
Revisiting Cryptographic Accumulators,
Additional Properties and Relations to Other

Primitives

David Derler(B), Christian Hanser, and Daniel Slamanig

Institute for Applied Information Processing and Communications (IAIK),
Graz University of Technology (TUG), Inffeldgasse 16a, 8010 Graz, Austria

{david.derler,christian.hanser,daniel.slamanig}@tugraz.at

Abstract. Cryptographic accumulators allow to accumulate a finite set
of values into a single succinct accumulator. For every accumulated value,
one can efficiently compute a witness, which certifies its membership
in the accumulator. However, it is computationally infeasible to find a
witness for any non-accumulated value. Since their introduction, vari-
ous accumulator schemes for numerous practical applications and with
different features have been proposed. Unfortunately, to date there is
no unifying model capturing all existing features. Such a model can
turn out to be valuable as it allows to use accumulators in a black-box
fashion.

To this end, we propose a unified formal model for (randomized) cryp-
tographic accumulators which covers static and dynamic accumulators,
their universal features and includes the notions of undeniability and
indistinguishability. Additionally, we provide an exhaustive classification
of all existing schemes. In doing so, it turns out that most accumula-
tors are distinguishable. Fortunately, a simple, light-weight generic trans-
formation allows to make many existing dynamic accumulator schemes
indistinguishable. As this transformation, however, comes at the cost
of reduced collision freeness, we additionally propose the first indistin-
guishable scheme that does not suffer from this shortcoming. Finally,
we employ our unified model for presenting a black-box construction
of commitments from indistinguishable accumulators as well as a black-
box construction of indistinguishable, undeniable universal accumulators
from zero-knowledge sets. Latter yields the first universal accumulator
construction that provides indistinguishability.

1 Introduction

A (static) cryptographic accumulator scheme allows to accumulate a finite set
X = {x1, . . . , xn} into a succinct value accX , the so called accumulator. For every
element xi ∈ X , one can efficiently compute a so called witness witxi

to certify

The authors have been supported by the European Commission through project
FP7-FutureID, grant agreement number 318424. An extended version of this paper
is available in the IACR Cryptology ePrint Archive.

c© Springer International Publishing Switzerland 2015
K. Nyberg (ed.): CT-RSA 2015, LNCS 9048, pp. 127–144, 2015.
DOI: 10.1007/978-3-319-16715-2 7



128 D. Derler et al.

the membership of xi in accX . However, it should be computationally infeasi-
ble to find a witness for any non-accumulated value y �∈ X (collision freeness).
Dynamic accumulators are an extension that allows to dynamically add/delete
values to/from a given accumulator and to update existing witnesses accordingly
(without the need to fully recompute these values on each change of the accu-
mulated set). Besides providing membership witnesses, universal accumulators
also support non-membership witnesses for values y �∈ X . Here, collision free-
ness also covers that it is computationally infeasible to create non-membership
witnesses for values xi ∈ X . Over time, further security properties, that is, unde-
niability and indistinguishability have been proposed. Undeniability is specific to
universal accumulators and says that it should be computationally infeasible to
compute two contradicting witnesses for z ∈ X and z �∈ X . Indistinguishability
says that neither the accumulator nor the witnesses leak information about the
accumulated set X and, thus, requires randomized accumulator schemes.

Applications: Accumulators were originally proposed for timestamping pur-
poses [5], i.e., to record the existence of a value at a particular point in time.
Over time, other applications such as membership testing, distributed signa-
tures, accountable certificate management [7] and authenticated dictionaries [22]
have been proposed. Accumulators are also used as building block in redactable
[33,34], sanitizable [13], P -homomorphic signatures [2], anonymous credentials
[38], group signatures [39], privacy-preserving data outsourcing [37] as well as for
authenticated data structures [21]. Moreover, accumulator schemes that allow to
prove the knowledge of a (non-membership) witness for an unrevealed value in
zero-knowledge (introduced for off-line e-cash in [36]) are now widely used for
revocation of group signatures and anonymous credentials [12]. Quite recently,
accumulators were also used in Zerocoin [28], an anonymity extension to the
Bitcoin cryptocurrency.

Since their introduction, numerous accumulator schemes with somewhat dif-
ferent features have been proposed. Basically, the major lines of work are schemes
in hidden order groups (RSA), known order groups (DL) and hash-based con-
structions (which may use, but typically do not require number theoretic assump-
tions).

Hidden Order Groups: The original RSA-based scheme of Benaloh and de
Mare [5] has been refined by Baric and Pfitzmann [4], who strengthen the original
security notion to collision freeness. In [35], Sander proposed to use RSA moduli
with unknown factorization to construct trapdoor-free accumulators. Camenisch
and Lysyanskaya [12] extended the scheme in [4] with capabilities to dynamically
add/delete values to/from the accumulator, which constituted the first dynamic
accumulator scheme. Their scheme also supports public updates of existing wit-
nesses, that is, updates without the knowledge of any trapdoor. Later, Li et al.
[24] added support for non-membership witnesses to [12] and, therefore, obtained
universal dynamic accumulators. They also proposed an optimization for more
efficient updates of non-membership witnesses, for which, however, weaknesses
have been identified later [26,32]. Lipmaa [25] generalized RSA accumulators



Revisiting Cryptographic Accumulators, Additional Properties 129

to modules over Euclidean rings. In all aforementioned schemes, the accumu-
lation domain is restricted to primes in order to guarantee collision freeness.
In [39], Tsudik and Xu proposed a variation of [12], which allows to accumu-
late semiprimes. This yields a collision-free accumulator under the assumption
that the used semiprimes are hard to factor and their factorization is not pub-
licly known. Moreover, in [40] an accumulator scheme that allows to accumulate
arbitrary integers and supports batch updates of witnesses has been proposed.
Yet, this scheme was broken in [9].

Known Order Groups: In [29], Nguyen proposed a dynamic accumulator
scheme which works in pairing-friendly groups of prime order p. It is secure under
the t-SDH assumption and allows to accumulate up to t values from the domain
Zp. Later, Damg̊ard and Triandopoulos [16] as well as Au et al. [3] extended
Nguyen’s scheme with universal features. Quite recently, Acar and Nguyen [1]
eliminated the upper bound t on the number of accumulated elements of the
t-SDH accumulator. To this end, they use a set of accumulators, each containing
a subset of the whole set to be accumulated. An alternative accumulator scheme
for pairing friendly groups of prime order has been introduced by Camenisch
et al. [11]. It supports public updates of witnesses and the accumulator and its
security relies on the t-DHE assumption.

