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Abstract. In this paper, we revisit the problem of constructing general
leakage resilient compilers that can transform any (Boolean) circuit C
into a protected circuit C′ computing the same functionality as C, which
additionally is resilient to certain classes of leakage functions. An impor-
tant problem that has been neglected in most works on leakage resilient
circuits is to minimize the overhead induced by the compiler. In partic-
ular, in earlier works for a circuit C of size s, the transformed circuit C′

has size at least O(sk2), where k is the security parameter. In this work,
using techniques from secure Multi-Party Computation, we show that
in important leakage models such as bounded independent leakage and
leakage from weak complexity classes the size of the transformed circuit
can be reduced to O(sk).

Keywords: Leakage resilience · Multi-party computation · Split-state
model · AC0 · Side channel attacks

1 Introduction

Side channel attacks (SCA) that exploit leakage emitting from a device are
among the most severe threats for cryptographic implementations. Since the
introduction of timing attacks to the research community in the late 1990s [22],
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more sources of side channel leakage have been discovered [14,15,23,28]. To
protect cryptographic implementations against these attacks various types of
countermeasures have been proposed. One important and particular effective
countermeasure already suggested in the early works of Kocher [22] is masking.
In a masking scheme the sensitive intermediate data that occurs during the
computation of the cryptographic device is encoded with a randomized encoding
thereby making leakage of the intermediate values independent of the sensitive
values.

The effectiveness of masking as a countermeasure has first been formally
studied in the work of Chari et al. [3]. While [3] only considered a single masked
secret, the concept of leakage resilient circuit compilers – pioneered by Ishai
et al. [19] – studies security guarantees for complicated masked circuits, e.g.,
a masked AES circuitry. More specifically, a circuit compiler takes as input an
arbitrary circuit C computing over some finite field and outputs a protected
circuit ̂C that has the same functionality as C but comes with built-in security
against certain classes of leakages. It is then shown that even given the leakage
from the computation of the transformed circuit ̂C the adversary learns nothing
beyond black-box access. Ishai et al. [19] consider an adversary that can learn up
to t intermediate values that appear during the computation – so-called t-probing
adversaries. A large body of recent work has been conducted on extending the
leakage classes beyond t-probing adversaries. This has led to great progress and
by now we have developed feasibility results in surprisingly strong leakage models
(we review the related work in Section 1.1). Since naturally in feasibility results
efficiency plays a secondary role, only little progress has been made in improving
the efficiency of circuit compilers.

In this work, we make a step towards closing this gap and propose new
leakage resilient circuit compilers for broad classes of leakages that come with
significantly improved efficiency. Based on techniques from multiparty compu-
tation and new techniques for inner-product based transformations, we propose
compilers with provable security for global and computationally weak leakages
as introduced in the work of Faust et al. [12] and for polynomial-time com-
putable leakages in the split-state model [11,24]. As in earlier works and the
ones we improve upon [10,12,16,26], we assume that certain simple parts of the
computation are leak-free.

1.1 Previous Works

As already mentioned the circuit compiler of Ishai et al. [19] considers an adver-
sary that can learn up to t intermediate values of the computation. Various
works [2,8,26,27,27,29] consider extensions of the probing model by either
proposing more efficient constructions or developing more practice-oriented mod-
els. We notice that for a circuit of size s all the above works result into cir-
cuits of size O(sk2), where s is the size of the original circuit. In [19] Ishai
et al. also propose an alternative circuit compiler that asymptotically requires
only Õ(k) blow-up, however, in contrast to the other works mentioned above it
only achieves statistical security against non-adaptively chosen probing attacks.
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We next review some broader classes of leakage functions that go beyond the
probing attacks and will be the main focus of this work.

Computationally Weak Leakages. A severe restriction of the probing model
is the fact that the leakage is oblivious to large parts of the circuitry. Faust et
al. [12] eliminate this restriction by considering global leakage functions, i.e.,
the leakage can depend on all the values that are carried on wires during the
computation, but the leakage function is assumed to be computationally bounded
(i.e., it cannot evaluate certain decoding functions). One concrete example given
by the authors is when the shares are k random bits and the decoding function
is the parity. For this setting, [12] shows security with respect to arbitrary global
AC0 leakages. The results for the AC0 setting were recently improved in [25,30].
Similar to the probing case the size of the transformed circuit increases at least
by a factor O(k2) where k is the security parameter.

Circuit Compilers in the Split State Model. The most prominent leak-
age model of leakage resilient cryptography is the so-called bounded leakage
model [11]. In the bounded leakage model the adversary can pick a leakage func-
tion f : {0, 1}n → {0, 1}λ and obtains f(state), where f is efficiently computable
and λ � n. The first work that builds circuits resistant to bounded leakages are
the works of Juma and Vahlis [21], and Goldwasser and Rothblum [16]. They
consider a model where the algorithm is executed by multiple “processors” that
leak independently – so-called split-state leakage. The works of [16,21] use homo-
morphic encryption and hence rely on computational assumptions. The use of
computational assumptions has been eliminated in two recent works [1,10,17]
using techniques from the randomness extractor and require an overhead of at
least O(k2).

1.2 Our Contribution

Our main contribution is to show how to construct leakage resilient circuit com-
pilers that asymptotically increase the size of the circuit only by a factor of Õ(k).
We give an overview of our main results below.

