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Preface

The RSA conference has been a major international event for information security ex-
perts since its inception in 1991. It is an annual event that attracts hundreds of vendors
and thousands of participants from industry, government, and academia. Since 2001,
the RSA conference has included the Cryptographers’ Track (CT-RSA), which pro-
vides a forum for current research in cryptography. CT-RSA has become a major pub-
lication venue in cryptography. It covers a wide variety of topics from public-key to
symmetric-key cryptography and from cryptographic protocols to primitives and their
implementation security.

This volume represents the proceedings of the 2015 RSA Conference Cryptogra-
phers’ Track which was held in San Francisco, California, during April 21–24, 2015.
A total of 111 full papers were submitted for review out of which 26 papers were se-
lected for presentation. As Chair of the Program Committee, I heartily thank all the
authors who contributed the results of their innovative research and all the members
of the Program Committee and their designated assistants who carefully reviewed the
submissions. In the thorough peer-review process that lasted 2 months, each submission
had three independent reviewers. The selection process was completed at a discussion
among all members of the Program Committee.

In addition to the contributed talks, the program included a panel discussion mod-
erated by Bart Preneel on Post-Snowden Cryptography featuring Paul Kocher, Adi
Shamir, and Nigel Smart.

February 2015 Kaisa Nyberg
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Just a Little Bit More

Joop van de Pol1(B), Nigel P. Smart1, and Yuval Yarom2

1 Department Computer Science, University of Bristol, Bristol, UK
joop.vandepol@bristol.ac.uk, nigel@cs.bris.ac.uk

2 School of Computer Science, The University of Adelaide, Adelaide, Australia
yval@cs.adelaide.edu.au

Abstract. We extend theFlush+Reload side-channel attack of Benger
et al. to extract a significantly larger number of bits of information per
observed signature when using OpenSSL. This means that by observing
only 25 signatures,we can recover secret keys of the secp256k1 curve, used
in the Bitcoin protocol, with a probability greater than 50 percent. This is
an order of magnitude improvement over the previously best known result.

The new method of attack exploits two points: Unlike previous partial
disclosure attacks we utilize all information obtained and not just that in
the least significant or most significant bits, this is enabled by a property
of the “standard” curves choice of group order which enables extra bits of
information to be extracted. Furthermore, whereas previous works require
direct information on ephemeral key bits, our attack utilizes the indirect
information from the wNAF double and add chain.

1 Introduction

The Elliptic Curve Digital Signature Algorithm (ECDSA) is the elliptic curve ana-
logue of the Digital Signature Algorithm (DSA). It has been well known for over a
decade that the randomization used within the DSA/ECDSA algorithm makes it
susceptible to side-channel attacks. In particular a small leakage of information on
the ephemeral secret key utilized in each signature can be combined over a number
of signatures to obtain the entire key.

Howgrave-Graham and Smart [14] showed that DSA is vulnerable to such par-
tial ephemeral key exposure and their work was made rigorous by Nguyen and
Shparlinski [21], who also extended these results to ECDSA [22]. More specifically,
if, for a polynomially bounded number of random messages and ephemeral keys
about log1/2 q least significant bits (LSBs) are known, the secret keyα can be recov-
ered in polynomial time. A similar result holds for a consecutive sequence of the
most significant bits (MSBs), with a potential need for an additional leaked bit due
to the paucity of information encoded in the most significant bit of the ephemeral
key. When an arbitrary sequence of consecutive bits in the ephemeral key is known,
about twice as many bits are required. The attack works by constructing a lattice
problem from the obtained digital signatures and side-channel information, and
then applying lattice reduction techniques such as LLL [16] or BKZ [23] to solve
said lattice problem.

c© Springer International Publishing Switzerland 2015
K. Nyberg (ed.): CT-RSA 2015, LNCS 9048, pp. 3–21, 2015.
DOI: 10.1007/978-3-319-16715-2 1



4 J. van de Pol et al.

Brumleyandco-workers employ this latticeattack to recoverECDSAkeysusing
leaked LSBs (in [4]) and leaked MSBs (in [5]). The former uses a cache side-channel
to extract the leaked information and the latter exploits a timing side-channel. In
both attacks, a fixed number of bits from each signature is used and signatures are
used only if the values of these bits are all zero. Signatures in which the value of
any of these bits are one are ignored. Consequently, both attacks require more than
2,500 signatures to break a 160-bit private key.

More recently, again using a cache based side-channel, Benger et al. [2] use the
LSBs of the ephemeral key for a wNAF (a.k.a. sliding window algorithm) multi-
plication technique. By combining a new side-channel called theFlush+Reload
side-channel [26,27], and a more precise lattice attack strategy, which utilizes all of
the leaked LSBs from every signature, Benger et al. are able to significantly reduces
the number of signatures required. In particular they report that the full secret key
ofa256-bit systemcanberecoveredwithabout200signatures inareasonable length
of time, and with a reasonable probability of success.

In thisworkwe extend theFlush+Reload technique ofBenger et al. to reduce
the number of required signatures by an order of magnitude. Our methodology
abandons theconcentrationonextractionofbits in just theMSBandLSBpositions,
and instead focuses onall the information leakedbyall thebits of the ephemeral key.
In particular we exploit a property of many of the standardized elliptic curves as
used in OpenSSL. Our method, just as in [2], applies the Flush+Reload side-
channel technique to the wNAF elliptic curve point multiplication algorithm in
OpenSSL.

ECDSAUsingStandardEllipticCurves:Thedomainparameters forECDSA
are an elliptic curve E over a field F, and a point G on E, of order q. Given a hash
function h, the ECDSA signature of a message m, with a private key 0 < α < q and
public key Q = αG, is computed by:

– Selecting a random ephemeral key 0 < k < q
– Computing r = x(kG) (mod q), the X coordinate of kG.
– Computing s = k−1(h(m) + α · r) (mod q).

The process is repeated if either r = 0 or s = 0. The pair (r, s) is the signature.
To increase interoperability, standard bodies have published several sets of

domain parameters for ECDSA [1,7,20]. The choice of moduli for the fields used in
these standard curves is partly motivated by efficiency arguments. For example, all
of the moduli in the curves recommended by FIPS [20] are generalised Mersenne
primes [24] and many of them are pseudo-Mersenne primes [10]. This choice of
moduli facilitates efficient modular arithmetic by avoiding a division operation
which may otherwise be required.

A consequence of using pseudo-Mersenne primes as moduli is that, due to
Hasse’s Theorem, not only is the finite-field order close to a power of two, but so
is the elliptic-curve group order.

That is, q can be expressed as 2n − ε, where |ε| < 2p for some p ≈ n/2. We
demonstratethatsuchcurvesaremoresusceptible topartialdisclosureofephemeral
keys than was hitherto known. This property increases the amount of information
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that can be used from partial disclosure and allows for a more effective attack on
ECDSA.

OurContribution:We demonstrate that the above property of the standardized
curves allows the utilization of farmore leaked information, in particular some arbi-
trary sequences of consecutive leaked bits. In a nutshell, adding or subtracting q to
or from an unknown number is unlikely to change any bits in positions between
p + 1 and n. Based on this observation we are able to use (for wNAF multiplica-
tion algorithms) all the information in consecutive bit sequences in positions above
p + 1. Since in many of the standard curves p ≈ n/2, a large amount of informa-
tion is leaked per signature. (Assuming one can extract the sequence of additions
and doubles in an algorithm.) As identified by Ciet and Joye [8] and exploited by
Feix et al. [11], the same property also implies that techniques for mitigating side-
channel attack, such as the scalar blinding suggested in [4,18], do not protect bits
in positions above p + 1.

Prior works deal with the case of partial disclosure of consecutive sequences of
bits of the ephemeral key. Our work offers two improvements: It demonstrates how
tousepartial information leaked fromthedoubleandaddchainsof thewNAFscalar
multiplication algorithm [13,19]. In most cases, the double and add chain does not
providedirect informationon thevalue of bits. It only identifies sequences of repeat-
ingbitswithout identifying the value of these bits.We showhowtouse this informa-
tion to construct a lattice attack on the private key. Secondly, our attack does not
depend on the leaked bits being consecutive. We use information leaked through
the double and add chain even though it is spread out along the ephemeral key.

Byusingmore leaked informationand exploiting the aboveproperty of the ellip-
tic curves, our attack only requires a handful of leaked signatures to fully break the
private key. Our experiments show that the perfect information leaked on double
and add chains of only 13 signatures is sufficient for recovering the 256 bit private
key of the secp256k1 curve with probability greater than 50 percent. For the 521
bit curve secp521r1, 40 signatures are required. We further demonstrate that for
the secp256k1 case observing 25 signatures is highly likely to recover 13 perfect
double and add chains. Hence, by observing 25 Bitcoin transactions using the same
key, an attacker can expect to recover the private key. For most of the paper we dis-
cuss the case of perfect side channels which result in perfect double and add chains,
then in Section 6 we show how this assumption can be removed in the context of a
real Flush+Reload attack.

2 Background

In this section we discuss three basic procedures we will be referring to throughout.
Namely the Flush+Reload side-channel attack technique, wNAF scalar multi-
plication method and the use of lattices to extract secret keys from triples. The
side-channel information we obtain from executing the wNAF algorithm produces
instances of theHiddenNumberProblem (HNP) [3]. Since theHNP is traditionally
studied via lattice reduction it is therefore not surprising that we are led to lattice
reduction in our analysis.
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2.1 The Flush+Reload Side-Channel Attack Technique

Flush+Reload is a recently discovered cache side-channel attack [26,27]. The
attack exploits a weakness in the Intel implementation of the popular X86 archi-
tecture, which allows a spy program to monitor other programs’ read or execute
access to shared regions of memory. The spy program only requires read access to
the monitored memory.

Unlike most cache side-channel attacks, Flush+Reload uses the Last-Level
Cache (LLC), which is the cache level closest to the memory. The LLC is shared by
theexecutioncores in theprocessor, allowing theattack tooperatewhenthe spyand
victim processes execute on different cores. Furthermore, as most virtual machine
hypervisors (VMMs) actively share memory between co-resident virtual machines,
the attack is applicable to virtualized environment and works cross-VM.

Input: adrs—the probed address
Output: true if the address was accessed by the victim
begin

evict(adrs)
wait a bit()
time ← current time()
tmp ← read(adrs)
readTime ← current time()-time
return readTime < threshold

end

Algorithm 1. Flush+Reload Algorithm

Tomonitor access tomemory, the spy repeatedly evicts the contents of themon-
itored memory from the LLC, waits for some time and then measures the time to
read the contents of the monitored memory. See Algorithm 1 for a pseudo-code of
the attack. Flush+Reload uses the X86 clflush instruction to evict contents
from the cache. To measure time the spy uses the rdtsc instruction which returns
the time since processor reset measured in processor cycles.

As reading from the LLC is much faster than reading from memory, the spy can
differentiate between these two cases. If, following the wait, the contents of mem-
ory is retrieved from the cache, it indicates that another process has accessed the
memory. Thus, by measuring the time to read the contents of memory, the spy can
decide whether the victim has accessed the monitored memory since the last time
it was evicted.

To implement the attack, the spyneeds to share themonitoredmemorywith the
victim. For attacks occurring within the same machine, the spy can map files used
by the victim into its own address space. Examples of these files include the victim
program file, shared libraries or data files that the victim accesses. As all mapped
copies of files are shared, this gives the spy access to memory pages accessed by the
victim. In virtualized environments, the spy does not have access to the victim’s
files. The spy can, however, map copies of the victim files to its own address space,
and rely on the VMM to merge the two copies using page de-duplication [15,25].
It should be pointed that, as the LLC is physically tagged, the virtual address in
which the spy maps the files is irrelevant for the attack. Hence,Flush+Reload is
oblivious to address space layout randomization [17].
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This sharing onlyworkswhen the victimdoes notmake privatemodifications to
thecontentsof the sharedpages.Consequently,manyFlush+Reloadattacks tar-
get executable code pages, monitoring the times the victim executes specific code.
The spy typically divides time into fixed width time slots. In each time slot the spy
monitors a few memory locations and records the times that these locations were
accessed by the victim. By reconstructing a trace of victim access, the spy is able to
infer the data the victim is operating on. Prior works used this attack to recover the
private key of GnuPG RSA [27] as well as for recovering the ephemeral key used in
OpenSSL ECDSA signatures either completely, for curves over binary fields [26], or
partially, for curves over prime fields [2].

2.2 The wNAF ScalarMultiplicationMethod

Several algorithms for computing the scalarmultiplication kGhave been proposed.
Oneof the suggestedmethods is touse thewindowednonadjacent form (wNAF)rep-
resentation of the scalar k, see [13]. In wNAF a number is represented by a sequence
of digits ki. The value of a digit ki is either zero or an odd number −2w < ki < 2w,
witheachpairofnon-zerodigits separatedbyat leastw zerodigits.Thevalueofk can
be calculated from itswNAFrepresentationusingk =

∑
2i ·ki. SeeAlgorithm 2 for

a method to convert a scalar k into its wNAF representation. We use | · |x to denote
the reduction modulo x into the range [−x/2, . . . , x/2).

Input: Scalar k and window width w
Output: k in wNAF: k0, k1, k2 . . .
begin

e ← k
i ← 0
while e > 0 do

if e mod 2 = 1 then
ki ← |e|2w+1
e ← e − ki

else
ki ← 0

end
e ← e/2
i ← i + 1

end

end

Algorithm 2. Conversion to Non-Adjacent Form

Letki be thevalueof thevariable eat the start of the ith iteration inAlgorithm 2.
From the algorithm, it is clear that

ki =
{

0 ki is even
|ki|2w+1 ki is odd

(1)

Furthermore:
k = 2i · ki +

∑

j<i

2j · kj (2)

Let m and m + l be the position of two consecutive non-zero wNAF digits, i.e.
km, km+l �= 0 and km+i = 0 for all 0 < i < l. We now have

− 2m+w <
∑

i≤m

ki · 2i < 2m+w, (3)
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and because l > w, we get −2m+l−1 <
∑

i≤m+l−1 ki · 2i < 2m+l−1. Substituting
m for m + l gives

− 2m−1 <
∑

i≤m−1

ki · 2i < 2m−1 (4)

We note that for the minimal m such that km �= 0 we have
∑

i≤m−1 ki · 2i = 0.
Hence (4) holds for every m such that km �= 0.

Because km is odd, we have −(2w − 1) ≤ km ≤ 2w − 1. Adding km · 2m to (4)
gives a slightly stronger version of (3):

− (2m+w − 2m−1) <
∑

i≤m

ki · 2i < 2m+w − 2m−1 (5)

One consequence of subtracting negative wNAF components is that the wNAF
representation may be one digit longer than the binary representation of the num-
ber. For n-digits binary numbers Möller [19] suggests using ki ← �k�2w when i =
n − w − 1 and e is odd, where �·�x denotes the reduction modulo x into the interval
[0, . . . , x). This avoids extending the wNAF representation in half the cases at the
cost of weakening the non-adjacency property of the representation.

2.3 Lattice Background

Before we describe how to get the necessary information from the side-channel
attack, we recall from previous works what kind of information we are looking
for. As in previous works [2,4,5,14,21,22], the side-channel information is used
to construct a lattice basis and the secret key is then retrieved by solving a lattice
problem on this lattice. Generally, for a private key α and a group order q, in pre-
vious works the authors somehow derive triples (ti, ui, zi) from the side-channel
information such that

− q/2zi+1 < vi = |α · ti − ui|q < q/2zi+1. (6)

Note that for arbitrary α and ti, the values of vi are uniformly distributed over the
interval [−q/2, q/2). Hence, each such triple provides about zi bits of information
about α. The use of a different zi per equation was introduced in [2]. If we take d
such triples we can construct the following lattice basis

B =

⎛

⎜
⎜
⎜
⎝

2z1+1 · q
. . .

2zd+1 · q
2z1+1 · t1 . . . 2zd+1 · td 1

⎞

⎟
⎟
⎟
⎠

,

whose rows generate the lattice that we use to retrieve the secret key. Now consider
the vector u = (2z1+1 · u1, . . . , 2zd+1 · ud, 0), which consists of known quantities.
Equation (6) implies the existence of integers (λ1, . . . , λd) such that for the vectors
x = (λ1, . . . , λd, α) and y = (2z1+1 · v1, . . . , 2zd+1 · vd, α) we have

x · B − u = y.
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Again using Equation (6), we see that the 2-norm of the vector y is at most√
d · q2 + α2 ≈ √

d + 1 · q. Because the lattice determinant of L(B) is 2d+
∑

zi · qd,
the lattice vector x · B is heuristically the closest lattice vector to u. By solving the
Closest Vector Problem (CVP) on input of the basis B and the target vector u, we
obtain x and hence the secret key α.

There are two important methods of solving the closest vector problem: using
an exact CVP-solver or using the heuristic embedding technique to convert it to
a Shortest Vector Problem (SVP). Exact CVP-solvers require exponential time in
the lattice rank (d + 1 in our case), whereas the SVP instance that follows from
the embedding technique can sometimes be solved using approximation methods
that run in polynomial time. Because the ranks of the lattices in this work become
quite high when attacking a 521 bit key, we mostly focus on using the embedding
technique and solving the associated SVP instance in this case.

The embedding technique transforms the previously described basis B and tar-
get vector u to a new basis B′, resulting in a new lattice of dimension one higher
than that generated by B:

B′ =
(

B 0
u q

)

,

Following the same reasoning as above, we can set x′ = (x,−1) and obtain the
lattice vectory′ = x′ ·B′ = (y,−q). The 2-norm ofy′ is upper bounded by approx-
imately

√
d + 2 ·q, whereas this lattice has determinant 2d+

∑
zi ·q(d+1). Note, how-

ever, that this lattice also contains the vector

(−t1, . . . ,−td, q, 0) · B′ = (0, . . . , 0, q, 0)

which will most likely be the shortest vector of the lattice. Still, our approximation
algorithms for SVP work on bases and it is obvious to see that any basis of the same
lattice must contain a vector ending in ±q. Thus, it is heuristically likely that the
resulting basis contains the short vector y′, which reveals α.

To summarize, we turn the side-channel information into a lattice and claim
that, heuristically, finding the secret key is equivalent to solving a CVP instance.
Then, we claim that, again heuristically, solving this CVP instance is equivalent to
solving an SVP instance using the embedding technique. In Section 5 we will apply
the attack to simulated data to see whether these heuristics hold up.

3 Using thewNAF Information

Assuming we have a side channel that leaks the double and add chain of the scalar
multiplication. We know how to use the leaked LSBs [2]. These leaked LSBs carry,
on average, two bits of information.

Given a double and add chain, the positions of the add operations in the chain
correspond to the non-zero digits in the wNAF representation of the ephemeral key
k. Roughly speaking, in half the cases the distance between consecutive non-zero
digits is w + 1. In a quarter of the cases it is w + 2 and so on. Hence, the average
distance between consecutive non-zero digits is w +

∑
i i/2i = w + 2. Since there
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are 2w non-zero digits, we expect that the double and add chain carries two bits of
information per each non-zero digit position.

Reducing this information to an instance of the HNP presents three challenges:

– The information is not consecutive, but is spread along the scalar.
– Due to the use of negative digits in the wNAF representation, the double and

add chain does not provide direct information on the bits of the scalar
– Current techniques lose half the information when the information is not at the

beginning or end of the scalar.

As described in [2], the OpenSSL implementation departs slightly from the
descriptions of ECDSA in Section 1. As a countermeasure to the Brumley and
Tuveri remote timing attack [5], OpenSSL adds q or 2 · q to the randomly chosen
ephemeral key, ensuring that k is n + 1 bits long. While the attack is only applica-
ble to curves defined over binary fields, the countermeasure is applied to all curves.
Consequently, our analysis assumes that 2n ≤ k < 2n+1.

To handle non-consecutive information,we extract a separateHNP instance for
each consecutive set of bits, and use these in the lattice. The effect this has on the
lattice attack is discussed in Section 4.

To handle the indirect information caused by the negative digits in the wNAF
representationwefinda linear combination ofk inwhichweknowthevalues of some
consecutive bits, we can use that to build an HNP instance.

Letm andm+l be thepositions of two consecutive non-zerowNAFdigitswhere
m + l < n. From the definition of the wNAF representation we know that k =
km+l2m+l +

∑
i≤m ki2i. We can now define the following values:

a =
km+l − 1

2
c =

∑

i≤m

ki · 2i + 2m+w

By (5) we have
2m−1 < c < 2m+w+1 − 2m−1 (7)

From (2) we have
k − 2m+l + 2m+w = a · 2m+l+1 + c

where 0 ≤ a < 2n−m−l and because l ≥ w + 1 there are l − w consecutive zero bits
in k − 2m+l + 2m+w.

In order to extract this information,we rely on a property of the curve where the
group order q is close to a power of two. More precisely, q = 2n − ε where |ε| < 2p

for p ≈ n/2. We note that many of the standard curves have this property.
Let K = A · 2n +C, with 0 ≤ A < 2L1 and 2p+L1 ≤ C < 2L1+L2 − 2p+L1 , note

that this implies L2 > p. Because q = 2n − ε we get K −A · q = K −A ·2n +A · ε =
C + A · ε. Now, |ε| < 2p. Consequently, 0 ≤ K − A · q < 2L1+L2 and we get
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∣
∣K − 2L1+L2−1

∣
∣
q

< 2L1+L2−1. For p + 1 < m < n − l we can set

L1 = n − m − l

L2 = m + w

C = c · 2n−m−l−1 = c · 2L1−1

K = (k − 2m+l + 2m+w) · 2n−m−l−1 = (k − 2m+l + 2m+w) · 2L1−1 = a · 2n + C

From (7) we obtain 2L1+m−2 < C < 2L1+L2 −2L1+m−2 which, because m ≥ p−2,
becomes 2p+L1 < C < 2L1+L2 − 2p+L1 . Thus, we have

∣
∣(k − 2m+l + 2m+w) · 2n−m−l−1 − 2n−l+w−1

∣
∣
q

< 2n−l+w−1

Noting that k = α · r · s−1 + h · s−1 (mod q), we can define the values

t = �r · s−1 · 2n−m−l−1�q,
u = �2n+w−l−1 − (h · s−1 + 2m+w − 2m+l) · 2n−m−l−1�q,
v = |α · t − u|q.

|v| ≤ 2n−l+w−1 ≈ q/2l−w+1, which gives us an instance of the HNP which carries
l − w bits of information.

4 HeuristicAnalysis

Now we know how to derive our triples ti, ui and zi that are used to construct the
lattice. The next obvious question is: How many do we need before we can retrieve
the private key α? Because the lattice attack relies on several heuristics, it is hard
to give a definitive analysis. However, we will give heuristic reasons here, similar to
those for past results.

Each triple (ti, ui, zi) gives us zi bits of information. If this triple comes from a
pair (m, l) such that p + 1 < m < n − l, then zi = l − w. In Section 3 we know that
on average l = w + 2. Since the positions of the non-zero digits are independent of
p, on average we lose half the distance between non-zero digits, or (w + 2)/2 bits,
before the first usable triple and after the last usable triple, which leaves us with
n − 1 − (p + 2) − (w + 2) bits where our triples can be. The average number of
triples is now given by (n − p − 3 − (w + 2))/(w + 2) and each of these triples gives
us l−w = 2bits on average.Combining this yields 2·(n−p−3−(w+2))/(w+2) =
2 · (n − p − 3)/(w + 2) − 2 bits per signature. For the secp256k1 curve we have
that n = 256, p = 129 and w = 3, leading to 47.6 bits per signature on average. Our
data obtained from perfect side-channels associated to 1001 signatures gives us an
averageof 47.6witha95%confidence interval of±0.2664.For the secp521r1 curve,
wehave thatn = 521,p = 259andw = 4,which suggests 84.33bitsper signatureon
average.Thedataaveragehere is 84.1658witha95%confidence interval of±0.3825.
See also the Z = 1 cases of Figures 1 and 2, which show the distribution of the bits
leaked per signature in the 256-bit and 521-bit cases, respectively.
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This formula suggests that on average, six signatures would be enough to break
a 256-bit key (assuming a perfect side channel), since 47.6 · 6 = 285.6 > 256. How-
ever, in our preliminary experiments the attack did not succeed once when using
six or even seven signatures. Even eight or nine signatures gave a minimal success
probability. This indicates that something is wrong with the heuristic. In general
there are two possible reasons for failure. Either the lattice problem has the correct
solution but it was too hard to solve, or the solution to the lattice problem does not
correspond to the private key α. We will now examine these two possibilities and
how to deal with them.

4.1 Hardness of the Lattice Problem

Generally, the lattice problembecomes easierwhen addingmore information to the
lattice, but it also becomesharder as the rank increases. Since each triple adds infor-
mationbutalso increases the rankof the lattice, it isnotalwaysclearwhetheradding
more triples will solve the problem or make it worse. Each triple contributes zi bits
of information, so we would always prefer triples with a higher zi value. Therefore,
we set a bound Z ≥ 1 and only keep those triples that have zi ≥ Z. However, this
decreases the total number of bits of information we obtain per signature. If Z is
small enough, then roughly speaking we only keep a fraction 21−Z of the triples,
but now each triple contributes Z + 1 bits on average. Hence, the new formula of
bits per signature becomes

21−Z · (Z + 1) · ((n − p − 3)/(w + 2) − 1).

Our data reflects this formula as well as can be seen in Figures 1 and 2 for the 256-
bit and the 521-bit cases, respectively. In our experiments we will set an additional
bounddon thenumberof triplesweuse in total,which limits the lattice rank tod+1.
To this end, we sort the triples by zi and then pick the first d triples to construct the
lattice. We adopt this approach for our experiments and the results can be found in
Section 5.

Fig. 1. Number of signatures against
bits per signature in the 256 bit case

Fig. 2. Number of signatures against
bits per signature in the 521 bit CASE
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4.2 Incorrect Solutions

The analysis of Nguyen and Shparlinski [22] requires that the ti values in the triples
are taken uniformly and independently from a distribution that satisfies some con-
ditions. However, it is easy to see that when two triples are taken from the same sig-
nature, thevalues for the ti = �r ·s−1 ·2n−mi−li−1�q and tj = �r ·s−1 ·2n−mj−lj−1�q
are not even independent, as they differ modq by a factor that is a power of 2 less
than 2n.

Recall fromSections 2.3 and3how the triples are used and created, respectively.
Consider a triple (tij , uij , zij) corresponding to a signature (ri, si, hi). The corre-
sponding vij = |α · tij − uij |q satisfies

|vij | =
∣
∣
∣|α · (ri · s−1

i · 2n−mj−lj−1) − 2n+w−lj−1

+ (hi · s−1
i + 2mj+w − 2mj+l) · 2n−mj−lj−1|q

∣
∣
∣

≤ q/2zij+1,

which is equivalent to

|vij | =
∣
∣|(α · ri + hi) · s−1

i · 2n−mj−lj−1 − 2n−1|q
∣
∣ ≤ q/2zij+1,

where p+1 < mj < n− lj and zij = l −w. Now (α · ri +hi) · s−1
i = ki mod q and

we know that the previous statement holds due to the structure of ki, specifically
due to its bits mj + w, . . . ,mj + lj − 1 repeating, with bit mj + lj being different
than the preceding bit. But the map x 
→ (x · ri +hi) · s−1

i is a bijection modq, and
hence for each i there will be many numbers X such that for all j

|vij(X)| =
∣
∣|(X · ri + hi) · s−1

i · 2n−mj−lj−1 − 2n−1|q
∣
∣ ≤ q/2zij+1.

Let Si = {X : |vij(X)| ≤ q/2zij+1 for all j}. If we now have that there exists an
X ∈ ⋂

i Si such that

X2 +
∑

i,j

(2zij · vij(X))2 < α2 +
∑

i,j

(2zij · vij(α))2,

then it is very unlikely that the lattice algorithm will findα, because X corresponds
to a better solution to the lattice problem. Note that this problem arises when fewer
signatures are used, because this leads to fewer distinct values for (ri, si, hi) and
hence fewer sets Si that need to intersect. This suggests that increasing the number
of signatures could increase the success probability.

Assuming that the Si are random, we want to determine what is the probabil-
ity that their intersection is non-empty. First we consider the size of the Si. Recall
that Si consists of all X mod q such that vij(X) has ‘the same structure as ki’. This
means that for each triple specified by mj and lj , the bits mj + w, . . . ,mj + lj − 1
repeat, and bit mj + lj is the opposite of the preceding bits. There are approxi-
mately 2n−(lj−w+1)+1 numbers modq that have this structure. Let fi be the num-
ber of triples of signature i and gij = (lj − w + 1) be the number of bits fixed by
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triple j of signature i. Then, because the triples do not overlap and because vij(.) is
a bijection, we have that

log2(|Si|) = n −
fi∑

j=1

(1 − gij) = n − fi +
fi∑

j=1

gij .

Let si = |Si| and assume that the Si are chosen randomly and independently from
all the subsets of integers in the range [0, . . . , N − 1] (of size si), where N = 2n.
Consider the following probability

pi = P (0 ∈ Si) = si/N,

since Si is randomly chosen. Now, because the Si are also chosen independently, we
have

P

(

0 ∈
⋂

i

Si

)

=
∏

i

pi.

Finally, since this argument holds for any j ∈ [0, . . . , N −1], we can apply the union
bound to obtain

pfail = P

⎛

⎝
⋃

j

(

j ∈
⋂

i

Si

)⎞

⎠ ≤
∑

j

P

(

0 ∈
⋂

i

Si

)

= N ·
∏

i

pi. (8)

Recall that each signature has fi = 21−Z · ((n − p − 3)/(w + 2) − 1) triples on
average and each triple contributes Z +1 bits on average, which means gij = Z +2
on average. If we plug in the numbers n = 256, p = 129, w = 3 and Z = 3, we
get that fi ≈ 6, gij = 5 and hence pi ≈ 2−6·(5−1) ≈ 2−24 if we assume an average
number of triples and bits in each signature. This in turn gives us an upper bound of
pfail ≤ N/224·k. If k ≥ 11, this upper bound is less than one, so this clearly suggests
that fromabout eleven signatures andup,we should succeedwith someprobability,
which is indeed the case from our experiments.

Repeating this for n = 521, p = 259, w = 4 and Z = 4, we obtain fi ≈ 5,
gij = 6 and hence pi ≈ 2−5·(6−1) ≈ 2−25. Consequently, pfail ≤ N/225·k, which
is less than one when k ≥ 21. However, in our experiments we require at least 30
signatures to obtain the secret key with some probability. Thus the above analysis
is only approximate as the secret key length increases.

5 ResultsWith aPerfect Side-Channel

Subsection 2.3 outlined our (heuristic) approach to obtain the secret key from a
number of triples (ti, ui, zi) using lattices and Section 3 outlined how to generate
these triples from the side-channel information. In this section we will look at some
experimental results to see if our heuristic assumptions are justified.
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As per Section 4, we used the following approach for our experiments. First, we
fixanumberof signaturess, a lattice rankdandaboundZ.Wethentakes signatures
at random from our data set and derive all triples such that zi ≥ Z, sorting them
such that the zi are in descending order. If we have more than d triples, we only take
the first d to construct the lattice. Finally we attempt to solve the lattice problem
and note the result. All executions were performed in single thread on an Intel Core
i7-3770S CPU running at 3.10 GHz.

When solving the CVP instances there are three possible outcomes. We obtain
either no solution, the private key or a wrong solution. No solution means that the
lattice problem was too hard for the algorithm and constraints we used, but spend-
ing more time and using stronger algorithms might still solve it. When a ‘wrong’
solution is obtained, this means that our heuristics failed: the solution vector was
not unique, in the sense that there were other lattice vectors within the expected
distance from our target vector.

When solving the SVP instance there are only two outcomes. Either we obtain
theprivatekeyornot.However, in this case it isnotasclearwhetherawrongsolution
means that therewere other solutions due to the additional heuristics involved.The
complete details of our experimental data are given in the Appendix.

5.1 256 Bit Key

For the 256 bit case, we used BKZ with block size 20 from fplll [6] to solve the SVP
instances, aswell as to pre-process theCVP instances.To solve theCVP,we applied
Schnorr-Euchner enumeration [23] using linear pruning [12] and limiting the num-
ber of enumerated nodes to 229.

TheCVPapproachseemsthebest,as the lattice rank(d+1)remainsquite small.
We restrict our triples to Z = 3 to keep the rank small, but a smaller Z would not
improve our results much. See the appendix for details. We observed that failures
are mostly caused by ‘wrong’ solutions in this case, rather than the lattice problem
being too hard. In all cases we found that using 75 triples gave the best results.
Table 2 in the Appendix lists the runtimes and success probabilities of the lattice
part of the attack for varying s. The results are graphically presented in Figures 4
and 5 in the Appendix.

5.2 521 Bit Key

For the 521 bit case, we used BKZ with block size 20 from fplll [6] to solve the SVP
instances. Due to the higher lattice ranks in this case, solving the CVP instances
proved much less efficient, even when restricting the triples to Z = 4.

With 30 signatures we get a small probability of success in the lattice attack
whereas with 40 signatures we can obtain the secret key in more than half of the
cases. It should be noted that as the number of signatures increases, the choice of
d becomes less important, because the number of triples with more information
increases. See the Appendix for Table 4 details and Figures 6 and 7 for a graphi-
cal representation.
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6 Results in aReal-LifeAttack

So far our discussion was based on the assumption of a perfect side-channel. That
is, we assumed that the double-and-add chains are recovered without any errors.
Perfect side-channels are, however, very rare. In this section we extend the results
to the actual side-channel exposed by the Flush+Reload technique.

The attack was carried on an HP Elite 8300, running CentOS 6.5. The victim
process runs OpenSSL 1.0.1f, compiled to include debugging symbols. These sym-
bols are not used at run-time and do not affect the performance of OpenSSL. We
use thembecause they assist us in finding the addresses to probebyavoiding reverse
engineering [9]. The spy uses a time slot of 1,200 cycles (0.375μs). In each time slot
it probes the memory lines containing the last field multiplication within the group
add and double functions. (ec GFp simple add and ec GFp simple dbl, respec-
tively.) Memory lines that contain function calls are accessed both before and after
the call, reducing the chance of a spy missing the access due to overlap with the
probe. Monitoring code close to the end of the function eliminates false positives
due to speculative execution. See Yarom and Falkner [27] for a discussion of over-
laps and speculative execution.

Fig. 3.Flush+Reload spy output. Vertical bars indicate time-slot boundaries; ‘A’ and
‘D’ are probes for OpenSSL access to add and double; dashes indicate missed time-slots.

Figure 3 shows an example of the output of the spy when OpenSSL signs using
secp256k1. The double and three addition operations at the beginning of the cap-
tured sequence are the calculation of the pre-computed wNAF digits. Note the
repeated capture of the double and add operations due to monitoring a memory
line that contains a function call. The actual wNAF multiplication starts closer to
the end of the line, with 7 double operations followed by a group addition.

In this example, the attack captures most of the double and add chain. It does,
however,miss a fewtime-slots andconsequentlya fewgroupoperations in the chain.
The spy recognises missed time-slots by noting inexplicable gaps in the processor
cycle counter. As we do not know which operations are missed, we lose the bit posi-
tionsof theoperationsthatprecedethemissedtime-slots.Webelievethatthemissed
time-slots are due to system activity which suspends the spy.

Occasionally OpenSSL suspends the calculation of the scalar multiplication to
performmemorymanagement functions.These suspends confuse our spy program,
which assumes that the scalar multiplication terminated. This, in turn, results in a
short capture, which cannot be used for the lattice attack.

Totestprevalenceof capture errorswecaptured1,000 scalarmultiplicationsand
compared the capture results to the ground truth. 342 of these captures contained
missed time-slots.Another 77 captures contains less than 250 group operations and
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are, therefore, too short. Of the remaining 581 captures, 577 are perfect while only
four contain errors that we could not easily filter out.

Recall, from Section 5, that 13 perfectly captured signatures are sufficient for
breaking the key of a 256 bits curve with over 50% probability. An attacker using
Flush+Reload to capture 25 signatures can thus expect to be able to filter out
11 that contain obvious errors, leaving 14 that contain no obvious errors. With less
than1%probability that eachof these 14 captures contains an error, theprobability
that more than one of these captures contains an error is also less than 1%. Hence,
the attacker only needs to test all the combination of choosing 13 captures out of
these 14 to achieve a 50% probability of breaking the signing key.

Several optimisations can be used to improve the figure of 25 signatures. Some
missed slots canbe recovered and the spy canbe improved to correct short captures.
Nevertheless, it should be noted that this figure is still an order of magnitude than
the previously best known result of 200 signatures [2], where 200 signatures corre-
spond toa3.5%probabilityofbreaking the signingkey,whereas 300 signatureswere
required to get a success probability greater than 50%.
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A ExperimentalResults

A.1 256 Bit Keys

Table 1. Results for d triples taken from s signatures with a 256-bit key (Z = 3)

SVP CVP
s d Time (s) psucc (%) Time (s) psucc (%)

10 60 1.47 0.0 1.56 0.5
10 65 1.42 1.0 1.90 2.5
10 70 1.44 1.5 2.45 4.0
10 75 1.50 1.5 2.25 7.0
11 60 1.28 0.0 1.63 0.5
11 65 1.68 5.0 2.35 6.5
11 70 1.86 2.5 3.15 19.0
11 75 2.05 7.5 4.66 25.0
11 80 2.12 6.0
12 60 1.27 2.0 1.69 7.0
12 65 1.71 2.5 2.45 10.5
12 70 2.20 7.5 3.99 29.5
12 75 2.57 10.5 7.68 38.5
12 80 2.90 13.0
12 85 3.12 8.5
12 90 3.21 15.5
13 60 1.30 3.5 1.92 8.5
13 65 1.77 6.0 2.79 25.5
13 70 2.39 11.0 4.48 46.5
13 75 3.16 19.0 11.30 54.0
13 80 3.67 18.5
13 85 3.81 21.5
13 90 4.37 25.0

Table 2. CVP results for 75 triples taken from s signatures with a 256-bit key (Z = 3)

s Time (s) psucc (%)
10 2.25 7.0
11 4.66 25.0
12 7.68 38.5
13 11.30 54.0

Fig. 4. Success probability per number
of signatures against a 256 bit key

Fig. 5.Expected running timeper num-
ber of signatures against a 256 bit key
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A.2 521 Bit Keys

Table 3. SVP results for d triples taken from s signatures with a 521-bit key (Z = 4)

s d Time (s) psucc (%) s d Time (s) psucc (%)
30 130 50.10 4.0 31 130 48.50 7.5
30 135 58.80 3.0 31 135 59.91 3.5
30 140 66.65 3.5 31 140 67.35 6.0
30 145 69.68 2.5 31 145 69.96 5.5
32 130 50.15 6.5 33 130 49.70 8.0
32 135 58.07 6.5 33 135 56.52 11.5
32 140 62.55 4.0 33 140 60.31 11.5
32 145 67.46 5.0 33 145 66.39 8.5
32 150 70.77 9.5 33 150 70.54 13.5
34 130 50.00 15.5 33 155 75.49 8.5
34 135 55.93 10.5 35 130 49.76 12.0
34 140 62.83 16.0 35 135 55.33 24.5
34 145 64.41 14.0 35 140 59.50 15.5
34 150 70.50 16.0 35 145 65.59 19.5
34 155 71.07 11.5 35 150 66.93 24.0
36 130 48.71 24.5 35 155 69.67 20.0
36 135 54.74 21.0 37 130 48.20 24.0
36 140 59.25 22.5 37 135 54.79 23.5
36 145 62.32 29.0 37 140 58.60 28.0
36 150 65.60 29.0 37 145 60.05 29.0
36 155 68.57 24.5 37 150 63.40 27.5
38 130 49.04 38.5 37 155 69.14 34.5
38 135 53.86 36.0 39 135 50.99 45.5
38 140 57.14 38.5 39 140 58.81 46.0
38 145 61.31 42.5 39 145 57.08 47.5
38 150 66.75 36.5 39 150 62.35 41.5
38 155 66.52 36.5 39 155 64.99 42.5
40 130 47.73 53.0
40 135 50.80 49.0
40 140 54.88 52.0
40 145 60.47 47.0
40 150 64.77 53.0
40 155 64.95 52.5

Table 4. SVP results for d triples taken from s signatures with a 521-bit key (Z = 4)

s d Time (s) psucc (%)
30 130 50.10 4.0
31 130 48.50 7.5
32 150 70.77 9.5
33 150 70.54 13.5
34 140 62.83 16.0
35 135 55.33 24.5
36 145 62.32 29.0
37 155 69.14 34.5
38 145 61.31 42.5
39 145 57.08 47.5
40 130 47.73 53.0
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Fig. 6. Success probability per number
of signatures against a 521 bit key

Fig. 7.Expected running timeper num-
ber of signatures against a 521 bit key
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Abstract. Covert channels are a fundamental concept for cryptanalytic
side-channel attacks. Covert timing channels use latency to carry data,
and are the foundation for timing and cache-timing attacks. Covert stor-
age channels instead utilize existing system bits to carry data, and are not
historically used for cryptanalytic side-channel attacks. This paper intro-
duces a new storage channel made available through cache debug facili-
ties on some embedded microprocessors. This channel is then extended
to a cryptanalytic side-channel attack on AES software.