Hash-Based Constructions: Buldas et al. [7,8] presented the very first uni-
versal dynamic accumulator that satisfies undeniability (termed as undeniable
attester and formalized in context of accumulators in [25]). Their construction is
based on collision-resistant hashing and the use of hash-trees. Another hash-tree
based construction of a universal accumulator that satisfies a notion similar to
undeniability has been proposed in [10] (the scheme is called a strong universal
accumulator). Quite recently, another accumulator based on hash-trees, which
uses commitments based on bivariate polynomials modulo RSA composites as
a collision-resistant hash function, has been introduced in [6]. For the sake of
completeness, we also mention the construction of static accumulators in the
random oracle model based on Bloom filters, proposed by Nyberg [30,31].

Contribution: The contributions of this paper are as follows:

– While some papers [3–5,12,29] do not explicitly formalize accumulator sche-
mes, formal definitions are given in [1,10,11,14,20,24,25,40]. However, these
models are typically tailored to the functionalities of the respective scheme.
While they widely match for the basic notion of (static) accumulators (with
the exception of considering randomized accumulators), they differ when it
comes to dynamic and universal accumulators. To overcome this issue, we
propose a unified formal model for accumulators, which is especially valuable
when treating accumulators in a black-box fashion. We, thereby, also include
the notion of undeniability [7,8,25] and a strengthened version of the recent
indistinguishability notion [17]. Besides, we also confirm the intuition and
show that undeniability is a strictly stronger notion than collision freeness.



130 D. Derler et al.

– We provide an exhaustive classification of existing accumulator schemes
and show that most existing accumulator schemes are distinguishable in
our model. To resolve this issue, we propose a simple, light-weight generic
transformation that allows to add indistinguishability to existing dynamic
accumulators and prove the security of the so-obtained schemes. As this
transformation, however, comes at the cost of reduced collision freeness, we
additionally propose the first indistinguishable scheme that does not suffer
from this shortcoming. Note that due to the lack of space, the indistinguish-
able accumulator scheme is provided in the extended version of this paper.

– Since accumulators are somehow related to commitments to sets [19,23],
commitments to vectors [14] and to zero-knowledge sets [27], it is inter-
esting to study their relationship. Interestingly, we can formally show that
indistinguishable accumulators imply non-interactive commitment schemes.
Furthermore, we formally show that zero-knowledge sets imply indistinguish-
able, undeniable universal accumulators, yielding the first construction of
such accumulators.

2 Preliminaries

By acc we denote an accumulator and if we want to make the accumulated
set X = {x1, . . . , xn} explicit, we write accX . Given an accumulator accX , a
membership witness for an element xi ∈ X is denoted by witxi

, whereas a non-
membership witness for an element yj /∈ X is denoted by wityj

. The accumulator
secret key (trapdoor) is denoted by skacc, while the public key is denoted by pkacc.
By a

R← A, we denote that a is chosen uniformly at random from the set A.
A function ε : N → R

+ is called negligible if for all c > 0 there is a k0 such
that ε(k) < 1/kc for all k > k0. In the remainder of this paper, we use ε to
denote such a negligible function.

3 A Unified Model for Cryptographic Accumulators

In the original sense, accumulator schemes were defined by the following prop-
erties (see, e.g., [12,24]). Thereby, ZI represents the domain of values to be
accumulated and ZA the accumulator domain.

Efficient generation: There is an efficient probabilistic algorithm that, on
input of a security parameter κ, defines a functionality f : ZA × ZI → ZA,
i.e., generates the accumulator specific key pair (skacc, pkacc) (where skacc is
a trapdoor for f).

Efficient evaluation: There is an efficient algorithm that computes f(acc,

x).
Quasi-commutativity: It holds that f(f(acc, x1), x2) = f(f(acc, x2), x1)

∀x1, x2 ∈ ZI , acc ∈ ZA.



Revisiting Cryptographic Accumulators, Additional Properties 131

Assuming that it is computationally infeasible to invert f without knowing skacc,
the quasi-commutativity directly yields a way to define witnesses. For instance,
f(acc, x1) can serve as witness for the accumulation of x2. Nonetheless, it is more
meaningful to provide a more abstract algorithmic definition of accumulators as
done subsequently, since there are several constructions that do not fit into this
characterization (for instance, hash-tree constructions do not require the quasi-
commutativity property).

Trusted vs. Non-Trusted Setup: Known accumulators that rely on num-
ber theoretic assumptions require a trusted setup, i.e., a TTP runs the setup
algorithm Gen and discards the trapdoor skacc afterwards. Here, access to skacc
allows to break collision freeness (and its stronger form: undeniability). Con-
sequently, correctness of the accumulator scheme also needs to hold if skacc is
omitted in all algorithms, which is the case for all existing schemes. In con-
trast, in constructions relying on collision-resistant hash functions (not based
on number theoretic assumptions) there is no trapdoor at all and, therefore, no
trusted setup is required. In order to study number theoretic accumulators with-
out trusted setup, Lipmaa [25] proposed a modified model which divides the Gen
algorithm into a Setup and a Gen algorithm. In this model, the adversary can
control the randomness used inside Setup and, thus, knows the trapdoor. Never-
theless, it can neither access nor influence the randomness of the Gen algorithm.
This model, however, still requires a partially trusted setup and also does not
fit to the known order group setting, which makes it not generally applicable.1

Consequently, when considering the state of the art it seems most reasonable to
define a security model with respect to a trusted setup as we will do subsequently.
We emphasize that this model is compatible with all existing constructions. Nev-
ertheless, it remains a challenging open issue to design accumulators based on
standard assumptions which are secure without any trusted setup.

3.1 Definitions

In the following, we provide a definition for (static) accumulators, which we
adapt from [20,40]. In contrast to previous models, we explicitly consider ran-
domized accumulator schemes. Then, we extend this model in order to formalize
dynamic accumulators. It is similar to [11,14], but avoids shortcomings such
as missing private updates. Based on this, we define universal and universal
dynamic accumulators and propose a suitable security model. Furthermore, we
discuss undeniable and indistinguishable accumulators, give formalizations for
these properties, and, investigate relationships between security properties.
1 This model is tailored to the hidden order group setting, where Setup produces a

composite modulus N . Gen chooses a random generator g of a large subgroup of Z∗
N .