Efficient Compilers Against Computationally Weak Leakage. An impor-
tant building-block of leakage resilient circuit compilers are leakage resilient
encoding schemes. Our main observation to improve the efficiency of previous
compilers for the setting of computationally weak leakages is to use a linear
packed secret sharing scheme to encode the computation. In contrast to the
standard Shamir secret sharing where for a random polynomial p(·) of degree
t we hide the secret at p(0) while p(1), . . . , p(t) are viewed as shares of p(0),
we use some of the points on the polynomial to hide additional secrets. Notice
that this technique has also been used in a series of works starting with Franklin
and Yung [13] to improve the asymptotic efficiency of information theoretically
secure multi-party computation. In particular, our circuit transformation is heav-
ily inspired by the work of Damg̊ard et al. [5], and applies two sequentially exe-
cuted transformations, namely, TR1 and TR2 to produce the protected circuit.
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The first transformation TR1 takes as input the circuit C and produces C ′ ←
TR1(C). Its sole use is to make the circuit ready to be encoded with packed
secret sharing, and it does not contribute to the actual security. The second
transformation ̂C ← TR2(C ′) takes as input the so prepared C ′ and protects
it by applying packed secret sharing. The transformation uses the same type of
gates as in C ′, and as in several earlier works [10,12,26] a number of leakage-
free gates. We notice that the leak-free components that we use enjoy the same
properties as the leak-free components used in earlier works [10,12,26]: they are
small (linear in the security parameter), stateless and do not take any inputs.
Note that we require two different types of leak-free gates.

We show that the compiler is secure against computationally bounded leak-
ages – so-called AC0 leakages. To this end, we use the framework introduced by
Faust et al. [12] to argue about computationally bounded leakages. As a first
step, we show that the above encoding based on packed secret sharing is hard to
“break” for AC0 leakages. This requires that the underlying field is of constant
size (independent of the security parameter). We use a recent result of Cramer
et al. [4] which presents a linear secret sharing scheme that works for constant
field size. As a next step, we prove that all our transformed gadgets in ̂C are
reconstructible by constant depth circuits, which by applying the composition
lemma of [12] can be extended to composed circuits made from the transformed
gadgets. The final transformed circuit has size O(s log(s)k).

We also show that the above construction is secure in the probing model of
Ishai et al. [19]. When we allow t probes per transformed gadget then our security
proof relies on the fact that certain parts of the computation are leak-free. If
we aim for security of O(s · polylog(t)/n2) probes in the entire circuit, then we
eliminate the leak-free assumption for the stateless circuit case. The transformed
circuit we obtain has size O(slog(s) · polylog(k)). Further details are provided in
the full version of this extended abstract. We note that a similar construction
using packed-secret sharing has been recently considered in [18].

Efficient Compilers for the Split-State Setting. A second contribution is
an efficient compiler for the split-state bounded leakage model. We show that
the complexity of the compiler of Dziembowski and Faust [10] can be reduced
to O(k log k log log k), where k is the security parameter. This improves earlier
works by at least a quadratic factor in the security parameter. We achieve this
goal by improving the refreshing scheme of [10] which save a linear factor in
complexity compared to earlier work. While this would give us only complexity
of O(k2), we use the fact that the underlying encoding scheme is secure even
if the encoding uses only a small constant number of shares, while we increase
the size of the underlying field to sub-exponential size. As multiplication in such
fields can be done in complexity O(k log k log log k), we obtain our result.

1.3 Notation

Across the paper, we use a capital letter C to label a circuit. A circuit C carries
values from a finite field F on its wires and is composed of addition and multi-
plication gates which compute sums and products in F. The size of C is defined
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as the number of gates in C and denoted by s. We write C(x, k) for a result of
evaluating C on a given input x and the security parameter k. A vector x is a
row vector, and we denote by xT its transposition. We let F be a finite field and
for m,n ∈ N, let F

m×n denote the set of m × n-matrices over F. For a matrix
M ∈ F

m×n and an m bit vector x ∈ F
m we denote by x · M the n-element vec-

tor that results from the matrix vector multiplication of x and M . For a natural
number n let (0)n = (0, . . . , 0). We use x[i] to denote the ith element of a vector x
and x[i, . . . , j] to denote the elements i, i + 1, ..., j of x. In addition, let [x] denote
an encoding which secret shares a block x of � elements and write the k shares as
[x]=(x1, . . . , xk)wherek is the securityparameter.Let [x]c denote anencodedblock
secret shared under a linear code c specified by a generator matrix G. A secret shar-
ing scheme is homomorphic if [x] + [y] and [x][y] are shares of the blocks x+y and
xy. Moreover, let π(x) be a random permutation of the vector x. For two random
variables X0,X1 over X we define the statistical distance between X0 and X1 as
Δ(X0;X1) =

∑

x∈X 1/2|Pr[X0 = x] − Pr[X1 = x]|.

2 Defining a Circuit Transformation

We consider circuits C with secret state m that operate over some finite field F,
take some public input x and produce an output y. We assume that C consists of
two types of elementary gates. First, addition and multiplication gates that both
input two field elements and compute the corresponding operation in F. Second,
the so-called copy-gates that take as input a field element and output two copies
of it to handle fan-out of the circuit. One may think of C as an implementation
of a block cipher where the state is the key and the public input the plaintext.

A circuit transformation TR compiles any circuit C and the associated initial
secret state m0 into a functionally equivalent circuit ̂C and transformed secret
state m̂0 that is resistant to certain leakage attacks characterized by a family
of functions L. To model the leakage from ̂C we introduce a leakage game that
is executed by an adversary A. In the leakage game, the adversary can submit
tuples of the form (xi, fi) where xi denotes an input to the circuit and fi ∈ L is
a leakage function. For each query, A receives the output yi when using current
state mi−1 and the corresponding leakage. The exact definition of the leakage
depends on the leakage model and will be specified later in this paper. We denote
by

(

AL � ̂C[m̂0]
)

the output of A after interacting with the transformed circuit
̂C with initial state m̂0. Moreover, we consider a simulated world where a simula-
tor S only obtains black-box access to C[m0], which we denote by (S � C[m0]).
Security of a circuit transformation guarantees that the output of the adversary
in the leakage game is indistinguishable from the output of the simulator in the
ideal world. We define the notion of an L-secure circuit transformation below.