Keywords: Side-channel attacks · Covert channels · Storage channels ·
Timing attacks · Cache-timing attacks

1 Introduction

In one of the seminal computer security works, Schaefer et al. [12] define a covert
channel as follows.

Covert channels are [data] paths not meant for communication but that
can be used to transmit data indirectly.

They go on to define both storage and timing channels:

Storage channels consist of variables that are set by a system process on
behalf of the sender, e.g., interlocks, thresholds, or an ordering. In timing
channels, the time variable is controlled: resource allocations are made
to a receiver at intervals of time controlled by the sender. In both cases,
the state of the variable (“on” or “off”, “time interval is 2 seconds”) is
made to represent information, e.g., digits or characters.

Continuing this line of research, a team of researchers at DEC in the 1990s wrote
a number of influential papers regarding covert channels [4–6,13], in particular
those enabled by caching technologies.

Traditional cryptanalysis views cryptosystems as mathematical abstractions
and develops attacks using theoretical models consisting of only inputs and out-
puts of the cryptosystem. In the case of e.g. a block cipher, the input would be
the plaintext and output the ciphertext, and cryptanalysis tasked with recover-
ing the key using sets of these inputs and outputs.
c© Springer International Publishing Switzerland 2015
K. Nyberg (ed.): CT-RSA 2015, LNCS 9048, pp. 22–34, 2015.
DOI: 10.1007/978-3-319-16715-2 2
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In contrast, side-channel cryptanalysis exploits implementation aspects to
aid in key recovery. What constitutes a side-channel is technically ill-defined,
but generally speaking it is an implementation-dependent signal procured dur-
ing the execution of a cryptographic primitive. This is where the fields of covert
channels and side-channel analysis intersect: identifying some microarchitecture
or software feature within a cryptosystem implementation that can be used to
transfer data between two legitimate parties, then developing it into a cryptan-
alytic side-channel attack when one party is legitimate and one illegitimate.

Cache-timing attacks exploit the varying latency of data load instructions
to carry out cryptanalytic side-channel attacks. These attacks are recognized by
both academia and industry as a serious threat to security-critical software: from
Page’s seminal work [9], to Bernstein’s attack on AES [2], to Percival’s attack on
RSA [11], to Osvik et al.’s attack on AES [8], to Brumley and Hakala’s attack
on ECDSA [3], to Aciiçmez et al.’s attack on DSA [1]. Arguably the most recent
example of cache-timing attacks affecting real-world systems and software is
Yarom and Benger’s work [14] that led to CVE-2014-0076 and induced changes1

in OpenSSL’s Montgomery ladder implementation.
Placing cache-timing attacks within the covert timing channel framework, it

is fair to say that utilizing covert timing channels for cryptanalytic side-channel
attacks is a popular, well-established paradigm. Covert storage channels, how-
ever, are essentially ignored due to lack of application.

This paper introduces a novel, practical covert storage channel. The basis
for the channel is that many caches have hardware support for per-cache line
privilege separation. The access control enforced by this separation creates a
storage channel that can be used to violate the system security policy. As with
most covert channels, it is then possible to extend this particular covert storage
channel to a cryptanalytic side-channel attack.

The organization of this paper is as follows. Section 2 provides necessary
background on popular AES software and existing cache-timing attacks against
such software implementations. Then Sec. 3 describes the new covert storage
channel, including the prerequisite hardware differences in the cache implemen-
tation compared to a traditional cache (Sec. 3.1), why such differences exist in
modern caches (Sec. 3.2), how this feature leads to a covert storage channel
(Sec. 3.3), how this channel extends to a cryptanalytic side-channel (Sec. 3.4),
and what practical architectures this applies to (Sec. 3.5). Final thoughts and
conclusions are drawn in Sec. 4.

2 Background

Applications of covert channels and subsequently side-channels are important
aspects from the practicality perspective. To this end, Sec. 2.1 gives some back-
ground on typical high-performance AES software implementation, and Sec. 2.2
on cache-timing attacks on such software. While this background is important
1 https://www.openssl.org/news/secadv 20140605.txt

https://www.openssl.org/news/secadv_20140605.txt
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to show the immediate applicability of the results in this paper, keep in mind
the underlying main results of this paper is the covert channel itself, and not its
application to any one cryptosystem in particular. That is, the covert channel
described in this paper will absolutely have applications outside of AES, but at
the same time AES serves as a good example of its application.

2.1 AES Software

Viewing the 16-byte AES state as a 4 × 4 matrix, the first nine AES rounds are
identical and consist of steps SubBytes, ShiftRows, MixColumns, and AddRound-
Key. The last round omits the MixColumns step. SubBytes γ : M4×4[IF28 ] →
M4×4[IF28 ] is a fixed non-linear substitution S : IF28 → IF28 (S-box) using finite
field inversion applied to all state bytes.

γ(a) = b ⇔ bij = S[aij ], 0 ≤ i, j < 4

MixColumns θ : M4×4[IF28 ] → M4×4[IF28 ] is a fixed linear transformation.

θ(a) = b ⇔ b = M · a

Here M is the following 4 × 4 matrix.

M =

⎡

⎢
⎢
⎣

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

⎤

⎥
⎥
⎦

Traditional AES software is heavily lookup table based. The reason for this is
that many of the low-level finite field operations, such as multiplications in θ and
inversions in γ, are simply not natively supported on mainstream microproces-
sors. To compensate for the understandable lack of Instruction Set Architecture
(ISA) support for such operations, a 32-bit processor leverages the linearity prop-
erty of the MixColumns step to improve performance. Consider the following four
tables, each containing 256 4-byte words.

T0[x] = (2 · S[x], S[x], S[x], 3 · S[x])
T1[x] = (3 · S[x], 2 · S[x], S[x], S[x])
T2[x] = (S[x], 3 · S[x], 2 · S[x], S[x])
T3[x] = (S[x], S[x], 3 · S[x], 2 · S[x])

That is, each Ti maps one byte for a particular component through the non-
linear layer input to the linear layer output. With these tables in hand, one AES
round amounts to 16 table lookups and 16 bitwise XORs, illustrated in Fig. 1.

Since the last round omits the MixColumns step, its implementation differs.
One popular way to implement the last round is as follows. Consider the following
table, containing 256 4-byte words.

T4[x] = (S[x], S[x], S[x], S[x])
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Fig. 1. One AES round with the T tables approach. 32-bit unsigned integers xi hold
state column i and rki are words of the particular round key.

Duplicating the S-box output across the word means that no shifting is necessary
to place the S-box output in the proper component. Instead, the redundant bytes
in the output get masked off with a bitwise AND operation after the lookup.
Implementation of the last round otherwise follows the computation in Fig. 1,
with the lookups into all Ti replaced with lookups into T4.

As a final note, there are countless strategies for implementing AES software,
but the preceding description is accurate for the popular C reference imple-
mentation rijndael-alg-fst.c by P. Barreto et al. used already in the AES
competition.

2.2 Cache-Timing Attacks

This T tables implementation approach potentially exposes the AES software to
cache-timing attacks. Lookups into the memory-resident T tables cause data
cache lines to be populated and evicted. Consider a typical data cache line
size of 64 bytes. Each T table is 1kB, hence spans 16 lines in the cache. For
one particular lookup of the 10 × 16 = 160 lookups in an AES encryption (or
decryption), the latency of the lookup depends on the state of the cache and
hence the state of the AES algorithm. Amongst the plentiful AES cache-timing
results over the past decade that leverage this varying latency to carry out
cryptanalytic side-channel attacks, two are particularly relevant to this paper
and are discussed below.

Prime and Probe. Osvik et al. [8] devise a number of cache-timing attacks
against T table based implementations of AES. For the purposes of this paper,
the most important part of their work is the strategy they devise to procure
the timings called “Prime+Probe”. In this strategy, the attacker first brings the
cache to a known state by either filling the entire cache or relevant cache sets by
performing loads and stores, inducing cache line population and eviction. The
attacker then submits a plaintext block. After the encryption completes, the
attacker, cache set-wise, measures the time required to re-read the data in the
cache sets, obtaining a latency measurement for each set. High latency implies
cache misses and that the victim accessed data mapping to the cache set, and
low latency the opposite.

Targeting the Last Round. Considering the first 9 AES rounds, each T
table has 4 lookups into it per round for a total of 36 lookups. Assuming each
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table spans 16 cache lines, the amount of state information that can be learned
from these lookups is limited because the order of the lookups is not (necessarily)
known w.r.t. the trace timing data. For example, after the probe step the attacker
knows which lines were evicted, but not what exact lookup caused the eviction.
Neve and Seifert [7] instead target the last round, specifically the T4 table. The
authors devise two attacks that seek to recover the last round key. The most
important for the purposes of this paper is the “elimination method” summarized
below.

The average number of cache sets accessed in the last round is 10.3 [7, Sec. 5]
and not accessed is 5.7 [7, Sec. 7.2]. This method keeps a set of candidate bytes for
each round key byte. An unreferenced set implies the corresponding upper four
bits of state are not possible for any state byte. Use the corresponding ciphertext
to compute the resulting impossible key bytes. This eliminates up to sixteen
key byte candidates from each key byte, or 256 candidates total. The attack
proceeds iteratively through the traces in this fashion, trimming the candidate
sets. Naturally as more traces are processed less trims are made as collisions
start occurring, i.e., eliminating bytes that have already been eliminated, but
the authors show that roughly 20 queries suffices to recover the key using this
method [7, Sec. 7.2].

3 Cache Storage Attacks

Consider the following hypothetical, simple data cache. There are 16 lines and
each line is 64 bytes. Assume wlog the cache is direct mapped. Whether the
cache is virtually/physically indexed/tagged is irrelevant to this paper. With
respect to the cache, a 32 bit address breaks down as follows. The lg(64) = 6
LSBs denote the offset within a line. The next lg(16) = 4 bits denote the set
index. The remaining 32− 6− 4 = 22 bits denote the tag. The set index and tag
combine to determine cache hits and misses, i.e. if the tag matches and the set
index matches, a cache hit occurs. In practice, while there are often more lines
and sets, this cache (or one extremely similar to it) is overwhelmingly what goes
into modern commodity microprocessors.

3.1 Hardware Privilege Separation

Now consider the following hypothetical, simple data cache that is similar but
supports privilege separation in hardware. What this means is the per-line meta-
data for the previous cache consisting of the tag gets extended to also include the
privilege level for that line’s contents. For simplicity’s sake this paper considers
only 1-bit privilege levels but the results are more generally applied. Figure 2
compares these two cache structures. One example of this 1-bit privilege level
could be identifying ring 0 or ring 3 in the cache for x86 protection mode: a 0
(or 1) could denote the physical memory corresponding to that particular cache
line belongs to ring 0 (or 3).
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Fig. 2. Left: Example traditional cache without hardware privilege separation. Right:
Example cache augmented with hardware privilege separation.

This paper assumes the cache replacement policy is oblivious to the seman-
tics of this privilege level bit, i.e., it is simply another bit of the tag that only
determines cache hits and misses. This means that privilege level 0 can evict
privilege level 1 data and vice versa. If this were not the case, resource starva-
tion would occur unless employing a more sophisticated cache structure (see e.g
[10] for a discussion). Also a common argument for this behavior is better cache
utilization, causing improved software performance that is a leading driver in
industry.

3.2 Motivation

There are potentially many reasons to store the per-line privilege level with the
cache metadata. Arguably the most appropriate use case is in debug scenarios.
To debug the cache itself or programs where cache performance is critical, some
architectures expose low level instructions that allow invasive access to the cache
data and metadata. For example, this could be used by software engineers:

– To examine cache state and eliminate it as a potential source of bugs e.g. in
hardware errata scenarios or coherency issues.

– To better understand their software’s cache impact, and subsequently
improve performance through analysis of said impact.

However, the cache cannot simply allow unchecked access to the lines and meta-
data. For example, privilege separation fails if privilege level 1 directly reads a
cache line belonging to privilege level 0. So the cache needs to know the privilege
level of each line’s data for security reasons to enforce a sane access control pol-
icy, and having that information stored directly alongside the tag is arguably the
most logical solution for the hardware itself to enforce said policy. For attempted
accesses that would violate the access control policy, a reasonable response would
be to issue a processor exception. This is similar to how e.g. a Memory Manage-
ment Unit (MMU) handles accesses to unmapped virtual addresses, i.e. invalid
page faults that usually result in segmentation faults.
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3.3 A Covert Channel

Alice (privilege level 0) and Bob (privilege level 1) construct a storage covert
channel out of the cache with privilege separation as follows. Assume wlog the
cache structure in Fig. 2 and that Alice wants to send lg(16) = 4 bits to Bob,
denoted nibble b.

1. Bob loads from 16 memory locations that all have different index bits. This
is the “prime” step and completely pollutes the cache, as well as populates
all privilege level bits in the cache to 1, corresponding to Bob’s privilege
level.

2. Alice loads from a single memory location with index bits b. She gets a cache
miss and evicts Bob’s line from index b. Note that, after this step, Alice leaves
the cache in the same state as Bob left it, other than index b: all lines have
privilege level bit set to 1 except line with index b now set to 0.

3. Bob tries to read directly from all 16 lines in the cache: this is the “probe”
step. When he reaches index b he triggers a processor exception because he
is attempting to violate privilege separation, but nonetheless receives b from
Alice, evidenced by the exception.

From the dishonest users’ perspective, the main disadvantage of this covert
channel is its detectability. Timing covert channels are difficult to detect since
the only evidence of their presence is performance degradation. In this case,
every time this particular processor exception occurs the system gets informed
so there is an audit trail.

The main advantage of this covert channel is its signal-to-noise ratio. By
nature, timing channels are heuristic – they are noisy and require tuning to
a particular system and cache performance. This cache storage channel, how-
ever, goes unaffected by these variables that affect cache hit and miss latencies.
The only thing the recipient needs to observe is the presence of the processor
exception. This exception is deterministic, not heuristic.

3.4 A Side-Channel Attack

An access-driven cache-timing trace, as used in e.g. the attacks described in Sec.
2.2, is interpreted as a sequence of cache hits (H) and misses (M) on a per cache
set (or line) basis. Note that the hits and misses are based on the memory access
timings being above or below some threshold, so they are quite sensitive to a
particular processor, cache, operating system, and system load – in practice they
are rarely error-free but instead require some statistical analysis. Nevertheless,
assume this timing trace is error-free. Attackers can “reconstruct” access-driven
cache-timing traces with the cache storage channel described above with the
following steps.

1. Read directly from a cache line. A processor exception indicates M, otherwise
H.

2. If M go back to the first step. This requires another query because the pro-
cessor exception most like wipes the cache state and/or triggers a reset.

3. If H continue with the next line.
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For example, Consider the following timing trace.

HMHHHMHHHHHHMHHH

The read from line 0 does not cause an exception, so the attacker logs H and
continues. Line 1 causes an exception. The attacker logs M, queries the same
plaintext again, reads from line 2, logs H and continues in this manner. Line 5
causes an exception. The attacker logs M, queries the same plaintext again, and
continues in this manner. It takes the attacker four queries to reconstruct the
trace: one for the initial query, and one for each processor exception (“cache
miss”).

Given the above analysis, cache storage attacks should exhibit the following
characteristics when compared to cache-timing attacks.

– The number of queries theoretically increases because, compared to cache-
timing attacks, each “cache miss” costs an additional query due to the pro-
cessor exception.

– The traces themselves, however, are overwhelmingly more accurate because
they are not heuristically based on timings.

This ease of reconstructing error-free cache-timing traces from error-free cache
storage traces allows leveraging previous cache-timing results directly. For exam-
ple, consider the attack by Neve and Seifert [7] summarized in Sec. 2.2. The
key recovery algorithm is essentially the same, but the number of queries will
increase. Figure 3 illustrates the implementation of the Neve and Seifert cache-
timing attack using the cache storage attack techniques in this paper. In the
cache-timing case, they state roughly 20 queries are needed to recover the last
round key. Given that their analysis shows the average number of cache sets
accessed is 10.3 and cache storage attacks need an initial query plus one query
for each cache set accessed (“cache miss”), the expectation is 20 ·(10.3+1) = 226
queries on average for the cache storage attack to succeed. The simulation results
in Fig. 3 are consistent with this estimate.

3.5 Relevant Architectures

The running example in this paper has been privilege levels 0 and 1 correspond-
ing to e.g. ring 0 and ring 3. To make these results more concrete, arguably
the most relevant architecture for cache storage attacks is ARM with TrustZone
extensions.

TrustZone technology provides hardware-assisted security mechanisms to
software, in particular Trusted Execution Environments (TEE). TEEs are ubiq-
uitous in the embedded space, e.g. mobile phones. In these cases, the mobile
operating system such as Android runs in the normal world or untrusted world
or insecure world or rich execution environment while the security-critical code
runs in the secure world or trusted world or trusted execution environment.

At any given moment, ARM microprocessors that support TrustZone exten-
sions operate in either secure or insecure mode. Insecure mode uses system calls
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Fig. 3. AES cache storage attack simulation results. Average number of remaining key
candidates (base-2 logarithm) as the number of encryption queries increases. Error bars
are one standard deviation on each side.

(dedicated instructions in the ISA) to switch to secure mode, the transition
handled by a piece of software ARM calls the monitor. From the system per-
spective, bus transactions originating from either the secure or non-secure world
are tagged using the AxPROT bus attribute, essentially a binary value that tracks
the privilege level of the transaction. Figure 4 illustrates this concept. Quoting
the ARM documentation:

In the caches, instruction and data, each line is tagged as Secure or Non-
secure, so that Secure and Non-secure data can coexist in the cache. Each
time a cache line fill is performed, the NS tag is updated appropriately.

Mapping this architecture to the previously described cache storage covert chan-
nel is simple: privilege level 0 corresponds to NS=0 and privilege level 1 to NS=1.
This statement directly from ARM validates the previous assumptions in this
paper with respect to the cache replacement policy – the data at different priv-
ilege levels coexists in the cache yet the replacement policy is oblivious to this
distinction. Secure data can evict non-secure data and vice versa.

Further illustrating the applicability of cache storage attacks to ARM archi-
tecture with TrustZone extensions, the documentation continues, illustrated in
Fig. 5:

It is a desirable feature of any high performance design to support data
of both security states in the caches. This removes the need for a cache
flush when switching between worlds, and enables high performance soft-
ware to communicate over the world boundary. To enable this the L1,
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and where applicable level two and beyond, processor caches have been
extended with an additional tag bit which records the security state of
the transaction that accessed the memory.
The content of the caches, with regard to the security state, is dynamic.
Any non-locked down cache line can be evicted to make space for new
data, regardless of its security state. It is possible for a Secure line load to
evict a Non-secure line, and for a Non-secure line load to evict a Secure
line.
The cache attempts the [sic] match the PA and the NS-bit from the TLB
with the tag of an existing cache line. If this succeeds it will return the
data from that cache line, otherwise it will load the cache line from the
external memory system.

Core

MMU

AXI interface

External 
memory

Secure 
slave

Non-
secure 
slave

Arbiter Master 
peripheralDecoder

NSTID

Core world 
state

Address

Abort

Cache

Line (n)       S
Line (n-1)  NS

Line 2       NS
Line 1         S

TCM

Line(n-1)

Line 1

Line(n)

Line 2

NS access bit

Data Data

Data

Page 
table 
walk

Address

Control

Data

S prot
Abort AxPROT[1]

Abort AxPROT[1]

S prot
Abort AxPROT[1]

NS attribute

NS
SS

NS

NS
S

NS
NS

Descriptor (n-1)    

Descriptor 1
Descriptor 2

Descriptor (n)    

Fig. 4. ARM architecture with TrustZone extensions: propagation of the
normal (NS=1) and secure (NS=0) signal (AxPROT) system-wide via bus
transactions. Source: http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.
ddi0333h/Chdfjdgi.html

The last ingredient missing for realizing the cache storage covert channel is
invasive access for direct cache line reads. These particular instructions will
generally depends on the chip manufacturer, exposed through instruction-level
CP15 (“coprocessor 15”) commands. Such commands are generally used for
e.g. performance monitoring, but these cache commands are encoded in an

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0333h/Chdfjdgi.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0333h/Chdfjdgi.html
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Fig. 5. ARM architecture with TrustZone extensions: cache logic with respect to the
normal (NS=1) and secure (NS=0) worlds. Source: http://infocenter.arm.com/help/
index.jsp?topic=/com.arm.doc.prd29-genc-009492c/ch03s03s02.html

implementation defined space (C15) so they are manufacturer dependent. Nev-
ertheless, some examples follow, e.g. through CP15 and C152:

The purpose of the data cache Tag RAM operation is to:
– read the data cache Tag RAM contents and write into the Data

Cache Debug Register.
– write into the Data Cache Debug Register and write into the Data

Tag RAM.
To read the Data Tag RAM, write CP15 with:

MCR p15, 3, <Rd>, c15, c2, 0 ;Data Tag RAM read operation

Transfer data to the Data Cache Debug Register to the core:

MRC p15, 3, <Rd>, c15, c0, 0 ;Read Data Cache Debug Register

While these particular commands are for reading tag data associated with a
particular line, the effect for the purposes of this paper is the same. The doc-
umentation goes on to describe the register format to specify the set and way
combination for the desired cache operation. Not specific to cache storage attacks
but more generically for issuing instructions to CP15, MCR is for coprocessor to
ARM transfers and MRC for ARM to coprocessor transfers.
2 http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0338g/
Bgbedgaa.html

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.prd29-genc-009492c/ch03s03s02.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.prd29-genc-009492c/ch03s03s02.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0338g/Bgbedgaa.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0338g/Bgbedgaa.html
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4 Conclusion

This paper introduces a new covert channel enabled by the data cache populating
per-line privilege level bits and subsequently enforcing privilege separation on
the lines. In contrast to previous covert timing channels that are inherently noisy,
this covert storage channel is much easier to utilize because it does not rely on
heuristic timings. While the use of this channel is easier to detect than covert
timing channels since the attacker will trigger processor exceptions, it clearly fits
the covert channel definition of Schaefer et al. [12] since the value of privilege
level bits is certainly not intended to carry data.

Cache storage attacks are related to cache-timing attacks in the sense that
the former can be used to construct an error-free side-channel trace for the latter,
shown in Sec. 3.4. The resulting cache storage attack given on AES is otherwise
a direct analog of the cache-timing attack, but requires more queries as shown
by the experiment results. The outcome is the leaking of an AES key across
privilege levels, clearly a violation of a system security policy.

Section 3.5 shows how cache storage attacks map nicely to ARM’s TrustZone
technology. It is worth noting that the instructions and commands needed to
carry out the cache storage attack are almost certainly not available in NS=1
user space, so the attack would be from NS=1 kernel space (e.g. Android) to the
NS=0 secure space (e.g. a TEE).

While ARM dictates the format used for cache line operations in the speci-
fication, the actual operations used for e.g. data cache line reads and writes are
in the CP15 implementation defined C15 instruction space, left to the manufac-
turer. As such, the most logical countermeasure to cache storage attacks lies in
these implementation defined instructions. Chip manufacturers should disallow
these instructions while in NS=1 mode, or at a minimum default to disallow yet
have the ability to issue these instructions from NS=1 be software configurable
from NS=0.
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1 Horst Görtz Institute for IT Security, Ruhr-Universität Bochum,
Bochum, Germany

2 Fakultät für Informatik und Mathematik, Universität Passau, Passau, Germany
3 DTU Compute, Technical University of Denmark, Lyngby, Denmark

mmeh@dtu.dk

Abstract. Designing block ciphers and hash functions in a manner that
resemble the AES in many aspects has been very popular since Rijndael
was adopted as the Advanced Encryption Standard. However, in sharp
contrast to the MixColumns operation, the security implications of the
way the state is permuted by the operation resembling ShiftRows has
never been studied in depth.

Here, we provide the first structured study of the influence of
ShiftRows-like operations, or more generally, word-wise permutations,
in AES-like ciphers with respect to diffusion properties and resistance
towards differential- and linear attacks. After formalizing the concept of
guaranteed trail weights, we show a range of equivalence results for per-
mutation layers in this context. We prove that the trail weight analysis
when using arbitrary word-wise permutations, with rotations as a special
case, reduces to a consideration of a specific normal form. Using a mixed-
integer linear programming approach, we obtain optimal parameters for
a wide range of AES-like ciphers, and show improvements on parame-
ters for Rijndael-192, Rijndael-256, PRIMATEs-80 and Prøst-128. As a
separate result, we show for specific cases of the state geometry that a
seemingly optimal bound on the trail weight can be obtained using cyclic
rotations only for the permutation layer, i.e. in a very implementation
friendly way.

Keywords: AES · AES-like · Differential cryptanalysis · Linear crypt-
analysis · Diffusion · Optimization · Mixed-integer linear programming

1 Introduction

Since 2000 with the standardization of Rijndael [11] as the Advanced Encryption
Standard (AES), an astonishing number of new primitives using components
similar to the AES have seen the light of day. Examples of such include, but are
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not limited to, block ciphers 3D [19], ANUBIS [3], LED [16], mCrypton [21] and
PRINCE [9], as well as hash functions like ECHO [5], Grøstl [14], LANE [18],
PHOTON [15], Twister [13] and components of CAESAR candidates PAEQ [8],
PRIMATEs [1], Prøst [20] and STRIBOB [25]. This can largely be attributed
to the seminal wide-trail design strategy [12] which was introduced along with
Rijndael and its predecessor SQUARE [10] for the first time.

The wide-trail strategy is an elegant way of ensuring good diffusion properties
and at the same time allow designers to easily give bounds on the resistance
towards differential- and linear cryptanalysis. Additionally, another advantage
is that it decouples the choice of the non-linear layer and the linear layer to a
large extent. In a nutshell, any good S-box combined with any good linear layer
will result in a cipher resistant against linear- and differential attacks.

For AES-like ciphers, including all the above mentioned designs, the linear
layer itself is composed of two parts: one resembles the AES MixColumns oper-
ation and the other resembles the AES ShiftRows operation. The MixColumns-
like operation is a matrix multiplication of the columns of the state and the
ShiftRows-like operation is a permutation of the words of the state.

For the former, the criteria are well understood. All that is required here
is that this operation has a suitably high branch number. In short, the branch
number corresponds to the minimal sum of the number of active S-boxes in an
input/output column, provided an active input column (and the number of active
S-boxes is the essential tool for bounding the success probability of linear- and
differential attacks). In stark contrast, for the operation resembling ShiftRows,
the situation is significantly less clear. Basically, the ShiftRows-like operation
highly influences the number of active S-boxes when considering more than two
rounds only. Understanding the bounds for more than two rounds is crucial for
many good designs. With a well-chosen ShiftRows-like operation it is usually
possible to derive much stronger bounds for more rounds than the trivial bound
one gets by multiplying the two-round bound by half the number of rounds.

In the case of the AES (and others including [5,8,9]) one uses a so-called super-
box argument to prove strong bounds on four rounds of the cipher. For others,
the problem is modelled as a mixed-integer linear programs like in [1,20,24] which
allows the computation of bounds for an (in principle) arbitrary number of rounds
for a given choice of the ShiftRows-like operation. However, no structured app-
roach for analyzing the influence of the ShiftRows-like operation on the security
of the cipher has been undertaken previously. The results so far remain ad-hoc and
specific to a given choice of parameters. Considering the large number of designs
following this approach, this shortcoming is quite surprising and unsatisfactory
from a scientific perspective. In particular, the choices made are often not opti-
mal and not based on an adequate understanding of the implications.

Our Contribution. In this paper, we develop a structured approach to analyz-
ing the permutation layer, i.e. the generalized ShiftRows-like operation, for AES-
like ciphers with respect to diffusion and resistance towards differential- and lin-
ear cryptanalysis. For this, we start by defining a general framework for AES-like
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ciphers. Note that we do not restrict to the case where permutation is identical in
all rounds but we allow for different choices of the permutation in different rounds.
Moreover, we first consider arbitrary word-wise permutations and later restrict
ourselves to word-wise rotations of the rows. The latter have the appeal of being
efficiently implementable on many modern CPUs. Our following analysis consists
of two parts.

First, and as a core contribution to a structured approach, we simplify the
problem by introducing the notion of equivalent permutation parameters. It is
intuitively clear that many choices of the permutation will lead to the same behav-
ior of the cipher. One such example is changing the order of the rotation constants
for the ShiftRows operation in the AES, i.e. rotate the first row by 3, the second
by 2, and so on. We will make this intuition precise and, as will be shown below,
discover more involved examples of the above.

The notion of equivalence will imply the same lower bound on the number of
guaranteed active S-boxes. This is interesting theoretically, as it allows to simplify
the problem. For example, we prove that a general permutation can never yield
better results than a permutation that operates on the rows individually. Further-
more, using this notion of equivalence, we derive a normalized representation of
any word-wise rotation of the rows. This allows to significantly reduce the problem
domain and thus the search space for a computational approach.

In the second part of our analysis, we use this normalized representation in
a combination with solving mixed-integer linear programs using the IBM ILOG
CPLEX library [17]. The source code for this part is available as [4]. This results
in optimal parameter suggestions for a wide range of AES-like ciphers. In partic-
ular, it allows us to suggest improved parameters for Rijndael-192, Rijndael-256,
PRIMATEs-80 and Prøst-128 on this front, see Table 1 for details.

Finally, given our extensive experimental results, we conjecture an optimal
lower bound on the number of active S-boxes possible for specific cases of the state
geometry. Those parameters are such that they allow for an iterative version of
the superbox argument mentioned above. We also provide a permutation which
guarantees this conjectured optimal bound. In contrast to prior work, e.g. ECHO
and PAEQ, this permutation layer is generic and, more importantly, realized with
cyclic row rotations only. Thus, it allows for an easy and efficient implementation.

Outline. In Section 2 we give notation and define what we mean by AES-like
ciphers. Then, in Section 3, we introduce, besides diffusion, the concept of guar-
anteed active S-boxes as a measure of the resistance against differential- and linear
attacks. Section 4 provides reductions in order to identify equivalent permutation
parameters for AES-like ciphers. We thereby also introduce the normal form of
rotation matrices, considering only cyclic rotations of the state rows. Section 5
copes with modelling the problem using a mixed-integer linear programming app-
roach in order to calculate optimal bounds for given state dimensions. In this
context, some practical examples for rotation parameters are provided. Finally,
Section 6 continues with a theoretic analysis of special cases of the state dimension
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and presents (conjectured) optimal solutions to the main criteria. We conclude the
paper in Section 7.

2 Preliminaries

We use Fqr to denote the finite field of size qr with q prime. We use Zn to inter-
changeably denote the group of integers modulo n and the set {0, 1, . . . , n − 1}.
We refer to binary strings in F

m
2 as words. We refer to M ×N matrices with word

entries as states. For a state X we use Xi to denote the ith row of X, and Xi,j

denotes word in the jth column of Xi. Let F be a function operating on states
and let ⊕ be bitwise addition. For words x, x′ we use the term difference to denote
x⊕x′, and let the notion extend to states where the differences are word-wise. For
input states x, x′ to F , we refer to x⊕x′ and F (x)⊕F (x′) as the input difference
and output difference, respectively. For an M ×N difference X, we use the symbol
with a tilde on top, e.g. X̃, to denote the activity pattern of X, an M × N matrix
over F2 where X̃i,j = 1 if Xi,j �= 0 and X̃i,j = 0 otherwise. For a, b ∈ F

m
2 we let

〈a, b〉 =
⊕m−1

i=0 ai ·bi denote the inner product of a and b, where subscript i denotes
the ith bit. We extend this inner product to states, s.t. for X,Y ∈ (Fm

2 )M×N we
have 〈X,Y 〉 =

⊕
i∈ZM ,j∈ZN

〈Xi,j , Yi,j〉.

2.1 AES-like Ciphers

With the increasing popularity of the AES since its standardization, dozens of new
ciphers that follow what we refer to as an AES-like design have seen the light of
day. We describe formally our notion of AES-like ciphers in Definition 1.

Definition 1. An AES-like cipher is a block cipher EK which is
parametrized by a fixed key K, the state dimension M × N , the word size m, the
number of rounds T and a permutation parameter π = (π0, . . . , πT−1), where each
πt is a permutation on ZM × ZN . It is composed of round functions Ri, s.t. EK =
RT−1◦· · ·◦R0. Each round function is composed of the following bijective transfor-
mations on states, s.t. ∀t ∈ ZT : Rt = AddRoundKeyt ◦Permuteπt

◦MixColumnst ◦
SubBytes:

1. SubBytes substitutes each word of the state according to one or several S-boxes
S : F

m
2 → F

m
2 .

2. MixColumnst applies, in round t, for all columns j ∈ ZN left-multiplication by
an M × M matrix Mt

j ∈ (Fm
2 )M×M :

MixColumnst : (Fm
2 )M×N → (Fm

2 )M×N

∀j ∈ ZN : (X0,j , . . . , XM−1,j)T 
→ Mt
j ·(X0,j , . . . , XM−1,j)T ,

where multiplication in F
m
2 is defined by an arbitrary irreducible polynomial

over F2 of degree m.
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3. Permuteπt
permutes, in round t, the words within the state due to a given per-

mutation πt. We use the notation that for a position (i, j) ∈ ZM × ZN in the
state, πt(i, j) gives the new position of that word under the permutation πt:

Permuteπt
: (Fm

2 )M×N → (Fm
2 )M×N

∀i ∈ ZM ,∀j ∈ ZN : Xi,j 
→ Xπt(i,j).

4. AddRoundKeyt performs word-wise XOR to the state using the tth round key.

Subsequently, we omit the AddRoundKeyt operation of Definition 1 from consider-
ation, as it does not affect diffusion properties nor resistance towards differential-
and linear cryptanalysis of the AES-like cipher. Note also, that for generality we
consider in Definition 1 an arbitrary word permutation Permuteπt

, while later we
will, for efficiency reasons, resrict ourselves to row-wise rotations of the words as
in the ShiftRows operations of the AES.

3 Diffusion and Resistance to Differential/Linear
Cryptanalysis

In this paper, we are concerned with two security aspects of an AES-like cipher,
namely diffusion on the one hand and resistance against differential- and linear
attacks on the other hand. We formally define our notations for both criteria in
the following.

3.1 Diffusion

The first definition of diffusion is attributed to Shannon [26]. Informally, diffusion
is about complicating the relationship between the ciphertext bits and plaintext
bits. When designing a cipher, it is desirable to obtain what we call full diffusion
after as few rounds as possible and indeed the number of rounds chosen for the
cipher is often determined by exactly this number.

Definition 2 (Diffusion degree). For a function F : F
�
2 → F

n
2 , we define the

diffusion degree d(F ) for F as the fraction of bits in the image under F that depend
on each bit of the pre-image, i.e.

d(F ) =
1
n

· �
{

j ∈ Zn | ∀i ∈ Z� : ∃x ∈ F
�
2 : F (x(i))j �= F (x)j

}
,

where F (x)j denotes the jth bit of F (x) and x(i) denotes the element x with the ith
bit flipped. We say that F obtains full diffusion when d(F ) = 1.

Definition 3 (Diffusion-optimality). Fix the state dimensions M × N . Con-
sider a permutation sequence π for an AES-like cipher which obtains full diffusion
after t rounds. We say that π is diffusion-optimal if there exists no π′ �= π which
obtains full diffusion after t′ < t rounds.
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3.2 Differential/Linear Cryptanalysis

Differential- and linear cryptanalysis were pioneered by Biham and Shamir [6,
7] and Matsui [23], respectively, to attack the DES. In a differential attack an
attacker tries to predict the difference of the state after several rounds when plain-
texts with a given difference are processed. In linear cryptanalysis, the attacker
tries to find biased linear Boolean equations involving plaintext-, key- and cipher-
text bits. Common to both attacks is that they are based on trails (or characteris-
tics). The probability (resp. correlation) of those trails can be upper bounded by
lower bounding the number of active S-boxes in any trail. Here, an S-box is active
in a given trail if it has a non-zero input difference (resp. mask). In general, if p is
the largest probability (resp. correlation) for the S-box to satisfy a differential- or
linear property, and any trail has at least k active S-boxes, then the trail property
holds with probability (resp. correlation) at most pk. This way of ensuring resis-
tance against linear and differential attacks is the basis of the wide-trail-strategy
as introduced by Daemen and Rijmen in [12]. The second important merit of the
wide-trail starategy is that it allows to treat the S-box and the linear-layer as black
boxes as long as they fulfill certain conditions. In our work, we follow both aspects
of this philosophy. The designer is interested in having the lightest trail as heavy
as possible. Indeed, knowing this probability is essential when determining the
number of rounds for the cipher in the design phase. We give definitions of trails
and trail weights in the following.

Definition 4 (Trail and trail weight). For an AES-like cipher EK using m-bit
words and state dimension M×N , a T -round trail is a (T+1)-tuple (X0, . . . , XT ) ∈
(
(Fm

2 )M×N
)T+1

and the weight of the trail is defined as

∑

t∈ZT

∑

i∈ZM

∑

j∈ZN

X̃t
i,j .

A pair of inputs x, x′ ∈ (Fm
2 )M×N are said to follow the differential trail

(X0, . . . , XT ) over T rounds if and only if X0 = x ⊕ x′ and

∀t ∈ {1, . . . , T} : Xt = (Rt−1 ◦ · · · ◦ R0)(x) ⊕ (Rt−1 ◦ · · · ◦ R0)(x′).

If (α0, . . . , αT ) is a T -round linear trail, then an input x ∈ (Fm
2 )M×N is said to

follow the linear trail (α0, . . . , αT ) if and only if

〈x, α0〉 = 〈R0(x), α1〉 = · · · = 〈(RT−1 ◦ · · · ◦ R0)(x), αT 〉.

We say that a trail is valid for EK if and only if there exists at least one input pair
(respectively input, for linear trails), which follows the trail.

Note from Definition 4 that the weight of a trail corresponds exactly to the number
of active S-boxes over those T rounds. In the remainder of this work, we concen-
trate on the differential case. However, the results apply equally to linear trails as
well.
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Definition 5 (Branch number). For a linear automorphism θ : (Fm
2 )M →

(Fm
2 )M , the differential branch number Bθ is defined as

Bθ = min
x,x′∈(Fm

2 )M

x�=x′

{
∑

i∈ZM

X̃i + Ỹi

}

, X = x ⊕ x′, Y = θ(x) ⊕ θ(x′).

In the context of an AES-like cipher EK , we say EK has branch number Bθ if and
only if it is the largest integer s.t. left multiplication by any of the M t

j used in the
MixColumnst operation has branch number at least Bθ.

In order to calculate a useful lower bound on the number of active S-boxes in an
efficient way, we focus on the Permuteπt

part of the round function. The SubBytes
operation will be considered as using an arbitrary S-box S : F

m
2 → F

m
2 , and the

analysis will be independent of the specifc instance of S. Each of the Mt
j matrices

used in the MixColumns operation will be considered as black-box linear opera-
tions, under the requirement that the AES-like cipher has branch number Bθ. A
formal definition of that idea is given in the following. For a T -round permutation
parameter π = (π0, . . . , πT−1), let ÃESM,N (π,Bθ) denote the set of all M × N
AES-like ciphers over T rounds with branch number Bθ using π0, . . . , πT−2 in the
first T − 1 rounds. The reason for not including πT−1 is that our proofs in the fol-
lowing use the fact that for different permutation sequences we can re-model one
AES-like cipher into another, up to the last round, and up to changing MixColumns
operations (but maintaining the branch number).

Definition 6. We say that the sequence of permutations
π = (π0, . . . , πT−1) tightly guarantees k active S-boxes for branch number Bθ

if and only if there is a valid trail of weight k for some EK ∈ ÃESM,N (π,Bθ) and
there is no valid trail of weight k′ < k, k′ > 0, for some E′

K ∈ ÃESM,N (π,Bθ).

We denote this property by π
Bθ−−→ k.

Definition 7 (Trail-optimality).Asequence of permutationsπ=(π0, . . . , πT−1)
with π

Bθ−−→ k is said to be trail-optimal if there exists no π′ = (π′
0, . . . , π

′
T−1) s.t.

π′ Bθ−−→ k′ where k′ > k.

Appendix A provides a proof that the number of tightly guaranteed active S-boxes
is really independent of the specific S-box instantiations. From Definition 6, it fol-
lows that the number of guaranteed active S-boxes is always a lower bound for
the actual minimum number of active S-boxes in any concrete instantiation of an
AES-like cipher.