Then, the adversary knows the factorization of N but does not control the choice
of g. RSA accumulators are obviously insecure in this setting, but Lipmaa provides
secure solutions based on modules over an Euclidean ring, which, however, rely on
rather unstudied assumptions.



132 D. Derler et al.

We call accumulators that have an upper bound t on the number of accumu-
lated values t-bounded accumulators and unbounded otherwise. In order to model
this, our Gen algorithm takes an additional parameter t, where t = ∞ is used to
indicate that the accumulator is unbounded. For the sake of completeness, we
model the algorithms such that they support an optional input of the trapdoor
(denoted as sk∼

acc) since this often allows to make the algorithms more efficient.
However, we stress that we consider the trusted setup model and, hence, adver-
saries are not given access to the trapdoor skacc. Consequently, if sk∼

acc is set, the
party running the algorithm needs to be fully trusted.

Definition 1 (Static Accumulator). A static accumulator is a tuple of effi-
cient algorithms (Gen, Eval, WitCreate, Verify) which are defined as follows:

Gen(1κ, t): This algorithm takes a security parameter κ and a parameter t. If
t �= ∞, then t is an upper bound on the number of elements to be accumulated.
It returns a key pair (skacc, pkacc), where skacc = ∅ if no trapdoor exists.

Eval((sk∼
acc, pkacc), X ): This (probabilistic)2 algorithm takes a key pair (sk∼

acc,
pkacc) and a set X to be accumulated and returns an accumulator accX
together with some auxiliary information aux.

WitCreate((sk∼
acc, pkacc), accX , aux, xi): This algorithm takes a key pair (sk∼

acc,
pkacc), an accumulator accX , auxiliary information aux and a value xi. It
returns ⊥, if xi /∈ X , and a witness witxi

for xi otherwise.
Verify(pkacc, accX , witxi

, xi): This algorithm takes a public key pkacc, an accu-
mulator accX , a witness witxi

and a value xi. It returns true if witxi
is a

witness for xi ∈ X and false otherwise.

Henceforth, we call an accumulator randomized if the Eval algorithm is proba-
bilistic. Based on Definition 1, we can now formalize dynamic accumulators. We
widely align our definitions with [20,40], but, in addition, we need to consider
that the various dynamic accumulator schemes proposed so far differ regarding
the public updatability of witnesses and the accumulator.

Definition 2 (Dynamic Accumulator). A dynamic accumulator
is a static accumulator that additionally provides efficient algorithms
(Add,Delete,WitUpdate) which are defined as follows:

Add((sk∼
acc, pkacc), accX , aux, xi): This algorithm takes a key pair (sk∼

acc, pkacc),
an accumulator accX , auxiliary information aux, as well as a value xi to be
added. If xi ∈ X , it returns ⊥. Otherwise, it returns the updated accumulator
accX ′ with X ′ ← X ∪ {xi} and updated auxiliary information aux′.

Delete((sk∼
acc, pkacc), accX , aux, xi): This algorithm takes a key pair (sk∼

acc,
pkacc), an accumulator accX , auxiliary information aux, as well as a value
xi to be removed. If xi /∈ X , it returns ⊥. Otherwise, it returns the updated
accumulator accX ′ with X ′ ← X \ {xi} and auxiliary information aux′.

2 If Eval is probabilistic, the internally used randomness is denoted as r. If we want
to make the randomness used by the Eval algorithm explicit, we will write Evalr.



Revisiting Cryptographic Accumulators, Additional Properties 133

WitUpdate((sk∼
acc, pkacc), witxi

, aux, xj): This algorithm takes a key pair (sk∼
acc,

pkacc), a witness witxi
to be updated, auxiliary information aux and a value

xj which was added/deleted to/from the accumulator, where aux indicates
addition or deletion. It returns an updated witness wit′xi

on success and ⊥
otherwise.

Below, we define universal accumulators and emphasize that features provided
by universal accumulators can be seen as supplementary features to both static
and dynamic accumulators.

Definition 3 (Universal Accumulator). A universal accumulator is a static
or a dynamic accumulator with the following properties. For static accumulator
schemes the algorithms WitCreate and Verify take an additional boolean parame-
ter type, indicating whether the given witness is a membership (type = 0) or
non-membership (type = 1) witness. For dynamic accumulator schemes this
additionally applies to WitUpdate.

3.2 Security Model

Now, we introduce a security model for accumulators, which we adapt from [24]
and further extend by undeniability and indistinguishability.

Classic Notion: A secure accumulator scheme is required to be correct and
collision-free. Correctness says that for all honestly generated keys, all honestly
computed accumulators and witnesses, the Verify algorithm will always return
true. We stress that correctness also needs to hold when all algorithms are
executed without skacc. Since the correctness property is straightforward, we
omit its formal definition. Collision freeness informally states that it is neither
feasible to find a witness for a non-accumulated value nor feasible to find a
non-membership witness for an accumulated value. More formally:

Definition 4 (Collision Freeness). A cryptographic accumulator of type t ∈
{static, dynamic} and u ∈ {universal, non-universal} is collision-free, if for all
PPT adversaries A there is a negligible function ε(·) such that:

Pr

⎡
⎢⎢⎣

(skacc, pkacc) ← Gen(1κ, t), O ← {Ot,Ou},
(wit∗xi

/wit∗xi
, x∗

i ,X ∗, r∗) ← AO(pkacc) :
(Verify(pkacc, acc∗,wit∗xi

, x∗
i , 0) = true ∧ x∗

i /∈ X ∗) ∨
(Verify(pkacc, acc∗,wit∗xi

, x∗
i , 1) = true ∧ x∗

i ∈ X ∗)

⎤
⎥⎥⎦ ≤ ε(κ),

where acc∗ ← Evalr∗((skacc , pkacc),X ∗) and A has oracle access to Ot and Ou

which are defined as follows:

Ot :=
{{OE(·,·,·)} if t = static,

{OE(·,·,·),OA(·,·,·,·),OD(·,·,·,·)} otherwise.

Ou :=
{{OW(·,·,·,·),OW(·,·,·,·)} if u = universal,

{OW(·,·,·,·)} otherwise.



