+ ( x′
ε )∫

−h(1)− ( x′
ε )

· · ·
h(d)+ ( x′

ε )∫

−h(d)− ( x′
ε )

dξ ′′dx′ → ρ̂
∫

Ω

um uk dx′, ε → 0,

by virtue of Corollary 1.7 [OlSh90, Chapter I]. Due to (41.15) and the Lemma 2

Θε−d

∣
∣
∣
∣
∣
∣
∣

∫

Ωn−d
ε

uεk (u
ε
m−um)dx

∣
∣
∣
∣
∣
∣
∣

≤Θε−d · ‖uεk‖L2(Ωn−d
ε ) · ‖uεm−um‖L2(Ωn−d

ε ) ≤

≤ c1 ε−d/2‖uεm−Pεu
ε
m‖L2(Ωn−d

ε ) + c2 ‖Pεuεm−um‖L2(Ω)→ 0, ε → 0.

Similarly Θε−d ∫

Ωn−d
ε

um (uεk − uk)dx→ 0. Passing to the limit in (41.16) as ε → 0

we obtain

ρ̂
∫

Ω

uk um dx′ = δm,k. (41.17)
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Now let us show that for any v ∈ H1
0(Ω)

ε−dλm(ε)(Bεuεm,Bεv)ε → λ ∗m ρ̂
∫

Ω

um vdx′, ε → 0. (41.18)

Using the formula (41.4) for ϕ = uεm · v we have

ε−dλm(ε)(Bεuεm,Bεv)ε = ε−d−1λm(ε)Θ
∫

Ωn−d
ε

uεm vdx+

+ ε−dλm(ε)
∫

Ωn−d
ε

aεij ∂ξj
ψ0(

x
ε )∂xi(u

ε
m v)dx.

Using the estimate for eigenvalues λm(ε) it is easy to prove that second term in the
right-hand side vanishes as ε → 0. Similarly as above, using (41.14), we have

λm(ε)
ε
· ε−dΘ

∫

Ωn−d
ε

uεm vdx→ λ ∗m ρ̂
∫

Ω

um vdx′, ε → 0.

We have proved that relation (41.18) holds.
We rewrite the relation (41.7) in the following way (withΨε = v ∈ H1

0(Ω)):

∫

Ω

n

∑
i=1
γεim ·

∂v
∂xi

dx′ = ε−dλm(ε)
∫

Gε

Bεu
ε
m Bεvdσx.

Passing to the limit as ε → 0, we have

∫

Ω

n−d

∑
p=1

γpm
∂v
∂xp

dx′ = λ ∗m ρ̂
∫

Ω

um vdx′. (41.19)

Let us find the functions γpm(x′), x′ ∈Ω . It follows from (41.11) that the function
Np satisfies the following integral identity

∫

Ωn−d
ε

(
aεip +aεij ∂ξj

Np

)
∂xivuεm dx+

∫

Ωn−d
ε

aεip v∂xiu
ε
mdx+

+
∫

Ωn−d
ε

aεij v(∂ξj
Np)(∂xiu

ε
m)dx = 0.
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Here p ∈ {1, . . . ,n− d}. Subtracting this identity from the integral identity (41.7)
with the test-function ε ·v(x′) ·Np(

x
ε ), where v is an arbitrary function from H1

0(Ω),
we get the following relation

ε−d
∫

Ωn−d
ε

((
aεip +aεij ∂ξj

Np

)
∂xiv ·uεm +aεip · v ·∂xiu

ε
m

)

dx = O(ε).

Similarly as above, passing to the limit in the last relation as ε → 0, we obtain

|ω0|
∫

Ω

n−d

∑
i=1

âip um ∂xivdx′+
∫

Ω

γpm vdx′ = 0,

and hence

γpm = |ω0|
n−d

∑
i=1

âip ∂xium, p ∈ {1, . . . ,n−d}.

From (41.19) now we have

∫

Ω

n−d

∑
p,q=1

âpq ∂xpum ∂xq vdx′ = λ ∗mΘ
∫

Ω

um vdx′. (41.20)

It follows from (41.20) that um is an eigenfunction of the homogenized prob-
lem (41.10) and λ ∗m is the corresponding eigenvalue. Moreover, since the eigenvalues
of problem (41.1) are ordered so as to form the increasing sequence, we have by
virtue of (41.17) that

0 < λ ∗1 < λ ∗2 ≤ . . .≤ λ ∗m ≤ . . . , lim
m→+∞

λ ∗m =+∞.

Let us show that λ ∗m = λm, ∀m ∈ N. We assume the contrary. Let w0 be
an eigenfunction of the homogenized problem (41.10), and the corresponding
eigenvalue μ0 �= λ ∗m, ∀m ∈ N. Also we assume that

ρ̂
∫

Ω

w2
0 dx′ = 1,

∫

Ω

w0 um dx′ = 0.

Denote by wε ∈ Hε the unique weak solution to the following problem:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Lε(wε) = 0 in Ω n−d
ε ,

σε(wε) = ε μ0ρε w0 on Gε ,

σε(wε) = 0 on S±ε ,
wε = 0 on Γε .
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Similarly to the first part of the proof, it is easy to show that

Pεwε → w0 weakly in H1
0(Ω) as ε → 0. (41.21)

For simplicity, we can regard that λ1 = μ0 and it means that λ1 < λ ∗1 . Define the
function w̃ε := wε − ε1−d(wε ,uε1)ε ·uε1.

Since (w̃ε ,uε1)ε = 0, due to minimax principle we have

ε−dλ1(ε) · (w̃ε , w̃ε)ε ≤ ε−d〈w̃ε , w̃ε〉ε .

Passing to the limit in this inequality with regard to (41.21), identity (41.4), and
the properties of function w0, we obtain the contradiction: λ ∗1 ≤ μ0 = λ1.

To complete the proof, it suffices to observe that similar arguments are valid for
any subsequence of the sequence {ε} considered at the beginning of the proof.

41.6 Conclusions

We have combined asymptotic algorithms for studying spectral problems with
rapidly oscillating coefficients in thin perforated domains with different limit
dimensions. Convergence theorem for the eigenvalues and eigenfunctions of Steklov
spectral problem in a thin perforated domains was proved. In particular, we showed
that all the eigenvalues of the Steklov problem in such domains tend to zero as
ε → 0.

Under the assumption of certain symmetry condition on the coefficients of
differential operators and on the geometry of thin domain it is possible to construct
full asymptotic expansions for eigenfunctions and eigenvalues of the Steklov
problem in Ω n−d

ε , similarly as it was performed in [PoMe12, MePo12] for thin
perforated domains and in [Me94] for perforated cube.
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Chapter 42
Semi-Analytical Solution for Torsion
of a Micropolar Beam of Elliptic
Cross Section

S. Potapenko

42.1 Introduction

The theory of micropolar elasticity [Er66] was developed to account for
discrepancies between the classical theory and experiments when the effects of
material microstructure were known to significantly affect the body’s overall
deformation. The problem of torsion of micropolar elastic beams has been
considered in [Sm70]-[Ie71]. However, the results in [Sm70] are confined to
the simple case of a beam with circular cross-section while the analysis in
[Ie71] overlooks certain differentiability requirements required to establish the
rigorous solution of the problem (see, for example, [Sc89]). In neither case is there
any attempt to quantify the influence of material microstructure on the beam’s
deformation.

The treatment of the torsion problem in micropolar elasticity requires the rigor-
ous analysis of a Neumann-type boundary value problem in which the governing
equations are a set of three second order coupled partial differential equations for
three unknown antiplane displacement and microrotation fields. This is in contrast
to the relatively simple torsion problem arising in classical linear elasticity in which
a single antiplane displacement is found from the solution of a Neumann problem
for Laplace’s equation [TiGo70]. This means that in the case of a micropolar beam
with non-circular cross-section it is extremely difficult (if not impossible) to find a
closed-form analytical solution to the torsion problem.

In this paper, we use a simple, yet effective, numerical scheme based on
an extension of Kupradze’s method of generalized Fourier series [KuEtAl79] to
approximate the solution of the problem of torsion of an elliptical micropolar beam.
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Our numerical results demonstrate that the material microstructure does indeed have
a significant effect on the torsional function and the subsequent warping of a typical
cross-section.

42.2 Torsion of Micropolar Beams

Let V be a domain in R
3 occupied by a homogeneous and isotropic linearly elastic

micropolar material with elastic constants λ ,μ ,α,β ,γ and κ whose boundary is
denoted by ∂V . The deformation of a micropolar elastic solid can be characterized
by a displacement field of the form U (x) = (u1 (x) ,u2 (x) ,u3 (x))T and a microro-
tation field of the form Φ (x) = (ϕ1 (x) ,ϕ2 (x) ,ϕ3 (x))T where x = (x1,x2,x3) is a
generic point in R

3 and a superscript T indicates matrix transposition. We consider
an isotropic, homogeneous, prismatic micropolar beam bounded by plane ends
perpendicular to the generators. A typical cross-section S is assumed to be a simply
connected region bounded by a closed C2− curve ∂S with outward unit normal
n = (n1,n2). Taking into account the basic relations describing the deformations
of a homogeneous and isotropic, linearly elastic micropolar solid [No86], we can
formulate the problem of torsion of a cylindrical micropolar beam (see, for example,
[Sm70] and [Ie71]) as an interior Neumann problem of antiplane micropolar
elasticity [PoScMi05]:

Find u ∈ C2(S)∩C1(S∪∂S) satisfying

L(∂x)u(x) = 0, x ∈ S, (42.1)

such that

T(∂x)u(x) = f (x) x ∈ ∂S. (42.2)

Here, L(∂x) is the (3× 3) - matrix partial differential operator corresponding
to the governing equations of torsion of a micropolar beam [Ie71], u(x1,x2) =
(ϕ1(x1,x2),ϕ2(x1,x2),u3(x1,x2))

T , T(∂x) is the boundary stress operator [Ie71] and
f = (γn1, γn1,..μ(x2n1− x1n2))

T .
In [PoScMi05], the boundary integral equation method is used to prove existence

and uniqueness results in the appropriate function spaces for the boundary value
problem 42.1 and 42.2 . As part of this analysis, it is shown that the solution of 42.1
and 42.2 can be expressed in the form of an integral potential.

42.3 Generalized Fourier Series

Let ∂S∗ be a simple closed Liapunov curve such that ∂S lies strictly inside the
domain S∗ enclosed by ∂S∗, and let {x(k) ∈ ∂S∗, k = 1,2, ...} be a countable set of
points densely distributed on ∂S∗. We set S−∗ = R

2\S∗, denote by D(i) the columns
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of the fundamental matrix D. [PoScMi05] and by F(i) the columns of matrix F
which form the basis of the set of rigid displacement and microrotations associated
with 42.1 and 42.2. That is,

F =

⎡

⎣
0 0 0
0 0 0
0 0 1

⎤

⎦ . (42.3)

The following result is fundamental to the numerical scheme used to approximate
the solution of the micropolar torsion problem. Its proof proceeds as in [KuEtAl79].

Theorem 1. The set

{F(i),θ (jk), i, j = 1,2,3,k = 1,2, ...}, (42.4)

where the F(i) are the columns of matrix 42.3 and

θ (jk)(x) = T(∂x)D(j)(x,x(k)),

is linearly independent of ∂S and fundamental in L2(∂S).

If we now introduce the new sequence {η(n)}∞n=1 obtained from 1 by means
of a Gram-Schmidt orthonormalization process, and use the integral representation
(Somigliana) formula for the solution of a boundary value problem [PoScMi05],
then, as in [Co90] we can derive the approximate solution for the torsion problem
in the form of generalized Fourier series:

u(n)(x) = q̃3F̃(3)−
n

∑
r=1

qr

∫

∂S
P(x,y)η(r)(y)ds(y)+G(x), x ∈ S. (42.5)

Here, the first term on the right-hand side is a rigid displacement independent of
n, the Fourier coefficients qr are computed by means of the procedure discussed in
[KuEtAl79] and [Co90], P(x,y) is a matrix of singular solutions [PoScMi05] and
G(x) is given by

G(x) =
∫

∂S
D(x,y)f (y)ds(y), x ∈ R

2\∂S.

Since q̃3 cannot be determined in terms of the boundary data of the problem
we can conclude that the solution is unique up to an arbitrary rigid displace-
ment/microrotation which is consistent with the results obtained in [PoScMi05].

This numerical method is extremely attractive in that it inherits all the advantages
of the boundary integral equation method and, as in the following example, can be
shown to produce accurate, fast-converging and effective results.
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42.4 Example: Torsion of an Elliptic Beam

Firstly, to verify the numerical method, it is a relatively simple matter to show that
for the problem of a circular micropolar beam, the numerical scheme produces
results which converge rapidly to the exact solution established in [Sm70] (that the
cross-section does not warp, i.e. that the material microstructure is insignificant in
the torsion of a circular micropolar bar). Of more interest however is the case of an
elliptical micropolar bar [TiGo70] which, to the authors’ knowledge, remains absent
from the literature.

As an example, consider the torsion of a micropolar beam of elliptical cross-
section in which the elastic constants take the following values : α = 3,β = 6,γ =
2,κ = 1, and μ = 1. The domain S is bounded by the ellipse

x1 = cos t, x2 = 1.5sin t.

As an auxiliary contour ∂S∗ we take a confocal ellipse

x1 = 1.1cos t, .....x2 = 1.6sin t.

Using the Gauss quadrature formula with 16 ordinates to evaluate the integrals
over ∂S and following the computational procedure discussed in [KuEtAl79] and
[Co90], the approximate solution 42.5 is found to converge to eight decimal place
accuracy for n = 53 terms of the series. Numerical values are presented below
for representative points (0,0) ,(0.25,0.25) ,(0.25,0.5) and (0.5,0.75)) inside the
elliptical cross-section (see Table 42.1).

Note that if we compare the values of the out-of-plane displacement or torsional
function u3, with those obtained in the case of a classical elastic elliptic beam (these
are 0, 0.02403812, 0.09615251, 0.14422874 at the same points - based on the exact
solution for the warping function [TiGo70]), we conclude that there is up to a 15
percent difference at certain points. (In addition to the results presented in 42.1 we
also considered several other points lying within the boundaries of the ellipse and
arrived at a similar conclusion.)

In contrast to the case of a circular micropolar beam for which the cross-
section remains flat [Sm70] (as in the classical case [TiGo70]), there is a significant
difference in the torsional function for an elliptic beam made of micropolar material
when compared to the same beam in which the microstructure is ignored (i.e., the
classical case [TiGo70]).

Table 42.1 Approximate Solution of M1icropolar Beam with Elliptic Cross-section with
n = 53 in 42.5.

Point in Cross-Section (0,0) (0.25,0.25) (0.5,0.5) (0.5,0.75)

Microrotation about x1− axis ϕ1 0.74431942 1.17355112 1.24343810 1.82784247

Microrotation about x2− axis ϕ2 0.48152259 0.97222035 1.11246544 1.36181203

Antiplane Displacement u3 0.00006160 0.02139392 0.08461420 0.12380739
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This method used here is easily extended, with only minor changes in detail, to
the analysis of torsion of micropolar beams of any (smooth) cross-section where we
again expect a significant contribution from the material microstructure.
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Chapter 43
L1 Regularized Regression Modeling
of Functional Connectivity

M. Puhl, W.A. Coberly, S.J. Gotts, and W.K. Simmons

43.1 Introduction

A network is referred to as ‘dense’ when there are a large number of connections
between nodes in the network. A sparse network alternatively has a small number
of connected nodes. At times it is beneficial to ‘sparsify’ a dense network to
make the data easier to interpret. The brain itself is a very dense network with
brain regions representing the nodes of the network, and the neurological pathways
between regions representing the connections. We chose to investigate the statistical
method known as the Least Absolute Selection and Shrinkage Operator (LASSO),
as proposed by Tibshirani et. al. [Ti96], as a feature selection tool to be applied
to functional connectivity data. This method is useful in cases when the number
of subjects is significantly less than the number of variables. A shrinkage parameter
causes a number of variables to be shrunk to zero, creating a sparser network. In this
chapter, we analyze data from 86 social regions of the brain of 60 subjects that were
identified as either neuro-typical disorder (TD) or autism spectrum disorder (ASD).

M. Puhl (�) • W.A. Coberly
University of Tulsa, Tulsa, OK, USA
e-mail: maria-puhl@utulsa.edu; coberly@utulsa.edu

S.J. Gotts
Laboratory of Brain and Cognition National Institute of Mental Health Intramural Research
Program, Bethesda, MD, USA
e-mail: gottss@mail.nih.gov

W.K. Simmons
Laureate Institute for Brain Research, Tulsa, OK, USA

University of Tulsa, Tulsa, OK, USA
e-mail: wksimmons@laureateinstitute.org

© Springer International Publishing Switzerland 2015
C. Constanda, A. Kirsch (eds.), Integral Methods in Science and Engineering,
DOI 10.1007/978-3-319-16727-5_43

515

mailto:maria-puhl@utulsa.edu
mailto:coberly@utulsa.edu
mailto:gottss@mail.nih.gov
mailto:wksimmons@laureateinstitute.org


516 M. Puhl et al.

This created a network with 3656 pairwise correlations as predictor variables. At
the same time, LASSO fits the remaining variables to a model which can be used to
‘predict’ whether a subject belongs to the TD or ASD classification.

43.2 MRI and fMRI

43.2.1 MRI

A magnetic resonance imaging (MRI) scanner generates a magnetic field many
times more powerful than the natural magnetic field of the earth. Atomic particles
naturally ‘spin’ on their own around a central axis. This act of naturally spinning is
called ‘precession.’ In the natural state, the nuclei in the body will precess in random
directions resulting in a net magnetization of the body being zero. By exposing
the body to the MRI scanner’s intense magnetic field, the body’s hydrogen atoms
will align their spin axes with the magnetic field. Injecting additional energy in
the system, in the form of radiofrequency (RF) pulses, at the right frequency (the
‘resonance frequency’), causes the protons to absorb the energy and change the
direction of their spin relative to the magnetic field. When the RF pulse is removed,
the protons release that energy and return to their initial spin states. Radiofrequency
coils in the MRI scanner can detect the energy emitted by the protons as they
return to their normal spin state. By using a sequence of gradient pulses and small
perturbations to the main magnetic field in the x, y, and z directions, it is possible
to identify the resonance energy at individual locations in the space that is being
imaged [La08]. Importantly, the type of tissue in which the protons are embedded
influences their rate of return to the natural spin state, and thus the resonance energy.
As a result, it is possible to use this information to create images of the tissue
structure of the brain. These images are typically very high resolution (< 1 mm
in the x, y, and z directions, producing a volume with resolution < 1mm3) and can
take from 5 minutes to an hour to collect, depending on the size of the image’s field
of view, the quality of the image, and a number of other factors. Structural MRI
scans are an excellent way to non-invasively image the brain at high resolution
(though not nearly high enough to image individual neurons). In the context of
most neuroscience research, structural MRIs are collected to identify the physical
anatomy of a research participant’s brain, and detect anatomical abnormalities.

43.2.2 MRI Image Processing

The signal that comes in from the system of gradient pulses can be approximately
expressed as the Fourier transformation of the spin density at a single point in the
frequency domain. This frequency domain is commonly referred to as k-space in
the neuro-imaging field. If we let M(x,y) be the spin density at the point (x,y),
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and (kx(tj),ky(tj)) be the point in the frequency domain at which the Fourier
transformation is measured at time tj, then we can express this measurement of the
MR signal at the jth time point as [Li08]

S(tj)≈
∫

x

∫

y
M(x,y)e(−2πi(kx(tj)x+ky(tj)y))dydx

Once this data is obtained, the inverse Fourier transformation will allow the data to
be transformed into the image space, where most data analysis is performed. It is
important to subtract the mean from k-space, or else the leading Fourier coefficient
will dominate the image, causing a large bright spot in the center of the final
image. Other important preprocessing steps that are done on the MR image involve
removing thermal and system noise artifacts that are always present. A type of
artifact that might need to be removed is noise caused by fluctuations in the strength
of the MR signal over time. These appear as a stochastic process, and thus can
be easily removed from the data. Other types of noise that are present are subject
and task related. A person inside an MR scanner lying as still as possible will
still move slightly due to breathing, heartbeat, and other physiological movements.
These cannot be avoided. Depending on the task performed by the subject while in
the system, additional noise artifacts may present themselves.

43.2.3 fMRI

Functional magnetic resonance imaging (fMRI) is based on the same physical
principles of structural MRI, but adjustments in the nature of the RF pulses mean
that it is able to image changes in the ratio of oxygenated to de-oxygenated
hemoglobin. The decay rate of the RF signal emitted by protons as they return to
their normal spin direction relative to the magnetic field is related to small local
inhomogeneities in the field. The larger the inhomogeneities, the smaller the signal
received by the RF coils. Deoxygenated hemoglobin is more paramagnetic than
oxygenated hemoglobin, thereby producing greater inhomogeneities in the local
field. When neurons in a particular brain region become active, their increased
metabolic activity causes a cascade of physiological processes resulting in an influx
of oxygenated blood to the region. The increase in the relative amount of oxygenated
hemoglobin results in a spike in the local signal intensity that can be seen in the
fMRI image. As a result, a series of fMRI images taken over time can provide a
record of changes (over time) in local metabolic activity. In the past few decades,
this so-called blood oxygen level dependent (BOLD) contrast imaging has become
the primary tool for studying the relationship between brain and cognition. fMRI
scans may be used to map changes in brain activity, either during task-related scans
or resting-state scans. Task related scans involve imaging the brain while a subject
performs a specified cognitive task or behavior, such as cycling back and forth
between resting for 15 seconds and continuously tapping a finger for 15 seconds,
resulting in increased activity in the motor cortex contralateral to the hand used
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in the task. Task-related scans can help determine which areas of the brain are
activated during the performance of a given task. Resting state scans, in contrast,
are scans that are taken while the subject is not involved in a specific task [FoRa07].
Generally, a research participant is simply asked to lie quietly in the scanner with
eyes open, and to try not to think about anything in particular. These scans can be
used to determine which brain regions exhibit correlated intrinsic activity. If the
resting-state activity of two regions is observed to be reliably correlated, it is said
that the two regions exhibit ‘functional connectivity.’ Importantly, there is a strong
correlation in the brain between functional connectivity and underlying structural
connectivity [HoSp09].

BOLD fMRI images are taken quickly, over a period of about two seconds, but
with much lower spatial resolution than structural MRI images (usually a resolution
of approximately 2–3 mm3). In the present study, each resting state scan lasted 8
minutes and 10 seconds, with a temporal sampling resolution of 1 brain volume
each 3.5 seconds. For details on the specific imaging parameters used in the fMRI
data collection and pre-processing algorithms applied to the data, see Gotts et al.
[GoSi12].

43.3 Explanation of LASSO

The LASSO (Least Absolute Shrinkage and Selection Operator) can be described
as a constraint on the sum of absolute values of the model parameters with the sum
constrained by a given constant as an upper bound or a ‘penalty term’ [Wh05].
The LASSO can be applied to a variety of statistical modeling methods, the most
common is as an alternative to the method of least squares in linear regression
[JaWi05].

The LASSO creates a subset of predictor variables. Because it is a shrinkage
method, LASSO ‘shrinks’, or reduces, some coefficients of the predictor variables
to zero. It does this by imposing a penalty based on their size, the above-mentioned
penalty term [HaTi09]. Shrinking the coefficients results in an overall reduction in
the variance of the coefficients [JaWi05]. The LASSO method will thus produce
an easier to interpret model by eliminating a number of predictor variables. One
would expect that the LASSO will perform well in a situation where a relatively
small number of predictor values have substantial coefficients and the remaining
predictors have coefficients that are zero or near zero [JaWi05]. The problem is that
for some real data sets, the number of predictors is not known at the beginning
of the data analysis [JaWi05]. Another problem is that highly correlated features
sometimes present a problem in the LASSO algorithm. A group of variables are
typically examined at one time. If a number of these variables are very highly
correlated with one another, the algorithm will choose one to keep and shrink
the rest. This means that while the features selected by the LASSO algorithm are
significant, some equally as significant features may have been lost as well. Because
of this, it might be useful to test a number of different methods on the data set
and then use cross validation to determine which outcome is the best. Elastic-Net
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regression which combines an L1 (LASSO) and L2 (Ridge) attempts to avoid this
problem. This method is not examined in this paper, but will be looked at in the
future.

43.3.1 Linear Regression LASSO

The Linear Least Squares LASSO is given by

β̂ = argmin
β

⎧
⎨

⎩

n

∑
i=1

(

yi−β0−
p

∑
j=1
βjxij

)2

+λ
p

∑
j=1
|βj|
⎫
⎬

⎭

This equation is simply the residual sum of squares equation plus an additional
constraint , λ ∑p

j=1 |βj|. This constraint is known as the penalty term [JaWi05], and
is in fact an L1 penalty [HaTi09]. Recall that the L1 norm, ‖ · ‖1, of a coefficient
vector is given by ‖β‖1 = ∑

∣
∣βj
∣
∣. A similar method, known as ‘Ridge Regression,’

uses an L2 constraint [JaWi05]. The L1 penalty causes some coefficients to shrink
to exactly 0 when λ is sufficiently large [JaWi05]. The βj must cause a significant
impact to ‘survive’ this form of continuous subset selection [HaTi09]. This means
that the selection of λ is crucial in the outcome of the model. We will investigate the
selection methods for λ in section 43.5.1. It is worth noting that the intercept term
β0 has no interaction with the penalty term. This is because the intercept is simply
a measure of the mean value of the response if X = 0. A simple way to estimate
β0 is to center the input matrix, X, at mean zero, and then β0 can be estimated by
β̂0 = y = ∑n

i=1 yi/n [JaWi05].

43.3.2 Logistic Regression and the LASSO

43.3.2.1 Logistic Regression Review

Logistic regression models the probability that a response variable, Y , will belong
to a particular category. In the simplest case, this is modeled with Y = 1 equating
to a ‘does belong to group’ and Y = 0 equating to a ‘does not belong to group.’ We
then attempt to model a relationship between p(X) = Pr [Y = 1|X] and X.

Recall that the linear regression model represented this probability using the
function p(X) = β0 +βX, where β is a vector of coefficients and X is the matrix of
predictor variables. Logistic regression models p(X) using a function that will give
outputs between 0 or 1 for all values of X, given by the following equation:

p(X) =
eβ0+βX

1+ eβ0+βX
(43.1)
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From equation 43.1, we can create a relationship between the logistic and linear
regression problems.

log

(
p(X)

1−p(X)

)

= β0 +βX (43.2)

Equation 43.2 is known as the log-odds or ‘logit’ link. Clearly the β0 +βX is the
linear regression model. This link function is a one-to-one transformation from the
linear regression model to the logistic model. To estimate β we use the maximum
likelihood method to fit the logistic regression model. The likelihood function is
given by

L(β ) = ∏
i:yi=1

p(xi) ∏
j:yj=0

(1−p(xj))

which can be shown to be

L(β |y1, ...yn) =
n

∏
i=1

(
1

1+ e−βT x′i

)yi
(

e−βT x′i

1+ e−βT xi

)1−yi

Taking the log of both sides will give us the joint log-likelihood for β .

�(β ) =
n

∑
i=1

[

yi ln

(
1

1+ e−βT x′i

)

+(1− yi) ln

(
e−βT x′i

1+ e−βT xi

)]

=−
n

∑
i=1

[
(1− yi)βTx′i + ln

(
1+ e−β

T x′i
)]

We choose the estimates, β̂0, β̂ , as the values that maximize �(β ) [JaWi05].

43.3.2.2 Logistic LASSO

If we now apply our L1 penalty to an ordinary logistic regression, we will have the
LASSO Logistic Regression Model [Wh05].

β̂ = argmin
β

{

−
n

∑
i=1

[
(1− yi)βTx

′
i + ln

(
1+ e−β

T x
′
i

)]
−λ

p

∑
j=1
|βj|
}

The addition of the L1 constraint onto the logistic regression model can be seen
as adding a Lagrangian penalty to the joint log-likelihood of the model parameters
[LeLe06].
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43.4 Autism Spectrum Disorder

Autism spectrum disorder (ASD) is a developmental disorder characterized by
enduring deficits in social communication and interactions with others. Individuals
with ASD often exhibit intense idiosyncratic interests, as well as engage in overt
repetitive behaviors. To meet the criteria for an ASD diagnosis, all of these
symptoms must be present from early childhood (prior to 2 years of age) and
must interfere with broad areas of the individual’s normal functioning in society
(e.g., school, occupation, normal social interactions, etc.). As the name would
imply, the symptoms of ASD present along a spectrum with varying levels of
impairment or disability. The adolescents in the present study were generally fairly
high functioning. They were in their late teens, with normal intelligence, and were
overwhelmingly male (as is generally characteristic of the population of individuals
diagnosed with ASD). Refer to Gotts et al. [GoSi12] for details on the specific
demographics of the ASD and neurotypical (TD) control participants in the present
study.

43.5 Method

Computations were done in R. The data used is originally from Gotts et al. [GoSi12],
and represents the functional connectivity between 96 brain regions. Preprocessing
steps were completed with AFNI. The data was slice time corrected, normalized,
transformed to the Talairach & Tournoux volume, and basic ANATICOR procedures
for removing noise were completed. For detailed preprocessing steps, see Gotts
et. al. [GoSi12]. The parcellations of the brain region were based on gray and
white matter boundaries, using the labels provided by freesurfer (http://freesurfer.
net) corresponding to the Desikan & Killany atlas. Of these regions, we used
only subcortical and gray matter regions that were present throughout all 60
subjects. This left 91 regions. An additional 5 regions corresponding to the corpus
callosum ROIs were excluded. This left us with 86 total regions analyzed in this
paper. The data is given in 86× 86 correlation matrices. Each column and row
represents an individual brain region and an element aij of the matrix represents
the functional connectivity between region i and region j. First, we transformed
the upper triangular part of the matrices into a vector, column-wise. We applied a
Fisher transformation to the values. There are 31 data sets corresponding to ASD
subjects and 29 data sets corresponding to TD subjects. We create a new matrix,
3656× 60, where the first row indicates 1 for ASD or 0 for TD. The remaining
rows are the brain region pairs (each value corresponds to a pair of brain regions)
and the columns are the individual subject cases. We used the ‘glmnet’ package in
R (http://cran.r-project.org/web/packages/glmnet) to perform the Logistic LASSO.
This package was created by Tibshirani et.al, who initially developed the idea of the
LASSO.

http://freesurfer.net
http://freesurfer.net
http://cran.r-project.org/web/packages/glmnet
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43.5.1 Tuning Parameter Selection

The proper selection of λ is a very important step when using LASSO to analyze
a data set. As λ increases, there will be more and more ‘shrinkage’ in the data. In
other terms, a smaller value of λ will result in a model with more coefficients than a
larger choice of λ . This idea can be shown in a path diagram such as Figure 43.1(a).

Cross validation is usually used to select λ . Cross validation is a method of
assessing how well a model can be generalized to an independent data set, and
aims to avoid overfitting the model [JaWi05]. We compute deviance for a number of
values of λ and choose the value of λ with the minimum deviance. [JaWi05]. The
deviance of different values of λ is seen in Figure 43.1(b). The graph also shows
upper and lower standard deviation values for each λ in the cross validation trials.
Lower values of binomial deviance will result in a ‘better’ model. For our model,
we chose λ = 0.0305. This λ was chosen as it is the largest value of λ that gives
a minimum value of binomial deviance and the graph appears to have a relatively
small rate of change with respect to changes in λ in this area. This λ value was also
chosen because as seen in Figure 43.1(a), a large number of variables exit the model
at this λ .
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Fig. 43.1 Note that λ = 0.0305 is marked in both graphs. (a) Each line represents a different
variable and the value of the β coefficient at each value of λ . Note that as λ increases, more
variables are shrunk to zero. (b) The amount of deviance explained by each value of λ , with the
number of coefficients at each λ value on the top axis.
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43.6 Results

Using the value λ = 0.0305 creates a model with 10 coefficients. Recall that
originally there were 3655 possible variables, so a large number of coefficients
were shrunk to zero. We can look at how well this model ‘predicts’ the data set,
in Figure 43.2. We selected a threshold value of 0.5. A subject with the probability
of belonging to ASD being greater than 0.5 will be classified as ‘ASD.’ A subject
with the probability belonging to ASD being less than 0.5 will be classified as ‘TD.’
Any subjects appearing in the shaded gray regions were misclassified. As seen in
Figure 43.2, we have a number of subjects being misclassified in both the ASD and
TD cases. In fact, 85% of the data set is predicted correctly. This may be misleading
since this model is trained on the full data set. To more accurately evaluate how well
the model performs we used a leave one out cross validation method to evaluate
how well the model would work on test data. In table 43.1 we see the accuracy of
the model, that is, the percentage of subjects correctly identified after performing
the leave one out cross validation. We also look at the sensitivity (probability of
being predicted as ASD when actually ASD) and specificity (probability of being
predicted as TD when actually TD) of the model.

Fig. 43.2 Results of using the model on the training data to predict if a subject was ASD or TD.
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Table 43.1 Accuracy
(total correctly
classified), Sensitivity
(the probability of
being predicted as
ASD when actually
ASD), and Specificity
(probability of being
predicted as TD when
actually TD) of the
model after leave one
out cross validation.

Accuracy 65%

Sensitivity 64.7%

Specificity 65.38%

Table 43.2 Each row represents the connection between the two regions
listed. The final column is the value of the β coefficient in the model.

β Coefficients

ROI Pairs β value

Right-Pallidum ctx-lh-rostralanteriorcingulate 1.08

Right-Putamen ctx-rh-superiortemporal 1.07

ctx-lh-cuneus ctx-rh-isthmuscingulate −0.84

ctx-rh-inferiorparietal ctx-rh-rostralanteriorcingulate −0.72

ctx-rh-caudalanteriorcingulate ctx-rh-insula 0.39

ctx-lh-pericalcarine ctx-rh-precentral −0.17

ctx-rh-entorhinal ctx-rh-middletemporal −0.13

Right-Thalamus-Proper Right-Hippocampus 0.07

ctx-lh-entorhinal ctx-rh-parahippocampal −0.06

ctx-lh-bankssts ctx-rh-frontalpole 0.02

We finally look at the actual predictor variables the model chooses. Recall that
each predictor variable represents a connection between two brain regions. These
predictor variables are chosen and ‘fit’ to the model in a logistic regression sense,
giving us coefficient values for each variable. The coefficient values of β can
be compared since all the β coefficients come from a correlation matrix, and thus
have the same scale. The value of the β coefficient represents the strength it has
in the given model. A larger |β | will affect the model more than a smaller |β |. In
Table 43.2 the predictor variables are given, along with their β coefficient value.



43 L1 Regularized Regression Modeling of Functional Connectivity 525

43.7 Discussion

The regions identified by the model appear to have good face validity when
compared both with the prior literature on the neural bases of autism and the
findings published by Gotts et al. [GoSi12], Anderson et al. [AnNi11], and Di
Martino et al. [DiKe11] using different analysis approaches on resting-state data
in ASD. For example, from Table 43.2 we see that four of the five connections
in the present study with the highest absolute beta coefficients involved regions of
the cingulate gyrus (e.g., isthmus of the cingulate, caudal anterior cingulate, rostral
anterior cingulate). This structure, which stretches along the midline immediately
dorsal to the corpus callosum, is known to play important roles in many aspects
of social cognition. For example, the posterior cingulate (of which the isthmus of
the cingulate is a part) is a node in the brain’s default mode network and has been
shown to exhibit abnormal activity and connectivity in autism [LeSh14]. Likewise,
the rostral anterior cingulate, which appeared in two of the top six connections, is an
important visceromotor region that controls the affective modulation of autonomic
functions. Likewise, the caudal (mid) cingulate, along with the insula, are regions
that have been repeatedly shown to underlie interception and visceral autonomic
responses to encountered stimuli [Cr09, CrHa13]. In fact, many of the connections
between these two regions are by way of the unique von Economo neurons.
These are unusually shaped neurons found only in hominid primates, elephants,
and whales, that some have speculated may underlie elements of social awareness
[CaGe14], which is a central element of ASD psychopathology. It is encouraging
that our model highlighted connections among these regions as being particularly
informative of functional connectivity differences in ASD. Future research will need
to further explore how aberrant connectivity among these regions may contribute to
the pathophysiology of ASD, and whether it will be possible to use measurements
of the connection strengths among these regions as a diagnostic marker for autism.
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Chapter 44
Automatic Separation of Retinal Vessels into
Arteries and Veins Using Ensemble Learning

N. Ramezani, H. Pourreza, and O. Khoshdel Borj

44.1 Introduction

Diabetes is a persistent and life-threatening systemic disease causing abnormal
increase in the level of glucose in the blood. After a time interval which is not
so long, this high level of glucose starts damaging blood vessels. The damages may
have negative effects on nervous systems, heart, kidneys, and other organs of the
body. Rapid progress of the diabetes is one of the major challenges of today’s
medical care. The number of the people affected by the disease is dangerously
increasing. As the early treatment methods can slow down its progress, early
diagnosis of the disease is very important. The medical image analysis is a research
field which has recently attracted lots of attention by scientists and physicians. The
aim of this chapter is to develop and improve computer means which can help the
physicians to diagnose and treat the disease. So far the best and the most effective
treatments for diabetes have been made only in the early stages of the disease.
Therefore, early diagnosis of the disease through continuous control of the patient is
very important. The lowest expenses of such care and controls can be done with the
technology of receiving digital images from retina. This technology can use high
techniques of image processing which can detect retinal abnormalities. Anyway,
for success in treatment, early diagnosis of the disease is essential. Regular and
early tests are the only way for optimal treatment. By continuous control of the
disease and constant study of the eyes such as comparing images taken in different
periods of time which can be hardly done manually and can effectively be done
by a computer-based approach, the disease can be treated in the quickest time
possible. Changes in the vessels structures can have completely different impacts
in the arteries and veins. Different diseases have a variety of impacts on the arteries
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and veins. For example, some diseases cause arterial bleeding and some others cause
phlebitis. Moreover, one of the first signs of diabetic retinopathy is the reduction
of ratio between the arteries and veins. These observations lead us to a strategy
for developing a reliable classification technique for separation arteries and veins.
Primarily we want to have a vessel classification around optic disc. Then using the
structure of retinal vessels and tracking techniques, the technique can be extended
to the regions out of this area where little or no data does exist for discriminating
between vein and artery. Due to process of imaging and the convex shape of the
retina, the retinal images generally have heterogeneous clearance and include a large
variety of contrasts and local brightness. Thus the preprocessing step is essential in
order to improve the results of segmentation.

44.1.1 Preprocessing Retinal Images

Numerous algorithms have been proposed for improving contrast and correcting
illumination, any of which has its own advantages on the special targets. Older
techniques normalized the illumination of the image by omitting the low frequencies
of illumination by using a high-pass filter. Other techniques were presented with
the special target of retinal images. Normalizing the background using a large
median filter is done to extract slow changes in illumination and then subtracting
it from the main image. In order to estimate and correct the brightness intensity
in the retinal images, a method has been proposed in [MaMi11]. It uses HSV color
environment for better combination of brightness and chromatic information. It then
uses a brightness model on the retinal background which eliminates many of the
disadvantages of the previous methods specially when there is a big damage in
the retina. The strategies which estimate correction from the whole image fail to
create discrimination between brightness varieties due to different characteristics
of brightness which leads to a total smoothing of the image’s brightness changes.
Nonlinear local adaptive filters will reduce the general differences between dark and
bright characteristics even if they are capable to produce better local contrast and
they won’t guarantee reduction in brightness variety. Choosing vessels as qualifiers
of brightness changes has its own disadvantages. Firstly the vessels have not been
distributed throughout the whole image. For instance, there is no vessels in macular
region that will lead to a highly un-crowded data in this region, making it difficult
to estimate the brightness. Secondly, there is a high variety in reflection between
arteries and veins. The different brightness patterns they offer, makes it extremely
hard to have an assured estimation.
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44.1.2 Vessel Segmentation

Automated segmenting of blood vessels in retinal images can assist physicians
to control more people and recognize abnormal vessels caused by ophthalmic
or systemic diseases. A number of methods have been proposed for vessels
segmentation, neither of which, however, has shown a sufficient convincing result.
Vessels segmentation is the problem of diagnosing a special line. Thus many of
the blood vessels extraction algorithms are based on the line detection techniques.
In [FrEtAl11] radial mapping method is used to locate central lines of the vessels
which include small vessels as well. The main idea of this method is that if the
pixel belongs to the vessel segment, the mapped curve of the pixel has typically
a peak. Then the total gradient is used to extract the main structure of the vessels
and the final segmentation is resulted of their combination. This method has been
implemented on STARE data collection. The results have shown that this algorithm
is able to detect in low contrasts and small vessels while it has well reduced
the computation costs. In [PaEtAl10], the input image is primarily processed by
Gaussian filter and matched filter response is gained which is used as starting
points for iterative improved adaptive local threshold for blood vessels extraction.
The results indicate that this method is appropriate for detecting large and small
blood vessels. Paper [SeLa11] deals with neural network and wavelet improvement
combination which includes wavelet transformation in preprocess phase and neural
network in extraction phase. The topologies of different neural networks have been
implemented on DRIVE image data collection with the aim of finding an effective
combination method and SCG (Scaled Conjugate Gradient ) strategy with curve area
ROC equals to 98% (the best result in neural network topologies) was gained. Paper
[MaEtAl11] presents a function for total assessment of segmenting methods. This
function is based on the characteristics of bound vessel structures in one block with
indices like area and length with design sensitive to the anatomical characteristics
of the vessel. A comparison between this method and other methods of segmenting
assessment showed that the method of [MaEtAl11] has a higher degree of adaptation
with the human’s visual quality and thus can be used to increase the quality of
segmenting in retinal images.