Definition 1. A circuit transformation TR is secure with respect to leakages
from a family of functions L if the following two properties hold:

1. Soundness: For any circuit C and any initial state m0 and any input xi we
have C[mi−1](xi) = ̂C[m̂i−1](xi).
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2. Security: For any PPT adversary AL and any circuit C with initial state
m0, there exists a simulator S such that for all circuits C with initial state
m0 the following holds: Δ

(

(S � C[m0]) ; (AL � ̂C[m̂0])
)

≤ negl(k).

The transformed circuit ̂C shall use the same types of operations as the underlying
circuit C, i.e., if C operates over the binary field, then the elementary operations
used in ̂C are Boolean operations. Moreover, for some of our security proofs, we will
require so-called opaque gates. Similarly, to earlier works [10,12,16,21] on leakage-
resilient circuit compilers our leak-free gates do not leak from their internals, but
can leak on their outputs. All our leak-free gates do not take any inputs, but merely
sample from some efficiently sampable distribution. We will later in this section
precisely characterize what operation is carried out by our leak-free gates.

All leakage-resilient circuit transformations follow the same paradigm to
transform C into a protected circuit ̂C. First, they use a leakage resilient encod-
ing scheme Π = (Enc,Dec) to encode the values carried on the wires of C. More
precisely, each wire w in C is represented in ̂C by a wire-bundle carrying the
encoding Enc(w). Notice that also the content of the memory that, e.g., stores
the secret key is stored in encoded form in ̂C. Clearly, to show that the trans-
formed circuit ̂C is secure against leakage functions from L our encoding scheme
has to be resilient for functions from L.

The next (and more challenging) step is to develop a transformation for the
elementary operations of C. For instance, if C is a Boolean circuit, then we need
to give secure implementations for NAND gates. Following earlier works, we
call these transformed elementary operations gadgets. A gadget takes as input
encodings and outputs the encoded result, e.g., if the gadget implements a mul-
tiplication of two encodings Enc(a) and Enc(b), then its output is Enc(a · b). The
difficulty is to design the gadgets in such a way that they guarantee correctness,
i.e., the output encodes the correct result, while at the same time leakage from
the internals of the operations do not reveal any information about the encoded
secrets. To this end, we need to ensure that our gadgets operate on encodings,
by exploiting some homomorphic property of the underlying encoding scheme.
Finally, since our gadgets in the transformed circuit ̂C work on encoded values,
we need two additional types of gates: an encoder gate that takes as input a
field element x and outputs Enc(x), and a decoding gadget that takes as input
Enc(x) and returns x. These gates may leak but as shown in earlier works they
do not influence the security of transformed circuit and will be ignored for the
remainder of this extended abstract.

The above approach of transforming circuits is called a gate-by-gate trans-
formation, which allows us to explain circuit transformations in a modular way.
That is, given some leakage resilient encoding, we present basic transformations
of the gates used in the original circuit C, which by composing these transformed
gates results in the transformed circuit ̂C. For both of our schemes, we consider
circuits C that compute over some finite field F and assume that the original
circuit has multiplication and addition gates that carry out the corresponding
operations in the field F.
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3 Transformation for Computationally Weak Leakages

Our first transformation achieves security against a family of leakage functions
L that are computable by polynomial-size constant depth circuits (so-called AC0

circuits). First, we start by defining our general encoding scheme ΠLPSS =
(EncLPSS ,DecLPSS), which is an important tool for the transformation. We
continue presenting the circuit transformation consisting of the transformations
TR1

weak and TR2
weak, where TRweak := TR2

weak ◦ TR1
weak.

The Encoding Scheme ΠLPSS = (EncLPSS,DecLPSS). A (t + 1)-out-of-k
secret sharing scheme takes as input a secret x from some input domain and
outputs k shares, with the property that it is possible to efficiently reconstruct
x from every subset of t + 1 shares, but every subset of at most t shares reveals
nothing about the secret x. Informally, Shamir’s secret-sharing scheme [32] is
defined by a polynomial p(·) of degree at most t, such that p(0) = x. The shares
are defined to be p(ai) for every i ∈ 1, . . . , k where a1, . . . , ak are any distinct
non-zero elements of F. The reconstruction algorithm of the scheme is based
on the fact that any t + 1 points define exactly one polynomial of degree t.
Thus, using Lagrange interpolation, it is possible to efficiently reconstruct the
polynomial p(·) given any subset of t + 1 points and compute x = p(0).

Our underlying leakage resilient encoding scheme is a packed secret sharing
scheme. The idea of packed secret sharing dates back to Yung and Franklin [13]
who used the technique to reduce the complexity of multiparty computation
protocols. The idea is similar to standard Shamir secret-sharing [32] over a field
F, but where a block of � different secret values x = (x1, . . . , x�) is shared at once
using a single polynomial p(·) of degree d that now evaluates to (x1, . . . , x�) in �
distinct points. It is easy to see that we can obtain security against a t-probing
adversary by choosing d + 1 = t + �.

To obtain security against leakages described by low-depth Boolean circuits,
we need a scheme that works over constant size fields such that the underlying
operations can be evaluated by small-depth Boolean circuits.1 Hence, our under-
lying leakage resilient encoding scheme uses the packed secret sharing scheme
of Cramer et al. [4] who showed how packed secret sharing can be combined
with techniques from algebraic geometry to make it work for constant field sizes.
Since we need a more general model for our purposes rather than the special
case of Shamir’s scheme, we follow the approach from [4] and define our packed
secret sharing scheme in terms of linear codes.