134 D. Derler et al.

Thereby, OE,OA and OD represent the oracles for the algorithms Eval,Add, and
Delete, respectively. An adversary is allowed to query them an arbitrary number
of times. In case of randomized accumulators the adversary outputs randomness
r∗, whereas r∗ is omitted for deterministic accumulators. Likewise, the adversary
can control the randomness r used by OE for randomized accumulators. There-
fore, OE takes an additional parameter for r (which is missing for deterministic
accumulators). The oracles OW and OW allow the adversary to obtain mem-
bership witnesses for members and non-membership witnesses for non-members,
respectively. Thereby, the environment keeps track of all oracle queries (and
answers) and lets the respective oracle return ⊥ if calls to it are not consistent
with respect to previous queries. Furthermore, we assume that the adversary
outputs either a membership witness wit∗xi

or a non-membership witness wit∗xi

(denoted by wit∗xi
/wit∗xi

). If the accumulator is non-universal, one simply omits
the non-membership related parts.

One distinction to previous models is that we model (non-)membership wit-
ness generation via oracles. This way, we can ensure that security proofs take
the simulation of (non-)membership witnesses into account, which is vital and
could be overseen otherwise.

Definition 5 (Secure Accumulator). A cryptographic accumulator is secure
if it is correct and collision-free.

Undeniable accumulators: In [25], Lipmaa formalized undeniability for accu-
mulators. A universal accumulator is undeniable if it is computationally infea-
sible to find a membership as well as a non-membership witness for the same
value – independently of whether it is contained in an accumulator or not. More
formally undeniability is defined as:

Definition 6 (Undeniability). A universal cryptographic accumulator of type
t ∈ {static, dynamic} is undeniable, if for all PPT adversaries A there is a
negligible function ε(·) such that:

Pr

⎡
⎣

(skacc, pkacc) ← Gen(1κ, t), (wit∗xi
,wit∗xi

, x∗
i , acc

∗) ← AOt

(pkacc) :
Verify(pkacc, acc∗,wit∗xi

, x∗
i , 0) = true ∧

Verify(pkacc, acc∗,wit∗xi
, x∗

i , 1) = true

⎤
⎦ ≤ ε(κ),

where, A has oracle access to Ot which is defined as follows:

Ot :=
{{OE(·,·,·),OW(·,·,·,·),OW(·,·,·,·)} if t = static,

{OE(·,·,·),OA(·,·,·,·),OD(·,·,·,·),OW(·,·,·,·),OW(·,·,·,·)} otherwise.

Notice that the definition of the oracles is as in the definition of collision freeness
for universal accumulators.

Definition 7. A universal accumulator is undeniable if it is a secure accumu-
lator satisfying the undeniability property.



Revisiting Cryptographic Accumulators, Additional Properties 135

Indistinguishable Accumulators: Li et al. [24] pointed out informally (with-
out giving any formalizations) that the accumulation of an additional random
value from the accumulation domain renders guessing the accumulated set infea-
sible. Later, de Meer et al. [17] tried to formalize this intuition via an additional
indistinguishability property. Unfortunately, there are some issues with their
notion. Firstly, it only covers static accumulators and, secondly, indistinguisha-
bility in the vein of [24] weakens collision resistance. Basically, one can easily
generate a membership witness for the random value. Secondly, the security
game in [17] allows to prove indistinguishability of deterministic accumulators,
which are clearly not indistinguishable. In particular, the random value is cho-
sen and accumulated within the security game. However, this non-determinism
is not required to be part of the accumulator construction itself. Consequently,
a deterministic accumulator can satisfy this notion while being trivially distin-
guishable. From this, we conclude that the non-determinism must be intrinsic
to the Eval algorithm.3

There are several ways to turn a deterministic scheme into a randomized one.
As already discussed, indistinguishability can be achieved by adding a random
value from the accumulation domain. Aside from this, it can also be obtained by
randomizing the Eval algorithm without modifying the set X (as, for instance,
done in the extended version of this paper). Apparently, the latter option depends
on the specific accumulator scheme, whereas the shortcomings in [17] can be
addressed by introducing a generic transformation for the former approach (cf.
Transformation 1).

Definition 8 (Indistinguishability). A cryptographic accumulator of type t ∈
{static, dynamic} and u ∈ {universal, non-universal} is indistinguishable, if for
all PPT adversaries A there is a negligible function ε(·) such that:

Pr

⎡
⎣ (skacc, pkacc) ← Gen(1κ, t), b

R← {0, 1},
(X0,X1, state) ← A(pkacc), (accXb

, aux) ← Eval((sk∼
acc, pkacc),

Xb),O ← {Ot,Ou}, b∗ ← AO(pkacc, accXb
, state) : b = b∗

⎤
⎦ ≤ 1

2
+ ε(κ),

where X0 and X1 are two distinct subsets of the accumulation domain and Ot as
well as Ou are defined as follows:

Ot :=
{{OE(·,·,·)} if t = static,

{OE(·,·,·),OA �∪(·,·,aux,·),OD∩(·,·,aux,·)} otherwise.

Ou :=
{{OW(·,·,aux,·),OW(·,·,aux,·)} if u = universal,

{OW(·,·,aux,·)} otherwise.

If the probability above is exactly 1/2 we have unconditional indistinguishability,
whereas we have computational indistinguishability if the probability is negligibly
different from 1/2.
3 Independently from our work, this observation was quite recently also made in [18]

by the authors of [17]: The insertion of the random value has been removed from
the game and the Eval algorithm is now required to be non-deterministic.



136 D. Derler et al.

Here, OE is defined as before and all other oracles can only be called for the
challenge accumulator. We require that the input parameter aux for the oracles
is kept up to date and is provided by the environment, since the knowledge
of aux would allow the adversary to trivially win the game. Furthermore, note
that this game does not allow the adversary to control the randomness used for
the evaluation of accXb

(while it can be controlled when calling OE). For the
definitions of the remaining oracles, we use X∪ := X0 ∪ X1 and X∩ := X0 ∩ X1 to
restrict the adversary from oracle queries which would trivially allow to win the
game. OA �∪ as well as OD∩ allow the adversary to execute the Add and Delete
algorithms. Thereby, OA �∪ allows only queries for values xi /∈ X∪, whereas OD∩

allows only queries for values xi ∈ X∩. Furthermore, upon every Add and Delete
the sets X∪ and X∩ are updated consistently. Oracles OW and OW are as above,
with the difference that OW allows only queries for values xi ∈ X∩, while OW

allows only queries for values yj /∈ X∪.

Transformation 1. On input a set X , the Eval algorithm samples an element
xr /∈ X uniformly at random from the accumulation domain. Next, it computes
and returns (accX ′ , aux′) for X ′ ← X ∪ {xr} and aux′ ← (aux, xr).