4 Equivalent Permutations: Simplifying the Problem

In this section, we present a range of results which simplifies the problem of iden-
tifying good permutation parameters π for AES-like ciphers by showing when
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different permutation parameters are equivalent w.r.t. resistance towards
differential- and linear attacks. Obviously, for a fixed branch number, many differ-
ent π will tightly guarantee the same number of active S-boxes. Thus, identifying
conditions under which two different permutation sequences π �= π′ tightly guar-
antee the same bound is significant: for a theoretical understanding, this approach
simplifies the problem while for a computer-aided search for a good π parame-
ter, this significantly reduces the search space. In Definition 8, we specify what it
means for two permutation sequences to be equivalent.

Definition 8 (Equivalence of permutation sequences). Two permutation
sequences π, π′, for a T -round cipher, are said to be equivalent, denoted π ∼ π′,
if and only if for all possible branch numbers Bθ, the equality ÃESM,N (π,Bθ) =
ÃESM,N (π′, Bθ) holds. Intuitively, this means that for all AES-like ciphers using
π, there is an AES-like cipher using π′ which it is functionally identical to, up until
the last round.

We remark that, using this notion of equivalence, one can transform each cipher
EK using π into a cipher E′

K using π′ such that EK = τ ◦ E′
K for a permutation

τ on the state words. Thus, equivalence will imply the same number of tightly
guaranteed active S-boxes for all possible fixed branch numbers Bθ.

4.1 Equivalences for Permutation Sequences π

In order to prove the reduction to a normalized form on the round permutations,
we show a range of observations in the following. Firstly, Lemma 9 is a combina-
torial result on permutations on Cartesian products.

Lemma 9 (Representation of permutations on cartesian products).
Every permutation πt on the words of an M × N state can be represented as πt =
γ′◦φ◦γ where γ, γ′ are permuting the words within the columns and φ is permuting
the words within the rows.

Proof. Let TA, TB , TC , TD ∈ (ZM × ZN )M×N s.t. TAi,j
= (i, j) and let TB , TC

and TD be defined by the following diagram:

TA TB TC TD.
γ φ γ′

To show the result, we let TD = πt(TA) and show how to construct the permuta-
tions such that TD = (γ′◦φ◦γ)(TA). We first observe the following two properties
which must hold:

1. TB must be a matrix where, within each column j ∈ ZN , it holds that i)
the second coordinate of each point is equal to j, because γ only permutes
within each column of TA and ii) the set of first coordinates cover all of ZM ,
because TB is a permutation of ZM × ZN .

2. TC must be a matrix where, for each column j ∈ ZN , the points in column
j of TC are the same as those in column j of TD. This is required because
otherwise going between TC and TD using a permutation operating in each
column, is impossible.
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If we can determine a matrix TB with property (1) and a row permutation φ s.t.
TC = φ(TB) has property (2), we are clearly done, because TA and TD can be
obtained from TB respectively TC by applying a permutation on the columns.

For a matrix A ∈ (ZM × ZN )M×N , let Q(A) be an N × N matrix for which
Q(A)i,j is the number of occurences of j ∈ ZN in the second coordinate of the
points in column i ∈ ZN of A. As Q(TB) and Q(TC) are both magic squares of
weight M , one can decompose Q(TC) into a sum of M permutation matrices by
the Birkhoff-von Neumann Theorem (see e.g. [2, p. 164]), and thus

Q(TC) = P0 + · · · + PM−1.

Let φ be a permutation within each row, defined by applying Pi to row i ∈ ZM .
Then Q(φ(TB)) = Q(TC).

What is left to show is that there exists a column permutation TB of TA s.t.
the first coordinates in each column j of TC is correct, given the fixed permutation
φ. To see this, consider the case where TC requires a point (a, b) to be in column
j. Clearly, (a, b) is in column b of both TA and TB . Now, let Pi be such that it
moves some point in position (a′, b) of TB from column b to column j of TC . If
(a′, b) = (a, b), then (a, b) does not need to be moved within column b from TA to
TB by γ, but if (a′, b) �= (a, b), one can use γ to move (a, b) to (a′, b) so it ends up
in column j of TC . As each point (a, b) will only be present once in TC , it can be
moved once between TA and TB and never moved again. This procedure holds for
all points (a, b), and as such the result follows.1 �
Lemma 10 (Equivalence under permutations within columns). Let π =
(π0, . . . , πT−1) be a permutation sequence for an AES-like cipher EK and let γ, γ′ be
arbitrary permutations on the words within the columns of a state. Then, ∀t ∈ ZT :
π ∼ (π0, . . . , γ

′ ◦ πt ◦ γ, . . . , πT−1). In particular, the number of tightly guaranteed
active S-boxes is invariant under inserting permutations, before and after any πt,
which act on the columns of the state separately.

Proof. Fix the branch number Bθ and let EK ∈ ÃESM,N (π,Bθ). We consider any
round t ∈ ZT .

We first show that π ∼ π′ = (π0, . . . , πt ◦ γ, . . . , πT−1). Let E′
K be like EK

but using permutation sequence π′, with rounds denoted R′
t, t ∈ ZT . Thus, E′

K ∈
ÃESM,N (π′, Bθ). It holds that

R′
t = Permuteπt

◦ Permuteγ ◦ MixColumnst ◦ SubBytes.

Since γ operates on the columns separately, one can define

MixColumns′
t = Permuteγ ◦ MixColumnst,

which in turn is a linear layer for an AES-like cipher with the same branch number,
and we have

R′
t = Permuteπt

◦ MixColumns′
t ◦ SubBytes.

1 Thanks to John Steinberger who had the idea for this proof.
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Now, E′
K is a cipher which uses the permutation sequence π and thus

E′
K ∈ ÃESM,N (π,Bθ). The other inclusion follows the same way by applying γ−1.

For showing the case of π′ = (π0, . . . , γ
′ ◦ πt, . . . , πT−1), the argument is parallel.

By combining the two, the result follows. �
As an easy result, one obtains Theorem 11, which we state without proof. Note
that a permutation sequence is called ρ-alternating, written π = (π0, . . . , πρ−1)T ,
if it repeats the same ρ permutations alternatingly.

Theorem 11 (Reduction to permutations on the rows). Let π =
(π0, . . . , πρ−1)T be a ρ-alternating permutation sequence. Then one can construct
a π′ = (π′

0, . . . , π
′
ρ−1)T with π ∼ π′, s.t. for each t ∈ Zρ, it holds that π′

t permutes
only the words in each row of the state.

4.2 Equivalences for Rotation Matrices σ

While we have, until this point, focused on AES-like ciphers with arbitrary word-
wise permutations Permuteπt

as part of the round function, such general permu-
tations are not suitable for designs of cryptographic primitives. To that end, we
limit ourselves from this point on to AES-like ciphers where the permutation oper-
ation of the round function cyclically rotates each row of the state from left-to-right
using a rotation matrix as specified in Definition 12.

Definition 12 (Rotation matrix). Consider an AES-like cipher where the per-
mutation operation in the round function consists of cyclic word-wise rotations of
each state row. For such a cipher, we define a rotation matrix as a matrix σ ∈
Z

ρ×M
N , where ρ is a positive integer, such that

1. If ρ = T , then σt,i denotes the rotation amount for row i ∈ ZM in round t,
and

2. If ρ < T , then we have the further requirement that the rotation constants
alternate, such that σk,i denotes the rotation amount for row i ∈ ZM in
rounds t where t ≡ k mod ρ,

where, without loss of generality, we let the rotation direction be left-to-right.

As rotation matrices are a special case of arbitrary permutations, we remark that
the notion of equivalence includes these as well. We simplify our notion of an AES-
like cipher to only use row-wise rotations in the permutation part of each Rt. In
particular, we substitue the Permuteπt

operation by

ShiftRowsσt
: (Fm

2 )M×N → (Fm
2 )M×N

∀i ∈ ZM ,∀j ∈ ZN : Xi,j 
→ Xi,j+σt mod ρ,i mod N .

Lemma 13 (Equivalence under re-ordering of row entries). Let σ ∈ Z
ρ×M
N

be a rotation matrix and let ϑ0, . . . , ϑρ−1 be arbitrary, independent permutations
on the ρ rows of σ. Define σ′ s.t. ∀t ∈ Zρ : σ′

t = ϑt(σt). Then σ ∼ σ′.
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Proof. This directly follows from Lemma 10, as using σ′
t is equivalent to using

γ′ ◦ σt ◦ γ for appropriate permutations γ′ and γ on the state columns. �
Lemma 14 (Equivalence under row-wise constant addition). Let
σ ∈ Z

ρ×M
N be a rotation matrix and let c0, . . . , cρ−1 ∈ ZN . Define a rotation matrix

σ′ where ∀t ∈ Zρ,∀i ∈ ZM : σ′
t,i = σt,i + ct mod N . Then σ ∼ σ′.

Proof. We split the proof into two cases: i) T ≤ ρ and ii) T > ρ. Consider first
T ≤ ρ. If T < ρ, one can add constants to σT , . . . , σρ−1, since these are never used
anyway. Thus, let us consider T = ρ. We give a proof by induction that one can
add independent constants ct, . . . , cT−1 to σt, . . . , σT−1 to obtain an equivalent
rotation matrix σ′, and proceed by induction on t. Clearly, one can add a constant
to σT−1 to obtain an equivalent σ′, since the set ÃESM,N (σ,Bθ) does not cover
the use of σT−1. Assuming the statement holds for t, . . . , T − 1, we now prove
that it is possible to add a constant ct−1 to σt−1 as well. Using the notation that
SR = ShiftRows, MC = MixColumns, SB = SubBytes and RSk is a rotation of the
whole state by k positions, we have

Rt ◦ Rt−1=(SRσt ◦ MCt ◦ SB) ◦ (RS−ct−1 ◦ RSct−1 ) ◦ (SRσt−1 ◦ MCt−1 ◦ SB)

=SRσt ◦ RS−ct−1 ◦ RSct−1 ◦ MCt ◦ RS−ct−1 ◦ SB ◦ (RSct−1 ◦ SRσt−1 ◦ MCt−1 ◦ SB),

since RS−ct−1 commutes with SB. Now, since RSct−1 ◦ MCt ◦ RS−ct−1 =: MC′
t defines

a (just rotated) linear column mixing and since SRσt
commutes with RS−ct−1 , we

have

Rt ◦ Rt−1 = (RS−ct−1 ◦ SRσt
◦ MC′

t ◦ SB) ◦ (RSct−1 ◦ SRσt−1 ◦ MCt−1 ◦ SB),

and we see that by adding ct−1 to σt−1 and −ct−1 to σt we obtain an equivalent
σ′. The result now follows by induction, since the addition of −ct−1 to σt can be
undone by the induction assumption.

For the case T > ρ, let H be a T × M matrix where Ht = σk when t ≡ k mod
ρ. For a T -round AES-like cipher EK , H and σ are clearly equivalent rotation
matrices. From the above, it follows we can add ct to row t of H, t ∈ ZT , and
obtain an equivalent H ′. In particular, adding the same ck to all rows t where
t ≡ k mod ρ, we obtain H ′ which is equivalent to σ, and has the property that
H ′

i = H ′
j if i ≡ j mod ρ, and in particular the first ρ rows of H ′ equals σ′ and the

result follows. �
Theorem 15 (Equivalence for rotation matrices). Given a rotation matrix
σ ∈ Z

ρ×M
N , one can obtain an equivalent matrix σ′ ∈ Z

ρ×M
N for which the following

holds simultaneously

1. Each row σ′
t, t ∈ Zρ, is lexicographically ordered,

2. For all t ∈ Zρ it holds that σ′
t,0 = 0 and

3. For all t ∈ Zρ it holds that σ′
t,1 ≤ N

2 .

Proof. Points (1) and (2) follow directly from Lemma 13 and 14, respectively. For
point (3), let us assume w.l.o.g that (1) and (2) hold and consider the case where
M ≥ 2 and consider the element σt,1 from some row σt. If σt,1 > N

2 , we add
−σt,1 mod N and the result follows from Lemmas 13 and 14. �
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Besides Theorem 15, we heuristically suggest a search for optimal rotation matri-
ces to restrict itself to matrices where all entries in a row are different, i.e. ∀t ∈
Zρ : σt,j = σt,j′ ⇔ j = j′, as equal entries in some σt are redundant w.r.t. the
diffusion properties of the cipher. Moreover, when N is even, we require that σ
contains at least one odd entry, because otherwise even-numbered columns never
mix with odd-numbered columns. We refer to a rotation matrix which satisfies
these properties, plus properties (1) – (3) of Theorem 15, as the normal form of
its equivalence class of rotation matrices.

5 Mixed-Integer Linear Programming and Experimental
Results

One advantage of modeling the S-boxes and linear layers as black boxes is that
one easily can compute useful lower bounds on the number of guaranteed active S-
boxes using a mixed-integer linear programming approach. We describe this app-
roach next.

5.1 The Problem as a Mixed Integer Linear Program

In the following, we describe the mixed-integer linear program which models the
problem of determining the tightly guaranteed trail weight under a given rotation
matrix σ ∈ Z

ρ×M
N . We give the parameters, decision variables, the constraints and

the target optimization as Model 1. This formulation is similar to that of Mouha
et al. [24]. We note that Model 1 is specified for the case where each Mt

j used in
the MixColumnst operation is an MDS matrix, as this is usually what is applied
in designs. If, on the other hand, non-MDS matrices are deployed, the model can
be easily modified to cover these cases as well, at the cost of a slightly more com-
plicated model. Theorem 16 formalizes how Model 1 provides us with the sought
bound.

Theorem 16. The solution of Model 1 is always a lower bound on the number of
tightly guaranteed active S-boxes for an AES-like cipher with branch number Bθ

and rotation matrix σ. If the branch number is optimal for the given dimensions
and a linear mixing layer with this branch number exists (and the word length m >
log2(M + 2)), this provides a tight bound.

Proof. This follows from Corollary 27 in Appendix A. �
Theorem 16 shows in particular that one can not hope to improve the bounds
in a generic way for the case of AES-like ciphers using MDS matrices. That is
to say that any argument to improve upon the bounds provided by the model
will necessarily be a non-black box argument. Thus, in the spirit of the wide-trail
strategy, one cannot improve upon those bounds.
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Model 1: MILP model for determining the guaranteed trail weight using a fixed
rotation matrix

Parameters

Name Domain Description

M Z+ Number of rows in state
N Z+ Number of columns in state
T Z+ Number of rounds
ρ Z+ Number of rows in rotation paramter σ
Bθ Z+ Branch number of MixColumns

σ Z
ρ×M
N Rotation parameter

Decision variables

Name Domain Index domain Description

X̃t
i,j F2 i ∈ ZM , j ∈ ZN , t ∈ ZT ∪ {T} X̃i,j = 1 if and only if the word in position (i, j)

is active before round Rt

at
j F2 j ∈ ZN , t ∈ ZT Auxilliary variable; at

j = 1 if and only if col-
umn j has an active word before round Rt

Minimize ∑

t∈ZT

∑

i∈ZM

∑

j∈ZN

X̃t
i,j

subject to ∑

i∈ZM

∑

j∈ZN

X̃0
i,j ≥ 1 (1)

∀j ∈ ZN , ∀t ∈ ZT :
∑

i∈ZM

X̃t
i,j + X̃t+1

i,(j+σt mod ρ,i) mod N
≥ Bθ · at

j (2)

∀i ∈ ZM , ∀j ∈ ZN , ∀t ∈ ZT : at
j ≥ X̃t

i,j (3)

5.2 Experimental Results

A part of our contribution is a wide range of optimal choices of rotation matrices for
various state geometriesM×N , ρ andnumber of roundsT . For all our experiments,
we concentrated on the case of MDS MixColumnst layers, i.e. AES-like ciphers with
optimal branch number. Using the heuristic approach from Section 4.2, i.e. by
brute-forcing the normal form of each equivalence class of rotation matrices, we
provide optimal solutions for the analyzed cases as per Theorem 16. The full table
of results is given in Appendix B.

We highlight in Table 1 results which suggest improvements for some existing
AES-like primitives. We see that, in some cases, direct replacement of σ yields
better bounds, while in other cases, one must increase ρ to obtain better bounds.

Among our findings are tight bounds which are not a multiple of the branch
number for an even number of rounds. This implies that there exists some MDS
linear mixing layers such that the lightest valid trail contains a two-round subtrail
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Table 1. Improvements for existing AES-like primitives. An entry (ρP , BP )/(ρM , BM )
gives ρ and the number of tightly guaranteed S-boxes B in a T -round trail for the primi-
tive (subscript P ) and the modified primitive (subscript M), respectively. The † symbol
indicates results where only diffusion-optimal σ were tested, which means actual obtain-
able bounds may be higher.

Primitive T = 5 T = 6 T = 7 T = 8 T = 10 T = 12

Rijndael-192 − (1, 42)/(1, 45) (1, 46)/(1, 48) (1, 50)/(1, 57) − (1, 87)/(1, 90)
Rijndael-256 − (1, 50)/(2, 55) − − (1, 85)/(2, 90) (1, 105)/(2, 111)
PRIMATEs-80 (1, 54)/(2, 56) − − − − −
Prøst-128 − (2, 85)/(2, 90)† (2, 96)/(2, 111)† − − −

of weight more than Bθ. Thus, some optimal trails have non-optimal transitions
locally.

6 Optimal Solutions

In this section we describe, for special cases of the state geometry, optimal solu-
tions with respect to both our main criteria, i.e. with respect to diffusion properties
on one hand and resistance towards differential/linear attacks on the other hand.

6.1 Diffusion-Optimal Rotation Matrices

Under the assumptions that each S-box S : F
m
2 → F

m
2 and each Mt

j matrix has
the property that each output bit depends on each input bit, we describe in the
following a way of tracking the diffusion properties for an AES-like cipher EK . Let
z be an arbitrary fixed bit of an input to EK . When, in the beginning of a round,
a single bit in a column depends on z, then each bit in the column will depend on
z after applying MixColumns ◦ SubBytes. Thus, with fixed parameters M,N and
σ, determining how many rounds t are required to obtain full diffusion reduces to
answering how many rounds are required to have at least one bit depending on
z in each column: if this is obtained after t′ rounds then full diffusion is obtained
after t = t′ + 1 rounds. This is formalized in the following.

Definition 17 (Sumset). Let G be an additive group and let A,B ⊂ G. We
define the sumset written A + B as A + B = {a + b | a ∈ A, b ∈ B}, where
the sum is over G. We write kA for the sumset A + A + · · · + A with k terms.

Theorem 18. Consider an AES-like cipher with fixed parameters
M,N, ρ and σ. Let w.l.o.g. z denote a bit in the word X0,0 for an input X. Let
α(T ) = (α(T )0, . . . , α(T )ρ−1) be a vector where αi, 0 ≤ i < ρ, equals the number
of times σi is used in a ShiftRows operation during T rounds of the cipher. Then,
after T rounds, the indices of columns which contain bits depending on z are given
by the sumset α(T )0σ0+α(T )1σ1+ · · ·+α(T )ρ−1σρ−1, where addition is over ZN .

Proof. Let S−1 = {0}. We recursively define St = {v + s | s ∈ St−1, v ∈ σt mod ρ}
for t ≥ 0, where addition is in ZN . Note that the set St corresponds exactly to the
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sumset α(t)0σ0+ · · ·+α(t)ρ−1σρ−1. Clearly, S0 = {v | v ∈ σ0} is the set of indices
of columns that contain words depending on z after round R0. Now, assume that
St are the column indices which contain some word depending on z after Rt. Then,
after applying MixColumnst+1, all words in columns j ∈ St depend on z. Now,
when we apply ShiftRowsσt+1 mod ρ

, the words depending on z are moved exactly
to the indices given in St+1, and thus the result is obtained by induction. �
Corollary 19. Consider an AES-like cipher with fixed parameters M,N, ρ and σ.
If t′ is the smallest positive integer s.t. the sumset α(t′)0σ0 + · · · + α(t′)ρ−1σρ−1

over ZC generates all of ZN , then the cipher obtains full diffusion after t = t′ + 1
rounds.

Proof. The proof follows from Theorem 18. Note that we chose the input bit z
from the word X0,0. If it would be chosen from an arbitrary word Xi,j , the cor-
responding sumset would be just shifted by a constant c. However, these are the
same sumsets for all possible c, since they generate all of ZN . �
Theorem 20. When N = Mρ, a diffusion-optimal rotation matrix is σ ∈ Z

ρ×M
N

s.t. σt,i = i ·M t for (t, i) ∈ Zρ ×ZM or any σ′ where the entries of σ are permuted.
These obtain full diffusion after ρ + 1 rounds.

Proof. The set of indices of columns containing a word depending on z after ρ
rounds is given by the sumset σ0 + · · · + σρ−1 over ZN . This sumset has Mρ = N
sums, and thus equals ZN if and only if no two sums in the sumset are equal. To
see why this is the case, consider constructing M -adic numbers using the sums
in the sumset. We pick exactly one element from each row of σ and add them.
As the elements in row t are σt =

(
0M t 1M t · · · (M − 1)M t

)
, the choice for the

sum from σt is the tth least significant digit in the M -adic representation of that
number. In other words, the rows of σ form a base for the M -adic number system,
and we can form any number up to

∑ρ−1
t=0 (M − 1)M t = N − 1 with it. Since

Mρ elements cannot be generated using less than ρ parameters in the sumset, the
diffusion-optimaltiy of σ follows. �

6.2 Trail-Optimal Solutions

In this section, we first state Theorem 21, which is of particular interest because of
the large number of AES-like ciphers with square geometry. Considering its state-
ment, square states can be understood quite well. We also give a conjecture on
the optimality of guaranteed trail weights for M ×Mn AES-like ciphers over 2n+1

rounds and give a construction which matches the conjectured bound.

Theorem 21 (Optimality for square geometries). Let σ be a rotation matrix
in normal form operating on a square state of dimension M ×M . Then the number
of tightly guaranteed active S-boxes is invariant under increasing ρ. In particular,
any σ has σ ∼ (

0 1 · · · M − 1
)
. Furthermore, assuming the existence of at least

one MDS linear layer and the word length m > log2(M + 2), we have σ
M+1−−−→

k(M + 1)2 over 4k rounds for all k ∈ N.
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Proof. As for any ρ > 1, each row σt of a rotation matrix σ in normal form will
equal

(
0 1 · · · M − 1

)
, or any permutation hereof, this is equivalent to having

ρ = 1 by Lemma 13. In order to prove the second statement, we first apply the
Four-Round Propagation Theorem [12, Theorem 3] of the AES in a repeated man-
ner, which provides the stated k(M +1)2 as a lower bound. It is left to argue that
there is a valid 4k-round trail of weight k(M + 1)2 for some EK using the specific
parameters. Therefore, we first define a four-round trail X of weight (M + 1)2 as

X :=

⎛

⎜
⎜
⎜
⎝

⎛

⎜
⎜
⎜
⎝

1 0 · · · 0
0 0 · · · 0
...

... . .
. ...

0 0 · · · 0

⎞

⎟
⎟
⎟
⎠

,

⎛

⎜
⎜
⎜
⎝

1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

⎞

⎟
⎟
⎟
⎠

,

⎛

⎜
⎜
⎜
⎝

1 1 · · · 1
1 1 · · · 1
...

...
. . .

...
1 1 · · · 1

⎞

⎟
⎟
⎟
⎠

,

⎛

⎜
⎜
⎜
⎝

1 0 · · · 0
0 0 · · · 1
...

... . .
. ...

0 1 · · · 0

⎞

⎟
⎟
⎟
⎠

,

⎛

⎜
⎜
⎜
⎝

1 0 · · · 0
0 0 · · · 0
...

... . .
. ...

0 0 · · · 0

⎞

⎟
⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎠

.

By repeating this structure k times, one can define a 4k-round trail of weight
k(M +1)2. For the validity of this trail for some EK , one can see that it is obtain-
able by only using the identity as the S-box and existing mixing steps, applying
Corollary 27 in Appendix A. �
Theorem 21 implies that a designer who wants to improve upon the bound for a
square dimension necessarily has to choose a rotation parameter σ consisting of
at least one σt which breaks the normal form structure. Intuitively, this would not
only provide a worse bound but also worse diffusion properties. However, giving an
argument for the trail-optimality considering all possible rotation matrices (resp.
permutations) seems to be quite difficult.

For the special case of a hypercubed geometry, we give Conjecture 22.

Conjecture 22. Given the state dimension M ×Mn for an AES-like cipher, then a
trail-optimal choice of the permutation sequence π over 2n+1 rounds yields π

M+1−−−→
(M + 1)n+1.

The Superbox Argument. The superbox argument is a commonly used proof
technique to lower bound on the number of active S-boxes in an AES-like cipher
over a certain number of rounds. It has been used for the AES but also for ECHO [5]
and PAEQ [8].

One uses the fact that for a clever choice of the rotation matrix, the round oper-
ations can be commuted such that some part of the encryption first works locally,
in parallel, on parts of the state which we call superboxes. Next the superboxes
are combined using state-wide operations which effectively mix the superboxes
together, only to split the state into superboxes again, working with the local-
ized operations. Such a large structure is referred to as a megabox, and covers four
rounds of the cipher.

One can show that if a superbox has active input, there are at least Bθ active
S-boxes in the first two rounds inside this superbox. Now, with the right choice of
rotation matrix, the operation that combines the superboxes again imply that for
the next two rounds, the total number of active superboxes is at least Bθ. From
this, one obtains a four-round lower bound of B2

θ .
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This concept, which is the idea behind the Four-Round Propagation Theo-
rem [12, Theorem 3], can be easily generalized by iteration for appropriate dimen-
sions of state in the AES-like cipher, and with an appropriately chosen rotation
matrix. We stress, however, that choosing the rotation matrix correctly for the
given state dimension is of paramount importance to assuring the argument that
one has e.g. Bθ active superboxes in a megabox (or equivalently for higher dimen-
sions).

As mentioned, in Theorem 23, we give a construction which achieves the bound
given in the conjecture above. Note that (especially for a cubed state dimension)
this approach is not new in itself. Our main point here is that, in clear distinction
to prior work such as [8], we present an efficient way of implementing this idea by
using cyclic rotations only. For a better visualization, Example 24 illustrates this
construction for M = 4 and n = 3.

Theorem 23 (2n+1-Round Propagation Theorem). There exists a rotation
matrix σ ∈ Z

2n×M
Mn , such that every (non-zero) valid 2n+1-round trail over all EK ∈

ÃESM,Mn(σ,Bθ) has a weight of at least Bn+1
θ . The rotations can be described as

∀j ∈ Zn : σ2n−j−2 = σ2n−j−1 =
(
0 M j 2M j · · · (M − 1)M j

)

∀j ∈ Zn−1 : ∀i ∈ Z2n−(j+1) σi = σ2n−j−3−i.

Proof. For n = 1, the statement is precisely the Four-Round Propagation Theo-
rem of the AES. Therefore, we first prove the theorem for the eight-round case,
thus for n = 2. We need to show that

σ :=

⎛

⎜
⎜
⎝

0 M 2M · · · (M − 1)M
0 M 2M · · · (M − 1)M
0 1 2 · · · M − 1
0 1 2 · · · M − 1

⎞

⎟
⎟
⎠

Bθ−−→ B

over eight rounds for a B ≥ B3
θ . For the proof, we rely on a straightforward gen-

eralization of the Four-Round Propagation Theorem to the dimension one higher
than the standard AES, as described previously. In particular, if one can parti-
tion the M × M2 state into M sub-states of M columns each (i.e. consider them
as M ×M sub-states), such that in four consecutive rounds, the ShiftRows oper-
ating in the first and second rounds shifts each such sub-state as if using the vector
(0 1 · · · M −1), with respect to considering that particular M ×M sub-state, then
the number of guaranteed active S-boxes in each such sub-state over four rounds
it at least B2

θ (assuming a non-zero input difference). Note that the rotations of
the third and fourth round have no impact on the four-round trail weight.

Fig. 1. Positions of the 4 independent sets of columns in a 4 × 16 state

Using the σ specified, the first four rounds of EK satisfies this property when
the M sub-states of size M × M are taken to be every Mth column of the state,
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as indicated for a 4×16 state in Figure 1. The same thing holds when considering
the last four rounds separately.

Now, due to the way the row shifting of the third round combines with the
column mixing and row shifting of the fourth round, i.e. SRσ3 ◦ MC ◦ SB ◦ SRσ2 , each
M × M sub-state mixes completely with each of the M × M sub-states. As such,
like in the Four-Round Propagation Theorem, the sum of active M ×M sub-states
from the third and fourth round is at least Bθ. Combining this observation with
the generalized Four-Round Propagation Theorem, the result of Bθ · B2

θ follows.
The general case is now obtained by induction. In order to do the iteration to

2(n+1)+1 rounds, one has to apply the 2n+1-round propagation. �
Example 24. Let M = 4, n = 3 and Bθ = 5. Then the state has geometry 4 ×
64. The guaranteed trail weight of 625 over 16 rounds can be realized using the
rotation matrix

σ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 16 32 48
0 16 32 48
0 4 8 12
0 4 8 12
0 16 32 48
0 16 32 48
0 1 2 3
0 1 2 3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

We remark that especially for higher dimensions, a rotation matrix following
this construction is not of much practical interest as the diffusion properties are far
from optimal. One open question is whether it is possible to obtain these bounds
without using a rotation matrix which allows a proof using a superbox-like argu-
ment for general M . For the special case of M = 2 and N = 4, we found that

σ =
(

0 0 0 0 0 0 0 0
1 1 1 1 1 2 1 1

)T

,

which contains no superbox structure, yields σ
3−→ 27 over eight rounds.

7 Conclusion

For AES-like ciphers, the linear mixing layer, often denoted MixColumns, is very
well understood: one typically chooses mixing layers defined by MDS matrices to
obtain optimal branch numbers. In sharp contrast to this, no systematic approach
has been conducted to understand how the word-wise permutation layer in such
ciphers affects the diffusion properties and resistance towards differential- and lin-
ear attacks. With this work, we close that gap.

Specifically, we consider arbitrary word-wise permutations, with special focus
on rotations due to their elegant implementation characteristics. We formalized
the concept of AES-like ciphers, guaranteed trail weights and equivalence of per-
mutation parameters and, using these formalizations, proved a range of results
which reduces the consideration to a special normalized form.

These results are employed in practice by connecting it with mixed-integer lin-
ear programming models for determining the guaranteed trail weights. To that
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end,we give a range of optimalword-wise rotations and improve on existing param-
eters for Rijndael-192, Rijndael-256, PRIMATEs-80 and Prøst-128.

Using superbox-like arguments we are able, as a separate result, to show for
specific state geometries that a seemingly optimal bound on the trail weight can
be obtained using cyclic rotations only for the permutation layer, i.e. in a very
implementation friendly way. Also coming out of our analysis is the observation
that square state geometries are, in some sense, ideal when it comes to solving the
problem of determining the best word-wise rotations, as there is just one solution
which is optimal.

A Optimality of the Black-Box Model

One has to make sure that the definition of the tightly guaranteed active S-boxes
is independent of the concrete S-box functions within the AES-like ciphers. This
is shown in Lemma 25.

Lemma 25. Let θ : (Fm
2 )M → (Fm

2 )M be a linear automorphism with branch num-
ber Bθ. Let v = (v1, . . . , vM ) ∈ (Fm

2 )M \ {0} such that θ(v) = w = (w1, . . . , wM ).
Then for all a1, . . . , a2M ∈ F

m
2 \ {0}, one can construct a linear automorphism θ′

with branch number Bθ such that θ′(a1v1, . . . , aMvM ) = (aM+1w1, . . . , a2MwM ).

Proof. Let G = [I | A] be the generator matrix in standard form of the linear
[2M,M,Bθ]m-code C corresponding to θ. Now one can construct an equivalent
code C ′ with the same minimal distance by multiplying every column of G by
non-zero scalars a1, . . . , a2M [27, p. 54-55]. In order to obtain a generator matrix
G′ = [I | A′] of C ′ in standard form, one scales the rows by the non-zero values
a−1
1 , . . . , a−1

M . This does not change the generated code and defines the new mixing
θ′(x) = A′x.

⎛

⎜
⎜
⎝

a1 . . . aM aM+1 . . . a2M

a−1
1 1

...
. . . A′

a−1
M 1

⎞

⎟
⎟
⎠

If the matrix A was invertible, then A′ is invertible as well since A′ is obtained
from A by scaling the rows and the columns. �

In order to prove Theorem 16, one will make use of the following two results.

Lemma 26. Let log2(M + 2) < m and let C be a linear [2M,M ]m-code which is
MDS. For every subset S ⊆ {1, . . . , 2M} with M + 1 ≤ |S| ≤ 2M , there exists a
vector v = (v1, . . . , v2M ) ∈ C such that vi �= 0 if and only if i ∈ S.

Proof. Define two subsets S1, S2 ⊆ S such that |S1| = |S2| = M +1 and S1∪S2 =
S. This is possible since |S| ≥ M + 1. From [22, Theorem 4] it follows that there
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exists two vectors v(1) = (v(1)
1 , . . . , v

(1)
2M ) and v(2) = (v(2)

1 , . . . , v
(2)
2M ) in C such that

v
(j)
i �= 0 if and only if i ∈ Sj . Now, one can construct v as a linear combination

v := v(1) + cv(2) with c ∈ F
m
2 as follows. Choose c �= 0 such that for all non-zero

components v
(1)
i in v(1) the identity

c · v
(2)
i �= −v

(1)
i

holds. This is possible because of the field property of F
m
2 and since 2m > M + 2.

�
Thus, given a concrete MDS transformation (which has a sufficiently large

dimension), every activity pattern which fulfils the branch number property can
be be realized. By applying Lemma 25, one obtains as a corollary:

Table 2. Results for M = 2, 3, 4, 5

ρ = 1 ρ = 2 ρ = 3 ρ = 1 ρ = 2 ρ = 3

T M N B σ B σ B σ M N B σ B σ B σ

2 2 2 3 (0, 1) 3 (0, 1), (0, 1) 3 (0, 1), (0, 1), (0, 1) 4 4 5 (0, 1, 2, 3) 5 (0, 1, 2, 3), (0, 1, 2, 3) 5 (0, 1, 2, 3), (0, 1, 2, 3), (0, 1, 2, 3)
3 5 (0, 1) 5 (0, 1), (0, 1) 5 (0, 1), (0, 1), (0, 1) 9 (0, 1, 2, 3) 9 (0, 1, 2, 3), (0, 1, 2, 3) 9 (0, 1, 2, 3), (0, 1, 2, 3), (0, 1, 2, 3)
4 9 (0, 1) 9 (0, 1), (0, 1) 9 (0, 1), (0, 1), (0, 1) 25 (0, 1, 2, 3) 25 (0, 1, 2, 3), (0, 1, 2, 3) 25 (0, 1, 2, 3), (0, 1, 2, 3), (0, 1, 2, 3)
5 10 (0, 1) 10 (0, 1), (0, 1) 10 (0, 1), (0, 1), (0, 1) 26 (0, 1, 2, 3) 26 (0, 1, 2, 3), (0, 1, 2, 3) 26 (0, 1, 2, 3), (0, 1, 2, 3), (0, 1, 2, 3)
6 12 (0, 1) 12 (0, 1), (0, 1) 12 (0, 1), (0, 1), (0, 1) 30 (0, 1, 2, 3) 30 (0, 1, 2, 3), (0, 1, 2, 3) 30 (0, 1, 2, 3), (0, 1, 2, 3), (0, 1, 2, 3)
7 14 (0, 1) 14 (0, 1), (0, 1) 14 (0, 1), (0, 1), (0, 1) 34 (0, 1, 2, 3) 34 (0, 1, 2, 3), (0, 1, 2, 3) 34 (0, 1, 2, 3), (0, 1, 2, 3), (0, 1, 2, 3)
8 18 (0, 1) 18 (0, 1), (0, 1) 18 (0, 1), (0, 1), (0, 1) 50 (0, 1, 2, 3) 50 (0, 1, 2, 3), (0, 1, 2, 3) 50 (0, 1, 2, 3), (0, 1, 2, 3), (0, 1, 2, 3)
10 21 (0, 1) 21 (0, 1), (0, 1) 21 (0, 1), (0, 1), (0, 1) 55 (0, 1, 2, 3) 55 (0, 1, 2, 3), (0, 1, 2, 3) 55 (0, 1, 2, 3), (0, 1, 2, 3), (0, 1, 2, 3)
12 27 (0, 1) 27 (0, 1), (0, 1) 27 (0, 1), (0, 1), (0, 1) 75 (0, 1, 2, 3) 75 (0, 1, 2, 3), (0, 1, 2, 3) 75 (0, 1, 2, 3), (0, 1, 2, 3), (0, 1, 2, 3)

2 2 4 3 (0, 1) 3 (0, 1), (0, 1) 3 (0, 1), (0, 1), (0, 1) 4 6 5 (0, 1, 2, 3) 5 (0, 1, 2, 3), (0, 1, 2, 3) 5 (0, 1, 2, 3), (0, 1, 2, 3), (0, 1, 2, 3)
3 5 (0, 1) 5 (0, 1), (0, 1) 5 (0, 1), (0, 1), (0, 1) 9 (0, 1, 2, 3) 9 (0, 1, 2, 3), (0, 1, 2, 3) 9 (0, 1, 2, 3), (0, 1, 2, 3), (0, 1, 2, 3)
4 9 (0, 1) 9 (0, 1), (0, 1) 9 (0, 1), (0, 1), (0, 1) 25 (0, 1, 2, 3) 25 (0, 1, 2, 3), (0, 1, 2, 3) 25 (0, 1, 2, 3), (0, 1, 2, 3), (0, 1, 2, 3)
5 13 (0, 1) 13 (0, 1), (0, 1) 13 (0, 1), (0, 1), (0, 1) 34 (0, 1, 2, 3) 36 (0, 1, 2, 4), (0, 1, 2, 3) 37 (0, 1, 2, 3), (0, 1, 2, 4), (0, 1, 3, 4)
6 18 (0, 1) 18 (0, 1), (0, 1) 18 (0, 1), (0, 1), (0, 1) 45 (0, 1, 3, 4) 45 (0, 1, 3, 4), (0, 1, 3, 4) 45 (0, 1, 3, 4), (0, 1, 3, 4), (0, 1, 3, 4)
7 21 (0, 1) 22 (0, 1), (0, 2) 21 (0, 1), (0, 1), (0, 1) 48 (0, 1, 3, 4) 48 (0, 1, 3, 4), (0, 1, 3, 4) 48 (0, 1, 2, 3), (0, 1, 2, 3), (0, 1, 3, 4)
8 24 (0, 1) 24 (0, 1), (0, 1) 24 (0, 1), (0, 1), (0, 1) 57 (0, 1, 3, 4) 57 (0, 1, 3, 4), (0, 1, 3, 4) 57 (0, 1, 3, 4), (0, 1, 3, 4), (0, 1, 3, 4)
10 30 (0, 1) 30 (0, 1), (0, 1) 30 (0, 1), (0, 1), (0, 1) 72 (0, 1, 2, 3) 73 (0, 1, 2, 3), (0, 1, 2, 4) 74 (0, 1, 2, 3), (0, 1, 2, 3), (0, 1, 3, 4)
12 36 (0, 1) 36 (0, 1), (0, 1) 36 (0, 1), (0, 1), (0, 1) 90 (0, 1, 3, 4) 90 (0, 1, 3, 4), (0, 1, 3, 4) 90 (0, 1, 3, 4), (0, 1, 3, 4), (0, 1, 3, 4)

2 2 6 3 (0, 1) 3 (0, 1), (0, 1) 3 (0, 1), (0, 1), (0, 1) 4 8 5 (0, 1, 2, 3) 5 (0, 1, 2, 3), (0, 1, 2, 3) 5 (0, 1, 2, 3), (0, 1, 2, 3), (0, 1, 2, 3)
3 5 (0, 1) 5 (0, 1), (0, 1) 5 (0, 1), (0, 1), (0, 1) 9 (0, 1, 2, 3) 9 (0, 1, 2, 3), (0, 1, 2, 3) 9 (0, 1, 2, 3), (0, 1, 2, 3), (0, 1, 2, 3)
4 9 (0, 1) 9 (0, 1), (0, 1) 9 (0, 1), (0, 1), (0, 1) 25 (0, 1, 2, 3) 25 (0, 1, 2, 3), (0, 1, 2, 3) 25 (0, 1, 2, 3), (0, 1, 2, 3), (0, 1, 2, 3)
5 13 (0, 1) 13 (0, 1), (0, 1) 13 (0, 1), (0, 1), (0, 1) 41 (0, 1, 2, 4) 41 (0, 1, 2, 3), (0, 1, 3, 4)
6 18 (0, 1) 21 (0, 1), (0, 2) 21 (0, 1), (0, 2), (0, 2) 50 (0, 1, 2, 4) 55 (0, 1, 2, 3), (0, 1, 3, 5)
7 21 (0, 1) 30 (0, 3), (0, 3) 28 (0, 1), (0, 2), (0, 2) 58 (0, 1, 3, 4) 58 (0, 1, 2, 3), (0, 2, 3, 5)
8 24 (0, 1) 36 (0, 3), (0, 3) 36 (0, 3), (0, 3), (0, 3) 65 (0, 1, 2, 4) 65 (0, 1, 2, 3), (0, 1, 3, 4)
10 30 (0, 1) 39 (0, 1), (0, 2) 42 (0, 1), (0, 1), (0, 2) 85 (0, 1, 2, 4) 90 (0, 1, 2, 3), (0, 2, 3, 5)
12 36 (0, 1) 45 (0, 1), (0, 2) 48 (0, 1), (0, 1), (0, 3) 105 (0, 1, 2, 4) 111 (0, 1, 2, 3), (0, 2, 3, 5)
14 120 (0, 1, 2, 4)