44.1.3 Separation of Retinal Vessels

In spite of high number of strategies for vessels segmentation, the discrimination
between artery and vein is still an open debate. These vessels almost offer an
identical texture, color, and form so there exists no algorithm that can appropri-
ately overcome this problem. Moreover, this feature differs in different patients
[SaEtAl12]. On the one hand, high color variety in the image due to light reflection
and, on the other hand, some biological characteristics like skin color can produce
different color patterns in the retina. As a result, correct and rapid labeling for retinal
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vessels structure is essential for automated detection. Researches on classification
techniques of retinal vessels are divided into two groups: Methods based on
vessels characteristics and methods based on tracking. In [MuEtAl10], only color
information is used to classify vein and artery. The target segment is classified to
artery and vein in the train step using linear discriminant analysis (LDA). The rate
of accuracy of classification considering the pixels of central line is 88.2%. In order
to calculate the ratio of width of the artery to vein, a technique has been proposed to
improve retinal vessels classification which uses the strategy of vessels clustering
and tracking process based on the shortest route [PeEtAl10]. A new method is
proposed in [VaEtAl10a] based on vessels segmentation strategy for automated
classification retinal vessels in which K-means algorithm is used for feature vectors
of each region. This algorithm computes the center of each cluster for the classes of
vein and artery in each region and then using Euclidean distance assigns each feature
vector to one class. 87% of the vessels of 58 images were classified correctly. The
goal in paper [VaEtAl10b] is to develop an automated methodology for classifying
retinal vessels which can also consider the effect of non-uniform brightness. In paper
[NiEtAl10] a system with supervisor is applied. A method has been proposed that
is able to isolate the retinal structure tree to a two-dimension color image in a way
that they are on a data collection of 15 images to accuracy rate of 92% and 87% of
correct detection of vessels pixels in comparison with manual labeling [JoEtAl11].
An automated method has been proposed to determine the ratio of artery size to vein
for which the emphasis has been on extraction and selection of two main vessels.
The sensitivity of this method for main vessels in the desired region is 87% while
93% of them have appropriately been classified to artery and veins [MuEtAl11].
Dashtbozorg in [DaMeCa14] offered an automatic method based on the analysis
of a graph generated from the retinal vasculature for A/V classification, Accuracy
value of 89.8% is achieved for the images of the VICAVR databases. Malek applied
neural classification method for segmented vessels, which were extracted by match
filters to classified vessels [MaTo13]. In [ReEtAl13], Relan divided retinal vessels
in two groups: arteries or veins, using a Gaussian Mixture Model, an Expectation-
Maximization (GMM-EM) unsupervised classifier, and a quadrant-pairwise method
based on color features. All mentioned methods face problems when confronted
with damaged retinal images and offer a low rate of accuracy. Note that patient
retinal images are often affected by disease consequences.

44.2 Proposed Method

The data set applied in this chapter is VICAVR used to calculate artery-to-vein
ratio. This data set has 58 images (normal, abnormal images) so far. In this chapter,
primarily, Retinex improvement method is used to increase contrast and correct
brightness of input images. Then combination of local entropy thresholding and
modified co-occurrence matrix is done for segmenting blood vessels and after that
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bifurcations and crossovers have been removed from vessel structure, then optic disc
has been detected and region of interest is defined followed by Feature extraction
and finally vessels clustering using Ensemble Learning is done.

44.2.1 Retinex Method

Retinex theory [VaEtAl10b] is used in this research in order to make a model
conforming to human’s visual system of retinal image. In image model, the color
component of the image is the multiplication of brightness and reflection. The basis
of Retinex method is that the brightness changes occur slowly. Thus its frequency
spectrum is in low frequencies. Therefore, the brightness is estimated and the
output image is the result of subtracting estimated image with the main image.
In [VaEtAl10b] two methods of single-scale retinex (SSR) and multi scale retinex
(MSR) have been used. The illumination is estimated using a Gaussian form and,
then, it is subtracted from the original image in Single-Scale Retinex (SSR). This is
given by [VaEtAl10b]

Ri(xy) = logIi(xy)log
(
F(xy)∗ Ii(xy)

)

which Ri(x,y) is output, Ii(x,y) is the original image in the ith spectral band, ′∗′
shows the convolution operation, and F(x,y) is a surround function [VaEtAl10b]:

F(xy) = k ∗ (e(−(x
2)+ y2

(∂ 2)
)),

where ∂ is the scale, controls extend of Gaussian surround, and

k =
1

(sumx(sumyF(x,y)))

The Multi-Scale Retinex (MSR) is simply a weighted sum of several different SSR
outputs as follows [VaEtAl10b]:

RMSRi = (sumN
n=1WnRni),

where RMSRi is output in the ith color component,N is the number of scales, Rni is
the SSR output in the ith color component on the nth scale, and wn is the weight
of the output of the nth scale.The results of implementation indicate that choosing

weight wn =
1
3

for all scales with N = 3 is appropriate for all images. In Figure 44.1

sample and preprocess image from VICAVR data set has been shown by MSR
method.
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Fig. 44.1 (a) Original image from VICAVR dataset. (b) Preprocessed image.

j

d

i

Fig. 44.2 Modified co-occurrence matrix. Left: Computing modified co-occurrence matrix.
Center: Original co-occurrence matrix in normalized logarithm scale. Right: Modified co-
occurrence matrix in normalized logarithm scale [FrEtAl11].

As can be seen, the image brightness has been improved and an almost uniform
picture has been presented.

44.2.2 Segmentation by Local Entropy Method Based
on Thresholding

An effective local entropy method based on thresholding for vessels extraction of
retinal image is used in this study for preprocessed images. Methods proposed
in [ChGuFr07, RoJi11] are an improvement to method [PaPa89] which uses
thresholding algorithm based on local entropy for extracting retinal vessels. The
vessels extracted by local thresholding are not often complete and some details in
the structures are missed. In [PaPa89] two changes have been proposed to improve
vessels extraction. Primarily some changes have been made in the definition of
concurrent matrix so as to increase local entropy. The image concurrent matrix
shows the transfer between brightness intensity of corresponding pixels. With
change in the definition of concurrent matrix of the structures, similar spectral
structures are retained and their variety is reduced. Figure 44.2 compares the original
and modified co-occurrence matrix.
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Fig. 44.3 Vessel segmentation. Left: Original image from VICAVR dataset. Center: Segmentation
on pre-processed image by applying combination of modified co-occurrence matrix and local
entropy thresholding [PaPa89]. Right: Local entropy thresholding [ChGuFr07]. (d) Entropy
thresholding [RoJi11].

As can be seen, both these matrices have similar structures that are significant
for a creditable thresholding. Although modified co-occurrence matrix has larger
entropy in spite of much smaller standard deviation which is more probable for
local entropy thresholding. Then it uses sparse background for optimal selection
of threshold. Choosing optimal threshold aims at maximizing background local
entropy. The more the local entropy is, the more the balance between backgrounds
will be. The results gained from [PaPa89] and combination with Retinex improve-
ment method (proposed in this paper) with two methods of [ChGuFr07, RoJi11]
have been compared in Figure 44.3.

The method of [PaPa89] in combination with Retinex method as proposed in this
paper shows a higher efficiency and lower time of computation. In order to improve
classification in next step, retinal vessel tree bifurcations and crossovers detected
and removed from segmented vessels by [CaEtAl11]. After that, optic disc should
be detected from retinal image [EaPo12] and then for next step the paired vessels
are selected at distances of 2 to 2.5 times of optic disc radial with respect to the its’
center. Due to the discriminant features of vessels in this region, vessel classification
would be more accurate. In this research, the above-mentioned method is used for
segmenting vessels on the green component of the image which produce suitable
results even for the images of a damaged retina.

44.2.3 Feature Extraction

In order to reduce the effect of non-uniform brightness and classified vessels, the
image is divided into four overlapping regions. Then the vectors turn with 20 degree
angle between 0. to 1800 [MaEtAl11]. Different 20 degree turns cause formation
of overlapping regions and better compare of neighbor vessels under the effect of
brightness almost uniform contrast. This rotation angle has been considered for
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Fig. 44.4 Dividing retinal
images to overlapping regions
[MaEtAl11].

Feature descriptionNr.

Normalized Mean Hue, Saturation and intensity across the vessel1-3

4-5

6-8

9-10

11-13

14-15

16-19

20-27

Standard deviation of Hue, Saturation and Intensity across the vessel

Normalized Hue, Saturation and Intensity under centerline pixel

Normalized Red and Green plane intensity under the centerline pixel

Normalized highest and lowest intensity in the Red and Green plane
across the vessel

Intensity under the centerline pixel in a Gaussian blurred (σ=2,4,8,16)
version of the Red and Green plane

Standard deviation of Red and Green plane intensities across the vessel

Normalized Mean Red and Green plane intensities across the vessel

Fig. 44.5 Complete set of features extracted for each centerline pixel [NiEtAl10].

a compromise between time and the preciseness of the recommended method. It
is obvious that minimizing the rotation angle increases the preciseness of feature
extraction. While it increases the time of algorithm as well due to enlarging feature
vector. In this way different regions are gained as shown in Figure 44.4.

Then the feature vector in each region is extracted. In this study, like in the
method in [NiEtAl10], twenty-seven local characteristics are extracted based on
Figure 44.5 for all recognized pixels in the center of the vessel.

44.2.4 Separation of Retinal Vessels Using Ensemble Learning

Considering the above-mentioned problems of retinal images including lighting and
non-uniform contrast, the impact of factors like age, the color of eyes as well as great
similarity between artery and vein, it is not possible to apply one definite classifier
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to all images and it reduces the accuracy of classifier. Thus in order to improve the
results of classification and as a result, better separating the vessels into artery and
vein, using Ensemble Learning method is proposed. In this method, by a combined
use of a number of successful and efficient classifier, the final result of classification
is improved. Even though this method takes a high time of computation, for using
several classifiers, it can appropriately promote the accuracy of classification. For
the same reason, using learning methods can result an appropriate separation rate
for all images. Considering different papers each used different features and one
special type of classifier for those features, Learning method can be used for
combining different classifiers with local and feature vector appropriate for each
classifier in order to increase the rate of separation accuracy. Any of these classifiers
has to be efficient in an acceptable degree and act complementarily. For any of
the extracted features, an appropriate classifier is selected. (Keeping the results of
valid papers in the mind). Then each feature vector is assigned to the classifier
special to it and finally, the results of different classifiers are combined with
each other.For LDA Classifier [MuEtAl11, MuEtAl10, NiEtAl10] and for SVM
[LiSh10, ChYe09, NaEtAl07, SeLa11] were studied. In Figure 44.6, each feature
group, based on (44.5), is assigned to its suitable classifier based on available papers.

Thus in the present study, two methods of LDA and SVM (Support Vector
Machine) will be used for different feature vectors of segmented vessels. By
applying any of these classifiers to its related features, the possibility of belonging
to any of the classes of artery or vein is assigned to each vessel segment. At the
end, by performing Ensemble Learning and voting from different classifiers, it
is determined to which class each vessel segment belongs to. After recognizing
vessels segment inside the desired region and labeling them, this labeling spreads
by tracking technique and all the vessels inside retinal image are separated. In
Figure 44.7 , the result of applying the proposed method on a sample retinal image
in different stages are shown.

Fig. 44.6 Selecting
appropriate Classifier for
different feature vector.

Number of FeaturesClassifier
LDA 1-3

4-5
6-8
9-10
11-13
14-15
16-19
20-27

LDA
LDA
LDA
SVM
SVM
SVM
SVM
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Fig. 44.7 (a) Original image. (b) Preprocessed image. (c) Vessel segmentation. (d) Vessel
structure without bifurcations and crossovers. (e) Region of interest around optic disc. (f) Vessel
classification to artery (red) and vein (blue).

44.3 Conclusions

Separating retinal images in two groups of arteries and vein is a vital task to
recognize the stage of disease in diabetes, it helps physicians to determine the
manner and time of laser surgery. The present study proposed an effective method
for dividing retinal vessels. The presented method for vessels separation is based
on Ensemble Learning whose main objective is using several efficient classifiers
and complementary for classifying the features of segmented vessels. The results
of vessels separation have been compared with a number of other papers. The
rate of accuracy for VICAVR retinal images equals 95.5% which is the highest
value as compared with other papers and appropriate for damaged retinal images.
One of the major advantages which have increased the efficiency of the proposed
method in comparison with existing methods is using Ensemble Learning based
on which several classifiers are trained to do classification. Moreover, using
multi-purpose features and in several regions for retinal vessels has increased the
accuracy of proposed method. Applying efficient methods of preprocessing has also
helped vessels segmentation that has brought about increased accuracy of vessels
separation.
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Chapter 45
Study of Extreme Brazilian
Meteorological Events

H.M. Ruivo, F.M. Ramos, H.F. de Campos Velho, and G. Sampaio

45.1 Introduction

Today, there is increasing scientific evidence that extreme climate and weather
phenomena could become more frequent under a warmer planet [IP07]. This
picture has been gradually emerging, since the first IPCC Assessment report in
1990, from a series of studies based on an increasing amount of data, which
comprehensively covers the relevant atmospheric, land, ice, and ocean variables,
computed or measured at different time intervals and spatial resolutions. These
data sets come from remote instruments in satellites and in situ sensor networks,
or are the outputs of computer simulations and reanalyzes [OvEtAl11]. Among
the challenges generated by this deluge of data is the development of better
technologies to store, distribute, analyze, and visualize their information content
[HeTaTo10, Fo06].

Data mining, a computational process of discovering patterns in large data sets,
extracts information and transforms it into an understandable structure for further
use, in order to facilitate a better interpretation of existing data [FaEtAl96]. Here
we present an innovative data mining approach to investigate the climatic causes of
extreme events such as the Santa Catarina 2008 tragedy, and the Amazon droughts
of 2005 and 2010. Our approach comprises two main steps of knowledge extraction,
applied successively in order to reduce the complexity of the original data set, and
identify a much smaller subset of climatic variables that may explain the event being
studied. In the first step, we follow along the lines of [RuSaRa14], and apply a
class comparison technique commonly used as a tool to analyze large data sets
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of genome-wide studies. This step results in a series of p-value spatial fields that
identify which climatic variables behave differently across pre-defined classes of
precipitation intensity. The second step consists of a decision tree (DT) learning
algorithm used as a predictive model to map the set of statistically most significant
climate variables identified in the previous step to classes of precipitation intensity.
In the present context, the final result identifies a small subset of climatological
variables that may explain or even forecast the extreme event in study.

The remainder of this chapter is organized as follows. Section 45.2 presents
the methodology and data sets used in this investigation. Section 45.3 presents
our results, while in Section 45.4 we draw some conclusions and discuss further
developments.

45.2 Methodology

The data mining approach here employed comprises two main steps of knowledge
extraction: class comparison, and decision trees. These methods are applied succes-
sively to reduce the complexity of the original data set and identify a much smaller
subset of climatic variables that may explain the event being studied.

45.2.1 Class Comparison

Class comparison methods are used for comparing two or more pre-defined classes
in a data set. Here, we apply the class-comparison to time series of climatic
grid box values or indices, but not to entire fields. The objective is to determine
which variables in our data set behave differently across pre-defined classes of
precipitation intensity (‘high,’ ‘neutral,’ and ‘low,’ for example). The ‘no-difference’
case corresponds to a null hypothesis. The classes are defined in such a way so as
to capture in the correct class the main episodes of drought or extreme precipitation
that occurred during the period being evaluated.

There are several methods for checking whether differences in variable values are
statistically significant [Si03]. The F-test is a generalization of the well-known t-test,
which measures the distance between two samples in units of standard deviation.
Large absolute values of the F-statistic suggest that the observed differences among
classes are not due to chance, and that the null hypothesis can therefore be rejected.

Supposing there are J1 data points of class 1 and J2 data points of class 2, the
t-test score is computed as

t =
x̄1− x̄2√

s2
p

(
1
J1
+ 1

J2

) (45.1)



45 Study of Extreme Brazilian Meteorological Events 541

where s2
p =

(J1−1)s2
1+(J2−1)s2

2
J1+J2−2 and for i=1,2, s2

i =
1

Ji−1 ∑
Ji
j=1 (xij− x̄i)

2, where x̄1 is the
mean of samples class 1 and x̄2 is the mean of samples class 2.

For more than two classes, an F-statistic shall be computed. In this case, the
alternative to the null hypothesis is that at least one of the classes has a distribution
that is different from the others. The t-test and F-test scores may be converted into
probabilities, known as p-values. A p-value is the probability that one would
observe under the null hypothesis a t-statistic (or F-statistic) as large as or larger than
the one computed from the data. Both the t-test and F-test assume that the means
are normally distributed, which may not hold, particularly when the number of data
points is small. In this case, one could use the non-parametric counterparts of these
tests, such as the Wilcoxcon test, the Kruskal–Wallis, or a permutation method.

The probability of observing an F-statistic as large as or larger than the
one computed from the data is called a ‘p-value.’ It is a measure of statistical
significance in the sense that one expects to observe, under the null hypothesis,
p-values less than 0.01 only 1% of the time. Permutations methods, which do not
rely on data normality assumptions, are commonly used for computing p-values
[Si03, HaEtAl07]. For this, after calculating t-test scores for each variable, the class
labels of the J1 and J2 are randomly permuted, so that a random J2 of the samples are
temporarily labeled as class 1, and the remaining J2 samples are labeled as class 2.
Using these temporarily labels, a new t-test score is calculated, say t∗. The labels are
then reshuffled many times again, with a t∗ being computed at each permutation. The
p-value from the permutation t-test is given by

p− value =
1+number of random permutation where |t∗| ≥ |t|

1+number of random permutation
.

45.2.2 Decision Tree

The decision tree (DT) algorithm used here is the J4.8, from the WEKA package
[WiFr00]. The J4.8 is a Java implementation of the C4.5 algorithm, which belongs
to a succession of DT learners developed by Hunt and others in the late 1950s and
early 1960s [Hu62]. DTs are tree-like recursive structures made of leafs, labeled
with a class value, and test nodes with two or more outcomes, each linked to a
sub-tree.

The input to a DT algorithm consists of a collection of training cases, each having
a tuple of values for a fixed set of attributes (independent variables) and a class
attribute (de-pendent variable). The goal is to generate a map that relates an attribute
value to a given class. The classification task is performed following down from the
root the path dictated by the successive test nodes, placed along the tree, until a leaf
containing the predicted class.

Usually, DT learners use the divide-and-conquer strategy to construct a suitable
tree from a training set. For this, the problem is successively divided into smaller
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sub-problems until each subgroup addresses only one class, or until one of the
classes shows a clear majority not justifying further divisions. Most algorithms
attempt to build the smallest trees without loss of predictive power. To this end,
the J4.8 algorithm relies on a partition heuristic that maximizes the ‘in-formation
gain ratio,’ the amount of information generated by testing a specific attribute. This
approach permits to identify the attributes with the greatest discrimination power
among classes, and select those that will generate a tree that is both simple and
efficient.

The information gain is measured in terms of Shannon’s entropy reduction. Given
a set A with two classes P and N, the information content (in bits) of a message that
identifies the class of a case in A is then

I(p,n) =− p
p+n

log2

(
p

p+n

)

− n
p+n

log2

(
n

p+n

)

where p is the total number of objects belonging to class P, and n is the total number
of objects into the classes N. If A is partitioned into subsets A1, A2, . . . ,Av by a given
test T , the information gained is given by

G(A;T) = I(A)−
v

∑
i=1

pi +ni

p+n
I(Ai),

where Ai has pi objects from the class P, and ni from the class N. The algorithm
chooses the test T that maximizes the information gain ratio G(A;T)/P(A;T), with

P(A;T) =
v

∑
i=1

pi +ni

p+n
log2

pi +ni

p+n
.

45.3 Results

The climatic causes of the Santa Catarina 2008 tragedy and the Amazon droughts of
2005 and 2010 are investigated. The entire data sets used in the analysis can be freely
downloaded from the Web. Surface- and pressure-level atmospheric fields have a
spatial resolution of 2.5o x 2.5o and were extracted from NCEP/NCAR Reanalyzes
[KaEtAl96]. Sea Surface Temperatures (SSTs) on a 2o x 2o grid were obtained
from the NOAA Optimum Interpolation SST Analysis, version 2 [ReEtAl02].
The objective of this study design is to determine which variables in our data set
behave differently across pre-defined classes of precipitation intensity. The ’no-
difference’ case corresponds to the null hypothesis for the applications considered
here.
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Table 45.1 Data set used in this study.

Variable Unit Observation Number of time series

Sea surface temperature - SST 0C Surface 144

Sea level pressure - SLP Pa 1000 hPa 169

Air temperature 0C Surface 169

Specific humidity g/kg 850, 1000 hPa 338

Omega Pa/s 100, 200, 300, 400, 1521

500, 600, 850,

1000 hPa

Geopotential height m 1000 hPa 169

Zonal wind m/s 200, 500, 850 hPa 507

Meridional wind m/s 200, 500, 850 hPa 507

Cloud cover % Surface 169

45.3.1 Extreme Rainfall Over Santa Catarina:
Class Comparison

The data set used in this study comprises 3,693 time series (Table 45.1). Gridded
data cover a region delimited by latitudes 20oS and 50oS, and longitudes 30oW and
60oW. Since the episode of extreme rainfall in Santa Catarina was an event of short
duration, pentad-averaged anomalies were used in the analysis.

The goal is to identify variables that might correlate with observed differences
among classes of precipitation in the region of Blumenau (red dot in Figures 45.2
and 45.3), one of the most affected areas by the 2008 disaster. To this end,
we analyzed 12 years (January 1999 up to December 2010) of pentad averages,
comprising 3,693 environmental variables. Precipitation data in the region of
Blumenau (Figure 45.1) is an average of five measurement stations of Brazilian
National Water Agency (Agência Nacional de Águas, ANA) [Si10].

For classification purposes, the pentads of this time series were divided into
three classes of precipitation intensity: ‘strong,’ ‘moderate,’ and ‘light’ rainfall. The
standard t-test (solving 45.1) was applied, as recommended for applications with
two classes: ‘strong’ (precipitation greater than 8), and ‘moderate’ (precipitation
between 0 and 8). Results for the most significant variables identified by this
procedure are presented in Figures 45.2 and 45.3. These results represent p-value
fields, where coherent spatial patterns of low p-values indicate the existence of a
possible links between omega and zonal/meridional wind anomalies, at different
levels, and the precipitation intensity in the region of Blumenau (Figure 45.1). The
isolines in Figure 45.2 correspond to omega anomalies averaged over the period
November 22 up to 26, 2008, the period of most intense precipitation in Blumenau
(delimited by the red bars in Figure 45.1). The wind fields in Figure 45.3 are also
anomalies averages over the same period.

Regions with darker shades indicate the grid parameters with lower p-values.
A p-value < 0.01, for example, indicates probability lower than 1% of being a
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Fig. 45.1 Average rainfall in Santa Catarina, Brazil.

false positive. Figures 45.2 and 45.3 show a dense dark area of low p-values for
omega at different levels, which extends from the South Atlantic Ocean up the
coast of Santa Catarina, and includes in its extreme west the area of Blumenau.
During the extreme rainfall episode, we also observe (see the isolines) that omega
values are negative over the continent (upward vertical motion) and positive over the
ocean (downward vertical movement). It is well known that upward vertical motion
over the continent can result in precipitation. This precipitation is fed by moisture
transported from the ocean to the continent by easterly winds that predominated in
the area in late November (see Figure 45.3). According to [Di00], the location of a
blocking anticyclone on the Atlantic Ocean (with winds that rotate in anti-clockwise
on the Southern Hemisphere) determined the occurrence of easterly winds on large
part of the South Region coast, resulting in a large scale moisture transport from
the ocean to the continent, particularly over the Itajaí valley.

45.3.2 Amazon Droughts: Class Comparison

This analysis has used climatological data covering the period from January
1999 up to December 2010. Monthly anomalies were computed relative to the
mean values over the period. The entire data set used in this illustrative study
comprises 44,269 time series. The dataset also includes time series of the El
Niño Southern Oscillation (ENSO) indices [NO07], the North Atlantic Oscillation
(NAO) index (http://ossfoundation.us/projects/environment/global-warming/north-
atlantic-oscillation-nao). Gridded data cover a region delimited by latitudes 40oN
and 40oS and longitudes 140oW and 0oW.

http://ossfoundation.us/projects/environment/global-warming/north-atlantic-oscillation-nao
http://ossfoundation.us/projects/environment/global-warming/north-atlantic-oscillation-nao
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Fig. 45.2 Representation in p-values of the climatic variable influence omega (1000, 700, 500,
and 300 hPa) in Santa Satarina flood.

Class comparison was based on a time series of monthly accumulated precipi-
tation anomalies [HuBo11], averaged over the area delimited by latitudes 4oS and
8oS and longitudes 68oW and 72oW. This time series was used as proxy of drought
in our analysis. This region, located in the south-western Amazon (indicated by a
red square in Figure 45.4), was strongly affected by the droughts of 2005 and 2010
[LeEtAl11]. In this time series, the range of anomalies was split into 3 sub-classes:
‘dry,’ ‘neutral,’ and ‘wet’. To this end, the interval is divided between the highest
and the lowest precipitation anomaly into three parts, assigning the upper and lower
37% bins to the ‘wet’ and ‘dry’classes, respectively, and the remaining 26% to the
‘neutral’ class. The results represent class comparison between ‘dry’ and ‘neutral’
classes.
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Fig. 45.3 Representation in p-values of the climatic variables influences zonal and meridional
wind (1000 and 850 hPa) in Santa Catarina flood.

One of the results is presented in the left side of Figure 45.4, that shows that the
rainfall deficits in the South-Western Amazon region is linked with the widespread
increase of the SST in the tropical North Atlantic, spanning from the coast of West
Africa to the Caribbean. More results can be found in Ruivo et al. [RuSaRa14].

The Atlantic influence over the Amazon is modulated by seasonal and inter-
annual variations in the strength and position of the intertropical convergence zone
(ITCZ), following changes in the SST. This scenario, supported in the right side of
Figure 45.4 presents the p-value field for the omega (vertical velocity) anomaly at
500 hP for August–September of 2009 and 2010, along with omega anomaly fields
in two sub-areas in the region. These two years are used here as paradigms of years
with accumulated precipitation above and below the climatic average, respectively.
Negative anomalies indicate upward motion of the ITCZ. Note that the northward
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Fig. 45.4 p-value field: left - sea-surface temperature anomaly, below: SST anomaly temporal
evolution at 12.5oN-55.5oW (red star); right - omega (upward motion) anomaly at 500 hPa, below:
pressure difference between grid points 15oN-50oW (red star) and 5oS-60oW (blue full circle).

shift of the downward branch of the Atlantic Hadley cell, favoring subsidence
across the western and southern Amazon, is clearly captured in Figure 45.4. Weaker
upward motion results in reduced convective development and rainfall.

45.3.3 Extreme Rainfall Over Santa Catarina: Decision Tree

The decision tree with the J4.8 algorithm was created with confidence factor used for
pruning (0.25), and number of instances per leaf (8). Several tests were performed:
with fixed number of attributes (meteorological variable for different coordinates are
considered different attribute) with smallest p-values. The best result was obtained
with the 5 different climatological variables, considering 10 different coordinates
for each variable, with smallest p-values (total 50 attributes). To this goal, the
precipitation time series were divided over the area of Blumenau (red dot) in two
classes: ‘light’ (values below the median), and ‘strong’ (values above the median),
corresponding to episodes of low and high precipitation, respectively. The training
set comprised data from 2000 up to 2006. The years of 1999, 2007, 2008, 2009, and
2010 were used to evaluate the tree performance. Figure 45.1 shows two rainfall
intense episodes: July 1999, and November 2008. The event at July 1999 was less
intense than November 2008.

The resulting tree, displayed in Figure 45.5, left side, has 7 leafs (4 ‘strong’
and 3 ‘light’) and 6 decision nodes. The variable with the highest information
gain is omega at 500 hPa, and at coordinates 50oW and 25oS. As expected, these
coordinates are as near to the disaster zone as the limited spatial resolution of the
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gridded data permits. Note that all but one decision nodes are also associated with
omega, at different pressure levels but always in the vicinity of the affected area.
These results highlight the key role played in the episode of extreme rainfall in Santa
Catarina 2008 by the vertical transport of the moisture, brought from the ocean by
sustained easterly winds. As a predictor, the tree was able to forecast 100% of the
cases of extreme rainfall during the evaluation years (1999, 2007–2010), including
the episode occurred in July 2008.

45.3.4 Amazon Droughts: Decision Tree

The decision tree was generated using 120 variables with lower p-values identified
by the class-comparison methodology described in the previous section. To this end,
the proxy precipitation anomaly time series was divided into two classes according
to the median: ‘dry’ (values below the median), and ‘wet’ (values above the median).
The training set comprised data from 1999 to 2004. The period from 2005 to 2010
was used for evaluating the predictive performance of the tree. The resulting tree
has 7 leafs (4 ‘dry’ and 3 ‘wet’) and 6 decision notes (Figure 45.5, right side).
Surprisingly, the variable with the highest information gain is the zonal wind at
200 hPa, at coordinates 72.5oW and 25oN.

This variable, together with a large area of zonal wind anomalies in North
Atlantic, has indeed a very low p-value. This result supports recent claims [Ch00,
CoZeYo10, MaEtAl11, MaEtAl11] that the recent episodes of intense drought in
the Amazon are linked to the northwest displacement of the ITCZ. In 2010, for
example, the ITCZ was displaced approximately five degrees northward from its
climatic position [MaEtAl11]. Overall, the tree had hit rate of 83%, misclassifying
only two months during the extreme drought periods of 2005 and 2010.

45.4 Conclusions

In this chapter, two techniques for data mining were used to investigate the climatic
causes of two kinds of extreme events occurred in Brazil during the last decade:
the Santa Catarina 2008 extreme rainfall tragedy and the Amazon droughts of 2005
and 2010. In both cases, our results are in good agreement with analyses published
in the literature. The class comparison methodology was able to greatly reduce the
size of the original data set, from the order of thousands of variables to a few tenths.
The decision trees generated from the results of the class-comparison step were able
to correctly classify/predict a high percentage of cases of extreme rainfall in Santa
Catarina (100%) and of drought in the Amazon (83%). Overall, the data mining
procedure here introduced has shown to be a promising approach in the investigation
of climatic extreme events and the extraction of knowledge from large and complex
data sets.
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Fig. 45.5 Decision trees: left - Extreme rainfall over Santa Catarina; right - Amazon droughts.
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Chapter 46
The Neutron Point Kinetics Equation:
Suppression of Fractional Derivative Effects
by Temperature Feedback

M. Schramm, A.C.M. Alvim, B.E.J. Bodmann, M.T.B. Vilhena,
and C.Z. Petersen

46.1 Introduction

Fractional point kinetics has been discussed recently as one of the novel approaches
that describes the short-term evolution of neutron densities as well as precursor
concentrations in nuclear reactor theory. Kinetics may be derived from an original
transport problem introducing simplifications that allow to decouple the time from
spatial degrees of freedom. One of the motivations to extend the traditional point
kinetics by additional terms that contain a fractional derivative is to improve the
solution in the sense to compensate effects due to the simplifications mentioned
above. Works on the fractional derivative point kinetics equation found in the liter-
ature [EsEtAl08, EsEtAl11, NeNe07, SaPa12] treat the extended kinetics problem,
whereas in the present work we consider additionally temperature feedback on the
reactivity [ElMa14, Na11, SiEtAl14], which mimics influences of thermohydraulics
on neutronics and thus may be considered beside being a novelty also a more
realistic model in comparison with the previous works.

It is noteworthy that in all the published literature on the topic, a variety of
fractional derivative implementations are presented together with solutions for the
extended point kinetics equation but nothing is said justifying, why a fractional
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derivative in point kinetics should make sense from a physical point of view. In the
further we give some plausibility arguments for the use of a fractional derivative,
however show in the end that such an extension is meaningless since its effects are
suppressed by the temperature feedback.

In order to understand some properties that may be connected to physical charac-
teristics, it is instructive to interpret the fractional differential [De03, OlSp74, Tr03].
The latter may be expressed in terms of the proper derivative term times a volume
with fractional dimension. This fact implies in a specific scaling behavior if a
standard length is changed, in other words the scaling of the fractional differential
scales like a volume with fractional dimension. Scaling laws are intricately con-
nected to fractal structures, that upon changing scales self-similarity appears. The
multiplicative effects due to nuclear chain reactions could be interpreted in terms of
self-similarity, since at the average each neutron in any generation and ramification
that represents the fission process contributes effectively with the same multiplicity.

One may now establish a connection to a geometrical construction that represents
multiplicative effects, such as the circumference length of the construction steps
of a Koch curve. From one step to the subsequent one the addition of new edges
adds new segments to the curve while the infinite limit creates a structure with
Hausdorff dimension log(4)

log(3) , i.e. a fractal. Besides the fractional dimension one may
also associate an effective time scale to the construction steps, that may characterize
a generation lifetime, which is the second new parameter that defines the fractional
derivative. Once having made plausible the use of a fractional derivative the
discussion that follows, focusses on the question what influence these new degrees
of freedom impose on the solution of point kinetics with temperature feedback.

46.2 The Fractional Derivative Model for Neutron
Point Kinetics

The classical neutron point kinetics equations with temperature feedback effects
has a known solution in an analytical representation (see [SiEtAl14] for details).
There, the proposed methodology starts from the classical solution [SiEtAl14]
and obtains an analytical representation for the fractional neutron point kinetics
equations with temperature feedback using the decomposition method [Ad94]. This
method consists in expanding the neutron density and p precursor concentrations in
a series (n = ∑∞r=0 nr and Ci =∑∞r=0 Cir, i ∈ {1, . . . ,p}) in which each term nr, or Cir

may be determined from a recursive set of linear differential equations as shown in
the next section. The classical solution may be used as the recursion initialization by
incorporating the fractional derivative terms that extends the usual time-derivative(
τκ dκ+1n

dtκ+1 ,
(
τκ
(

1
l − 1−β

Λ

)
dκn
dtκ and τκλi

dκCi
dtκ

)
in the source terms together with the

nonlinear terms αH
Λ n
∫ t

0 n(t̂) dt̂.
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The problem as it stands needs the evaluation of an infinite number of terms
or, equivalently, equations. In case of convergence, however, the series of n and
Ci may be truncated according to a predefined numerical precision. In order to
analyze convergence, a Lyapunov inspired criterion is used that determines the
recursion depth until stable convergence (in our case exponential convergence)
occurs. Details of this procedure are not discussed in the present contribution but
may be found in [SiEtAl14]. The fractional neutron point kinetics equation with
precursor contributions and temperature feedback effects is

τκ
(

d
dt
+

(
1
�
−1−β

Λ

))
dκn
dtκ

+
dn
dt
−ρ−β

Λ
n−

p

∑
i=1
λi

(

Ci+τκ
dκCi

dtκ

)

=0 ,

dCi

dt
− βi

Λ
n+λiCi = 0 , (46.1a)

ρ = ρ0−α(T−T(0)) and
dT
dt
−Hn = 0 . (46.1b)

Here τ and κ are the so-called fractional parameter, i.e. time scale and fractional
derivative order, respectively. Further, β =∑βi is the total delayed neutron fraction,
whereas βi is the neutron fraction of the i-th precursor group, λi is the decay
constant of the i-th delayed neutron precursor, � is the mean neutron lifetime,
Λ is the prompt neutron generation time, ρ = ρ(T, t) is the reactivity, ρ0 = ρ0(t)
is the apparent reactivity, α is the temperature coefficient, and H is a parameter that
mimics thermohydraulic effects on the core temperature T = T(t).

It is noteworthy that the fractional point kinetics model with temperature
feedback is a generalization of existing models. For τ = 0 and α = 0 one recovers the
classical (linear) point kinetics model, whereas for τ = 0 and α �= 0 one reduces to
the classical non-linear point kinetics model with temperature feedback as discussed
in [SiEtAl14], while for τ �= 0 and α = 0 the model is identical to the fractional
point kinetics model. In the further we study some implications of effects due to the
fractional derivative as well as with temperature feedback on reactivity.

It is convenient to reduce the original problem (46.1) with four equations to a
two equation system containing the neutron population n (also sometimes identified
with the power level) and the precursor group concentrations. To this end equation
(46.1b) for the temperature feedback is integrated and inserted into the reactivity
relation which is then substituted into the equation (46.1a) for the neutron density.

T = H
∫ t

0
n(t̂) dt̂+T(0) ⇒ ρ = ρ0−αH

∫ t

0
n(t̂) dt̂

The obtained two equation system reads then

dn
dt
− ρ0−β

Λ
n−

p

∑
i=1
λiCi =−αH

Λ
n
∫ t

0
n(t̂) dt̂

︸ ︷︷ ︸
N
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−τκ
(

d
dt
−
(

1
�
− 1−β

Λ

))
dκn
dtκ

+ τκ
p

∑
i=1
λi

dκCi

dtκ
︸ ︷︷ ︸

F

, (46.2a)

dCi

dt
− βi

Λ
n+λiCi = 0 . (46.2b)

In equation (46.2a) the shorthand notation N stands for the non-linear contribution
and F for the fractional derivative contribution.

46.3 The Recursive Scheme

Upon substituting the series n = ∑r nr and Ci = ∑r Cir into equation (46.1a) and
reshuffling terms, then equation (46.2) reads

∞

∑
r=0

[
dnr

dt
− ρ0−β

Λ
nr−

p

∑
i=1
λiCir

]

=
∞

∑
r=0

⎡

⎢
⎢
⎢
⎢
⎣
−αH
Λ

(
∞

∑
q=0

nq

)
∫ t

0
nr (t̂) dt̂

︸ ︷︷ ︸
Nr

−τκ dκ+1nr

dtκ+1 − τκ
(

1
�
− 1−β

Λ

)
dκnr

dtκ
+ τκ

p

∑
i=1
λi

dκCir

dtκ
︸ ︷︷ ︸

Fr

⎤

⎥
⎥
⎥
⎥
⎦
, (46.3)

∞

∑
r=0

[
dCir

dt
− βi

Λ
nr +λiCir

]

= 0 .

The recursive scheme may now be set up, using the artificial degrees of freedom
introduced by the expansion of n and Ci, respectively, transforming the non-linear
problem into a set of nonhomogeneous linear equations, where the first problem
to be solved is the classical neutron point kinetics problem [Ga13, SiEtAl14,
PaMaGo09], that shall obey the initial condition of the original problem. Thus all
the remaining equations of the recursive scheme have zero initial conditions.

dnr

dt
− ρ0−β

Λ
nr−

p

∑
i=1
λiCir = Sr ,

dCir

dt
− βi

Λ
nr +λiCir = 0 , (46.4)
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for r = 0,1, . . . and δij the Kronecker symbol. Here the source term is defined by the
findings of the previous recursions and thus are known.

Sr = (δr0−1)(Nr−1 +Fr−1)

For convenience one may cast (46.4) in matrix form

dYr

dt
−AYr = Sr ,

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

ρ0−β
Λ λ1 λ2 · · · λp
β1
Λ −λ1 0 · · · 0
β2
Λ 0 −λ2 · · · 0
...

...
...

. . .
...

βp
Λ 0 0 · · · −λp

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,Sr =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

Sr

0
0
...
0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,Yr =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

nr

C1r

C2r
...

Cpr

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

with known solution

Yr = exp

(∫ t

0
A(t̂) dt̂

)

Yr(0)+
∫ t

0
exp

(∫ t̂

0
A(t̄) dt̄

)

Sr (t− t̂) dt̂ .

and initial condition

Yr(0) = δr0Y(0)

46.4 Numerical Implementation

In order to obtain numerical results from the afore derived solution, we introduce
some simplifications in the reactivity and in the source terms, respectively. These
simplifications involve constant approximations that still provide a solution that
remains within an acceptable error range but avoids excessive computing time. To
this end we discretize the time interval for the matrix A and the source term Sr,
so that the time evolution is constructed using the results from the previous time
interval as initial condition. Thus we end up with constant matrices Ā and S̄r. Note
that Ā has distinct eigenvalues, since the operator of the differential equation is
self-adjoint, and one can factorize ĀVDV−1 and exp(Āt) = Vexp(Dt)V−1, with V
the eigenvector matrix of Ā and D the diagonal matrix with associated eigenvalues.
Thus, the final form of Yr is

Yr = Vexp(Dt)V−1Yr(0)+VD−1 (exp(Dt)− I)V−1S̄r. (46.5)
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By virtue, the only time dependent part in matrix A is the apparent reactivity ρ0 that
depends on the history of the neutron population from t = 0 up to the actual time
(see equation (46.2)). Since we are using an analytical continuation in our numerical
procedure, the reactivity has to be computed in two steps, first considering the
solution up to the last time step and afterwards correcting the integral over last time
interval using the solution for n in this time interval. More specifically, the integrals
are solved using the trapezoidal rule for the reactivity as well as the nonlinearity and
fractional derivative, still to be discussed.

ρ̄ =
1
2
(ρ(t−Δ t)+ρ(t))

S̄r = −1
2
(Nr−1(t−Δ t)+Nr−1(t)+Fr−1(t−Δ t)+Fr−1(t))

To calculate the fractional derivative Fr one faces one dilemma, namely the fact
that there does not exist a unique definition for this kind of derivative. Definitions
that may be found in the literature are the Riemann–Liouville, the Caputo and
Grünwald-Letnikov’s definitions [De03, OlSp74, Tr03]. By inspection one verifies
that the Riemann–Liouville definition of fractional derivatives has a consistent
form with respect to classical limits, and moreover it preserves homogeneity of
homogeneous functions, where the exponential function is one striking example.
Also integral transforms maintain their classically established properties, here
classically means properties defined for the usual derivatives. The Riemann–
Liouville definition of the fractional derivative operator acting on a function f = f (x)
is defined by [OlSp74]

dν f
dxν

=
1

Γ (m−ν)
dm

dxm

∫ x

−∞
f (ξ )

(x−ξ )1+ν−m dξ

for ν ∈ R, m ∈ Z, and ν < m < ν + 1. Here, ν is the fractional derivative order,
Γ (x) is the gamma function, m is an integer. One of the principal properties
of this definition is that it keeps the transcendental character of a function after
application of the fractional derivative. For instance, application of this operator on
the exponential functions yields

dν

dxν
exp(ax) = aν exp(ax),

dν

dxν
K =

dν

dxν
K exp(0x) = 0,

where a and K are real constants. Note that the exponential function and its relation
to the fractional derivative properties is essential because of the construction of the
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solution terms Yr containing the exponential function. Using this definition, the
numerical values of the terms for Fr may be uniquely computed.