More specifically, a linear packed secret sharing scheme over the finite field F

is defined by the following parameters: number of shares k, secret length � > 1,
randomness length e, privacy threshold t and reconstruction threshold r such
that any subset of at most t shares have distribution independent of the secret
block and from any set of at least r shares, one can reconstruct the secret block.
Also, such a linear secret sharing scheme can define a linear code c with generator
1 Jumping ahead this is needed to carry out an AC0 reduction to the hardness of the

inner product.
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matrix G ∈ F
k×(�+e), and in this case the set of all encodings [x]c form a linear

code c. 2

Formally, our encoding ΠLPSS = (EncLPSS ,DecLPSS), is as follows:

– Public parameters of the scheme: Let G ∈ F
k×(�+e) be a fixed generator matrix

of a linear code c. More details on how this matrix will look like are given
in [4].

– Encoding algorithm EncLPSS(x): On input the block x = (x1, . . . , x�), choose
a random vector ρ ← F

e and compute the encoded block under the code c as:
[x]c = G · (x1, . . . , x�, ρ1, . . . , ρe)T. Output [x]c ∈ F

k.
– Decoding algorithm DecLPSS([x]c): On input r shares of [x]c , recover the block

x consisting of the first � values of the computation (G−1 · [x]c) ∈ F
�+e.

Multiplying Shares. If two encodings [x]c and [y]c are multiplied then [xy]c∗

is obtained where the multiplication yields a codeword under a new code c∗

defined considering the derived generator matrix3 G∗. The code c∗ is defined to
be the code obtained by taking the linear span of all products of the codewords
in c. Hence, the above encoding scheme ΠLPSS applies to any generator matrix,
e.g. the matrix G∗.

An important feature of the above encoding scheme, which makes it applica-
ble for masking schemes, is the fact that it exhibits homomorphic properties. In
particular, any linear combination of encodings corresponds to a linear combi-
nations of the underlying secrets, provided that the same secret locations were
used in all encodings (in the above case these are the position (1, . . . , �)).

The Transformation C ′ ← TR1
weak(C, k). The circuit transformation takes

as input the security parameter k and the description of an arbitrary circuit
C and compiles it into a transformed circuit C ′. The goal of TR1

weak(C, k) is
to prepare the circuit C such that it can efficiently compute on values encoded
with ΠLPSS . The use of packed secret sharing allows to securely compute addi-
tion/multiplication on � values in parallel, at the price of what a single opera-
tion would cost using normal secret sharing. To this end, the circuit has to be
arranged in such a way that it can operate on blocks of secrets in parallel. The
work of [5] achieves this goal with overhead O(log |s|), a detailed description can
be found in the full version of this extended abstract. Intuitively, the transfor-
mation arranges the circuit C such that every layer contains only one type of
gates, i.e., either addition or multiplication operations. In addition, sets of shared
blocks S1, S2, . . . must be produced such that blocks in Si contain the i’th input
bit to the gates in a given layer, in some fixed order. In order to achieve the
above, the values in the computation will have to be permuted between layers
2 For example, in the special case of packed Shamir secret sharing over polynomials

of degree d, the set of all encodings [x]d forms a linear code, where the generator
matrix is formed from a product of two VanderMonde matrices.

3 Analogously, if packed Shamir secret sharing over polynomials is used, then the
multiplication of the shares [a]d and [b]d under a polynomial of degree d yields a
share of [ab]2d under a polynomial of degree 2d.
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by swap gates in arbitrary ways that depend on the concrete circuit. The basic
idea is to handle the arbitrary permutations between blocks using Benes per-
mutation networks. The only non-trivial issue is how to permute the elements
inside a shared block. For this reason we add permutation block-gadgets which
are described in TR2

weak.
Since the resulting circuit C ′ is compiled to work on packed secret shar-

ing, it can be described by block-gadgets, which operate on blocks of � secrets.
More specifically, we have the following block-gadgets: (1) multiplication and
addition block gadgets that carry out the respective operation over blocks of
� field elements, (2) copy gadgets that handle fan out and output two copies
of their inputs, and (3) permutation gadgets (for some fixed number of log(k)
permutations), which take as input a block and output a permutation of the ele-
ments. Note that the block-gadgets is just an abstraction to make the exposition
in the next step simpler, and all block-gadgets are built out of the elementary
multiplication and addition gates that work over the underlying field F.

The Transformation ̂C ← TR2
weak(C ′, k). TR2

weak(C ′, k) takes as input a cir-
cuit C ′, prepared by TR1

weak to work on blocks of � secrets, and compiles it
into a circuit Ĉ that works on encodings of blocks. Recall that C ′ operates on
blocks, so as a first step, TR2

weak(C ′, k) encodes blocks using ΠLPSS . Moreover,
we can replace the block-gadgets by operations that work on encoded blocks.
The gadgets are built out of the elementary operations: multiplication, addi-
tion and swapping. Moreover, we will use a class of a leak-free gadget which
is described in more detail below. The transformation for the different block-
gadgets is described in Figure 1. The addition block-gadget directly uses the
fact that the encoding scheme is additively homomorphic, and hence to com-
pute the output it suffices to compute component-wise addition of the shares.
The transformation for the multiplication block-gadget is more complicated and
makes use of a leak-free gate. Specifically, we first compute the component-wise
product of the shares. Notice that the resulting shares [ab]c∗ , are now shares
of the code c∗ since once we multiply them the underlying code was changed
from c to c∗. Next, we use the opaque gadget Or, which returns encodings
[r]c and [r]c∗ of a random block r. We use [r]c∗ to “mask” [ab]c∗ , which will
allow us to open/decode the random encoding [ab + r]c∗ to the block (ab + r).
Intuitively, the opening is allowed since the secret data is masked by a random
unknown value r. Hence, the opened values does not reveal any information
about the secret data. After reconstructing/encoding the block (ab + r) under
the code c, we subtract [r]c from it, which results into a random encoding [ab]c .
The reconstruction of [ab + r]c carried out during the multiplication operation
can be implemented using a small sub-circuit with linear complexity. Notice
that the Permutation block-gadget acts in the same way as the multiplication
block-gadget. Moreover, we use a similar leak-free gate, Oπ, which for some
fixed permutation π outputs [r]c and [r′]c for some random block r ← F