2 2 8 3 (0, 1) 3 (0, 1), (0, 1) 3 (0, 1), (0, 1), (0, 1) 4 10 5 (0, 1, 2, 3) 5 (0, 1, 2, 3), (0, 1, 2, 3)
3 5 (0, 1) 5 (0, 1), (0, 1) 5 (0, 1), (0, 1), (0, 1) 9 (0, 1, 2, 3) 9 (0, 1, 2, 3), (0, 1, 2, 3)
4 9 (0, 1) 9 (0, 1), (0, 1) 9 (0, 1), (0, 1), (0, 1) 25 (0, 1, 2, 3) 25 (0, 1, 2, 3), (0, 1, 2, 3)
5 13 (0, 1) 13 (0, 1), (0, 1) 13 (0, 1), (0, 1), (0, 1) 41 (0, 1, 2, 4) 41 (0, 1, 2, 3), (0, 1, 3, 4)
6 18 (0, 1) 21 (0, 1), (0, 2) 21 (0, 1), (0, 2), (0, 2) 60 (0, 1, 2, 4) 65 (0, 1, 2, 3), (0, 1, 4, 7)
7 21 (0, 1) 31 (0, 5), (0, 1) 34 (0, 2), (0, 1), (0, 3) 70 (0, 1, 3, 4) 72 (0, 1, 2, 3), (0, 1, 4, 7)
8 24 (0, 1) 39 (0, 1), (0, 3) 42 (0, 1), (0, 2), (0, 3) 80 (0, 1, 3, 4) 82 (0, 1, 5, 6), (0, 2, 5, 7)
10 30 (0, 1) 51 (0, 1), (0, 3) 54 (0, 1), (0, 3), (0, 2)
12 36 (0, 1) 56 (0, 1), (0, 3) 60 (0, 1), (0, 2), (0, 3)

2 3 3 4 (0, 1, 2) 4 (0, 1, 2), (0, 1, 2) 4 (0, 1, 2), (0, 1, 2), (0, 1, 2) 4 12 5 (0, 1, 2, 3) 5 (0, 1, 2, 3), (0, 1, 2, 3)
3 7 (0, 1, 2) 7 (0, 1, 2), (0, 1, 2) 7 (0, 1, 2), (0, 1, 2), (0, 1, 2) 9 (0, 1, 2, 4) 9 (0, 1, 2, 3), (0, 1, 2, 4)
4 16 (0, 1, 2) 16 (0, 1, 2), (0, 1, 2) 16 (0, 1, 2), (0, 1, 2), (0, 1, 2) 25 (0, 1, 2, 3)
5 17 (0, 1, 2) 17 (0, 1, 2), (0, 1, 2) 17 (0, 1, 2), (0, 1, 2), (0, 1, 2) 41 (0, 1, 3, 4)
6 20 (0, 1, 2) 20 (0, 1, 2), (0, 1, 2) 20 (0, 1, 2), (0, 1, 2), (0, 1, 2) 65 (0, 1, 4, 5)
7 23 (0, 1, 2) 23 (0, 1, 2), (0, 1, 2) 23 (0, 1, 2), (0, 1, 2), (0, 1, 2) 76 (0, 1, 4, 5)
8 32 (0, 1, 2) 32 (0, 1, 2), (0, 1, 2) 32 (0, 1, 2), (0, 1, 2), (0, 1, 2) 92 (0, 1, 4, 5)
10 36 (0, 1, 2) 36 (0, 1, 2), (0, 1, 2) 36 (0, 1, 2), (0, 1, 2), (0, 1, 2)
12 48 (0, 1, 2) 48 (0, 1, 2), (0, 1, 2) 48 (0, 1, 2), (0, 1, 2), (0, 1, 2)

2 3 6 4 (0, 1, 2) 4 (0, 1, 2), (0, 1, 2) 4 (0, 1, 2), (0, 1, 2), (0, 1, 2) 4 16 5 (0, 1, 2, 3) 5 (0, 1, 2, 3), (0, 1, 2, 3)
3 7 (0, 1, 2) 7 (0, 1, 2), (0, 1, 2) 7 (0, 1, 2), (0, 1, 2), (0, 1, 2) 9 (0, 1, 2, 3) 9 (0, 1, 2, 3), (0, 1, 2, 3)
4 16 (0, 1, 2) 16 (0, 1, 2), (0, 1, 2) 16 (0, 1, 2), (0, 1, 2), (0, 1, 2) 25 (0, 1, 2, 3) 25† (0, 1, 2, 3), (0, 1, 2, 3)
5 20 (0, 1, 2) 25 (0, 1, 2), (0, 1, 3) 25 (0, 1, 2), (0, 1, 3), (0, 1, 2) 41 (0, 1, 2, 4) 41† (0, 1, 2, 3), (0, 1, 2, 3)
6 24 (0, 1, 2) 36 (0, 1, 2), (0, 1, 3) 36 (0, 1, 3), (0, 1, 2), (0, 2, 3) 75 (0, 1, 4, 6) 90† (0, 4, 10, 14), (0, 2, 11, 13)
7 28 (0, 1, 2) 38 (0, 1, 2), (0, 1, 3) 40 (0, 1, 3), (0, 2, 3), (0, 1, 2) 100 (0, 1, 4, 5) 111† (0, 1, 2, 3), (0, 3, 7, 11)
8 32 (0, 1, 2) 41 (0, 1, 2), (0, 1, 3) 44 (0, 1, 2), (0, 1, 3), (0, 2, 3) 120 (0, 1, 4, 6)
10 40 (0, 1, 2) 56 (0, 1, 2), (0, 1, 3) 56 (0, 1, 2), (0, 1, 3), (0, 2, 3)
12 48 (0, 1, 2) 72 (0, 1, 2), (0, 1, 3) 72 (0, 1, 2), (0, 1, 3), (0, 2, 3)

2 3 9 4 (0, 1, 2) 4 (0, 1, 2), (0, 1, 2) 4 (0, 1, 2), (0, 1, 2), (0, 1, 2) 4 32 5 (0, 1, 2, 3) 5† (0, 1, 2, 3), (0, 1, 2, 3)
3 7 (0, 1, 2) 7 (0, 1, 2), (0, 1, 2) 7 (0, 1, 2), (0, 1, 2), (0, 1, 2) 9 (0, 1, 2, 3) 9† (0, 1, 2, 3), (0, 1, 2, 3)
4 16 (0, 1, 2) 16 (0, 1, 2), (0, 1, 2) 16 (0, 1, 2), (0, 1, 2), (0, 1, 2) 25 (0, 1, 2, 3) 25† (0, 1, 2, 3), (0, 1, 2, 3)
5 25 (0, 1, 3) 25 (0, 1, 2), (0, 1, 3) 25 (0, 1, 2), (0, 1, 2), (0, 1, 2) 41 (0, 1, 2, 4)
6 36 (0, 1, 3) 44 (0, 1, 2), (0, 2, 5) 44 (0, 1, 2), (0, 2, 4), (0, 3, 6) 75 (0, 1, 4, 6)
7 42 (0, 1, 3) 53 (0, 1, 2), (0, 2, 5) 55 (0, 1, 2), (0, 2, 4), (0, 3, 6)
8 48 (0, 1, 3) 60 (0, 1, 2), (0, 1, 4) 60 (0, 1, 2), (0, 1, 2), (0, 2, 5)
10 60 (0, 1, 3) 69 (0, 1, 2), (0, 1, 4) 72 (0, 1, 2), (0, 1, 3), (0, 3, 6)
12 72 (0, 1, 3) 92 (0, 1, 2), (0, 2, 5) 93 (0, 1, 2), (0, 2, 4), (0, 3, 6)

2 5 8 6 (0, 1, 2, 3, 4) 6 (0, 1, 2, 3, 4), (0, 1, 2, 3, 4)
3 11 (0, 1, 2, 3, 4) 11 (0, 1, 2, 3, 4), (0, 1, 2, 3, 4)
4 36 (0, 1, 2, 3, 4) 36 (0, 1, 2, 3, 4), (0, 1, 2, 3, 4)
5 54 (0, 1, 2, 3, 5) 56 (0, 1, 2, 3, 4), (0, 1, 3, 5, 6)
6 62 (0, 1, 2, 3, 5) 62 (0, 1, 2, 3, 4), (0, 1, 2, 3, 5)
7 67 (0, 1, 2, 3, 5) 67 (0, 1, 2, 3, 4), (0, 1, 2, 3, 5)
8 72 (0, 1, 2, 3, 4) 72 (0, 1, 2, 3, 4), (0, 1, 2, 3, 4)
9 95 (0, 1, 2, 3, 4), (0, 1, 2, 3, 5)
10 108 (0, 1, 2, 3, 7)
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Corollary 27. Let log2(M + 2) < m and let A be an existing MDS matrix, A ∈
(Fm

2 )M×M . Then for all v, w ∈ (Fm
2 )M with weight(v)+weight(w) ≥ M +1, there

exists an MDS matrix A′ ∈ (Fm
2 )M×M such that w = A′v.

B Search Results

This appendix provides the results from our search for optimal rotation matri-
ces. For ρ ∈ {1, 2, 3} and a wide range of dimensions M ×N , number of rounds T
and some trail-optimal choice of σ, we give the number of active S-boxes it tightly
guarantees, denoted B. Note that for ρ = 2 with the 4×16 and 4×32 geometries,
entries marked with † are results restricted to diffusion-optimal σ due to the com-
plexity of the model. As such, the optimal bound w.r.t. trail weights may be even
higher.
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Schläffer, M., Thomsen, S.S.: Grøstl - a SHA-3 Candidate (2011). http://www.
groestl.info/

15. Guo, J., Peyrin, T., Poschmann, A.: The PHOTON family of lightweight hash func-
tions. In: Rogaway, P. (ed.) Advances in Cryptology – CRYPTO 2011. LNCS, vol.
6841, pp. 222–239. Springer, Heidelberg (2011)

16. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The LED block cipher. In: Pre-
neel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 326–341. Springer, Hei-
delberg (2011)

17. IBM. ILOG CPLEX Optimizer, 1997–2014. http://www-01.ibm.com/software/
commerce/optimization/cplex-optimizer/

18. Indesteege, S., Andreeva, E., De Cannière, C., Dunkelman, O., Käper, E., Nikova,
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Abstract. Camellia is a widely used block cipher, which has been selected

as an international standard by ISO/IEC. In this paper, we consider a new

family of differentials of round-reduced Camellia-128 depending on differ-

ent key subsets. There are totally 224 key subsets corresponding to 224

types of 8-round differentials, which cover a fraction of 1 − 1/215 of the

keyspace. And each type of 8-round differential consists of 243 differen-

tials. Combining with the multiple differential attack techniques, we give

the key-dependent multiple differential attack on 10-round Camellia-128

with data complexity 291 and time complexity 2113. Furthermore, we pro-

pose a 7-round property for Camellia-192 and an 8-round property for

Camellia-256, and then mount the meet-in-the-middle attacks on 12-round

Camellia-192 and 13-round Camellia-256, with complexity of 2180 encryp-

tions and 2232.7 encryptions, respectively. All these attacks start from the

first round in a single key setting.

Keywords: Camellia · Block cipher · Key-dependent attack · Multiple

differential attack · Meet-in-the-middle attack

1 Introduction

The block cipher Camellia with 128-bit block size has variable key lengths of
128, 192, 256, named as Camellia-128, Camellia-192 and Camellia-256, respec-
tively. It was proposed by NTT and Mitsubishi in 2000 [2]. Now Camellia has
become a widely used block cipher as an e-government recommended cipher by
CRYPTREC [9]. Besides, Camellia was selected as one of NESSIE block cipher
portfolio [26] and international standard by ISO/IEC 18033-3 [14]. Therefore,
Camellia has received a great deal of attention from cryptanalysts with various
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attack methods, including higher order differential attack [13], linear and differ-
ential attack [26], truncated differential attacks [15,18,27], collision attack [30],
square attacks [19,20], impossible differential attacks [21–23,25,31], meet-in-the-
middle attacks [8,24] and zero correlation cryptanalysis [5] etc.

An important property of Camellia is FL/FL−1 layers inserted every 6
rounds. The FL/FL−1 functions are key-dependent functions which provide
non-regularity across rounds to resist the differential cryptanalysis. Many pre-
vious papers presented attacks on simplified versions of Camellia without
the FL/FL−1 layers and the whitening layers [18,20,22,25,26,30,31]. For the
original Camellia, impossible differential attacks on 10/11/12-round Camellia-
128/192/256 were given in [21], and recently improved by Boura et al. in [6].
The Meet-in-the-Middle (MITM) attack on Camellia was firstly proposed by
Lu et al. in [24], which introduced attacks on 10-round Camellia-128, 11-round
Camellia-192 and 12-round Camellia-256 utilizing 5-round and 6-round higher-
order MITM properties of Camellia. However this attack does not start from the
first round and excludes the whitening layers. Chen et al. [8] attacked 12-round
Camellia from the first round by applying the attack model for AES in [10] to
construct a 7-round MITM property of Camellia. Besides, zero-correlation crypt-
analysis with FFT method(ZC FFT) was applied to 11-round Camellia-128 and
12-round Camellia-192 in [5], which was slightly better than exhaustive search
with almost the full codebook.

In this paper, we analyze the original versions of Camellia with FL/FL−1

layers and whitening key starting from the first round by two methods: key-
dependent multiple differential attack and meet-in-the-middle attack. Multiple
differential attack [4,29] uses multiple differentials to accumulate the advantage
of many differentials as a distinguisher. The key-dependent differential attack
was proposed by Ben-Aroya and Biham [3] to analyze Lucifer, which covered a
fraction of 55% of the keyspace. A similar idea was also used by Knudsen and
Rijmen to analyze DFC in [16]. Later, Sun and Lai proposed the key-dependent
attack to analyze IDEA [28] by distinguishing the non-random distribution of the
intermediate values for different key subsets, which composed the full keyspace.

Our Contributions. In this paper, we first consider the key-dependent multiple
differential attack (KDMDA) on Camellia-128, by studying the multiple differ-
entials corresponding to different key subsets. There are 224 types of 8-round dif-
ferentials corresponding to different key subsets for Camellia, and each includes
243 differentials. Each key subset contains a fraction of 1/4 of the keyspace. All
the 224 subsets cover a fraction of 1−1/215 of the keyspace. Using these differen-
tials, we launch the multiple differential attack on 10-round Camellia-128, which
needs 291 chosen plaintexts and 2104.5 encryptions, and succeeds on a fraction of
about 99.99% of the keyspace. It is easy to extend this attack to the full keyspace
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by exhaustive search on the remaining fraction of 1/215 of the keyspace. This is
the first differential attack on Camellia with FL/FL−1 layers.

Thekey-dependentmultipledifferential attack is alsopossible againstCamellia-
192/256. In order to get better analysis results, we explore the meet-in-the-middle
attackonCamellia-192/256.Combinedwith thedifferential enumeration technique
and multiset proposed by Dunkelman et al. [12], other improved techniques
proposed by Derbez et al. [11] and the relations of intermediate variables and sub-
keys, we propose a new 7-round property for Camellia-192 and an 8-round prop-
erty of Camellia-256 to reduce the number of elements in a multiset. Based on
both properties, we attack the 12-round Camellia-192 and 13-round Camellia-256
which costs 2113 chosen plaintexts, 2180 encryptions and 2154 128-bit memories for
Camellia-192, 2113 chosen plaintexts, 2232.7 encryptions and 2227 128-bit memo-
ries for Camellia-256, respectively. However, we can not construct a good property
for Camellia-128 since the complexity of the precomputation phase are larger than
2128 and it should be further explored.

In this paper, we only discuss the attacks on Camellia with FL/FL−1 layers
and whitening key starting from the first round. Table 1 summarizes our results
along with the major previous results, where CP and CC refer to the number of
chosen plaintexts and chosen ciphertexts, respectively.

Table 1. Summary of the Attacks on Reduced-Round Camellia

Rounds Percentage of Key Space Attack Type Data Time Memory Source

Camellia-128

10 100% Impossible Diff 2113.8CP 2120Enc 286.4Bytes [21]

10 99.99% KDMDA 291CP 2104.5Enc 296Bytes Section 4.4

10 100% KDMDA 291CP 2113Enc 296Bytes Section 4.4

11 100% ZC FFT 2125.3KP 2124.8Enc 2112.0Bytes [5]

Camellia-192

11 100% Impossible Diff 2113.7CP 2184Enc 2143.7Bytes [21]

12 100% ZC FFT 2125.7KP 2188.8Enc 2112Bytes [5]

12 100% MITM 2113CP 2180Enc 2158Bytes Section 5.2

Camellia-256

12 100% Impossible Diff 2114.8CP/CC 2240Enc 2151.8Bytes [21]

12 100% MITM 219CP 2231.2Enc 2229 Bytes [8]

13 100% MITM 2113CC 2232.7Enc 2231Bytes Section 5.3

The rest of this paper is organized as follows. Section 2 gives some nota-
tions and a brief description of Camellia. Section 3 describes some observations
of Camellia used in our cryptanalysis. In Section 4, we give the 8-round multi-
ple differentials of Camellia for different key subsets, and present key-dependent
multiple differential attack on 10-round Camellia-128. Section 5 illustrates the
meet-in-the-middle attacks on 12/13-round Camellia-192/256. Finally, we con-
clude the paper in Section 6.
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2 Preliminaries

In this section we give the notations used throughout this paper, and then briefly
describe the block cipher Camellia.

2.1 Notations

The following notations are used in this paper:

Lr−1, L′
r−1 the left 64-bit half of the r-th round input

Rr−1, R′
r−1 the right 64-bit half of the r-th round input

Xr the state after the key addition layer of the r-th round
Yr the state after the substitution transformation layer of the r-th round
Zr the state after the diffusion layer of the r-th round
kr the subkey used in the r-th round
kwi the whitening key used in the beginning and an the end of Camellia, i = 1, 2, 3, 4
X[i] the i-th byte of a bit string X (1 ≤ i ≤ 8), where the left most byte is the first byte
XL (XR) the left (right) half of a bit string X,
X{i} the i-th most significant bit of a bit string X(1 ≤ i ≤ 128), where the left-most bit is

the most significant bit
ΔX the difference of X and X ′

ham(X) the hamming weight of X, for example, X = 00100010, ham(X)=2
zero(X) the number of X’s zero bits, for example, X = 00100010, zero(X)=6
⊕, ∧, ∨ bitwise exclusive OR (XOR), AND, OR
¬x bitwise inversion of bit string x, e.g. ¬0x22 = 0xdd
⋃

the union of sets
|A| the size of the set A

x‖y bit string concatenation of x and y

≪ l bit rotation to the left by l bit

2.2 Brief Description of Camellia

Camellia [2] is a Feistel structure block cipher, and the number of rounds are
18/24/24 for Camellia-128/192/256, respectively. The encryption procedure
(depicted in Appendix C) for 128-bit key is as follows.

Firstly, a 128-bit plaintext M is XORed with the whitening key (kw1‖kw2)
and separated into L0 and R0 of equal length. Then, for r = 1 to 18, except for
r = 6 and 12, the following is carried out:

Lr = Rr−1 ⊕ F (Lr−1, kr), Rr = Lr−1.

For r = 6 and 12, do the following:

L∗
r = Rr−1 ⊕ F (Lr−1, kr), R∗

r = Lr−1,

Lr = FL(L∗
r , kfr/3−1), Rr = FL−1(R∗

r , kfr/3),

Lastly, the 128-bit ciphertext C is computed as: C = (R18‖L18) ⊕ (kw3‖kw4).
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For 192- and 256-bit keys, the 128-bit plaintext M is XORed with the whiten-
ing key (kw1‖kw2) and separated into L0 and R0 of equal length. Then, for r = 1
to 24, except for r = 6, 12 and 18, the following is carried out:

Lr = Rr−1 ⊕ F (Lr−1, kr), Rr = Lr−1.

For r = 6, 12 and 18, do the following:

L∗
r = Rr−1 ⊕ F (Lr−1, kr), R∗

r = Lr−1,

Lr = FL(L∗
r , kfr/3−1), Rr = FL−1(R∗

r , kfr/3),

Lastly, the 128-bit ciphertext C is computed as: C = (R24‖L24) ⊕ (kw3‖kw4).
The round function F is composed of a key-addition layer, a substitution

transformation layer S and a diffusion layer P . The key-addition layer is an
XOR operation of the left half input of the round function and the round key,
i.e. Xr = Lr−1 ⊕ kr for the r-th round. There are four types of 8 × 8 S-boxes
s1, s2, s3 and s4 in the S transformation layer. Let the input of the substitution
transformation S of the r-th round be Xr = (x1, x2, x3, x4, x5, x6, x7, x8), the
output Yr is computed as follows:

Yr = S(Xr) =
(
s1(x1), s2(x2), s3(x3), s4(x4), s2(x5), s3(x6), s4(x7), s1(x8)

)
.

The linear transformation P is a diffusion operation based on the bytes. Let
the input of the transformation P in round r be Yr = (y1, y2, y3, y4, y5, y6, y7, y8),
the output be Zr = (z1, z2, z3, z4, z5, z6, z7, z8). Zr = P (Yr) and its inverse P−1

are defined as follows:

z1 = y1 ⊕ y3 ⊕ y4 ⊕ y6 ⊕ y7 ⊕ y8 y1 = z2 ⊕ z3 ⊕ z4 ⊕ z6 ⊕ z7 ⊕ z8

z2 = y1 ⊕ y2 ⊕ y4 ⊕ y5 ⊕ y7 ⊕ y8 y2 = z1 ⊕ z3 ⊕ z4 ⊕ z5 ⊕ z7 ⊕ z8

z3 = y1 ⊕ y2 ⊕ y3 ⊕ y5 ⊕ y6 ⊕ y8 y3 = z1 ⊕ z2 ⊕ z4 ⊕ z5 ⊕ z6 ⊕ z8

z4 = y2 ⊕ y3 ⊕ y4 ⊕ y5 ⊕ y6 ⊕ y7 y4 = z1 ⊕ z2 ⊕ z3 ⊕ z5 ⊕ z6 ⊕ z7

z5 = y1 ⊕ y2 ⊕ y6 ⊕ y7 ⊕ y8 y5 = z1 ⊕ z2 ⊕ z5 ⊕ z7 ⊕ z8

z6 = y2 ⊕ y3 ⊕ y5 ⊕ y7 ⊕ y8 y6 = z2 ⊕ z3 ⊕ z5 ⊕ z6 ⊕ z8

z7 = y3 ⊕ y4 ⊕ y5 ⊕ y6 ⊕ y8 y7 = z3 ⊕ z4 ⊕ z5 ⊕ z6 ⊕ z7

z8 = y1 ⊕ y4 ⊕ y5 ⊕ y6 ⊕ y7 y8 = z1 ⊕ z4 ⊕ z6 ⊕ z7 ⊕ z8

The FL function is used every 6 rounds. FL is defined as (aL‖aR, kfL‖kfR) �→
(bL‖bR), where aL, aR, kfL, kfR, bL and bR are 32-bit words.

bR = ((aL ∧ kfL) ≪ 1) ⊕ aR, bL = (bR ∨ kfR) ⊕ aL.

In accordance with the notations in [1], let the master key of Camellia be K.
The subkeys KL, KR are simply generated from K. For Camellia-128, KL = K,
KR = 0. For Camellia-192, KL is the left 128-bit of K, i.e., KL = K{1 − 128},
and the concatenation of the right 64-bit of K and its complement is used as KR,



64 X. Dong et al.

i.e., KR = K{129− 192}‖¬K{129 − 192}. For Camellia-256, KL = K{1− 128},
and KR = K{129−256}. Two 128-bit keys KA and KB are derived from KL and
KR by a non-linear transformation. Then the whitening keys kwi (i = 1, ..., 4),
round subkeys kr (r = 1, ..., 24) and kfj (j = 1, ..., 6) are generated by rotating
KL, KR, KA or KB . For more details of Camellia, we refer to [1].

3 Some Observations of Camellia

This section introduces some observations which help us analyze the reduced-
round Camellia.

Observation 1. ([17]) Let X, X ′, K be l-bit values, and ΔX = X ⊕ X ′, then
the differential properties of AND and OR operations are:

(X ∧ K) ⊕ (X ′ ∧ K) = ΔX ∧ K,

(X ∨ K) ⊕ (X ′ ∨ K) = ΔX ⊕ (ΔX ∧ K).

Observation 2. Given the input difference of the i-th round ΔLi =
(α, 0, 0, 0, 0, 0, 0, 0), ΔRi = (0, 0, 0, 0, 0, 0, 0, 0), the output difference of (i+3)-th
round ΔRi+3 and intermediate difference ΔYi+2 satisfy the following equations:

P −1(ΔRi+3)[4] = ΔLi[1] = α, P −1(ΔRi+3)[j] = 0, j = 6, 7

P −1(ΔRi+3)[1] = ΔYi+2[1], P −1(ΔRi+3)[j] = ΔYi+2[j] ⊕ P −1(ΔRi+3)[4], j = 2, 3, 5, 8.

Observation 3. Given the output difference of the (i + 2)-th round ΔLi+2 =
(0, 0, 0, 0, 0, 0, 0, 0), ΔRi+2 = (α, 0, 0, 0, 0, 0, 0, 0), the input difference of i-th
round ΔRi and the intermediate difference ΔYi+1 satisfy the following equa-
tions:

P −1(ΔRi)[4] = ΔRi+2[1] = α, P −1(ΔRi)[j] = 0, j = 6, 7

P −1(ΔRi)[1] = ΔYi+1[1], P −1(ΔRi)[j] = ΔYi+1[j] ⊕ P −1(ΔRi)[4], j = 2, 3, 5, 8.

Observation 4. Let the input difference of FL−1 be (ΔaL, 0). Then the output
difference of FL−1 must be (ΔaL, 0), when ΔaL ∧ kf2L = 0.

4 Key-Dependent Multiple Differential Attack on

Reduced-Round Camellia-128

In this section, we present truncated differential based on the diffusion layer P for
different key subsets. Then, 224 different types of 8-round multiple differentials
for different key subsets are constructed. Finally, we launch the key-dependent
multiple differential attack on 10-round Camellia-128.
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4.1 Some Truncated Differentials

Observation 5. Let the input difference of P be (y1, y2, 0, 0, 0, 0, 0, 0),

– if y1 	= y2, the output difference of P is (y1, y1⊕y2, y1⊕y2, y2, y1⊕y2, y2, 0, y1).
– if y1 = y2, the output difference of P is (y1, 0, 0, y2, 0, y2, 0, y1).

Observation 6. ([27]) If the input difference of P is (y1, y2, y3, y4, y5, y6, 0, y8),
then the output difference of P is (z1, z2, 0, 0, 0, 0, 0, 0) with probability 2−40. And
the following equations hold: y1 = y6, y2 = y8, y3 = y4 = y5 = y1 ⊕ y2.

Proof. By computing the inversion of P , we get y8 = z1, y6 = z2, y5 = z1 ⊕
z2, y4 = z1 ⊕ z2, y3 = z1 ⊕ z2, y2 = z1, y1 = z2. Then, y1 = y6, y2 = y8, y3 = y4 =
y5 = y1 ⊕ y2. 
�

Using the above observations, we construct the following 4-round truncated
differential with probability 2−56,

(00000000, ∗ ∗ 000000)
Round−−−−−→
Pr=1

(∗ ∗ 000000, 00000000)
Round−−−−−→
Pr=1

(∗ ∗ ∗ ∗ ∗ ∗ ∗0∗, ∗ ∗ 000000)

Round−−−−−−−→
Pr=2−40

(∗ ∗ 000000, ∗ ∗ ∗ ∗ ∗ ∗ 0∗)
Round−−−−−−−→

Pr=2−16
(00000000, ∗ ∗ 000000)

Similarly, we get another three 4-round truncated differentials with proba-
bility 2−56 in the last three columns of Table 2.

Table 2. 4-Round Truncated Differentials

Active S-boxes: 0 → 2 → 7 → 2

Case-1 Case-2 Case-3 Case-4

(00000000, ∗ ∗ 000000) (00000000, 0 ∗ ∗00000) (00000000, ∗00 ∗ 0000) (00000000, 00 ∗ ∗0000)

(∗ ∗ 000000, 00000000) (0 ∗ ∗00000, 00000000) (∗00 ∗ 0000, 00000000) (00 ∗ ∗0000, 00000000)

(∗ ∗ ∗ ∗ ∗ ∗ ∗0∗, ∗ ∗ 000000) (∗ ∗ ∗ ∗ ∗ ∗ 0, 0 ∗ ∗00000) (∗ ∗ ∗ ∗ ∗0 ∗ ∗, ∗00 ∗ 0000) (∗ ∗ ∗ ∗ 0 ∗ ∗∗, 00 ∗ ∗0000)

(∗ ∗ 000000, ∗ ∗ ∗ ∗ ∗ ∗ 0∗) (0 ∗ ∗00000, ∗ ∗ ∗ ∗ ∗ ∗ ∗0) (∗00 ∗ 0000, ∗ ∗ ∗ ∗ ∗0 ∗ ∗) (00 ∗ ∗0000, ∗ ∗ ∗ ∗ 0 ∗ ∗∗)

(00000000, ∗ ∗ 000000) (00000000, 0 ∗ ∗00000) (00000000, ∗00 ∗ 0000) (00000000, 00 ∗ ∗0000)

4.2 Key Subsets Corresponding to Truncated Differentials

In this section, we extend the 4-round truncated differentials in Table 2 by adding
a FL/FL−1 layer at the bottom. As a result, we divide the full keyspace into
different subsets corresponding to different differentials.

We denote the two nonzero input byte differences of FL−1 function
as c1, c2. Then we get four types of input differences of the FL−1 func-
tion, which are (c1, c2, 0, 0, 0, 0, 0, 0), (0, c1, c2, 0, 0, 0, 0, 0), (c1, 0, 0, c2, 0, 0, 0, 0),
(0, 0, c1, c2, 0, 0, 0, 0). To reduce the diffusion of the active S-boxes, we make the
input and the output differences of the FL−1 function equal, which determines
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a key subset according to Observation 4. Therefore, a value of (c1, c2) corre-
sponds to a key subset. Obviously, the lower the hamming weight of (c1, c2) is,
the larger the size of the corresponding key subset will be. In order to reduce
the complexity, we choose (c1, c2) to make the size of key subset as large as pos-
sible. According to Observation 5, in order to maintain the 4-round truncated
differential, c1 should be different from c2. So we choose 56 values of (c1, c2)
where ham(c1) = 1, ham(c2) = 1, and c1 	= c2, see Table 3. Combining with
4 truncated differentials, we construct 224 key subsets, which are denoted as
KDsetji , j = 1, 2, 3, 4 and i = 1, 2 · · · 56.

KDset1i = {K|kf2L = (¬ci
1 ∧ ∗,¬ci

2 ∧ ∗, ∗, ∗), ∗ ∈ F 8
2 },

KDset2i = {K|kf2L = (∗,¬ci
1 ∧ ∗,¬ci

2 ∧ ∗, ∗), ∗ ∈ F 8
2 },

KDset3i = {K|kf2L = (¬ci
1 ∧ ∗, ∗, ∗,¬ci

2 ∧ ∗), ∗ ∈ F 8
2 },

KDset4i = {K|kf2L = (∗, ∗,¬ci
1 ∧ ∗,¬ci

2 ∧ ∗), ∗ ∈ F 8
2 }.

In each key subset, two bits of kf2L are 0, and the other bits traverse all values.
The size of a key subset is 2126 for Camellia-128. We denote the union of all
KDsetji as PKSPACE.

PKSPACE =
4⋃

j=1

56⋃

i=1

KDsetji

Table 3. 56 Different Values of (c1, c2) in Hexadecimal

i (ci1, c
i
2) i (ci1, c

i
2) i (ci1, c

i
2) i (ci1, c

i
2) i (ci1, c

i
2) i (ci1, c

i
2) i (ci1, c

i
2) i (ci1, c

i
2)

1 01, 02 8 02, 01 15 04, 01 22 08, 01 29 10, 01 36 20, 01 43 40, 01 50 80, 01

2 01, 04 9 02, 04 16 04, 02 23 08, 02 30 10, 02 37 20, 02 44 40, 02 51 80, 02

3 01, 08 10 02, 08 17 04, 08 24 08, 04 31 10, 04 38 20, 04 45 40, 04 52 80, 04

4 01, 10 11 02, 10 18 04, 10 25 08, 10 32 10, 08 39 20, 08 46 40, 08 53 80, 08

5 01, 20 12 02, 20 19 04, 20 26 08, 20 33 10, 20 40 20, 10 47 40, 10 54 80, 10

6 01, 40 13 02, 40 20 04, 40 27 08, 40 34 10, 40 41 20, 40 48 40, 20 55 80, 20

7 01, 80 14 02, 80 21 04, 80 28 08, 80 35 10, 80 42 20, 80 49 40, 80 56 80, 40

We collect the keys that do not belong to any one of the KDsetji to form the
remaining key set denoted as RKset, which is consisted of two classes:

Class 1 The pattern of kf2L is (∗,¬0, ∗,¬0) or (¬0, ∗,¬0, ∗), where ‘*’ is a
random byte. There are 2 × (28)2 − 1 = 217 − 1 possible kf2L.

Class 2 The remaining keys are not included in Class 1.
– If zero(kf2L)=2, the number of possible kf2L is 8 × 4 = 48.
– If zero(kf2L)=3, the number of possible kf2L is 8C3

4 = 32.
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– If zero(kf2L)=4, the number of possible kf2L is 8C4
4 = 8.

Totally, there are 48 + 32 + 8 = 88 possible kf2L.

So the size of remaining key set is 296 × (88 + 217 − 1) ≈ 2113.
The PKSPACE and remaining key set RKset form the full keyspace

KSPACE:

KSPACE =

⎛

⎝
4⋃

j=1

56⋃

i=1

KDsetji

⎞

⎠
⋃

RKset.

Let the input difference of FL−1 function be (c1, c2, 0, 0), which corresponds
a key subset KDset1i . Therefore, for the key subset KDset1i , the probability for
4-round truncated differential of the case-1 appending a FL/FL−1 layer with
output difference (00000000, c1c2000000) is 2−56 × 2−16 = 2−72.

4.3 Searching 8-Round Multiple Differentials for Every Key Subset

We use 4-round truncated differentials in Table 2 to construct 8-round differen-
tials with FL/FL−1 functions. We extend the 4-round truncated differential by
adding two rounds forward and appending a FL/FL−1 layer and two rounds
at the bottom to obtain 8-round differentials. We get four types of 8-round
differential patterns, named as type-1/-2/-3/-4 which are constructed by case-
1/-2/-3/-4, respectively.

Property 1. For each KDsetji , i = 1, 2, · · · , 56, j = 1, 2, 3, 4, we construct a
family of 8-round multiple differentials.

1. There are 231 input differences and 26 output differences which produce
231+6 = 237 8-round differentials with the probability 2−125.

2. 238 input differences and 26 output differences produce 238+6 = 244 8-round
differentials with probability 2−126.

3. 245 input differences and 26 output differences produce 245+6 = 251 8-round
differentials with probability 2−127.

Proof. We prove the Property 1 by type-1 differential pattern illustrated in
Fig. 1.

For the top two rounds, we apply the following 2-round differential

(ΔL0,ΔR0)
Round−−−−→

Pr1
(a1a2000000, h00h0h0h) Round−−−−−−→

Pr=2−14
(00000000, a1a2000000),

where ΔL0 = (h, 0, 0, h, 0, h, 0, h),ΔR0 = P (h1, 0, 0, h4, 0, h6, 0, h8) ⊕
(a1, a2, 0, 0, 0, 0, 0, 0).
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(c1c200) (0000)
kf2R

kf2L

(0000) (0000)

(0000)

kf1R

kf1L

(0000)

R0=P(h100h40h60h8)
(a1a2000000)

L0=(h00h0h0h)

R8=(c1c2000000)L8=(d00d0d0d)

L1=(a1a2000000) R1=(h00h0h0h)

L2=(00000000) R2=(a1a2000000)

L3=(a1a2000000) R3=(000000000)

L4=(b1b2b3b4b5b60b8) R4=(a1a2000000)

L5=(c1c2000000) R5=(b1b2b3b4b5b60b8)

L6=(00000000) R6=(c1c2000000)

L7=(c1c2000000) R7=(00000000)

Part-1

Part-2

Part-3

(c1c200) (0000)

1X 1Y 1Z

2X 2Y 2Z

3X 3Y 3Z

4X 4Y 4Z

5X 5Y 5Z

6X 6Y 6Z

7X 7Y 7Z

8X 8Y 8Z

Fig. 1. Type-1: 8-Round Differential

Pattern with FL/FL−1 Layer

8-Round differential

F

F

R8 =
(0x08,0x10,0,0,0,0,0,0)

R9 = (*,0,0,*,0,*,0,*)
L9 =

(0x08,0x10,0,0,0,0,0,0)
P(*,0,0,*,0,*,0,*)

L8 = (*,0,0,*,0,*,0,*)

kw3(64) kw4(64)

R10 = (?,?,?,?,?,?,?,?)L10 =
(0x08,0x10,0,0,0,0,0,0)

P(*,0,0,*,0,*,0,*)

L0 = (h,0,0,h,0,h,0,h)

kw1(64) kw2(64)

R0=P(h1,0,0,h4,0,h6,0,h8)
(a1,a2,0,0,0,0,0,0)

Fig. 2. Multiple Differential Attack on

10-Round Camellia-128

By the 2-round differential, we know ΔY1 = (h1, 0, 0, h4, 0, h6, 0, h8), ΔY2 =
(h, h, 0, 0, 0, 0, 0, 0). Obviously, there are (28 − 1) ΔL0. For each ΔL0, there are
27 × 27 = 214 possible ΔL1 with probability 2−14 as a result of two active S-
boxes in round 2. Considering the 4 active S-boxes in the first round to compute
Pr1 and number of ΔY1 values, there are C3

4 · 27 = 29 possible values of ΔY1

with probability 2−6×3 × 2−7 = 2−25, C2
4 · 214 = 216 possible values of ΔY1 with

probability 2−6×2 × 2−7×2 = 2−26, C1
4 · 221 = 223 possible values of ΔY1 with

probability 2−6 ×2−7×3 = 2−27, and 228 possible values of ΔY1 with probability
2−28.

So, for the 2-round differential, there are 28 × 29 × 214 = 231 values of
(ΔL0,ΔR0) with probability 2−25 × 2−14 = 2−39, 28 × 216 × 214 = 238 values of
(ΔL0,ΔR0) with probability 2−26 × 2−14 = 2−40, 28 × 223 × 214 = 245 values
of (ΔL0,ΔR0) with probability 2−27 × 2−14 = 2−41, and 28 × 228 × 214 = 250

values of (ΔL0,ΔR0) with probability 2−28 × 2−14 = 2−42.
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The last 2-round differential with the input difference (00000000, c1c2000000)
is

(00000000, c1c2000000)
Round−−−−−→
Pr=1

(c1c2000000, 00000000)
Round−−−−−−−→

Pr=2−14
(d00d0d0d, c1c2000000).

There are about 26 ΔL8. The probability of each (ΔL7,ΔR7) ⇒ (ΔL8,ΔR8)
is 2−13 or 2−14.

Totally, there are 231 input differences and 26 output differences which form
231+6 = 237 8-round differentials, and the probability of each differential is
2−72−39−14 = 2−125; there are 238 input differences and 26 output differences
which form 238+6 = 244 8-round differentials with probability 2−72−40−14 =
2−126; there are 245 input differences and 26 output differences which form
245+6 = 251 8-round differentials with probability 2−72−41−14 = 2−127. 
�

Without loss of generality, we search type-1 differentials as an example to
verify the correctness of Property 1 experimentally. The search procedure is as
follows.