Note that aux needs to be kept consistent for all other algorithms that require this
input parameter. As already noted above, collision freeness no longer holds for
X but with respect to X ∪ {xr}. To draw a line between inherently randomized
constructions and such relying on Transformation 1, we differentiate between
indistinguishability and collision-freeness-weakening (cfw) indistinguishability:

Definition 9 (Indistinguishability). Let X be the set in accXb
. A crypto-

graphic accumulator is called indistinguishable if it is a secure, indistinguishable
accumulator and X = Xb.

Definition 10 (cfw-Indistinguishability). Let X be the set in accXb
. A cryp-

tographic accumulator is called collision-freeness-weakening (cfw) indistinguish-
able if it is a secure, indistinguishable accumulator and X �= Xb.

3.3 Relation Between Security Properties

Intuitively, undeniability seems to be a strictly stronger security requirement
than collision freeness. We confirm this intuition below:

Lemma 1. Every undeniable universal accumulator is collision-free.

We prove the lemma above in the extended version of this paper.
As mentioned in [25], a black-box reduction in the other direction is impos-

sible. [8] provides a collision-free universal accumulator that is not undeniable.
Therefore, this proves the following lemma by counterexample:

Lemma 2. Not every collision-free universal accumulator is undeniable.



Revisiting Cryptographic Accumulators, Additional Properties 137

4 Categorizing Cryptographic Accumulators

Now, we give a comprehensive overview of existing accumulator schemes in Table
1. We categorize them regarding their static or dynamic nature and universal
features and provide a characterization of their public updating capabilities (of
witnesses and of accumulators, respectively). In particular, we tag an accumu-
lator as dynamic, if witness and accumulator value updates can be performed
in constant time, i.e., independent of the size of X . If the same is possible with-
out having access to the accumulator trapdoor, then we tag the accumulator
as publicly updatable. Furthermore, the properties undeniability and indistin-
guishability have not been considered for most existing accumulator schemes
so far. Therefore, we provide a classification regarding their indistinguishability
(when using Transformation 1) and provide the respective proofs in the extended
version. Likewise, we prove the undeniability of [3,16] in the extended version.
For the sake of completeness, our comparison also includes static accumulator
schemes [4,5,30,31].

5 Commitments from Indistinguishable Accumulators

In [14], it has been shown that universal dynamic accumulators can be black-
box constructed from vector commitments. The question arises whether it is
also possible to provide black-box constructions for certain types of commit-
ments from indistinguishable accumulators. It is apparent that it is not possible
to build vector commitments solely from accumulators in a black-box fashion,
since their position binding would at least require some additional encoding.
Nevertheless, we will show how to construct non-interactive commitments from
indistinguishable 1-bounded accumulators. In the extended version, we show
that such accumulators actually exist, i.e., we build the first indistinguishable
t-bounded dynamic accumulator by modifying [29].

5.1 Black-Box Construction of Non-Interactive Commitments

Before we can start, we present a standard formal definition of non-interactive
commitment schemes.

Definition 11 (Non-Interactive Commitment Scheme). A non-interact-
ive commitment scheme is a triple of efficient algorithms (Gen,Commit,Open),
which are defined as follows:

Gen(1κ): This (probabilistic) algorithm takes input a security parameter κ and
outputs the public parameters pp.

Commit(pp,m): This (probabilistic) algorithm takes input pp and a message m
and outputs a commitment C together with a corresponding opening infor-
mation O.

Open(pp, C,O): This deterministic algorithm takes input pp, a commitment C
with corresponding opening information O and outputs ⊥ if C is not a valid
commitment to any message and message m otherwise.



138 D. Derler et al.
T
a
b
le

1
.

O
v
er

v
ie

w
o
f

fe
a
tu

re
s

o
f

ex
is

ti
n
g

a
cc

u
m

u
la

to
r

sc
h
em

es
.
L
eg
en

d
:
D

..
.d
yn

a
m
ic
,
U

..
.u

n
iv
er
sa
l,

P
u
b.

U
pd
a
te
s.

..
co
n
st
a
n
t
co
st

fo
r
p
u
bl
ic

u
pd
a
te
s
o
f
w
it
n
es
se
s
a
n
d

a
cc
u
m
u
la
to
rs
,
a
..

.a
d
d
,
d
..

.d
el
et
e,

Z
K

..
.z
er
o
-k
n
o
w
le
d
ge

(n
o
n
-)
m
em

be
rs
h
ip

p
ro
o
fs
,
B

..
.b
o
u
n
d
ed
,

|pk
a
cc

|.
..
p
u
bl
ic

pa
ra
m
et
er

si
ze
,

|w
it

|.
..
m
em

be
rs
h
ip

w
it
n
es
s
si
ze
,

|w
it

|.
..
n
o
n
-m

em
be
rs
h
ip

w
it
n
es
s
si
ze
,
U
n
d
..

.u
n
d
en

ia
bi
li
ty
,
In
d
..

.(
cf
w

)
in
d
is
ti
n
gu

is
h
a
bi
li
ty
,

�
..

.y
es
,

×
..

.n
o
,
-

..
.n

o
t
a
va
il
a
bl
e,

?
..

.l
ef
t
o
pe
n
,

‡
..

.p
ro
ve
n
in

th
e
ex
te
n
d
ed

ve
rs
io
n
o
f
th
is

pa
pe
r.

P
u
b
.
U
p
d
a
te

s

T
y
p
e

ac
c

S
ch

e
m
e

D
U

w
it

w
it

a
d

Z
K

B
|pk

a
cc

|
|w
it

|
|w
it

|
U
n
d
.