� and
r′ = π(r). The leak-free gates do not perform any heavy computations, take no
inputs and keep no secret internal states, which makes them independent of the
computation in the circuit.
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Fig. 1. Multiply, Addition and Permutation block-gadgets for the ΠLPSS encoding

Efficiency of TRweak. As already mentioned above, TR1
weak(C, k) introduces

overhead of O(log s) resulting into a circuit of size O(s log s). Regarding TR2
weak

(C ′, k), the blow up of the circuit is linear in k because we replace the gates by
block-gadgets of cost O(k). The efficiency of the transformation TR2

weak(C ′, k) is
achieved by using the packed secret sharing scheme ΠLPSS which allows to amor-
tize the cost over many gates. More specifically, our multiplication/permutation
block-gadgets have at most quadratic overhead due to the matrix-vector multi-
plication induced by running EncLPSS ,DecLPSS . However, with packed secret
sharing we process � blocks in parallel, so amortize the cost over many gates we
get linear complexity since � = Θ(k). Therefore, the total size of the transformed
circuits is O(k s log s).

Soundness of TRweak. We show that the input-output functionality of the circuit
C is identical to that of Ĉ. The proof of soundness can be found in the full version.

Lemma 1. [Soundness] The circuit transformation TRweak(C, k) is sound.
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3.1 Security Against Global and Computational Bounded Leakage

We now show that our leakage-resilient compiler TRweak protects against global,
continuous and computationally weak leakages. In particular, we will prove that
such circuits protect against leakages that can be computed by circuits of con-
stant depth – so-called AC0 leakages. The security proof of our transformation
follows the general approach presented in the work of Faust et al. [12] which
requires two main ingredients, a secure encoding scheme and simulatable gad-
gets. Informally, given these two ingredients one can apply the composition the-
orem of Faust et al. [12] and get security for the entire transformation.

We start by showing a general result, working with arbitrary fields, such
that the operations of the computation are efficiently simulatable by SHALLOW
circuits – in particular, we will require that they can be computed by circuits in
the class SHALLOW(d, s) for some constant depth d and size s. We assume that
these circuits are deterministic and the only basic operations they are allowed to
carry out are additions, permutations and multiplications. Next, in Section 3.2,
we consider the case where the shallow functions operate over binary fields and
in this case we can show that the class of leakage functions that can be tolerated
is in AC0. For this we need that the size of the field is constant and we need to
show that our encoding scheme ΠLPSS is secure against AC0 leakages.

To formalize the notion of shallow simulators we use the formalism of recon-
structors, defined in [12], for some class L of leakage functions. A reconstructor
takes as input the inputs and outputs of a gadget and is able to simulate its
internals in a way that looks indistinguishable for leakages from L. Since we
are interested in efficient simulations and reductions, we will explicitly state the
complexity of the reconstructors. Below, we denote the distribution on the wires
of ̂C on input X conditioned on the output being Y by W

̂C(X|Y ).

Definition 2 (Reconstructor for circuits [12]). Let ̂C be a (transformed)
circuit. We say that a pair of strings (X,Y ) is plausible for ̂C if ̂C might output
Y on input X, i.e., if Pr[ ̂C(X) = Y ] > 0.

Consider a distribution REC
̂C over the functions whose input is a pair of

strings, and whose output is an assignment to the wires of ̂C. Define REC
̂C(X,Y )

as the distribution obtained by sampling R
̂C ← REC

̂C and computing R
̂C(X,Y ).

Such a distribution is called a (L, ε)-reconstructor for ̂C if for any plausible
(X,Y ), the following two wire assignment distributions are ε close under leakages
from L, i.e., for any function f ∈ L the following holds:

Δ(f(W
̂C(X|Y )); f(REC

̂C(X,Y ))) ≤ ε,

where the randomness above is over the randomness of sampling REC
̂C and the

internal randomness used by ̂C. We say that ̂C is reconstructible by SHALLOW(d,
s) if the support of the distribution REC

̂C is computable by circuits in SHALLOW
(d, s).
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Security and Reconstructibility of Block-gadgets. We show that our trans-
formed Multiply block-gadget is reconstructible by SHALLOW circuits. Moreover,
the proofs and the reconstructors of the Permutation and Additon block-gadget
can be found in the full version.

Lemma 2 (The Multiply block-gadgets of TRweak are Reconstructible).
Let k be the security parameter. The Multiply block-gadget is (L, 0)-reconstructi
ble by SHALLOW(2,O(k)) for any L.

3.2 Security Against AC0 Leakage

While the above work, in this section, we consider security with respect to AC0

leakages. To this end, we will first show that the packed secret sharing scheme
from Section 2 is secure against AC0 leakages (see lemma below). Then, we use
the composition theorems from [12] together with the fact that all block-gadgets
are proven to be reconstructible by shallow circuits. This will show that the
transformed circuits are resilient to AC0 leakages according to Definition 1. In
the following, we show that the encoding is secure against AC0 leakages.