1. We exhaustively search differentials which match 4-round truncated differ-
ential with appending a FL/FL−1 layer depicted in Part-2 of Fig 1. Let
(00000000, a1a2000000) be input difference, and (00000000, c1c2000000) be
the input difference of the FL/FL−1 layer, where (c1, c2) is chosen in Table 3.
Store the 4-round differential and its corresponding probability in a 56×216

table, where “row” is indexed by (c1, c2), “column” is indexed by (a1, a2), and
the elements are the corresponding probability Pr of the differential, which
is calculated by the following equations. We denote Y4 = (a

′
1a

′
2000000).

Pr1 = Pr((a1a2000000)
S−→ (a

′
1a

′
2000000)), P r2 = Pr((c1c2000000)

S−→ (a
′
1a

′
2000000)),

P r3 = Pr(P (a
′
1, a

′
2, 0, 0, 0, 0, 0, 0)

S−→ P −1(a1 ⊕ c1, a2 ⊕ c2, 0, 0, 0, 0, 0, 0))

Pr =
∑

a
′
1,a

′
2∈F8

2

Pr1 · Pr2 · Pr3

2. For each row indexed by (c1, c2), calculate the output differences
(d100d40d60d8, c1c2000000) of the 8-round differential, whose values form
the output differences set, denoted as ΔOUTset. And then for each col-
umn indexed by (a1, a2), collect the input differences of 8-round differential
that could result in (00000000, a1a2000000) differences after two rounds of
encryption, to produce the input differences set, denoted as ΔINset.

When c1 = 0x08, c2 = 0x10, we search type-1 differentials by PC, and obtain
|ΔOUTset| = 57 ≈ 26. If the probability of each differential is larger than 2−125,
the |ΔINset| is 231.1. If the probability of each differential is larger than 2−126,
the |ΔINset| is 237.9. If the probability of each differential is larger than 2−127,
the |ΔINset| is 244.8. Therefore, the experimental data reveals correctness of
Property 1.
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4.4 Key-Dependent Multiple Differential Attack on 10-Round
Camellia-128

For every KDsetji , i = 1, 2 · · · 56, j = 1, 2, 3, 4 , we choose 237 input differences
from ΔINset where the probabilities are all larger than 2−126 and pick all the
26 output differences of ΔOUTset. We launch multiple differential attack using
these differentials. We repeat 224 times multiple differential attacks, if one of
the attacks succeeds, the right key can be recovered. Otherwise the right key
belongs to RKset. The following is one of the 224 attacks.

We choose type-1 differentials and c1 = 0x08 c2 = 0x10 to launch an attack,
whose corresponding key subset is KDset132. As the Fig. 2 shows, we add two
rounds after the 8-round differentials distinguisher to analyse 10-round Camellia-
128.

In [4], there is a strong condition that the set of input differences are “admis-
sible”. However, paper [29] proves the condition is not necessary when applying
structure technique. Here, we take advantage of the structure attack model to
implement multiple differential attack displayed as follows:

1. Choose 2x structures of plaintexts, and each structure contains
256 plaintexts with L0 = (α1, x1, x2, α1, x3, α1, x4, α1), R0 =
P (α2, x5, x6, α3, x7, α4, x8, α5) ⊕ (α6, α7, x9, x10, x11, x12, x13, x14), where xi

are fixed values and αj take all the possible values in each structure.
2. For each structure, ask for the encryptions of the plaintexts P and store

the 256 ciphertexts C, indexed by P−1(CL)[1, 4, 6, 8]. When choosing one
ciphertext indexed by P−1(CL)[1, 4, 6, 8] and another ciphertext indexed by
P−1(CL)[1, 4, 6, 8] ⊕ P−1(0x08, 0x10, 0, 0, 0, 0, 0, 0, )[1, 4, 6, 8], we get a pair
whose difference matches ΔL10. Totally, we get 279+x pairs.

3. For each pair, check whether the input difference is one of the 237 input
differences. There are about 279+x × 237 × 2−56 = 260+x pairs left.

4. For each pair and each possible ΔR9, where |ΔR9| = |ΔOUTset| = 26, do
the following substeps.
(a) In the 10th round, we know the input difference and output difference
of the F function, so we deduce 64-bit key kw3 ⊕ k10 by the difference
distribution table of S-boxes.
(b) We calculate the output value of the F function in 10th round by the
values of kw3 ⊕ k10. In the 9th round, deduce 32-bit key (kw4 ⊕ k9)[1, 4, 6, 8]
by the difference distribution table of S-boxes.
(c) Increase the corresponding counter of 96-bit subkey kw3 ⊕ k10, (kw4 ⊕
k9)[1, 4, 6, 8], and then we obtain 26 subkeys for every pair.

5. Check all counters and generate a list L of the l candidate subkeys whose
counters are the highest l values.

We choose x = 33, then there are 2111+33 × 237−56 = 2125 pairs, and each
matches one of the 237 input differences. The counter expectation for right key
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is 2125 × 26 × 2−126 = 25, and the expectation of the counter for wrong key is
about 2125×26×2−128 = 23. We use the Blondeau et al.’s method [4] to compute
the success rate. We know the number of differentials is |Δ| = 237 × 26 = 243,
the sum of the probability of all differentials is

∑|Δ|
i=1 Pri = 2−83, the number of

pairs is Ns = 2125, the bit number of guessed subkey is nk = 96, and l = 240,
then the success probability is:

Ps ≈ 1 − G∗[G−1(1 − l − 1
2nk − 2

) − 1] = 99.9%,

where the definitions of functions G∗() and G−1() refer to Appendix B.
Key-Dependent Multiple Differential Attack on the PKSPACE. If

the key belongs to the PKSPACE, obviously this happens with significantly
high probability of 1 − 1

215 ≈ 99.99%, then 224 multiple differential attacks can
recover the key. For a particular j of KDsetji , i = 1, 2, · · · 56, the 56 multiple
differential attacks use the differentials which have the common input truncated
difference, the structures can be shared in the 56 times multiple differential
attacks. So the data complexity of the attack is about 256+33 × 4 = 291 chosen
plaintexts. The time complexity is 293+6× 2

10×224 = 2104.5 10-round encryptions.
The memory complexity is 296 which is used to store the counters for each of
the 224 multiple differential attacks.

Key-Dependent Multiple Differential Attack on the Full KSPACE.
For each one of KDsetji , i = 1, 2 · · · , 56, j = 1, 2, 3, 4, we launch the above
multiple differential attack. If one of the attack succeeds, the right key will be
recovered; if all fail, we exhaustively search all the subkeys in the RKset.

Success Rate. If the correct key belongs to the remaining keyspace, then
we will definitely recover the key when traversing the remaining keyspace. If
the correct key does not belong to the remaining keyspace, then one of the 224
multiple differential attacks recovers the correct key with the probability of Ps.
So the success rate of the is the minimum of 224 Ps, which is about 99.9%.

Complexity Analysis. The data complexity of the attack is about 256+33×
4 = 291 chosen plaintexts. The whole attack procedure includes 224 multiple
differential attacks and traversing the remaining key set. The time complexity
is 260+33+6 × 2

10 × 224 + 2113 = 2104.5 + 2113 ≈ 2113. The memory complexity is
296 which is used to store the counters for each of the 224 multiple differential
attacks.

The key-dependent multiple differential attack is also available to 11-round
Camellia-192 and 12-round Camellia-256. However, we find that it is more effi-
cient for the meet-in-the-middle attack on Camellia-192/256.

5 MITM Attacks on Reduced-Round Camellia-192/256

In this section, we first present a brief description of meet-in-the-middle attack,
and then give the meet-in-the-middle attack on reduced-round Camellia com-
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bining with multiset, the differential enumeration technique, the relations of
intermediate variables and subkeys etc.

5.1 Description of Meet-in-the-Middle Attack

For the meet-in-the-middle attack, the encryption cipher EK is divided into three
parts EK = E2

K2
◦ Em ◦ E1

K1
, and there exists a specific property for the middle

part Em, which is used to construct a distinguisher and identify the correct key
(K1,K2). The meet-in-the-middle methods we applied are similar to the MITM
attaks on AES [11,12]. Therefore we introduce some definitions of δ−set and
multiset.

Definition 1. ( δ−set) The δ−set is a set of 256 intermediate states of Camel-
lia that one byte traverses all values (the active byte) and the other bytes are
constants (the inactive bytes).

Definition 2. ( Multiset of bytes [12]) A multiset generalizes the set concept
by allowing elements to appear more than once. Here, a multiset of 256 bytes
can take as many as (511255) ≈ 2506.7 different values.

We explain the multiset with more details. Let a δ−set (X0, · · · ,X255)
be the inputs of Em, where the j-th byte is a variable and the other bytes
are kept constant. Let the i-th output byte of Em be the output of the
function. The outputs of function with the δ-set as inputs form a 2048-bit
vector EK(X0)[i]‖ · · · ‖EK(X255)[i] with ordered arrangement. However, if we
don’t consider the ordering of the output bytes, the 256-byte value will form
a multiset [EK(X0)[i] ⊕ EK(X0)[i], EK(X0)[i] ⊕ EK(X1)[i], · · · , EK(X0)[i] ⊕
EK(X255)[i]]. However, given two random functions f, g: F256 → F256, the multi-
sets (f(X0), · · · , f(X255)) and (g(X0), · · · , g(X255)) are equal with a probability
smaller than 2−467.6 (but not 2−506.17). For more details, we refer to [11].

The key part of the meet-in-the-middle attack on AES is to construct a
function for the input active byte and one of the output bytes of Em, and reduce
the number of the function parameters by specific truncated differential, which
decides the size of the multiset. Based on the subcipher Em, a few rounds is
extended at the top and bottom of Em, i.e. the cipher EK = E2

K2
◦ Em ◦ E1

K1
.

The attack procedure is described in Algorithm 1.
It is noticed that the number of values for a good multiset is much less than

2467.6. The precomputation phase is to compute all the values of multiset in a
table.

5.2 MITM Attack on 12-Round Camellia-192

This section introduces a 7-round property starting from the third round and
ending at the ninth round which is described in Property 2 outlined in Fig. 3.
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Algorithm 1. The Main Procedure of Meet-in-the-Middle Attack
Precomputation phase: compute all values of the output sequence of the function

constructed on Em, and store them in a hash table.

Online phase:

1: Encrypt enough chosen plaintexts such that there exists a pair satisfying the specific

differential.

2: Guess values of the subkeys K1 and K2 to find a pair satisfying the specific trun-

cated differential.

3: Construct a δ-set based on the pair, and partially decrypt to get the corresponding

256 plaintexts.

4: Obtain the corresponding 256 plaintext-ciphertext pairs from the collected data.

Then partially decrypt the ciphertexts to get the corresponding 256-byte value of

the output sequence of Em.

5: If a sequence value lies in the precomputation table, the guessed K1 and K2 may

be right key.

6: Exhaustively search the remaining subkeys to obtain the right key.

The active byte of δ−set is defined at the first byte of the input of the third
round R2[1].

Property 2. Encrypt 28 values of the δ−set through 7-round Camellia-192 start-
ing from the third round, where R2[1] is the active byte, in the case that a pair
of the δ−set conforms to the truncated differential outlined in Fig 3, then the
corresponding multiset of bytes (P−1(ΔL8))[6] only takes about 2128 instead of
2467.6 values on average.

It is obvious that, the computation of the multiset of bytes (P−1(ΔL8))[6]
associated with a δ−set is determined by a 36-byte intermediate variable

X4[1]‖X5[1, 2, 3, 5, 8]‖X6‖kf1‖kf2‖X7[2, 3, 5, 7, 8]‖X8[6].

The main work is to prove that there are only 16 byte variables needed to
compute the multiset.

Proof. If a pair of the δ-set conforms the truncated differential as in Fig. 3, the
18-byte variable X4[1]‖X5[1, 2, 3, 5, 8]‖X6‖X7[2, 3, 5, 8] is determined by the 9-
byte difference ΔX4[1]‖ΔY4[1]‖ΔY5[1, 2, 3, 5, 8]‖ΔX8[1]‖ΔY8[1] and 128-bit sub-
key kf1‖kf2. Here, the value X4[1] is deduced from the differences ΔX4[1]
and ΔY4[1]. Similarly, the value X5[1, 2, 3, 5, 8] is obtained by the differences
ΔY4[1],ΔY5[1, 2, 3, 5, 8]. In the backward direction, the difference ΔY6 is com-
puted by ΔY4[1],ΔY8[1] and kf1 since ΔL4 = P (ΔY4) and ΔL6 = P (ΔY8) in
this case. The difference ΔX6 is computed by ΔX4[1],ΔY5[1, 2, 3, 5, 8], which
is used to deduce the value X6. Similarly, the difference ΔY7 is computed by
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Fig. 4. The MITM Attack on 12-round

Camellia-192

the difference ΔX4[1],ΔY5[1, 2, 3, 5, 8], ΔX8[1] and kf2, which helps us deduce
X7[2, 3, 5, 8] owing to ΔX7 = P (ΔY8).

Since kf1‖kf2 has only 64-bit information by key schedule, the total 36-
byte variable is computed by 19-byte variable ΔX4[1]‖ΔY4[1]‖ΔY5[1, 2, 3, 5, 8]‖
ΔX8[1]‖ΔY8[1]‖X7[7]‖X8[6]‖kf1 in such case.

However, for every 19-byte variable, we find that the difference ΔY7 equals to
P−1(FL−1(P (ΔY5)⊕ΔL3))⊕P−1(ΔL7), where the probability that ΔY7[4, 6, 7]
equals to 0 is 2−24. So there are only about 2128 possible values for 36-byte
intermediate variable, actually. 
�

Based on the 7-round property, we extend two rounds on the top and three
rounds on the bottom to attack the 12-round Camellia-192, see Fig.4. To reduce
the computation complexity of the 12-round attack on Camellia-192, we retrieve
the equivalent keys k′

1, k′
2, k′

10, k′
11, k′

12, and then deduce the master key. The
equivalent keys are defined as k′

1 = k1 ⊕ kw1, k′
2 = k2 ⊕ kw2, k′

12 = k12 ⊕ kw4,

k′
11 = k11⊕kw3, and k′

10 = k10⊕kw4. Note that the master key could be deduced
by the equivalent key using the method introduced in [7].

The key recovery is also composed of two phases: precomputation phase
and online phase. In the precomputation phase, we get 2128 possible values of
multiset as described in Property 2, and store them in a hash table H. The
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attack procedure of the online phase is similar to Algorithm 1. However we take
a balance of the time complexity of Step 2 and Step 3. We guess some related
subkeys to find the possible pairs which may satisfy the truncated differential,
and then construct the δ−set to get their plaintexts.

The attack procedure of online phase is described as follows.

1. Choose 257 structures of plaintexts, and each structure contains 256 plain-
texts that satisfy L0 = (α, α ⊕ x1, α ⊕ x2, x3, α ⊕ x4, x5, x6, α ⊕ x7), R0 =
P (β1, β2, β3, β4, β5, y1, y2, β6), where xi(i = 1, ..., 7), y1 and y2 are constants,
but α, βj (j = 1, ..., 6) take all possible values. Ask for corresponding cipher-
texts for each structure, compute P−1(R12) and store the plaintext-ciphertext
pairs L0‖R0‖L12‖R12 in a hash table indexed by 16-bit value (P−1(R12))[6, 7].
Hence, there are 257 × 2111 × 2−16 = 2152 pairs whose differences satisfy
P−1(ΔR12)[6, 7] = 0 on average.

2. For every pair, do the following substeps to find a pair with corresponding
subkeys conforming the truncated differential.
(a) For l = 2, 3, 4, 5, 6, 7, 8, guess the 8-bit value of k′

12[l] one by one. Par-
tially decrypt the ciphertext R12[l] and keep only the pairs which satisfy
ΔY12[l] = P−1(ΔL12[l]). The expected number of pairs left is about
2152 × 27×(−8) = 296. After that guess k′

12[1], partially decrypt the
remaining pairs to get the value L10.

(b) For l = 2, 3, 5, 8, guess the 8-bit value of k′
11[l]. Compute the interme-

diate value Y11[l] and eliminate the pairs whose intermediate values do
not satisfy ΔY11[l] = P−1(ΔR12)[l] ⊕ P−1(ΔR12)[4](see Observation 2).
Then guess k′

11[1] and keep the pairs making ΔY11[1] = P−1(ΔR12)[1]
hold. The expected number of remaining pairs is 296 × 2−40 = 256.

(c) Similarly, for l = 1, 2, 3, 5, 8, guess k′
1[l] and discard the pairs which do not

make the equations ΔY1[1] = P−1(ΔR0)[1] and ΔY1[l] = P−1(ΔR0)[l] ⊕
P−1(ΔR0)[4](see Observation 3) hold for l = 2, 3, 5, 8. Then the expected
number of remaining pairs is 256 × 2−40 = 216.

3. For the 216 remaining pairs, if we want to find the pair in content with the 7-
round truncated differential, we have to guess 64-bit equivalent key k′

1[4, 6, 7]
‖k′

2[1]‖k′
11[4, 6, 7]‖k′

10[1] under each 144-bit subkey guess. Obviously, it is
infeasible, since the time complexity is greater than exhaustively searching
in such case. However, there are about a pair satisfying the truncated differ-
ential, for the probability of the truncated differential occuring is about 2−16

for the remaining pairs. Therefore we construct the δ−set for all 216 pairs.
If the guessed 144-bit key information is correct, then there should exist a
pair to conform the truncated differential, and the corresponding value of
the multiset should exist in the table H. We construct a δ−set for every
remaining pair under 144-bit key guesses in the following.
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(a) According to the differences ΔL0[1] and P−1(ΔR0)[4], deduce the inter-
mediate value X2[1]‖Y2[1] of the pair by the difference distribution table
of S-box s1.

(b) For the pair (L0‖R0, L
′
0‖R′

0) corresponding to (X2[1],X ′
2[1]), change the

value X ′
2[1] to a different value X ′′

2 [1], compute ΔY ′
2 [1] = s1(X ′′

2 [1]) ⊕
s1(X2[1]), and get the difference ΔL′

0[1, 2, 3, 5, 8]. Then get the left half
of the plaintext L′′

0 = L0 ⊕ ΔL′
0.

(c) Compute the difference ΔY ′
1 [1, 2, 3, 5, 8] by the guessed subkey

k′
1[1, 2, 3, 5, 8]. Then obtain the difference ΔR′

0 and get the right half
part R′′

0 = R0 ⊕ΔR′
0. Here we get a new plaintext (L′′

0 , R′′
0 ) of the δ−set.

(d) Compute all left 253 values of X2[1] to obtain all plaintexts of the δ−set,
and identify the corresponding ciphertexts.

4. For each δ−set under 144-bit key guesses, compute the intermediate value
Y11[2, 3, 5, 8], P−1(L10)[6] for every plaintext-ciphertext pairs by above guessed
subkey. Guess 8-bit key k′

11[7] to compute the value X10[6].
5. Guess 8-bit key k′

10[6] to compute the multiset of byte (P−1(ΔL8))[6] =
ΔY10[6] ⊕ P−1(ΔL10)[6]. Detect whether it belongs to H. Here, we need to
detect 216 values of multiset for every 160-bit guessed key. Then find the
correct subkey if one of 216 values belongs to H. Note that the probability
that a wrong value of multiset could pass the check is about 2128 ×2−467.6 =
2−339.6.

6. Compute the related part of the master key by the equivalent keys k′
1, k′

2,
k′
10, k′

11, k′
12, and search the unknown part.

Complexity Analysis. The precomputation phase needs about 2128 × 28 com-
putations and 2130 128-bit memories. Step 1 needs about 2113 encryptions. We
also need 2113 128-bit memories to store all plaintext-ciphertext pairs. The com-
plexity of step 2 is dominated by substep 2.(c), which needs about 2168 com-
putations. Step 3 needs about 2168 simple computations to construct 216 δ-for
every 144-bit key guess. Step 4 needs about 2160 ×28 ×28 ×2−3 = 2173 12-round
encryptions. The time complexity of step 5 is equivalent to 2176×28×2−4 = 2180

12-round encryptions. In total, the time complexity of the attack is about 2180

encryptions, the data complexity is about 2113 chosen plaintexts, the memory
complexity is about 2130 128-bit.

5.3 The Attack on 13-Round Camellia-256

This section introduces an 8-round property of Camellia-256, which starts from
the fifth round and ends at the twelfth round introduced by Property 3. The
truncated differential used in this section is outlined in Fig. 5 of Appendix A,
the active byte of the δ−set is located at L′

12[5], and the corresponding byte of
multiset is defined as P−1(ΔL4)[1].
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Property 3. Decrypt 28 values of the δ−set through 8-round Camellia-256 start-
ing from the 12-th round, where L12[5] is the active byte, in the case that a pair
of the δ−set conforms to the 8-round truncated differential outlined in Fig 5 of
Appendix A, then the corresponding multiset of bytes (P−1(ΔL4))[1] only takes
about 2225 instead of 2467.6 values on average.

The sketch of Property 3 is similar to Property 2, we give the proof in
Appendix A.

We mount a 13-round attack on Camellia-256 by adding four rounds in the
forward and one round in the backward of the 8-round Camellia (see Fig. 6 in
Appendix A). We also recover the equivalent keys k′

1, k′
2, k′

3, k′
4, k′

13, and then
deduce the master key, where the equivalent keys are defined as k′

1 = k1 ⊕ kw1,

k′
2 = k2 ⊕ kw2, k′

3 = k3 ⊕ kw1, k′
4 = k4 ⊕ kw2, and k′

13 = k13 ⊕ kw4. The
attack is worked in the chosen-ciphertext model. In the precomputation phase,
we compute all 2225 possible values of multiset, and store them in a hash table.
The attack procedure of the online phase is described as follows.

1. Select 281 structures of ciphertexts, and each structure contains 232 cipher-
texts

L13 = P (α1, x1, x2, x3, α2, x4, x5, x6), R13 = (β1, y1, y2, y3, β2, y4, y5, y6),

where xi and yi (i = 1, ..., 6) are fixed values, and αj , βj (j = 1, 2) take all
the possible values. Decrypt and obtain the corresponding plaintexts. There
are 2144 pairs totally.

2. Compute P−1(ΔL1) for every pair by guessing 64-bit subkey k′
1, eliminate

the pairs which do not satisfy P−1(ΔL1)[6, 7] = 0. There are 2144−16 = 2128

pairs left on average.
3. For l = 2, 3, 4, 5, 6, 7, 8, guess the 8-bit value of k′

2[l] one by one, compute the
value Y2[l], and keep the pairs which make ΔY2[l] = P−1(ΔL0[l]) hold. Then
guess k′

2[1] to compute L2. The number of pairs kept about 2128−7∗8 = 272.
4. For l = 2, 3, 5, 8, guess the 8-bit value of k′

3[l]. Compute Y3[l] and discard
the pairs which do not conform ΔY3[l] = P−1(ΔL1)[l] ⊕ P−1(ΔL1)[4](see
Observation 3). Then guess k′

3[1] and keep the pairs satisfying ΔY3[1] =
P−1(ΔL1)[1]. There are 232 pairs remain for every 168-bit guessed key after
this step.

5. For l = 1, 5, guess the 8-bit value of k′
13[l], and compute the value ΔY13[l].

Delete the pairs which do not content ΔY13[l] = P−1(ΔL13[l]). Then guess
kf3R[1], compute ΔL∗

12[1] by using Observation 1, and delete the pairs when
ΔL∗

12[1] 	= 0. Hereafter, the expected number of remaining pairs is about 28.
6. Compute the value L3 by guessing 24-bit subkey k′

3[4, 6, 7], and then deduce
the value of subkey k′

4[1] for every pair.
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7. Construct the δ−set for every pair, and compute corresponding value of
multiset. Detect whether it belongs to the precomputed table and find the
possible correct key.

8. Compute the related part of the master key by the correct equivalent keys
k′
1, k′

2, k′
3, k′

4, k′
13, and search the unknown part.

Complexity Analysis. The time complexity of precomputation phase is about
2225 × 28 × 2−1 = 2232 13-round encryptions. The memory complexity is about
2225 ×22 = 2227 128-bit. The time complexity of online phase is bounded to that
of Step 6, which costs 2224 × 28 × 2−2 = 2230 13-round encryptions, which also
needs 2113 chosen ciphertexts to find the correct pairs. In total, the data, time and
memory complexities of the attack, including the precomputation phase, are 2113

chosen ciphertexts, 2232.3 encryptions and 2227 128-bit memories, respectively.

6 Conclusion

In this paper, we give the key-dependent multiple differential attack and meet-in-
the-middle attacks on reduced-round Camellia-128/192/256. For key-dependent
multiple differential attack, we divide the keyspace into 224+1 subsets to ensure
the input and output difference of FL−1 function same, and then produce 224
types of corresponding 8-round differentials, and each type of differentials include
243 differentials. Based on 8-round multiple differentials, we attack 10-round
Camellia-128 for every key subsets, which works for about 99.99% of the keys,
and exhaustively search for the remaining fraction of 1/215 of the keyspace. This
attack is more efficient than previous 10-round attack on Camellia-128.

Furthermore, we also discuss the security of reduced-round Camellia-192/256
against the meet-in-the-middle attack. Considering differential enumeration tech-
nique, multisets, intermediate variable relations and key relations etc, we mount
the attacks on 12-round Camellia-192 and 13-round Camellia-256 with non-
marginal complexities.
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A The Proof of Property 3

By Property 3, the 8-round property starts from the fifth round and ends at the
twelfth round. The active byte of δ−set is defined at the first bytes of the input
of the third round L12[5], i.e., L12[5] is the active byte. Considering to decrypt
28 values of the δ−set through 8-round Camellia-256, in the case of that a pair



Improved Attacks on Reduced-Round Camellia-128/192/256 79

of δ−set conforms to the 8-round truncated differential outlined in Fig. 5, we
prove the corresponding multiset of bytes P−1(ΔL4)[1] has 2225 values.

Proof. If ΔL12[5] 	= 0 and there is no difference on the other bytes of the input
(L12, R12), (P−1(ΔL4))[1] is determined by 321-bit intermediate variable

X11[5]‖X10[2, 3, 4, 6, 7, 8]‖X9‖X8‖X7‖kf1{9 − 33, 42 − 64}‖kf2L[1]‖kf2R[1]‖kf2L{9}‖X6[1].

However, if there exists a pair satisfying the truncated differential as described
in Fig. 6, the 312-bit intermediate variable

X11[5]‖X10[2, 3, 4, 6, 7, 8]‖X9‖X8‖X7‖X6[1]‖kf1{9 − 33, 42 − 64}‖kf2L[1]

is determined by 216-bit variable

ΔX11[5]‖ΔY11[5]‖ΔY10[2, 3, 4, 6, 7, 8]‖ΔY9‖ΔX6[1]‖ΔY6[1]‖kf1‖kf2L[1].

Besides, 9-bit value kf2R[1]‖kf2L{9} are also necessary to compute (P−1(ΔL4))
[1]. Hence the multiset of bytes (P−1(ΔL4))[1] could be computed by traversing
all the 225-bit intermediate variable

V = ΔX11[5]‖ΔY11[5]‖ΔY10[2, 3, 4, 6, 7, 8]‖ΔY9‖ΔX6[1]‖ΔY6[1]‖kf1‖kf2L[1]‖kf2R[1]‖kf2L{9}.

That is to say there are about 2225 possible values of multiset totally. 
�

B Blondeau et al.’s Multiple Differential Cryptanalysis

Blondeau et al.’s propose multiple differential cryptanalysis in 2011. A precise
analytical model as well as formulas to compute success rate has been given.
The success rate of a multiple differential attack can be calculated as follows:

PS ≈ 1 − G∗[G−1(1 − l − 1
2nk − 2

) − 1/Ns], (1)

where nk is the number of key candidates, l is the size of list to keep and Ns is
the number of samples. The function G and G∗ are defined as follows:

G∗(τ)
def
= G(τ, p∗)

G(τ)
def
= G(τ, p)

(2)

where p∗ = Σi,jp
(
∗i, j) and p = |Δ|

2m|Δ0| . Σi,j is the sum of probability of all
differential characters and m is the block size. |Δ| denotes the number of input
difference values while |Δ0| is the number of differentials. G( − 1) is defined by
G( − 1)(y) = min x|G(x) > y. G(τ, p∗) and G(τ, p) can be calculated as follows:

G(τ, q) =

⎧
⎨

⎩

G−(τ, q) if τ < q − 3
√

q/Ns,

1 − G+(τ, q) if τ > q + 3
√

q/Ns,

Gp(τ, q) otherwise,

(3)



80 X. Dong et al.

5X 5Y5k
S P 5Z

6X 6Y
6k

S P 6Z

7X 7Y7k
S P 7Z

8X 8Y
8k

S P 8Z

9X 9Y
9k

S P 9Z

<<<1 
1Lkf

1Rkf
<<<1 

2Rkf

2Lkf

4 (00000000)L 4 (*0000000)R

5 (*0000000)L

*
6 (***0*00*)L

6 (????????)L

7 (????????)L

8 (????????)L

*
6 (*0000000)R

*
12 (00000000)R

10X 10Y10k
S P 10Z

11X 11Y11k
S P 11Z

12X 12Y12k
S P 12Z

9 (0***0***)L

10 (0000*000)L

11 (00000000)L

*
12 (0000*000)L

(0***0***)

Fig. 5. The 8-round Truncated Differential

of Camellia-256
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on 13-round Camellia-256

where Gp(τ, q) is the cumulative distribution function of the Poisson distribution
with parameter qNs. G−(τ, q) and G+(τ, q) are defined as follows:

G−(τ, q) = e(−NsD(τ‖,q))[
q
√

1 − τ

(q − τ)
√

2πτNs

+
1√

8πτNs

] (4)

G+(τ, q) = e(−NsD(τ‖,q))[
(1 − q)

√
τ

(q − τ)
√

2πτNs

+
1√

8πτNs

] (5)

where D(τ ‖ q) is the Kullback-Leibler divergence defined by:

D(τ ‖ q) = τ ln(
τ

q
) + (1 + τ)ln(

1 − τ

1 − q
) (6)
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C Figure of the Camellia Algorithm
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Fig. 7. : Encryption procedure of Camellia for 128-bit keys
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Abstract. We show a generic conversion that converts an attribute
based encryption (ABE) scheme for arbitrary predicate into an ABE
scheme for its dual predicate. In particular, it can convert key-policy
ABE (KP-ABE) into ciphertext-policy ABE (CP-ABE), and vice versa,
for dually related predicates. It is generic in the sense that it can be
applied to arbitrary predicates. On the other hand, it works only within
the generic ABE framework recently proposed by Attrapadung (Euro-
crypt’14), which provides a generic compiler that compiles a simple prim-
itive called pair encodings into fully secure ABE. Inside this framework,
Attrapadung proposed the first generic dual conversion that works only
for subclass of encodings, namely, perfectly secure encodings. However,
there are many predicates for which realizations of such encodings are
not known, and hence the problems of constructing fully secure ABE for
their dual predicates were left unsolved.

In this paper, we revisit the dual conversion of Attrapadung, and show
that, somewhat surprisingly, the very same conversion indeed also works
for broader classes of encodings, namely, computationally secure encod-
ings. Consequently, we thus solve the above open problems as we obtain
the first fully secure realizations of completely-unbounded CP-ABE and
CP-ABE with short keys for Boolean formulae, via applying the conver-
sion to previously proposed KP-ABE.

Moreover, we provide a generic conversion that converts ABE into its
dual-policy variant. Dual-policy ABE (DP-ABE) conjunctively combines
both KP-ABE and CP-ABE into one primitive, and hence can be useful
in general-purpose applications. As for instantiations, we obtain the first
realizations of fully secure DP-ABE for formulae, unbounded DP-ABE
for formulae, and DP-ABE for regular languages. The latter two systems
are the first to realize such functionalities, let alone are fully secure.

1 Introduction

Attribute-based encryption (ABE), introduced by Sahai and Waters [32], is a
useful paradigm that generalizes traditional public key encryption. Instead of
encrypting to a target recipient, a sender can specify in a more general way
about who should be able to view the message. In ABE for predicate R, which
c© Springer International Publishing Switzerland 2015
K. Nyberg (ed.): CT-RSA 2015, LNCS 9048, pp. 87–105, 2015.
DOI: 10.1007/978-3-319-16715-2 5
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is a boolean function R : X × Y → {0, 1}, a private key, which is issued by an
authority, is associated with an attribute X ∈ X, while a ciphertext encrypting
a message M is associated with an attribute Y ∈ Y. A key for X can decrypt
a ciphertext for Y if and only if R(X,Y ) = 1. In a key-policy type of ABE
(KP-ABE) [21], any X ∈ X is viewed as a policy function X : Y → {0, 1} and
the predicate evaluation is defined as R(X,Y ) = X(Y ). On the other hand, in a
ciphertext-policy type of ABE (CP-ABE) [7], any Y ∈ Y is viewed as a function
Y : X → {0, 1} where we define R(X,Y ) = Y (X). Perhaps, the most well-known
ABE is for Boolean formulae predicate, considered by Goyal et al. [21], where
policy functions are Boolean formulae over attributes and inputs to functions
are Boolean assignments of attributes.

Duality in ABE. In this paper, we study the duality in ABE. For a predicate
R : X×Y → {0, 1}, we define its dual predicate R̄ : Y×X → {0, 1} as R̄(Y,X) =
R(X,Y ). Hence, key-policy and ciphertext-policy ABE are dual to each other in
the sense that, when we view X as a function, ABE for R is of key-policy type,
while its dual, ABE for R̄, is of ciphertext-policy type.

Although any predicate and its dual are related by a very simple defini-
tion, ABE systems for both predicates are usually constructed separately and
their security proofs are obtained using different techniques. In fact, until only
recently, there was no known generic method that converts ABE into its dual. A
first attempt for conversion was early done by Goyal et al. [22] but for only spe-
cific predicates, namely, they showed how to convert any KP-ABE into CP-ABE
for bounded-size Boolean formulae. Only recently, Attrapadung [2] proposed the
first generic dual conversion. It is generic in the sense that it can be applied to
arbitrary predicate. More precisely, in [2], a generic framework for constructing
fully-secure ABE was proposed, and inside the framework, a dual conversion was
introduced. We first briefly describe the framework of [2].

Framework and Generic Dual Conversion of [2]. The framework of [2]
provides an abstraction of the dual system encryption approaches, introduced
by Waters [34] and extended by many works [25,27–29,36]. The framework of [2]
decouples what seem to be an essential underlying primitive in the dual system
approaches, called pair encoding schemes for predicates, and provides a generic
construction that compiles any secure pair encoding for a predicate in consider-
ation to a fully secure ABE for that predicate.1 The security of encodings comes
in two flavors: an information-theoretical notion, which captures the traditional
dual system approach, and a computational notion, which generalizes the tech-
niques in the ABE of Lewko and Waters [27]. Both notions imply fully secure
ABE. However, it is the computational notion that empowers the framework
of [2], since by using this notion, the first fully secure schemes are obtained
in [2] for many ABE primitives of which only selectively secure constructions
were known before, including KP-ABE for regular languages [35], KP-ABE for

1In our paper, we use “attribute based encryption” to refer to public-index predicate
encryption, which is a sub-class of functional encryption categorized in [10]. In [2], the
same class was referred as “functional encryption” (FE).
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Boolean formulae with constant-size ciphertexts [6], and (completely) unbounded
KP-ABE for Boolean formulae [26,31]. In fact, the latter two predicates are spe-
cial cases of a new predicate called key-policy over doubly spatial encryption
(KP-DSE), introduced and constructed in [2]. In addition, only the dual of the
first ABE above, namely, CP-ABE for regular languages was also directly con-
structed in [2].

The first generic dual conversion was then given in [2]. It works by converting
any pair encoding for R into a pair encoding for its dual, R̄. A fully secure ABE
scheme for R̄ is then obtained via the generic construction. However, in [2],
only the case for information-theoretical security of encodings was proved to
be preserved via the conversion. Hence, it is not applicable to computationally
secure encodings, which empower the framework of [2] in the first place. In
particular, fully secure realizations of CP-ABE primitives that are the duals of
KP-ABE for the predicates above, namely, unbounded CP-ABE for formulae and
constant-size CP-ABE for formulae, and their generalization, ciphertext-policy
over DSE (CP-DSE), have been left as open problems. To this end, our first goal
is to provide a generic dual conversion that preserves computational security of
encodings.

Dual-Policy ABE. Key-policy and ciphertext-policy types are useful in differ-
ent applications. KP-ABE specifies policies over data attributes, and hence is
useful for content-based access control. CP-ABE specifies policies over receiver
attributes, and hence is useful for access control that directly specifies receiver
policies. In order to make the most advantages of both types, a combined type
called dual-policy ABE (DP-ABE) was proposed in [5]. DP-ABE conjunctively
combines two predicates, namely, a predicate R and its dual predicate R̄. The
dual-policy predicate, denoted [R ∧ R̄] : (X × Y) × (Y × X) → {0, 1}, is defined
by [R ∧ R̄]((X,Y ′), (Y,X ′)) = R(X,Y ) ∧ R̄(Y ′,X ′). DP-ABE is already found
useful in real-world applications due to its flexibility [1]. However, there was no
known generic method to combine an ABE and its dual to obtain DP-ABE. It
is our second goal to construct a generic conversion that converts ABE into its
dual-policy variant.

Our Contributions. We revisit the generic dual conversion of [2] and prove
that, somewhat surprisingly, the very same conversion indeed preserves the com-
putational security of encodings. Hence, by applying it to the KP-DSE of [2],
we immediately obtain the first fully secure CP-DSE. This implies the first fully
secure realizations of completely unbounded CP-ABE for formulae and constant-
size-key CP-ABE for formulae. We note that constant-size ciphertexts in KP-
ABE (of [2]) becomes constant-size keys due to the duality.

We achieve the new theorem of the conversion by a very simple proof that
relies on two ingredients. First, we restrict the syntax of pair encodings to the
class we call normal pair encodings by posing a new simple requirement. Nev-
ertheless, this restriction seems natural and does not affect any concrete pair
encoding schemes proposed so far in [2]. Second, we relax the computational
security but in such a way that the generic ABE construction still compiles
encodings to fully secure ABE. Moreover, since we relax the security, all existing
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computationally secure encodings will satisfy the relaxed notion. The only draw-
back is that the reduction cost for the resulting ABE will not have the same
tightness as in the framework of [2], which achieve O(q1) reduction to the under-
lying assumption. The converted ABE, however, achieves O(qall) reduction cost,
where q1, qall are the number of pre-challenge queries and all queries, respec-
tively. To this end, we also directly construct a new CP-DSE scheme and prove
its security with tightness O(q1).

We then propose a generic method to conjunctively combine any two pair
encoding schemes. Hence, by combining with the generic dual conversion above,
we obtain a generic conversion that converts any normal pair encoding scheme
for R into a pair encoding for its dual-policy, namely, [R ∧ R̄]. This implies the
first realizations of fully secure DP-ABE for formulae, DP-DSE, unbounded DP-
ABE for formulae, and DP-ABE for regular languages. The latter three systems
are the first to realize such primitives, let alone are fully secure.

1.1 Our Approach

Recapturing the Framework of [2]. In the generic construction of ABE for
R of [2], a ciphertext CT encrypting M , and a key SK take the forms of

CT = (C, C0) = (gcY (s,h)
1 , Me(g1, g1)αs0), SK = g

kX(α,r,h)
1

where cY and kX are encodings of attributes Y and X associated to a cipher-
text and a key, respectively. Here, g1 is a generator of subgroup of order p1 of
G, which is a symmetric bilinear group of composite order N = p1p2p3 with
bilinear map e : G×G → GT . The bold fonts denote vectors. Intuitively, α plays
the role of a master key, h represents common variables (or called parameters).
These define a public key PK = (gh

1 , e(g1, g1)α). s, r represents randomness in
the ciphertext and the key, respectively, with s0 being the first element in s.
The pair (cY ,kX) form a pair encoding scheme for predicate R. It is exactly this
primitive on which the framework of [2] studied and gave sufficient conditions
for correctness (when R(X,Y ) = 1) and security (when R(X,Y ) = 0) so that,
roughly speaking, the ABE scheme defined with CT,SK as above would be cor-
rect and fully secure (see more detail in in §3). We refer the intuition for defining
the computational security of encodings to [2], but informally recapture it here.
The security requires that for R(X,Y ) = 0, the following two distributions are
computationally indistinguishable:

(
g

cY (s,h)
2 , g

kX(0,r,h)
2

)
and

(
g

cY (s,h)
2 , g

kX(α,r,h)
2

)
,

where Y,X are chosen by the adversary. It has two sub-notions. For the notion
where Y is queried before X, it is called selective master-key hiding. On the
other hand, if X is queried before Y , we call co-selective master-key hiding. The
naming mimics the (co-)selective security of ABE. These elements are defined
over g2, a generator of p2-order subgroup of G, and are only used in the proof.

The main idea for the generic dual conversion of [2] is natural: simply using
key encodings to define ciphertext encodings in the dual predicate, and vice versa.