In
d
.

s-RSA

B
D

M
[5

]
-

-
-

-
-

-
-

-
O(

1
)

O(
1
)

-
-

cf
w

‡

B
P

[4
]

-
-

-
-

-
-

-
cf
w

[1
7
]

C
L

[1
2
]

�
-

�
-

�
-

�
cf
w

‡

L
L
X

[2
4
]

�
�

�
�

�
-

�
O(

1
)

?
×‡

t-SDH

N
Y

[2
9
]

�
-

�
-

-
-

�
�

O(
t)

O(
1
)

-
-

cf
w

‡

D
T

[1
6
],

A
T

S
M

[3
]

�
�

�
�

-
-

O(
1
)

�
‡

×‡

T
h
is

p
a
p
er

(e
x
te

n
d
ed

v
er

si
o
n
)

�
-

�
-

-
-

O(
1
)

-
-

�
‡

t-DHE

C
K

S
[1

1
]

�
-

�
-

-
�

�
�

O(
t)

O(
1
)

O(
1
)

-
×‡

VC

C
F

(R
S
A

∓
,
C
D

H
† )

[1
4
]

�
�

�
�

�
�

-
�

O(
t)

∓
,

O(
1
)

O(
1
)

?
×‡

O(
t2

)†

ZKS

T
h
is

p
a
p
er

(S
ec

.
6
)

-
�

-
-

-
-

in
st

a
n
ti

a
ti

o
n
-d

ep
en

d
en

t
�

‡
�

‡

CRH

B
L
L

[7
,8

]
-

�
-

-
-

-
-

-

O(
1
)

O(
lo

g
t)

O(
lo

g
t)

�
×‡

C
H

K
O

[1
0
]

-
�

-
-

-
-

-
-

?
×‡

B
C

[6
]

-
-

-
-

-
-

�
-

-
×‡

ROM

N
B

[3
0
,3

1
]

-
-

-
-

-
-

-
�

O(
1
)

-
-

-

×[
1
7
]



Revisiting Cryptographic Accumulators, Additional Properties 139

For security, a non-interactive commitment scheme is required to provide cor-
rectness, binding and hiding. We omit a formal definition of correctness as it is
straightforward. The remaining properties are defined as follows.

Definition 12 (Binding). A non-interactive commitment scheme is binding,
if for all PPT adversaries A there is a negligible function ε(·) such that

Pr

[
pp ← Gen(1κ), (C∗, O∗, O′∗) ← A(pp),m ← Open(pp, C∗, O∗),
m′ ← Open(pp, C∗, O′∗) : m �= m′ ∧ m �= ⊥ ∧ m′ �= ⊥

]
≤ ε(κ).

Definition 13 (Hiding). A non-interactive commitment scheme is hiding, if
for all PPT adversaries A there is a negligible function ε(·) such that

Pr

⎡
⎣pp ← Gen(1κ), (m0,m1, state) ← A(pp), b R← {0, 1},

(C,O) ← Commit(pp,mb), b∗ ← A(pp, C, state) :
b = b∗

⎤
⎦ ≤ 1

2
+ ε(κ).

In Scheme 1, we present a black-box construction of commitments from indistin-
guishable accumulators and prove the so obtained construction secure
(Theorem 1). Before we continue, we want to recall that in the trusted setup
model all algorithms can be correctly executed without skacc.

Gen(1κ): This algorithm runs (sk∼
acc, pkacc) ← Acc.Gen(1κ, 1), discards skacc and returns

pp ← pkacc.
Commit(pp, m): This algorithm chooses randomness r, runs (C, aux) ← Evalr((∅, pkacc),

m), computes witm ← WitCreate((∅, pkacc), C, aux, m), sets O ← (r, m,witm, aux)
and returns (C, O).

Open(pp, C, O): This algorithm checks whether Evalr((∅, pkacc), m)
?
= C and whether

Verify(pkacc, C,witm, m)
?
= true and returns m on success and ⊥ otherwise.

Scheme 1: Commitment Scheme from Indistinguishable Accumulators

Theorem 1. If indistinguishable 1-bounded accumulators exist, then non-inter-
active commitments exist as well.

We prove Theorem 1 in the extended version of this paper.
The black-box construction from Scheme 1 can easily be extended to support

commitments to sets (where the opening is always with respect to the entire set)
by setting the bound t of the bounded accumulator to the desired set size. Fur-
thermore, using skacc as trapdoor, one can also construct trapdoor commitments.

We finally note that cfw-indistinguishable accumulators (and hence also Tra-
nsformation 1) are not useful for constructing commitments. The reason for this
is that the accumulation of the additional random value immediately breaks the
binding property.



140 D. Derler et al.

6 Zero-Knowledge Sets Imply Indistinguishable
Undeniable Accumulators

Zero-knowledge sets (ZK-sets) [27] allow to commit to a set X and then prove
predicates of the form xi ∈ X or xi /∈ X without revealing anything else
about the set. We observe that ZK-sets can be used to model indistinguishable,
unbounded, undeniable accumulators. Unfortunately, there is no formal security
definition for zero-knowledge sets (in [23] only the algorithms are formalized,
while security is stated informally). However, zero-knowledge sets are a spe-
cial instance of zero-knowledge elementary databases (ZK-EDB) [27]. ZK-EDBs
store key-value pairs and when querying the database with a key, the respective
value is returned (or ⊥ if the given key is not contained in the EDB). Thereby,
no further information about the remaining EDB leaks. Therefore, ZK-sets are
ZK-EDBs where the values for all contained keys are set to 1 (or the values are
omitted at all). We can, thus, define the security on the basis of the models in
[15,27] as follows.

Definition 14 (ZK-set). A ZK-set is a tuple of efficient algorithms (Gen,Com-
mit,Query,Verify), which are defined as follows:

Gen(1κ): This (probabilistic) algorithm takes input a security parameter κ and
outputs a public key pk.

Commit(pk,X ): This algorithm takes input the public key pk and a set X and
outputs a commitment C to X .

Query(pk,X , C, x): This algorithm takes input the public key pk, a set X , a
corresponding commitment C and and value x. It outputs a proof πx if x ∈ X
and a proof πx if x /∈ X .

Verify(pk, C, x, πx/πx): This algorithm takes input the public key pk, a commit-
ment C and a value x. Furthermore, it either takes a membership proof πx

or a non-membership proof πx (denoted by πx/πx). It outputs true if the
proof can be correctly verified and false otherwise.