Security of the ΠLPSS Encoding. Recall that the circuit compiler TRweak

uses the ΠLPSS packed secret sharing scheme over a constant size field F. In
general, the decoding function DecLPSS is a function that maps a set of shares
to a secret block and the adversary gets to apply an AC0 function to an encoding.
We show that the decoding function is hard to compute in AC0. The proof of
the Lemma can be found in the full version.

Lemma 3. For k ∈ N>0, the decoding function DecLPSS
4 defined by a decoding

vector (a) = (a1, . . . , ak) ∈ F
k as DecLPSS : (s1, . . . , sk) �→ ∑k

i=1 siai = aT s
does not belong to the AC0.

Notice that the above claim proves that the ΠLPSS encoding is secure against
AC0 leakages, i.e., for any leakage function f computable by AC0 circuits and for
any two blocks of secrets x and x′ the following two distributions are statistically
close: Δ(f(EncLPSS(x)); f(EncLPSS(x′)) ≤ negl(k).

Security of Circuits. In Section 3.1, we showed that all block-gadgets can be
reconstructed by shallow simulators given only the inputs and outputs. More-
over, all gadgets are re-randomizable as the outputs are re-randomized by fresh
encodings that are output by leak-free gates. Furthermore, by the claim above
the encoding is resilient to AC0 leakages and all block-gadgets are reconstructible
by constant depth circuits, and the composition theorem of [12] combines both
terms additively, i.e., the loss in the reduction is only in an additive constant
factor in circuit depth. This all together shows that the transformed circuits are
secure against AC0 circuits.
4 We actually encode blocks of elements, but for simplicity of exposition we will assume

that we encode single elements.
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4 Transformation for Independent Leakages

Dziembowski and Faust [10] proposed a compiler, which transforms arbitrary cir-
cuits over some field F into functionally equivalent circuits secure against any con-
tinual leakage assuming that: (i) the memory is divided into sub-computations,
which leak independently, (ii) the leakage from each sub-computation is bounded
and (iii) the circuit has an access to a leak-free component, which samples random
pairs of orthogonal vectors. Their transformation also proceeds in a gate-by-gate
fashion but the pivotal ingredient of their construction is a protocol for refresh-
ing the Leakage-Resilient-Storage used among others in the multiplication gadget
protocol.

We present a more efficient and simpler protocol for refreshing using the
same assumption of a leak-free gadget. Our solution needs O(k) operations to
fully refresh the encoding of the secret in contrast to Ω(k2) that was required by
earlier works, where k is a security parameter proportional to the bound on the
leakage from each sub-computation. More precisely, the blow-up of the circuit’s
size during compilation with the new refreshing protocol is equal to O(k2). It is a
significant improvement compared to Ω(k4) by Dziembowski and Faust [10], and
Ω(k3) by Goldwasser and Rothblum [30] where ciphertext-banks are needed.

Moreover, we show that by operating over larger fields (exponential in the
security parameter k) and using an efficient field multiplication algorithm, we
can achieve even more efficient construction, namely one with a (multiplicative)
overhead O(k log k log log k) regardless whether the new refreshing algorithm is
used or not. Although the usage of the more efficient refreshing algorithm does
not influence the complexity of the compiler in this case, it is still valuable,
because it decreases the size of the transformed circuit by a huge constant factor
and is simpler than the original refreshing algorithm.

In contrast, in the previous section we aimed on protecting against low-
complexity leakages, in this section we are interested in bounded leakage that
occurs independently from two parts of the memory. To this end, we need to use
an alternative encoding – the so-called inner-product encoding – that has been
used in a series of works [7,10,17]. The inner product encoding scheme, defined
by ΦIP = (Encode : M → X × Y,Decode : X × Y → M), works as follows.
On an input message m ∈ M, we choose uniformly at random two vectors l
and r over the field F subject to the constraint that their inner product 〈l, r〉
is equal to the message m. The encoding scheme outputs (l, r). The decoding
function is deterministic and takes as input two shares (l, r) and outputs their
inner product 〈l, r〉. In [6,9] it is shown that the above encoding is secure, which
means that the adversary learning some partial information f(l) about l and
(independently) g(r) about r gains no information about the encoded message
m. The idea is to keep l and r separated (e.g. on different memory chips). We
will model this setting assuming that they are kept by different players, which
can perform computation and exchange messages. We discuss our encoding more
formally in Section 4.2.



324 M. Andrychowicz et al.

4.1 Leakage Model

Our model of leakage is based on [10] and we only recall some important details.
The compiler produces a circuit, which is divided into sub-computations. An
adversary will be allowed to extract from each sub-computation no more that λ
bits of information for some constant λ. For a non-adaptive adversary, it means
that it is allowed to adaptively choose any (e.g. polynomially uncomputable)
function with range {0, 1}λ, which value depends on all information used in that
sub-computation. Except from the above condition, the total amount of leakage
during the whole computation is unlimited (in comparison to models, when an
adversary can for example obtain values on a fixed number of wires). Because of
that, this kind of leakage model is usually called continual leakage.

Moreover, we will assume that the sub-computations leak independently, that
is a leakage function in each observation may only depend on data from one sub-
computation. In practice, the separation of sub-computations may be achieved
by dividing the memory into parts (e.g. separate RAM chips) and placing the
data used in different sub-computations on different memory chips.

We model the execution of such circuit as a protocol executed between �
players (denoted P1, P2, . . . , P�), where each player performs one of the sub-
computations. The adversary can then learn some partial information about the
internal states of the players. Informally, an adversary, called λ-limited leakage
adversary is allowed to extract at most λ bits of information about the internal
state of each players. More formal definitions follows in the next paragraphs.