Converting Attribute Based Encryption for Dual Predicate 91

More precisely, from a pair encoding (cY ,kX) for R, a pair encoding (c̄X , k̄Y )
for R̄ is constructed as

k̄Y (ᾱ, r̄, h̄) :=
(
cY (s,h), ᾱ + φ̄s0

)
, c̄X(s̄, h̄) :=

(
kX(φ̄s̄0, r,h), s̄0

)
,

where h̄ := (h, φ̄), r̄ := s, s̄ := (s̄0, r). We leave the explanation to §4 and only
motivate here for non-triviality of proving the preservability of the computational
security through the conversion.

Difficulty and Our Idea. The security of original encodings only provides the
indistinguishability of k for the case of α = 0 and α is random. To establish the
reduction, we need to use it to prove the indistinguishability of k̄ for the case of
ᾱ = 0 and ᾱ is random. However, the non-triviality here stems from the fact that
k̄ is defined from c, where we do not have a sort of indistinguishability in the
first place! We resolve this using a simple technique that establishes the “link”
from k to k̄ via simulation of the variable φ̄. Without going into details here, in
order to do so, we only additionally require s0 to be given out in cY (s,h). But
this restriction is natural and is satisfied by all the pair encodings proposed so
far [2]. We thus call it the normality of pair encodings.

Our theorems state that if the original encoding is selectively master-key
hiding, then the converted encoding for the dual is co-selectively master-key
hiding, and vice versa. This follows intuitively from the fact that we swap key
encodings with ciphertext encodings, and hence the order of queries from the
adversary is also swapped. There is a caveat that while the original selective
notion of [2] allows polynomially many key encoding queries, which results in
tighter reduction for ABE, our conversion can deal with only one query. In other
words, we relax the selective notion so that it will be preserved via the conversion.
Nevertheless, this will affect only the reduction tightness of the resulting ABE,
where the reduction will become O(qall), instead of O(q1) as in [2].

Other Related Work. In this work, we allow only efficient tools, namely,
bilinear groups. When basing on stronger (but much less efficient) tools, such as
multi-linear maps [12,14], or cryptographic obfuscations [16], we can obtain ABE
and FE for very general classes of predicates such as poly-size circuits [15,20], or
Turing machines [18,19]. For these general classes, there were no known generic
dual conversion. For the circuit predicate, KP-ABE can be converted into CP-
ABE but for only bounded-size circuits, using universal circuits [16]. We remark
that, until recently, all known ABE systems for these general classes are only
selectively secure (or fully secure but with exponential reductions). Fully secure
KP-ABE systems for circuits are recently proposed in [3,17]. The first (fully
secure) CP-ABE for unbounded-size circuits was proposed also in [3].

2 Preliminaries

Predicate Family. We consider a predicate family R = {Rκ}κ∈Nc , for some
constant c ∈ N, where a relation Rκ : Xκ × Yκ → {0, 1} is a predicate function
that maps a pair of key attribute in a space Xκ and ciphertext attribute in a
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space Yκ to {0, 1}. The family index κ = (n1, n2, . . .) specifies the description of
a predicate from the family. We mandate the first entry n1 in κ to specify the
arithmetic domain, e.g., in composite-order setting, it is ZN (i.e., n1 = N).

Dual Predicate. For a predicate R : X × Y → {0, 1}, its dual predicate is
defined by R̄ : X̄ × Ȳ → {0, 1} where X̄ = Y, Ȳ = X and R̄(X,Y ) := R(Y,X).

ABE Syntax. An ABE scheme for predicate R consists of four algorithms:

• Setup(1λ, κ) → (PK,MSK): takes as input a security parameter 1λ and a
family index κ of predicate family R, and outputs a master public key PK and
a master secret key MSK.

• Encrypt(Y,M,PK) → CT: takes as input a ciphertext attribute Y ∈ Yκ, a
message M ∈ M, and public key PK. It outputs a ciphertext CT.

• KeyGen(X,MSK,PK) → SK: takes as input a key attribute X ∈ Xκ and the
master key MSK. It outputs a secret key SK.

• Decrypt(CT,SK) → M : given a ciphertext CT with its attribute Y and the
decryption key SK with its attribute X, it outputs a message M or ⊥.

We refer the (standard) definitions of correctness and security of ABE to [2].

Composite-Order Bilinear Groups. We use bilinear groups (G, GT ) of com-
posite order N = p1p2p3, where p1, p2, p3 are distinct primes, with an efficient
bilinear map e : G × G → GT . A bilinear group generator G(λ) takes as input
a security parameter λ and outputs (G, GT , e,N, p1, p2, p3). Let Gpi

be the sub-
group of order pi of G. We note that, nevertheless, we will not directly use
properties of composite-order groups (such as orthogonality, subgroup decision
assumptions) here. This is since the framework of [2] essentially decouples pair
encoding schemes so that they need not incorporate such properties.

3 Pair Encoding Scheme

We recall the definition of pair encoding schemes as given in [2]. A pair encoding
scheme for predicate family R consists of four deterministic algorithms given by
P = (Param,Enc1,Enc2,Pair):

• Param(κ) → n. It takes as input an index κ and outputs n, which specifies
the number of common variables in Enc1, Enc2. For default notation, let h =
(h1, . . . , hn) denote the common variables.

• Enc1(X,N) → (
k = (k1, . . . , km1); m2

)
. It takes as inputs X ∈ Xκ, N ∈ N,

and outputs a sequence of polynomials {ki}i∈[1,m1] with coefficients in ZN ,
and m2 ∈ N. We require that each polynomial ki is a linear combination of
monomials α, rj , hkrj , where α, r1, . . . , rm2 , h1, . . . , hn are variables.

• Enc2(Y,N) → (
c = (c1, . . . , cw1); w2

)
. It takes as inputs Y ∈ Yκ, N ∈ N,

and outputs a sequence of polynomials {ci}i∈[1,w1] with coefficients in ZN ,
and w2 ∈ N. We require that each polynomial ci is a linear combination of
monomials sj , hksj , where s0, s1, . . . , sw2 , h1, . . . , hn are variables.

• Pair(X,Y,N) → E. It takes as inputs X,Y,N , and output E ∈ Z
m1×w1
N .
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Correctness. First, we require that for (k;m2) ← Enc1(X,N), (c;w2) ←
Enc2(Y,N), E ← Pair(X,Y,N), we have that if RN (X,Y ) = 1, then kEc� =
αs0. We note that since we can write kEc� =

∑
i∈[1,m1],j∈[1,w1]

Ei,jkicj , this
correctness amounts to check if there is a linear combination of kicj terms
summed up to αs0. Second, for p|N , if we let Enc1(X,N) → (k;m2) and
Enc1(X, p) → (k′;m2), then k mod p = k′. The requirement for Enc2 is sim-
ilar.

Notation. In what follows, we denote h = (h1, . . . , hn), r = (r1, . . . , rm2), s =
(s0, s1, . . . , sw2). We will often use subscripts and write kX and cY to emphasize
the attributes X,Y .
Properties. As identified in [2], every pair encoding scheme straightforwardly
satisfies the following two properties symbolically. Parameter-vanishing states
the identity k(α,0,h) = k(α,0,0). Linearity states the identities: k(α1, r1,h)+
k(α2, r2,h) = k(α1+α2, r1+r2,h) for k, and c(s1,h)+c(s2,h) = c(s1+s2,h)
for c. Combining the two identities for k, we have that

k(α1,0,0) + k(α2, r,h) = k(α1 + α2, r,h) (1)

Normal Pair Encoding. Towards proving the security of our dual conversion,
we require a new property for pair encoding. We formalize it as normality. This
restriction is natural and all pair encoding schemes proposed so far [2,36] are
not affected by this.

Definition 1 (Normal Pair Encoding). We call a pair encoding scheme
normal if s0 is a polynomial in the sequence c(s,h). Wlog, we denote c1 = s0
(the first polynomial in c).

3.1 Computational Security Definitions of Pair Encoding

We use the same computational security notion of pair encoding as defined in [2],
albeit we re-formalize with additional refinement regarding the number of queries
that can be asked by the adversary. The notion consists of two sub-notions:
selectively secure and co-selectively secure master-key hiding (SMH,CMH) in a
bilinear group generator G. We first define the following game template, denoted
as ExpG,P,G,b,A,t1,t2(λ), for pair encoding P, a flavor G ∈ {CMH,SMH}, b ∈
{0, 1}, and t1, t2 ∈ N. It takes as input the security parameter λ and does the
experiment with the adversary A = (A1,A2), and outputs b′. Denote by st a
state information by A. The game is defined as:

ExpG,P,G,b,A,t1,t2(λ) : (G, GT , e,N, p1, p2, p3) ← G(λ), gi
$← Gpi

(for i = 1, 2, 3),

α
$← ZN , n ← Param(κ), h

$← Z
n
N ,

st ← A
O1

G,b,α,h(·)
1 (g1, g2, g3), b′ ← A

O2
G,b,α,h(·)

2 (st),

where each oracle O1,O2 can be queried at most t1, t2 times respectively, and is
defined as follows.
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• Selective Master-key Hiding Security.
• O1

SMH,b,α,h(Y ): Run (c;w2) ← Enc2(Y, p2); s
$← Z

(w2+1)
p2 ; return C ← g

c(s,h)
2 .

• O2
SMH,b,α,h(X) : If Rp2(X,Y ) = 1 for some Y queried to O1, then return ⊥.

Else, run (k;m2) ← Enc1(X, p2); r
$← Z

m2
p2

; return K ←
{

g
k(0,r,h)
2 if b = 0

g
k(α,r,h)
2 if b = 1

• Co-selective Master-key Hiding Security.
• O1

CMH,b,α,h(X): Run (k;m2) ← Enc1(X, p2); r
$← Z

m2
p2

; return

K ←
{

g
k(0,r,h)
2 if b = 0

g
k(α,r,h)
2 if b = 1

.

• O2
CMH,b,α,h(Y ) : If Rp2(X,Y ) = 1 for some X queried to O1, then return ⊥.

Else, run (c;w2) ← Enc2(Y, p2); s
$← Z

(w2+1)
p2 ; return C ← g

c(s,h)
2 .

We define the advantage of A against the pair encoding scheme P in the
security game G ∈ {SMH,CMH} for bilinear group generator G with the bounded
number of queries (t1, t2) as

Adv
(t1,t2)-G(P)
A (λ) := |Pr[ExpG,P,G,0,A,t1,t2(λ) = 1] − Pr[ExpG,P,G,1,A,t1,t2(λ) = 1]|

We say that P is (t1, t2)-selectively master-key hiding in G if Adv(t1,t2)-SMH(P)
A (λ)

is negligible for all polynomial time attackers A. Analogously, P is (t1, t2)-co-
selectively master-key hiding in G if Adv(t1,t2)-CMH(P)

A (λ) is negligible for all poly-
nomial time attackers A.
Poly-many Queries. We also consider the case where ti is not a-priori bounded
and hence the corresponding oracle can be queried polynomially many times. In
such a case, we denote ti as poly.

Remark 1 (Relation to Notions in [2]). The original notions considered in [2]
are (1, poly)-SMH, (1, 1)-CMH for selective and co-selective master-key hiding
security, respectively. In this paper, our conversion will convert a (1, 1)-SMH-
secure pair encoding scheme into another scheme which is (1, 1)-CMH-secure,
and vice-versa. We note that (1, poly)-SMH trivially implies (1, 1)-SMH.

We also refer the definition of perfectly master-key hiding to [2]. Informally,
it requires α to be information-theoretically hidden from cY (s,h), kX(α, r,h)
for any X,Y such that R(X,Y ) = 0.

3.2 Implications to Fully Secure ABE

From a pair encoding scheme P for R, an ABE scheme for R, denoted ABE(P),
can be achieved via the generic construction of [2], which we recall it here.

• Setup(1λ, κ): Run (G, GT , e,N, p1, p2, p3)
$← G(λ). Pick generators g1

$← Gp1 ,
Z3

$← Gp3 . Obtain n ← Param(κ). Pick h
$← Z

n
N and α

$← ZN . The public key
is PK =

(
g1, e(g1, g1)α, gh

1 , Z3

)
. The master secret key is MSK = α.
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• Encrypt(Y,M,PK): Upon input Y ∈ YN , run (c;w2) ← Enc2(Y,N). Pick
s = (s0, s1, . . . , sw2)

$← Z
w2+1
N . Output a ciphertext CT = (C, C0) where

C = g
c(s,h)
1 ∈ G

w1 , C0 = (e(g1, g1)α)s0M ∈ GT . Note that C can be computed
from gh

1 and s since c(s,h) contains only linear combinations of monomials
si, shj , sihj .

• KeyGen(X,MSK,PK): Upon input X ∈ XN , run (k;m2) ← Enc1(X,N). Parse
MSK = α. Recall that m1 = |k|. Pick r

$← Z
m2
N ,R3

$← G
m1
p3

. Output a secret

key SK = g
k(α,r,h)
1 · R3 ∈ G

m1 .
• Decrypt(CT,SK): Parse Y,X from CT,SK. Assume R(X,Y ) = 1. Run E ←

Pair(X,Y ). Compute e(g1, g1)αs0 ← e(KE ,C), and M ← C0/e(g1, g1)αs0 .

Its correctness follows from that of the pair encoding, see [2]. Also in [2], it is
proved that if P is (1, poly)-SMH and (1, 1)-CMH secure, then ABE(P) is fully
secure with reduction O(q1). We recall this as follows. Let Adv

ABE(P)
A (λ) be the

advantage of an adversary A against the full security of ABE(P).

Proposition 1 ([2]). Suppose that a pair encoding P for predicate R is both
(1, 1)-CMH and (1, poly)-SMH in G. Suppose that the Subgroup Decision Assump-
tion 1,2,3 (denoted as SD1,SD2,SD3)2 hold in G. Suppose also that R is domain-
transferable.3 Then the ABE scheme ABE(P) in G for predicate R is fully secure.
More precisely, for any PPT adversary A, there exist PPT algorithms
B1,B2,B3,B4,B5, whose running times are the same as A plus some polynomial
times, such that for any λ,

Adv
ABE(P)
A (λ) ≤ 2AdvSD1

B1
(λ) + (2q1 + 3)AdvSD2

B2
(λ) + AdvSD3

B3
(λ)

+ q1Adv
(1,1)-CMH(P)
B4

(λ) + Adv
(1,poly)-SMH(P)
B5

(λ),

where q1 is the number of queries in phase 1.

As a new corollary, we have that if P is (1, 1)-SMH and (1, 1)-CMH secure,
then ABE(P) is fully secure with reduction O(qall). We state this as follows.

Corollary 1. Suppose that a pair encoding scheme P for predicate R is both
(1, 1)-CMH and (1, 1)-SMH in G. Suppose that SD1,SD2,SD3 hold in G. Suppose
also that R is domain-transferable. Then, ABE(P) in G for predicate R is fully
secure. More precisely, for any PPT adversary A, there exist PPT algorithms
B1,B2,B3,B4,B5, whose running times are the same as A plus some poly times,
such that for any λ,

Adv
ABE(P)
A (λ) ≤ 2AdvSD1

B1
(λ) + (2qall + 1)AdvSD2

B2
(λ) + AdvSD3

B3
(λ)

+ q1Adv
(1,1)-CMH(P)
B4

(λ) + q2Adv
(1,1)-SMH(P)
B5

(λ),

where q1 and q2 denotes the number of queries in phase 1 and phase 2, respec-
tively, and qall = q1 + q2.
2The SD1, SD2, SD3 assumptions were introduced in [25]. We refer to [2,25].
3Informally speaking, R is domain-transferable [2] if RN (X,Y ) = Rp(X,Y ) for any
prime p|N with high probability.
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Proof (Proof of Corollary 1 (Sketch)). This corollary follows the proof of Propo-
sition 1 in [2]. The only difference is that instead of switching all post-challenge
keys all at once for the three games (normal to semi-functional type 1, to type
2, and to type 3), we switch each post-challenge key one key per one game, in
just the same way as for each pre-challenge key (and as in the traditional dual
system encryption proofs). This results in the cost q2 for the reduction to the
SMH security and the additional cost 2q2 − 2 for the reduction to SD2.

4 New Theorem for Generic Dual Conversion

In this section, we first recall the generic dual conversion of [2], where it was
proved to hold for only the case of perfectly master-key hiding encoding. We
restate this as Proposition 2. We then present our main results which are new
theorems for the case of computationally secure encodings.

Dual Conversion of [2]. Given a pair encoding scheme PR for predicate R,
we construct a predicate encoding scheme C(PR) for R̄ as follows. For Param →
(n,h) , we set Param = (n + 1,h) where h = (h, φ̄), where φ̄ is a new variable.
We then define

• Enc1(X,N): Obtain (cX(s,h);w2) ← Enc2(X,N) and parse s = (s0, . . .).
Then, set

k̄X(ᾱ, r̄, h̄) :=
(
cX(s,h), ᾱ + φ̄s0

)
, r̄ := s,

and output (k̄X(ᾱ, r̄, h̄);w2), where we treat ᾱ as a new variable.
• Enc2(Y,N): Obtain (kY (α, r,h);m2) ← Enc1(Y,N). Then, set

c̄Y (s̄, h̄) :=
(
kY (φ̄s̄0, r,h), s̄0

)
, s̄ := (s̄0, r),

and output (c̄Y (s̄, h̄);m2), where we treat s̄0 as a new variable.

The correctness can be verified as follows. If R̄(X,Y ) = 1, then R(Y,X) = 1,
hence from c(s,h) and k(φ̄s̄0, r,h), we can compute (φ̄s̄0)s0, thanks to the
correctness of PR. From that, we obtain (α + φ̄s0)(s̄0) − (φ̄s̄0)s0 = αs̄0. We also
note that C(PR) is normal by definition.

Proposition 2 ([2]). If the pair encoding PR for R is perfectly master-key
hiding, then the pair encoding C(PR) for R̄ is also perfectly master-key hiding.

Theorem 1. If the pair encoding PR for R is normal and (1, 1)-co-selectively
master-key hiding, then the pair encoding C(PR) for R̄ is (1, 1)-selectively master-
key hiding (with tight reduction).

Theorem 2. If the pair encoding PR for R is normal and (1, 1)-selectively
master-key hiding, then the pair encoding C(PR) for R̄ is (1, 1)-co-selectively
master-key hiding (with tight reduction).
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Proof (Proof of Theorem 1). Suppose that there is an adversary A against
the (1, 1)-SMH security of C(PR). We construct an algorithm B against the
(1, 1)-CMH security of PR as follows. At the initialization, B first obtains g1, g2, g3
from its challenger. B simply parses these to A for initialization.

(Simulating O1). In the (1, 1)-SMH game, A first makes a ciphertext query for
Y . B then makes a key query for Y to its challenger in its own (1, 1)-CMH game
and obtains K = g

kY (α,r,h)
2 . The goal of B is to guess if α = 0 or α ∈R ZN . B

samples φ̄′, s̄0
$← ZN and implicitly defines φ̄ = φ̄′ + α/s̄0. B then computes

C̃ = g
kY (φ̄′s̄0,0,0)
2 · K = g

kY (φ̄′s̄0+α,r,h)
2 = g

kY (φ̄s̄0,r,h)
2 ,

where the middle equation holds from the definition of K and thanks to the
identity Eq. (1), while the last equation holds due to that φ̄s̄0 = (φ̄′ +α/s̄0)s̄0 =
φ̄′s̄0 + α. B then returns the ciphertext C̄ =

(
C̃, gs̄0

2

)
= g

c̄Y (s̄,h̄)
2 to A. This

perfectly simulates the answer for the query Y to O1 for A.

(Simulating O2). A makes a key query for X such that R̄(X,Y ) = 0. B then
makes a ciphertext query for X to its challenger in its own (1, 1)-CMH game,
which can be done since R(Y,X) = R̄(X,Y ) = 0, and obtains C = g

cX(s,h)
2 .

B then implicitly defines ᾱ = −αs0/s̄0. This is distributed independently from
other elements since the other place where α appears is in φ̄ but there, α is
hidden by the random value φ̄′. B then computes

gᾱ+φ̄s0
2 = g

(−αs0/s̄0)+(φ̄′+α/s̄0)s0
2 = g

−αs0/s̄0+φ̄′s0+αs0/s̄0
2 = gφ̄′s0

2 ,

which can be computed since gs0
2 is available from C due to the normality of

encoding. B returns K̄ =
(
C, gᾱ+φ̄s0

2

)
= g

k̄X(ᾱ,r̄,h̄)
2 to A. It perfectly simulates

the answer for the query X to O2 for A.

(Output). Finally, when A outputs b′ as its guess, B also outputs the same
value b′. Now since we have (implicitly) defined ᾱ = −αs0/s̄0, we have that if
α = 0, then ᾱ = 0, and if α ∈R ZN , then ᾱ ∈R ZN . Therefore, the advantage of
B is equal to that of A. This concludes the proof.

Proof (Proof of Theorem 2). Suppose that there is an adversary A against the
(1, 1)-CMH security of C(PR). We claim that we can construct an efficient algo-
rithm B against the (1, 1)-SMH security of PR that has the same advantage as
A, and hence conclude the proof. This can be done analogously to the previous
proof. The only difference is the order of the key and ciphertext queries by A. In
the (1, 1)-CMH game, A makes a key query for Y first, then a ciphertext query
for X. But this is exactly the same order in the (1, 1)-SMH game for B, where
B will ask a ciphertext query for Y first, then a key query for X. The detailed
simulation is exactly the same as the previous proof.

The following corollary follows from the above two theorems and Corollary 1.



98 N. Attrapadung and S. Yamada

Corollary 2. For any PPT adversary A, there exist PPT algorithms B1,B2,B3,
B4,B5, whose running times are the same as A plus some polynomial times, such
that for any λ,

Adv
ABE(C(P))
A (λ) ≤ 2AdvSD1

B1
(λ) + (2qall + 1)AdvSD2

B2
(λ) + AdvSD3

B3
(λ)

+ q1Adv
(1,1)-SMH(P)
B4

(λ) + q2Adv
(1,1)-CMH(P)
B5

(λ),

where q1 and q2 denotes the number of queries in phase 1 and phase 2, respec-
tively, and qall = q1 + q2.

5 Concrete Dual Schemes with Tighter Reduction

Our generic dual conversion in the previous section can convert (1, 1)-CMH-
secure encoding into (1, 1)-SMH-secure encoding, and vice versa. This results
in ABE with O(qall) reduction by Corollary 1. In this section, we provide a
direct construction of pair encoding scheme of a certain dual predicate and show
that it is (1, 1)-CMH-secure and (1, poly)-SMH-secure. Therefore, the resulting
ABE enjoys tighter reduction of O(q1) by Proposition 1. We focus on the CP-
DSE primitive, which is the dual of KP-DSE. Although we will obtain a specific
scheme, we give a generic conversion that is extended from the previous con-
version. This conversion has the same properties as in Theorem 1 and 2, that
is, it converts (1, 1)-CMH-secure encoding into (1, 1)-SMH-secure encoding, and
vice versa. The new result here is that we can prove the (1, poly)-SMH security
of the encoding scheme for CP-DSE obtained by applying this new conversion
to the encoding of KP-DSE in [2]. Intuitively, we use the randomizer technique
from [2,27] for obtaining (1, poly)-SMH. To enable this, we require one more
element each for a key and a ciphertext (elements related to ū, η̄ below).

Extended Dual Conversion. Given a pair encoding scheme PR for predi-
cate R, we construct a predicate encoding scheme EC(PR) for R̄ as follows. For
Param → (n,h) , we set Param = (n + 2,h) where h = (h, φ̄, η̄), where φ̄, η̄ are
new variables. We then define

• Enc1(X,N): Obtain (cX(s,h);w2) ← Enc2(X,N) and parse s = (s0, . . .).
Then, set

k̄X(ᾱ, r̄, h̄) :=
(
cX(s,h), ᾱ + φ̄s0 + ūη̄, ū

)
, r̄ := (s, ū),

and output (k̄X(ᾱ, r̄, h̄);w2 + 1), where we treat ᾱ, ū as new variables.
• Enc2(Y,N): Obtain (kY (α, r,h);m2) ← Enc1(Y,N). Then, set

c̄Y (s̄, h̄) :=
(
kY (φ̄s̄0, r,h), s̄0, s̄0η̄

)
, s̄ := (s̄0, r),

and output (c̄Y (s̄, h̄);m2), where we treat s̄0 as a new variable.

The correctness can be verified as follows. If R̄(X,Y ) = 1, then R(Y,X) = 1,
hence from c(s,h) and k(φ̄s̄0, r,h), we can compute (φ̄s̄0)s0, thanks to the
correctness of PR. We thus obtain (α + φ̄s0 + ūη̄)(s̄0) − (φ̄s̄0)s0 − ū(s̄0η̄) = αs̄0.
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Corollary 3. If the pair encoding scheme PR for R is (1, 1)-CMH, then the pair
encoding scheme EC(PR) for R̄ is (1, 1)-SMH. If the pair encoding scheme PR

for R is (1, 1)-SMH, then the pair encoding scheme EC(PR) for R̄ is (1, 1)-CMH.

Proof. The proof follows exactly in the same manner as Theorem 1, 2 except
that the reduction B also randomly chooses η̄, ū. The corresponding terms can
be computed using η̄, ū.

CP-DSE with Tighter Reduction. Due to the lack of space, we refer the
definition of KP-DSE (and hence its dual, CP-DSE) to [2]. Let PKPDSE denote
the pair encoding construction for KP-DSE of [2]. We obtain a new pair encoding
for CP-DSE as EC(PKPDSE). We prove that it is (1, poly)-SMH-secure with tight
reduction under a new assumption which is similar to the assumption use for
proving the CMH security of PKPDSE of [2]. We defer the details to the full version.

6 Generic Conjunction and Conversion to Dual Policy

Let R1 : X1 × Y1, R2 : X2 × Y2 be two predicates. We define the conjunctive
predicate of R1, R2 as [R1∧R2] : X̃×Ỹ → {0, 1} where X̃ = X1×X2, Ỹ = Y1×Y2

and [R1 ∧ R2]((X1,X2), (Y1, Y2)) = 1 iff R1(X1, Y1) = 1 and R2(X2, Y2) = 1.
Next, let R : X × Y be a predicate. We define its dual-policy predicate (DP) as
the conjunctive of itself and its dual predicate, R̄. Hence, its notation is [R∧ R̄].

Conjunctive Predicate Conversion. Given two pair encoding schemes: PR1

for predicate R1 and PR2 for predicate R2, we construct a predicate encoding
scheme denoted D(PR1 ,PR2) for predicate [R1 ∧ R2] as follows. For Param1 →
(n1,h1), Param2 → (n2,h2), we set P̂aram = (n1 + n2, ĥ) where ĥ = (h1,h2).
We then define

• Ênc1((X1,X2), N): For i = 1, 2, obtain (kXi
(αi, ri,hi);m2,i) ← Enc1i(Xi, N).

Then, set

k̂(X1,X2)(α̂, r̂, ĥ) :=
(
kX1(r̂, r1,h1),kX2(α̂ − r̂, r2,h2)

)
, r̂ := (r1, r2, r̂),

and output (k̂X(α, r̂, ĥ);m2,1+m2,2+1), where we treat α̂, r̂ as new variables.
• Ênc2(Y,N): For i = 1, 2, obtain (cYi

(si,hi);w2,i) ← Enc2i(Yi, N). Parse si =
(s0,i, s

′
i), and set

ĉ(Y1,Y2)(ŝ, ĥ) :=
(
cY1((s0, s

′
1),h1), cY2((s0, s

′
2),h2)

)
, ŝ := (s0, s′

1, s
′
2),

and output (ĉ(Y1,Y2)(ŝ, ĥ);w2,1 + w2,2), where we treat s0 as a new variable.

The correctness can be verified as follows. If [R1 ∧ R2]((X1,X2), (Y1, Y2)) =
1, then R1(X1, Y1) = 1 and R2(X2, Y2) = 1. Hence, from kX1(r̂, r1,h1) and
cY1((s0, s

′
1),h1), we obtain r̂s0, due to the correctness of PR1 . Similarly, from

kX2(α̂−r̂, r2,h2) and cY2((s0, s
′
2),h2), we obtain (α̂−r̂)s0, due to the correctness

of PR2 . From these, we obtain r̂s0 + (α̂ − r̂)s0 = α̂s0.



100 N. Attrapadung and S. Yamada

Theorem 3. If the pair encoding schemes PR1 for R1 and PR2 for R2 are perfectly
master-key hiding, then the pair encoding schemeD(PR1 ,PR2) for [R1∧R2] is also
perfectly master-key hiding.

Proof. Consider (X1,X2), (Y1, Y2) such that [R1 ∧ R2]((X1,X2), (Y1, Y2)) = 0.
If R1(X1, Y1) = 0, from the perfect security of PR1 , we have that r̂ is hidden,
hence α̂ is also hidden since it is masked with r̂. If R2(X2, Y2) = 0, from the
perfect security of PR2 , we have α̂ − r̂ is hidden and hence α̂ is also hidden. In
both cases, we have that α̂ is hidden as required.

Theorem 4. For the notion X ∈ {(1, 1)-SMH, (1, 1)-CMH}, if the pair encoding
schemes PR1 for R1 and PR2 for R2 are both normal and X-secure, then the pair
encoding scheme D(PR1 ,PR2) for [R1 ∧ R2] is also X-secure. More precisely, for
any PPT adversary A, there exist a PPT algorithm B, whose running time is
the same as A plus some polynomial time, such that for any λ,

Adv
X(D(PR1 ,PR2 ))

A (λ) ≤ 2AdvX(PR1 )

B (λ) + 2AdvX(PR2 )

B (λ) (2)

The following corollary is immediate from Theorem 1, 2, and 4.

Corollary 4. If the pair encoding scheme PR for R is normal,
(1, 1)-selectively, and (1, 1)-co-selectively master-key hiding, then the pair encod-
ing D(PR,C(PR)) for [R ∧ R̄] is also (1, 1)-selectively and (1, 1)-co-selectively
master-key hiding.

Proof (Proof of Theorem 4). We prove for the case of SMH. The case for CMH
can be done in exactly the same manner except exchanging the order of ora-
cles. Suppose that there is an adversary A against the (1, 1)-SMH security of
D(PR1 ,PR2). We construct an algorithm B against the (1, 1)-SMH security of
either PR1 or PR2 as follows. Firstly, B flips a coin b

$← {1, 2} for determining
to break the (1, 1)-SMH security of PRb

. At the initialization, B first obtains
g1, g2, g3 from its challenger (of the (1, 1)-SMH game for PRb

). B simply parses
these to A for initialization. Let b̃ = 1 if b = 2, and b̃ = 2 if b = 1. B will
construct all parameters for PRb̃

by itself by choosing hb̃
$← Z

nb̃
p .

(Simulating O1). In the (1, 1)-SMH game, A first makes a ciphertext query for
(Y1, Y2). B then makes a key query for Yb to its challenger (of the (1, 1)-SMH

game for PRb
) and obtains g

cYb
(sb,hb)

2 . Due to the normality, B can parse g
s0,b

2

from this. We implicitly set s0 = s0,b. B chooses δ
$← Z

w2,b̃
p then computes

(gs0
2 )cY

b̃
((1,δ),hb̃) = g

cY
b̃

(
(s0, s0δ),hb̃

)

2 . This holds due to linearity. This implicitly

sets s′
b̃

= s0δ. B then returns g
cYb

(sb,hb)

2 and g
cY

b̃
((s0,s′

b̃
),hb̃)

2 in the order according
to b (i.e., if b = 1, they are in this order, otherwise, we swap them).

(Simulating O2). The adversary A makes a key query for (X1,X2) such that
[R1∧R2]((X1,X2), (Y1, Y2)) = 0. There are two possible cases. If Rb(Xb, Yb) = 0,
then B makes a key query for Xb to its challenger (of the (1, 1)-SMH game for
PRb

) and obtains Kb = g
kXb

(αb,rb,hb)

2 . Otherwise, Rb(Xb, Yb) = 1, B will ask
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some legitimate key query and simply outputs a random guess, while abort
the game with A. We now proceed with the former case, where it is further
categorized into two cases:

− If b = 1, then B implicitly sets α̂ = α1 and r̂ = α1 + r̂′ where B chooses
r̂′ $← Zp. Hence, α̂ − r̂ = −r̂′. B computes K̂1 := g

kX1 (r̂
′,0,0)

2 · K1 =

g
kX1 (α1+r̂′,r1,h1)
2 = g

kX1 (r̂,r1,h1)
2 , which holds from the identity Eq. (1). B then

computes K̂2 := g
kX2 (−r̂′,r2,h2)
2 = g

kX2 (α̂−r̂,r2,h2)
2 by choosing r2

$← Z
m2,2
p

(and recall that B possesses h2). B returns (K̂1, K̂2) to A.
− If b = 2, then B implicitly sets α̂ = α2. B chooses r̂

$← Zp. B computes
K̂1 := g

kX1 (r̂,r1,h1)
2 by choosing r1

$← Z
m2,1
p (and recall that B possesses h1).

B then computes K̂2 := g
kX2 (−r̂,0,0)
2 · K2 = gkX2 (α̂−r̂,r2,h2), which holds due

to the identity Eq. (1). B returns (K̂1, K̂2) to A.

In both cases, we have α̂ = αb. Hence B just outputs its guess (of whether
αb = 0 or αb

$← Zp) to be exactly the same as the output of A (who guesses
whether α̂ = 0 or α̂

$← Zp). Since B aborts with probability 1/2, we have the
inequality (2).

7 Implied Instantiations

Policy over Doubly-Spatial Encryption. We obtain the first two (fully-
secure) CP-DSE schemes. The first scheme is automatically obtained by applying
the generic dual conversion to the KP-DSE of [2] (and use Theorem 1, 2). The
resulting CP-DSE has reduction O(qall), as shown in Corollary 2. The second
scheme is directly constructed and has tighter reduction of O(q1) (see §5). We
then obtain the first dual-policy over DSE (DP-DSE) by applying the generic
conjunctive conversion to the KP-DSE of [2] and our first CP-DSE (and use
Corollary 4).

ABE for Boolean Formulae (and Monotone Span Programs). We obtain
various schemes:

− Unbounded ABE. We obtain the first fully-secure completely-unbounded
CP-ABE schemes. Such schemes should pose no bounds such as the attribute
set or policy size per ciphertext or key, the attribute universe size, and
the number of attribute repetition (also called multi-use) in a policy. We
use the fact that any pair encoding for CP-DSE implies an encoding for
completely-unbounded CP-ABE as a special case. This is shown for the key-
policy case in [2], but is also straightforward for the ciphertext-policy case by
just exchanging key and ciphertext encodings. Hence, we have two completely-
unbounded CP-ABE schemes, one with O(qall) and one with O(q1) reduction.
We then obtain the first completely-unbounded DP-ABE by applying the
generic conjunctive conversion to the unbounded KP-ABE of [2] and our
first unbounded CP-ABE (and use Corollary 4), or equivalently, we can view
unbounded DP-ABE as a special case of DP-DSE.
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Table 1. Previous schemes and our new instantiations, positioned by predicates and
properties, where we recall that KP, CP, DP stands for key-policy, ciphertext-policy,
and dual-policy, respectively

Predicate Properties KP CP DP
Security Universe Multi-use

Policy over DSE full - - A14 [2] Ours Ours

Unbounded ABE selective large unbound LW11 [26], RW13 [31] none
RW13 [31] none

full small unbound LW12 [27] LW12 [27] none
full large bound OT12 [30] OT12 [30] none
full large unbound A14 [2] Ours Ours

Short-Cipher ABE selective large unbound ALP11 [6] open‡ open

full large unbound A14 [2] open‡ open

Short-Key ABE selective large unbound BGG+14 [8] none open
full large unbound open Ours open

(Bounded) ABE selective large unbound GPSW06 [21] W11 [34] AI09 [5]
full small bound LOS+10 [28] LOS+10 [28] Ours
full large bound OT10 [29], OT10 [29], Ours

A14 [2] A14 [2]

Regular Languages selective small - W12 [35] none none
full large - A14 [2] A14 [2] Ours

† ‘none’ means that there was no previous work and it is subsumed by another system
with stronger properties (e.g., fully-secure). ‘open’ means that it remains an open
problem. ‘-’ means no defined property.

‡ Short-cipher CP-ABE were given in [4,11,13,24] but only for subclasses of span
programs (AND, threshold).

− ABE with Short Keys. Any pair encoding for CP-DSE implies an encoding
for CP-ABE with constant-size keys as a special case. This is analogous to the
implication of KP-ABE with short ciphertexts from KP-DSE shown in [2]. We
use the same implication but swap key and ciphertext encodings, hence short
ciphertexts become short keys. From this, we obtain the first fully-secure CP-
ABE with short keys. Note that it requires bounded-size attribute set per
key.

− (Bounded) ABE. By applying the generic conjunctive conversion to the
bounded KP-ABE and CP-ABE of [28] (and use Theorem 3), we obtain a
fully-secure bounded DP-ABE for small-universe. Similarly, we obtain a large-
universe variant from other KP-ABE and CP-ABE in [2] (namely, Scheme
12,13 in [2]). These systems require the bounds on the size of attribute sets
for each ciphertext (in KP-ABE) or each key (in CP-ABE). Nevertheless,
the underlying security of these encodings are perfectly master-key hiding,
which is for free (no assumption needed for it), hence these systems use only
subgroup decision assumptions required for the framework of [2].
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ABE for Regular Languages (ABE-RL). In KP-ABE for regular languages,
we have a key associated to the description of a deterministic finite automata
(DFA) M , while a ciphertext is associated to a string w, and R(M,w) = 1 if the
automata M accepts the string w. We refer to [2,35] for detailed definitions. By
applying the generic conjunctive conversion and Theorem 4 to the KP-ABE-RL
and CP-ABE-RL in [2], we obtain the first (fully-secure) DP-ABE-RL.
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Abstract. In the context of Identity-Based Encryption (IBE), both
revocation and delegation of key generation are important functionalities.
Although a number of IBE schemes with either efficient revocation or
efficient delegation of key generation functionality have been proposed,
an important open problem is efficiently delegating both the key gen-
eration and revocation functionalities in IBE systems. Seo and Emura
(CT-RSA 2013) proposed the first realization of Revocable Hierarchi-
cal IBE (RHIBE), a sole IBE scheme that achieves both functionalities
simultaneously. However, their approach implements history-preserving
updates, wherein a low-level user must know the history of key updates
performed by ancestors in the current time period, and it renders the
scheme very complex.

In this paper, we present a new method to construct RHIBE that
implements history-free updates. Our history-free approach renders the
scheme simple and efficient. As a second contribution, we redefine the
security model for RHIBE to ensure security against insiders, where
adversaries are allowed to obtain all internal system information, e,g.,
state information. In addition, we also consider the decryption key expo-
sure attack, which was considered by Seo and Emura (PKC 2013).

Further, we propose two RHIBE schemes with shorter secret keys and
constant size ciphertexts that implement the aforementioned history-free
updates approach and security model. For revocation, our constructions
use the Complete Subtree (CS) method and the Subset Difference (SD)
method. Both schemes are selectively secure in the standard model under
the q-weak Bilinear Diffie-Hellman Inversion (q-wBDHI) assumption.

1 Introduction

Several systems are built upon unreliable public networks; therefore, it is neces-
sary to secure communications among computers in such systems. To this end,
most systems use key management systems based on Public Key Infrastructure
(PKI). However, it is at times challenging to handle a large number of public key
certificates in conventional PKI key management schemes, and therefore, such
c© Springer International Publishing Switzerland 2015
K. Nyberg (ed.): CT-RSA 2015, LNCS 9048, pp. 106–123, 2015.
DOI: 10.1007/978-3-319-16715-2 6



History-Free Update, Security Against Insiders, and Short Ciphertexts 107

schemes are rendered impractical, particularly in the case of large distributed
systems. To resolve this problem, Shamir [26] introduced Identity-Based Encryp-
tion (IBE), which allows the use of an arbitrary bit string , such as an email
address, as a public key. In IBE systems, the Key Generation Center (KGC) plays
an important role in that it generates all the secret keys of users and establishes
secure channels to transmit each user’s secret key. However, a large number for
users results in considerable workload for a single KGC to handle, and miti-
gating the same is an important issue. Horwitz and Lynn [11] introduced the
concept of Hierarchical IBE (HIBE) which enables the KGC to delegate key gen-
eration functionality to a low-level KGC. Apart from improved efficiency, which
is a prominent advantage of HIBE, there are several applications of HIBE, e.g.,
forward secure encryption [7], public key broadcast encryption [9], etc.