For security, ZK-sets require perfect completeness, soundness and zero-know-
ledge. Perfect completeness requires that for every honestly generated key, every
honestly computed commitment C, value x and corresponding proof πx/πx, the
Verify algorithm always returns true. Since this property is straightforward, we
do not formally state it here. We formally define the remaining properties:

Definition 15 (Soundness). A ZK-set is sound, if for all PPT adversaries A
there is a negligible function ε(·) such that

Pr

[
pk ← Gen(1κ), (C∗, x∗, π∗

x, π∗
x) ← A(pk) :

Verify(pk, C∗, π∗
x, x∗) = true ∧ Verify(pk, C∗, π∗

x, x∗) = true

]
≤ ε(κ)



Revisiting Cryptographic Accumulators, Additional Properties 141

Definition 16 (Zero Knowledge). A ZK-set is zero-knowledge, if for all
PPT adversaries A there is a negligible function ε(·) such that

∣∣∣∣∣∣∣∣∣∣
Pr

⎡
⎢⎢⎢⎢⎣

pk ← Gen(1κ),
(X , stateA) ← A(pk),
C ← Commit(pk,X ),
AOQ(·,X ,·,·)(stateA,
pk, C) = true

⎤
⎥⎥⎥⎥⎦

− Pr

⎡
⎢⎢⎢⎢⎣

(pk, stateS) ← SG(1κ),
(X , stateA) ← A(pk),

(C, state′
S) ← SE(pk, stateS),

ASQ(state′
S ,·,X ,·,·)(stateA,

pk, C) = true

⎤
⎥⎥⎥⎥⎦

∣∣∣∣∣∣∣∣∣∣
≤ ε(κ)

Here, OQ allows the adversary to execute the Query algorithm, whereas S =
(SG,SE,SQ) denotes a PPT simulator, which allows to execute the simulated
Gen, Eval and Query algorithms, respectively. We note that the definition above
is tailored to cover computational zero-knowledge. It could, however, easily be
modified to also cover statistical or perfect zero knowledge.

In Scheme 2 we present a black-box construction of indistinguishable
unbounded undeniable accumulators from ZK-sets.

Gen(1κ): This algorithm runs pk ← ZKS.Gen(1κ) and returns (skacc, pkacc) ← (∅, pk).
Eval((∅, pkacc), X ): This algorithm runs accX ← ZKS.Commit(pkacc, X ) and returns

accX together with aux ← X .
WitCreate((∅, pkacc), accX , aux, xi, type): This algorithm obtains X from aux and

runs πxi/πxi ← ZKS.Query(pk, X , accX , xi). If πxi/πxi
conflicts with the requested

witness type, it returns ⊥. Otherwise it returns witxi ← πxi or witxi
← πxi

, respec-
tively.

Verify(pkacc, acc, witxi , xi, type): This algorithm checks whether type conflicts with
the type of the supplied witness and returns ⊥ if so. Otherwise it returns the
result of ZKS.Verify(pk, acc, xi,witxi).

Scheme 2: Indistinguishable Unbounded Undeniable Accumulator from ZK-
Sets

Theorem 2. If ZK-sets exist, then indistinguishable, unbounded, undeniable
accumulators exist as well.

We prove Theorem 2 in the extended version of this paper.
The above black-box construction yields the first construction of indistin-

guishable undeniable accumulators. We note that it is, however, questionable
whether the two notions of ZK-sets and indistinguishable undeniable accumula-
tors are equivalent (as the simulation based model of zero-knowledge appears to
be stronger than the game based indistinguishability model).

In [23], Kate et al. introduced nearly ZK-sets. The difference to ordinary
ZK-sets is that nearly ZK-sets have a public upper bound on the cardinality of
set X . It is apparent that these constructions imply indistinguishable t-bounded
undeniable accumulators. In further consequence, this means that nearly ZK-sets
can also be used to construct commitments (cf. Section 5).



142 D. Derler et al.

References

1. Acar, T., Nguyen, L.: Revocation for delegatable anonymous credentials. In: Cata-
lano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571,
pp. 423–440. Springer, Heidelberg (2011)

2. Ahn, J.H., Boneh, D., Camenisch, J., Hohenberger, S., Shelat, A., Waters, B.:
Computing on authenticated data. In: Cramer, R. (ed.) TCC 2012. LNCS,
vol. 7194, pp. 1–20. Springer, Heidelberg (2012)

3. Au, M.H., Tsang, P.P., Susilo, W., Mu, Y.: Dynamic universal accumulators for
DDH groups and their application to attribute-based anonymous credential sys-
tems. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 295–308. Springer,
Heidelberg (2009)

4. Barić, N., Pfitzmann, B.: Collision-free accumulators and fail-stop signature
schemes without trees. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233,
pp. 480–494. Springer, Heidelberg (1997)

5. Benaloh, J., de Mare, M.: One-way accumulators: a decentralized alternative to
digital signatures. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp.
274–285. Springer, Heidelberg (1994)

6. Boneh, D., Corrigan-Gibbs, H.: Bivariate polynomials modulo composites and their
applications. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873,
pp. 42–62. Springer, Heidelberg (2014). http://eprint.iacr.org/2014/719

7. Buldas, A., Laud, P., Lipmaa, H.: Accountable certificate management using unde-
niable attestations. In: ACM CCS, pp. 9–17. ACM (2000)

8. Buldas, A., Laud, P., Lipmaa, H.: Eliminating Counterevidence with Applications
to Accountable Certificate Management. Journal of Computer Security 10 (2002)

9. Camacho, P., Hevia, A.: On the impossibility of batch update for cryptographic
accumulators. In: Abdalla, M., Barreto, P.S.L.M. (eds.) LATINCRYPT 2010.
LNCS, vol. 6212, pp. 178–188. Springer, Heidelberg (2010)

10. Camacho, P., Hevia, A., Kiwi, M., Opazo, R.: Strong accumulators from collision-
resistant hashing. In: Wu, T.-C., Lei, C.-L., Rijmen, V., Lee, D.-T. (eds.) ISC 2008.
LNCS, vol. 5222, pp. 471–486. Springer, Heidelberg (2008)

11. Camenisch, J., Kohlweiss, M., Soriente, C.: An accumulator based on bilinear maps
and efficient revocation for anonymous credentials. In: Jarecki, S., Tsudik, G. (eds.)
PKC 2009. LNCS, vol. 5443, pp. 481–500. Springer, Heidelberg (2009)

12. Camenisch, J.L., Lysyanskaya, A.: Dynamic accumulators and application to effi-
cient revocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 61–76. Springer, Heidelberg (2002)

13. Canard, S., Jambert, A.: On extended sanitizable signature schemes. In: Pieprzyk,
J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 179–194. Springer, Heidelberg (2010)

14. Catalano, D., Fiore, D.: Vector commitments and their applications. In: Kurosawa,
K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 55–72. Springer, Heidelberg
(2013)

15. Chase, M., Healy, A., Lysyanskaya, A., Malkin, T., Reyzin, L.: Mercurial Com-
mitments with Applications to Zero-Knowledge Sets. Journal of Cryptology 26(2),
251–279 (2013)