Leakage from Memory. Based on Definition 1 we model independent leakage
from memory parts in form of a leakage game, where the adversary can adaptively
learn information from the memory parts. More precisely, for some u, �, λ ∈ N let
M1, . . . ,M� ∈ {0, 1}u denote the contents of the memory parts, then we define a
λ-leakage game in which a λ-limited leakage adversary A, submits (adaptively)
tuples of the form {(xi, fi)}m

i=1 where m ∈ N, xi ∈ {1, . . . , �} denotes which
memory part leaks at the current step and fi is a leakage function, such that
fi : {0, 1}u → {0, 1}λ′

and λ′ ≤ λ. To each such a query the oracle replies
with fi(Mxi

) and we say that in this case the adversary A retrieved the value
fi(Mxi

) from Mxi
. The only restriction is that in total the adversary does not

retrieve more than λ bits from each memory part. In the following, let (A �
(M1, . . . ,M�)) be the output of A at the end of this game. Without loss of
generality, we assume that (A � (M1, . . . ,M�)) := (f1(Mx1), . . . , fm(Mxm

)).

Leakage from Computation. We model an execution of the circuit as a
protocol executed between players P1, P2, . . . P�, where each player corresponds
to one of the sub-computations. At the beginning of the game, some of the players
(so-called input-players) hold inputs. The execution of the protocol proceeds in
rounds. During each round one player is active and can send messages to the
other players. The messages can depend on his input (if it is an input-player), the
messages he received in previous rounds and his local randomness. An the end of
the game, some of the players (called output-players) output the values, which
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are considered the output of the protocol. Let viewi denote all the information,
which were available to Pi, that is all the messages sent or received by Pi, his
inputs and his local randomness. After the protocol is executed the adversary
plays a game A � (view1, . . . , view�).

4.2 Leakage-Resilient Storage

The notion of leakage-resilient storage Φ = (Encode,Decode) was introduced
by Davi et al. [7]. An Φ allows to store a secret in an encoded form of two
shares l and r, such that it should be impossible to learn anything about the
secret given independent leakages from both shares. One of the constructions
that they propose uses two-source extractors and can be shown to be secure in
the independent leakage model.

A Φ scheme is said to be (λ, ε)-secure, if for any s, s′ ∈ M and any λ-limited
adversary A, we have Δ(A � (l, r);A � (l′, r′)) ≤ ε, where (l, r) ← Encode(s)
and (l′, r′) ← Encode(s′), for any two secrets s, s′ ∈ M. We consider a leakage-
resilient storage scheme Φ that allows to efficiently store elements from M = F. It
is a variant of a scheme proposed in [9] and based on the inner-product extractor.
For some security parameter n ∈ N and a finite field F, Φn

F
:= (Encoden

F
,Decoden

F
)

is defined as follows. Security is proven by [10] with the lemma below.

– Encoding algorithm Encoden
F
(s): On input the vector s sample (l[2, . . . , n],

r[2, . . . , n]) ← (

F
n−1

)2 and set l[1] ← F \ {0} and
r[1] := l[1]−1 · (s − 〈(l[2, . . . , n], r[2, . . . , n])〉). The output is (l, r).

– Decoding algorithm Decoden
F
(l, r): On input (l, r) output 〈l, r〉.

Lemma 4. Let n ∈ N and let F such that |F| = Ω(n). For any 1/2 > δ > 0, γ >
0 the Φn

F
scheme as defined above is (λ, ε)-secure, with λ = (1/2 − δ)n log |F| −

log γ−1 − 1 and ε = 2(|F|3/2−nδ + |F| γ).

Exponentially Large Fields. In the above construction we have two security
parameters: n and |F| (notice that δ and γ are just artifacts of the lemma and do
not influence the construction), which influence the leakage bound λ, statistical
closeness parameter ε and the complexity of the scheme. So far [9,10], n has
been treated as a main security parameter and F was implicitly assumed to be
rather small (operations in F were assumed to take constant time).

To simplify the exposition we introduce a single security parameter k and
assume that n and |F| are functions of k. We are interested in choice of n and |F|
(as functions of k) such that λ = Ω(k) and ε is negligible in k. The instantiation
from [10] can be viewed as n = k and |F| = Θ(k). The fact that length of the
shares n was of the same order as k caused overhead Ω(k4).

In this paper we propose a different choice of the parameters n and |F|.
Namely, we show that by using shares of the constant length and an exponentially
big (in terms of k) fields F we get the same security guarantee and a much
better efficiency. Namely, taking n = 24, |F| = 2k, δ = 1/4, γ = 2−2k in Lemma
4 gives λ = 4k − 1 and ε = O(2−k). With a constant n each gadget produced
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by the compiler from [10] performs a constant number of operations over the
field F. In [31] they show that multiplication in GF (2k) can be done in time
O(k log k log log k). Hence, setting F = GF (2k) and a constant n we get the
compiler with the O(k log k log log k) overhead. This complexity does not depend
whether the new refreshing algorithm is used or not, because in this case all
shares have constant lengths independent of k.

In the rest of this section we present the new refreshing algorithm. The only
assumption about F, which is necessary for its security is |F| ≥ 4n.

Non-zero Flavor of Leakage-Resilient Storage. For technical reasons we
slightly change the encoding by assuming that the coordinates of l and r are all
non-zero (e.i. l, r ∈ (F \ {0})n. Therefore, Encoden

F
procedure can easily be mod-

ified to generate only vectors with non-zero coordinates. It is enough to use the
already presented Encoden

F
protocol and check at the end if the computed vec-

tors have all coordinates non-zero. If it is not the case, the protocol is restarted
with fresh randomness. It does not influence the efficiency of the construction,
because a random vector has at least one coordinate equal to zero with a proba-
bility at most 1/4 regardless of n (but assuming |F| ≥ 4n). It is easy to see that
this modification changes the security of the Leakage-Resilient Storage only by
a negligible factor.