Boneh and Franklin proposed the first IBE construction, in [5], that explained
a trivial way to revoke users; encryptors use the current time as a part of the
recipient’s identity, and for each time period, the KGC issues new secret keys for
non-revoked users. However, this trivial revocation method that updates individ-
ual non-revoked users’ secret keys imposes an excessive workload on the KGC.
Boldyreva, Goyal, and Kumar [1] proposed a Revocable IBE (RIBE) scheme that
drastically reduces the workload of the KGC, from linear complexity to logarith-
mic complexity in the number of users. The first fully secure RIBE construction
has been proposed by Libert and Vergnaud [15]. Their RIBE construction is
based on a variant [16] of Waters IBE [28]. Moreover, Seo and Emura [22,24]
refined the security model of Boldyreva-Goyal-Kumar’s RIBE scheme by consid-
ering a new realistic threat, called decryption key exposure. Note that all afore-
mentioned schemes with revocation functionality, except for Boneh-Franklin’s
non-scalable one, use Complete Subtree (CS) revocation method due to Naor,
Naor, and Lotspiech [17]. There is another revocation methodology of Naor-
Naor-Lotspiech, called Subset Difference (SD), which has better performance
than CS in the transmission complexity but larger secret key size. Very recently,
Lee, Lee, and Park [13] proposed the first RIBE with the subset difference revo-
cation method. RIBE from lattice also has been proposed in [8] though it does
not consider decryption key exposure attack. Moreover, RIBE with rejoin fun-
cionality has been considered in [25] where the same identity can be used after
a secret key is revoked.

Previous Approach for Revocable HIBE. In the design of Revocable HIBE
(RHIBE), it must be noted that a low-level user may remain in the system only
if the corresponding parent user remains in the system for a given time period;
that is, low-level secret keys can remain activated only till the parent secret key
remains activated. In particular, as pointed out by Seo and Emura [21], a trivial
combination of RIBE and HIBE will result in an impractical scheme with an
exponential number of secret keys, as each secret key in all known scalable RIBE
schemes consist of several partial keys, and only one of them is used to generate
a decryption key according to the current key update.1 More specifically, if we
1 There is another RHIBE construction proposed by Tsai, Tseng, and Wu [27]. How-

ever, we do not consider that scheme because it is not scalable.
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Table 1. Revocable Hierarchical Identity-Based Encryption schemes

SK CT KU Model Sec. ag. DKE Assum.
size size size insiders resist.

Trivial ω(2�)

SE [21] O(�2 log N) O(�) O(r log N
r

) Std., Sel. ✘ ✘ static

CS const. O(� log N) O(1) O(�r log N
r

) Std., Sel. ✔ ✔ q-type

SD const. O(�(log N)2) O(1) O(�r) Std., Sel., SRL ✔ ✔ q-type

Std.: standard model, Sel.: selective security, SRL: selective revocation list [1,13]
�: maximum hierarchical level, N : maximum number of users in the system,

r: number of revoked users.

consider a RIBE scheme wherein each secret key consists of n partial keys, where
n is defined according to the revocation methodology, and we naturally extend
this RIBE to RHIBE, then a second level user will have n2 partial keys because
for each partial key of the parent the second level user will have to prepare n
partial keys, and therefore the second level user can survive irrespective of which
partial key of he parent is activated for the current time period. This approach
yields O(n�) secret key size, which is exponential in the hierarchical level �.

In the above trivial combination of RIBE and HIBE, each low-level user has
all possible, exponential in number, partial keys. However, Seo and Emura [21]
pointed out that all of such partial keys are not used in practice, and to address
this issue, proposed the first RHIBE scheme with polynomial size secret keys,
which afforded an asymmetric trade-off between computational cost and secret
key size (See [23], which is the full version of [21]). In the Seo-Emura scheme,
for each time period, each user first generates an appropriate secret key by
multiplying some of the partial keys, which depends on the partial keys used
by ancestors. This process enables users to generate an exponential number of
different keys, however only some of them are generated in practice. The resulting
scheme achieves a selective security notion and polynomial size parameters; in
particular, linear ciphertext size in the hierarchical level of the recipient. Note
that the Seo-Emura scheme implemented history-preserving key updates. In their
scheme, for each time period, each user chose one partial key contained in their
secret key. Then, for selecting or generating a partial key, every descendant had
to know which partial key of the ancestor was used in each time period; that is,
such information is also announced in the key updates. Consequently, the history-
preserving approach rendered the scheme very complex as it inherently generated
many correlations among the secret keys (and therefore key updates) of different
level users. In fact, although Seo and Emura endeavored to simplify their scheme
and security proof through ensuring independent distribution of each part of the
scheme, their scheme emerged very complicated owing to recursively defined
secret keys and key updates.

Our Contribution. We revisit both the security model and design methodol-
ogy for RHIBE, and accordingly, aim to design practical RHIBE schemes that
are secure against as many realistic threats as possible. Our contributions are
summarized below.
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– New design approach implementing history-free updates
– New security model that safeguards against insiders and the decryption key

exposure attack
– Two constructions: Shorter secret keys and ciphertexts

We present a comparison in Table 1. First, we present a new methodology for
constructing RHIBE, that features a history-free approach wherein a low-level
user does not need to know the history of the key updates of ancestors. Through
our proposed approach, we can construct RHIBE schemes that have several
advantages over that proposed by Seo and Emura [21]. Our schemes are advan-
tageous in that, their construction is simple-and-intuitive in comparison with [21]
because there are no undesirable correlations and recursive functions. Further-
more, the resulting schemes have better performance; for example, the secret key
size of the Seo-Emura RHIBE scheme increases quadratically in the hierarchy
of the user owing to their history-preserving approach, but in our approach, the
increase is linear.

Second, we redefine the security model for RHIBE. In particular, we point out
that the Seo-Emura adversarial model [21] accounts for only outsiders, i.e., only
adversaries that do not have access to state information used by internal users of
the RHIBE system. The state information of each user contains important infor-
mation; for example, in [21] a user in the system uses a Binary Tree BT to apply a
tree-based broadcast encryption technique for revoking children users, and each
node in the BT has a corresponding value used to bridge between the children’s
secret key and the key update information generated by the parent user. This
information constitutes a part of the state information maintained by a user and
is crucial to the revocation methodology.2 It should be noted that in the security
model of RIBE, we do not need to account for state information leakage because
the latter is maintained only by the KGC and it is usually assumed that the KGC
is not compromised. Unlike RIBE, each user in RHIBE is also a low-level KGC;
therefore users of the RHIBE system always have access to state information
or at least their own state information. Therefore, to account for compromised
insiders, we have to assume that an adversary has access to state information (at
least their own). Therefore, we introduce a new security model that covers more
threats than those considered by the Seo-Emura model. One may think that
securing against insiders simply involves altering the security model through the
introduction of an additional oracle for state information. However, the related
security proof involves certain obstacles. For example, the security proof in [21]
does not support a direct modification to account for security against insiders
because the simulated distribution of state information in [21] is different from
the ideal ones, so that it cannot be given to the adversary for the new security
model. Therefore, we need a different approach to prove security against insid-
ers. In addition to insider security, the proposed security model also covers the
recently introduced decryption key exposure [22,24].

2 This approach is first proposed by Boldyreva et al. [1] and followed by the almost
all scalable R(H)IBEs, including the Seo-Emura RHIBE scheme [21].
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Finally, we propose two RHIBE schemes with shorter secret keys and constant
size ciphertexts. Our first construction uses the Complete Subtree (CS) for revo-
cation, while the second uses the Subset Difference (SD) revocation method [17].
Both the proposed schemes are proved to be selectively secure in the standard
model under the decisional q-weak Bilinear Diffie-Hellman Inversion (q-wBDHI)
assumption introduced by Boneh, Boyen, and Goh (BBG) [3,4]. The key update
size of our schemes have � terms and the security is based on non-static assump-
tion. It should be noted that this difference is owing to the property of the under-
lying BBG HIBE scheme [3,4]. More precisely, the delegation of key generation
method in BBG HIBE inherently requires the secret key to contain all delegation
keys such that the key updates in the proposed schemes must also have delega-
tion parts. We expect that if RHIBE is built on the basis of Boneh-Boyen’s (BB)
HIBE [2], which is publicly delegatable, through our design methodology, then
we can remove � terms from the key update size. Then, the resulting RHIBE
based on BB HIBE will have a O(�) ciphertext size. Note that we only consider
selective security of our RHIBE constructions. Although it is considered that
adaptive security is the strongest and selective security is slightly weaker than
adaptive security, no adaptively secure RHIBE scheme has been proposed yet
and we believe that selective security is adequately effective. A selectively secure
scheme may serve as a good steppingstone for an adaptively secure scheme, and
also the former could also be a reasonable tradeoff with regard to performance
in certain circumstances, as pointed out by Rouselakis and Waters [19].

IBE is one of the simplest version of attribute-based encryption [10,20], inner
product encryption [12,18], and more generally functional encryption [6]. Key
delegation and revocation are two important functionalities not only in the con-
text of IBE but also in the context of functional encryption. We expect our
methodology to help in the practical design of functional encryption that include
both delegation of key generation and revocation functionalities.

Our Methodology. The most important requirement that RHIBE has to sat-
isfy is that the system has to restrict a low-level user from generating key updates
only if they are not revoked. To this end, in the history-preserving approach of
Seo and Emura’s RHIBE scheme [21], a parent user’s secret key is used to gener-
ate a corresponding children’s secret key and a parent user’s key update is used
to generate a corresponding children’s key update.

To achieve a history-free construction, we begin with the simple observation
that the following two situations are equivalent; (1) a user ID is not revoked at
time T , and (2) the user can generate the decryption key dkID,T . Based on this
observation, we define the key update algorithm and the secret key generation
algorithm as follows (here, we omit certain detail, e.g., what θ means, however
we explain it in Section 4). The key update algorithm takes dkID,T as input
and the key update on T is computed by multiplying a random P−1

θ to dkID,T .
Then, a child of ID, say ID′, can create of multiplied dkID′,T by P−1

θ , according
to the delegation property of dk. On the other hand, the secret key generation
algorithm runs similar to the secret key generation algorithm of the underlying
HIBE; however it uses Pθ instead of the master key of the underlying ordinary
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HIBE scheme. That is, the secret key generation algorithm does not require any
secret information from the ancestors. Then, the product of the secret key for ID′

and the key update yields a valid decryption key dkID′,T . Even if the secret key
does not contain any secret information, in particular, the master secret key, it
is necessary to recover dk. Here, Pθ is the state information of the user ID and it
plays the role of a delegation key in our constructions. Our proposed construction
is a simple one; in fact, the explanation provided herein is a simplified version
that does not discuss about the specific revocation method employed, such as the
CS method, but contains our key observations for a simple-and-intuitive RHIBE
construction.

The above approach is well harmonized with the CS revocation method.
Roughly speaking, Pθ’s are mutually independent and random when the CS
method is used, so that the secret key generation algorithm can be defined
irrespective of the master secret key. However, in this regard, the SD revocation
method is slightly more complicated. Again roughly speaking, in the Lee-Lee-
Park RIBE scheme using the SD method [13], Pθ’s must have correlations so that
the master secret key information can be contained. In other words, our history-
free approach cannot be applied directly, and another technique is required to
circumvent this obstacle. To resolve this problem, we introduce a false master key
into each of the secret keys so that each secret key is completely independent from
those of the ancestors, and in particular, the master secret key. Furthermore, each
false master key serves as a bridge between a children user’s secret key and the
key update generated by their parent user.

Organization. The next section gives preliminaries for the remaining sections.
In Section 3, we redefine the syntax and the security model for RHIBE by con-
sidering our new approach (history-free updates) and more threats. We present
our two constructions via history-free approach in Section 4 and 5. Finally, we
state a short conclusion and open problems in the related area.

2 Preliminaries

Notation. We use a complete binary tree BT for revocation. For a leaf node θ in
BT, Path(θ) means a set of all nodes lying on the path between the root node
and θ. Sometimes, we assign a node to an identity ID. If it is not confusing, we
also use Path(ID) to denote the path from the corresponding node of ID to the
root note.

2.1 Subset-Cover Revocation Framework

The subset-cover revocation framework is a general methodology for revocation
schemes due to Naor, Naor, Lotspiech [17]. The CS and SD are instances of the
subset-cover revocation framework. Both CS and SD have subset assignment
algorithms that take a binary tree BT, a revocation list RL, and the current
time T , and then output a set of subsets covering only non-revoked users, where
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each user is assigned in a unique leaf node in BT. In this subsection, we review
subset assignment algorithms for both the CS method and the SD method.

We first define notation. If v is a non-leaf node, then vl denotes the left child
of v. Similarly, vr is the right child of v. We assume that each user is assigned to
a unique leaf node. If a user, which is assigned to v, is revoked on time T , then
(v, T ) is added into RL.

The CS Method. The subset assignment algorithm for the CS method, denoted
by KUNode, is defined as follows.

KUNode(BT, RL, T ) : X, Y ← ∅;
For ∀(vi, Ti) ∈ RL, if Ti ≤ T, then add Path(vi) to X;
For ∀v ∈ X, if vl �∈ X, then add vl to Y;

if vr �∈ X, then add vr to Y;
If |RL| = 0, then add root to Y;
Return Y;

In fact, KUNode outputs a set of nodes. Then, each node v uniquely defines a
subtree rooted at v.

The SD Method. We describe the subset assignment algorithm for the SD
method, denoted by SD.KUNode. Unlike the KUNode algorithm, SD.KUNode
outputs a set of pairs of nodes (vi, vj), where vi is an ancestor of vj . Each (vi, vj)
uniquely defines a subset Si,j such that a leaf node u ∈ Si,j iff it is in the subtree
rooted at vi but not in the subtree rooted at vj . We denote by ST (RL) the
(directed) Steiner Tree induced by the set RL of vertices and the root; that is,
the minimal subtree of the complete binary tree BT that connects all the leaves
in RL so that ST (RL) is unique. The detail of SD.KUNode is given below.

SD.KUNode(BT, RL, T ) : T ← ST (RL);
Until T consists of just a single node,

1. Find two leaves vi and vj in T such that the least-common-ancestor v of vi

and vj does not contain any other leaf of T in its subtree. Let vl and vk be
the two children of v such that vi is a descendant of vl and vj is a descendant
of vk. (If there is only one leaf left, make vi = vj to the leaf, v to be the root
of T and vl = vk = v.)

2. If vl �= vi then add the subset Sl,i to the collection; likewise, if vk �= vj add
the subset Sk,j to the collection.

3. Remove from T all the descendants of v and make it a leaf.

The algorithm KUNode often denotes its resulting subsets. Similarly, SD.KUNode
also denotes its resulting set.
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Bilinear Groups and Complexity Assumption. We assume that there
exists a group generator algorithm G(1λ) that outputs (p,G,Gt, e), where G

and Gt are groups of prime order p = Θ(2λ) and e : G×G → Gt is an efficiently
computable non-degenerate bilinear map.

Definition 1 ([4]). We say that the decisional �-wBDHI assumption holds on G
if given g, h, gα, gα2

, . . . , gα� ∈ G, there is no polynomial time adversary distin-
guishing e(g, h)α�+1

from a random element in Gt with non-negligible advantage,

where G(1λ) → (p,G,Gt, e), g, h
$← G, and α

$← Zp.

3 Revocable Hierarchical Identity-Based Encryption

We provide a new definition of RHIBE via history-free approach and its security
model. First, we consider the history-free approach as follows; the key update
generation algorithm KeyUp takes a decryption key dk as input and the secret
key generation algorithm SKGen does not take a secret key given from the parent.
The secret key is used only for generating the decryption key dk. Therefore, we
do not need to worry about undesirable correlations relating the secret key; e.g.,
in the definition of [21], the secret key is used as inputs of SKGen and KeyUp.

Although inputs of algorithms in Definition 2 are slightly different from those
in [21], we note that inputs in our algorithms can be computed from inputs in
the corresponding algorithms in [21] so that RHIBE satisfying our definition can
be adapted to satisfy the definition in [21]. For example, our KeyUp algorithm
takes dkID|k−1,T as input instead of skID|k−1 , kuID|k−2,T , and T , but dkID|k−1,T can
be generated by the DKGen algorithm taking skID|k−1 , kuID|k−2,T , and T as input.

Algorithms. We first define notations used in algorithms’ description. We
sometimes use the notation ID|k−1 to emphasize the identity ID’s level (k − 1).
In the case k = 1, ID|k−1 means the KGC. stID|k−1 , kuID|k−1,T , and RLID|k−1 are
state information kept by the user ID|k−1, the key update published by the user
ID|k−1 on time T , and the revocation list managed by ID|k−1, respectively. For
the case k = 1, we use st0, ku0,T , and RL0, respectively.

Definition 2. RHIBE consists of seven algorithms Setup, SKGen, KeyUp,
DKGen, Enc, Dec, and Revoke defined as follows.

Setup(1λ, N, �): Given the security parameter 1λ, maximum number of users in
each level N , and maximum hierarchical length � , it outputs the public sys-
tem parameter mpk, the master secret key msk, initial state information st0,
and empty revocation list RL. We assume that mpk contains description of
message space M, identity space I, and time space T . For simplicity, we
often omit mpk in the input of other algorithms.

SKGen(stID|k−1 , ID|k): It takes state information stID|k−1 and an identity ID|k as
inputs, and then outputs the secret key skID|k and updates stID|k−1 .

3

3 State information takes a role of the delegation key.
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KeyUp(dkID|k−1,T , stID|k−1 , RLID|k−1 , T ): It takes the revocation list RLID|k−1 ,
state information stID|k−1 , the decryption key dkID|k−1,T , and a time period
T as inputs. For k = 1, we set dkID|k−1,T to be msk disregarding T . Then, it
outputs the key update kuID|k−1,T .

DKGen(skID|k , kuID|k−1,T ): Given the secret key skID|k of ID|k and the key update
kuID|k−1,T , it outputs the decryption key dkID|k,T of ID|k on time T if ID|k is
not revoked on time T by the parent.

Enc(M, ID, T ): It takes a message M , a recipient identity ID and the current
time T as inputs and outputs the ciphertext CT.

Dec(CT, dkID,T ): This algorithm takes as inputs a ciphertext CT and the decryp-
tion key dkID,T , and then outputs the message.

Revoke(ID|k, T,RLID|k−1): Given an identity ID|k and a time T , the revocation
list RLID|k−1 managed by ID|k−1, who is the parent user of ID|k, is updated
by adding (ID, T ).

Correctness. We require the following correctness condition to be satisfied: For
any output Setup → (mpk,msk), any message M ∈ M, any identity ID|k ∈ I
where k ∈ [1, �], any time T ∈ T , all possible states {stID|i}i∈[1,k−1], and all
possible revocation lists {RLID|i}i∈[1,k−1], if ID|k is not revoked on time T , the
following probability should be 1; i is initialized by 1. While i ∈ [1, k], repeatedly
run ⎛

⎜
⎜
⎝

SKGen(stID|i−1 , ID|i) → skID|i ;
KeyUp(dkID|i−1,T , stID|i−1 , RLID|i−1) → kuID|i−1 ;
DKGen(skID|i , kuID|i−1,T ) → dkID|i,T ;
i ← i + 1;

⎞

⎟
⎟
⎠

Finally, compute Enc(M, ID|k, T ) → CT and Dec(CT, dkID|k,T ) → M ′. The per-
fect correctness requires that the probability that M = M ′ to be 1, where the
probability is taken over the randomness used in all algorithms.4

Security Model. Next, we define the security model for RHIBE. In our pro-
posed construction, we consider security against a stronger adversary than that
considered in [21]. In contrast to the previous model [21], our security model
accounts for an adversary that can obtain not only secret keys but also state
information of a chosen identity. Furthermore, we also account for the decryption
key exposure attack [22,24] by considering an adversary that has access to the
decryption key oracle with reasonable restriction. Therefore, our security model
is a natural extension of the security model for the RIBE scheme in [22,24],
while accounting for more realistic adversaries than [21].

First, we define oracles SKGen(·), DKGen(·, ·), KeyUp(·, ·) and Revoke(·, ·)
that A is allowed to access. We assume that all oracles have a shared storage
containing state information and revocation lists.

SKGen(·): Given an identity ID, it outputs the corresponding secret key skID and
state information stID.

4 Again, we note that for brevity, in the definition of RHIBE we set dkID|i−1,T to be
msk when i = 1, and we omit mpk in all algorithms’ input.
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DKGen(·, ·): It takes an identity ID and a time T , and then outputs the corre-
sponding decryption key dkID,T .

KeyUp(·, ·): If A sends ID|k−1 and T , then the oracle returns the corresponding
key update kuID|k−1,T . If k = 1, it means that A asks the key updates for
the first level users generated by the KGC.

Revoke(·, ·): Given an identity ID|k and a time period T , it adds a pair (ID|k, T )
into the revocation list RLID|k−1 , where ID|k−1 is the parent of ID|k.

Given a RHIBE scheme RHIBE = (Setup,SKGen,DKGen,KeyUp,Enc,
Dec,Revoke) and an adversary A = {A0,A1,A2}, we define an experiment
ExpIND-sRID-CPA

RHIBE,A (1λ, N, �; ρ), where ρ is a random tape for all randomness used
in the experiment. In the following, O is a set of oracles (SKGen(·), DKGen(·, ·),
KeyUp(·, ·), Revoke(·, ·)).

ExpIND-sRID-CPA
RHIBE,A (1λ, N, �; ρ)

(ID|∗k∗ , T ∗, state0) ← A0; (mpk,msk) ← Setup(1λ, N, �);

(M∗
0 , M∗

1 , state1) ← AO
1 (mpk, state0); b

$← {0, 1};CT∗ ← Enc(M∗
b , ID|∗k∗ , T ∗);

b′ ← AO
2 (mpk,CT∗, state1); Return

{
1 if b = b′ and the Conditions are satisfied

0 otherwise

Conditions:

1. M∗
0 and M∗

1 have the same length.
2. A has to query to KeyUp(·, ·) and Revoke(·, ·) in increasing order of time.
3. A cannot query to Revoke(·, ·) on time T if it already queried to KeyUp(·, ·) on

time T .
4. If ID|∗k′ is queried to SKGen(·) on time T ′, where k′ ≤ k∗ and T ′ ≤ T , then A

must query to revoke the challenge identity ID|∗k∗ or one of its ancestors on time

T ′ ≤ T ′′ ≤ T .
5. A cannot query decryption keys dkID|∗

k′ ,T ∗ of the challenge identity or its ancestors

on the challenge time T ∗, where k′ ≤ k∗.

The advantage of A, denoted by AdvIND-sRID-CPA
RHIBE,A (1λ, N, �), in the experiment

ExpIND-sRID-CPA
RHIBE,A is defined as

∣
∣
∣Prρ[ExpIND-sRID-CPA

RHIBE,A (1λ, N, �; ρ) → 1] − 1
2

∣
∣
∣.

Definition 3 (IND-sRID-CPA). For a RHIBE scheme RHIBE, we say that RHIBE

is IND-sRID-CPA secure if for any polynomials N and � and probabilistic polynomial

time algorithm A, the function AdvIND-sRID-CPA
RHIBE,A (1λ, N, �) is a negligible function in

the security parameter 1λ.

4 RHIBE via Complete Subtree

4.1 Our Construction

In this section, we present our first RHIBE construction, which is based on the BBG

HIBE scheme [3] and the CS method [17], via history-free approach.
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For the convenience of explanation, we assume that skID|k−1
, BTID|k−1

, and kuID|k−1

mean msk, BT0, and ku0, respectively if k = 1. The KeyUp algorithm takes a decryption

key, except for the KGC’s case. Therefore, we separately explain the KeyUp algorithm

between using the msk and using a decryption key.

Setup(1λ, N, �): Run G(1λ) → (p,G,Gt, e). Choose g, h, g2, u1, . . . , u�, u
′, h′ $← G and

α
$← Zp and set g1 = gα. Publish mpk = {N, g, h, u1, . . . , u�, g1, g2, u

′, h′} and

keep msk = {gα
2 } in a secure storage.

SKGen(stID|k−1
, ID|k): stID|k−1

, which is kept by ID|k−1, contains the binary tree

BTID|k−1
. For ID|k := (I1, . . . , Ik), assign a random leaf node of BTID|k−1

to

ID|k. For each node θ in Path(ID|k) ⊂ BTID|k−1
, recall Pθ if it is stored. Oth-

erwise, choose Pθ
$← G, assign and store it in the corresponding node. We call

Pθ msk-shade at θ. For each θ ∈ Path(ID|k), choose rθ
$← Zp and compute

skID|k =
{

Pθ(uI1
1 · · · uIk

k h)rθ , grθ , urθ

k+1, . . . , u
rθ

�

}

θ∈Path(ID|k)
.

KeyUp(msk, st0, RL0, T ): State information st0 contains the binary tree BT0. Com-

pute a set KUNode(BT0, RL0, T ). For each θ ∈ KUNode(BT0, RL0, T ) recall msk-

shade at θ if it is defined. Otherwise, choose a new msk-shade at θ and store

it to the corresponding node. Finally, the key update ku0,T is generated as fol-

lows: Choose tθ
$← Zp for each θ ∈ KUNode(BT0, RL0, T ) and compute ku0,T ={

P−1
θ gα

2 (u′T h′)tθ , gtθ

}

θ∈KUNode(BT0,RL0,T )
.

Pθ is a part of state information, but tθ is a temporary integer used in this key

update only.

DKGen(skID|k , kuID|k−1,T ): Let ID|k = (I1, . . . , Ik). Parse kuID|k−1,T =
{

ã0,θ, ã1,θ, ã2,θ,

b̃k,θ, . . . , b̃�,θ

}

θ∈S
; for simplicity, if k = 1, we set ã1,θ = b̃k,θ = · · · = b̃�,θ = 1G,

where 1G is the identity in G. If (ID|k, ·) �∈ RLID|k−1
, then there should be

at least one node in Path(ID|k) ∩ S, say θ. For such θ, let the secret key be

(a0, a1, bk+1, . . . , b�). Compute (A0, A1, A2, Bk+1, . . . , B�) as

(a0ã0,θ b̃Ikk,θ, a1ã1,θ, ã2,θ, bk+1b̃k+1,θ, . . . , b�b̃�,θ).

Finally, re-randomize the result and output it as dkID|k,T . We explain how to re-

randomize it later.

KeyUp(dkID|k−1,T , stID|k−1
, RLID|k−1

, T ): For θ ∈ KUNode(BTID|k−1
, RLID|k−1

, T ),

recall Pθ if it is stored. Otherwise, choose Pθ
$← G at random and store it in

the corresponding node. Let dkID|k−1,T be (a0, a1, a2, bk, . . . , b�). For each node

θ in KUNode(BTID|k−1
, RLID|k−1

, T ), re-randomize the decryption key with fresh

randomness so that obtain (a0,θ, a1,θ, a2,θ, bk,θ, . . . , b�,θ). Finally, the key update

kuID|k−1,T is generated by as follows:

{
P−1

θ · a0,θ, a1,θ, a2,θ, bk,θ, . . . , b�,θ

}

θ∈KUNode(BTID|k−1
,RLID|k−1

,T )

Enc(M, ID|k, T ): Let ID|k = (I1, . . . , Ik). Choose an integer s
$← Zp at random and

compute CT = (M · e(g1, g2)
s, gs, (uI1

1 · · · uIk
k h)s, (u′T h′)s).
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Dec(CT, dkID|k,T ): Let ID|k = (I1, . . . , Ik) and parse CT = (C′, C0, C1, C2)

and dkID|k,T = (a0, a1, a2, , bk+1, . . ., b�). Compute and output

C′ · e(a1, C1) · e(a2, C2)

e(a0, C0)
.

Revoke(ID|k, T, RLID|k−1
, stID|k−1

): Update RLID|k−1
by adding a pair (ID|k, T ).

Correctness. Here, we check the correctness of the scheme. From the shape of the

ciphertext for ID|k and T , we can easily see that if dkID|k,T is of the form (gα
2 (uI1

1 · · ·
uIk

k h)r(u′T h′)t, gr, gt, bk+1, . . . , b�), then the decryption algorithm correctly outputs

the plaintext with probability 1. Using mathematical induction, we can show that

dkID|i,T , which is obtained by i times repeatedly performing SKGen, KeyUp and DKGen,

is of the desired form (gα
2 (uI1

1 · · · uIi
i h)r(u′T h′)t, gr, gt, ur

i+1, . . . , u
r
� ) for some r and t.

Decryption/Secret Key Re-randomization. The decryption key for ID =

(I1, . . . , Ii) on time T has is of the form (gα
2 (uI1

1 · · · uIi
i h)r(u′T h′)t, gr, gt, ur

i+1, . . . , u
r
� ).

Since ui’s, h, and g are publicly available, anyone can re-randomize given decryption

key dkID,T = (a0, a1, a2, bi+1, . . . , bk) by computing

(
a0(u

I1
1 · · · uIi

i h)r
′
(u′T h′)t

′
, a1g

r′
, a2g

t′
, bi+1u

r′
i+1, . . . , b�u

r′
�

)

with fresh random integers r′ and t′. Similarly, secret key can be also re-randomized.

4.2 Security Analysis

Theorem 1. The proposed RHIBE scheme defined over the bilinear group (G,Gt, e) is

IND-sRID-CPA secure under the decisional �-wBDHI assumption on G, where (G,Gt, e)

is generated by G and � is the maximum hierarchy.

The proof of the theorem directly comes with the following lemmas.

Lemma 1 ([3]). The BBG HIBE scheme defined over the bilinear group (G,Gt, e) is

IND-sID-CPA secure under the �-wBDHI assumption on G, where (G,Gt, e) is gener-

ated by G.

Lemma 2. The proposed RHIBE scheme is IND-sRID-CPA secure if BBG HIBE is

IND-sID-CPA secure.

Due to space constraint, we relegate the proof of Lemma 2 to the full version.

5 RHIBE via Subset Difference

In this section, we present our second RHIBE scheme, which is based on the BBG HIBE

scheme [3] and the SD revocation method [17], and which implements the proposed

history-free approach. For RIBE, Lee, Lee, and Park (LLP) [13] demonstrated how

to combine the Boneh-Boyen (BB) IBE [2] scheme and the SD revocation method.

Because the BBG HIBE scheme has a similar structure as the BB IBE scheme, one



118 J.H. Seo and K. Emura

may assume that the same approach that was used in the previous section can be

applied to the LLP RIBE scheme [13]. However, there are some important differences

between our RHIBE scheme with the CS method and the LLP RIBE scheme with

the SD method. In our construction, Pθ’s are mutually independent random elements.

However, the SD revocation method requires more complicated handling. For instance,

in the LLP RIBE scheme [13], there are correlations among Pθ so that the master

secret key information should be contained. Therefore, another technique is required

to overcome this problem.

To resolve this problem, we introduce a false master key into each of the secret keys

so that each secret key is completely independent from those of the ancestors, and in

particular, the master secret key. Furthermore, each false master key serves as a bridge

between a children user’s secret key and the key update generated by their parent user.

Without loss of generality, we assume that the maximum number of users in the

system is a power of 2, that is, N = 2n. We define two functions between a set of nodes

and their levels, where the root node is level-0 and a leaf node is level-n. Let Leaves be

a set of leaf nodes.

NtLBT : BT → {0, . . . , n}
node 	→ its level

LtNu : Leaves × {0, . . . , n} → Path(u)

(u, i) 	→ i-th level node in Path(u)

If subscripts of NtL and LtN are clear in the context, we often omit them. Instead, we

say that NtL is BT-dependent and LtN is u-dependent. From the above definitions, we

can easily check that NtLBT(·) is surjective but not injective for full binary tree BT with

2n leaves, and LtNu(u, ·) is bijective for a leaf node u. In particular, NtLBT ◦ LtNu(u, ·)
is the identity map defined over {0, . . . , n} and LtNu(u,NtLBT(v)) = v if and only if

v ∈ Path(u) ⊂ BT.

Additionally, we define a function F (k, y, x, β) as follows.

F (k, y, x, β) : K × {0, 1}∗ × Zp × Zp → Zp

(k, y, x, β) 	→ PRFk(y)x + β,

where PRF is a pseudorandom function. If k and β are fixed and clear from the context,

we shortly denote F by fy(x). That is, fy(x) is a linear function such that the leading

coefficient is chosen uniformly and y-dependently and the constant is fixed as β.

We assume that each node in binary tree has unique name so that we can easily

identify it. In this paper, we use a sufficiently large p such that Zp has exponentially

many elements. If it is not confusing, we sometimes consider (the label of) each node

in binary trees as an element in Zp. If needed, we can use collision-resistant hashes

from a unique node name to Zp.

5.1 Our Construction

In Figure 1, we provide a pictorial description of our RHIBE construction, in particular,

it focuses on a binary tree for delegation and key updates that each user (except the

lowest user) in the hierarchy of IBE has. Note that the description in Figure 1 is almost

the same as the non-hierarchical RIBE due to [13], except the false master key β, and

this small-but-important difference enables us to apply our methodology for history-free
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Level-0

Level-1

Level-2

Level-3

Level-4

Fig. 1. A pictorial description of RHIBE via the SD method

RHIBE construction. Let Δi,S(x) be a Lagrange coefficient defined as
∏

j∈S,j �=i
x−j
i−j

for i ∈ Zp and S ⊂ Zp.

Setup(1λ, 2n, �) : Run G(1λ) → (p,G,Gt, e). Choose g, h, g2, u1, . . . , u�, u
′, h′ $← G and

α
$← Zp and set g1 = gα. Publish mpk = {g, h, u1, . . . , u�, g1, g2, u

′, h′} and keep

msk = {gα
2 } in a secure storage.

SKGen(stID|k−1
, ID|k): State information stID|k−1

, which is kept by ID|k−1, contains

the binary tree BTID|k−1
, a key k for PRF, and a false master secret key β, where

at the very first time k and β are chosen at random. (For each identity, k and

β are randomly chosen and fixed so that we use the notation fy(x) instead of

F (k, y, x, β).) For ID|k = (I1, . . . , Ik), assign a random leaf node, say u, in BTID|k−1
.

For every i, j ∈ {0, . . . , n} such that i ≤ j, choose ri,j
$← Zp and compute

sk
(i,j)
ID|k =

(
g

fLtN(u,i)‖j(LtN(u,j))
2 (uI1

1 · · · uIk
k h)ri,j , gri,j , u

ri,j

k+1, . . . , u
ri,j

�

)
, where LtN is

u-dependent. Then, skID|k =
{
sk

(i,j)
ID|k

}

i≤j∈{0,...,n}
.

KeyUp(msk, st0, RL0): st0 contains the binary tree BT0, a key k for PRF, and a false

master secret key β. Compute a set SD.KUNode(BT0, RL0, T ). ku0,T is generated

as follows. For each (v,w) ∈ SD.KUNode(BT0, RL0, T ), choose tv,w
$← Zp and com-

pute ku
(v,w)
0,T =

(
g

fv‖NtL(w)(w)
2 (u′T h′)tv,w , gtv,w

)
, where NtL is BT0-dependent. Then,

ku0,T is

{(
gα−β
2 (u′T h′)t, gt)

}⋃{
ku

(v,w)
0,T

}

(v,w)∈SD.KUNode(BT0,RL0,T )
, where t

$← Zp.
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DKGen(skID|k , kuID|k−1,T ): Let ID|k = (I1, . . . , Ik) and u be the node associating ID|k in

BTID|k−1
. Parse kuID|k−1,T is the union of

{
(U0, U1, U2, Vk, . . . , V�)

}
and

{
U

(v,w)
0 ,

U
(v,w)
1 , U

(v,w)
2 , V

(v,w)
k , . . . , V

(v,w)
�

}

(v,w)∈S
. If k = 1, we can set

U
(v,w)
1 = V

(v,w)
k = · · · = V

(v,w)
� = 1G, where 1G is the identity in G. If

(ID|k, ·) �∈ RLID|k−1
, then there should exist at least one pair (v,w) ∈ S such

that v ∈ Path(u) and w �∈ Path(u). (The SD-method guarantees it.) For such

the pair (v,w), consider sk
(NtL(v),NtL(w))
ID|k = (K0, K1, Lk+1, . . . , L�), where NtL is

BTID|k−1
-dependent. Define

−→
U ,

−→
U (v,w), and

−→
K (v,w) by (U0(Vk)Ik , U1, U2, Vk+1,

. . . , V�), (U
(v,w)
0 (V

(v,w)
k )Ik , U

(v,w)
1 , U

(v,w)
2 , V

(v,w)
k+1 , . . . , V

(v,w)
� ), and (K0, K1, K2,

Lk+1, . . . , L�), respectively, where K2 is 1G. Let S = {LtNu(u,NtL(w)),w}.

dkID|k,T is computed by
−→
U · (

−→
U (v,w))Δw,S(0) · (

−→
K (v,w))ΔLtNu(NtL(w)),§(0), where a

vector to an exponent means a component-wise exponentiation. The algorithm

outputs dkID|k,T after re-randomization.

KeyUp(dkID|k−1,T , stID|k−1
, RLID|k−1

): stID|k−1
contains BTID|k−1

, a key k for PRF,

and a false master secret key β.

Let dkID|k−1,T be (a0, a1, a2, bk, . . . , b�). Re-randomize the decryption key. The

key update kuID|k−1,T is generated as follows. For each (v,w) ∈ SD.KUNode

(BTID|k−1
, RLID|k−1

, T ), choose tv,w, rv,w
$← Zp and compute ku

(v,w)
ID|k−1,T

by
(
g

fv‖NtL(w)(w)
2 (uI1

1 · · · uIk
k−1h)rv,w(u′T h′)tv,w , gtv,w , u

rv,w

k , . . . , u
rv,w

�

)
, where NtL is

BTID|k−1
-dependent. Then, kuID|k−1,T is

{(
a0·g−β , a1, a2, bk, . . . , b�

)}⋃{
ku

(v,w)
ID|k−1,T

}

(v,w)∈SD.KUNode(BTID|k−1
,RLID|k−1

,T )
.

Enc(M, ID|k, T ), Dec(CT, dkID|k,T ), and Revoke(ID|k, T, RLID|k−1
, stID|k−1

) are the same

as those of the CS-construction.

Note that the decryption key is publicly re-randomizable like our RHIBE via

the CS method. We can check the correctness of the above scheme by showing that the

decryption key generated by the DKGen algorithm has the same form as that in the

RHIBE scheme with complete subtree. We omit the details.

5.2 Security Analysis

In contrast to the CS-based RHIBE scheme, the SD-based RHIBE scheme is secure for

a selective revocation model, wherein the adversary needs to issue the revocation list in

the challenge time T ∗ before the adversary receives the public parameters.5

Let us provide a short intuition for security of the SD-based RHIBE scheme in

the selective revocation list model. In general, our RHIBE construction using the SD

method is equivalent to our RHIBE construction using the CS method, except in their

revocation methodology. In particular, the handling of binary trees is different. Owing

to the similarity (in particular, in mpk and decryption keys) in the two constructions, we

5 Note that selectively secure Lee-Lee-Park RIBE via the SD method is also proven
in the selective revocation list model [13].
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can apply almost the same strategy from the proof of Lemma 2; e.g., the decryption key

oracle can be constructed identically. State information to which an internal adversary

will have access to is normally generated. Only key update and secret key queries

related to state information that an adversary will not have access to should be carefully

simulated. The biggest difference between the two constructions in terms of the security

proof is that msk-shades in a binary tree are mutually independent, but points of fy(x)

have correlations. To correctly deal with these correlations in T ∗ correctly, the simulator

will need to know the revocation list in T ∗ before generating mpk.

6 Concluding Remarks

The delegation of key generation capabilities is important in not only IBEs, but also

functional encryption. In addition, revoking keys is necessary in public key encryption,

in particular, dynamic systems. We revisited both the security issue and the method-

ology to combine both functionalities in the context of IBE. As a result, we presented

simple-and-intuitive constructions in the newly proposed security model covering more

realistic adversaries.

There are many interesting open problems. Attaining both revocation and dele-

gation functionalities in functional encryption such as attribute-based encryption and

inner-product encryption is an important open problem. It is also interesting to con-

struct a fully secure RHIBE scheme; In the security proof, we reduce new constructions

to the underlying selectively secure BBG HIBE scheme. Our proof technique essentially

uses the selectively security notion, like the Seo-Emura history-preserving construc-

tion [21], so that it cannot directly apply to fully secure RHIBE scheme. Removing the

restriction in maximum hierarchy of RHIBE scheme like Lewko-Waters’ unbounded

HIBE [14] is also an interesting open problem.

Acknowledgments. We gratefully acknowledge Hyung Tae Lee for helpful collabo-
ration at an early stage of this study.
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Abstract. Cryptographic accumulators allow to accumulate a finite set
of values into a single succinct accumulator. For every accumulated value,
one can efficiently compute a witness, which certifies its membership
in the accumulator. However, it is computationally infeasible to find a
witness for any non-accumulated value. Since their introduction, vari-
ous accumulator schemes for numerous practical applications and with
different features have been proposed. Unfortunately, to date there is
no unifying model capturing all existing features. Such a model can
turn out to be valuable as it allows to use accumulators in a black-box
fashion.