46.5 Results

In the sequel, five cases of reactivity input are evaluated, for a constant positive and
negative reactivity, for a linearly increasing reactivity with time and a sinusoidal
case with the temperature feedback switched off (α ≡ 0) and last not least, reactivity
driven by the temperature feedback. For all cases the same set of nuclear parameter
was used and is shown in table 46.1.

The initial condition valid for all cases may be calculated from the parameter in
table 46.1 and is

Y(0) =
(

1 β1
Λλ1

β2
Λλ2
· · · βp

Λλp

)T
. (46.6)

For the first four cases, combinations with fractional derivatives (FD) κ = 0.9,
1.0, 1.1 and τ = 0,10−6,10−4 s are shown in figures 46.1–46.4, where P/[MW]
signifies the power level that is proportional to the neutron density n. For constant
positive reactivity (ρ = 0.003, time step Δ t = 0.1 s), only for small times visible
differences occur in the case with the largest τ = 10−4 s, where for negative constant
reactivity (ρ = −0.003, time step Δ t = 0.1 s, and the sinusoidal reactivity change
(ρ = 0.003sin(πt), time step Δ t = 0.01 s) no significant differences appear in
comparison with the classical point kinetics solution. In the linear reactivity case
(ρ = 0.003t, time step Δ t = 0.01 s), only for the largest τ and for large times (t∼ 2 s)
a significant difference between the different solutions are found.

In the case considering temperature feedback with α = 5 × 10−5 K−1,
H = 0.05 Ks/MW, ρ0 = 0.003 and time step Δ t = 0.001 s any contribution due
to the fractional derivative was completely suppressed. Figures 46.5–46.7 show the
power level, the reactivity evolution with time and the temperature for the classical
model (τ = 0), and the fractional model with τ = 10−4 s and κ = 0.9. Unexpectedly,
both curves practically coincide for the three quantities, power level, reactivity and
temperature over the whole time interval up to 10 s.

Table 46.1 Nuclear parameter set.

Λ = 10−5 s �= 0.00024 s β = 0.007

βi 0.000266 0.001491 0.001316 0.002849 0.000896 0.000182

λi[s−1] 0.0127 0.0317 0.115 0.311 1.4 3.87
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Fig. 46.1 Case 1: Power level for ρ = 0.003.

Fig. 46.2 Case 2: Power level for ρ =−0.003.
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Fig. 46.3 Case 3: Power level for ρ = 0.003t.

Fig. 46.4 Case 4: Power level for ρ = 0.003sin(πt).
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Fig. 46.5 Case 5: Power level evolution with time, considering temperature feedback.

Fig. 46.6 Case 5: Reactivity evolution with time, considering temperature feedback.
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Fig. 46.7 Case 5: Temperature evolution with time, considering temperature feedback.

46.6 Conclusions

As shown in the results, within the range of the parameters considered the influence
of the fractional derivative is practically completely suppressed as an effect of
the temperature feedback. An extensive comparison of results with and without
feedback, that are not shown in this contribution clearly identified the temperature
influence on reactivity as the cause for suppression.

This statement can be confirmed due to the fact that we determined the solution in
a closed form, without using simplifications or approximations along the derivation
of the solution. Moreover, a genuine analysis of convergence not presented here
showed us that the obtained solution is close to the true solution. Formally, the
solutions are determined by a recursive scheme, where recursion initialization
satisfies the initial conditions, all remaining initial conditions are null. The recursion
scheme is truncated according to a prescribed precision which may be evaluated by
a convergence criterion, that indicates if more recursions are in order.

A further noteworthy aspect is that there does not exist a unique definition for
the fractional derivative. However, if such a derivative is considered an extension
to the traditional derivative, certain properties of functions shall be preserved, one
of them is the homogeneity. By direct inspection one notices that the only consistent
definition compatible with this criterion is the Riemann–Liouville definition, used
in this work. Further, integral transform properties and its inversion were found to
be free of contradictions only for the latter definition.
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Concluding, we have shown that the extension of the classical model with a
fractional derivative accompanied by two additional parameters is not only more
cumbersome to be solved but also does not contribute with significant improvements
in comparison with the classical point kinetic results. Although, works known from
the literature have shown some changes that occur, the present model considering
additional temperature feedback revealed that none of those effects survived.
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[Tr03] Trenčevski, K.: New Approach to The Fractional Derivatives. International Journal
of Mathematics and Mathematical Sciences 2003(5), 315–325 (2003)



Chapter 47
Comparison of Analytical and Numerical
Solution Methods for the Point Kinetics
Equation with Temperature Feedback Free
of Stiffness

J.J.A. Silva, A.C.M. Alvim, B.E.J. Bodmann, and M.T.B. Vilhena

47.1 Introduction

The nuclear point kinetics equations with temperature feedback are a stiff
system of nonlinear differential equations that determine the neutron density
and delayed precursor concentrations. From the time evolution of these
quantities one may simulate the power density of a nuclear reactor. Computing
solutions of the point kinetics equations provide information on the dynamics
of nuclear reactor operation and are useful for an understanding of power
variations when the control rods are adjusted (see, for instance, references
[Ab09, AbHa03, AbHa02, AbNa02, ChEtAl07, KiAl04, NaZa10, Na10, PeNiRa06,
PeEtAl11, SaPa13, TaJaHa10, SiEtAl14]. As pointed out by many authors, the
system of point kinetics equations continues to be the crucial set of equations.
Although its range of applicability has been severely restricted by the increasing
importance of optimal power loosely coupled reactor cores, they still remain useful
in terms of preliminary studies, especially when control aspects are of concern. The
presence of temperature feedback is useful to provide an estimate of the transient
behavior of reactor power and other system variables of tightly coupled reactor
cores.

In this chapter, first the usual neutron point kinetics equations are solved using
a diagonalization decomposition method that is free of stiffness applying a semi-
analytical and two numerical approaches. Since, it is the temperature feedback
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which drives reactivity, that is not considered in the first part of the study, we
prescribe by hand a linear reactivity evolution with time. Second, the point reactor
kinetics equation are considered in the presence of a Newtonian temperature
feedback, which are reduced to a second order nonlinear differential equation,
where an analytical as well as a numerical decomposition procedure is applied to
determine the solution. To this end the solution is expanded in a series of functions
and the nonlinear term is handled using Adomian’s decomposition method. On the
one hand, the recursion system is implemented using analytical corrections while,
on the other hand, the explicit and implicit Euler method is used to determine
the time evolution in a specific interval. Upon substituting the expansions into the
original equations, a recursive linear system is built from the originally nonlinear
problem, which is then solved. In the sequel, we present solutions in numerical
as well as semi-analytical form for the point kinetics equations with and without
temperature feedback in the presence of one delayed neutron precursor group. The
initial condition is given by some steady state power level and a Newtonian feedback
model is being assumed for the fuel temperature equations.

47.2 Neutron Point Kinetics Equations with Temperature
Feedback

Our starting point is the point kinetics equations and one group precursors as
reported in ref. [AbNa11, NaZa10, SiEtAl14], where n(t) is the time-dependent
neutron population, C(t) is the concentration of delayed neutrons precursors, T(t)
is the time dependent temperature of the nuclear core, ρ(T) is the temperature-
dependent reactivity, β is the delayed neutron fraction, L is the prompt neutron
generation time, and λ is the average decay constant of the precursors.

dn(t)
dt

=

(
ρ(T)−β

L

)

n(t)+λC(t) (47.1)

dC(t)
dt

=
β
L

n(t)−λC(t) (47.2)

Equations (47.2) and (47.1) constitute the usual point kinetics equation system,
which is extended by a perturbation in form of a temperature feedback, where
perturbation signifies a change of the nuclear system’s configuration. This change
leads to an altered specific heat flow manifest in a change in the core temperature.
As the source of heat production are fission and decay processes, the thermal change
rate shall be proportional to the neutron density, which we assume to be linear and
the proportionality constant H signifies a parameter for the influence of the change
of heat flow on the rate of temperature change.
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dT(t)
dt

= Hn(t) (47.3)

Note that the linear relation between temperature change rate and neutron density
represents a feedback mechanism. The necessary initial conditions are defined
considering the reactor at equilibrium ( dn

dt

∣
∣
t=0 = 0), with known initial power

density and temperature (n(0), T(0)) and initial concentration of delayed neutrons
precursors

C(0) =
1
λ

(
β −ρ

L

)

n(0) . (47.4)

The variation of reactivity with temperature is given by

ρ(T) = ρ(0)−α (T−T(0)) , (47.5)

where ρ(0) is the initial reactivity and α is the fuel temperature reactivity
coefficient.

47.3 The Conventional Neutron Point Kinetics Equation

In the further we will analyze and compare the analytical and the numerical
solutions for the usual point kinetics problem using a recursive diagonalization
decomposition procedure as shown in [WoEtAl14]. In both cases the recursion steps
are evaluated by an analytical procedure as well as an explicit and implicit Euler
method. To this end we consider the equation system (47.1) and (47.2) and consider
H ≡ 0 in equation (47.3), which from the physical point of view implies α ≡ 0 in
(47.5). Such a simplification would leave the reactivity constant or in turn requires
an explicitly prescribed time dependence for reactivity based on observation or
simple model cases.

The discussion that follows in this section shows a method applicable to analyt-
ical, semi-analytical up to numerical approaches circumventing stiffness that may
be present when present time scales differ by various orders in magnitude. Since
stiffness cannot be decoupled from the context of available computational resources
and their arithmetic precision, the present line out is to show the formal procedure
but without challenging stiffness limits with today’s computing technology. The
consideration of an increased number of neutron precursor concentrations (∼6)
would represent an adequate problem to that question. For simplicity we consider
only one precursor group but without changing the structure of the solution steps.
The neutron density, precursor concentration equation system (47.1) and (47.2) may
be cast in matrix representation as
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d
dt

(
n
C

)

=

(
ρ(t)−β

L λ
B
L −λ

)(
n
C

)

(47.6)

Here, for simplicity we omitted the explicit time dependency of n and C. The time
dependence of the reactivity may have origin in various sources, as insertion or
removal of control rods and actions that involve aspects of thermohydraulics, each
one with its specific formulation for reactivity. If moderate changes are applied, one
may approximate the reactivity evolution by a linear function with time ρ(t) = at
starting from initial reactivity equal zero, where a is a coefficient. If one considers
a general reactivity function with time, it is convenient to separate the matrix on
the right-hand side of equation (47.6) into a diagonal part and one with the residual
contributions.

d
dt

(
n
C

)

=

((
ρ(t)−β

L 0
0 −λ

)

+

(
0 λ
B
L 0

))(
n
C

)

In shorthand this reads d
dt X = (D + W)X, where X is the vector containing the

unknown variables, D is the diagonal part of the coefficient matrix, and W consists
in the remaining terms. A recursive scheme may now defined upon introducing
artificial degrees of freedom by expanding n and C or equivalently X in a series.
For numerical purposes these are truncated after R terms.

n =
R−1

∑
j=0

nj C =
R−1

∑
j=0

Cj

These new degrees of freedoms, without accompanying constitutive equations, may
be used to define a recursive scheme, i.e. we can split the original system in a
number of simpler systems, choosing the diagonal matrix and the initial conditions
as recursion initialization, while the remaining equations of the recursion scheme
have zero initial conditions:

d
dt

(
n0

C0

)

=

(
ρ(t)−β

L 0
0 −λ

)(
n(0)
C(0)

)

d
dt

(
nj>0

Cj>0

)

=

(
0 λ
β
L 0

)(
nj−1

Cj−1

)

This way, the first system is solved directly due to the absence of non-diagonal
elements, and incorporates all the initial conditions. The other systems are solved
recursively, using the results of the previously determined terms.
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47.4 Results

The algorithms for the solution were implemented in program codes using the
traditional explicit and implicit Euler method, followed by the diagonalization
decomposition method (DDM) using an explicit and an implicit version. The
numerical results were compared using the following parameter set.

β = 0.0065 L = 1×10−5 s λ = 0.008 s−1 n(0) = 1 MW

Assuming that the system is initially in a given steady state, we can determine the
initial concentration of precursor concentrations according to (47.4) rearranging
(47.1) and considering d

dt n(t)
∣
∣
t=0 = 0. Two cases of linear reactivity coefficients

were tested (a = 0.25 and a = 0.50), each with two different values for time steps
(Δ t = 10−5 s and Δ t = 10−6 s), for all the above methods. In the cases, where the
decomposition was used, we truncated the expansion after the eleventh term, which
contributed at most to a change in the twenty-fourth digit.

The results obtained are shown in tables 47.1 (for a linear reactivity coefficient
a = 0.25) and 47.2 (for a = 0.5). The first two columns show the findings from the
explicit methods without and with diagonalization decomposition, whereas the third
and fourth columns of tables show the values obtained by implicit methods, without
and with the use of the decomposition. Table 47.3 gives an estimate on the order of
magnitude of the contribution of each of the decomposition terms in the calculated
power output series. Note that the orders of magnitudes of each contribution were
the same for all calculations, which was to be expected for a linear system, without
real stiffness.

Table 47.1 Power (MW) for a = 0.25.

Δ t = 10−6 s Time (s) Power (MW)

Explicit DDM(E) Implicit DDM(I)

0.0025 1.050185 1.050185 1.050166 1.050166

0.0050 1.150238 1.150238 1.150202 1.150202

0.0075 1.280032 1.280032 1.279984 1.279984

0.0100 1.442750 1.442750 1.442690 1.442690

Δ t = 10−5 s Time (s) Power (MW)

Explicit DDM(E) Implicit DDM (I)

0.0025 1.050120 1.050120 1.049934 1.049934

0.0050 1.150191 1.150191 1.149834 1.149834

0.0075 1.279987 1.279987 1.279507 1.279507

0.0100 1.442691 1.442691 1.442092 1.442092
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Table 47.2 Power (MW) for a = 0.50.

Δ t = 10−6 s Time (s) Power (MW)

Explicit DDM(E) Implicit DDM(I)

0.0025 1.103630 1.103630 1.103593 1.103593

0.0050 1.335361 1.335361 1.335284 1.335284

0.0075 1.700609 1.700609 1.700491 1.700491

0.0100 2.293542 2.293542 2.293375 2.293375

Δ t = 10−5 s Time (s) Power (MW)

Explicit DDM(E) Implicit DDM (I)

0.0025 1.103479 1.103479 1.103109 1.103109

0.0050 1.335188 1.335188 1.334415 1.334415

0.0075 1.700319 1.700319 1.699140 1.699140

0.0100 2.292916 2.292916 2.291249 2.291249

Table 47.3 Order of magnitude of each decomposition term.

DDM Terms 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

Contribution 10x) 0 0 −5 −4 −9 −9 −14 −14 −19 −19 −24

47.5 The Neutron Point Kinetics Equation with Temperature
Feedback

In this section we analyze the nonlinear system due to reactivity driven by a
temperature feedback (see [SiEtAl14]). The solution is obtained using the Adomian
decomposition method, where the time dependence of each recursion step was
determined by step-wise constant source terms. The resulting simplified equations
were solved using a selection of methods, the traditional Adomian method, the
numerical implementation by the authors of reference [NaZa10], an analytical
inversion, a Crank–Nicholson implementation and an explicit time step method.

The nonlinear second-order differential equation to be solved is obtained upon
substituting (47.5), (47.2) and equation (47.3) in the differentiated equation (47.1).
The nonlinearity may be hidden as a source term of known functions in a recursive
set of linear differential equations for the neutron population:

d2n
dt2 +

(

λ +
β −ρ(0)+αT(0)

L

)
dn
dt

+λ
αT(0)−ρ(0)

L
n

︸ ︷︷ ︸
linear

=

=
αT
L

(
dn
dt

+λn

)

+
αH
L

n2

︸ ︷︷ ︸
non−linear

(47.7)
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For convenience we introduce the abbreviations for the constant expressions a =
λ + (β − ρ(0) +αT(0))/L and b = λ (αT(0)− ρ(0))/L, then, the system to be
solved is

d2n
dt2 +a

dn
dt

+bn = S , (47.8)

where S is the nonlinearity, i.e. the right-hand side of equation (47.7) and the
temperature evolution may be determined by equation (47.3).

47.5.1 The Decomposition Method

The initial conditions for d
dt n(t)|t=0 = 0 and C(0) are the same as for the conven-

tional neutron point kinetics problem of the previous section, namely the system
is initially in a steady state and C(0) is given by equation (47.4). As already
introduced before, the nonlinearity stems from the Newtonian cooling model, which
was also adopted in the works of references [NaZa10] and [SiEtAl14]. Note that
the nonlinearity has two contributions an explicit (quadratic) one and the term
T
(

dn
dt −λn

)
that by virtue of T = T(n) is in general of unknown nonlinear type. The

quadratic nonlinearity is handled using standard Adomian functional polynomials,
the implicit nonlinear contribution is treated as shown below. Therefore, the
nonlinearity is rewritten as

S =−α
L
(P+A) where P = T

(
dn
dt
−λn

)

and A = Hn2 .

As already put into practice before, the neutron density is expanded in a series
n = ∑R−1

j=0 nj together with the temperature T = ∑R−1
j=0 Tj, which again for numerical

reasons is truncated at R according to a desired precision to be tested by a posterior
analysis (not shown in this contribution but see reference [SiEtAl14]). Again the
artificial degrees of freedoms introduced are now used to define a recursive scheme
in a fashion, that the source terms are always determined from combinations of
the solutions obtained by all the previous recursion steps. Choosing P0 = 0 and
A0 = 0 results in a homogeneous equation for j = 0,

d2n0(t)
dt2 +b

dn0(t)
dt

+ cn0(t) = 0 ,

for which the solution is well known [SiEtAl14]. With this result, one can evaluate
the temperature by integrating equation (47.3).

T0(t) = T(0)+H
∫ t

0
n(τ) dτ
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With known n0(t) and T0(t), one can evaluate the terms for j = 1.

d2n1(t)
dt

+b
dn1(t)

dt
+ cn1(t) =−αL (P1 +A1)

︸ ︷︷ ︸
S1

As the right-hand side of equation depends on n0 and T0, we may introduce an
approximation and set a fixed time step, ω , and consider P1(ω) and A1(ω) as
‘pseudo-constants.’ For an adequately chosen ω the error in the integrals involving
the Aj and Pj will be sufficiently small so that the solution is still within an
acceptable precision (to be verified in a posterior convergence analysis). This way,
all the equations with j > 0 are non-homogeneous equations, where the right-hand
side is constant and thus easy to solve.

47.5.2 Expansion of the Pj and Aj

These terms carry the products of the variables, T
(

dn
dt −λn

)
. In their construction it

is convenient that each of the Pj depends only on np and Tp for which p < j holds.
The following construction is one possibility.

P1 = T0

(
dn0

dt
−λn0

)

Pj>1 =
j

∑
p=0

Tj

(
dnp

dt
−λnp

)

+
j

∑
p=0

Tp

(
dnj

dt
−λnj

)

The expansion of the nonlinear terms in Adomian polynomials is unique,
although there are numerous ways to group together terms of such an expansion
[Ad94]. The scheme of a ‘fast conversion’ expansion (accelerated polynomials) for
n2 are

A1 = H(n2
0) ,

Aj>1 = H

(

n2
j +2nj

j−1

∑
p=0

np

)

,

that we adopt in our present implementation.
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47.6 Results

All the solutions were implemented in a program code, except the solutions from
[NaZa10], which were extracted from the aforementioned reference. The initial
conditions and nuclear parameters were identical for all the cases, except for the
initial reactivity, which assumed values of ρ(0) = 0.2β , ρ(0) = 0.5β , and ρ(0) =
0.8β .

β = 0.0065 L = 1×10−5 s λ = 0.07741 s−1 H = 0.5
K

MW s

α = 5×10−5 K−1 n(0) = 10 MW
dn
dt

∣
∣
∣
∣
t=0

= 0 T(0) = 300 K

The initial delayed neutrons precursors concentration is given by equation 47.4. The
numerical parameters used for all the cases were an integration time step ω = 0.01 s
and a simulated time interval tmax = 100 s. The results obtained for the power and
temperature in three different cases are shown in tables 47.4 to 47.9.

47.7 Conclusions

In this chapter, a comparison between (semi-)analytical and numerical methods
for the traditional neutron point kinetic problem was elaborated, with the goal
to circumvent stiffness problems in cases where the dynamics has characteristic
time scales that extend over several orders in magnitude. The method that is
useful for analytical as well as numerical schemes made use of a diagonalization
decomposition of the matrix differential equation system that together with an

Table 47.4 Power (MW) for
initial reactivity ρ(0) = 0.2β .

Time (s) Adomian Nahla- Analytical Crank- Time

Zayed Inversion Nicholson Explicit

0 10.00000 10.00000 10.00000 10.00000 10.00000

10 11.27005 11.27252 11.27057 11.27057 11.27057

20 12.09304 12.09509 12.09411 12.09411 12.09411

30 12.40054 12.40206 12.40198 12.40198 12.40198

40 12.21855 12.21948 12.22011 12.22011 12.22011

50 11.6379 11.63786 11.63898 11.63898 11.63898

60 10.77603 10.77559 10.77700 10.77700 10.77700

70 9.74997 9.74926 9.75078 9.75078 9.75078

80 8.65758 8.65667 8.65820 8.65820 8.65820

90 7.57179 7.57075 7.57223 7.57223 7.57223

100 6.54159 − 6.54185 6.54185 6.54185
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Table 47.5 Temperature (K)
for initial reactivity
ρ(0) = 0.2β .

Time (s) Adomian Nahla- Analytical Crank- Time

Zayed Inversion Nicholson Explicit

0 300 300 300 300 300

10 305.3325 305.333 305.33304 305.333 305.333

20 311.1939 311.195 311.19507 311.1951 311.1951

30 317.3387 317.341 317.34067 317.3407 317.3407

40 323.5109 323.515 323.51506 323.5151 323.5151

50 329.4892 329.494 329.49409 329.4941 329.4941

60 335.1017 335.107 335.10725 335.1073 335.1073

70 340.2376 340.244 340.24382 340.2438 340.2438

80 344.8403 344.847 344.84712 344.8471 344.8471

90 348.896 348.904 348.90326 348.9033 348.9033

100 352.4213 - 352.42873 352.4287 352.4287

Table 47.6 Power (MW) for
initial reactivity ρ(0) = 0.5β .

Time (s) Adomian Nahla- Analytical Crank- Time

Zayed Inversion Nicholson Explicit

0 10.00000 10.00000 10.00000 10.00000 10.00000

10 18.19257 18.22015 18.19535 18.19535 18.19534

20 26.71911 26.74348 26.72623 26.72623 26.72622

30 31.88565 31.90059 31.89489 31.89489 31.89488

40 32.58814 32.59413 32.59608 32.59608 32.59608

50 30.09699 30.09671 30.10183 30.10183 30.10183

60 26.07722 26.07449 26.08038 26.08038 26.08038

70 21.69675 21.69170 21.69731 21.69731 21.69731

80 17.57909 17.57298 17.57798 17.57798 17.57798

90 13.99046 13.98410 13.98837 13.98837 13.98838

100 10.99761 10.99148 10.99506 10.99506 10.99506

Table 47.7 Temperature (K)
for initial reactivity
ρ(0) = 0.5β .

Time (s) Adomian Nahla- Analytical Crank- Time

Zayed Inversion Nicholson Explicit

0 300 300 300 300 300

10 306.9508 306.953 306.9531 306.9531 306.9531

20 318.248 318.256 318.2562 318.2562 318.2562

30 333.0838 333.100 333.1004 333.1004 333.1004

40 349.3676 349.391 349.3924 349.3924 349.3924

50 365.1325 365.162 365.1628 365.1628 365.1628

60 379.2091 379.243 379.2431 379.2431 379.2431

70 391.1504 391.1860 391.1861 391.1861 391.1860

80 400.9504 400.987 400.9863 400.9863 400.9863

90 408.818 408.854 408.8534 408.8534 408.8534

100 415.0403 415.076 415.0746 415.0746 415.0746
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Table 47.8 Power (MW) for
initial reactivity ρ(0) = 0.8β .

Time (s) Adomian Nahla- Analytical Crank- Time

Zayed Inversion Nicholson Explicit

0 10.00000 10.00000 10.00000 10.00000 10.00000

10 64.48478 64.79652 64.56067 64.56067 64.56055

20 83.23222 83.30637 83.31814 83.31814 83.31809

30 70.43784 70.46077 70.48758 70.48758 70.48759

40 53.89034 53.89474 53.91555 53.91555 53.91557

50 39.75314 39.74448 39.7597 39.7597 39.75972

60 28.82673 28.81245 28.82374 28.82374 28.82375

70 20.71048 20.69477 20.70331 20.70331 20.70333

80 14.79781 14.78265 14.78942 14.78942 14.78943

90 10.5368 10.52308 10.52864 10.52864 10.52864

100 7.48594 7.47445 7.47865 7.47865 7.47865

Table 47.9 Temperature (K)
for initial reactivity
ρ(0) = 0.8β .

Time (s) Adomian Nahla- Analytical Crank- Time

Zayed Inversion Nicholson Explicit

0 300 300 300 300 300

10 317.2932 317.305 317.3071 317.3071 317.3071

20 356.6443 356.699 356.7019 356.7019 356.7019

30 395.5235 395.611 395.6125 395.6125 395.6124

40 426.5540 426.669 426.6687 426.6687 426.6687

50 449.8289 449.955 449.9537 449.9537 449.9536

60 466.8441 466.973 466.9703 466.9703 466.9703

70 479.1235 479.250 479.2474 479.2474 479.2474

80 487.9211 488.044 488.0410 488.0410 488.0410

90 494.1959 494.315 494.3117 494.3117 494.3117

100 498.6588 498.774 498.7708 498.7708 498.7708

expansion of the neutron density and precursor concentration opened pathways for
an apparently stable recursive scheme. We are aware of the fact that at the present
state of the work one would like to have genuine convergence criterion, but postpone
this task to a future work. Nevertheless, exhaustive tests with examples have shown
us that at least for the range of parameters that make sense from the nuclear physics
point of view the presented implementations show consensus, which could indicate
that a true convergence in the considered cases exist.

In the subsequent consideration a nonlinear problem was focused on, again
comparing the effectiveness of another decomposition method, namely Adomian’s
prescription for nonlinear deterministic and stochastic systems. To this end, the
neutron point kinetics equation was extended by a temperature feedback, which
introduced a nonlinearity into the previous system because of its influence on
reactivity and its dependence on the neutron density. Again numerical findings and
semi-analytical evaluations showed fairly good agreement and one can come to
the conclusion that a methodology that originally was developed with the intuition
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to consolidate an analytical approach for this type of problems seems to prove
useful also for numerical approaches. This is especially desirable due to the fact
that appearing integrals that contain the nonlinear source terms may in many cases
not be evaluated analytically. Although one may claim that the closed integral
forms represent the solution as an analytical expression, but as a consequence
of the present findings also numerical approximations are promising and seem
to maintain the solutions within a reasonable precision despite stiffness and/or
nonlinearities. Thus, it seems an interesting perspective, that a reasoning that led
to the development of solutions in form of analytical representation are also useful
beyond the original scope and may improve numerical approaches that otherwise
would suffer from the limitations as, for instance, the Lax–Milgram theorem for
stiff problems. It is noteworthy, that for nonlinear problems no equivalent theorem
seems to be available so far to the scientific community.
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Chapter 48
The Wind Meandering Phenomenon
in an Eulerian Three-Dimensional Model
to Simulate the Pollutants Dispersion

V.C. Silveira, D. Buske, and G.A. Degrazia

48.1 Introduction

Usually in stable conditions in the Planetary Boundary Layer (PBL), when the wind
velocity magnitude is low, horizontal wind low-frequency oscillations are observed.
These horizontal wind oscillations characterize the wind meandering phenomenon.

The aim of the present work is to develop a new model to simulate the
atmospheric pollutants dispersion taking into account the meandering in low wind
speed. To accomplish this, we present a new analytical solution for the three-
dimensional advection–diffusion equation. The advection–diffusion equation is
solved combining the Laplace transform and Generalized Integral Laplace Trans-
form Technique (GILTT) [BuEtAl08, MoEtAl09].

The importance of the present study to describe the pollutant dispersion in
low wind conditions lies in the fact that such conditions occur frequently and are
of crucial importance in air pollution evaluations. In such conditions, traditional
models employed to calculate the contaminants concentration can be not adapted to
predict the pollutants dispersion.

A characteristic of the wind meandering is the presence of observed negative
lobules in the autocorrelation function (ACF) associated with the horizontal compo-
nents of the wind vector [AnEtAl05]. In this study we employ an Eulerian dispersion
model to investigate the transport phenomenon of contaminants caused by the wind
meandering.
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To evaluate the present methodology we used observed concentration data in
stable conditions of low wind speed that were measured in the classical diffusion
experiment called Idaho National Engineering Laboratory (INEL) [SaDi74].

48.2 Analytical Solution

The advection–diffusion equation is written as

u
∂c
∂x

+ v
∂c
∂y

+w
∂c
∂ z

=
∂
∂x

(

Kx
∂c
∂x

)

+
∂
∂y

(

Ky
∂c
∂y

)

+
∂
∂ z

(

Kz
∂c
∂ z

)

(48.1)

where the wind speed and the wind direction of the INEL experiments were utilized
to calculate the u and v wind components. The u- and v-components are given by

u = Vsin(θ)

v = Vcos(θ)

where V is the horizontal wind velocity magnitude and θ is the angle. The boundary
and source conditions are

Kx
∂c(Lx,y,z)

∂x
= Ky

∂c(x,0,z)
∂y

= Ky
∂c(x,Ly,z)

∂y
=

= Kz
∂c(x,y,0)

∂ z
= Kz

∂c(x,y,h)
∂ z

= 0

uc(0,y,z) = Qδ (y− yo)δ (z−Hs) (48.2)

Using the integral transform technique in the y variable and expanding the
pollutant concentration yields

c(x,y,z) =
N

∑
n=0

cn(x,z)ζn(y)

N
1
2
n

(48.3)

Replacing the equation (48.3) in the equation (48.1) and applying the operator

1

N
1
2
m

∫ Ly

0
()ζmdy (48.4)
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we can write the equation

αn,mu
∂cn

∂x
+βn,mvcn +αn,mw

∂cn

∂ z
=

= αn,m
∂
∂x

(

Kx
∂cn

∂x

)

+αn,m
∂
∂ z

(

Kz
∂cn

∂ z

)

−αn,mλn
2Kycn

(48.5)

The matrices αn,m and βn,m are

αn,m =
1

N
1
2
n N

1
2
m

∫ Ly

0
ζn(y)ζm(y)dy =

{
0, m �= n
1, m = n

and

βn,m =
1

N
1
2
n N

1
2
m

∫ Ly

0
ζ
′
n(y)ζm(y)dy =

=

{
2n2

Ly(n2−m2)
[cos(nπ)cos(mπ)−1], m �= n

0, m = n

The solution of the problem (48.5) is

cn(x,z) =
I

∑
i=0

cn,i(x)ςi(z) (48.6)

Replacing the equation (48.6) in the equation (48.5), we can write the equation
(48.5) in matrix form as

Y ′′(x)+FY ′(x)+GY(x) = 0 (48.7)

The matrices F and G are given, respectively, by F = B−1D and G = B−1E. The
matrices B, D and E are written as

bi,j = αn,m

∫ h

0
Kx ςi(z)ςj(z)dz

di,j =−αn,m

∫ h

0
uςi(z)ςj(z)dz+αn,m

∫ h

0
K′x ςi(z)ςj(z)dz

ei,j =−αn,m

∫ h

0
wς ′i (z)ςj(z)dz+αn,m

∫ h

0
K′z ς ′i (z)ςj(z)dz−



580 V.C. Silveira et al.

−αn,mλ 2
i

∫ h

0
Kz ςi(z)ςj(z)dz−αn,mλ 2

i

∫ h

0
Ky ςi(z)ςj(z)dz−

−βn,m

∫ h

0
vςi(z)ςj(z)dz

To solve the problem described by the equation (48.7) we apply order reduction:

Z′(x)+H.Z(x) = 0 (48.8)

The H matrix has the block form

H =

[
0 −I
G F

]

The transformed problem provided by the equation (48.8) is solved by the
Laplace transform technique and diagonalization:

Z(x) = X M(x)ξ

M(x) is the diagonal matrix with elements e−dix, X is an eigenvector matrix of the H
matrix, ξ = X−1Z(0), X−1 is the inverse matrix of the eigenvector of the H matrix
and Z(0) is the initial condition. In this model the w component of the wind speed
is zero.

For the source condition, replacing the equation (48.3) in the equation (48.2) and
applying the operator of the equation (48.4), we obtain the formulation

u
N

∑
n=0

cn(0,z)
1

N
1
2
n

1

N
1
2
m

∫ Ly

0
ζn(y)ζm(y)dy

= Qδ (z−Hs)
1

N
1
2
m

∫ Ly

0
δ (y− yo)ζm(y)dy

(48.9)

Replacing the equation (48.6) in the equation (48.9) yields

u
I

∑
i=0

cn,i(0)ςi(z)
1

N
1
2
n

1

N
1
2
m

∫ Ly

0
ζn(y)ζm(y)dy =

Qζi(yo)

N
1
2
m

δ (z−Hs) (48.10)

Applying the following operator in the equation (48.10), we find that

∫ h

0
()ςj(z)dz
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results in the source conditions

Y(0) =
Qζi(yo)ςj(Hs)

u
√

Lyh
para ((i = j) e (m = n)) = 0

Y(0) =
Qζi(yo)ςj(Hs)

u
√

Ly
2

h
2

para ((i = j) e (m = n)) �= 0

where Y(0) is the column vector containing the components {cn,i(0)}.

48.3 Parameterization of the Turbulence

In the present dispersion model, to parameterize the turbulence effects we employ
the algebraic eddy diffusivities that depend on the source distance. In the stable
conditions [DeViMo96] proposed the following algebraic formulation to the eddy
diffusivities (Kα ):

Kα =
2
√
π0.64u∗ha2

i (1− z/h)α1(z/h)X∗

[2
√
π0.64(z/h)+16ai(fm)i(1− z/h)α1/2X∗]2

∗

∗ [2
√
π0.64a2

i (z/h)+8ai(fm)i(1− z/h)α1/2X∗]
[2
√
π0.64(z/h)+16ai(fm)i(1− z/h)α1/2X∗]2

where the X∗ is the dimensionless source distance

X∗ =
xw∗
uh

with α = x,y,z, i = u,v,w, h is the height of stable boundary layer, α1 is a constant
that depends on the evolution of the stable boundary layer, (fm)i is the frequency of
spectral peak provided by the relation

(fm)i = (fm)n,i

(
1+3.7

z
Λ

)

where (fm)n,i is the frequency of spectral peak in the surface for neutral conditions
[(fm)n,w = 0.33; (fm)n,v = 0.22; (fm)n,u = 0.045], z is the height above the ground,
Λ is the local Monin–Obukhov length expressed by

Λ = L
(

1− z
h

)(1.5α1−α2)



582 V.C. Silveira et al.

with [α1 = 1.5;α2 = 1] and ai is given by the ratio

ai =
(2.7ci)

1/2

(fm)
1/3
n,i

where cv,w and cu are, respectively, given by [cv,w = 0.36;cu = 0.27].

48.4 Wind Profile

The wind speed profile is described by the power law [PaDu84]

V

V1
=

(
z
z1

)α

where V is provided to the u and v components, V and V1 are wind mean velocities
at the heights z and z1 and α is a constant (α = 0.1).

In this study the wind speed profile is also described by a similarity law:

V =
u∗
k

[

ln

(
z
z0

)

−ψm

( z
L

)]

for z≤ zb

and

V = V(zb) for z > zb

zb = min[|L|,0,1h], k is the von Kármán constant (≈ 0.4) and z0 is the terrain
roughness.

The stability function is given by the Businger relationship:

ψm

( z
L

)
=−4.7

z
L
,

1
L
≥ 0

48.5 Experimental Data

The INEL low wind speed diffusion experiments were accomplished in a flat and
uniform terrain. The pollutant SF6 was collected in arcs of 100, 200 and 400 m
of the emission point at the height of 0.76 m above of the ground. The pollutant
was released of a height of 1.5 m above of the ground-level. The wind in 2 m was
obtained of the experiment. The roughness length for the INEL experiments was of
0.005 m.
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Table 48.1 The observed
and calculated meteorological
parameters of the INEL
experiment.

Exp. u(2m)(ms−1) u∗(ms−1) L(m) h(m)

4 0.7 0.047 2.4 13

5 0.8 0.053 3.1 16

6 1.2 0.08 7.1 30

7 0.6 0.04 1.8 11

8 0.5 0.033 1.2 8

9 0.5 0.033 1.2 8

10 1.1 0.073 5.9 26

11 1.4 0.093 9.6 37

12 0.7 0.047 2.4 13

13 1.0 0.067 4.9 23

14 1.0 0.067 4.9 23

The Monin–Obukhov length, friction velocity and height of the PBL were
not measured in the INEL experiments, but were calculated from the empirical
formulations.

The Monin–Obukhov length was calculated utilizing the relation [Za90]

L = 1100u2
∗

The friction velocity is calculated as [Ve80]:

u∗ =
ku(zr)

ln(zr/zo)

where zr = 2 m (reference height).
To calculate h we use the expression [Zi72]

h = 0.4

(
u∗L
fc

)1/2

The meteorological parameters of the INEL experiment are showed in
Table 48.1:

48.6 Statistical Indexes

The statistical indexes describe the model performance to reproduce the observed
concentrations. In our analysis we use the following Normalized Mean Square Error
(NMSE), Correlation Coefficient (COR), Factor of 2 (FA2), Fractional Bias (FB),
and Standard Fractional Bias (FS) (see [HaPa89]).
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The Normalized Mean Square Error (NMSE) represents all deviations between
the simulated and observed concentrations:

NMSE =
1
N
∑(co− cp)

2

co cp

The Correlation Coefficient (COR) represents the association degree between the
simulated and observed concentrations:

COR =
(∑co cp)−Nco cp

√
(∑c2

o−Nco
2)(∑c2

p−Ncp
2)

The Factor of 2 (FA2) represents the data fraction (% normalized to one):

FA2 =
cp

co
, 0,5≤ FA2≤ 2

The Fractional Bias (FB) represents the tendency of the model to overestimate
or underestimate the observed concentrations:

FB =
co− cp

0,5(co + cp)

The Standard Fractional Bias (FS):

FS =
σo−σp

0,5(σo +σp)

where the σo and σp are the observed and simulated standard deviation. The better
results are obtained when the COR and FA2 are nearest of one and the NMSE, FB
and FS are close to zero.

48.7 Results

Figure 48.1 shows the negative lobule in the autocorrelation function that character-
izes the wind meandering of the horizontal components.

Figure 48.2 shows the scatter diagram of the observed and simulated concen-
trations using the wind power law. Figure 48.3 shows the scatter diagram of the
observed and simulated concentrations using the wind similarity law. The better
results are obtained with the wind power law.

To test the very low wind speed influence in the simulation of contaminant
concentrations, we selected only cases in that the wind velocity is lesser than 1m/s.
On the other hand, Figure 48.4 shows the scatter diagram of the observed and
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Fig. 48.1 Autocorrelation
function using database
INEL.
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Fig. 48.2 Scatter diagram of
the observed (co) and
simulated (cp) concentrations
data by 3D-GILTT method
using wind power law.

simulated concentrations using the wind power law with V < 1m/s and Figure 48.5
shows scatter diagram of the observed and simulated concentrations using the wind
similarity law with V < 1m/s. Better results are obtained when we do not consider
only the horizontal wind lesser than 1m/s.

Table 48.2 shows the statistical performance of the present model. The model
simulates satisfactorily the observed concentrations using the wind power law and
wind similarity law without considering the very low wind speed. The NMSE, FB
and FS are nearest to zero and COR and FA2 are one or are nearest to one.
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Fig. 48.3 Scatter diagram of
the observed (co) and
simulated (cp) concentrations
data by 3D-GILTT method
using wind similarity law.

Fig. 48.4 Scatter diagram of
the observed (co) and
simulated (cp) concentrations
data by 3D-GILTT method
using the wind power law
(V < 1m/s).

Table 48.3 shows the results of the observed and simulated concentrations using
power and similarity wind.
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Table 48.2 Statistical performance of the present model.

Simulation NMSE COR FA2 FB FS

Wind power law 0.11 0.91 1.00 0.03 0.22

Wind similarity law 0.20 0.82 0.94 −0.10 0.00

Wind power law (V<1m/s) 0.16 0.91 1.00 −0.09 0.25

Wind similarity law (V<1m/s) 0.28 0.83 0.89 −0.16 0.22

Fig. 48.5 Scatter diagram of
the observed (co) and
simulated (cp) concentrations
data by 3D-GILTT method
using the wind similarity law
(V < 1m/s).

48.8 Conclusions

It is very difficult to simulate the pollutants dispersion in low wind speed stable
conditions. In such conditions the horizontal wind has not a predominant direction
and the models cannot be adapted to simulate the pollutants dispersion.

The results generated by the present dispersion model show a good agreement
between the observed and simulated concentrations. The statistical indexes show a
good performance, with COR and FA2 close to one and NMSE, FB and FS close
to zero. Better results are obtained when we do not consider a very low wind speed
(V < 1m/s).