4.3 The Leak-Free Component

As in [10], we assume that the players have access to a leak-free component that
samples uniformly random pairs of orthogonal vectors. More specifically, we will
assume that we have access to a gate O′ that samples a uniformly random
vector ((a, ã), (b, b̃)) ∈ (Fn)4, subject to the constraint that the following three
conditions hold: (i)〈a,b〉 + 〈ã, b̃〉 = 0, (ii) {ai �= 0}i∈[n] and (iii) {b̃i �= 0}i∈[n].

Note that this gate is different from the gate O used earlier in [9] that simply
samples pairs (a,b) of orthogonal vectors. It is easy to see, however, that this
“new” gate O′ can be “simulated” by the players that have access to O that
samples pairs (c,d) of orthogonal vectors of length 2n each. First, observe that
c ∈ F

2n can be interpreted as a pair (a, ã) ∈ (Fn)2 (where a||ã = c), and in the
same way d ∈ F

2n can be interpreted as a pair (b, b̃) ∈ (Fn)2 (where b||b̃ = d).
By the basic properties of the inner product we get that 〈a,b〉+〈ã, b̃〉 = 〈c,d〉 =
0. Hence, condition (i) is satisfied. Conditions (ii) and (iii) can be simply verified
by the players Pl and Pr respectively. If one of these conditions is not satisfied,
then the players sample a fresh pair (c,d) from O (it happens only with a
constant probability, because |F| ≥ 4n).

4.4 Leakage-Resilient Refreshing of LRS

Recall than the pivotal element of the compiler from [10] is the protocol for
refreshing the encodings of the secrets encoded with Φn

F
. Such protocol takes an

encoding of the secret and produces a fresh encoding of the same secret. However,
we can not just decode the secret and then re-encode it with a fresh randomness,
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Protocol RefreshnF (l, r):Initial state:
– player Pl holds l ∈ (F \ {0})n and player Pr holds r ∈ (F \ {0})n.

1. Let ((a, ã), (b, b̃)) ← O′ and give (a, ã) to Pl and (b, b̃) to Pr.

Refreshing the share of Pr:
2. Pl computes a vector v such that {vi := li

−1 · ai}i∈[n] and sends v to Pr.
3. Pr computes a vector x such that {xi := vi · bi}i∈[n] and sets r′ := r+ x.
4. If there exists i such that r′

i = 0, then the protocol is restarted from the
beginning with new vectors sampled from O′.

Refreshing the share of Pl:
5. Pr computes a vector ṽ such that {ṽi := r′

i
−1 · b̃i}i∈[n] and sends ṽ to Pl.

6. Pl computes a vector x̃ such that {x̃i := ṽi · ãi}i∈[n] and sets l′ := l + x̃.
7. If there exists i such that l′i = 0, then the protocol is restarted from the

beginning with new vectors sampled from O′.
Final state:

– player Pl holds l′ and player Pr holds r′.

Views: The view viewl of player Pl is (l,a,v, ã, ṽ) and the view viewr of player
Pr is (r,b,v, b̃, ṽ).

Fig. 2. Protocol RefreshnF . Gate O′ samples random vectors (a, ã,b, b̃) ∈ (F \ {0})n ×
F
n ×F

n × (F \ {0})n such that 〈ta,b〉 = −〈ã, b̃〉. Note that the inverses in Steps 2 and
5 always exist, because l, r ∈ (F \ {0})n. Steps 4 and 7 guarantee that this condition
is preserved under the execution of the protocol RefreshnF . The protocol is restarted
with a bounded probability regardless of n (but keeping |F| ≥ 4n), so it changes the
efficiency of the algorithm only by a constant factor.

because an adversary could leak the secret, while it is decoded. Therefore, we
need a way to compute a new encoding of a secret without decoding it. The new
refreshing protocol performs O(n) operations over the field F in comparison to
Ω(n2) for a protocol from [10].

The refreshing protocol, Refreshn
F

described in Figure 2 is based on the one
proposed in [10] (cf. Section 3), but it is more efficient. The protocol Refreshn

F

refreshes the secrets encoded with Φn
F
. Refreshn

F
is run between two players Pl and

Pr, which initially hold shares l and r in (F \ {0})n. At the end of the protocol,
Pl holds l′ and Pr holds r′ such that 〈l, r〉 = 〈l′, r′〉. The refreshing scheme is
presented in Figure 2. The main idea behind this protocol is as follows. Denote
α := 〈a,b〉(= −〈ã, b̃〉). Steps 2 and 3 are needed to refresh the share of Pr. This
is done by generating, with the “help” of (a,b) (coming from O′) a vector x
such that 〈l,x〉 = α.

〈l,x〉 = α comes from the above summation: 〈l,x〉 =
∑n

i=1 lixi =
∑n

i=1 livibi

=
∑n

i=1 lil−1
i aibi = 〈a,b〉 = α. Then, vector x is added to the share of Pr by

setting (in Step 3) r′ := r + x. Hence, we get 〈l, r′〉 = 〈l, r〉 + 〈l,x〉 = 〈l, r〉 + α.
Symmetrically, in Steps 5 and 6 the players refresh the share of Pl, by first gener-
ating x̃ such that 〈x̃, r′〉 = −α, and then setting l′ = l + x̃. By similar reasoning
as before, we get 〈l′, r′〉 = 〈l, r′〉 − α, which, in turn is equal to 〈l, r〉. Hence, the
following lemma is true. The reconstructor for the Refreshn

F
and its proof can be

found in the full version.
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Lemma 5 (Soundness). For every l, r ∈ (F \ {0})n we have that
Decoden

F
(Refreshn

F
(l, r)) = Decoden

F
(l, r).
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