16. Damg̊ard, I., Triandopoulos, N.: Supporting Non-membership Proofs with Bilinear-
map Accumulators. Cryptology ePrint Archive, Report 2008/538 (2008). http://
eprint.iacr.org/2008/538

17. de Meer, H., Liedel, M., Pöhls, H.C., Posegga, J.: Indistinguishability of One-
Way Accumulators. Technical Report MIP-1210, Faculty of Computer Science and
Mathematics (FIM), University of Passau (2012)

http://eprint.iacr.org/2014/719
http://eprint.iacr.org/2008/538
http://eprint.iacr.org/2008/538


Revisiting Cryptographic Accumulators, Additional Properties 143

18. de Meer, H., Pöhls, H.C., Posegga, J., Samelin, K.: Redactable signature schemes
for trees with signer-controlled non-leaf-redactions. In: Obaidat, M.S., Filipe, J.
(eds.) ICETE 2012. CCIS, vol. 455, pp. 155–171. Springer, Heidelberg (2014)

19. Fauzi, P., Lipmaa, H., Zhang, B.: Efficient non-interactive zero knowl-
edge arguments for set operations. In: Christin, N., Safavi-Naini, R. (eds.)
FC 2014. LNCS, vol. 8437, pp. 214–231. Springer, Heidelberg (2014).
http://eprint.iacr.org/2014/006

20. Fazio, N., Nicolisi, A.: Cryptographic Accumulators: Definitions. Constructions
and Applications, Technical report (2002)

21. Ghosh, E., Ohrimenko, O., Tamassia, R.: Verifiable Member and Order Queries
on a List in Zero-Knowledge. Cryptology ePrint Archive, Report 2014/632 (2014).
http://eprint.iacr.org/2014/632

22. Goodrich, M.T., Tamassia, R., Hasic, J.: An efficient dynamic and distributed
cryptographic accumulator. In: Chan, A.H., Gligor, V.D. (eds.) ISC 2002. LNCS,
vol. 2433, pp. 372–388. Springer, Heidelberg (2002)

23. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polynomi-
als and their applications. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477,
pp. 177–194. Springer, Heidelberg (2010)

24. Li, J., Li, N., Xue, R.: Universal accumulators with efficient nonmembership proofs.
In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 253–269. Springer,
Heidelberg (2007)

25. Lipmaa, H.: Secure accumulators from euclidean rings without trusted setup. In:
Bao, F., Samarati, P., Zhou, J. (eds.) ACNS 2012. LNCS, vol. 7341, pp. 224–240.
Springer, Heidelberg (2012)

26. Mashatan, A., Vaudenay, S.: A Fully Dynamic Universal Accumulator. Proceedings
of the Romanian Academy 14, 269–285 (2013)

27. Micali, S., Rabin, M.O., Kilian, J.: Zero-knowledge sets. In: FOCS, pp. 80–91
(2003)

28. Miers, I., Garman, C., Green, M., Rubin, A.D.: Zerocoin: anonymous distributed
E-cash from bitcoin. In: IEEE Symposium on Security and Privacy, pp. 397–411.
IEEE (2013)

29. Nguyen, L.: Accumulators from bilinear pairings and applications. In: Menezes, A.
(ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 275–292. Springer, Heidelberg (2005)

30. Nyberg, K.: Commutativity in cryptography. In: 1st International Trier Conference
in Functional Analysis. Walter Gruyter & Co (1996)

31. Nyberg, K.: Fast accumulated hashing. In: Gollmann, D. (ed.) FSE 1996. LNCS,
vol. 1039, pp. 83–87. Springer, Heidelberg (1996)

32. Peng, K., Bao, F.: Vulnerability of a non-membership proof scheme. In: SECRYPT,
pp. 1–4, July 2010

33. Pöhls, H.C., Peters, S., Samelin, K., Posegga, J., de Meer, H.: Malleable signatures
for resource constrained platforms. In: Cavallaro, L., Gollmann, D. (eds.) WISTP
2013. LNCS, vol. 7886, pp. 18–33. Springer, Heidelberg (2013)

34. Pöhls, H.C., Samelin, K.: On updatable redactable signatures. In: Boureanu, I.,
Owesarski, P., Vaudenay, S. (eds.) ACNS 2014. LNCS, vol. 8479, pp. 457–475.
Springer, Heidelberg (2014)

35. Sander, T.: Efficient accumulators without trapdoor extended abstract. In: Varad-
harajan, V., Mu, Y. (eds.) ICICS 1999. LNCS, vol. 1726, pp. 252–262. Springer,
Heidelberg (1999)

36. Sander, T., Ta-Shma, A., Yung, M.: Blind, auditable membership proofs. In:
Frankel, Y. (ed.) FC 2000. LNCS, vol. 1962, pp. 53–71. Springer, Heidelberg (2001)

http://eprint.iacr.org/2014/006
http://eprint.iacr.org/2014/632


144 D. Derler et al.

37. Slamanig, D.: Dynamic accumulator based discretionary access control for out-
sourced storage with unlinkable access. In: Keromytis, A.D. (ed.) FC 2012. LNCS,
vol. 7397, pp. 215–222. Springer, Heidelberg (2012)

38. Sudarsono, A., Nakanishi, T., Funabiki, N.: Efficient proofs of attributes in pairing-
based anonymous credential system. In: Fischer-Hübner, S., Hopper, N. (eds.)
PETS 2011. LNCS, vol. 6794, pp. 246–263. Springer, Heidelberg (2011)

39. Tsudik, G., Xu, S.: Accumulating composites and improved group signing. In: Laih,
C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 269–286. Springer, Heidelberg
(2003)

40. Wang, P., Wang, H., Pieprzyk, J.: A new dynamic accumulator for batch updates.
In: Qing, S., Imai, H., Wang, G. (eds.) ICICS 2007. LNCS, vol. 4861, pp. 98–112.
Springer, Heidelberg (2007)


	Revisiting Cryptographic Accumulators, Additional Properties and Relations to Other Primitives
	1 Introduction
	2 Preliminaries
	3 A Unified Model for Cryptographic Accumulators
	3.1 Definitions
	3.2 Security Model
	3.3 Relation Between Security Properties

	4 Categorizing Cryptographic Accumulators
	5 Commitments from Indistinguishable Accumulators
	5.1 Black-Box Construction of Non-Interactive Commitments

	6 Zero-Knowledge Sets Imply Indistinguishable Undeniable Accumulators
	References