Acknowledgements The authors wish to thank CAPES, CNPq, and FAPERGS for partial
financial support of this work.



588 V.C. Silveira et al.

Table 48.3 The observed (co) and simulated (cp) concentrations
using the INEL experiment and wind power law and wind similarity
law.

Exp. Dis. (m) co cp (wind power law) cp (wind similarity law)

4 100 5.81 4.42 4.20

200 2.99 2.21 2.07

400 1.47 1.03 1.00

5 100 1.36 1.79 2.93

200 0.87 1.02 1.20

400 0.30 0.43 0.53

6 100 2.61 1.84 2.19

200 0.97 0.69 0.93

400 0.29 0.25 0.39

7 100 1.26 2.22 2.53

200 0.71 0.96 1.16

400 1.01 1.03 0.97

8 100 0.59 0.87 0.81

200 0.32 0.41 0.42

400 0.33 0.45 0.55

9 100 1.09 2.14 2.02

200 0.57 0.93 1.06

400 0.39 0.37 0.55

10 100 2.41 1.90 3.89

200 1.80 1.75 1.97

400 0.71 0.63 0.71

11 100 2.32 2.44 1.82

120 1.09 1.04 0.79

400 1.10 0.85 1.00

12 100 2.00 2.31 2.88

200 1.77 2.30 2.07

400 0.99 1.09 1.00

13 100 3.16 2.28 4.76

200 2.30 2.18 2.44

400 1.37 1.16 0.87

14 100 2.81 2.79 2.61

200 1.59 1.11 1.09

400 0.30 0.42 0.46
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Chapter 49
Semilinear Second-Order Ordinary Differential
Equations: Distances Between Consecutive
Zeros of Oscillatory Solutions

Tadie

49.1 Preliminaries

Oscillation criteria for semilinear differential equations have been largely
investigated in the literature, both in one-dimensional and in multi-dimensional
cases. But the arrangements of the zeros for two different solutions or the diameters
of two consecutive zeros of a solution are rare to find in the literature. This note
gives some lights for the one-dimensional case, i.e. for equations of the type

(

a(t)φα(u′)
)′

+ c(t)φα(u)+ f (t,u) = 0; t ≥ 0

where a ∈ C1(R, (0, ∞)) with a′ ≥ 0; ∃T,m > 0 c ∈ C([T, ∞), (m, ∞)), f ∈
C(R2, R) and for some α > 0, φα(S) := |S|α−1S.

Definition 1. Let h ∈ C(E) where E denotes R or Rn. h will be said to be

(i) (weakly) oscillatory in E if ∀T > 0, h has a zero in ΩT := {x∈ E ; |x|> T};
(ii) strongly oscillatory if it has a nodal set in any ΩT , ∀T > 0, where a nodal set

is any nontrivial connected and bounded component of the support D(h) of h.
(iii) A differential equation will be said to be oscillatory if any of its nontrivial and

bounded solutions is oscillatory.
(iv) Therefore a function w will be said not to be oscillatory if either there are

μ ,R > 0 such that |w|> μ in ΩR or liminft↗∞ |w(t)|= 0.

Tadie (�)
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(v) Two distinct oscillatory functions u1 and u2 will be said to have alternating
zeros in ΩT say, if in ΩT , between any two consecutive zeros of ui lies a zero
of uj where i �= j and i, j ∈ {1, 2}.

In the sequel, unless indicated otherwise, φ will denote φα with an α > 0.
We will be dealing with equations of the types

⎧
⎪⎪⎨

⎪⎪⎩

(i) P(y) :=

{

a(t)φ(y′)
}′

+q(t)φ(y) = 0, t ∈ R and

(ii) K(u) :=

{

A(t)φ(u′)
}′

+Q(t)φ(u)+F(t,u,u′) = 0,

where a,A ∈ C1(R, (0, ∞)) , (0, ∞)) , q ∈ C(R, R) , C ∈ C(R, R) and for some
α > 0, t ∈ R, φ(t) := φα(t) = |t|α−1t; with the properties that tφ(t) = |t|α+1

and tφ ′(t) = αφ(t). In (i) we have a semilinear equation and in (ii) a perturbed
semilinear one.

In the sequel, these general hypotheses will be set on the coefficients of the
semilinear parts of the equations:

(H): h1) the numerical functions a and A are continuously differentiable in
their respective domains, strictly positive and non-decreasing;

h2) Q and q are continuous in their respective arguments and eventually strictly
positive (i.e. ∃m, T > 0 ; Q,q > m in ΩT ).

By means of some comparison methods based on some Picone-type identities
(inequalities) we will investigate the arrangement of the zeros of some distinct
oscillatory solutions. We recall here some Picone’s formulas which will be often
referred to: given two equations for i = 1,2 and φ := φα

Ki(ui) :=

{

ai(t)φ(y′i)
}′

+qi(t)φ(y)+ fi(t,ui,u
′
i) = 0, t ∈ R,

we easily have (see, e.g., [Ta12]) the following Picone-type identity:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Ψ(y1, y2) :=

{

y1a1(t)φ(y′1)− y1φ(
y1

y2
)a2(t)φ(y′2)

}′
=

a2(t)ζα(y1,y2)+

[

a1(t)−a2(t)

]

|y′1|α+1+
[

q2(t)−q1(t)

]

|y1|α+1 + |y1|α+1

[
f2(t,y2,y′2)
φ(y2)

− f1(t,y1,y′1)
φ(y1)

]
(49.1)

where ∀γ > 0, the two-form function ζγ is defined ∀u,v ∈ C1(R, R) by

(((Z1) : ζγ(u,v)

⎧
⎪⎨

⎪⎩

= |u′|γ+1− (γ+1)u′φγ(
uv′

v
)+ γv′

u
v
φγ(

uv′

v
)

= |u′|γ+1− (γ+1)u′φγ(
uv′

v
)+ γ |uv′

v
|γ+1

which is strictly positive for non-constant u �= λv, ∀λ ∈ R.
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Remark 1. (R1) An important tool in our investigation is the following:
Let u and v be oscillatory functions in ΩT such that v has a zero, v1 in a
D(u) and u1 ∈ D(u) is the singularity of u. A suitable translation of v like
V(t) := v(t+ξ ), ξ ∈R can be chosen such that V ′(u1) = u′(u1) = 0. Because
V and v have nodal sets of the same sizes, this in some cases provides a clear
comparison like diam(v) = diam(D(V))≤ diam(D(u)).

(R2) We will show that in certain conditions on the coefficients of the equations
of u and v, wherever their nodal sets D(u) and D(v) overlap, a translation of
one of them D(u), say, can be chosen such that D(u1) ⊂ D(v) where u1 is a
translation of u.

49.2 Comparison of Diameters of Overlapping Nodal Sets

It is well established that under the hypotheses (H), any semi-linear equation

{

a(t)φα(u′)
}′

+q(t)φα(u) = 0; t ≥ 0

is strongly oscillatory (see, e.g., [Ta12] and the references therein).
Consider in t ≥ 0 the oscillatory equations

⎧
⎪⎪⎨

⎪⎪⎩

(i)

{

a(t)φ(y′)
}′

+q(t)φ(y) = 0

(ii) and

{

A(t)φ(z′)
}′

+Q(t)φ(z) = 0
(49.2)

where the coefficients satisfy (H).
As in (49.1) the solutions y and z satisfy (wherever z �= 0)

⎧
⎪⎪⎨

⎪⎪⎩

Ψ(y,z) =

{

ya(t)φ(y′)− yφ(
y
z
)A(t)φ(z′)

}′
=

= A(t)ζα(y,z)+
[

a(t)−A(t)

]

|y′|α+1 +

[

Q(t)−q(t)

]

|y|α+1
(49.3)

and wherever y �= 0

⎧
⎪⎪⎨

⎪⎪⎩

Ψ(z,y) =

{

zA(t)φ(z′)− zφ(
z
y
)a(t)φ(y′)

}′
=

= a(t)ζα(z,y)−
[

a(t)−A(t)

]

|z′|α+1−
[

Q(t)−q(t)

]

|z|α+1.

(49.4)
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Theorem 1. Let y and z be two solutions of (49.2), oscillatory in some ΩT .

(1) (i) If a≡ A and Q≡ q in ΩT then if two nodal sets D(y) and D(z) overlap,
in D(y)

⋃
D(z) either they coincide or between two consecutive zeros of y

lies a zero of z and reversely, i.e.
(ii) if two such solutions are distinct, then one of the nodal sets is a translation

of the other, i.e. ∃ξ ∈ R\{0}; y(t) = z(t+ξ ).
(2) For the solutions of (49.2), assume that a≥ A and Q≥ q (but not both equal)

in some ΩT . Then if D(y) and D(z) overlap, the diameter of D(z) is smaller
than that of D(y).

Proof. (1) (i) Assume that D(y) := (u1, u2) and D(z) := (v1, v2) are two over-
lapping nodal sets of the solutions with a ≡ A and Q ≡ q in t > T . From
(49.4), if y > z in D(z), then 0 =

∫
D(z)Ψ(y,z)dt =

∫
D(z) a(t)ζα(z,y)dt > 0

which is absurd; y has to have a zero inside D(z). Similarly from (49.3) we
get that z has a zero inside D(y).

(ii) Let y and z be two solutions with z(s) = y(s) = 0 for some s > T . If say, we
assume that the next zero of y is strictly smaller than that of z, then z would
not have a zero between the two consecutive zeros of y.

(2) As seen before, from (49.3) z has a zero inside D(y). We choose z such that for
some ξ ∈D(y), z′(ξ ) = y′(ξ ) = 0. Let D(y) := (u1, u2). The integration over
(u1, ξ ) of (49.3) shows that z has to have a zero in (u1, ξ ) and its integration
over (ξ , u2) shows that z has to have a zero in (ξ , u2) . Therefore D(z)⊂D(y).

49.3 Cases of Semilinear Equations with Perturbations

Now we consider equations of the types

⎧
⎪⎪⎨

⎪⎪⎩

(i)

{

a(t)φ(y′)
}′

+q(t)φ(y)+Y = 0

(ii) and

{

A(t)φ(z′)
}′

+Q(t)φ(z)+Z = 0
(49.5)

where a,A,Q,q satisfy (H) , Y and Z being continuous functions in ΩT ×R. Oscil-
lation criteria for these equations are established in the literature (e.g. [Ta10, Ta11]).

As in (49.1) and (49.3), wherever z �= 0 in D(y),

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Ψ(y,z) =

{

ya(t)φ(y′)− yφ(
y
z
)A(t)φ(z′)

}′
=

= A(t)ζα(y,z)+
[

a(t)−A(t)

]

|y′|α+1 +

[

Q(t)−q(t)

]

|y|α+1

+|y|α+1

{
Z
φ(z)

− Y
φ(y)

}

.

(49.6)
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Theorem 2. Let a,A,Q and q be as in (H). Assume that

∀(t, S) ∈ΩT ×R SZ(t,S)≥ 0 and SY(t,S)≤ 0,

and

a≥ A and Q≥ q (but not both equal ) in ΩT .

Then for two solutions y and z of (49.5) with overlapping nodal sets D(y) and D(z),
the diameter of D(z) is smaller than that of D(y).

Proof. Because under the hypotheses the second member of (49.6) is strictly
positive on D(y), the proof is similar to the last one.

49.4 Some Applications

In this section, we take a ≡ A = 1. From (49.4) of [Ta12], the generalized Sine
equation (where φ := φα ; α ≥ 1) is

(

φα(u′)
)′

+αφ(u) = 0

whose solution is Sα(t) and it satisfies

Sα(t+πα) =−Sα(t); πα = 2π
[

(α+1)sin{ π
α+1

}
]−1

.

For any λ ∈ R, easy calculations lead to

⎧
⎪⎨

⎪⎩

Σ(t) := Sα(λ t) =⇒
{

φ(Σ ′)
}′

+λα+1αφ(Σ) = 0

and Σ(t+
πα
λ

) =−Σ(t).

(see [JaKu99, Ta12]). Define for any K > 0 UK(t) to be a nontrivial oscillatory
solution of

(

φ(U′)
)′

+Kα+1αφ(U) = 0

and V that of
(

φ(V ′)
)′

+Q(t)φ(V) = 0

in some ΩT .
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From Theorem 2.1, assume that the continuous function Q∈C(ΩT) satisfies for
some M1 > M0 > 0

⎧
⎪⎪⎨

⎪⎪⎩

αMα+1
0 < Q(t)< αMα+1

1 ∀t ∈ΩT then

UM1 has a zero in any nodal set of V and

V has a zero in any nodal set of UM0 .

We then have the following result:

Theorem 3. Let y be an oscillatory solution of

⎧
⎪⎨

⎪⎩

(i)

(

φ(y′)
)′

+q(t)φ(y) = 0; in ΩT

(ii) with αMα+1
0 < q(t)< αMα+1

1 in ΩT .

(49.7)

(a) Then if x1 < x2 are two consecutive zeros of y in (a, b)⊂ΩT , then

πα
M1
≤ (x2− x1)≤ πα

M0
. (49.8)

Consequently if q is unbounded above then the increasing sequence of consec-
utive roots of the solution satisfies

lim
n→∞ (xn+1− xn) = 0. (49.9)

(b) The conclusions in a) still hold if (49.7)(i) is replaced by

(

φ(y′)
)′

+q(t)φ(y)+F(t,y) = 0; in ΩT

provided that ∀S ∈ R, SF(t,S)≤ 0 in ΩT .

Proof. (a) From Theorem 2.1, the diameter of any nodal set of the solution of
(49.7)(i) is smaller than that of an overlapping nodal set of UM0 and that of
the nodal set of UM1 is smaller than that of an overlapping nodal set of the
solution of (49.7)(i). This leads to (49.8). If q(t) is unbounded above by setting
αMα+1

0 ( Mα+1
1 ) = min[a, b] q(t) ( = max[a, b] q(t) ) , (49.9) is obtained.

(b) This is similarly obtained via the equation (49.3).

As an application to the last result, we have here some results related to the Bessel
functions (see [GeKr07]).

Consider for a,c,k,α > 0 and a parameter p ∈ R the equation

kt2u′′(t)+
(

ct2 +a−αp2
)

u = 0 in (0 , ∞)
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which can take the form

⎧
⎨

⎩

u′′+qp(t)u = 0, t > 0;

qp(t) :=
c
k
+

a−αp2

kt2 .
(49.10)

We know that if ∃m, t0 > 0 such that qp(t)>m in Ωt0 , any nontrivial and bounded
solution of (49.10) is oscillatory (see [Ta10]-[Ta12]).

Easily we observe that such an m exists if

t2 >
αp2−a
c− km

and clearly lim
t↗∞

qp(t) =
c
k
.

Also with

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(i) M+
p (M−p ) :=

c
k
+

a−αp2

km2 if αp2 > a (αp2 < a),

(ii)
c
k
≤ qp(t)< M+

p if αp2 < a

(iii) and M−p < qp(t)≤ c
k

if αp2 ≥ a.

We then have the following result:

Theorem 4. Let a,c,k,α > 0 and a parameter p ∈ R be such that there are
m,μ > 0 satisfying

μ2 >
αp2−a
c− km

.

Then any bounded and nontrivial solution of (49.10) in Ωμ is oscillatory. Let
{xk}k∈N denote the increasing sequence of the zeros of such a solution.

(1) If p2 =
a
α

, then ∀m ∈ N, xm+1− xm = π

√[
k
c

]

.

(2) For all m ∈ N, π

√[
k
c

]

< xm+1− xm ≤ π
(√

M−p
)−1

if p2 >
a
α

.

(3) For all m ∈ N, π
(√

M+
p

)−1

≤ xm+1− xm < π

√[
k
c

]

if p2 <
a
α

.

(4) In any case, limm→∞ (xm+1− xm) = π
(√

M−p
)−1

.
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Chapter 50
Oscillation Criteria for some Third-Order
Linear Ordinary Differential Equations

Tadie

50.1 Preliminaries

In this chapter, for t > t0 ≥ 0 we investigate in t > t0 some oscillation criteria for
problems of the type

⎧
⎪⎪⎨

⎪⎪⎩

(i) u′′′(t)+ c(t)u′(t)+h(t,u) = 0; u(t0) = u′′(t0) = 0;

(ii) where c ∈ C1(R, (0, ∞)), h ∈ C(R×R, R)

(iii) with h(., 0) = 0 and ∀s ∈ R\{0}, sh(t,s)> 0.

(50.1)

Some similar but not quite related problems can be found in [Wo02] and [OuWo04].
For hypotheses, in the sequel

(H):

(h1) h(t,S) = q(t)f (S) where f ∈ C(R), Sf (S)> 0 ∀S �= 0 and f (0) = 0;
(h2) Eventually c,q ∈ C(Ωt0 , (m, ∞)) for some m > 0, t0 ≥ 0 and ΩS := (S, ∞).

This work contains no non-oscillation results. The strategy used to get results
here lies on the fact that the integration of (50.1)(i) over (t0, t) gives

⎧
⎨

⎩

(i) u′′(t)+ c(t)u(t)+H(t,u) = 0, t ≥ t0;

(ii) where H(t,u) :=
∫ t

t0

(

h(s,u)− c′(s)u(s)
)

ds
(50.2)

Tadie (�)
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and some oscillation criteria for (50.2)(i) can be found, e.g., in [Ta12, Ta11]. Among
those criteria we recall that:

(C1) If ∃m,T > 0 such that c(t)> m, then y′′(t)+ c(t)y(t) = 0 is oscillatory.
(C2) With c being as in (C1), if a continuous function h(t,u) is nonnegative in ΩT

then y′′(t)+ c(t)y(t)+h(t,y) = 0 is oscillatory.
(C3) With c and h as in (C1) and (C2), ∀φ ∈ C1(ΩT),

y′′(t)+ c(t)y(t)+φ ′(t)y′(t)+h(t,y) = 0 is oscillatory.

50.2 Equations with Constant Coefficients

It is obvious that ∀ω > 0 ,

y′′′(t)+ωy′(t) = 0 in [0, ∞); y(t0) = y′′(t0) = 0 (50.3)

has oscillatory solutions . Examples of such solutions are sin
√
ωt and cos

√
ω t.

In fact, for any positive constants ω, T, A, no regular solution of

⎧
⎪⎪⎨

⎪⎪⎩

(i) y′′′(t)+ωy′(t) = 0, t > T ≥ 0;

(ii) 0 < y < A in ΩT := (T, ∞) ;

(iii) y(T) = y′′(T) = 0

can exist.
Any solution y of (50.3) satisfies for t ≥ t0
⎧
⎪⎪⎨

⎪⎪⎩

(i) y′′(t)+ωy(t) = 0;

after multiplying (i) by y′ , the integration over (t0, t) gives

(ii) y′(t)2 +ωy(t)2 = y′(t0)2.

(50.4)

As a consequence, any non-trivial solution y of (50.3) and its first derivative are
bounded with y′(t0) �= 0. Also successive derivatives of y give for n≥ 3

⎧
⎪⎪⎨

⎪⎪⎩

y(n+1) +ωy(n−1) = 0,

{y(n)(t)}2 +ω{y(n−1)(t)}2 = {y(n)(t0)}2

and y(n)(t0) �= 0 for any non-trivial solution y.

We then have the following result:
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Theorem 1. Given any ω > 0 and t0 ∈ R, the problem

y′′′(t)+ωy′(t) = 0, t ≥ t0; y(t0) = y′′(t0) = 0 (50.5)

has an infinite number of oscillatory solutions; but if in addition y′(t0) �= 0 is
prescribed, such a solution is unique.

Proof. It is clear that if z solves (50.5) so would do λ z, ∀λ ∈ R. But if in
addition z′(t0) in prescribed, (50.4)(ii) shows that the corresponding solution would
be unique. In fact if the condition y′(t0) is added to (50.5) and there are two solutions
z and y, the function W := z− y satisfies W ′′′ + ωW ′ = 0; W(t0) = W ′(t0) =
W ′′(t0) = 0 and as in (50.4)(ii), we get W ′(t)2 +ωW(t)2 = 0 and W ≡ 0 in Ωt0 .

Consider for some t0 ≥ 0 and c, M > 0 the problem

y′′′(t)+ cy′(t)+M = 0, t > t0; (50.6)

y(t0) = y′′(t0) = 0. (50.7)

For any non-trivial solution y∈C3(Ωt0) of (50.6)-(50.7), after multiplying (50.6)
by y′′ and integrating the result over (t0, t) we get

⎧
⎪⎪⎨

⎪⎪⎩

(i) y′′(t)2 + cy′(t)2 +2My(t) = cy′(t0)2

(ii) hence if y > 0 in any D⊂Ωt0

y′′(t)2 + cy′(t)2 ≤ cy′(t0)2 and in D y′(t0) �= 0.

Theorem 2. Any bounded and non-trivial solution y of the problem (50.6)-(50.7) is
oscillatory. This holds even if M is any continuous and non-negative function. For
such a solution, y′(t0) �= 0. Moreover, this holds also for M < 0 or if M is replaced
by a negative function.

Proof. Let y be any bounded and non-trivial solution of (50.6)-(50.7). The integra-
tion over (t0, t) of (50.6) gives y′′(t) + cy(t) +M(t− t0) = 0, t > t0 and any
bounded and non-trivial solution of this equation is oscillatory by (C2).

If M =−M1 < 0, the equation above reads y′′(t)+cy(t)−M1(t− t0) = 0, t > t0
and with an oscillatory solution of z′′+ cz = 0, a Picone-type formula reads

(

zz′ − z2y′

y

)′
=

{

z′ − zy′

y

}2

+
z2

y
M1(t− t0) (50.8)

and because the functions y and z are assumed bounded in C1(Ωt0), the second
term cannot be zero for large t. So if we assume that y �= 0 in some ΩT say, the
integration over any nodal set D(z)⊂ΩT of (50.8) gives a contradiction. Therefore
y cannot remain nonzero in any t > T > 0. We note here that even if y→ 0 at ∞

the term
y′

y
�→ ∞.
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Theorem 3. If the function φ ∈ C(R) satisfies

∀S ∈ R, Sφ(S)≥ 0 or otherwise ∃μ > 0, |φ(S)|> μ ,

then the equation

y′′′(t)+ cy′(t)+φ(y) = 0, t > t0; y′′(t0) = y(t0) = 0

is oscillatory.

Proof. We proceed as before and similarly here, the oscillatory function z being in
use, (50.8) is

(

zz′ − z2y′

y

)′
=

{

z′ − zy′

y

}2

+
z2

y

∫ t

t0
φ(y(s))ds

leading to the same conclusions.

50.3 Equations with Variable Coefficients

In this section, we consider problems of the type

u′′′(t)+ c(t)u′(t)+q(t)f (u) = 0 in Ωt0 ; u(t0) = u′′(t0) = 0.

where c, q, f are as displayed in (H).

Lemma 1. Let a ≥ 0 be a constant. Then if ∃m > 0, c ∈ C(Ωa, (m, ∞)) , any
bounded and non-trivial solution u of

u′′′(t)+ c(t)u′(t) = 0, t ∈Ωa; u(a) = u′′(a) = 0 (50.9)

has an oscillatory second derivative u′′.

Proof. Let for some b > 0 v, be an oscillatory solution of

v′′′+bv′ = 0 t ∈Ωa

as in the Theorem 1 and u such a solution of (50.9). Then, proceeding as before,

⎧
⎪⎨

⎪⎩

(i) (v′′′u′′ − v′′u′′′)+b(u′′v′ −u′v′′)+(b− c)v′′u′ = 0 hense

(ii)
u′′

v′′

(
v′′

u′′

)′
= c(t)

u′

u′′
−b

v′

v′′
.

(50.10)
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Assume that there is such a solution u such that for some T > t0, u′′ > 0 in

ΩT . Let [α, β ] be a nodal set of v′′ inside which v′′ > 0. For s := α +
β −α

6
and

s < t < β , from (50.10)(ii)

∣
∣
∣
∣
v′′(t)u′′(s)
u′′(t)v′′(s)

∣
∣
∣
∣= exp

[

−b
∫ t

s

v′

v′′
dτ
]

exp

(∫ t

s
c(τ)

u′

u′′
dτ
)

. (50.11)

In [s, β ] the left-hand side of (50.11) is finite but as
v′

v′′
< 0 near β and tends to

−∞, the right-hand side is unbounded there. Therefore u′′ has to be oscillatory.

Because u′′ is oscillatory, u′′′ is also oscillatory. Also as c(.)> 0 in ΩT , u′ has
to be oscillatory as u′′′(t) =−c(t)u′(t). We have the following result:

Theorem 4. For some t0 ≥ 0, consider the problem

{
(i) u′′′(t)+ c(t)u′(t) = 0 in Ωt0 ; u(t0) = u′′(t0) = 0

(ii) where c ∈ C1(Ωt0 , (m, ∞)) for some m > 0.

Then any bounded and non-trivial solution of the problem has oscillatory first,
second, and third derivatives. Moreover, if, in addition,

c is monotone decreasing in some ΩT or c′ ∈ L1(ΩT) (50.12)

then any such a solution is oscillatory. Also if c is rather monotone increasing there,
the same conclusion holds unless for that solution u,

lim inf
t↗∞
|u(t)|= 0. (50.13)

Proof. For any such a solution u, that u′, u′′ and u′′′ are oscillatory is established in
Lemma 1. The integration over (t0, t) of (50.9) gives

u′′(t)+ c(t)u(t)+F(t,u) = 0, with F(t,u) :=−
∫ t

t0
c′(s)u(s)ds.

With (50.12),

v′′(t)+ c(t)v = 0

is oscillatory (see [Ta14], Theorem 1.3). From these two equations, a version of
Picone formula reads

(

vv′ − v2

u
u′
)′

=

[

v′ − v
u

u′
]2

+
v2

u
F(t,u).
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If we assume that u is not oscillatory, i.e. u �= 0 in some ΩT , T ≥ t0, the right-
hand side of (50.13) is strictly positive as uF(t,u) ≥ 0 if c is decreasing there.
In that case, integrating (50.13) over any nodal set D(v) ⊂ ΩT of v would lead
to a contradiction (because the left-hand side would be 0); u has to be oscillatory
as it has to have a zero in any D(v) ⊂ ΩT . We reach the same conclusion if

c′ ∈ L1(ΩT); in fact we have for bounded v and u > β > 0 | v(t)
u(t)

∫ t
t0

c′(s)u(s)ds| ≤

{| v(t)
u(t)

∫ T
t0

c′(s)u(s)ds|+ | v(t)
u(t)

∫ t
T c′(s)u(s)ds|} and the right-hand side is bounded

above by a constant, B > 0, say. If the oscillatory function v was taken to be a
solution of

v′′(t)+ c(t)v− kB = 0

which is oscillatory for large k > 0, a Picone-type formula would read

(

vv′ − v2

u
u′
)′

=

[

v′ − v
u

u′
]2

+ v(t)

(

kB− v
u

∫ t

t0
c′(s)u(s)ds

)

.

and the right-hand side is strictly positive, leading to the conclusion.
If c is increasing in ΩT and liminft→∞ |u(t)|> ν > 0 there, then t �→ |F(t,u)|

is unbounded and the integration of (3.8) over D(v) leads to a contradiction (as the
right-hand side would be unbounded). So, any such a solution satisfying (50.12) and
liminft→∞ |u(t)|> 0 would be oscillatory.

Theorem 5. Assume that

c, q and f satisfy (H), with a monotone c.

Then any bounded and non-trivial solution u of

u′′′(t)+ c(t)u′(t)+q(t)f (u) = 0 in Ωt0 ; u(t0) = u′′(t0) = 0. (50.14)

(a) is oscillatory if c ∈ C1(Ωt0) and c′ ≤ 0 in some ΩR;
(b) is oscillatory even when c′ > 0 in some ΩT unless

lim
t→∞ inf |u(t)|= 0.

Proof. Let u be a bounded non-trivial solution of (50.14). Then the integration over
(t0, t) of the equation in (50.14) gives

⎧
⎨

⎩

(i) u′′(t)+ c(t)u(t)+G(t,u) = 0, t ∈Ωt0 ;where

(ii) G(t,u) :=
∫ t

t0

(

q(s)f (u(s))− c′(s)u(s)
)

ds.
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Let M ∈ C(Ωt0 , (k, ∞)) for some large k > 0 and v an oscillatory solution of

v′′+ c(t)v−M(t) = 0, t ≥ t0.

Then u being a bounded solution for (50.14), if we suppose that u �= 0 in some Ωa

then for t > s > a≥ t0

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(

vv′ − v2

u
u′
)′

=

[

v′ − v
u

u′
]2

+
v2

u
G(t,u)

=

[

v′ − v
u

u′
]2

+
v2

u

∫ t
s q(τ)f (u(τ))dτ+ v(t)M(t)

−v2

u

∫ t
s c′(τ)u(τ)dτ .

(50.15)

If we suppose that u > 0 in some ΩT then the right side of (50.15) is strictly
positive if c′ ≤ 0, leading to a contradiction.

Assume that c′ > 0 eventually, in ΩT , say. If u > μ > 0 in ΩT , then for some

β > 0 and in any D(v+) ⊂ ΩT we have
v
u

∫ t
s c′(τ)u(τ)dτ >

v
u
μ( c(t)− c/T) ) >

β [c(t)− c(T)].
We choose M such that M(t)> β [c(t)−c(T)] for t > T ; this makes the right-

hand side of (50.15) strictly positive and the integration over any D(v) ⊂ ΩT of
(50.15) would lead to a contradiction; hence, u has to have a zero in any such D(v).
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Chapter 51
Oscillation Criteria for some Semi-Linear
Emden–Fowler ODE

Tadie

51.1 Preliminaries

Inspired from earlier works on oscillation criteria for semi-linear elliptic equations,
we pinpoint here some straightforward and easy oscillation criteria for Emden–
Fowler differential equations. We find out that for α ≥ 0, the equation

[|y′|α−1y′]′+ f (t,y) = 0

is oscillatory if for some m,T > 0 and β ∈ [1, α] ∃q ∈ C([T, ∞), (m, ∞)) such
that

∀t > T and ∀s ∈ R, f (t,s)≥ q(t)|s|β−1s.

The main tools for our investigation are some version of Picone identities and
comparison methods. We are considering equations of the type

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(i)

{

φ(y′)
}′

+Ψ(t,y,y′) = 0

(ii) where ∀S ∈ R and some α ≥ 0 φ(S) := φα(S) = |S|α−1S;

(iii) Ψ ∈ C(R3, R).

Tadie (�)
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Usually equations in these contexts have the form

{

a(t)φ(y′)
}′

+Ψ(t,y,y′) = 0

where for some t0≥ 0, a∈C1([t0, ∞)) is strictly positive with a′ ≥ 0. Because of
these conditions on a, in regard of oscillatory character, that equation is equivalent to

{

φ(y′)
}′

+
a′(t)
a(t)

φ(y′)+
Ψ(t,y,y′)

a(t)
= 0.

This is the reason why we take a(t)≡ 1 in our study and extend the investigation to
the equations with damping terms, φ(y′), say. We set the following hypotheses :

(H): the functionΨ has the form

(H1) Ψ(t,u,u′) := f (t,u) where ∀t ∈ R and u �= 0, uf (t,u)> 0;
(H2) Ψ(t,u,u′) := g(t,u′)+ f (t,u) whith f as in (H1) and g ∈ C(R2, R).

It is worth recalling the following:

Definition 1. With ΩT := (T, ∞) where T ≥ 0

(1) A function v will be said to be oscillatory if ∀R > 0, v has zero in ΩR.
(2) A function v will be said to be strongly oscillatory if ∀R > 0, v has a nodal

set in ΩR where a nodal set of v is here any interval D(v) := (t1, t2) such that
v �= 0 in D(v) and v(t1) = v(t2) = 0.

(3) An equation will be said to be oscillatory (strongly oscillatory) if any bounded
(bounded in C1) and non-trivial solution of the equation is oscillatory (respec-
tively, strongly oscillatory).

(4) The function φγ satisfies Sφγ(S) = |S|γ+1 and Sφ ′γ(S) = γφγ(S).

Here, a solution of the equation in ΩR will be an element of C1(ΩR)
⋂

C2(ΩR)
which satisfies the equation. Also we will often mention that a solution w is
bounded in E, say, if it is bounded in C1(E) i.e., there is M > 0 such that
|w|C1(E) := maxE {|w(t)|, |w′(t)|}< M.

For our investigations, we use similar approaches as those in [Ta09a, Ta09b,
Ta10, Ta07], based on Picone-type identities. In [WaXi00], a similar equation is
considered, with Ψ(t,y) = q(t)f (y) with integrable q. Other results on the field can
be found in [OuWo04, Pa11] for the fourth-order equations.

51.2 Equations Without Damping Terms

Define for any γ ≥ 1 and u,v ∈ C1(R, R)

ζγ(u,v) = |u′|γ+1− (γ+1)u′φ(
u
v

v′)+ γ |u
v

v′|γ+1 (((Z),
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which is strictly positive if u and v are distinct and non-constant and zero only if
u = λv for some λ ∈ R. We consider here equations of the type

{

φα(y′)
}′

+ f (t,y) = 0; α ≥ 0 (51.1)

where f satisfies (H1). We recall here that if a continuous F(s,v) ≥ 0 and q ∈
C(ΩT , (m, ∞)) for some T,m > 0 then ∀α ≥ 0

{

φα(y′)
}′

+q(t)φα(y)+F(t,y) = 0

is strongly oscillatory ( see [Ta09b] ). This remains true if F < 0 and large enough.
We then have the following result:

Theorem 1. Assume that for some m,T > 0 and φ = φα

∃q ∈ C(ΩT , (m, ∞));
(

f (t,s)
φ(s)

− q(t)

)

≥ 0 in ΩT ×R. (51.2)

Then (51.1) is strongly oscillatory.
In particular, if

(∗)(∗)(∗) ∃k > 0 such that ∀s �= 0
f (t,s)
φ(s)

> k

then (51.1) is oscillatory.

Proof. If y is a non-trivial solution of (51.1) and (51.2) holds, let z be an oscillatory
solution of {φ(z′)}′+q(t)φ(z) = 0 in ΩT .

A version of Picone’s identity reads for those functions whenever y �= 0

{

zφ(z′)− zφ(
z
y

y′ )
}′

= ζα(z,y)+ |z|α+1
[

f (t,y)
φ(y)

−q(t)

]

. (51.3)

The integration of both sides of (51.3) over any D(z) ⊂ ΩT leads to an absurdity
because the left side would be zero and the right strictly positive by (51.2). Therefore
y has to have a zero in any nodal set D(z)⊂ΩT ; y cannot be non-zero in any ΩR.

The proof is completed by the fact that when (∗) holds, using instead {φ(z′)}′+
kφ(z) = 0 in ΩT , (51.3) becomes

{

zφ(z′)− zφ(
z
y

y′ )
}′

= ζα(z,y)+ |z|α+1
(

f (t,y)
φ(y)

− k

)

whose right-hand side is strictly positive.
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Corollary 1. Consider the equation

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(i)

{

φα(y′)
}′

+ f (t,y)+h(t,y) = 0

(ii) where f satisfies (H1) and

(iii) h ∈ C(R2, R) satisfies sh(t,s)≥ 0 in ΩT ×R.

(51.4)

Then under the condition (51.2), the equation (51.4)(i) is strongly oscillatory.

Proof. We consider z, an oscillatory non-trivial solution of φ(z′)′+ q(t)φ(z) = 0.
The proof follows from the fact that for (51.4)(i), (51.3) becomes

{

zφ(z′)− zφ(
z
y

y′ )
}′

= ζα(z,y)+ |z|α+1
[

f (t,y)
φ(y)

−q(t)+
h(t,y)
φ(y)

]

.

Lemma 1. Assume that the constants α,β ≥ 1 and q ∈ C(ΩT , (m, ∞)) for some
T,m > 0. Then any bounded and non-trivial solution of

φα(y′)′+q(t)φβ (y) = 0 is oscillatory if α ≥ β . (51.5)

Proof. For a bounded and non-trivial solution v of (51.5) in ΩT , say, define

y(t) :=

⎧
⎨

⎩

(i)
v(t)
|v|∞ if |v|∞ > 1

(ii) v(t) if |v|∞ ≤ 1.

Then y satisfies for φ := φα

(∗∗)(∗∗)(∗∗)
{
|y(t)| ≤ 1 and φ(y′)′+Q(t)φβ (y) = 0 in ΩT

where Q(t) := [|v|∞]β−αq(t) for (i) or q(t) for (ii).

Let z be a non-trivial, bounded, strongly oscillatory solution of φ(z′)′+Q(t)φ(z)= 0
in ΩT . Then if y �= 0 in any D(z) ,

(

zφ(z′)− zφ(
z
y

y′)
)′

= ζα(z,y)+ |z|α+1Q(t)

{

|y|β−α −1

}

,

which would be strictly positive there as |y| ≤ 1 there and α ≥ β . Therefore y �= 0
cannot hold in any D(z).
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The last results lead to the following:

Theorem 2. Assume that for some T,m > 0, if f ∈ C(ΩT × R, R) satisfies
sf (t,s)> 0 ∀s �= 0 and ∀t > T

(
f (t,s)
φβ (s)

−q(t)

)

≥ 0 for some β ≥ 0 and q ∈ C(ΩT , (m, ∞)).

Then ∀α ≥ β any non-trivial and bounded solution of

{

φα(u′)
}′

+ f (t,u) = 0, t > T (51.6)

is oscillatory.

For the proof of the theorem we need the next lemma.
An equation is said to be homogenous when whenever u is its solution , so is

λu, ∀λ ∈R. In such a case, any of its non-trivial solution v can freely be supposed
to be normal meaning here that |v|C1 ≤ 1.

Lemma 2. Let v ∈ C2(ΩT) be a locally bounded solution of the nonhomogenous
equation

φ(v′)′+ f (t,v) = 0, t > T.

Then if J ⊂ΩT is bounded

{
∃λ := λJ > 0 and y ∈ C2(J) with |y|C1(J) ≤ 1 solution of

φ(y′)′+ fλ (t,y) = 0, t ∈ J; where fλ (t,s) := λ−α f (t,λy);

λJ := |v|C1(J) and y will be called the normalized solution of the equation in J.

Proof. The function

y(t) :=

⎧
⎨

⎩

v(t)
λ

if λ > 1

v(t) if λ ≤ 1

satisfies in J

|y(t)|, |y′(t)| ∈ [0, 1] and

{

φ(y′)
}′

+λ−α f (t,λy) = 0.

It is obvious that if v is bounded in the whole ΩT , we take λ := |v|C1(ΩT )
.
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Proof of Theorem 2. We take J := ΩT and let v ∈ C2(ΩT) be a bounded solution
of (51.6), with λ := |v|C1(ΩT )

and y its corresponding normalized solution in ΩT .
Let z be a non-trivial oscillatory solution of

{

φβ (z′)
}′

+λ−αq(t)φβ (z) = 0 t > T.

If y �= 0 in ΩT , then

{

zφβ (z′)− zφβ (
z
y
)φ(y′)

}′

= |z′|β+1−μαq(t)|z|β+1− (1+β )z′φβ (
z
y

y′ )
φ(y′)
φβ (y′)

+β
z
y

y′φβ (
z
y

y′)
φ(y′)
φβ (y′)

+λβ μα |z|α+1 f (t,λy)
φβ (λy)

−μαq(t)|z|β+1

= |z′|β+1
[

1−|y′|α−β
]

+ |y′|α−β ζβ (z,y)

+ |z|β+1μα
{

λβ
f (t,λy)
φβ (λy)

−q(t)

}

> 0 (51.7)

if α ≥ β , |y′| ≤ 1 and
f (t,λy)
φβ (λy)

−q(t)≥ 0 in ΩT . The integration of (51.7) over any

D(z) ⊂ ΩT leads then to a contradiction whence y has to have a zero in any such
a D(z).

51.3 Problems with Damping Terms

Consider now in some ΩT , m > 0 and b ∈ C(ΩT) the equation

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i)

{

φ(y′)
}′

+b(t)φ(y′)+ f (t,y) = 0

(ii) where f satisfies (H1) and in ΩT ×R

∃q ∈ C(ΩT , (m, ∞));
(

f (t,y)
φ(y)

−q(t)

)

≥ 0;

(iii) ∃k ∈ C(ΩT) bounded and B ∈ C1(ΩT) such that

B′(t) = b(t)+ k(t).

(51.8)
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Theorem 3. Under the conditions (ii) and (iii) above, bounded and non-trivial
solutions of (51.8)(i) are oscillatory

(1) if k ≡ 0;
(2) if k �≡ 0 but bounded, unless liminft↗∞ |y(t)|= 0.

Proof. Let for some large positive continuous function M z be a strongly
oscillatory solution of

φ(z′)′+q(t)φ(z)−M(t) = 0; t > T

and y a bounded and non-trivial solution of (51.8)(i). A version of Picone identity
for the two solutions reads whenever y �= 0

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

{

zφ(z′)− zφ(
z
y

y′)−B(t)zφ(
z
y

y′)
}′

= ζα(z,y)+ |z|α+1

[
f (t,y)
φ(y)

−q(t)

]

+z

(

M(t)− k(t)φ(
z
y

y′)
)

−B(t)

(

zφ(
z
y

y′)
)′
.

(51.9)

Let D(z+) ⊂ ΩT be a nodal set of z+. If y �= 0 in D(z+), then the inte-

gration over D(z) := D(z+) of (51.9) gives 0 =
∫

D(z)

[

ζα(z,y) + |z|α+1

[
f (t,y)
φ(y)

−

q(t)

]

+z

(

M(t)−k(t)φ(
z
y

y′)
)]

dt −∫D(z) B(t)

(

zφ(
zy′

y

)′
dt which holds even if B is

replaced by B1(t) := B(t)+λ for any λ ∈ R, i.e.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∀λ ∈ R 0 =
∫

D(z)

[

ζα(z,y)+ |z|α+1

[
f (t,y)
φ(y)

−q(t)

]

+z

(

M(t)− k(t)φ(
z
y

y′)
)]

dt− ∫D(z){B(t)+λ}
(

zφ(
z
y

y′)
)′

dt.

(51.10)

That can hold only if each integrand is null in D(z). But the first integrand which is{

ζα(z,y)+ |z|α+1

[
f (s,y)
φ(y)

−q(s)

]

+ z

(

M(t)− k(t)φ(
z
y

y′)
)}

is strictly positive if

(1) k≡ 0 (even if M ≡ 0 ) thus in this case y has to have a zero in any D(z+)⊂ΩT ;
(2) if y > ν > 0 in ΩT and k bounded, M can be chosen such that M(t) >

|k(t)φ( z
y

y′)| in ΩR for some R ≥ T and (51.10) would not hold. Therefore

(51.10) would hold only if y > ν > 0 in ΩR fails for some R≥ T .
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Consider now in some ΩT , m > 0 and b ∈ C(ΩT) the equation

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(i)

{

φ(y′)
}′

+b(t)φ(y′)+ f (t,y) = 0

(ii) where for some β ≥ 0 f satisfies (H1) and

∃q ∈ C(ΩT , (m, ∞));
(

f (t,y)
φβ (y)

−q(t)

)

≥ 0 in ΩT ×R ;

(iii) ∃B ∈ C1(ΩT); B′(t) = b(t) in ΩT .

(51.11)

To proceed as for the proof of Theorem 2, we skip the details and will consider a
non-trivial and bounded solution y of (51.11)(i) satisfying |y(t)|, |y′(t)| ≤ 1 in ΩT

which contains few nodal sets D(z) where z is a strong oscillatory solution of

{
φβ (z′)′+q(t)φβ (z) = 0 t ≥ T

with |z(t)|, |z′(t)| ≤ 1 in ΩT .
(51.12)

Theorem 4. Under the conditions (51.11)(i)–(51.11)(iii), where φ := φα ; α ≥ 0,
any non-trivial and locally bounded solution of (51.11)(i) is oscillatory if α ≥ β .

Proof. Without loss of generality, let y be a non-trivial and bounded solution of
(51.11)(i) in ΩT |y|C1(J) ≤ 1. We assume that z, a strongly oscillatory solution in
(51.12). If y �= 0 in any D(z)⊂ΩT

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{

zφβ (z′)− zφβ (
z
y
)φ(y′)−B(t)zφβ (

z
y
)φ(y′)

}′

= |z′|β+1−|Z|β+1q(t)− (β +1)z′φβ (
z
y

y′)
φ(y′)
φβ (y′)

+βy′
z
y
φβ (

z
y

y′)
phi(y′)
φβ (y′)

+|z|β+1

(

b(t)
φ(y′)
φβ (y′)

+
f (t,y)
φβ (y)

)

−b(t)zφβ (
z
y
)φ(y′)−B(t)

(

zφβ (
z
y
)φ(y′)

)′

= |z′|β+1

[

1−|y′|α−β
]

+ |y′|α−β ζβ (z,y)+ |z|β+1

{
f (t,y)
φβ (y)

−q(t)

}

−B(t)

(

zφβ (
z
y
)φ(y′)

)′
.

As |y′| ≤ 1 in J, we have |z′|β+1

[

1−|y′|α−β
]

+ |y′|α−β ζβ (z,y)+ |z|β+1

{
f (t,y)
φβ (y)

−

q(t)

}

> 0 in D(z) and the proof is completed as that of Theorem 2; i.e., y has to

have a zero in any such a D(z).
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Chapter 52
Analytic Representation of the Solution
of Neutron Kinetic Transport Equation
in Slab-Geometry Discrete Ordinates
Formulation

F.K. Tomaschewski, C.F. Segatto, R.C. Barros, and M.T.B. Vilhena

52.1 Introduction

Presented in this chapter is an analytical representation for the solution of slab-
geometry neutron kinetics equations in one-speed discrete ordinates (SN) transport
formulation with one group of delayed neutron precursors. The basic idea involves
the following steps: (i) the neutron angular flux and the concentration of delayed
neutron precursors are expanded in truncated series of unknown functions, (ii) by
substituting these expansion representations into the SN kinetics equations, a set of
recursive systems of first-order ordinary differential equations results. It is assumed
that the first equation of the system has no source and is the only one which satisfies
the initial conditions. The remaining equations of the recursive systems satisfy
initial condition equal to zero and the source term is written in terms of the previous
step solution. At each step of the recursive system, the SN kinetics equations
are solved by using the TLTSN method, whose essence is to apply the double
Laplace transform technique [ToSeVi13, To12]. To achieve this goal, the Laplace
transformation in the time variable is first applied, and then, the resulting equation
is solved by the conventional LTSN method, which consists of the application of the
Laplace transformation to the SN equations, yielding a system of N linear algebraic
equations in the complex parameter ‘s’ [Ba92, BaVi97, OrViCa04]. This system
is then solved for the transformed angular flux and the inverse transformation is
performed analytically, thus obtaining an expression for the angular flux of particles
migrating in the N discrete directions of the SN model. The LTSN method is
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completely free from all spatial truncation errors. By this procedure, the solution is
written in terms of a line integral in the time variable, which, in the present method,
is evaluated by the Gaver–Stehfest numerical scheme [Ga66, St70, St70a]. In the
next section, this decomposition method is described. In section 52.3, the TLTSN

method for the solution of the recursive system is presented, and in Section 52.4
numerical results for two model problems are given. Concluding this chapter,
section 52.5 offers a brief discussion of the results with suggestions for future work.

52.2 Decomposition Method

The general formulation of one-speed, slab-geometry SN kinetics problems with one
group of delayed neutron precursors and isotropic scattering are

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
v
∂ψm

∂ t
+μm

∂ψm

∂x
+σtψm− σs

2
φ = (1−β )νσf

2
φ +λC, m = 1 : N.

∂C
∂ t

=
βνσf

2
φ −λC

(52.1)
with appropriate initial conditions

ψm(x,0) = φ0(x), m = 1 : N

C(x,0) = β
νσf

2λ
φ0(x) (52.2)

and boundary condition

ψm(0, t) = fm, μm > 0,

ψm(L, t) = gm, μm < 0. (52.3)

Here, m = 1 : N, where N is the order of the angular quadrature set, fm and gm are
prescribed incoming angular fluxes, which are assumed to be independent of time;
ψm(x, t) is the angular flux of neutrons migrating in the discrete angular direction
μm at time t as a function of 0 < x < L; wn are the quadrature weights; C(x, t) is
the concentration of delayed neutron precursors with radioactive decay constant λ ,
φ = ∑N

n=1ψnwn is the scalar flux and φ0(x) is the scalar flux profile at t = 0. More-
over, σt , σs and σf are, respectively, the total, scattering and fission macroscopic
cross sections, ν the total average number of neutrons emitted in each fission event
and β is the delayed neutron fraction, which defends on the nuclear fuel [LeMi84].

The present decomposition method is based on the expansions of the angular flux
and the precursor concentration in series of unknown functions
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ψm(x, t) =
∞

∑
k=0

ψ(k)
m (x, t)

C(x, t) =
∞

∑
k=0

C(k)(x, t).
(52.4)

In order to use these analytical representations for computer numerical applications,
these series are truncated by using prescribed stopping criteria in the numerical
scheme. In other words, Eq.(52.4) become

ψm(x, t) =
M

∑
k=0

ψ(k)
m (x, t)

C(x, t) =
M

∑
k=0

C(k)(x, t).

(52.5)

By substituting Eq.(52.5) into Eq.(52.1), we obtain

1
v
∂
∂ t

M

∑
k=0

ψ(k)
m +μm

∂
∂x

M

∑
k=0

ψ(k)
m +σt

M

∑
k=0

ψ(k)
m − σs

2

M

∑
k=0

φ (k) =

(1−β )νσf

2

M

∑
k=0

φ (k) +λ
M

∑
k=0

C(k),

∂
∂ t

M

∑
k=0

C(k) =
βνσf

2

M

∑
k=0

φ (k)−λ
M

∑
k=0

C(k),

(52.6)

where we have defined φ (k) = ∑N
n=1ψ

(k)
n wn. A simple count indicates that the SN

kinetics problem 52.1–52.3 has been reduced to a system of N+1 partial differential

equations in M(N +1) unknown expansion functions ψ(k)
m and C(k), m = 1 : N, k =

1 : M. Once the recursive system of equations to determine the unknown functions

is not unique, we make the following choice of the initial equation for φ (0)m and C(0):

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
v
∂ψ(0)

m

∂ t
+μm

∂ψ(0)
m

∂x
+σtψ

(0)
m − σs

2
φ (0) = 0, m = 1 : N.

∂C(0)

∂ t
=
βνσf

2
φ (0)−λC(0)

(52.7)

with initial conditions

ψ(0)
m (x,0) = φ0(x), m = 1 : N

C(0)(x,0) = β
νσf

2λ
φ0(x) (52.8)
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and boundary conditions

ψ(0)
m (0, t) = fm, μm > 0

ψ(0)
m (L, t) = gm, μm < 0. (52.9)

Following this scheme, the kth recursive system of partial differential equations for

ψ(k)
m and C(k) appears as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
v
∂ψ(k)

m

∂ t
+μm

∂ψ(k)
m

∂x
+σtψ

(k)
m − σs

2
φ (k) = (1−β )νσf

2
φ (k−1) +λC(k−1),

∂C(k)

∂ t
=
βνσf

2
φ (k)−λC(k), m = 1 : N, k = 1 : M.

(52.10)

Each solution of each recursive system has to satisfy Eq.(52.6) in addition,
according to Eqs.(52.8) and (52.9), the solution for k = 0 is required to satisfy

initial and boundary conditions to the SN problem. Therefore, functions ψ(k)
m and

C(k), k > 0, satisfy zero initial conditions. We remark that the present formulation
for building the recursive systems is not unique. We have chosen the procedure, as
described in this chapter, since it is convenient for the application of the TLTSN

method [ToSeVi13, To12], that we briefly describe in the next section.

52.3 The TLTSN Solution

In this section, we present the TLTSN method to solve the recursive systems of
partial differential equations, as we described in the previous section. Therefore, let
us consider the time dependent, slab-geometry SN transport equations

1
v
∂
∂ t
ψm(x, t)+μm

∂
∂x
ψm(x, t)+σtψm(x, t) =

σs

2

N

∑
n=1

ψm(x, t)wn +Sm(x, t)

(52.11)
where we have defined S(x, t) as the source term. With initial condition

ψm(x,0) = φ(x) (52.12)

and boundary conditions

ψm(0, t) = fm, μm > 0

ψm(L, t) = gm, μm < 0. (52.13)
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Now we apply the Laplace transformation to Eq.(52.11), in the time variable. The
result is

μm
d
dx
ψm(x,p)+σ

p
t ψm(x,p) =

σs

2

N

∑
n=1

ψn(x,p)wn +Rm(x,p), (52.14)

with the boundary conditions

ψm(0,p) = fm/p, μm > 0

ψm(L,p) = gm/p, μm < 0. (52.15)

Here, ψm(x,p) denotes the transformed angular flux. Moreover we have defined

σp
t = σt +

p
v

and Rm(x,p) =
1
v
φ(x)+S(x,p).

Furthermore, we write Eq.(52.14) in the matrix form

d
dx

P(x,p)−A(p)P(x,p) = R(x,p) (52.16)

where A(p) is the N×N square matrix whose entries are

aij(p) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

σswj

2μi
− σ

p
t

μi
if i = j,

σswj

2μi
if i �= j.

(52.17)

In addition, P(x,p) and R(x,p) are N-dimensional vectors defined as

P(x,p) =
[

P1(x,p)
P2(x,p)

]

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ψ 1(x,p)
...

ΨN/2(x,p)
ΨN/2+1(x,p)

...
ΨN(x,p)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and

R(x,p) =

[
R1

μ1
, . . . ,

RN

μN

]T

,
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with boundary conditions

P1(x,p) = f/p and P2(x,p) = g/p (52.18)

where P1(x,p) and P2(x,p) are N/2-dimensional sub-vectors of the transformed
angular flux vector P(x,p). The N/2 entries of P1(x,p) are the transformed angular
fluxes in directions μm > 0 and the N/2 entries of P2(x,p) are the transformed
angular fluxes in directions μm < 0.

Furthermore, by applying the LTSN method to Eq.(52.16), we obtain

P(x,p) =
(

P1(x,p)
P2(x,p)

)

=

(
X11(p) X12(p)
X21(p) X22(p)

)(
eD+(x−L) 0

0 eD−x

)(
ξ1(p)
ξ2(p)

)

+

(
H1(x,p)
H2(x,p)

)

(52.19)

where D+ and D− are N/2-order diagonal matrices whose entries, are respectively
the positive and negative eigenvalues, and X(p) is the matrix whose columns are
eigenvectors of A(p). In addition, we write the particular solution H(x,p) as

H(x,p) =

(
H1(x,p)
H2(x,p)

)

=

(
X11(p) X12(p)
X21(p) X22(p)

)(∫ x
L eD+(x−ξ )∑2

j=1 Z1j(p)Rj(ξ )dξ
∫ x

0 eD−(x−ξ )∑2
j=1 Z1j(p)Rj(ξ )dξ

) (52.20)

where Z(p) = X−1(p). At this point we apply boundary conditions (52.18) at x = 0
and x = L, and we determine the unknown sub-vectors ξ1 and ξ2 by solving the
resulting system of linear equations. Now, we are able to determine the angular flux
profile by applying the inverse Laplace transform to the transformed angular flux
(52.19)

P(x, t) =
1

2πi

∫ γ+i∞

γ−i∞
P̄(x,p)eptdp. (52.21)

Due to operation difficulties to solve analytically the integral given in Eq.(52.21),
we choose to approximate it by use of the Gaver–Stehfest algorithm [Ga66, St70,
St70a], which yields an approximate solution by use of the following expression

f (t) =
ln2

t

N

∑
i=1

Vif

(
ln2

t
i

)

,
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where N is an even integer and Vi is defined as

Vi = (−1)N/2+i
Min(i,N/2)

∑
k=[ i+1

2 ]

kN/2(2k)!
(N/2− k)!(k)!(k−1)!(i− k)!(2k− i)!

.

Before concluding this section, we remark that solving the recursive systems
represented in Eq.(52.10) by the TLTSN method turned out to be very inefficient,
as it required a large number of iterations when [σs +(1−β )νσf ]> σt. Therefore,
the fission source term has been partitioned in two terms, so the resulting recursive
systems appear as

1
v
∂
∂ t
ψm(x, t)+μm

∂
∂x
ψm(x, t)+σtψm(x, t)− σs +α(1−β )νσf

2

N

∑
n=1

ψn(x, t)wn

= (1−α)(1−β )νσf

2

N

∑
n=1

ψn(x, t)wn +λC(x, t), m = 1 : N

(52.22)

such that σs +α(1− β )νσf < σt. Following this acceleration technique reduced
significantly the number of iterations to reach the stopping criterion.

52.4 Numerical Results

In this section, we show two numerical experiments to a model problem or a
homogeneous slab. Before describing the model problem, we define reactivity as
the quantity

ρ =
keff−1

keff
, (52.23)

where keff is the effective multiplication factor which is defined as the dominant
eigenvalue of the steady-state SN problem

μm
d
dx
ψm,0(x)+σψm,0(x) =

σs +νσf /keff

2
φ0(x). (52.24)

It is common in nuclear reactor physics to divide reactivity ρ by the delayed neutron
fraction β , in which case the reactivity is referred to as dollar ($) [LeMi84].

The homogeneous slab has length L = 10 cm, the thermal neutron speed is
v = 2.2×105 cm/s and to model this problem we used vacuum boundary conditions
at x = 0 and x = 10 with the Gauss–Legendre S10 angular quadrature set and
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Table 52.1 Macroscopic
cross section to the model
problem

Macroscopic cross section

σt 1 cm−1

σs 0.1 cm−1

νσf 0.925 cm−1

Table 52.2 Numerical results for the scalar flux.

Scalar flux (neutrons/cm2s)

Reactivity ($) Time (s) x= 2.0 cm x= 5.0 cm x= 7.0 cm

0 0 0.32202E+17 0.47659E+17 0.40573E+17

0.1 0.32205E+17 0.47665E+17 0.40577E+17

1 0.32205E+17 0.47664E+17 0.40577E+17

10 0.32205E+17 0.47665E+17 0.40578E+17

−0.1 0.1 0.29257E+17 0.43301E+17 0.36862E+17

1 0.29074E+17 0.43030E+17 0.36632E+17

10 0.27307E+17 0.40415E+17 0.34405E+17

0.001 0.1 0.32237E+17 0.47713E+17 0.40618E+17

1 0.32239E+17 0.47716E+ 017 0.40620E+17

10 0.32262E+17 0.47750E+17 0.40650E+17

macroscopic cross section as shown in Table 52.1. Our first numerical experiment
consists of varying the reactivity for U235

92 fuel (β = 0.0065, λ = 0.076666) which
generates power P = 10Mw; that is, we keep the system critical for 10 seconds
by dividing the fission cross section by keff = 1.00010842619 (ρ = 0$). As we
see in Table 52.2 the scalar flux at x = 2, x = 5 and x = 7 are kept constant,
apart from reduced computation rounding errors. Then, we add a negative reactivity
(ρ = −0.1$) and Table 52.2 shows that the scalar flux decreases as a function of
time, as predicted theoretically. On the other hand, by adding a positive reactivity
(ρ = 0.001$) the scalar flux increases as a function of time. Figures 52.1, 52.2
and 52.3 display the scalar flux profiles within the slab for these three tests.

The second numerical experiment shows numerical results generated by the
described decomposition method, by adding at t = 0 a fixed negative reactivity ρ =
−0.00065 [Eq.(52.23)] in distinct fission chain reacting systems composed of three
types of fuel: U235

92 (β = 0.0065, λ = 0.076666), U233
92 (β = 0.0026, λ = 0.0542527)

and Pu239
94 (β = 0.0021, λ = 0.0648618). Table 52.3 displays the numerical results

for the scalar flux at the same positions as in the previous numerical experiment for
t = 1s. Since ρ < 0, the scalar flux decreases as a function of time. We remark that,
as expected, the scalar flux decreased much more for the care of Pu239

94 -fuel. This is
due to the fact that the delayed neutron fraction β for the Pu239

94 -fuel is smaller than
β for the other. As a result, we conclude that the delayed neutrons play an important
role in nuclear reactor control. Figure 52.4 shows the scalar flux profiles at t = 1 s
for these three types of fuel.
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Fig. 52.1 Scalar flux profile (ρ = 0).
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Fig. 52.2 Scalar flux profiles at 0≤ t ≤ 10 s (ρ =−0.1$).

52.5 Concluding Remarks

Regarding the contribution of this work we would like to emphasize that the
proposed recursive system of equations allows us to solve the SN neutron transport
equation with neutron fission source in a slab by the LSTN version with real
eigenvalues, bearing in mind that for this kind of problem the eigenvalues are
purely imaginary. Another important feature of this recursion scheme consists
in the acceleration of the solution convergence, in the sense that we can obtain
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Fig. 52.3 Scalar flux profiles at 0≤ t ≤ 10 s (ρ = 0.001$).

Table 52.3 Numerical
results for the scalar flux.

Scalar flux (neutrons/cm2s)

Fuel x=2.0 cm x=5.0 cm x=7.0 cm

U235
92 0.29074E+17 0.43030E+17 0.36632E+17

U233
92 0.25488E+17 0.37723E+17 0.32114E+17

Pu239
94 0.24222E+17 0.35850E+17 0.30519E+17
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Fig. 52.4 Scalar flux for three different fuels.

any prescribed accuracy for the results with a drastic reduction of the number of
solutions for the respective recursive equations. Finally, it is noteworthy that this
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work paves the way for applications of the discussed methodology in accelerator
driven nuclear reactor concepts, observing that the pulsed neutron source can be
replaced by an idealized neutron fission source. Motivated by the good results
obtained, we focus our future attention in this direction.
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Chapter 53
New Constructions in the Theory of Elliptic
Boundary Value Problems

V.B. Vasilyev

53.1 Introduction

How are potentials constructed for boundary value problems? One takes a funda-
mental solution of the corresponding differential operator in whole space Rm, and
with its help constructs the potentials according to boundary conditions. Further,
one studies their boundary properties, and with the help of potentials reduces
the boundary value problem to an equivalent integral equation on the boundary.
The formulas for integral representation of solution of the boundary value problem
were obtained for separate cases only (a ball, a half-space, such places, where one
has explicit form for a Green function). Thus, an ideal result for a boundary value
problem even with a smooth boundary is its reduction to an equivalent Fredholm
equation and obtaining the existence and uniqueness theorem (without knowing
how the solution looks) [Ag57, Fa88, Ke94, MiMiTa01, HsWe08]. We would like to
show that potentials can arise from another point of view, without using fundamental
solution, but using factorization idea and they obviously should take into account
the boundary geometry. A smooth boundary is a hyper-plane locally (there is a
Poisson formula for the Dirichlet problem, see also [Es81]), first type of non-smooth
boundary is a conical surface.
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53.2 Operators, Equations, and Wave Factorization

We consider an elliptic pseudo-differential equation in a multi-dimensional cone
and starting wave factorization concept we add some boundary conditions. For the
simplest cases explicit formulas for solution are given like layer potentials for a
classical case.

Let’s go to studying solvability of pseudo-differential equations [Va00a, Va11,
Va10]

(Au+)(x) = f (x), x ∈ Ca
+, (53.1)

in the space Hs(Ca
+), where Ca

+ is m-dimensional cone

Ca
+ = {x ∈ Rm : x = (x1, ...,xm−1,xm),xm > a|x′|,a > 0}, x′ = (x1, ...,xm−1),

A is pseudo-differential operator (ũ denotes the Fourier transform of u)

u(x) �−→
∫

Rm

eix·ξA(ξ )ũ(ξ )dξ , x ∈ Rm,

with the symbol A(ξ ) satisfying the condition

c1 ≤ |A(ξ )(1+ |ξ |)−α | ≤ c2.

(Such symbols are elliptic [Es81] and have the order α ∈ R at infinity.)
By definition, the space Hs(Ca

+) consists of distributions from Hs(Rm), whose
support belongs to Ca

+. The norm in the space Hs(Ca
+) is induced by the norm from

Hs(Rm). The right-hand side f is chosen from the space Hs−α
0 (Ca

+), which is space
of distributions S′(Ca

+), admitting the continuation on Hs−α(Rm). The norm in the
space Hs−α

0 (Ca
+) is defined by

||f ||+s−α = inf ||lf ||s−α ,

where infimum is chosen from all continuations l.
Further, we define a special multi-dimensional singular integral by the formula

(Gmu)(x) = lim
τ→0+

∫

Rm

u(y′,ym)dy′dym

(|x′ − y′|2−a2(xm− ym + iτ)2)m/2

(we omit a certain constant, see [Va00a]). Let us recall, this operator is multi-
dimensional analogue of the one-dimensional Cauchy type integral, or Hilbert
transform.

We also need some notations before definition.
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The symbol
∗

Ca
+ denotes a conjugate cone for Ca

+:

∗
Ca
+= {x ∈ Rm : x = (x′,xm),axm > |x′|},

Ca− ≡ −Ca
+, T(Ca

+) denotes radial tube domain over the cone Ca
+, i.e. domain in a

complex space Cm of type Rm + iCa
+.

To describe the solvability picture for the equation (53.1) we will introduce the
following definition.

Definition 1. Wave factorization for the symbol A(ξ ) is called its representation in
the form

A(ξ ) = A�=(ξ )A=(ξ ),

where the factors A�=(ξ ),A=(ξ ) must satisfy the following conditions:

1) A�=(ξ ),A=(ξ ) are defined for all admissible values ξ ∈ Rm, without may be, the
points {ξ ∈ Rm : |ξ ′|2 = a2ξ 2

m};
2) A�=(ξ ),A=(ξ ) admit an analytical continuation into radial tube domains

T(
∗

Ca
+),T(

∗
Ca−), respectively, with estimates

|A±1
�= (ξ + iτ)| ≤ c1(1+ |ξ |+ |τ |)±κ ,

|A±1
= (ξ − iτ)| ≤ c2(1+ |ξ |+ |τ |)±(α−κ), ∀τ ∈

∗
Ca
+ .

The number κ ∈ R is called index of wave factorization.

The class of elliptic symbols admitting the wave factorization is very large. There
are the special chapter in the book [Va00a] and the paper [Va00b] devoted to this
question, there are examples also for certain operators of mathematical physics.

Everywhere below we will suppose that the mentioned wave factorization does
exist, and the sign ∼ will denote the Fourier transform, particularly H̃(D) denotes
the Fourier image of the space H(D).

53.3 After the Wave Factorization

Now we will consider the equation (53.1) for the case κ−s= n+δ ,n∈N, |δ |< 1/2,
only. A general solution can be constructed in the following way. We choose an
arbitrary continuation lf of the right-hand side on a whole space Hs−α(Rm) and
introduce

u−(x) = (lf )(x)− (Au+)(x).
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After wave factorization for the symbol A(ξ ) with preliminary Fourier transform
we write

A�=(ξ )ũ+(ξ )+A−1
= (ξ )ũ−(ξ ) = A−1

= (ξ )l̃f (ξ ).

One can see that A−1
= (ξ )l̃f (ξ ) belongs to the space H̃s−κ(Rm), and if we choose

the polynomial Q(ξ ), satisfying the condition

|Q(ξ )| ∼ (1+ |ξ |)n,

then Q−1(ξ )A−1
= (ξ )l̃f (ξ ) will belong to the space H̃−δ (Rm).

Further, according to the theory of multi-dimensional Riemann problem [Va00a],
we can decompose the last function on two summands (jump problem):

Q−1A−1
= l̃f = f++ f−,

where f+ ∈ H̃(Ca
+), f− ∈ H̃(Rm \Ca

+).
So, we have

Q−1A�=ũ++Q−1A−1
= ũ− = f++ f−,

or

Q−1A�=ũ+− f+ = f−−Q−1A−1
= ũ−

In other words,

A�=ũ+−Qf+ = Qf−−A−1
= ũ−.

The left-hand side of the equality belongs to the space H̃−n−δ (Ca
+), and right-

hand side is from H̃−n−δ (Rm \Ca
+), hence

F−1(A�=ũ+−Qf+) = F−1(Qf−−A−1
= ũ−),

where the left-hand side belongs to the space H−n−δ (Ca
+), and the right-hand side

belongs to the space H−n−δ (Rm \Ca
+), that’s why we conclude immediately that it

is a distribution supported on ∂Ca
+.

The main tool now is to define the form of the distribution.
We denote Ta the bijection operator transferring ∂Ca

+ into hyperplane xm = 0,
more precisely, it is transformation Rm −→ Rm of the following type

⎧
⎪⎪⎨

⎪⎪⎩

t1 = x1,

............

tm−1 = xm−1,

tm = xm−a|x′|.
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Then the function

TaF−1(A�=ũ+−Qf+)

will be supported on the hyperplane tm = 0 and belongs to H−n−δ (Rm). Such
distribution is a linear span of Dirac mass-function and its derivatives [GeSh59]
and looks as the following sum

n−1

∑
k=0

ck(t
′)δ (k)(tm).

It is left to think, what is operator Ta in Fourier image. Explicit calculations give
a simple answer:

FTau = Vaũ,

where Va is something like a pseudo-differential operator with symbol e−ia|ξ ′|ξm ,
and, further, one can construct the general solution of our pseudo-differential
equation (53.1).

We need some connections between the Fourier transform and the operator Ta:

(FTau)(ξ ) =
∫

Rm

e−ix·ξu(x1, ...,xm−1,xm−a|x′|)dx =

=
∫

Rm

e−iy′ξ ′e−i(ym+a|y′|)ξmu(y1, ...,ym−1,ym)dy =

=

∫

Rm−1

e−ia|y′|ξme−iy′ξ ′ û(y1, ...,ym−1,ξm)dy′,

where û denotes the Fourier transform on the last variable, and the Jacobian is

D(x1,x2, ...,xm)

D(y1,y2, ...,ym)
=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 0 · · ·0 0
0 1 · · ·0 0
0 0 · · ·1 0
· · · · · · · · · · · · · · ·

ay1
|y′|

ay2
|y′| ....

aym−1
|y′| 1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= 1.

If we define a pseudo-differential operator by the formula

(Au)(x) =
∫

Rm

eixξA(ξ )ũ(ξ )dξ ,
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and the direct Fourier transformation

ũ(ξ ) =
∫

Rm

e−ixξu(x)dx,

then we have the following relation formally at least

(FTau)(ξ ) =
∫

Rm−1

e−ia|y′|ξme−iy′ξ ′ û(y1, ...,ym−1,ξm)dy. (53.2)

In other words, if we denote the (m−1)-dimensional Fourier transform (y′ → ξ ′

in distribution sense) of function e−ia|y′|ξm by Ea(ξ ′,ξm), then the formula (53.2)
will be the following

(FTau)(ξ ) = (Ea ∗ ũ)(ξ ),

where the sign ∗ denotes a convolution for the first m−1 variables, and the multiplier
for the last variable ξm. Thus, Va is a combination of a convolution operator and the
multiplier with the kernel Ea(ξ ′,ξm). It is very simple operator, and it is bounded in
Sobolev–Slobodetski spaces Hs(Rm).

Notice that distributions supported on conical surface and their Fourier trans-
forms were considered in [GeSh59], but the author did not find the multi-dimension-
al analogue of theorem on a distribution supported in a single point in all issues of
this book.

Remark 1. One can wonder why we can’t use this transform in the beginning to
reduce the conical situation (53.1) to hyperplane one, and then to apply Eskin’s
technique [Es81]. Unfortunately, this is impossible because Ta is non-smooth
transformation, but even for smooth transformation we obtain the same operator
A with some additional compact operator. Obtaining the invertibility conditions for
such operator is a very serious problem.

53.4 General Solution

The following result is valid (it follows from considerations of Section 53.3).

Theorem 1. A general solution of the equation (53.1) in Fourier image is given by
the formula

ũ+(ξ ) = A−1
�= (ξ )Q(ξ )GmQ−1(ξ )A−1

= (ξ )l̃f (ξ )+

+A−1
�= (ξ )V−aF

(
n

∑
k=1

ck(x
′)δ (k−1)(xm)

)

,

where ck(x′) ∈ Hsk(Rm−1) are arbitrary functions, sk = s − κ + k − 1/2,
k = 1,2, ...,n, lf is an arbitrary continuation f on Hs−α(Rm).
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Starting from this representation one can suggest different statements of bound-
ary value problems for the equation (53.1).

53.4.1 Another Singularity

It may be that the singularity point will be different from considered one. This
matter will influence the structure of the operator Va. So, if we consider an another
m-dimensional cone, for example C�a

+ = {x ∈ Rm : x = (x1, ...,xm−1,xm),xm >
m−1
∑

k=1
ak|xk|, ak > 0, k = 1,2, ...,m− 1}, �a = (a1, ...,am−1), then we need certain

corrections for our studies, in general it will be the same. Namely, we need to define
a special multi-dimensional singular integral by the formula

(Gmu)(x) = (2i)m−1 lim
τ→0+

∫

Rm

m−1

∏
j=1

aj(xm− ym + iτ)m−2

(xj− yj)2−a2
j (xm + ym + iτ)2

u(y)dy

(for details see also [Va00a]). Such operator corresponds to the Fourier multiplier
(characteristic function, or indicator) of the pyramid C�a

+.
The Jacobian for this transformation T�a is

D(x1,x2, ...,xm)

D(y1,y2, ...,ym)
=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 0 · · ·0 0
0 1 · · ·0 0
0 0 · · ·1 0

· · · · · · · · · · · · · · ·
−a sign(y1) −a sign(y2) ....−a sign(ym−1) 1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= 1,

and the argument continues as above. This kind of singularity is considered in a
forthcoming paper by the author, to appear in Adv. Dyn. Syst. Appl.

53.5 Boundary Conditions: Simplest Version,
the Dirichlet Condition

We consider a very simple case, when f ≡ 0, a = 1, n = 1. Then the formula from
the theorem takes the form

ũ+(ξ ) = A−1
�= (ξ )V−1c̃0(ξ ′).

We consider the following construction separately. According to the Fourier
transform our solution is

u+(x) = F−1{A−1
�= (ξ )V−1c̃0(ξ ′)}.
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Let’s suppose we choose the Dirichlet boundary condition on ∂C1
+ for unique

identification of an unknown function c0, i.e.

(Pu)(y) = g(y),

where g is given function on ∂C1
+, P is restriction operator on the boundary, so we

know the solution on the boundary ∂C1
+. Thus,

T1u(x) = T1F−1{A−1
�= (ξ )V−1c̃0(ξ ′)},

so we have

FT1u(x) = FT1F−1{A−1
�= (ξ )V−1c̃0(ξ ′)}= V1{A−1

�= (ξ )V−1c̃0(ξ ′)}, (53.3)

and we know (P′T1u)(x′) ≡ v(x′), where P′ is the restriction operator on the
hyperplane xm = 0.

The relation between the operators P′ and F is well-known [Es81]:

(FP′u)(ξ ′) =
+∞∫

−∞
ũ(ξ ′,ξm)dξm.

Returning to the formula (53.3) we obtain the following

ṽ(ξ ′) =
+∞∫

−∞
{V1{A−1

�= (ξ )V−1c̃0(ξ ′)}}(ξ ′,ξm)dξm, (53.4)

where ṽ(ξ ′) is given function. Hence, the equation (53.4) is an integral equation for
determining c0(x′).

The Neumann boundary condition leads to analogous integral equation (see
below).

53.6 Conical Potentials

We consider the particular case where f ≡ 0,n = 1. The formula for general solution
of the equation (53.1) takes the form

ũ+(ξ )) = A−1
�= (ξ )V−aF{c0(x

′)δ (0)(xm)},

and after Fourier transform (for simplicity we write c̃ instead of V−1c̃0),

ũ+(ξ ) = A−1
�= (ξ )c̃(ξ ′), (53.5)
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or equivalently the solution is

u+(x) = F−1{A−1
�= (ξ )c̃(ξ ′)}.

Then we apply the operator Ta to formula (53.5)

(Tau+)(t) = TaF−1{A−1
�= (ξ )c̃(ξ ′)}

and the Fourier transform

(FTau+)(ξ ) = FTaF−1{A−1
�= (ξ )c̃(ξ ′)}.

If the boundary values of our solution u+ are known on ∂Ca
+, it means that the

following function is given:

+∞∫

−∞
(FTau+)(ξ )dξm.

So, if we denote

+∞∫

−∞
(FTau+)(ξ )dξm ≡ g̃(ξ ′),

then for determining c̃(ξ ′) we have the following equation:

+∞∫

−∞
(FTaF−1){A−1

�= (ξ )c̃(ξ ′)}dξm = g̃(ξ ′), (53.6)

This is a convolution equation, and if evaluating the inverse Fourier transform
ξ ′ → x′, we’ll obtain the conical analogue of layer potential.

53.6.1 Studying the Last Equation

Now we try to determine the form of the operator FTaF−1 (see above Sec. 3). We
write

(FTaF−1ũ)(ξ ) = (FTau)(ξ ) =
∫

Rm−1

e−ia|y′|ξme−iy′·ξ ′ û(y′,ξm)dy′, (53.7)

where y′ = (y1, ...ym−1), û is the Fourier transform of u on last variable ym.
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We denote the convolution operator with symbol A−1
�= (ξ ) by letter a, so that by

definition

(a∗u)(x) =
∫

Rm

a(x− y)u(y)dy,

or, for Fourier images,

F(a∗u)(ξ ) = A−1
�= (ξ )ũ(ξ ).

As above, we denote â(x′,ξm) the Fourier transform of convolution kernel a(x)
on the last variable xm. The integral in (53.6) takes the form (according to (53.7))

∫

Rm−1

e−ia|y′|ξme−iy′·ξ ′(â∗ c)(y′,ξm)dy′,

Taking into account the properties of the convolution operator and the Fourier
transform we have the following representation (see Section 53.3)

Ea ∗ (A−1
�= (ξ )c̃(ξ ′)),

or, in more detail,
∫

Rm−1

Ea(ξ ′ −η ′,ξm)A
−1
�= (η ′,ξm)c̃(η ′)dη ′.

Then the equation (53.6) takes the form

∫

Rm−1

Ka(η ′,ξ ′ −η ′)c̃(η ′)dη ′ = g̃(ξ ′), (53.8)

where

Ka(η ′,ξ ′) =
+∞∫

−∞

Ea(ξ ′,ξm)

A�=(η ′,ξm)
dξm.

So, the integral equation (53.8) is an equation for determining c̃(ξ ′). This is a conical
analogue of the double-layer potential.

Suppose that we solved this equation and constructed the inverse operator La, so
that Lag̃= c̃. By the way, we’ll note the unique solvability condition for the equation
(53.8) (i.e. existence of bounded operator La) is necessary and sufficient for unique
solvability for our Dirichlet boundary value problem. Using the formula (53.5) we
obtain

ũ+(ξ ) = A−1
�= (ξ )(Lag̃)(ξ ′),



53 Elliptic Boundary Value Problems 639

or, relabeling,

ũ+(ξ ) = A−1
�= (ξ )d̃a(ξ ′).

Then

u+(x
′,xm) =

∫

Rm−1

W(x′ − y′,xm)da(y
′)dy′, (53.9)

where W(x′,xm) = F−1
ξ→x(A

−1
�= (ξ )).

Formula (53.9) is the analogue of the Poisson integral for a half-space.

53.7 Comparison with the Half-Space Case for the Laplacian

For the half-space xm > 0 we have the following (see Eskin’s book [Es81]):

ũ+(ξ ) =
c̃(ξ ′)

ξm + i|ξ ′| .

If we have the Dirichlet condition on the boundary, then the function

g̃(ξ ′) =
+∞∫

−∞
ũ+(ξ )dξm

is given.
From the formula above we have

g̃(ξ ′) = c̃(ξ ′)
+∞∫

−∞

dξm

ξm + i|ξ ′| ,

and we need to calculate the last integral only.
For this case we can use the residue technique and find that the last integral is

equal to −πi. Thus,

ũ+(ξ ) =− g̃(ξ ′)
πi(ξm + i|ξ ′|) .

Consequently, our solution u+(x) is the convolution (for first (m− 1) variables)
of the given function g(x′) and the kernel defined by inverse Fourier transform of
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function (ξm+ i|ξ ′|)−1 (up to a constant). The inverse Fourier transform on variable
ξm leads to the function e−xm|ξ ′|, and further, the inverse Fourier transform ξ ′ → x′
leads to Poisson kernel

P(x′,xm) =
cmxm

(|x′|2 + x2
m)

m/2
,

cm is certain constant defined by Euler Γ -function.
Thus, for the solution of the Dirichlet problem in half-space Rm

+ for the Laplacian
with given Dirichlet data g(x′) on the boundary Rm−1 we have the integral
representation

u+(x
′,xm) =

∫

Rm−1

P(x′ − y′,xm)g(y
′)dy′.

53.8 Oblique Derivative Problem

We go back to formula (53.5). We can write

ξkũ+(ξ ) = ξkA−1
�= (ξ )c̃(ξ ),

or equivalently according to Fourier transform properties

∂u+
∂xm

= F−1{ξkA−1
�= (ξ )c̃(ξ )},

for arbitrary fixed k = 1,2, ...,m.
Further, we apply the operator Ta and work as above. Our considerations will

be the same, and in all places instead of A−1
�= (ξ ) will stand ξkA−1

�= (ξ ). We call this

situation the oblique derivative problem, because ∂
∂xk

related to conical surface is
not normal derivative exactly.

Remark 2. Some words on the Neumann problem. If we try to give normal
derivative of our solution on conical surface different from origin, then we have the
boundary value problem with variable coefficients because the boundary condition
varies from one point to another one on conical surface. We need additional
localization for such points to reduce it to the case of constant coefficients and
consider corresponding model problem in Rm

+. Roughly speaking, we would say that
the solution looks locally different in dependence on the type of boundary point. In
other words, local principle permits to work with symbols and boundary conditions
independent of the space variable.
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53.9 Conclusions

It seems that to solve explicitly the simplest boundary value problems in domains
with conical point, we need to use another potentials different from classical single-
layer and double-layer potentials. This fact will be shown for the Laplacian with
Dirichlet condition on a conical surface by direct calculations in a future paper.
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Chapter 54
Optimal Control of Partial Differential
Equations by Means of Stackelberg
Strategies: An Environmental Application

M.E. Vázquez-Méndez, L.J. Alvarez-Vázquez, N. García-Chan,
and A. Martínez

54.1 Mathematical Formulation of the Physical Problem

A sewage depuration system consists of a small number of treatment plants—
collecting the wastewater from an urban area—where purification treatments are
applied to discharge the final effluent—through an outfall—at some point of a
domain occupied by shallow water: river, lake, estuary, etc. The location of these
discharges and the intensities of the treatments in each plant are crucial points
in order to protect the ecosystem in the water domain. Moreover, these plants
can be built and/or managed by different agents (industries, municipalities, local
governments, etc.), which causes a wide range of options to define a final optimal
strategy.

When a unique agent is concerned, the situation can be formulated as an
optimal control problem of partial differential equations [MaRoVa00, AlEtAl02],
but if the system is managed by several organizations, the problem becomes multi-
objective, and the concept of optimal strategy depends on the particularities of
the stakeholders. Usually, these multi-objective problems are approached from
a cooperative viewpoint (Pareto-optimal solutions) [AlEtAl10] or from a non-
cooperative one (Nash equilibria) [GaMuVa09]. However, in this chapter, we
propose an alternative, more realistic, hierarchical framework: in charge of the
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construction of the plant there is a higher organism (for instance, a regional
government), which pursues global goals, and the plant manager (responsible for
determining the intensity of treatments to be developed) is a subordinate entity
(for instance, a council government), pursuing only local targets. A strategy good
enough for the upper entity (the leader) and the subordinate (the follower) is said
a Stackelberg strategy [St52]. This type of strategies is widely used in economics.
Nevertheless, its application to multi-objective optimal control problems governed
by partial differential equations has been, as far as we know, very limited.

So, let us consider a domain Ω ⊂ R
2, with a smooth enough boundary ∂Ω ,

occupied by shallow water in which are released, through submarine outfalls,
wastewater discharges. The environmental impact of these discharges can be
controlled through the concentration level of fecal coliforms (FC) at each point of
the domain. The concentration ρ(x, t) of FC at point x ∈ Ω and time t ∈ [0,T] can
be obtained by solving the problem [GaMuVa09]

∂ρ
∂ t

+�u ·∇ρ−βΔρ+κρ =
1
h

(

m(t)δb(x)+
NP

∑
j=1

mj(t)δcj(x)

)

in O,

ρ(x,0) = ρ0(x) in Ω ,
∂ρ
∂n

= 0 on Γ ,

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(54.1)

where h(x, t) and�u(x, t) are, respectively, the height and the horizontal velocity of
water, β > 0 is a viscosity coefficient, κ is an experimental coefficient related to
FC loss rate, b,c1, . . . ,cNP ∈ Ω are the points where wastewater is discharged and
m(t),m1(t), . . . ,mNP(t) are, respectively, the mass flow of FC discharged at those
point, δp(x) represents the Dirac measure located at point p ∈ Ω , ρ0(x) ∈ C (Ω̄)
gives the concentration of FC at initial time, and, finally, O = Ω × (0,T) and
Γ = ∂Ω × (0,T).

Let us assume a depuration system consisting of NP plants already operating (that
is, points c1, . . . ,cNP ∈ Ω , and discharges m1(t), . . . ,mNP(t) are fixed and known)
and of a new plant, located at a point a ∈ ∂Ω . This plant will be connected, through
a submarine outfall to be built, with a discharge point b ∈ Ω (to be determined),
and at that point will be released, at each time t ∈ (0,T), a FC flow m(t) (also to be
determined).

The choice of b ∈ Ω and m(t) ∈ L∞(0,T) (the controls in our problem) will be
done trying to optimize two objectives:

1. First, the organization responsible for choosing the new point (hereinafter the
leader) seeks the length of the outfall and the concentration of FC in a certain
protected area AL ⊂ Ω to be as small as possible. Consequently, its goal is to
minimize the functional

JL(b,m) =
1
2
‖b−a‖2 +

εL

T|AL|
∫ T

0

∫

ĀL

ρ(x, t)dxdt, (54.2)

where εL is a penalty parameter and |AL| denotes the area of AL.
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2. Second, the organization in charge of managing the plant (hereinafter the fol-
lower) seeks to reduce economic costs, both from the treatments to be performed
in the depuration plant and from the penalties to pay if the concentration of FC
in its small influence area, AF ⊂Ω , is greater than a certain threshold σF . Thus,
its aim is to minimize the functional

JF(b,m) =
∫ T

0
f (m(t))dt+

εF

2

∫ T

0

∫

ĀF

(ρ(x, t)−σF)
2
+ dxdt, (54.3)

where f : (0,∞) −→ R measures treatment cost, εF is a penalty parameter, and
(·)+ denotes the positive part function (y)+ = max{y,0}.
Evidently the problem presents technological constraints limiting both the points

where the outfall can be located, and the treatment intensities that can be applied
in the plant. So, we denote by Uad ⊂ Ω the set of admissible points for placing the
outfall, and, for given values 0 < m < m, we define as Mad = {m ∈ L∞(0,T) : m≤
m(t)≤ m a.e. in (0,T)} the set of feasible discharges.

The ideal (or utopic) solution consists of finding a control (bI ,mI) ∈ Uad×Mad

minimizing simultaneously above functionals JL and JF . However, this control
rarely exists, due to the opposite character of both functionals. To address and
solve this type of multi-objective problems there exist different strategies. Since
the organization responsible for the location of the outfall acts as leader, choosing
first, and the manager of the plant, knowing the decision of the leader, will act
accordingly, seeking the discharge that favors its own interests more, in this work
we will use Stackelberg strategies [St52] to find the optimal solution of the problem.
To do this, we first consider the follower problem:

For a given b ∈ Uad, find min
m∈Mad

JF(b,m). (54.4)

Let us assume that, for each b ∈ Uad, the problem (54.4) has a unique solution
denoted by mb ∈Mad, and consider the leader problem:

min
b∈Uad

JL(b,mb), where mb ∈Mad is the solution of (54.4). (54.5)

Definition 1. We say that (b∗,m∗) ∈ Uad×Mad is a Stackelberg strategy (solution
of our optimal control problem) if and only if

1. m∗ is the best response of the follower to the leader choice b∗, that is, m∗ is the
solution of the problem (54.4) for b∗ ∈ Uad, or, equivalently, m∗ = mb∗ .

2. b∗ is the best choice of the leader, that is, b∗ is the solution of the problem (54.5).

In the next sections we will analyze in detail the problems (54.4) and (54.5).
In particular, we will prove that, for each b ∈ Uad, the problem (54.4) admits a
unique solution (which guarantees that the above definition is correct), and we will
demonstrate that our problem admits, at least, one Stackelberg strategy (the problem
(54.5) admits, at least, one solution). Finally, in order to characterize the optimal
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solutions, we will derive a first order optimality system. In these results we will
obtain expressions for the gradients of the objective functions in both problems,
which will be very useful for the numerical resolution of the problem (to be
addressed in a forthcoming paper).

54.2 Analysis of the Follower Problem

We begin this section studying the existence and regularity of solutions to the state
system (54.1). A solution of (54.1) can be defined by transposition techniques in the
following sense (see [MaRoVa00] for details):

Definition 2. For given r,s∈ [1,2), 2
r +

2
s > 3, we say that ρ ∈ Lr(0,T;W1,s(Ω)) is

a solution of problem (54.1) if, for each Φ ∈ C 1(Ω̄ × [0,T]) such that Φ(·,T) = 0,
it verifies that

∫ T

0

∫

Ω

(

−∂Φ
∂ t
ρ+β∇Φ∇ρ+�uΦ∇ρ+κΦρ

)

dxdt =
∫

Ω
Φ(x,0)ρ0(x)dx

+
∫ T

0

1
h(b, t)

Φ(b, t)m(t)dt+
NP

∑
j=1

∫ T

0

1
h(cj, t)

Φ(cj, t)mj(t)dt.

Then we have the following result (cf. [MaRoVa00] and [AlEtAl02]):

Theorem 1. Let Ω be a bounded domain with a smooth enough boundary ∂Ω . We
consider�u ∈ [L∞(0,T;W1,∞(Ω))]2 and h ∈ C (Ω̄ × [0,T]) satisfying h(x, t) ≥ α >
0, ∀(x, t) ∈ Ω̄ × [0,T]. Then

1. There exists a unique function ρ ∈ [Lr(0,T;W1,s(Ω))∩ L2(0,T;L2(Ω))] with
∂ρ
∂ t ∈ Lr(0,T;(W1,s′(Ω))′), solution of (54.1) and verifying

∫ T

0
〈−∂Φ

∂ t
−βΔΦ−div(Φ�u)+κΦ ,ρ〉dt =

∫

Ω
Φ(x,0)ρ0(x)dx

+
∫ T

0

1
h(b, t)

Φ(b, t)m(t)dt+
NP

∑
j=1

∫ T

0

1
h(cj, t)

Φ(cj, t)mj(t)dt,

for all Φ ∈ L2(0,T;H2(Ω))∩H1(0,T;L2(Ω)) such that

β
∂Φ
∂n

+Φ�u ·�n = 0 on ∂Ω × (0,T), Φ(·,T) = 0 in Ω .

2. If there exists a closed set E ⊂ Ω such that Ω\E is a smooth enough
domain, {b,c1, . . . ,cNP} ⊂ E and ĀL ∪ ĀF ⊂ Ω\E, then ρ|(ĀL∪ĀF)×[0,T] ∈ C

((ĀL∪ ĀF)× [0,T]), so that the functional
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F : Uad×Mad −→ C ((ĀL∪ ĀF)× [0,T])
(b,m) −→ F(b,m) = ρ|(ĀL∪ĀF)×[0,T]

is well defined, continuous and, moreover,

a. for each b ∈ Uad, the function

F(b, ·) : m ∈Mad −→ F(b,m) ∈ C ((ĀL∪ ĀF)× [0,T])

is affine, and Gâteaux (also Frechet) differentiable;
b. if h ∈ C ([0,T];C 1(Ω)), then, for each m ∈Mad, the function

F(·,m) : b ∈ Uad −→ F(b,m) ∈ C ((ĀL∪ ĀF)× [0,T])

is Gâteaux differentiable.

Let us analyze now the cost functional JF , formally introduced in (54.3). Under
the hypotheses of Theorem 1 we have that JF is well defined in Uad×Mad, and can
be written as JF(b,m) =Θ(m)+HF(F(b,m)), with

• Θ : m ∈Mad −→Θ(m) ∈ R, given byΘ(m) =
∫ T

0
f (m(t))dt,

• HF : ρ ∈ C ((ĀL∪ ĀF)× [0,T])−→ HF(ρ) ∈ R, defined by

HF(ρ) =
εF

2

∫ T

0

∫

ĀF

(ρ(x, t)−σF)
2
+ dxdt.

Bearing in mind that, since Mad is a bounded subset of L∞(0,T), on Mad the
weak* topology of L∞(0,T) and the weak topology of L2(0,T) are equivalent, we
have the following result.

Theorem 2. Under the hypotheses of Theorem 1, if f ∈ C (0,∞) is strictly convex,
then, for each b ∈ Uad, the problem (54.4) has a unique solution mb. Moreover,
if f ∈ C 1(0,∞), then mb ∈ Mad is the solution of (54.4) if and only if there exist
ρ ∈ [Lr(0,T;W1,s(Ω))∩L2(0,T;L2(Ω))] (r,s ∈ [1,2), 2

r +
2
s > 3), solution of the

state system (54.1), and q ∈W1,∞([0,T];L∞(Ω))∩L∞([0,T];W2,∞(Ω)), solution of
the adjoint system

−∂q
∂ t
−βΔq−div(q�u)+κq = εF χĀF

(ρ−σF)+ in O,

q(x,T) = 0 in Ω ,

β
∂q
∂n

+q(�u ·�n) = 0 on Γ ,

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(54.6)

satisfying the optimality condition
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∫ T

0

(

f ′(mb(t))+
1

h(b, t)
q(b, t)

)

(m(t)−mb(t))dt ≥ 0, ∀m ∈Mad, (54.7)

where χĀF
denotes the characteristic function of set ĀF.

Proof. If the function f is continuous and strictly convex, then so it the functional
Θ . In addition, HF is clearly continuous, convex and Gâteaux differentiable. Thus,
as for each b ∈ Uad the function F(b, ·) is continuous and affine (see Theorem 1),
the functional

JF(b, ·) : m ∈Mad −→ JF(b,m) =Θ(m)+HF(F(b,m)) ∈ R (54.8)

is continuous and strictly convex (and, consequently, lower semicontinuous in the
weak topology of L2(0,T)—see, for instance, Corollary 3.9 of [Br11]). Further-
more, Mad is bounded, convex and closed in L2(0,T) (and therefore also weakly
closed; see, for example, Theorem 3.7 of [Br11]). A classic result of optimization
in Banach spaces (see, for instance, [Ce71]) ensures that the problem (54.4) has a
solution. Finally, this solution is unique since the functional (54.8) is strictly convex.

So, we denote mb ∈ Mad the unique solution of the problem (54.4) for a given
b ∈ Uad. We try now to characterize it. First, we note that, given (b,mb) ∈ Uad ×
Md, the existence of the function ρ ∈ [Lr(0,T;W1,s(Ω))∩L2(0,T;L2(Ω))] solution
of (54.1) is guaranteed by Theorem 1. Moreover, ρ|(ĀL∪ĀF)×[0,T] ∈ C ((ĀL ∪ ĀF)×
[0,T]); therefore, there is a unique q ∈ W1,∞([0,T];L∞(Ω))∩ L∞([0,T];W2,∞(Ω))
satisfying (54.6) (see, for instance, Section 9 of Chapter IV of [LaSoUr68]).

On the other hand, if f ∈ C 1(0,∞), then Θ is Gâteaux differentiable (see
[GaMuVa09]) and

〈DΘ(mb),m〉=
∫ T

0
f ′(mb(t))m(t)dt, ∀m ∈Mad.

Moreover, since F(b, ·) is affine, continuous and Gâteaux differentiable (see Theo-
rem 1) and HF is Gâteaux differentiable, the composition HF ◦F(b, ·) is also Gâteaux
differentiable, and

〈D(HF ◦F(b, ·))(mb),m〉

= εF

∫ T

0

∫

AF

(ρ(x, t)−σF)+δρ(x, t)dxdt, ∀m ∈Mad,

where δρ(x, t) is the solution of the linearized problem

∂δρ
∂ t

+�u ·∇δρ−βΔδρ+κδρ =
1
h

m(t)δb(x) in O,

δρ(x,0) = 0 in Ω ,
∂δρ
∂n

= 0 on Γ .

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(54.9)
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Then the functional JF(b, ·) is Gâteaux differentiable, and

〈DJF(b, ·)(mb),m〉=
∫ T

0
f ′(mb(t))m(t)dt

+εF

∫ T

0

∫

AF

(ρ(x, t)−σF)+δρ(x, t)dxdt, ∀m ∈Mad.

It is worth mentioning here that the last term of the previous expression can be
simplified by adjoint techniques. In effect, multiplying the first equation of (54.9)
by the solution q of (54.6), and integrating over Ω × (0,T), we obtain

∫ T

0

∫

Ω
q
[∂δρ
∂ t

+�u ·∇δρ−βΔδρ+κδρ
]
dxdt =

∫ T

0

1
h(b, t)

q(b, t)m(t)dt.

Taking into account boundary and initial conditions of system (54.9), using Green’s
formula, and integrating by parts, we have

∫ T

0

∫

Ω

(

−∂q
∂ t
−div(q�u)−βΔq+κq

)

δρ dxdt+
∫

Ω
q(x,T)δρ(x,T)dx

+
∫ T

0

∫

∂Ω

(

β
∂q
∂n

+q�u ·�n
)

δρ dγdt =
∫ T

0

1
h(b, t)

q(b, t)m(t)dt

and, because of q(x, t) is the solution of (54.6), it becomes

εF

∫ T

0

∫

AF

(ρ(x, t)−σF)+δρ(x, t)dxdt =
∫ T

0

1
h(b, t)

q(b, t)m(t)dt

Thus, we obtain the expression

〈DJF(b, ·)(mb),m〉=
∫ T

0
f ′(mb(t))m(t)dt+

∫ T

0

1
h(b, t)

q(b, t)m(t)dt (54.10)

Finally, since Mad is convex and JF(b, ·) is Gâteaux differentiable and strictly
convex, we know that (see, for instance, Chapter IV of [Ce71]) mb ∈ Mad is the
solution of problem (54.4) if and only if

〈DJF(b, ·)(mb),m−mb〉 ≥ 0, ∀m ∈Mad

and then, by using the expression (54.10), we obtain (54.7) and conclude the proof.
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54.3 Analysis of the Leader Problem

Theorem 2 ensures that the problem (54.5) is well posed, and allows us to define the
functional

T : b ∈ Uad −→ T(b) = mb ∈Mad, (54.11)

where, as above commented, mb is the solution of the problem (54.4). In order to
prove that the function T is continuous, it will be very useful the following Lemma,
whose demonstration can be seen in [GaMuVa09].

Lemma 1. Let b ∈ Uad and let {mn} ⊂ Mad be a sequence such that {mn} ∗⇀
m (convergence in the weak* topology of L∞(0,T)). Under the hypotheses of
Theorem 1 we have that

{F(b,mn)}→ F(b,m) in C ((ĀL∪ ĀF)× [0,T]).

Thus, we can prove here the following result:

Theorem 3. Let us suppose that f ∈ C (0,∞) is strictly convex and that the
hypotheses of Theorem 1 are satisfied. Then the functional T, given by (54.11), is
continuous considering in Mad the weak* topology of L∞(0,T).

Proof. Let {bn} ⊂ Uad and b ∈ Uad be such that {bn} → b. We are going to prove
that, necessarily, {T(bn)} ∗⇀ T(b) ∈Mad.

Since {T(bn)} ⊂Mad is bounded in L∞(0,T), there exist a subsequence {T(bn′)}
and an element m̂ ∈ L∞(0,T) such that (see, for instance, Corollary 3.30 of [Br11]):

{T(bn′)} ∗⇀ m̂ (54.12)

Since Mad is closed in the weak* topology of L∞(0,T) (as a consequence of the
fact that Mad is closed in L2(0,T) and convex, so also weakly closed in L2(0,T)—
cf., for example, Theorem 3.7 of [Br11]), we have that m̂ ∈ Mad. If we prove now
that m̂ = T(b) then, by the uniqueness of limit, we will have that the whole sequence
{T(bn)} (not only the subsequence) converges to T(b), which will conclude the
demonstration.

In order to see that m̂ = T(b), by the definition of T , it suffices to prove that

JF(b, m̂)≤ JF(b,m), ∀m ∈Mad. (54.13)

Considering (54.12) we can say that

• Since Θ is lower semicontinuous in the weak* topology of L∞(0,T) (it is
continuous and convex, so it is lower semicontinuous in the weak topology of
L2(0,T), which coincides with the weak* one of L∞(0,T)), then
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Θ(m̂)≤ lim
n′→∞

infΘ(T(bn′)). (54.14)

• Since HF is continuous, from Lemma 1,

HF(F(b, m̂)) = lim
n′→∞

HF(F(b,T(b
n′))). (54.15)

Moreover, taking into account that {bn} → b and that F(·,m) is continuous for any
m ∈Mad, we have

HF(F(b,T(b
n′))) = lim

n→∞HF(F(b
n,T(bn′))). (54.16)

Using now (54.14), (54.15) and (54.16), and bearing in mind that F is continuous,
we obtain

JF(b, m̂) = Θ(m̂)+HF(F(b, m̂))

≤ lim
n′→∞

infΘ(T(bn′)+ lim
n′→∞

HF(F(b
n′ ,T(bn′)))

= lim
n′→∞

JF(b
n′ ,T(bn′))

≤ lim
n′→∞

JF(b
n′ ,m), ∀m ∈Mad, (54.17)

where the last inequality is a direct consequence of the definition of T . Again, taking
into account the continuity of HF and F(·,m), we have

lim
n′→∞

JF(b
n′ ,m) = Θ(m)+ lim

n′→∞
HF(F(b

n′ ,m))

= Θ(m)+HF(F(b,m)) = JF(b,m) (54.18)

Finally, combining (54.17) and (54.18) we deduce (54.13), which concludes the
proof.

If we consider the composition of functions

Uad
1Uad

×T−→ Uad×Mad
JL−→ R

b −→ (b,mb) −→ JL(b,mb)

and define J = JL ◦ (1Uad ×T), then the problem (54.5) can be rewritten as

min
b∈Uad

J(b) (54.19)

Theorem 4. Let us assume that f ∈ C (0,∞) is strictly convex and that the
hypotheses of Theorem 1 are satisfied. Then the functional J is continuous.
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Proof. The functional J = JL ◦ (1Uad ×T) is given by

J(b) =
1
2
‖b−a‖2 +HL(F(b,T(b))), (54.20)

where

HL : ρ ∈ C ((ĀL∪ ĀF)× [0,T])−→ HL(ρ) =
εL

T|AL|
∫ T

0

∫

ĀL

ρ(x, t)dxdt ∈ R

is trivially continuous. Then the continuity of J follows from the continuity of F and
T (Theorems 1 and 3) and from Lemma 1:

Let {bn} ⊂ Uad such that {bn} → b∗. From Theorem 3, {T(bn)} ∗⇀ T(b∗), and
from Lemma 1 we obtain that {F(b,T(bn))} → F(b,T(b∗)), ∀b ∈ Uad. Then, from
the continuity of F and H, we have

lim
n→∞HL(F(b

n,T(bn))) = HL(F(b
∗,T(b∗)))

and, finally,

lim
n→∞J(bn) = lim

n→∞

(
1
2
‖bn−a‖2 +HL(F(b

n,T(bn)))

)

=
1
2
‖b∗ −a‖2 +HL(F(b

∗,T(b∗))) = J(b∗),

which ensures the continuity of J.

As a direct consequence of above result, we obtain the existence of, at least, one
Stackelberg strategy for our problem:

Corollary 1. Under the hypotheses of Theorem 1, if f ∈ C (0,∞) is strictly convex,
and Uad ∈ Ω is closed, then the problem (54.19)—or, equivalently, the problem
(54.5)—admits at least one solution.

Assuming additional regularity on functions f and h we are able to derive a
first-order optimality condition for problem (54.19). With this idea in mind, and
searching for a new simpler expression for functional J, given by (54.20), we
introduce the following problem (adjoint state for the leader problem):

−∂p
∂ t
−βΔp−div(p�u)+κp =

1
T|AL|χĀL

in O,

p(x,T) = 0 in Ω ,

β
∂p
∂n

+p(�u ·�n) = 0 on Γ .

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(54.21)
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This problem admits a unique solution (see [LaSoUr68], Ch. IV, Sect. 9) p ∈
W1,∞([0,T];L∞(Ω))∩ L∞([0,T];W2,∞(Ω)). Then, from (54.1) and (54.21), using
Green’s formula and integration by parts, we obtain the equalities

HL(ρ) =
εL

T |AL|
∫ T

0

∫

ĀL

ρ(x, t)dxdt = εL

∫ T

0

∫

Ω

1
T |AL|χĀL

ρ(x, t)dxdt

= εL

∫ T

0

∫

Ω

(

−∂p
∂ t
−βΔp−div(p�u)+κp

)

ρ(x, t)dxdt

= εL

[∫ T

0

∫

Ω

(
∂ρ
∂ t

+�u ·∇ρ−βΔρ+κρ)
)

p(x, t)dxdt

+
∫ T

0

∫

∂Ω

(

−ρ p�u ·�n+β p
∂ρ
∂n
−β ρ ∂p

∂n

)

dγdt

−
∫

Ω
ρ(x,T)p(x,T)dx+

∫

Ω
ρ(x,0)p(x,0)dx

]

= εL

[
∫ T

0

∫

Ω

p
h
(x, t)

(

mb(t)δb(x)+
NP

∑
j=1

mj(t)δcj(x)

)

dxdt

+

∫

Ω
ρ0(x)p(x,0)dx

]

In this way, expression (54.20) turns into

J(b) =
1
2
‖b−a‖2 + εL

(∫ T

0

p(b, t)
h(b, t)

mb(t)dt+C

)

, (54.22)

where

C =
NP

∑
j=1

∫ T

0

p(cj, t)

h(cj, t)
mj(t)dt+

∫

Ω
ρ0(x)p(x,0)dx.

In order to establish the optimality condition, we need to recall the following
basic property of real functions:

Lemma 2. If f ∈ C 2(0,∞) is strictly convex, and D ⊂ R denotes the image of f ′
(that is, D = {y ∈R : ∃x ∈ (0,∞) / y = f ′(x)}), then f ′ is invertible, and the inverse
function g = (f ′)−1 ∈ C 1(D) verifies:

g′(f ′(x)) =
1

f ′′(x)
, ∀x ∈ (0,∞).
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Then we have the following result, which states a condition that must be satisfied
by any Stackelberg strategy for our problem.

Theorem 5. Let us assume that all the hypotheses in Theorem 1 are satisfied,
and, furthermore, that Uad is a convex set, h ∈ C ([0,T];C 1(Ω̄)) and f ∈ C 2(0,∞)
is strictly convex. Then, if (b,mb) ∈ Uad × M̊ad is a Stackelberg strategy for
our problem, there exist ρ ∈ [Lr(0,T;W1,s(Ω)) ∩ L2(0,T;L2(Ω))] (r,s ∈ [1,2),
2
r +

2
s > 3) and q ∈ W1,∞([0,T];L∞(Ω)) ∩ L∞([0,T];W2,∞(Ω)) satisfying (54.1),

(54.6) and

f ′(mb(t))+
1

h(b, t)
q(b, t) = 0, ∀t ∈ (0,T). (54.23)

In addition, if p ∈ W1,∞([0,T];L∞(Ω)) ∩ L∞([0,T];W2,∞(Ω)) is the solution of
(54.21) then, for all b∗ = (b∗1,b

∗
2) ∈ Uad, it verifies

2

∑
i=1

⎛

⎝bi−ai + εL

∫ T

0

⎛

⎝
h ∂p
∂bi
−p ∂h

∂bi

h2 (b, t)mb(t) (54.24)

−
p
(

h ∂q
∂bi
−q ∂h

∂bi

)

h3 (b, t)
1

f ′′(mb(t))

⎞

⎠dt

⎞

⎠(b∗i −bi)≥ 0.

Proof. Since mb ∈ M̊ad, the existence of ρ and q satisfying (54.1), (54.6) and (54.23)
can be directly obtained from Theorem 2. Moreover, since f ∈ C 2(0,∞) is strictly
convex, we know that f ′ admits an inverse g = (f ′)−1, allowing us to clear mb(t) in
(54.23) and write

mb(t) = g
(
−q

h
(b, t)
)
, ∀t ∈ (0,T).

Taking this expression to (54.22), we have

J(b) =
1
2
‖b−a‖2 + εL

(∫ T

0

p
h
(b, t)g

(
−q

h
(b, t)
)

dt+C

)

,

from where, applying Lemma 2 and the chain rule, we obtain

∂J
∂bi

(b) = bi−ai

+εL

∫ T

0

⎛

⎝
h ∂p
∂bi
−p ∂h

∂bi

h2 (b, t)mb(t)−
p
(

h ∂q
∂bi
−q ∂h

∂bi

)

h3 (b, t)
1

f ′′(mb(t))

⎞

⎠dt.



54 Optimal Control by Means of Stackelberg Strategies 655

Finally, if (b,mb) is a Stackelberg strategy for our problem, then b∈Uad is a solution
of (54.19) and, consequently,

2

∑
i=1

(
∂J
∂bi

(b)

)

(b∗i −bi)≥ 0, ∀b∗ = (b∗1,b
∗
2) ∈ Uad,

which leads to (54.24), and concludes the proof.
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Chapter 55
An Overview of the Modified Buckley–Leverett
Equation

Y. Wang

55.1 Introduction

The classical Buckley–Leverett (BL) equation [BuLe42] is a simple model for
two-phase fluid flow in a porous medium. One application is secondary recovery
by water-drive in oil reservoir simulation. In one space dimension the equation has
the standard conservation form

ut +(f (u))x = 0 in Q = {(x, t) : x > 0, t > 0}
u(x,0) = 0 x ∈ (0,∞) (55.1)

u(0, t) = uB t ∈ [0,∞)

with the flux function f (u) being defined as f (u) = 0; u < 0, f (u) = 1, u > 1, and

f (u) =
u2

u2 +M(1−u)2 0≤ u≤ 1.

In this context, u : Q̄→ [0,1] denotes the water saturation (e.g. u = 1 means pure
water), uB is a constant which indicates water saturation at x = 0, and M > 0 is the
water/oil viscosity ratio.

The classical BL equation (55.1) is a prototype for conservation laws with
convex-concave flux functions. The graph of f (u) and f ′(u) with M = 2 is given
in Figure 55.1. It has been well studied (see [Le92] for an introduction).
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f(u) = u2

u2+M(1−u)2
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Fig. 55.1 f (u) and f ′(u) with M = 2.

a buB = 0.7
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1

x

t

u

Fig. 55.2 The entropy solution of the classical BL equation (M = 2, α =
√

2
3 ≈ 0.8165).

(a) 0 < uB = 0.7 ≤ α , the solution consists of one shock at x
t = f (uB)

uB
; (b) α < uB = 0.98 < 1,

the solution consists of a rarefaction between uB and α for f ′(uB) <
x
t < f ′(α) and a shock at

x
t =

f (α)
α .

Let α be the solution of f ′(u) = f (u)
u , i.e., α =

√
M

M+1 . The entropy solution of
the classical BL equation can be classified into two categories:

1. If 0 < uB ≤ α , the entropy solution has a single shock at x
t =

f (uB)
uB

.
2. If α < uB < 1, the entropy solution contains a rarefaction between uB and α for

f ′(uB)<
x
t < f ′(α) and a shock at x

t =
f (α)
α .

These two types of solutions are shown in Figure 55.2 for M = 2.
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In either case, the entropy solution of the classical BL equation (55.1) is a non-
increasing function of x at any given time t > 0. However, the experiments of
two-phase flow in porous medium reveal complex infiltration profiles, which may
involve overshoot, i.e., profiles may not be monotone [Di04].

To address this issue, the modified Buckley–Leverett equation (MBL) has been
derived [HaGr90, HaGr93, VaPePo07, VaMiPo00, VaMiPo02, Wa10, WaKa13]

ut +(f (u))x = εuxx + ε2τuxxt (55.2)

Van Dujin et al. [VaPePo07] showed that the value τ is critical in determining the
type of the solution profile. In particular, for certain Riemann problems, the solution
profile of (55.2) is not monotone when τ is larger than the threshold value τ∗, where
τ∗ was numerically determined to be 0.61 [VaPePo07]. The non-monotonicity of the
solution profile is consistent with the experimental observations [Di04].

The classical BL equation (55.1) is hyperbolic, and the numerical schemes
for hyperbolic equations have been well developed (for example, [Le92, Le02,
CoEtAl98, CoKaSh00, NeTa90, KuLe00], and [LiTa98]). The MBL equation (55.2),
however, is pseudo-parabolic, and we will illustrate how to extend the central
schemes [NeTa90, KuLe00] to solve (55.2) numerically. Unlike the finite domain
of dependence for the classical BL equation (55.1), the domain of dependence
for the MBL equation (55.2) is infinite. This naturally raises the question for
the choice of computational domain. To answer this question, we will first study the
MBL equation equipped with two types of domains and corresponding boundary
conditions. One is the half-line problem x ∈ [0,∞), and the other one is the finite
interval boundary value problem x ∈ [0,L].

The organization of this chapter is as follows. Section 55.2 will bring forward
the exact theory comparing the solutions of the half-line problem and finite interval
problem, similar to a study carried out for BBM equation [BoEtAl05, BoLu95].
The difference between the solutions of these two types of problems decays expo-
nentially with respect to the length of the interval L for practically interesting initial
profiles. This provides a theoretical justification for the choice of the computational
domain. In section 55.3, high order central schemes will be developed for MBL
equation in finite interval domain. We provide a detailed derivation on how to extend
the central schemes [NeTa90, KuLe00] for conservation laws to solve the MBL
equation (55.2). The idea of adopting numerical schemes originally designed for
hyperbolic equations to pseudo-parabolic equations is not restricted to central type
schemes only ([XuSh08, XuSh09]). The numerical results in section 55.4 show that
the water saturation profile strongly depends on the dispersive parameter τ value as
studied in [VaPePo07]. For τ > τ∗, the MBL equation (55.2) gives non-monotone
water saturation profiles for certain Riemann problems as suggested by experimental
observations [Di04]. Section 55.5 gives the conclusion of the paper and the possible
future directions.
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55.2 The Half-Line Boundary Value Problem Versus
the Finite Interval Boundary Value Problem

Let u(x, t) be the solution to the half-line problem

ut +(f (u))x = εuxx + ε2τuxxt in Q = {(x, t) : x > 0, t > 0}
u(x,0) = u0(x) x ∈ [0,∞)

u(0, t) = gu(t), lim
x→∞u(x, t) = 0 t ∈ [0,∞)

u0(0) = gu(0) compatibility condition
(55.3)

and let v(x, t) be the solution to the finite interval boundary value problem

vt +(f (v))x = εvxx + ε2τvxxt in Q̃ = {(x, t) : x ∈ (0,L), t > 0}
v(x,0) = v0(x) x ∈ [0,L]

v(0, t) = gv(t), v(L, t) = h(t) t ∈ [0,∞)

v0(0) = gv(0), v0(L) = h(0) compatibility condition.
(55.4)

We consider

u0(x) =

{
v0(x) for x ∈ [0,L]
0 for x ∈ [L,+∞)

, gu(t) = gv(t)≡ g(t), h(t)≡ 0,

The goal of this section is to develop an estimate of the difference between u and v
on the spatial interval [0,L] at a given finite time t. The main result of this section is

Theorem 1 (The main Theorem). If u0(x) satisfies

u0(x) =

{
Cu x ∈ [0,L0]

0 x > L0
(55.5)

where L0 < L and Cu, are positive constants, then

‖u(·, t)− v(·, t)‖H1
L,ε ,τ
≤ D1;ε ,τ(t)e

− λL
ε
√
τ +D2;ε ,τ(t)e

− λ (L−L0)
ε
√
τ

for some 0 < λ < 1, D1;ε ,τ(t)> 0 and D2;ε ,τ(t)> 0, where

‖Y(·, t)‖H1
L,ε ,τ

:=

√
∫ L

0
Y(x, t)2 +(ε

√
τYx(x, t))2 dx
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To prove theorem 1, we first derive the implicit solution formulae for the half-
line problem and the finite interval boundary value problem in section 55.2.1. In
section 55.2.2, we use Gronwall’s inequality multiple times to obtain the desired
result in theorem 1.

55.2.1 Implicit Solutions

The implicit solution formulas are in integral form, which are derived by separating
the x-derivative from the t-derivative, and formally solving a first order linear ODE
in t and a second order nonhomogeneous ODE in x. The details can be found in
[Wa10, WaKa14]. The implicit solution formula for the half-line problem (55.3) is

u(x, t) =− 1
2ε2τ
√
τ

∫ t

0

∫ +∞

0

(

e
− x+ξ
ε
√
τ − e

− |x−ξ |ε
√
τ

)

u(ξ ,s)e−
t−s
ετ dξ ds

+
1

2ε2τ

∫ t

0

∫ +∞

0

(

e
− x+ξ
ε
√
τ + sgn(x−ξ )e−

|x−ξ |
ε
√
τ

)

f (u)e−
t−s
ετ dξ ds

+
(

g(t)− e−
t
ετ g(0)

)
e
− x
ε
√
τ + e−

t
ετ u0(x).

The implicit solution formula for the finite interval boundary value problem
(55.4) is

v(x, t) =− 1

2ε2τ
√
τ(e

2L
ε
√
τ −1)

∫ t

0

∫ L

0

(

e
x+ξ
ε
√
τ + e

2L−(x+ξ )
ε
√
τ − e

|x−ξ |
ε
√
τ

−e
2L−|x−ξ |
ε
√
τ

)

v(ξ ,s)e−
t−s
ετ dξ ds

− 1

2ε2τ(e
2L
ε
√
τ −1)

∫ t

0

∫ L

0

(

e
x+ξ
ε
√
τ − e

2L−(x+ξ )
ε
√
τ + sgn(x−ξ )e

|x−ξ |
ε
√
τ

−sgn(x−ξ )e
2L−|x−ξ |
ε
√
τ

)

f (v)e−
t−s
ετ dξ ds

+ c1(t)φ1(x)+ c2(t)φ2(x)+ e−
t
ετ v0(x),

where

c1(t) = g(t)− e−
t
ετ g(0), c2(t) = h(t)− e−

t
ετ h(0), (55.6)

φ1(x) =
e

L−x
ε
√
τ − e

−L+x
ε
√
τ

e
L
ε
√
τ − e

− L
ε
√
τ
, φ2(x) =

e
x

ε
√
τ − e

− x
ε
√
τ

e
L
ε
√
τ − e

− L
ε
√
τ
. (55.7)
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55.2.2 Comparisons

We will prove in this section that the solution u(x, t) to the half-line problem can be
approximated as accurately as one wants by the solution v(x, t) to the finite interval
boundary value problem as stated in Theorem 1.

The idea of the proof is to decompose u(x, t) (v(x, t) respectively) into two parts:
U(x, t) and uL(x, t) (V(x, t) and vL(x, t) respectively). uL(x, t) (vL(x, t) respectively)
consists of terms involving the initial condition u0(x) (v0(x) respectively) and the
boundary conditions g(t) (g(t) and h(t) respectively) for the governing equation
(55.3)((55.4) respectively). U(x, t) (V(x, t) respectively) enjoys zero initial condi-
tion and boundary conditions while satisfying a slightly different equation than
(55.3)((55.4) respectively). We estimate the difference between u(·, t) and v(·, t)
by estimating the differences between uL(·, t) and vL(·, t), U(·, t) and V(·, t), then
applying the triangle inequality.

Definitions

We first decompose u(x, t) as sum of two terms U(x, t) and uL(x, t), such that

u(x, t) = U(x, t)+uL(x, t) x ∈ [0,+∞)

where

uL = e−
t
ετ u0(x)+ c1(t)e

− x
ε
√
τ +

(

u(L, t)− c1(t)e
− L
ε
√
τ − e−

t
ετ u0(L)

)

φ2(x)

and c1(t) and φ2(x) are given in (55.6) and (55.7) respectively. Then U satisfies an
equation slightly different from the equation u satisfies in (55.3):

Ut− εUxx− ε2τUxxt =
(
ut− εuxx− ε2τuxxt

)− ((uL)t− ε(uL)xx− ε2τ(uL)xxt
)

= −(f (u))x +
1
ετ

uL(x, t) (55.8)

In addition, U(x, t) has zero initial condition and boundary conditions at x = 0 and
x = L, i.e.,

U(x,0) = 0, U(0, t) = 0, U(L, t) = 0. (55.9)

Similarly, for v(x, t), let

v(x, t) = V(x, t)+ vL(x, t) x ∈ [0,L]

where

vL = e−
t
ετ v0(x)+ c1(t)φ1(x)+ c2(t)φ2(x)
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and c1(t), c2(t) and φ1(x), φ2(x) are given in (55.6) and (55.7) respectively. Then V
satisfies an equation slightly different from the equation v satisfies in (55.4):

Vt− εVxx− ε2τVxxt =
(
vt− εvxx− ε2τvxxt

)− ((vL)t− ε(vL)xx− ε2τ(vL)xxt
)

= −(f (v))x +
1
ετ

vL(x, t) (55.10)

In addition, V(x, t) has zero initial condition and boundary conditions at x = 0 and
x = L, i.e.,

V(x,0) = 0, V(0, t) = 0, V(L, t) = 0. (55.11)

Since, in the end, we want to study the difference between U(x, t) and V(x, t), we
define

W(x, t) = V(x, t)−U(x, t) for x ∈ [0,L].

Because of (55.8) and (55.10), we have

Wt− εWxx− ε2τWxxt = −(f (v)− f (u))x +
1
ετ

(vL−uL).

In lieu of (55.9) and (55.11), W(x, t) also has zero initial condition and boundary
conditions at x = 0 and x = L, i.e.,

W(x,0) = 0, W(0, t) = 0, W(L, t) = 0.

Propositions

First, we find the maximum difference of ‖uL(·, t)− vL(·, t)‖∞, then we will derive
‖uL(·, t)− vL(·, t)‖H1

L,ε ,τ
and ‖W(·, t)‖H1

L,ε ,τ
= ‖U(·, t)−V(·, t)‖H1

L,ε ,τ
. Combining

these two, we will get an estimate for ‖u(·, t)− v(·, t)‖H1
L,ε ,τ

. The proof of the

propositions can be found in [Wa10, WaKa14].

Proposition 1. If u0(x) satisfies (55.5), then

‖uL− vL ‖∞ ≤ E1;ε ,τ(t)e
− λL
ε
√
τ +E2;ε ,τ(t)e

− λ (L−L0)
ε
√
τ

where E1;ε ,τ(t) = |c1(·)|∞ + aτe
bτ t
ετ and E2;ε ,τ(t) = cτ t

ετ e
(bτ−1)t
ετ , aτ ,bτ ,cτ are

τ-dependent constants.

Proposition 2. If u0(x) satisfies (55.5), and E1;ε ,τ(t),E2;ε ,τ(t) are as in proposi-
tion 1, then

‖uL(·, t)− vL(·, t)‖H1
L,ε ,τ
≤
√

5L

(

E1;ε ,τ(t)e
− λL
ε
√
τ +E2;ε ,τ(t)e

− λ (L−L0)
ε
√
τ

)

.
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Proposition 3. If u0(x) satisfies (55.5), then

‖W(·, t)‖H1
L,ε ,τ
≤ γ1;ε ,τ(t)e

− λL
ε
√
τ + γ2;ε ,τ(t)e

− λ (L−L0)
ε
√
τ

where the coefficients are given by

γ1;ε ,τ(t) = e
(M+1)2t
2Mε
√
τ

(
(M+1)2√τ

2M
+1

)√
L

(
t
ετ
|c1(·)|∞+ aτ

bτ
(e

bτ t
ετ −1)

)

γ2;ε ,τ(t) = e
(M+1)2t
2Mε
√
τ

(
(M+1)2√τ

2M
+1

)√
Lcτ ·

·
(

t
ετ(bτ −1)

e
(bτ−1)t
ετ − 1

(bτ −1)2 (e
(bτ−1)t
ετ −1)

)

.

Proof of Theorem 1

Proof (Proof of the Main Theorem 1). By triangle inequality, We have that

‖u(·, t)− v(·, t)‖H1
L,ε ,τ
≤ ‖W(·, t)‖H1

L,ε ,τ
+‖vL(·, t)−uL(·, t)‖H1

L,ε ,τ

≤ D1;ε ,τ(t)e
− λL
ε
√
τ +D2;ε ,τ(t)e

− λ (L−L0)
ε
√
τ

where by propositions 2 and 3

D1;ε ,τ(t) = γ1;ε ,τ(t)+
√

5LE1;ε ,τ(t)

= e
(M+1)2t
2Mε
√
τ

(
(M+1)2√τ

2M
+1

)√
L

(
t
ετ
|c1(·)|∞+ aτ

bτ
(e

bτ t
ετ −1)

)

+
√

5L(|c(·)|∞+aτe
bτ t
ετ ),

D2;ε ,τ(t) = γ2;ε ,τ(t)+
√

5LE2;ε ,τ(t)

= e
(M+1)2t
2Mε
√
τ

(
(M+1)2√τ

2M
+1

)√
Lcτ ·

·
(

t
ετ(bτ −1)

e
(bτ−1)t
ετ − 1

(bτ −1)2 (e
(bτ−1)t
ετ −1)

)

+
√

5Lcτ
t
ετ

e
(bτ−1)t
ετ

This theorem shows that if λL
ε
√
τ and λ (L−L0)

ε
√
τ converge to infinity, then the solution

v(x, t) of the finite interval boundary value problem converges to the solution
u(x, t) of the half-line problem in the sense of ‖·‖H1

L,ε ,τ
. This can be achieved
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either by letting L→ ∞ or ε → 0. For example, in the extreme case, ε = 0, the
half line problem (55.3) becomes hyperbolic and the domain of dependence is
finite, so, certainly, one only needs to consider the finite interval boundary value
problem. This is consistent with the main theorem in the sense that for a fixed
final time t, if λL > bτ t and λ (L−L0)> (bτ −1)t, i.e., L > max( bτ t

λ , (bτ−1)t
λ ), then

‖u(·, t)− v(·, t)‖H1
L,ε ,τ
≤ D1;ε ,τ(t)e

− λL
ε
√
τ +D2;ε ,τ(t)e

− λ (L−L0)
ε
√
τ → 0 as ε → 0.

Theorem 1 gives a theoretical justification for using the solution of the finite
interval boundary value problem to approximate the solution of the half-line
problem with appropriate choice of L and ε . Hence in the next chapter, the numerical
scheme designed to solve the MBL equation (55.2) is given for finite interval
boundary value problem.

55.3 Numerical Schemes

In this section, we show how to apply the central schemes [NeTa90] originally
designed for hyperbolic conservation laws to numerically solve the MBL equation
(55.2), which is of pseudo-parabolic type. We first collect all the terms with time
derivative and rewrite MBL equation (55.2) as

(u− ε2τuxx)t +(f (u))x = εuxx. (55.12)

By letting

w = u− ε2τuxx ⇐⇒ u = (I− ε2τ∂xx)
−1w,

MBL equation (55.12) can be written as

wt +(f (u))x = εuxx. (55.13)

As in [NeTa90], at each time level, we first reconstruct a piecewise linear approxi-
mation of the form

Lj(x, t) = wj(t)+(x− xj)
w′j
Δx

, xj− 1
2
≤ x≤ xj+ 1

2
. (55.14)

Second-order accuracy is guaranteed if the so-called vector of numerical derivative
w′j
Δx , which will be given later, satisfies

w′j
Δx

=
∂w(xj, t)

∂x
+O(Δx).

We denote the staggered piecewise-constant functions w̄j+ 1
2
(t) as

w̄j+ 1
2
(t) =

1
Δx

∫ xj+1

xj

w(x, t)dx.
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Evolve the piecewise linear interplant (55.14) by integrating (55.13) over [xj,xj+1]×
[t, t+Δ t]

w̄j+ 1
2
(t+Δ t) =

1
2
[wj(t)+wj+1(t)]+

1
8
[w′j−w′j+1]

−λ [f (uj+1(t+
Δ t
2
)− f (uj(t+

Δ t
2
))]

+
ε
Δx

[∫ t+Δ t

t

∫ xj+1

xj

∂ 2u(x,s)
∂x2 dxds

]

.

(55.15)

Nessyahu and Tadmor in [NeTa90] have introduced many ways to estimate the
derivatives, so, we won’t reproduce them here. Instead, we will focus on the last
integral in (55.15). There are many ways to numerically calculate the integral
∫ t+Δ t

t

∫ xj+1
xj

∂ 2u(x,s)
∂x2 dxds. We will show two ways to do this in the following two

subsections, all of them achieve second order accuracy.

55.3.1 Trapezoid Scheme

In this scheme, we use the trapezoid rule to calculate the integral numerically as
follows:

∫ t+Δ t

t

∫ xj+1

xj

∂ 2u(x,s)
∂x2 dxds = Δx

∫ t+Δ t

t
(ūxx)j+ 1

2
(s)ds

=
ΔxΔ t

2

(
(ūxx)j+ 1

2
(t)+(ūxx)j+ 1

2
(t+Δ t))

)

with O(Δ t3) error. The flow chart of the trapezoid scheme is given in table 55.1.

Table 55.1 Flow chart for Trapezoid Scheme.

Trapezoid Scheme

Calculate w̄j+ 1
2
(t) = 1

2 (wj(t)+wj+1(t))+ 1
8 (w

′
j−w′j+1)

Solve (I− ε2τ∂xx)ūj+ 1
2
(t) = w̄j+ 1

2
(t) for ūj+ 1

2
(t)

Calculate wj(t+ Δ t
2 ) = wj(t)+(ε Δ

2uj
Δx − f ′j )

λ
2

Solve (I− ε2τ∂xx)uj(t+ Δ t
2 ) = wj(t+ Δ t

2 ) for uj(t+ Δ t
2 )

Solve
(
I− (ε2τ+ εΔ t

2 )∂xx
)

ūj+ 1
2
(t+Δ t)

=
(
I− (ε2τ− εΔ t

2 )∂xx
)

ūj+ 1
2
(t)

−λ [f (uj+1(t+ Δ t
2 ))− f (uj(t+ Δ t

2 ))
]
for ūj+ 1

2
(t+Δ t)
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Table 55.2 Flow chart for Midpoint Scheme.

Midpoint Scheme

Calculate w̄j+ 1
2
(t) = 1

2 (wj(t)+wj+1(t))+ 1
8 (w

′
j−w′j+1)

Calculate wj(t+ Δ t
2 ) = wj(t)+(ε Δ

2uj
Δx − f ′j )

λ
2

Solve (I− ε2τ∂xx)uj(t+ Δ t
2 ) = wj(t+ Δ t

2 ) for uj(t+ Δ t
2 )

Calculate w̄j+ 1
2
(t+ Δ t

2 ) = 1
2 (wj(t+ Δ t

2 )+wj+1(t+ Δ t
2 ))

+ 1
8 (w

′
j(t+

Δ t
2 )−w′j+1(t+

Δ t
2 ))

Solve (I− ε2τ∂xx)ūj+ 1
2
(t+ Δ t

2 ) = w̄j+ 1
2
(t+ Δ t

2 ) for ūj+ 1
2
(t+ Δ t

2 )

Solve (I− ε2τ∂xx)ūj+ 1
2
(t+Δ t) = w̄j+ 1

2
(t)−λ [f (uj+1(t+ Δ t

2 )− f (uj(t+ Δ t
2 ))]

+εΔ t(ūxx)j+ 1
2
(t+ Δ t

2 ) for ūj+ 1
2
(t+Δ t)

55.3.2 Midpoint Scheme

In this scheme, we use the midpoint rule to calculate the integral numerically as
follows:

∫ t+Δ t

t

∫ xj+1

xj

∂ 2u(x,s)
∂x2 dxds = Δx

∫ t+Δ t

t
(ūxx)j+ 1

2
(s)ds

= ΔxΔ t(ūxx)j+ 1
2
(t+

Δ t
2
)

The flow chart of the midpoint scheme is given in table 55.2.

55.4 Computational Results

In this section, we show the numerical solutions to the MBL equation (55.2) with
the initial condition

u0(x) =

{
uB if x = 0
0 if x > 0

and the Dirichlet boundary condition. Duijn et al. [VaPePo07] numerically provided
a bifurcation diagram (Figure 55.3) of MBL (55.2) equation as the dispersive
parameter τ and the post-shock value uB of the initial condition vary. The solution
of (55.2) has been proven to display qualitatively different profiles for parameter
values (τ ,uB) falling in different regimes of the bifurcation diagram. In particular,
for every fixed τ value, there are two critical uB values, namely, ū and u. From the
bifurcation diagram (Figure 55.3), it is clear that, when τ < τ∗, ū = u = α . For a
fixed τ value, the solution has three different profiles.
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Fig. 55.3 The bifurcation diagram of the MBL equation (55.2) with the bifurcation parameters
(τ,uB).
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ū

u

df

du
(uB)

df

du
( ū)
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ū
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Fig. 55.4 Given a fixed τ , the three qualitatively different solution profiles due to different values
of uB. In particular, when τ > τ∗ and u < uB < ū, the solution profiles (Figure (b)) displays non-
monotonicity, which is consistent with the experimental observations ([Di04]). Figures (a), (b) and
(c) are demonstrative figures.

(a) If uB ∈ [ū,1], the solution contains a plateau value uB for 0 ≤ x
t ≤ df

du (uB), a

rarefaction wave connection uB to ū for df
du (uB) ≤ x

t ≤ df
du (ū), another plateau

value ū for df
du (ū) <

x
t <

f (ū)
ū , and a shock from ū down to 0 at x

t =
f (ū)

ū (see
Figure 55.4(a)).

(b) If uB ∈ (u, ū), the solution contains a plateau value uB for 0≤ x
t <

f (ū)−f (uB)
ū−uB

, a

shock from uB up to ū at x
t =

f (ū)−f (uB)
ū−uB

, another plateau value ū for f (ū)−f (uB)
ū−uB

<
x
t <

f (ū)
ū , and a shock from ū down to 0 at x

t =
f (ū)

ū (see Figure 55.4(b)). The
solution may exhibit a damped oscillation near u = uB.
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Table 55.3 9 pairs of (τ,uB) values with either fixed
τ value or fixed uB value used for the numerical
results given in Figure 55.5 (examples 1–6).

(τ,uB) Example 4 Example5 Example 6

Example 1 (0.2,0.9) (1,0.9) (5,0.9)

Example 2 (0.2,α) (1,α) (5,α)
Example 3 (0.2,0.75) (1,0.75) (5,0.75)

(c) If uB ∈ (0,u], the solution consists a single shock connecting uB and 0 at x
t =

f (uB)
uB

(see Figure 55.4(c)). It may exhibit oscillatory behavior near u = uB.

Notice that when τ > τ∗ and u < uB < ū, the solution profiles (55.4(b)) displays
non-monotonicity, which is consistent with the experimental observations ([Di04]).

In the numerical computation we show below, we will therefore test the accuracy
and capability of central schemes for different parameter values (τ and uB) that fall
into various regimes of the bifurcation diagram, and therefore display qualitatively
different solution profiles. The numerical experiments were carried out for M = 2,
ε = 0.001 and T = 4000× ε , i.e. T̃ = 4000 to get the asymptotic solution profiles,
and Δx was chosen to be ε

10 and λ = Δ t
Δx was chosen to be 0.1. The scheme used in

the computation is the second-order trapezoid scheme as shown in section 55.3.1.
The midpoint scheme delivers similar computational results, hence is omitted here.
The solution profiles at T

4 (blue), 2∗T
4 (green), 3∗T

4 (magenta) and T (black) are
chosen to demonstrate the time evolution of the solutions. The red dashed lines
are used to denote the theoretical shock locations and plateau values for comparison
purpose.

We start with τ > 0. Based on the bifurcation diagram (Figure 55.3), we choose

three representative uB values, i.e. uB = 0.9 > α , uB = α =
√

M
M+1 =

√
2
3 (for

M = 2) and uB = 0.75 < α . For each fixed uB, we choose three representative
τ values, i.e. τ = 0.2 < τ∗ ≈ 0.61, τ = 1 > τ∗ with uB = 0.75 < uτ=1 < uB =
α < ū < uB = 0.9, and τ = 5 with uB = 0.75,α,0.9 ∈ [uτ=5, ūτ=5]. We use this
9 pairs of (τ ,uB) values given in Table 55.3 to validate the solution profiles with the
demonstrative solution profiles given in Figure 55.4.

Example 1. (τ,uB) = (0.2,0.9),(τ,uB) = (1,0.9),(τ,uB) = (5,0.9).
When uB = 0.9 > α is fixed, we increase τ from 0.2 to 1 to 5 (Fig-

ure 55.5(a), 55.5(b) , 55.5(c)), the dispersive effect starts to dominate the solution
profile. When τ = 0.2 (Figure 55.5(a)), the solution profile is similar to the classical
BL equation solution (see Figure 55.2(b)), with a rarefaction wave for x

t ∈ [f ′(u =
0.9), f ′(u =α) = f ′(u = ūτ=0.2)] and a shock from u = α to u = 0 at x

t = f ′(α). This

corresponds to Figure 55.4(a) with df
du(ūτ=0.2 = α) = f (ūτ=0.2)

ūτ=0.2
= f (α)

α . When τ = 1
(Figure 55.5(b)), the rarefaction wave is between x

t ∈ [f ′(u = 0.9), f ′(u = ūτ=1)] and

the solution remains at the plateau value u = ūτ=1 for x
t ∈ [f ′(u = ūτ=1),

f (ūτ=1)
ūτ=1

] and
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Fig. 55.5 Numerical solutions to MBL equation with parameter settings fall in different regimes
of the bifurcation diagram (Figure 55.3). The color coding is for different time: 1

4 T (blue), 2
4 T

(green), 3
4 T (magenta) and T (black). The results are discussed in examples 1 – 6. In figures (d)–

(f), α =
√

M
M+1 =

√
2
3 for M = 2.

the shock occurs at x
t =

f (ūτ=1)
ūτ=1

. This corresponds to Figure 55.4(a) with uB = 0.9 >
ūτ=1 ≈ 0.86. When τ = 5 (Figure 55.5(c)), the solution displays the first shock from
u = 0.9 to u = ūτ=5 at x

t = f (ūτ=5)−f (uB)
ūτ=5−uB

, and then remains at the plateau value

u = ūτ=5 for x
t ∈ [ f (ūτ=5)−f (uB)

ūτ=5−uB
,

f (ūτ=5)
ūτ=5

] and the second shocks occurs at x
t =

f (ūτ=5)
ūτ=5

.
This corresponds to Figure 55.4(b) with uτ=5 ≈ 0.68 < uB = 0.9 < ūτ=5 ≈ 0.98.
Notice that as τ increases, the rarefaction region shrinks and the plateau region
enlarges.

Example 2. (τ,uB) = (0.2,α),(τ,uB) = (1,α),(τ,uB) = (5,α).
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When uB = α is fixed, we increase τ from 0.2 to 1 to 5 (Figure 55.5(d), (e), (f)),
the dispersive effect starts to dominate the solution profile. When τ = 0.2, the
solution displays one single shock at x

t = f (α)
α . For both τ = 1 and τ = 5, the

solution has two shocks, one at x
t =

f (ūτ=1(τ=5 respectively))−f (α)
ūτ=1(τ=5 respectively)−α , and another one

at x
t =

f (ūτ=1(τ=5 respectively))

ūτ=1(τ=5 respectively)
. For both τ = 1 and τ = 5 (Figures 55.5(e), (f)), the

solutions correspond to Figure 55.4(b), which are consistent with the experimental
observations. Notice that as τ increases from 1 to 5, i.e., the dispersive effect
increases, the inter-shock interval length increases at every fixed time (compare
Figure 55.5(e) with Figure 55.5(f)). In addition, for fix τ = 1 (τ = 5 respectively), as
time progresses, the inter-shock interval length increases in the linear fashion (see
Figure 55.5(e) (Figure 55.5(f) respectively) ).

Example 3. (τ ,uB) = (0.2,0.75),(τ ,uB) = (1,0.75),(τ ,uB) = (5,0.75).
When uB = 0.75 <= α is fixed, we increase τ from 0.2 to 1 to 5

(Figure 55.5(g), (h), (i)), the dispersive effects start to dominate the solution
profile in the similar fashion as uB = 0.9 and uB = α . Notice that when τ = 1,
since uB = 0.75 is very close to uτ=1, the solution displays oscillation at x

t =
f (uB)

uB
(Figure 55.5(h)). If we increase τ further to τ = 5, the dispersive effect is strong
enough to create a plateau value at ū≈ 0.98 (see Figure 55.5(i)).

Example 4. (τ ,uB) = (0.2,0.9),(τ ,uB) = (0.2,α),(τ ,uB) = (0.2,0.75).
Now, we fix τ = 0.2, decrease uB from 0.9 to α , to 0.75 (Figures 55.5(a), (d), (g)).

If uB > α the solution consists a rarefaction wave connecting uB down to α , then a
shock from α to 0, otherwise, the solution consists a single shock from uB down to
0. In all cases, since τ = 0.2 < τ∗, regardless of the uB value, the solution will not
display non-monotone behavior, due to the lack of dispersive effect.

Example 5. (τ ,uB) = (1,0.9),(τ ,uB) = (1,α),(τ ,uB) = (1,0.75).
Now, we fix τ = 1, decrease uB from 0.9 to α , to 0.75 (Figures 55.5(b), (e), (h)).

If uB = 0.9 > ūτ=1, the solution consists of a rarefaction wave connecting uB and ū,
and a shock connecting ū down to 0 (Figure 55.5(b)). Even if u < uB < ū, because
τ = 1 > τ∗, the solution still has a chance to increase to the plateau value ū as seen
in Figure 55.5(e). But, if uB is too small, for example, uB = 0.75 < u, the solution
does not increase to ū any more, instead, it consists of a single shock connecting uB

down to 0 (Figure 55.5(h)).

Example 6. (τ ,uB) = (5,0.9),(τ ,uB) = (5,α),(τ ,uB) = (5,0.75).
Now, we fix τ = 5, decrease uB from 0.9 to α , to 0.75 (Figures 55.5(c), (f), (i)).

For all three uB, they are between uτ=5 and ūτ=5, hence all increase to the plateau
value ūτ=5 ≈ 0.98 before dropping to 0. Notice that as uB decreases, the inter-shock
interval length decreases at every fixed time (compare Figures 55.5(c), (f) and (i)).
This shows that when the dispersive effect is strong (τ > τ∗), the bigger uB is, the
bigger region the solution stays at the plateau value.

More numerical examples can be found in [WaKa13].
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55.5 Conclusions

We proved that the solution to the infinite domain problem can be approximated
by that of the bounded domain problem. This provides a theoretical justification for
using finite domain to calculation of the numerical solution of the MBL equation
(55.2). We also extended the classical central scheme originally designed for the
hyperbolic systems to solve the MBL equation, which is of pseudo-parabolic type.
The numerical solutions for qualitatively different parameter values τ and initial
conditions uB show that the jump locations are consistent with the theoretical
calculation and the plateau heights are consistent with the numerically obtained
values given in [VaPePo07]. In particular, when τ > τ∗, for uB ∈ (u, ū), the numerical
solutions give non-monotone water saturation profiles, which is consistent with the
experimental observations.
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Chapter 56
Influence of Stochastic Moments on the Solution
of the Neutron Point Kinetics Equation

M. Wollmann da Silva, B.E.J. Bodmann, M.T.B. Vilhena, and R. Vasques

56.1 Introduction

The neutron point kinetics equations, which model the time-dependent behavior
of nuclear reactors [AbHa03, HaAl05, He71, Sa89], are often used to understand
the dynamics of nuclear reactor operations (e.g. power fluctuations caused by
control rod motions during start-up and shut-down procedures). They consist of a
system of coupled differential equations that model the interaction between (i) the
neutron population, and (ii) the concentration of the delayed neutron precursors,
which are radioactive isotopes formed in the fission process that decay through
neutron emission. These equations are deterministic in nature, and therefore can
provide only average values of the modeled populations. However, the actual
dynamical process is stochastic: the neutron density and the delayed neutron
precursor concentrations vary randomly with time.

To address this stochastic behavior, Hayes and Allen [HaAl05] have generalized
the standard deterministic point kinetics equations. They have derived a system
of stochastic differential equations that can accurately model the random behavior
of the neutron density and the precursor concentrations in a point reactor. Due to
the issue of stiffness, they numerically implement this system using a stochastic
piecewise constant approximation method (Stochastic PCA).

Here, we present a study of the influence of stochastic fluctuations on the results
of the neutron point kinetics equations. We reproduce the stochastic formulation
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introduced in [HaAl05] and compute Monte Carlo numerical results for examples
with constant and time-dependent reactivity, comparing these results with stochastic
and deterministic methods found in the literature [HaAl05, Ra12, WoLe14].

The remainder of this work is organized as follows. In Section 56.2, we reproduce
the derivation of the stochastic equations introduced in [HaAl05]. Section 56.3
starts with a short discussion on the numerical implementation of the stochastic
models. In Section 56.3.1, we provide numerical results for examples with constant
reactivity, for the cases of one and six precursor groups; and in Section 56.3.2,
we present results for an example with linear reactivity and one precursor group.
Finally, in Section 56.4, we discuss the stochastic fluctuations we have encountered,
and address the future steps to be undertaken in order to accurately study them.

56.2 Stochastic Model Formulation

In this section, we reproduce the stochastic formulation introduced by Hayes and
Allen. Following [HaAl05, He71], the time-dependent equations that describe the
neutron density and the delayed neutron precursor concentrations are

∂N
∂ t

= Dv∇2N− (Σa−Σf )vN +[(1−β )k∞Σa−Σf ]vN +∑
i

λiCi +S0,

(56.1a)

∂Ci

∂ t
= βik∞ΣavN−λiCi, (56.1b)

where i = 1,2, ...,m, v is the velocity, N = N(r, t) is the neutron density at position
r and time t, and Ci = Ci(r, t) is the concentration of the i-th type of precursor at
position r and time t. On the right-hand side of Eq. (56.1a) we have the following
terms:

• Dv∇2N, representing the diffusion of neutrons.
• (Σa−Σf )vN, representing the capture of neutrons. Notice that the capture cross

section is given by the difference between the absorption (Σa) and the fission (Σf )
cross sections.

• [(1−β )k∞Σa−Σf ]vN, representing the prompt-neutron contribution to the

source. Here, β =
m

∑
i=1
βi is the delayed-neutron fraction and k∞ is the infinite

medium reproduction factor.
• ∑iλiCi, representing the rate of transformation from the neutron precursors to

the neutron population, with λi as the decay constant.
• S0(r, t), representing the external source.
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Assuming that N and Ci are separable in time and space, we can write
N(r, t) = f (r)n(t) and Ci(r, t) = gi(r)ci(t), where n(t) and ci(t) represent the total
neutron density and the total concentration of precursors of the i-th type at time t,
respectively. Equations (56.1) now become

dn
dt

(t) = Dv
∇2f (r)

f (r)
n(t)− (Σa−Σf )vn(t)

+ [(1−β )k∞Σa−Σf ]vn(t)+∑
i

λi
gi(r)ci(t)

f (r)
+

S0(r, t)
f (r)

,

dci

dt
(t) = βik∞Σav

f (r)n(t)
gi(r)

−λici(t).

It is assumed that (i) f (r)
gi(r)

= 1; (ii) f satisfies ∇2f +B2f = 0; and (iii) S0 has the same

spatial dependence as f . If we write q(t) = S0(r,t)
f (r) , the previous equations become

dn
dt

=−DvB2n− (Σa−Σf )vn+[(1−β )k∞Σa−Σf ]vn+∑
i

λici +q, (56.2a)

dci

dt
= βik∞Σavn−λici. (56.2b)

Furthermore, the terms in Eq. (56.2a) can be rearranged according to the type of
neutron reaction:

dn
dt

=−DvB2n− (Σa−Σf )vn
︸ ︷︷ ︸

deaths

+(k∞Σa−Σf )vn
︸ ︷︷ ︸

births

−βk∞Σavn+∑
i

λici

︸ ︷︷ ︸
transformations

+q. (56.3)

In order to simplify the notation, several parameters are now introduced. We
define the absorption lifetime l∞ = 1

vΣa
and the diffusion length L2 = D

Σa
, and rewrite

Eqs. (56.3) and (56.2b) as

dn
dt

=

⎡

⎣
−L2B2− (Σa−Σf )

Σa

l∞

⎤

⎦

︸ ︷︷ ︸
deaths

n+

⎡

⎣
k∞− Σf

Σa

l∞

⎤

⎦

︸ ︷︷ ︸
births

n− βk∞
l∞

n+∑
i

λici

︸ ︷︷ ︸
transformations

+q, (56.4a)

dci

dt
=
βik∞
l∞

n−λici. (56.4b)
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Defining the reproduction factor k = k∞
1+L2B2 and the neutron lifetime l0 = l∞

1+L2B2 ,
Eqs. (56.4) become

dn
dt

=

[

− 1
l0
+

Σf

Σal∞

]

n+

[
k
l0
− Σf

Σal∞

]

n− βk
l0

n+∑
i

λici +q, (56.5a)

dci

dt
=
βik
l0

n−λici. (56.5b)

Next, we introduce the neutron generation time l= l0
k . Substituting l into Eqs. (56.5),

we obtain

dn
dt

=

[

− 1
kl
+

Σf

Σal∞

]

n+

[
1
l
− Σf

Σal∞

]

n− β
l

n+∑
i

λici +q,

dci

dt
=
βi

l
n−λici.

Finally, we define reactivity ρ = 1− 1
k . Moreover, a simple algebraic calculation

shows that
Σf
Σal∞

= α
l , where α =

Σf
Σak∞

≈ 1
ν and ν is the number of neutrons per

fission. Hence, the final deterministic system becomes

dn
dt

=−
[−ρ+1−α

l

]

︸ ︷︷ ︸
deaths

n+

[
1−α−β

l

]

︸ ︷︷ ︸
births

n+ ∑
i

λici

︸ ︷︷ ︸
transformations

+q, (56.6a)

dci

dt
=
βi

l
n−λici, (56.6b)

for i = 1,2...,m.
To derive the stochastic system, we first consider the case of just one precursor;

that is, β = β1. (The system will be generalized to m precursors later.) Equations
(56.6) for one precursor are written as

dn
dt

(t) =

{

−
[−ρ+1−α

l

]

+

[
1−α−β

l

]}

n(t)+λ1c1(t)+q,

dc1

dt
(t) =

β1

l
n(t)−λ1c1(t).

We consider a time interval Δ t small enough to guarantee that the probability of
more than one event occurring during Δ t is negligible. Let [Δn,Δc1]

T be a random
vector variable that represents the changes in the neutron density and in the delayed
neutron precursor concentration. The four possible events are
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[
Δn
Δc1

]

1

=

[−1
0

]

= death (capture),

[
Δn
Δc1

]

2

=

[−1+(1−β )ν
β1ν

]

=
birth (fission event and

production of delayed neutrons),

[
Δn
Δc1

]

3

=

[
1
−1

]

=
transformation of a delayed

neutron precursor to a neutron,

[
Δn
Δc1

]

4

=

[
1
0

]

= birth of a source neutron;

and the probabilities of these events (assuming α = 1
ν ) are

P1 =

(−ρ+1−α
l

)

nΔ t, P2 =

(
1
ν l

)

nΔ t, P3 = λ1c1Δ t, P4 = qΔ t.

It is also assumed that the neutron source produces neutrons randomly following a
Poisson process with intensity q.

Finally, the mean change E([Δn,Δc1]
T) for the small time interval Δ t is given by

E

([
Δn
Δc1

])

=
4

∑
k=1

Pk

[
Δn
Δc1

]

k

=

[
p−β

l n+λ1c1 +q
β1
l n−λ1c1

]

Δ t,

and the covariance of the change is given by

E

([
Δn
Δc1

]
[
ΔnΔc1

]
)

=
4

∑
k−1

Pk

[
Δn
Δc1

]
[
ΔnΔc1

]

k
= B̂Δ t,

where B̂ is defined as

B̂ =

[
γn+λ1c1 +q β1

l (−1+(1−β )ν)n−λ1c1
β1
l (−1+(1−β )ν)n−λ1c1

β 2
1 ν
l n+λ1c1

]

and γ = −1−ρ+2β+(1−β )2ν
l .

With the assumption that the changes are approximately normally distributed, the
above results imply that, to O((Δ t)2),

[
n(t+Δ t)
c1(t+Δ t)

]

=

[
n(t)
c1(t)

]

+ Â

[
n(t)
c1(t)

]

Δ t+

[
q
0

]

Δ t+ B̂
1
2
√
Δ t

[
η1

η2

]

,

where η1,η2 ∼N (0,1), B̂ = B̂
1
2 · B̂ 1

2 , and Â =

[
p−β

l +λ1
β1
l −λ1

]

.
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As Δ t → 0, the above equations yield the following Itô stochastic differential
equation system [Hi01, RaPa13]:

d
dt

[
n
c1

]

= Â

[
n
c1

]

+

[
q
0

]

+ B̂
1
2

d�W
dt

, �W =

[
W1(t)
W2(t)

]

, (56.7)

where W1(t) and W2(t) are Wiener processes. Equations (56.7) are the stochastic
neutron point kinetics equations for one precursor group.

To generalize these equations to m precursors, let

Â =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

ρ(t)−β
l λ1 λ2 . . . λm
β1
l −λ1 0 . . . 0
β2
l 0 −λ2 . . . 0
...

...
. . .

. . .
...

βm
l 0 . . . 0 −λm

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

and

B̂ =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

ζ a1 a2 . . . am

a1 r1 b2,3 . . . b2,m+1

a2 b3,2 r2 . . . bm,m+1
...

...
. . .

. . .
...

am bm+1,2 . . . bm+1.m rm

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

where

ζ = γn+
m

∑
i=1
λici +q,

γ =
−1−ρ+2β +(1−β )2ν

l
,

ai =
βi

l
(−1+(1−β )ν)n−λici,

bi,j =
βi−1βj−1ν

l
n,

ri =
βi

2ν
l

n+λici.

Using the same approach as before, but now for m precursors, we obtain the Itô
stochastic system:



56 The Neutron Point Kinetics Equation 681

d
dt

⎡

⎢
⎢
⎢
⎢
⎢
⎣

n(t)
c1(t)
c2(t)

...
cm(t)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

= Â

⎡

⎢
⎢
⎢
⎢
⎢
⎣

n(t)
c1(t)
c2(t)

...
cm(t)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎣

q
0
0
...
0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

+ B̂
1
2

d�W
dt

(t). (56.8)

Note that if B̂ = 0, then Eq. (56.8) reduces to the standard deterministic point
kinetics equations.

56.3 Numerical Results

We begin this section by briefly sketching the implementation of two approaches
that address the stochastic behavior discussed in this work: (I) the Stochastic PCA
model [HaAl05], and (II) the Euler–Maruyama approximation [Ra12]. Specific
details of each implementation can be found in the references.

(I) The Stochastic PCA model is based on the system given in equation (56.8).
For instance, assuming m = 6 delayed groups, this system can be written as

d�x
dt

= A�x+B(t)�x+�F(t)+ B̂
1
2

d�W
dt

, (56.9)

where B̂ is already known and

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−β
l λ1 λ2 λ3 λ4 λ5 λ6
β1
l −λ1 0 0 0 0 0
β2
l 0 −λ2 0 0 0 0
β3
l 0 0 −λ3 0 0 0
β4
l 0 0 0 −λ4 0 0
β5
l 0 0 0 0 −λ5 0
β6
l 0 0 0 0 0 −λ6

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, B(t) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ρ(t)
l 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

�F(t) = [q(t),0,0,0,0,0,0]T , �x = [n,c1,c2,c3,c4,c5,c6]
T .

The source function q(t) and the reactivity function ρ(t) are approximated by
piecewise constant functions; in particular,

ρ(t)≈ ρ
(

ti + ti+1

2

)

= ρi, for ti ≤ t ≤ ti+1
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and

B(t)≈ B

(
ti + ti+1

2

)

= Bi, for ti ≤ t ≤ ti+1.

Now, for ti ≤ t ≤ ti+1, equation (56.9) becomes

d�x
dt

= A�x+Bi�x+�F(t)+ B̂
1
2

d�W
dt

,

and using Itô’s formula [KlPl92] we obtain

d
dt

[
e−(A+Bi)t�x

]
= e−(A+Bi)t�F(t)+ e−(A+Bi)tB̂

1
2

d�W
dt

.

Finally, this equation is approximated using Euler’s method, and the eigenvalues
and eigenvectors of the matrix (A+Bi) are computed using diagonalization.

(II) The Euler–Maruyama approximation performs the time-discrete approxima-
tion of an Itô process. Let {Xt} be an Itô process on t ∈ [t0,T] that satisfies the
stochastic differential equation dXt = a(t,Xt)dt+b(t,Xt)dWt, Xt0 = X0. For a given
time-discretization t0 < t1 < t2 < ... < tN = T , an Euler–Maruyama approximation is
a continuous time stochastic process {Y(t), t0 ≤ t ≤ T} that satisfies the interactive
scheme given by [KlPl92]

Yn+1 = Yn +a(tn,Yn)Δ tn+1 +b(tn,Yn)ΔWn+1, n = 0,1, ...,N−1,

where Y0 = X0, Yn = Y(tn), Δ tn+1 = tn+1− tn, and ΔWn+1 = W(tn+1)−W(tn). Each
random number is given by ΔWn = zn

√
Δ tn, where zn is chosen from a standard

normal distribution N (0,1). In this type of procedure the considered time intervals
must be equidistant.

In the following sections we consider examples with constant and linear reactiv-
ity, and present Monte Carlo (MC) simulations for each one of them. We compare
the MC estimates to the results obtained with the stochastic models previously
discussed, as well as with the Deterministic Model [PeVi09, WoLe14].

In these MC simulations, we have chosen the time interval Δ t to be small enough
such that the likelihood of more than one event taking place during Δ t is very
small. This was achieved by considering the half-life time of the precursor groups,
according to the time decay constants λi. The number of seeds used in the MC
estimates for each case was large enough to guarantee that the statistical error of the
mean values is less than 0.05% (with 95% confidence).
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56.3.1 Constant Reactivity

In the following examples, we present the results for the mean values E of the
neutron density and the delayed neutron precursors concentration. In addition, we
also present the standard deviations σ of these quantities for the stochastic models.

In the first example, we reproduce a test case presented in [HaAl05], which
assumes only one neutron precursor and simulates a step-reactivity insertion.
Although it does not model an actual physical nuclear reactor problem, it provides
simple computational solutions for comparison with Monte Carlo results. The
parameters are λ1 = 0.1, β1 = 0.005, ν = 2.5, q = 200, l = 2

3 , and ρ = − 1
3 , with

equilibrium values for the initial condition:�x(0) = [400,300]T .
Table 56.1 shows that, while the standard deviations for both quantities are one

order of magnitude smaller than their corresponding mean values, the standard
deviation for the neutron density is still significant (≈ 7% of the mean). This
suggests that a deterministic approach may not be sufficient for the computation
of this quantity.

The next example (two scenarios) uses m = 6 delayed neutron precursor groups,
and models step reactivity insertions for an actual nuclear reactor [ChAt85, HaAl05,
KiAl04]. The first scenario models a prompt insertion with ρ = 0.003, whereas the
second scenario models a prompt insertion with ρ = 0.007. In both scenarios the
parameters are chosen as follows:

λi = [0.0127,0.0317,0.115,0.311,1.4,3.87];

βi = [0.000266,0.001491,0.001316,0.002849,0.000896,0.000182];

β = 0.007; ν = 2.5; q = 0; l = 0.00002;

with an initial condition that assumes a source-free equilibrium:

�x(0) = 100

[
β1

λ1l
,
β2

λ2l
,
β3

λ3l
,
β4

λ4l
,
β5

λ5l
,
β6

λ6l

]T

.

It is important to point out that the issue of stiffness arises when solving the
stochastic models for these scenarios. This puts an additional constraint in the
probability calculations. As in the previous example, an analysis of the standard

Table 56.1 Results for one precursor group and reactivity ρ =−1/3.

Monte Stochastic Euler-Maruyama Deterministic
Carlo PCA approximation model

E(n(2)) 400.032 395.32 412.23 412.13

σ(n(2)) 27.311 29.411 34.391 –

E(c1(2)) 300.01 300.67 315.96 315.93

σ(c1(2)) 7.807 8.3564 8.2656 –
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Table 56.2 Results for six precursor groups and reactivity ρ = 0.003.

Monte Stochastic Euler-Maruyama Deterministic
Carlo PCA approximation model

E(n(0.1)) 183.04 186.31 208.6 200.005

σ(n(0.1)) 168.79 164.16 255.95 –

E(∑6
i=1 ci(0.1)) 4.478×105 4.491×105 4.498×105 4.497×105

σ(∑6
i=1 ci(0.1)) 1495.72 1917.2 1233.38 –

Table 56.3 Results for six precursor groups and reactivity ρ = 0.007.

Monte Stochastic Euler-Maruyama Deterministic
Carlo PCA approximation model

E(n(0.001)) 135.66 134.55 139.568 139,61

σ(n(0.001)) 93.376 91.242 92.042 –

E(∑6
i=1 ci(0.001)) 4.464×105 4.694×105 4.463×105 4.463×105

σ(∑6
i=1 ci(0.001)) 16.226 19.444 6.071 –

Fig. 56.1 Neutron Density for six Precursor Groups with reactivity ρ = 0.007.

deviations in Tables 56.2 and 56.3 indicates that the stochastic effects need to be
taken under consideration, since the values obtained for the mean and the standard
deviation of the neutron density are of the same order of magnitude.

Besides the evaluation for a fixed time t = 0.1s by the Euler-Maruyama approach,
we also generate the time line (Figure 56.1) of the neutron density and compare
two Monte Carlo realizations (Sample 1 and Sample 2) with the mean value of the
neutron density after averaging over a sufficiently large set of samples.
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Fig. 56.2 Neutron Density for one precursor group and reactivity ρ(t) = 0.25t.

56.3.2 Linear Reactivity

The example discussed in this section is, to the best of our knowledge, the first
study of this kind that considers time-dependent reactivity. We provide Monte
Carlo results for an example with one precursor group and linear reactivity (see
Figure 56.2) and compare our findings to experimental data [Ha60] as well as
to the deterministic model prediction [PeVi09, WoLe14]. For the time t = 0.1s,
the Stochastic PCA and Euler-Maruyama results are indicated. The parameter set
used for this simulation is λ1 = 0.1, β1 = 0.005, ν = 2.5, l = 0.00001 with time-
dependent reactivity ρ(t) = 0.25t and with initial condition�x(0) = 100[1, β1

λ1l ]
T .

We note that, while the deterministic model yields a curve with the correct
qualitative behavior, it fails to provide any information on the stochastic fluctuations
of the neutron population over time. Clearly, a model that can predict these
fluctuations would be an improvement over the deterministic approach.

56.4 Discussion

From the phenomenological point of view, it is evident that one needs to take under
consideration the stochastic effects in order to compute the neutron density. This is
confirmed by the results of the simulations we have presented, where we see that the
values for the mean and standard deviation of the neutron density can be of the same
order of magnitude. The examples presented here also suggest that the fluctuations
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in the precursor concentrations are small. This behavior arises from the stochastic
nature of decay; specifically, from the property of time homogeneity inherent to the
radioactive decay law.

The present work is the first one in a sequence, in which reactivity of time-
dependent scenarios and the effects of stochastic moments are studied. This will
be done by solving the stochastic equation in a hierarchic fashion: first, the
deterministic part of the problem is solved, and then the solution is modified by
including the stochastic moments. This contrasts with the procedures currently
found in the literature, which make use of the roots of the inhour equation. One
of the main difficulties encountered refers to the stiffness of the problem, which
imposes severe restrictions on the calculation of the event probabilities. In a future
work these issues will be addressed in an optimized solution procedure.
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Chapter 57
The Hamilton Principle for Mechanical Systems
with Impacts and Unilateral Constraints

K. Yunt

57.1 Introduction

An action integral is presented for Hamiltonian mechanics in canonical form
with unilateral constraints and/or impacts. The transition conditions on generalized
impulses and the energy are presented as variational inequalities, which are obtained
by the application of discontinuous transversality conditions. The energetical
behavior for elastic, plastic, and blocking type impacts is analyzed. A general
impact equation is obtained by the stationarity conditions, which is compatible
with the most general impact laws and is applicable to various impactive processes
straightforwardly. The crux in achieving energetical behavior which conforms with
the physics of the impactive process is shown to be the consistency conditions on
the impact time variations.

Hamilton postulated in 1835 in his seminal works [Ha34, Ha35], that if a
Lagrangian system occupies certain positions at fixed times t0 and tf , then it should
move between these two positions along those admissible arcs q(t) ∈ C1

n[t0, tf ],
which make the action integral

J(q) =
∫ tf

t0
L(q(s), q̇(s))ds

stationary. The Lagrangian L : Rn ×R
n → R is defined as L = T(q, q̇)− V(q),

where V(q) and T(q, q̇) represent the potential and kinetic energy, respectively.
The original form of Hamilton’s principle deals with conservative systems with
equality constraints, which are perfect bilateral constraints. Though the Hamiltonian
mechanics was born later than Lagrangian mechanics, the domains of physics in
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which its formalism is used even reach to more modern branches of physics, such
as relativistic/quantum mechanics [Fe65]. The following Legendre transformation
on the generalized velocities: p = ∂q̇ L where p is called the conjugate general-
ized momentum, yields the Hamiltonian canonical equations as the stationarity
condition:

ṗ =−∂q H, q̇ = ∂p H

in smooth conservative motion.
The missing link in analytical mechanics which shows that general impactive

processes are obtained by extremizing some sort of action integral for which
momentum and energy are not necessarily conserved is recently presented in [Yu12]
for elastic contact impacts in the Lagrangian formalism. In [Yu12] the conditions,
under which general non-conserving impacts become a part of an extremizing
solution for mechanical systems, which are scleronomic and holonomic, are investi-
gated. The general momentum balance and the total energy change over a collisional
impact for a mechanical scleronomic holonomic finite-dimensional Lagrangian
system are obtained in the form of stationarity conditions of a modified action
integral. The reference [Yu12] has been preceded/succeeded by many works such
as [St65, FeEtAl03, Si81, PaGl98, PaGl00, KoTr91, LeAeGl09, PeMu12], which
were not able to present impulsive action integrals for impacts without energy
conservation.

In [Yu13] blocking as a dissipative impactive process is analyzed by the
technique in [Yu12] and an impulsive action integral in the Lagrangian formalism is
presented. In this work, by making use of the results obtained in [Yu12] and [Yu13]
the impactive principle of stationary action for impactive processes are obtained by
maximizing, for which momentum and energy are not necessarily conserved over
the impact in the Hamiltonian formalism.

In this work, a smooth Riemannian configuration manifold M , for which q
denotes the n-tuple of generalized local coordinates is considered. The kinetic metric
associated with M is given by M(q) at each q. The generalized velocity of the
system q̇ lives in the tangent space of the manifold TM (q). If the motion of the
system is constrained to a submanifold of M denoted by the admissible set C ,
then the tangent space TM (q) is subdivided into a pair of cones TC (q) and T⊥C (q),
which are orthogonal to each other in the kinetic metric. The cotangent space is
denoted by NC (q) and the cones TC (q) and T⊥C (q) are subspaces of TM (q). It is
assumed that the constraint structure may differ in the pre-impact and post-impact
phases. The total energy of the scleronomic holonomic Lagrangian system is given
by its total mechanical energy H(q,p) = T(q, p)+V(q). The differential measure
of the total mechanical energy is given by dH(q,p) = ∂tH(q,p)dt+ ∂σH(q,p)dσ .
The absolutely continuous part of the measure dH is denoted by dH

dt . The singular
part of dH is represented as dH

dσ , where dσ a regular Borel measure, and dH
dσ is

the Radon–Nikodym derivative of dH with respect to dσ . The Lebesgue–Stieltjes
integration of the differential measure of the total mechanical energy over the
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impact time yields
∫
{ts} dH = H+ −H− = T+ − T− = L+ − L−. The regularity

of the pre-impact and post-impact transition sets at the instant and position of
impact is an assumption of local convexity. The irregularity of the constraint set
at an instant of impact is visualized in mechanics in the form of inward/re-entrant
corners as discussed in [Ma87] and [Gl02]. If at the location of impactive transition
the regularity is not present either at pre-transition and/or post-transition state, in
the sense that the contingent cone does not overlap with the tangent cone, then
the obtained stationarity conditions are weakened to substationarity conditions,
and the variational inequalities are termed as hemi-variational or quasi-variational
inequalities. Having set the stage, the impulsive action integral becomes

J (q, p, ts) =
∫ t−s

t0
〈p , q̇〉 − H(q , p)ds (57.1)

+
∫ tf

t+s
〈p , q̇〉 − H(q , p)ds = J1 (q, ts)+ J2 (q, ts) .

The following main theorem is proven in this work for generalized positions from
the space of absolutely continuous functions AC and for conjugate momenta from
the space of locally bounded variation functions LBV:

Theorem 1 (Main Theorem). If there exist arcs q̃ ∈ ACn[t0, tf ] and p̃ ∈
LBVn[t0, tf ], impact position q̃(t̃s), pre-impact and post-impact conjugate momenta
p̃(t̃−s ) and p̃(t̃+s ) at an impact time t̃s because of a impactive process at multiple
contacts/locations, which induces the system, which moves in C−, to evolve on the
constraint C+ and if these arcs provide for the action integral in (57.1) a maximizer,
then the following conditions hold:

1. The Hamilton canonical equations on [t0, tf ] in the almost everywhere sense

˙̃pj =−∂qj H(q̃, p̃), ˙̃qj = ∂pj H(q̃, p̃), j = 1,2, . . . ,n. (57.2)

2. The conjugate momentum balance:

p̃+− p̃− = D+ (q̃(t̃s)) Λ̃++D− (q̃(t̃s)) Λ̃−. (57.3)

Here the matrices D− and D+ are the pre-impact and post-impact generalized
impulse direction. The vectors Λ̃− and Λ̃+ are Lagrange multipliers/impulses
for which Λ̃+ ∈ NC+(q) and Λ̃− ∈ NC−(q) hold.

3. A finite amount of energy is removed or added to the system.

The theory of subgradients and variational inequalities has found in the recent
decades many fields of application. The basics of nonsmooth variational analysis
can be retrieved in the classical work of [Cl90] by Clarke.
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57.2 Internal Boundary Variations (IBV) and Discontinuous
Transversality Conditions (DTC)

If any isolated instant of discontinuity is considered as a boundary on the timeline,
then this boundary constitutes an upper boundary for one segment of the interval
whereas for the other segment a lower boundary and becomes an internal boundary.
The pre-transition and post-transition variations are interrelated by the transition
conditions. The discontinuous transversality conditions follow straightforwardly by
the evaluation of the corresponding variational inequalities to the internal boundary
variations. Several families of variational curves, which are parameterized by a
nonnegative ε , are introduced in order to generate the variations

p(t,ε) = p(t)+ ε p̂(t) = p(t)+δp(t), q(t,ε) = q(t)+ ε q̂(t) = q(t)+δq(t),

q(t+s ,ε) = q(t+s )+ ε q̂(t+s ) = q(t+s )+δq(t+s ),

q(t−s ,ε) = q(t−s )+ ε q̂(t−s ) = q(t−s )+δq(t−s ) , ts(ε) = ts + ε t̂s = ts +δ ts.

The variations of the pre- and post-transition positions at fixed time q̂(t+s ), q̂(t−s )
are defined by Gâteaux derivatives and are related with the total variations in these
entities q̂+s , q̂−s at the internal boundary by the following affine relations as depicted
in figure 57.1:

q̂(t+s ) = q̂+s − q̇(t+s ) t̂s, q̂(t−s ) = q̂−s − q̇(t−s ) t̂s. (57.4)

The variations of the post-transition and pre-transition positions are

δq+s = δq
(
t+s
)
+ q̇
(
t+s
)
δ ts, δq−s = δq

(
t−s
)
+ q̇
(
t−s
)
δ ts. (57.5)

Fig. 57.1 General
decomposition of boundary
variations at a reentrant
corner.
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The tangent cone to a set C at a given point x in the regular case is

TC (x) =

{

y ∈ K | lim
τ↓0

dC (x+ τy)
τ

= 0

}

.

Here dC (x) denotes the distance function of the point x to the set C , where it takes
the value zero, if and only if x ∈ C . The tangent cone TC (x) to a set C ⊂ K is polar
to a nonempty convex cone NC (x) in the dual space K∗:

NC (x) = {z ∈ K∗| 〈y,z〉 ≤ 0, y ∈ TC (x)} . (57.6)

The allowable pre-impact and post-impact position variations are limited to

δq+s ∈ TC+

(
q(t+s )

)
, δq−s ∈ TC−

(
q(t−s )

)
.

The continuity of the positions requires the equality of the pre-impact and post-
impact position variations:

δq+s = δq−s = δqs. (57.7)

According to (57.7), δqs fulfills both the pre-impact and post-impact conditions

δqs ∈ TC+ ∧ δqs ∈ TC− ⇒ δqs ∈ TC+ (qs) ∩ TC− (qs) .

The following set relations hold:

TC+ (qs) ∩ TC− (qs) ≡ TC+∩C− (qs) ,

NC+∩C− (qs) ≡ NC+ (qs) ⊕ NC− (qs) .

Here ⊕ denotes the set addition. The equality (57.7) means that:

δq
(
t+s
)−δq

(
t−s
)
=
(
q̇
(
t+s
)− q̇

(
t−s
))
δ ts

must hold in general.
The following condition is valid in phases of motion, where the generalized

velocities are continuous: q̇ ∈ TC (q).
At an instant of velocity jump, which may be accompanied by alteration in the

pre-impact and post-impact constraint sets, it is necessary to distinguish among
forward and backward dynamics:

q̇+ ∈ TC+

(
q(t+s )

)
, q̇− ∈ TC−

(
q(t−s )

)
.

The allowable pre-impact and post-impact velocity variations are expressed as

δ q̇+s ∈ TTC+(q(t+s ))
(
q̇(t+s )

)
, δ q̇−s ∈ TTC−(q(t−s ))

(
q̇(t−s )

)
.
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Analogously, the spaces of the variations of the pre-impact and post-impact
conjugate momenta read:

δ p+ ∈ N⊥
TC+(q(t+s ))

(
p(t+s )

)
, δp− ∈ N⊥

TC−(q(t−s ))

(
p(t−s )

)
.

The set in TC+∩C− (q(t+s )) should cover all possible candidate directions for the
internal boundary variations, so that the obtained extremizing arc is the extremizer
over all comparison curves. This property is guaranteed by the tangential regularity
of the transition sets.

It is assumed that the constraint sets C+ and C− are regular, and the impactive
process does not impair thereby the regularity of the post-impact set.

57.3 Stationary Nature of the Impulsive Action Integral

The regularity of the functional in (57.1) is guaranteed by the regularity of the
integrands and of the transition sets C+ and C−. The functional J is defined on
Banach space and is assumed to be Lipschitz. The directional derivative of f (x), if
f (x) is Lipschitz around x is defined by

f 0(x; y) = limsup
x′ → x
ε ↓ 0

f (x′+ ε y)− f (x′)
ε

. (57.8)

The subdifferential is ∂ f (x) :=
{

z ∈ Z |f 0(x; y)≥ 〈z, y〉, ∀y ∈ X
}

. If f is contin-
uously differentiable, then ∂ f (x) consists of a single element, namely, ∂ f (x) =
{∇xf (x)}. The function y → f 0(x; y) is finite, positively homogeneous, and sub-
additive on X, and satisfies |f 0(x; y)| ≤ K ‖y‖. The directional derivative f 0(x; y)
is as a function of y Lipschitz of rank K on X. The following relation holds:
−f 0(x; y) = f 0(x;−y) [Cl90]. If f attains a local minimum or maximum at x, then
the zero vector is an element of the subdifferential: 0 ∈ ∂ f (x). For every y in X, the
directional majorizes the expression f 0(x; y) = max {〈ξ , y〉 ∀ξ ∈ ∂ f (x)}.

57.3.1 Proof of the Main Theorem

Let q(t) ∈ AC1[t0, tf ] be an arc and ts be an transition time for which the action
integral J(q(t) , p(t) , ts) is well-defined and finite. The arc q̃(t) ∈ AC1[t0, tf ] and
t̃s ∈ R is a weak local maximum for (57.1), if there exist ε > 0 and εt > 0 such
that every q̂(t) ∈ AC1[t0, tf ] with ‖q̂(t)‖∞+‖p̂(t)‖∞ < ε and ‖t̂‖< εt gives rise to a
well-defined objective value J(q̃(t)+ ε q̂(t), p̃(t)+ ε p̂(t), t̃s + εt t̂s), which satisfies

J(q̃(t)+ ε q̂(t), p̃(t)+ ε p̂(t), t̃s + εt t̂s)≤ J(q̃(t), p̃(t), t̃s). (57.9)
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If there exist arcs q̃ and p̃, transition position q̃(t̃s), pre-transition and post-transition
conjugate momenta p̃(t̃−s ) and p̃(t̃+s ) at a transition time t̃s, which all together
maximize the functional in (57.1), such that the value functional assumes the finite
value J̃(ε = 0) = J (q̃, t̃s), then the following variational inequality is fulfilled:

∑
∀ψ̂j

J̃0(·; ε ψ̂j)≤ 0, ∀ψ̂j ∈ {q̂(ts), t̂s }
⋃
{q̂, p̂} , (57.10)

since J is subdifferentially regular at any extremal solution. The following one
parameter functionals are used to transform (57.10):

Gi(ε) =
〈
p+ ε p̂ , q̇+ ε ˆ̇q

〉 −Hi (q+ ε q̂, p+ ε p̂) , i = 1,2, (57.11)

into the following stationarity condition:

limsup
ε→0+

1
ε

[
∫ t−s +ε t̂

t0
G1(ε)d s−

∫ t−s

t0
G1(0)d s

]

(57.12)

+
1
ε

[∫ tf

t+s +ε t̂
G2(ε)d s−

∫ tf

t+s
G2(0)ds

]

=

limsup
ε→0+

∫ t−s

t0

G1(ε)−G1(0)
ε

ds+
∫ tf

t+s

G2(ε)−G2(0)
ε

ds

+
∫ t−s +ε t̂

t−s

G1(ε)
ε

ds+
∫ t+s

t+s +ε t̂

G2(ε)
ε

ds =

∫ t−s

t0
limsup
ε→0+

G1(ε)−G1(0)
ε

ds+
∫ t−s +ε t̂

t−s
limsup
ε→0+

G1(ε)
ε

ds+

∫ tf

t+s
limsup
ε→0+

G2(ε)−G2(0)
ε

ds+
∫ t+s

t+s +ε t̂
limsup
ε→0+

G2(ε)
ε

ds

=
∫ t−s

t0
〈 p̂ , q̇〉 + 〈p , ˆ̇q

〉 −
〈
∂H1

∂q
, q̂

〉

−
〈
∂H1

∂p
, p̂

〉

d s

+
∫ tf

t+s
〈 p̂ , q̇〉 + 〈p , ˆ̇q

〉 −
〈
∂H2

∂q
, q̂

〉

+

〈
∂H2

∂p
, p̂

〉

d s

+
〈
p(t−s ) q̇(t−s )

〉
t̂ − 〈p(t+s ) , q̇(t+s )

〉
t̂+H1(q(t

−
s ),p(t

−
s )) t̂

− H2(q(t
+
s ),p(t

+
s )) t̂ ≤ 0. (57.13)

The Raymond–Dubois lemma states that

〈p(s), q̂(s)〉 |ba =
∫ b

a
〈ṗ(s), q̂(s)〉 + 〈p(s), ˙̂q(s)

〉
ds. (57.14)
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By inserting (57.14) and (57.5) in (57.12) the following is obtained:

∫ t−s

t0

〈
q̇(s)−∂p H1 , p̂(s)

〉−〈∂q H1 + ṗ(s) , q̂(s)
〉

d s (57.15)

+
∫ tf

t+s

〈
q̇(s)−∂p H2 , p̂(s)

〉−〈∂q H2 + ṗ(s) , q̂(s)
〉

d s

〈
p(t−s ) − p(t+s ) , q̂s

〉
+
[

H−1 −H+
2

]
t̂ ≤ 0.

in the limit. By the application of Fatou’s lemma on the integral in (57.15) the
Hamilton’s canonical equations are obtained in the almost everywhere sense as
given in (57.2).

The validity of (57.7) relates their directional derivatives under regularity of J2

and J1 at (q(ts), ts):

J0 (·; ε q̂s) = J0
1

(·; ε q̂−s
)
+ J0

2

(·; ε q̂+s
)
. (57.16)

The condition for a maximum is:

J0 (·; ε q̂s)≤ 0, ∀ q̂s ∈ T(C+∩C−) (q̃) . (57.17)

By making use of definition (57.6), this optimality condition is fulfilled for:

p̃(t−s )− p̃(t+s ) ∈ N(C+∩C−) (q̃) . (57.18)

The inclusion (57.18) is equivalently expressed as:

p̃(t+s )− p̃(t−s ) = D̃+ Λ̃++ D̃− Λ̃−. (57.19)

The directional derivative of J in the direction δ ts is:

J0 (·; ε t̂s) = J0
1 (·; ε t̂s)+ J0

2 (·; ε t̂s) =
(
H+−H−

)
δ ts, (57.20)

where H− and H+ denote the pre-impact and post-impact Hamiltonians, respec-
tively. The variational inequality pertaining to the impact time variation yields the
optimality condition:

J0 (·; ε t̂s) =
(
H+−H−

)
δ ts ≤ 0. (57.21)
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57.3.2 The Consistency Conditions on the Time Variation
in Different Scenarios

By the property, that boundary variations of the generalized positions consist of two
components, which are independent of each other as in (57.5), it is assumed that

δq(t+s ) ∈ TC+

(
q(t+s )

) ∧ q̇(t+s )δ ts ∈ TC+

(
q(t+s )

)
, (57.22)

δq(t−s ) ∈ TC−
(
q(t−s )

) ∧ q̇(t−s )δ ts ∈ TC−
(
q(t−s )

)
. (57.23)

57.4 Elastic Rigid Body Collisions

A given vector-valued differentiable function g(q) (h(q) = −g(q)) represents the
shortest distances between the rigid bodies in the system and these distances are
always nonnegative (non-positive) due to the impenetrability assumption. If ele-
ments of g become zero, then contact among rigid bodies occurs and the mechanical
system reaches the boundary of the admissible set C . At the instant of a multi-
impact at m contacts, at which g(q) = 0 is valid, the pre-impact and post-impact
transition sets are identical, so that for the generalized impulse directions C− = C+

holds, and the impact equation takes the well-known form

p̃+− p̃− = D(q̃(t̃s))
(
Λ̃+ + Λ̃−

)
. (57.24)

In rigid body collisions one has a non-positive pre-impact relative velocities in the
approach phase, and nonnegative post-impact relative velocities due to the rigidity
or impenetrability condition, which are stated as v− = DT (q) q̇− and v+ =
DT (q) q̇+, respectively. The linear operator D(q) is defined as D(q) = ∇q g(q).
Since in this case the impactive transition sets C+ and C− coincide, the set is
defined by C = {q(t+s )|h(q(ts))≤ 0}, respectively, then the position variations at
pre-impact and post-impact instants are in the tangent cone

TC

(
q
(
t+s
))

= TC =
{
ξ |DT (q(ts)) ξ ≥ 0

}
, (57.25)

respectively, if h(q(ts)) = 0. The normal cone of the set C is

NC (q(ts)) = {−D(q(ts)) ξ |ξ ≥ 0} ,

respectively. For the variational parts pertaining to impact time variations, the
inclusions in (57.22) and (57.23) mean that

v+δ ts ≥ 0, v−δ ts ≥ 0. (57.26)
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Since v+ > 0 and v− < 0 need to hold because of rigidity assumption, then the
impact time variations must vanish t̂s = 0, in order to maintain the consistency of
the internal boundary variations. The unboundedness of the energy change H+−H−
would contradict the assumption that the generalized velocities belong to the class
of bounded variation functions.

57.5 Impactive Processes Arising Due to Blocking
and Non-Smooth Constraints

The case is investigated by the author in [Yu13] by making use of DTC and its
similarity to fully inelastic impacts is stated. At an instant of blocking, the directions
characterized by D+ are after the transition time, abruptly closed for evolution,
which requires D+ q̇ = 0 to hold.

Consider the motion of a mass particle without friction and gravity along an
ideal holonomic constraint with a kink at the origin as shown in figure 57.2. The
particle is supposed to move along the line g1(x,y) : y = 0 until the origin, and to
follow the line g2(x,y) : y − cx = 0 beginning at the origin. It has a pre-impact
velocity of ẋ−. The impactive process is modelled by a release of the constraint
g1(x,y) and blocking of constraint g2(x,y) at the kink. The pre-impact and post-

impact generalized directions become D− =
(

0 1
)T

, D+ =
(−c 1

)T
.

In [Yu13] it is shown that the change in the conjugate momentum and the total
mechanical energy for a releasing-blocking type transition is

p+−p− =−D+G−1
bb v− = D+Λ++D−Λ− (57.27)

and

H+−H− =−1
2

〈
v− , G−1

bb v−
〉
, (57.28)

respectively, where the Delassus’ operator Gbb is: Gbb = +DT M−1 D+ and v−
denotes the pre-impact relative velocity with respect to the blocking constraint:

Fig. 57.2 Point mass moving
along a non-smooth
constraint.
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v− = D+ q̇−. Substituting relevant entities to the example in the relations (57.27)
and (57.28) the following is obtained:

H+−H− =− mc2

2(1+ c2)
(ẋ−)2, p+−p− =

(
− c2

(1+c2)
c

(1+c2)

)

mẋ−

such that the conjugate momenta after the impact become

p+x =
m

(1+ c2)
ẋ−, p+y =

mc2

(1+ c2)
ẋ−

and the impulses are given by Λ− = 0, Λ+ = mcẋ−
(1+c2)

. The decrease in energy
is correctly characterized by the discontinuous transversality conditions, and the
right-hand side of the impact equation describes an impactive process for which
the change the constraint structure induces an impact. In the case of non-smooth
constraints and blocking action, the impact equation is driven by the post-impact
impulses.

57.6 Impacts Accompanied by Alteration
in the Mass Structure

Consider, for example, a stellar or atomic scale collision process in which one of
the participating objects disappears through energy emittance and/or the compres-
sive phase impulses exceeds a certain threshold such that one ‘bursts.’ Due to the
nonexistence of a post-impact constraint structure C+, one is only left with the
condition (57.23), which translates in this case into

−DT (q(t−s )
)

q̇−s ≤ 0 ∧ q̇(t−s )δ ts ∈ TC− ⇒ t̂s ≤ 0. (57.29)

The condition (57.29) requires that t̂s ≤ 0. If this is considered, together with
the stationarity condition (57.21), then a decrease in the total mechanical energy
is required: H− ≥ H+. The energy decrease is here interpretable, as the activation
energy required to dissolve the other particle in the form of compressive work in
a Poisson type impact process and the conversion to other types of energies from
mechanical energy. The impact equation here involves only the compression/pre-
impact part:

p̃+− p̃− = −D(q̃(t̃s)) Λ̃−.
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57.7 Discussion and Conclusions

The introduced Hamiltonian framework is capable of providing an impact equation
which is able to cope with impactive processes, for which

1. The energy is not conserved, and dissipative impacts become eligible.
2. The mass distribution may change abruptly.
3. The constraint structure due to addition and removal of constraints is altered

suddenly.

The impact equation which is obtained by the proposed variational formulation is
compatible with the most common impact equations such as Newton’s or Poisson’s
impact law. The Poisson’s impact law, which requires to distinguish between
compression phase and decompression phase impulsive forces Λ− and Λ+, and
interrelates them by a coefficient of restitution in the form Λ+ = εpΛ−, is directly
structurally adaptable to the impactive process due to the clear distinction between
the pre-impact and post-impact phases. Different than in many preceding studies,
which were limited to energy conserving impactive processes, the variational
framework for the Hamiltonian formulation enables the implementation of arbitrary
restitution coefficients with Newton’s and Poisson’s impact laws. The equation
(57.8) is in comparison with the assumptions δq(t+s ) = q̇(t+s ) δ ts, δq(t−s ) =
q̇(t−s ) δ ts, which are used in the works [LeAeGl09] and [FeEtAl03], an improve-
ment, because it enables nonconservative impactive processes to become extrem-
izing arcs. It is straightforward to show that the conditions of the main theorem
are valid also in the strong norm. A detailed account and a comparison between
the Weierstrass–Erdmann conditions and discontinuous transversality conditions for
impactive processes of finite-dimensional Lagrangian systems is given in [Yu12].
Irrespective whether the set C+ ∩C− is tangentially regular at q(ts) or not, the
generalized impulse exists in NC+∩C− (q(ts)). The vast majority of the literature on
the stationarity principle focuses o determining the stationarity conditions based on
the classical rule of Fermat which requires: δ J = 0 for all admissible variations. If
the functional J is merely Lipschitz, then the stationarity conditions for a minimum
and a maximum need to be investigated separately, which require δ J ≥ 0 or
δ J ≤ 0, respectively. If the stationarity conditions for a non-smooth minimum is
investigated in the presented case, then the impulse and energy balance equations
become physically incorrect and by sign reversal.

The generalized directional derivative of Clarke does not require the existence
of any limit in the vicinity of the point of interest, and involves only the behavior
of the functional near the stationary point, which is in the sense of the analysis
presented here, because of the discontinuity of the generalized conjugate momenta,
the integrand does not exist at an instant of impact and the stationarity conditions
are to be understood in the limiting sense.



57 Non-Smooth Hamilton Principle 699

References

[Ha34] Hamilton, W. R.: On a general method in dynamics. Philos. Trans. R. Soc. Lond.,
247–308 (1834)

[Ha35] Hamilton, W. R.: Second Essay On a General Method in Dynamics. Philos. Trans.
R. Soc. Lond., 95–144 (1835)

[Fe65] Feynman, R. P.: The character of physical law. MIT Press, Cambridge (1965)
[Yu12] Yunt, K.: The Impulsive Action Integral for Rigid-Body Mechanical Systems With

Impacts. J. Comput. Nonlinear Dyn. 7/3, 031012-031012-9 (2012)
[St65] Stavrakova, N. E.: The principle of hamilton-ostrogradskii for systems with one-

sided constraints. J. Appl. Math. Mech. 29/4, 874–878 (1965)
[FeEtAl03] Fetecau, R. C., Marsden, J. E. and Ortiz, M. and West, M.: Nonsmooth Lagrangian

mechanics and variational collision integrators. SIAM J. Appl. Dyn. Syst. 2/3, 381–
416 (2003)

[Si81] Sinitsyn, V. A.: On the Hamilton-Ostrogradskii principle in the case of impulsive
motions of dynamic systems. J. Appl. Math. . Mech. 45/3, 356–359 (1981)

[PaGl98] Panagiotopoulos, P.D., Glocker, Ch.: Analytical Mechanics. Addendum I: Inequal-
ity Constraints with Elastic Impacts. The Convex Case. ZAMM Z. Angew. Math.
Mech. Z 78/4, 219–229 (1998)

[PaGl00] Panagiotopoulos, P.D., Glocker, Ch.: Inequality constraints with elastic impacts in
deformable bodies. The convex case. Arch. Appl. Mech. 70/5, 349–365 (2000)

[KoTr91] Kozlov, V. V., Treshchëv, D. V.: Billiards: A Generic Introduction to the Dynamics
of Systems with Impacts. American Mathematical Soc., XXXX (1991)

[LeAeGl09] Leine, R. I., Aeberhard, U., Glocker, C.: Hamilton’s Principle as Variational
Inequality for Mechanical Systems with Impact. J. Nonlinear Sci. 19/6, 633–664
(2009)

[PeMu12] Pekarek, D., Murphey, T.D.: Variational nonsmooth mechanics via a projected
Hamilton’s principle. American Control Conference (ACC),IEEE, 1040–1046
(2012)

[Yu13] Yunt, K.: Analysis of Discrete Mechanical Systems With Blockable Directions.
J. Appl. Mech. 7/3, 031012-031012-9 (2012)

[Cl90] Clarke, F.H.: Optimisation and Nonsmooth Analysis. SIAM 5, (1990)
[Gl02] Glocker, Ch.: Impacts with global dissipation index at reentrant corners. In:

Martins, J. A. C., Monteiro Marques, M. D. P. (eds.) Contact Mechanics, pp. 45–52.
Springer, (2002)

[Ma87] May, H.O.: Generalized Variational Principles and Unilateral Constraints in Ana-
lytical Mechanics. In: Unilateral Problems in Structural Analysis-2: Proceedings of
the Second Meeting on Unilateral Problems in Structural Analysis, pp. 221–237.
Springer, (1987)



Chapter 58
Numerical Solutions and Their Error Bounds
for Oscillatory Neural Networks

B. Zubik-Kowal

58.1 Introduction

In this chapter, we investigate a mathematical model introduced by Hoppensteadt
and Izhikevich [HoIz99] written in the form of nonlinear Volterra integro-
differential equations of convolution type:

dxi

dt
(t) =Ωi + ε

∫ t

0
δ (t− s)a(s)

N

∑
j=1

sin
(

xj(s)− xi(s)
)

ds, (58.1)

where i = 1,2, . . . ,N, t ∈ [0,T]. Equations (58.1) are known as thalamo-cortical
equations and describe a new architecture for a neurocomputer composed of N
oscillators.

The above system (58.1) generalizes the model by Kuramoto studied in [Ku84].
The ith solution xi(t) is the phase of the ith oscillator at time t. System (58.1) is
modeled by employing principles of the human brain [HoIz99] and the N oscillators
generating different frequenciesΩi (Ωi �=Ωj for i �= j) are referred to as neurons and
are forced by the thalamic input a(t). We apply the input defined by

a(t) = cos2(πt),

for t ≥ 0, and the convolution kernel defined by the step function

δ (t) =
{

c, for 0≤ t ≤ τ ,
0, for t > τ ,
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with c,τ > 0 being positive parameters. The oscillators are homogeneously and
weakly connected to their common medium and the strength of their connections
is given in terms of the parameter 0 < ε � 1. Numerical solutions to the system
(58.1) will be illustrated in a later section of this chapter.

For problems of this type, the number of oscillators N is usually taken to be
a relatively large number, making (58.1) is a large system of strongly coupled
differential equations. Difficulties associated with limitations on available resources
inevitably arise in solving such problems [ZuVa99, Zu00, JaWeZu04, JaZu05], and
parallelization can often serve as a resolution for some of them [JaZu06, Zu06,
HoJa07, MiZu12]. In the next sections, we address the problem on how to solve
the system introduced in this chapter using parallel environments.

The organization of this chapter is as follows. In Section 58.2, we describe
dynamic iterations for the thalamo-cortical system. Error bounds showing the
convergence of the successive iterates are derived in Section 58.3. Results of
numerical experiments are presented in Section 58.4. We then finish with concluding
remarks in Section 58.5.

58.2 Numerical Solutions

Solving thalamo-cortical systems (58.1) numerically is computationally expensive
and robust and efficient numerical algorithms are vital for computer simulations. To
solve (58.1) numerically in parallel computing environments, we apply the dynamic
iteration

d
dt

x(k+1)
i (t) =Ωi + ε

∫ t

0
δ (t− s)a(s)

N

∑
j=1

sin
(

x(k)j (s)− x(k)i (s)
)

ds, (58.2)

where k = 0,1,2, . . . , i = 1, . . . ,N, and x(0)i : [0,T] → R are arbitrary starting
functions. System (58.2) differs from static iterations by the fact that the successive
iterates x(k) : [0,T]→ R

N are vector functions.
The advantage of (58.2) over (58.1) is that each equation in (58.2) is separated

from the other equations in the system (the right-hand side of (58.2) depends only on
the previous iterate x(k)(s)) while (58.1) is composed of strongly joined equations.
Therefore, for each k, each equation in (58.2) can be solved on a separate processor
working independently on [0,T].

If N processors are available, then each processor (the ith processor, say) is
assigned to solve its corresponding, ith, equation. If only a smaller number of
processors is available, then the system of N equations can be divided into larger
groups composed of more than one equation and each group is then assigned to a
separate processor.
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To investigate the convergence of the iteration process (58.2) we define the errors

e(k)i (t) = x(k)i (t)− xi(t),

e(k)(t) =
[
e(k)1 (t), . . . ,e(k)N (t)

]T

and the maximum norm

‖e(k)(t)‖= max{|e(k)i (t)| : 1≤ i≤ N}.
It can be seen from (58.1) and (58.2) that

d
dt

e(k+1)
i (t) = ε

∫ t

0
δ (t− s)a(s)

N

∑
j=1

sin
(

x(k)j (s)− x(k)i (s)
)

ds

− ε
∫ t

0
δ (t− s)a(s)

N

∑
j=1

sin
(

xj(s)− xi(s)
)

ds

= ε
∫ t

0
δ (t− s)a(s)

N

∑
j=1

cos
(
ξ (k)ij (s)

)(
e(k)j (s)− e(k)i (s)

)
ds,

(58.3)

where ξ (k)ij (s) are between x(k)j (s)− x(k)i (s) and xj(s)− xi(s). We now integrate the
last relation in (58.3) and get

e(k+1)
i (t) = e(k+1)

i (0)

+ ε
∫ t

0

∫ z

0
δ (z− s)a(s)

N

∑
j=1

cos
(
ξ (k)ij (s)

)(
e(k)j (s)− e(k)i (s)

)
dsdz.

Since x(k)i (0) = xi(0), it can be seen from the above relation that

|e(k+1)
i (t)| ≤ 2ε(N−1)

∫ t

0

∫ z

0
δ (z− s) |a(s)|

N

∑
j=1
‖e(k)(s)‖dsdz

≤ 2ε(N−1)
∫ t

0

∫ z

0
δ (z− s)

N

∑
j=1
‖e(k)(s)‖dsdz.

We now take the maximum for all i = 1, . . . ,N on both sides and get

‖e(k+1)(t)‖ ≤ 2ε(N−1)
∫ t

0

∫ z

0
δ (z− s)

N

∑
j=1
‖e(k)(s)‖dsdz. (58.4)

In the next section, we apply the recurrence relation (58.4) and use the step
function δ to derive error bounds for ‖e(k)(t)‖.
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58.3 Error Bounds

To simplify the next steps, we introduce the following notation:

λ = 2ε(N−1)

and

E(t) = max
s∈[0,t]

‖e(0)(s)‖.

Then from (58.4) we get

‖e(k+1)(t)‖ ≤ λc
∫ t

0

∫ z

0
δ (z− s)‖e(k)(s)‖dsdz

≤ λc
∫ t

0

∫ z

0
‖e(k)(s)‖dsdz,

(58.5)

which helps to prove the following result.

Theorem 1. The k-th dynamic iteration x(k)(t) satisfies the following error bound

‖e(k)(t)‖ ≤ E(t)
(
λc
)k t2k− (max{t− τ ,0})2k

(2k)!
, (58.6)

for t ≥ 0 and k = 1,2,3, . . . .

Note that a consequence of Theorem 1, in particular the inequality (58.6), is that
the dynamic iteration (58.2) converges for any starting vector function x(0)(t), t≥ 0.

Proof. We consider two cases: t > τ and 0 ≤ t ≤ τ . Suppose t > τ . Then, from
(58.5), we get

‖e(k)(t)‖ ≤ λc
∫ t

0

∫ z

0
δ (z− s)‖e(k−1)(s)‖dsdz

= −λc
∫ t

0

∫ 0

z
δ (r)‖e(k−1)(z− r)‖drdz

= λc
∫ t

0

∫ z

0
δ (s)‖e(k−1)(z− s)‖dsdz

= λc
∫ τ

0

∫ z

0
δ (s)‖e(k−1)(z− s)‖dsdz

+ λc
∫ t

τ

∫ z

0
δ (s)‖e(k−1)(z− s)‖dsdz
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= λc
∫ τ

0

∫ z

0
δ (s)‖e(k−1)(z− s)‖dsdz

+ λc
∫ t

τ

∫ τ

0
δ (s)‖e(k−1)(z− s)‖dsdz

+ λc
∫ t

τ

∫ z

τ
δ (s)‖e(k−1)(z− s)‖dsdz

and since the δ (s) function is identically equal to unity in the first two components
and vanishes in the third component on the right-hand side of the above inequality,
it can be seen that

‖e(k)(t)‖ ≤ λc
∫ τ

0

∫ z

0
‖e(k−1)(z− s)‖dsdz+λc

∫ t

τ

∫ τ

0
‖e(k−1)(z− s)‖dsdz

= −λc
∫ τ

0

∫ 0

z
‖e(k−1)(r)‖drdz−λc

∫ t

τ

∫ z−τ

z
‖e(k−1)(r)‖drdz

and

‖e(k)(t)‖ ≤ λc
∫ τ

0

∫ z

0
‖e(k−1)(s)‖dsdz+λc

∫ t

τ

∫ z

z−τ
‖e(k−1)(s)‖dsdz. (58.7)

Therefore, for k = 1, we get

‖e(1)(t)‖ ≤ λc
∫ τ

0

∫ z

0
‖e(0)(s)‖dsdz+λc

∫ t

τ

∫ z

z−τ
‖e(0)(s)‖dsdz

≤ λcE(τ)
∫ τ

0

∫ z

0
dsdz+λcE(t)

∫ t

τ

∫ z

z−τ
dsdz

= λcE(τ)
τ2

2
+λcE(t)τ(t− τ)≤ λcE(t)

(
tτ− τ

2

2

)

= λcE(t)
1
2

(
t2− t2 +2tτ− τ2)= λcE(t)

1
2

(
t2− (t− τ)2

)

= λcE(t)
1
2

(
t2− (max

{
0, t− τ})2

)
,

which shows that (58.6) holds for k = 1. We now assume (58.6) holds for a certain k.
Then, from the relation (58.7), we get

‖e(k+1)(t)‖ ≤ λc
∫ τ

0

∫ z

0
‖e(k)(s)‖dsdz+λc

∫ t

τ

∫ z

z−τ
‖e(k)(s)‖dsdz

≤ λc
∫ τ

0

∫ z

0

(
λc
)k

E(s)
s2k

(2k)!
dsdz

+ λc
∫ t

τ

∫ z

z−τ
(
λc
)k

E(s)
s2k

(2k)!
dsdz

≤ (λc
)k+1

E(t)
(∫ τ

0

∫ z

0

s2k

(2k)!
dsdz+

∫ t

τ

∫ z

z−τ
s2k

(2k)!
dsdz
)
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=
(
λc
)k+1

E(t)
1

(2k+1)!

(∫ τ

0
z2k+1dz+

∫ t

τ
z2k+1− (z− τ)2k+1dz

)

=
(
λc
)k+1

E(t)
1

(2k+2)!

(
τ2k+2 + t2k+2− τ2k+2− (t− τ)2k+2

)

=
(
λc
)k+1

E(t)
t2k+2− (max{0, t− τ})2k+2

(2k+2)!
,

which shows that the result (58.6) holds for all k = 1,2, . . . and t > τ . We now
consider t such that 0≤ t ≤ τ . In this case, from (58.5), we get

‖e(k)(t)‖ ≤ λc
∫ t

0

∫ z

0
δ (z− s)‖e(k−1)(s)‖dsdz

= λc
∫ t

0

∫ z

0
‖e(k−1)(s)‖dsdz, (58.8)

for k = 1,2,3, . . . , which implies that

‖e(1)(t)‖ ≤ λc
∫ t

0

∫ z

0
‖e(0)(s)‖dsdz≤ E(t)λc

∫ t

0

∫ z

0
dsdz = E(t)λc

t2

2!
.

and shows that the result (58.6) holds for k = 1. Assuming that (58.6) is satisfied for
a certain k, from (58.8), we get

‖e(k+1)(t)‖ ≤ λc
∫ t

0

∫ z

0
‖e(k)(s)‖dsdz≤ λc

∫ t

0

∫ z

0
E(s)(λc)k s2k

(2k)!
dsdz

≤ E(t)(λc)k+1
∫ t

0

z2k+1

(2k+1)!
dz = E(t)(λc)k+1 t2k+2

(2k+2)!
,

which shows that (58.6) holds for t such that 0 ≤ t ≤ τ and for all k = 1,2,3, . . . .
This finishes the proof of the theorem.

We now apply the dynamic iterations for numerical simulations with the model
(58.1).

58.4 Numerical Experiments

Results of numerical experiments with the model (58.1) are presented in
Figures 58.1, 58.2, and 58.3 with different numbers of equations N. To solve (58.1)

we apply scheme (58.2) and use the numerical solutions x(k)j (t) for computing the
mean field activity function of the network defined by
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Fig. 58.1 Numerical solutions with N = 50 for t ∈ [0,10] and random initial conditions.

M(t) =
1
N

N

∑
j=1

exp(ıx(k)j (t)), (58.9)

where ı is the imaginary unit.
We solved system (58.1) on the time interval [0,10] with N = 50, N = 100,

and N = 150 and initial conditions randomly distributed on the interval [0,2π].
Figures 58.1, 58.2, and 58.3 illustrate the trajectories of the resulting mean field
activity functions (58.9) in the complex plane, each subfigure for a separate random
distribution of initial conditions. Figure 58.1 illustrates the trajectories with N = 50,
Figure 58.2 with N = 100, and Figure 58.3 with N = 150. The numerical experi-
ments were performed with the distinct frequencies of the oscillators defined by

Ωj = 2π
j−1
N−1

,

for j = 1,2, . . . ,N, and with strength of connections given by ε = 0.01.
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Fig. 58.2 Numerical solutions with N = 100 for t ∈ [0,10] and random initial conditions.

58.5 Concluding Remarks

We have studied dynamic iterations for thalamo-cortical systems written in terms of
Volterra integro-differential equations with the convolution kernel defined by a step
function. The iteration process separates each equation from the other equations
in the model and is suitable for efficient implementation in parallel environments,
significantly reducing the computational time. The amount of processors working
independently for each iteration is allowed to vary between 1 and N, depending on
available resources.

We have derived error bounds for the iteration process and showed its conver-
gence. The error bounds are derived using the kernel of the model and are written in
terms of its parameters. The convergence of the dynamic iterations is illustrated by
a sequence of numerical experiments with different numbers of equations N.
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Fig. 58.3 Numerical solutions with N = 150 for t ∈ [0,10] and random initial conditions.
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fixed point iterative scheme, 295
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Fourier
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Fourier transformation, 516
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functional
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method, 361
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Gâteaux derivative, 690
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grading exponent, 475
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H
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Hooke’s law, 364
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I
impedance scattering, 29
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index of wave factorization, 631
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integrability exponent, 420
integral
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representation formulas, 422

integro-differential equation, 195
integro-differential operator, 312
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nodes, 477
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714 Index

inverse
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J
Jacobi matrix, 462
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John–Nirenberg space, 423
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K
K-theory, 100
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Korn inequalities, 459

L
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Lagrange polynomial representation, 476
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operator, 31
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Lax–Milgram theorem, 169
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least absolute selection and shrinkage operator,

515
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Lebesgue–Stieltjes integration, 688
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Levenberg–Marquardt method, 302
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linear
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Lipschitz

boundary, 455
domain, 121, 424
surfaces, 33

local entropy method, 532
locally Gauss model, 376
logistic regression, 519
Lorenz model, 325
Lyusternik–Vishik method, 495

M
magnetic resonance imaging, 516
matched asymptotic expansions, 395
matrix potential, 239
mean field activity function, 706
Michaelis–Menten hypothesis, 391
midpoint scheme, 667
mixed boundary conditions, 401
mixed convection, 57
modified

Bessel functions, 214
Buckley–Leverett equation, 657
ultraspherical Bessel functions, 87

Monin–Obukhov length, 157, 581
monokinetic problem, 225
Monte Carlo simulation, 45
multi-group
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