To this end, we propose a unified formal model for (randomized) cryp-
tographic accumulators which covers static and dynamic accumulators,
their universal features and includes the notions of undeniability and
indistinguishability. Additionally, we provide an exhaustive classification
of all existing schemes. In doing so, it turns out that most accumula-
tors are distinguishable. Fortunately, a simple, light-weight generic trans-
formation allows to make many existing dynamic accumulator schemes
indistinguishable. As this transformation, however, comes at the cost
of reduced collision freeness, we additionally propose the first indistin-
guishable scheme that does not suffer from this shortcoming. Finally,
we employ our unified model for presenting a black-box construction
of commitments from indistinguishable accumulators as well as a black-
box construction of indistinguishable, undeniable universal accumulators
from zero-knowledge sets. Latter yields the first universal accumulator
construction that provides indistinguishability.

1 Introduction

A (static) cryptographic accumulator scheme allows to accumulate a finite set
X = {x1, . . . , xn} into a succinct value accX , the so called accumulator. For every
element xi ∈ X , one can efficiently compute a so called witness witxi

to certify
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the membership of xi in accX . However, it should be computationally infeasi-
ble to find a witness for any non-accumulated value y �∈ X (collision freeness).
Dynamic accumulators are an extension that allows to dynamically add/delete
values to/from a given accumulator and to update existing witnesses accordingly
(without the need to fully recompute these values on each change of the accu-
mulated set). Besides providing membership witnesses, universal accumulators
also support non-membership witnesses for values y �∈ X . Here, collision free-
ness also covers that it is computationally infeasible to create non-membership
witnesses for values xi ∈ X . Over time, further security properties, that is, unde-
niability and indistinguishability have been proposed. Undeniability is specific to
universal accumulators and says that it should be computationally infeasible to
compute two contradicting witnesses for z ∈ X and z �∈ X . Indistinguishability
says that neither the accumulator nor the witnesses leak information about the
accumulated set X and, thus, requires randomized accumulator schemes.

Applications: Accumulators were originally proposed for timestamping pur-
poses [5], i.e., to record the existence of a value at a particular point in time.
Over time, other applications such as membership testing, distributed signa-
tures, accountable certificate management [7] and authenticated dictionaries [22]
have been proposed. Accumulators are also used as building block in redactable
[33,34], sanitizable [13], P -homomorphic signatures [2], anonymous credentials
[38], group signatures [39], privacy-preserving data outsourcing [37] as well as for
authenticated data structures [21]. Moreover, accumulator schemes that allow to
prove the knowledge of a (non-membership) witness for an unrevealed value in
zero-knowledge (introduced for off-line e-cash in [36]) are now widely used for
revocation of group signatures and anonymous credentials [12]. Quite recently,
accumulators were also used in Zerocoin [28], an anonymity extension to the
Bitcoin cryptocurrency.

Since their introduction, numerous accumulator schemes with somewhat dif-
ferent features have been proposed. Basically, the major lines of work are schemes
in hidden order groups (RSA), known order groups (DL) and hash-based con-
structions (which may use, but typically do not require number theoretic assump-
tions).

Hidden Order Groups: The original RSA-based scheme of Benaloh and de
Mare [5] has been refined by Baric and Pfitzmann [4], who strengthen the original
security notion to collision freeness. In [35], Sander proposed to use RSA moduli
with unknown factorization to construct trapdoor-free accumulators. Camenisch
and Lysyanskaya [12] extended the scheme in [4] with capabilities to dynamically
add/delete values to/from the accumulator, which constituted the first dynamic
accumulator scheme. Their scheme also supports public updates of existing wit-
nesses, that is, updates without the knowledge of any trapdoor. Later, Li et al.
[24] added support for non-membership witnesses to [12] and, therefore, obtained
universal dynamic accumulators. They also proposed an optimization for more
efficient updates of non-membership witnesses, for which, however, weaknesses
have been identified later [26,32]. Lipmaa [25] generalized RSA accumulators
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to modules over Euclidean rings. In all aforementioned schemes, the accumu-
lation domain is restricted to primes in order to guarantee collision freeness.
In [39], Tsudik and Xu proposed a variation of [12], which allows to accumu-
late semiprimes. This yields a collision-free accumulator under the assumption
that the used semiprimes are hard to factor and their factorization is not pub-
licly known. Moreover, in [40] an accumulator scheme that allows to accumulate
arbitrary integers and supports batch updates of witnesses has been proposed.
Yet, this scheme was broken in [9].

Known Order Groups: In [29], Nguyen proposed a dynamic accumulator
scheme which works in pairing-friendly groups of prime order p. It is secure under
the t-SDH assumption and allows to accumulate up to t values from the domain
Zp. Later, Damg̊ard and Triandopoulos [16] as well as Au et al. [3] extended
Nguyen’s scheme with universal features. Quite recently, Acar and Nguyen [1]
eliminated the upper bound t on the number of accumulated elements of the
t-SDH accumulator. To this end, they use a set of accumulators, each containing
a subset of the whole set to be accumulated. An alternative accumulator scheme
for pairing friendly groups of prime order has been introduced by Camenisch
et al. [11]. It supports public updates of witnesses and the accumulator and its
security relies on the t-DHE assumption.

Hash-Based Constructions: Buldas et al. [7,8] presented the very first uni-
versal dynamic accumulator that satisfies undeniability (termed as undeniable
attester and formalized in context of accumulators in [25]). Their construction is
based on collision-resistant hashing and the use of hash-trees. Another hash-tree
based construction of a universal accumulator that satisfies a notion similar to
undeniability has been proposed in [10] (the scheme is called a strong universal
accumulator). Quite recently, another accumulator based on hash-trees, which
uses commitments based on bivariate polynomials modulo RSA composites as
a collision-resistant hash function, has been introduced in [6]. For the sake of
completeness, we also mention the construction of static accumulators in the
random oracle model based on Bloom filters, proposed by Nyberg [30,31].

Contribution: The contributions of this paper are as follows:

– While some papers [3–5,12,29] do not explicitly formalize accumulator sche-
mes, formal definitions are given in [1,10,11,14,20,24,25,40]. However, these
models are typically tailored to the functionalities of the respective scheme.
While they widely match for the basic notion of (static) accumulators (with
the exception of considering randomized accumulators), they differ when it
comes to dynamic and universal accumulators. To overcome this issue, we
propose a unified formal model for accumulators, which is especially valuable
when treating accumulators in a black-box fashion. We, thereby, also include
the notion of undeniability [7,8,25] and a strengthened version of the recent
indistinguishability notion [17]. Besides, we also confirm the intuition and
show that undeniability is a strictly stronger notion than collision freeness.
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– We provide an exhaustive classification of existing accumulator schemes
and show that most existing accumulator schemes are distinguishable in
our model. To resolve this issue, we propose a simple, light-weight generic
transformation that allows to add indistinguishability to existing dynamic
accumulators and prove the security of the so-obtained schemes. As this
transformation, however, comes at the cost of reduced collision freeness, we
additionally propose the first indistinguishable scheme that does not suffer
from this shortcoming. Note that due to the lack of space, the indistinguish-
able accumulator scheme is provided in the extended version of this paper.

– Since accumulators are somehow related to commitments to sets [19,23],
commitments to vectors [14] and to zero-knowledge sets [27], it is inter-
esting to study their relationship. Interestingly, we can formally show that
indistinguishable accumulators imply non-interactive commitment schemes.
Furthermore, we formally show that zero-knowledge sets imply indistinguish-
able, undeniable universal accumulators, yielding the first construction of
such accumulators.

2 Preliminaries

By acc we denote an accumulator and if we want to make the accumulated
set X = {x1, . . . , xn} explicit, we write accX . Given an accumulator accX , a
membership witness for an element xi ∈ X is denoted by witxi

, whereas a non-
membership witness for an element yj /∈ X is denoted by wityj

. The accumulator
secret key (trapdoor) is denoted by skacc, while the public key is denoted by pkacc.
By a

R← A, we denote that a is chosen uniformly at random from the set A.
A function ε : N → R

+ is called negligible if for all c > 0 there is a k0 such
that ε(k) < 1/kc for all k > k0. In the remainder of this paper, we use ε to
denote such a negligible function.

3 A Unified Model for Cryptographic Accumulators

In the original sense, accumulator schemes were defined by the following prop-
erties (see, e.g., [12,24]). Thereby, ZI represents the domain of values to be
accumulated and ZA the accumulator domain.

Efficient generation: There is an efficient probabilistic algorithm that, on
input of a security parameter κ, defines a functionality f : ZA × ZI → ZA,
i.e., generates the accumulator specific key pair (skacc, pkacc) (where skacc is
a trapdoor for f).

Efficient evaluation: There is an efficient algorithm that computes f(acc,

x).
Quasi-commutativity: It holds that f(f(acc, x1), x2) = f(f(acc, x2), x1)

∀x1, x2 ∈ ZI , acc ∈ ZA.
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Assuming that it is computationally infeasible to invert f without knowing skacc,
the quasi-commutativity directly yields a way to define witnesses. For instance,
f(acc, x1) can serve as witness for the accumulation of x2. Nonetheless, it is more
meaningful to provide a more abstract algorithmic definition of accumulators as
done subsequently, since there are several constructions that do not fit into this
characterization (for instance, hash-tree constructions do not require the quasi-
commutativity property).

Trusted vs. Non-Trusted Setup: Known accumulators that rely on num-
ber theoretic assumptions require a trusted setup, i.e., a TTP runs the setup
algorithm Gen and discards the trapdoor skacc afterwards. Here, access to skacc
allows to break collision freeness (and its stronger form: undeniability). Con-
sequently, correctness of the accumulator scheme also needs to hold if skacc is
omitted in all algorithms, which is the case for all existing schemes. In con-
trast, in constructions relying on collision-resistant hash functions (not based
on number theoretic assumptions) there is no trapdoor at all and, therefore, no
trusted setup is required. In order to study number theoretic accumulators with-
out trusted setup, Lipmaa [25] proposed a modified model which divides the Gen
algorithm into a Setup and a Gen algorithm. In this model, the adversary can
control the randomness used inside Setup and, thus, knows the trapdoor. Never-
theless, it can neither access nor influence the randomness of the Gen algorithm.
This model, however, still requires a partially trusted setup and also does not
fit to the known order group setting, which makes it not generally applicable.1

Consequently, when considering the state of the art it seems most reasonable to
define a security model with respect to a trusted setup as we will do subsequently.
We emphasize that this model is compatible with all existing constructions. Nev-
ertheless, it remains a challenging open issue to design accumulators based on
standard assumptions which are secure without any trusted setup.

3.1 Definitions

In the following, we provide a definition for (static) accumulators, which we
adapt from [20,40]. In contrast to previous models, we explicitly consider ran-
domized accumulator schemes. Then, we extend this model in order to formalize
dynamic accumulators. It is similar to [11,14], but avoids shortcomings such
as missing private updates. Based on this, we define universal and universal
dynamic accumulators and propose a suitable security model. Furthermore, we
discuss undeniable and indistinguishable accumulators, give formalizations for
these properties, and, investigate relationships between security properties.
1 This model is tailored to the hidden order group setting, where Setup produces a

composite modulus N . Gen chooses a random generator g of a large subgroup of Z∗
N .

Then, the adversary knows the factorization of N but does not control the choice
of g. RSA accumulators are obviously insecure in this setting, but Lipmaa provides
secure solutions based on modules over an Euclidean ring, which, however, rely on
rather unstudied assumptions.
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We call accumulators that have an upper bound t on the number of accumu-
lated values t-bounded accumulators and unbounded otherwise. In order to model
this, our Gen algorithm takes an additional parameter t, where t = ∞ is used to
indicate that the accumulator is unbounded. For the sake of completeness, we
model the algorithms such that they support an optional input of the trapdoor
(denoted as sk∼

acc) since this often allows to make the algorithms more efficient.
However, we stress that we consider the trusted setup model and, hence, adver-
saries are not given access to the trapdoor skacc. Consequently, if sk∼

acc is set, the
party running the algorithm needs to be fully trusted.

Definition 1 (Static Accumulator). A static accumulator is a tuple of effi-
cient algorithms (Gen, Eval, WitCreate, Verify) which are defined as follows:

Gen(1κ, t): This algorithm takes a security parameter κ and a parameter t. If
t �= ∞, then t is an upper bound on the number of elements to be accumulated.
It returns a key pair (skacc, pkacc), where skacc = ∅ if no trapdoor exists.

Eval((sk∼
acc, pkacc), X ): This (probabilistic)2 algorithm takes a key pair (sk∼

acc,
pkacc) and a set X to be accumulated and returns an accumulator accX
together with some auxiliary information aux.

WitCreate((sk∼
acc, pkacc), accX , aux, xi): This algorithm takes a key pair (sk∼

acc,
pkacc), an accumulator accX , auxiliary information aux and a value xi. It
returns ⊥, if xi /∈ X , and a witness witxi

for xi otherwise.
Verify(pkacc, accX , witxi

, xi): This algorithm takes a public key pkacc, an accu-
mulator accX , a witness witxi

and a value xi. It returns true if witxi
is a

witness for xi ∈ X and false otherwise.

Henceforth, we call an accumulator randomized if the Eval algorithm is proba-
bilistic. Based on Definition 1, we can now formalize dynamic accumulators. We
widely align our definitions with [20,40], but, in addition, we need to consider
that the various dynamic accumulator schemes proposed so far differ regarding
the public updatability of witnesses and the accumulator.

Definition 2 (Dynamic Accumulator). A dynamic accumulator
is a static accumulator that additionally provides efficient algorithms
(Add,Delete,WitUpdate) which are defined as follows:

Add((sk∼
acc, pkacc), accX , aux, xi): This algorithm takes a key pair (sk∼

acc, pkacc),
an accumulator accX , auxiliary information aux, as well as a value xi to be
added. If xi ∈ X , it returns ⊥. Otherwise, it returns the updated accumulator
accX ′ with X ′ ← X ∪ {xi} and updated auxiliary information aux′.

Delete((sk∼
acc, pkacc), accX , aux, xi): This algorithm takes a key pair (sk∼

acc,
pkacc), an accumulator accX , auxiliary information aux, as well as a value
xi to be removed. If xi /∈ X , it returns ⊥. Otherwise, it returns the updated
accumulator accX ′ with X ′ ← X \ {xi} and auxiliary information aux′.

2 If Eval is probabilistic, the internally used randomness is denoted as r. If we want
to make the randomness used by the Eval algorithm explicit, we will write Evalr.
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WitUpdate((sk∼
acc, pkacc), witxi

, aux, xj): This algorithm takes a key pair (sk∼
acc,

pkacc), a witness witxi
to be updated, auxiliary information aux and a value

xj which was added/deleted to/from the accumulator, where aux indicates
addition or deletion. It returns an updated witness wit′xi

on success and ⊥
otherwise.

Below, we define universal accumulators and emphasize that features provided
by universal accumulators can be seen as supplementary features to both static
and dynamic accumulators.

Definition 3 (Universal Accumulator). A universal accumulator is a static
or a dynamic accumulator with the following properties. For static accumulator
schemes the algorithms WitCreate and Verify take an additional boolean parame-
ter type, indicating whether the given witness is a membership (type = 0) or
non-membership (type = 1) witness. For dynamic accumulator schemes this
additionally applies to WitUpdate.

3.2 Security Model

Now, we introduce a security model for accumulators, which we adapt from [24]
and further extend by undeniability and indistinguishability.

Classic Notion: A secure accumulator scheme is required to be correct and
collision-free. Correctness says that for all honestly generated keys, all honestly
computed accumulators and witnesses, the Verify algorithm will always return
true. We stress that correctness also needs to hold when all algorithms are
executed without skacc. Since the correctness property is straightforward, we
omit its formal definition. Collision freeness informally states that it is neither
feasible to find a witness for a non-accumulated value nor feasible to find a
non-membership witness for an accumulated value. More formally:

Definition 4 (Collision Freeness). A cryptographic accumulator of type t ∈
{static, dynamic} and u ∈ {universal, non-universal} is collision-free, if for all
PPT adversaries A there is a negligible function ε(·) such that:

Pr

⎡

⎢
⎢
⎣

(skacc, pkacc) ← Gen(1κ, t), O ← {Ot,Ou},
(wit∗xi

/wit∗xi
, x∗

i ,X ∗, r∗) ← AO(pkacc) :
(Verify(pkacc, acc∗,wit∗xi

, x∗
i , 0) = true ∧ x∗

i /∈ X ∗) ∨
(Verify(pkacc, acc∗,wit∗xi

, x∗
i , 1) = true ∧ x∗

i ∈ X ∗)

⎤

⎥
⎥
⎦ ≤ ε(κ),

where acc∗ ← Evalr∗((skacc , pkacc),X ∗) and A has oracle access to Ot and Ou

which are defined as follows:

Ot :=
{{OE(·,·,·)} if t = static,

{OE(·,·,·),OA(·,·,·,·),OD(·,·,·,·)} otherwise.

Ou :=
{{OW(·,·,·,·),OW(·,·,·,·)} if u = universal,

{OW(·,·,·,·)} otherwise.
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Thereby, OE,OA and OD represent the oracles for the algorithms Eval,Add, and
Delete, respectively. An adversary is allowed to query them an arbitrary number
of times. In case of randomized accumulators the adversary outputs randomness
r∗, whereas r∗ is omitted for deterministic accumulators. Likewise, the adversary
can control the randomness r used by OE for randomized accumulators. There-
fore, OE takes an additional parameter for r (which is missing for deterministic
accumulators). The oracles OW and OW allow the adversary to obtain mem-
bership witnesses for members and non-membership witnesses for non-members,
respectively. Thereby, the environment keeps track of all oracle queries (and
answers) and lets the respective oracle return ⊥ if calls to it are not consistent
with respect to previous queries. Furthermore, we assume that the adversary
outputs either a membership witness wit∗xi

or a non-membership witness wit∗xi

(denoted by wit∗xi
/wit∗xi

). If the accumulator is non-universal, one simply omits
the non-membership related parts.

One distinction to previous models is that we model (non-)membership wit-
ness generation via oracles. This way, we can ensure that security proofs take
the simulation of (non-)membership witnesses into account, which is vital and
could be overseen otherwise.

Definition 5 (Secure Accumulator). A cryptographic accumulator is secure
if it is correct and collision-free.

Undeniable accumulators: In [25], Lipmaa formalized undeniability for accu-
mulators. A universal accumulator is undeniable if it is computationally infea-
sible to find a membership as well as a non-membership witness for the same
value – independently of whether it is contained in an accumulator or not. More
formally undeniability is defined as:

Definition 6 (Undeniability). A universal cryptographic accumulator of type
t ∈ {static, dynamic} is undeniable, if for all PPT adversaries A there is a
negligible function ε(·) such that:

Pr

⎡

⎣
(skacc, pkacc) ← Gen(1κ, t), (wit∗xi

,wit∗xi
, x∗

i , acc
∗) ← AOt

(pkacc) :
Verify(pkacc, acc∗,wit∗xi

, x∗
i , 0) = true ∧

Verify(pkacc, acc∗,wit∗xi
, x∗

i , 1) = true

⎤

⎦ ≤ ε(κ),

where, A has oracle access to Ot which is defined as follows:

Ot :=
{{OE(·,·,·),OW(·,·,·,·),OW(·,·,·,·)} if t = static,

{OE(·,·,·),OA(·,·,·,·),OD(·,·,·,·),OW(·,·,·,·),OW(·,·,·,·)} otherwise.

Notice that the definition of the oracles is as in the definition of collision freeness
for universal accumulators.

Definition 7. A universal accumulator is undeniable if it is a secure accumu-
lator satisfying the undeniability property.
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Indistinguishable Accumulators: Li et al. [24] pointed out informally (with-
out giving any formalizations) that the accumulation of an additional random
value from the accumulation domain renders guessing the accumulated set infea-
sible. Later, de Meer et al. [17] tried to formalize this intuition via an additional
indistinguishability property. Unfortunately, there are some issues with their
notion. Firstly, it only covers static accumulators and, secondly, indistinguisha-
bility in the vein of [24] weakens collision resistance. Basically, one can easily
generate a membership witness for the random value. Secondly, the security
game in [17] allows to prove indistinguishability of deterministic accumulators,
which are clearly not indistinguishable. In particular, the random value is cho-
sen and accumulated within the security game. However, this non-determinism
is not required to be part of the accumulator construction itself. Consequently,
a deterministic accumulator can satisfy this notion while being trivially distin-
guishable. From this, we conclude that the non-determinism must be intrinsic
to the Eval algorithm.3

There are several ways to turn a deterministic scheme into a randomized one.
As already discussed, indistinguishability can be achieved by adding a random
value from the accumulation domain. Aside from this, it can also be obtained by
randomizing the Eval algorithm without modifying the set X (as, for instance,
done in the extended version of this paper). Apparently, the latter option depends
on the specific accumulator scheme, whereas the shortcomings in [17] can be
addressed by introducing a generic transformation for the former approach (cf.
Transformation 1).

Definition 8 (Indistinguishability). A cryptographic accumulator of type t ∈
{static, dynamic} and u ∈ {universal, non-universal} is indistinguishable, if for
all PPT adversaries A there is a negligible function ε(·) such that:

Pr

⎡

⎣
(skacc, pkacc) ← Gen(1κ, t), b

R← {0, 1},
(X0,X1, state) ← A(pkacc), (accXb

, aux) ← Eval((sk∼
acc, pkacc),

Xb),O ← {Ot,Ou}, b∗ ← AO(pkacc, accXb
, state) : b = b∗

⎤

⎦ ≤ 1
2

+ ε(κ),

where X0 and X1 are two distinct subsets of the accumulation domain and Ot as
well as Ou are defined as follows:

Ot :=
{{OE(·,·,·)} if t = static,

{OE(·,·,·),OA �∪(·,·,aux,·),OD∩(·,·,aux,·)} otherwise.

Ou :=
{{OW(·,·,aux,·),OW(·,·,aux,·)} if u = universal,

{OW(·,·,aux,·)} otherwise.

If the probability above is exactly 1/2 we have unconditional indistinguishability,
whereas we have computational indistinguishability if the probability is negligibly
different from 1/2.
3 Independently from our work, this observation was quite recently also made in [18]

by the authors of [17]: The insertion of the random value has been removed from
the game and the Eval algorithm is now required to be non-deterministic.
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Here, OE is defined as before and all other oracles can only be called for the
challenge accumulator. We require that the input parameter aux for the oracles
is kept up to date and is provided by the environment, since the knowledge
of aux would allow the adversary to trivially win the game. Furthermore, note
that this game does not allow the adversary to control the randomness used for
the evaluation of accXb

(while it can be controlled when calling OE). For the
definitions of the remaining oracles, we use X∪ := X0 ∪ X1 and X∩ := X0 ∩ X1 to
restrict the adversary from oracle queries which would trivially allow to win the
game. OA �∪ as well as OD∩ allow the adversary to execute the Add and Delete
algorithms. Thereby, OA �∪ allows only queries for values xi /∈ X∪, whereas OD∩

allows only queries for values xi ∈ X∩. Furthermore, upon every Add and Delete
the sets X∪ and X∩ are updated consistently. Oracles OW and OW are as above,
with the difference that OW allows only queries for values xi ∈ X∩, while OW

allows only queries for values yj /∈ X∪.

Transformation 1. On input a set X , the Eval algorithm samples an element
xr /∈ X uniformly at random from the accumulation domain. Next, it computes
and returns (accX ′ , aux′) for X ′ ← X ∪ {xr} and aux′ ← (aux, xr).

Note that aux needs to be kept consistent for all other algorithms that require this
input parameter. As already noted above, collision freeness no longer holds for
X but with respect to X ∪ {xr}. To draw a line between inherently randomized
constructions and such relying on Transformation 1, we differentiate between
indistinguishability and collision-freeness-weakening (cfw) indistinguishability:

Definition 9 (Indistinguishability). Let X be the set in accXb
. A crypto-

graphic accumulator is called indistinguishable if it is a secure, indistinguishable
accumulator and X = Xb.

Definition 10 (cfw-Indistinguishability). Let X be the set in accXb
. A cryp-

tographic accumulator is called collision-freeness-weakening (cfw) indistinguish-
able if it is a secure, indistinguishable accumulator and X �= Xb.

3.3 Relation Between Security Properties

Intuitively, undeniability seems to be a strictly stronger security requirement
than collision freeness. We confirm this intuition below:

Lemma 1. Every undeniable universal accumulator is collision-free.

We prove the lemma above in the extended version of this paper.
As mentioned in [25], a black-box reduction in the other direction is impos-

sible. [8] provides a collision-free universal accumulator that is not undeniable.
Therefore, this proves the following lemma by counterexample:

Lemma 2. Not every collision-free universal accumulator is undeniable.



Revisiting Cryptographic Accumulators, Additional Properties 137

4 Categorizing Cryptographic Accumulators

Now, we give a comprehensive overview of existing accumulator schemes in Table
1. We categorize them regarding their static or dynamic nature and universal
features and provide a characterization of their public updating capabilities (of
witnesses and of accumulators, respectively). In particular, we tag an accumu-
lator as dynamic, if witness and accumulator value updates can be performed
in constant time, i.e., independent of the size of X . If the same is possible with-
out having access to the accumulator trapdoor, then we tag the accumulator
as publicly updatable. Furthermore, the properties undeniability and indistin-
guishability have not been considered for most existing accumulator schemes
so far. Therefore, we provide a classification regarding their indistinguishability
(when using Transformation 1) and provide the respective proofs in the extended
version. Likewise, we prove the undeniability of [3,16] in the extended version.
For the sake of completeness, our comparison also includes static accumulator
schemes [4,5,30,31].

5 Commitments from Indistinguishable Accumulators

In [14], it has been shown that universal dynamic accumulators can be black-
box constructed from vector commitments. The question arises whether it is
also possible to provide black-box constructions for certain types of commit-
ments from indistinguishable accumulators. It is apparent that it is not possible
to build vector commitments solely from accumulators in a black-box fashion,
since their position binding would at least require some additional encoding.
Nevertheless, we will show how to construct non-interactive commitments from
indistinguishable 1-bounded accumulators. In the extended version, we show
that such accumulators actually exist, i.e., we build the first indistinguishable
t-bounded dynamic accumulator by modifying [29].

5.1 Black-Box Construction of Non-Interactive Commitments

Before we can start, we present a standard formal definition of non-interactive
commitment schemes.

Definition 11 (Non-Interactive Commitment Scheme). A non-interact-
ive commitment scheme is a triple of efficient algorithms (Gen,Commit,Open),
which are defined as follows:

Gen(1κ): This (probabilistic) algorithm takes input a security parameter κ and
outputs the public parameters pp.

Commit(pp,m): This (probabilistic) algorithm takes input pp and a message m
and outputs a commitment C together with a corresponding opening infor-
mation O.

Open(pp, C,O): This deterministic algorithm takes input pp, a commitment C
with corresponding opening information O and outputs ⊥ if C is not a valid
commitment to any message and message m otherwise.
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For security, a non-interactive commitment scheme is required to provide cor-
rectness, binding and hiding. We omit a formal definition of correctness as it is
straightforward. The remaining properties are defined as follows.

Definition 12 (Binding). A non-interactive commitment scheme is binding,
if for all PPT adversaries A there is a negligible function ε(·) such that

Pr

[
pp ← Gen(1κ), (C∗, O∗, O′∗) ← A(pp),m ← Open(pp, C∗, O∗),
m′ ← Open(pp, C∗, O′∗) : m �= m′ ∧ m �= ⊥ ∧ m′ �= ⊥

]

≤ ε(κ).

Definition 13 (Hiding). A non-interactive commitment scheme is hiding, if
for all PPT adversaries A there is a negligible function ε(·) such that

Pr

⎡

⎣
pp ← Gen(1κ), (m0,m1, state) ← A(pp), b R← {0, 1},
(C,O) ← Commit(pp,mb), b∗ ← A(pp, C, state) :

b = b∗

⎤

⎦ ≤ 1
2

+ ε(κ).

In Scheme 1, we present a black-box construction of commitments from indistin-
guishable accumulators and prove the so obtained construction secure
(Theorem 1). Before we continue, we want to recall that in the trusted setup
model all algorithms can be correctly executed without skacc.

Gen(1κ): This algorithm runs (sk∼
acc, pkacc) ← Acc.Gen(1κ, 1), discards skacc and returns

pp ← pkacc.
Commit(pp, m): This algorithm chooses randomness r, runs (C, aux) ← Evalr((∅, pkacc),

m), computes witm ← WitCreate((∅, pkacc), C, aux, m), sets O ← (r, m,witm, aux)
and returns (C, O).

Open(pp, C, O): This algorithm checks whether Evalr((∅, pkacc), m)
?
= C and whether

Verify(pkacc, C,witm, m)
?
= true and returns m on success and ⊥ otherwise.

Scheme 1: Commitment Scheme from Indistinguishable Accumulators

Theorem 1. If indistinguishable 1-bounded accumulators exist, then non-inter-
active commitments exist as well.

We prove Theorem 1 in the extended version of this paper.
The black-box construction from Scheme 1 can easily be extended to support

commitments to sets (where the opening is always with respect to the entire set)
by setting the bound t of the bounded accumulator to the desired set size. Fur-
thermore, using skacc as trapdoor, one can also construct trapdoor commitments.

We finally note that cfw-indistinguishable accumulators (and hence also Tra-
nsformation 1) are not useful for constructing commitments. The reason for this
is that the accumulation of the additional random value immediately breaks the
binding property.
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6 Zero-Knowledge Sets Imply Indistinguishable
Undeniable Accumulators

Zero-knowledge sets (ZK-sets) [27] allow to commit to a set X and then prove
predicates of the form xi ∈ X or xi /∈ X without revealing anything else
about the set. We observe that ZK-sets can be used to model indistinguishable,
unbounded, undeniable accumulators. Unfortunately, there is no formal security
definition for zero-knowledge sets (in [23] only the algorithms are formalized,
while security is stated informally). However, zero-knowledge sets are a spe-
cial instance of zero-knowledge elementary databases (ZK-EDB) [27]. ZK-EDBs
store key-value pairs and when querying the database with a key, the respective
value is returned (or ⊥ if the given key is not contained in the EDB). Thereby,
no further information about the remaining EDB leaks. Therefore, ZK-sets are
ZK-EDBs where the values for all contained keys are set to 1 (or the values are
omitted at all). We can, thus, define the security on the basis of the models in
[15,27] as follows.

Definition 14 (ZK-set). A ZK-set is a tuple of efficient algorithms (Gen,Com-
mit,Query,Verify), which are defined as follows:

Gen(1κ): This (probabilistic) algorithm takes input a security parameter κ and
outputs a public key pk.

Commit(pk,X ): This algorithm takes input the public key pk and a set X and
outputs a commitment C to X .

Query(pk,X , C, x): This algorithm takes input the public key pk, a set X , a
corresponding commitment C and and value x. It outputs a proof πx if x ∈ X
and a proof πx if x /∈ X .

Verify(pk, C, x, πx/πx): This algorithm takes input the public key pk, a commit-
ment C and a value x. Furthermore, it either takes a membership proof πx

or a non-membership proof πx (denoted by πx/πx). It outputs true if the
proof can be correctly verified and false otherwise.

For security, ZK-sets require perfect completeness, soundness and zero-know-
ledge. Perfect completeness requires that for every honestly generated key, every
honestly computed commitment C, value x and corresponding proof πx/πx, the
Verify algorithm always returns true. Since this property is straightforward, we
do not formally state it here. We formally define the remaining properties:

Definition 15 (Soundness). A ZK-set is sound, if for all PPT adversaries A
there is a negligible function ε(·) such that

Pr

[
pk ← Gen(1κ), (C∗, x∗, π∗

x, π∗
x) ← A(pk) :

Verify(pk, C∗, π∗
x, x∗) = true ∧ Verify(pk, C∗, π∗

x, x∗) = true

]

≤ ε(κ)
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Definition 16 (Zero Knowledge). A ZK-set is zero-knowledge, if for all
PPT adversaries A there is a negligible function ε(·) such that

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Pr

⎡

⎢
⎢
⎢
⎢
⎣

pk ← Gen(1κ),
(X , stateA) ← A(pk),
C ← Commit(pk,X ),
AOQ(·,X ,·,·)(stateA,
pk, C) = true

⎤

⎥
⎥
⎥
⎥
⎦

− Pr

⎡

⎢
⎢
⎢
⎢
⎣

(pk, stateS) ← SG(1κ),
(X , stateA) ← A(pk),

(C, state′
S) ← SE(pk, stateS),

ASQ(state′
S ,·,X ,·,·)(stateA,

pk, C) = true

⎤

⎥
⎥
⎥
⎥
⎦

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

≤ ε(κ)

Here, OQ allows the adversary to execute the Query algorithm, whereas S =
(SG,SE,SQ) denotes a PPT simulator, which allows to execute the simulated
Gen, Eval and Query algorithms, respectively. We note that the definition above
is tailored to cover computational zero-knowledge. It could, however, easily be
modified to also cover statistical or perfect zero knowledge.

In Scheme 2 we present a black-box construction of indistinguishable
unbounded undeniable accumulators from ZK-sets.

Gen(1κ): This algorithm runs pk ← ZKS.Gen(1κ) and returns (skacc, pkacc) ← (∅, pk).
Eval((∅, pkacc), X ): This algorithm runs accX ← ZKS.Commit(pkacc, X ) and returns

accX together with aux ← X .
WitCreate((∅, pkacc), accX , aux, xi, type): This algorithm obtains X from aux and

runs πxi/πxi ← ZKS.Query(pk, X , accX , xi). If πxi/πxi
conflicts with the requested

witness type, it returns ⊥. Otherwise it returns witxi ← πxi or witxi
← πxi

, respec-
tively.

Verify(pkacc, acc, witxi , xi, type): This algorithm checks whether type conflicts with
the type of the supplied witness and returns ⊥ if so. Otherwise it returns the
result of ZKS.Verify(pk, acc, xi,witxi).

Scheme 2: Indistinguishable Unbounded Undeniable Accumulator from ZK-
Sets

Theorem 2. If ZK-sets exist, then indistinguishable, unbounded, undeniable
accumulators exist as well.

We prove Theorem 2 in the extended version of this paper.
The above black-box construction yields the first construction of indistin-

guishable undeniable accumulators. We note that it is, however, questionable
whether the two notions of ZK-sets and indistinguishable undeniable accumula-
tors are equivalent (as the simulation based model of zero-knowledge appears to
be stronger than the game based indistinguishability model).

In [23], Kate et al. introduced nearly ZK-sets. The difference to ordinary
ZK-sets is that nearly ZK-sets have a public upper bound on the cardinality of
set X . It is apparent that these constructions imply indistinguishable t-bounded
undeniable accumulators. In further consequence, this means that nearly ZK-sets
can also be used to construct commitments (cf. Section 5).
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Abstract. Often, in privacy-sensitive cryptographic protocols, a party
commits to a secret message m and later needs to prove that m belongs
to a language L or that m does not belong to L (but does not want
to reveal any further information). We present a method to prove in a
non-interactive way that a committed value does not belong to a given
language L. Our construction is generic and relies on the corresponding
proof of membership to L. We present an efficient realization of our proof
system by combining smooth projective hash functions and Groth-Sahai
proof system.

In 2009, Kiayias and Zhou introduced zero-knowledge proofs with
witness elimination which enable to prove that a committed message m
belongs to a set L in such a way that the verifier accepts the interaction
only if m does not belong to a set determined by a public relation Q
and some private input m′ of the verifier. We show that the protocol
they proposed is flawed and that a dishonest prover can actually make a
verifier accept a proof for any message m ∈ L even if (m, m′) ∈ Q. Using
our non-interactive proof of non-membership of committed values, we
are able to fix their protocol and improve its efficiency.

Our approach finds also efficient applications in other settings, e.g.
in anonymous credential systems and privacy-preserving authenticated
identification and key exchange protocols.

Keywords: Zero knowledge · Witness elimination · Smooth projective
hash function · Groth-Sahai proof system

1 Introduction

In cryptography, when designing privacy-sensitive applications, the use of com-
mitments and corresponding zero-knowledge proofs is often indispensable. They
allow a prover to convince a verifier that a digitally committed value is a mem-
ber of a given language (without revealing any further information beyond this
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membership). An important instance of this problem consists in showing that
the committed value lies in a given finite set (e.g. in e-auctions or e-voting proto-
cols, a bidder or voter has to prove that his secret bid or vote is chosen from a list
of candidates, see [CCs08] and references therein). However one usually wants
to demonstrate more complex properties about committed values. For instance
in anonymous credentials systems and privacy-preserving authenticated identi-
fication or key exchange protocols, a user must usually prove the possession of
a credential issued by an authority (without revealing it).

For the latter primitives, it is often necessary to prove combination of simple
statements about several credentials issued by the authority (OR, AND, and
NOT connectives) [CG08,ILV11]. For instance, a crucial requirement is that
credentials issued can be later revoked. In principle, revocation lists can be used
for anonymous credentials by having the user to prove in zero-knowledge that his
credential is not contained in the list. However, this is usually inefficient since
the computational and communication costs grow with the number of entries
in the list. Recently, Bayer and Groth [BG13] proposed an efficient interactive
solution for blacklisting anonymous users (with logarithmic growth) but their
elegant technique does not generalize readily to prove the non-membership to
arbitrary languages.

In these scenarios, it is usually desired that the zero-knowledge proofs are
non-interactive. For example, in the e-voting scenario, the membership proof is
a part of the vote validity proof that is verified by various parties without any
active participation of the voter. In this paper, we present a generic method
to prove in a non-interactive way that a committed value does not belong to a
given language. Our approach finds efficient applications in various settings, e.g.
in zero-knowledge with witness elimination [KZ09] or language authenticated
key exchange [BBC+13a].

1.1 Related Work

A commitment scheme allows a user to commit to a message m by publishing a
commitment C, and this commitment can be opened at a later point in time. It
can be seen as the digital analogue of a “sealed envelope”: the security properties
required are called the hiding property (one cannot learn anything about the
message m from the commitment C) and binding property (one cannot open
the commitment C to a different message m′ �= m). Zero-knowledge proofs of
knowledge are two party protocols, which allow a prover to convince a verifier
that he knows some secret piece of information, without the verifier being able to
learn anything about the secret value (except for what is revealed by the claim
itself). Often in cryptographic protocols, a party chooses a message m and then
commits to it. He keeps the message secret and publishes the commitment. He
later needs to prove that m belongs to a finite set L or that m does not belong
to L, but cannot reveal anything about m.

For a finite set L with no additional structure, the most efficient combination
of commitment and zero-knowledge proof was recently proposed by Bayer and
Groth [BG13]. The interactive proof system is quite efficient: it has O(log(#L))
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communication and computational complexity and significantly improves the
previous proposals with O(

√
#L) complexity [Pen11]. It can be made non-

interactive in the random oracle model by using the Fiat-Shamir heuristic.
There also exist efficient membership proofs for families of very large sets L

equipped with an “algebraic structure” (e.g. the set of valid message/digital sig-
natures pairs for a given public key whose cardinal is exponential in the security
parameter). Most of them also admit efficient non-membership proof systems.
However, up to now there is no generic construction and these zero-knowledge
proofs of non-membership of committed values require specific security analysis.

1.2 Contributions of the Paper

The first contribution of the paper is to present an efficient non-interactive tech-
nique to prove (in zero-knowledge) that a committed message does not belong
to a set L. The proof is generic and relies on a proof of membership to L with
specific mild properties. In particular, it is independent of the size of L and
if there exists an efficient proof of membership for committed values, one gets
readily an efficient proof of non-membership. Instantiated with a combination of
smooth projective hash functions and Groth-Sahai proof system, we obtain very
efficient realization for non-interactive proof of non-membership of committed
values.

In 2009, Kiayias and Zhou [KZ09] introduced zero-knowledge proofs with
witness elimination. This primitive enables to prove that a committed message
m belongs to a set L (with a witness w) in such a way that the verifier accepts
the interaction only if w does not belong to a set determined by a public relation
Q and some private input w′ of the verifier. The verifier does not learn anything
about w (except that m ∈ L and (w,w′) /∈ Q) and the prover does not learn
anything about w′. The primitive can obviously be used to handle revocation
lists. It was motivated in [KZ09] by privacy-preserving identification schemes
when a user wishes to authenticate himself to a verifier while preserving his
anonymity and the verifier makes sure the prover does not match the identity of
a suspect user that is tracked by the authorities (without leaking any information
about the suspect identity).

We show that the original proposal of zero-knowledge proofs with witness
elimination from [KZ09] is flawed and that a dishonest prover can actually make
a verifier accept a proof for any message m ∈ L even if (w,w′) ∈ Q. In particular,
in the suspect tracking scenario, a dishonest prover can identify himself even if
he is on the suspect list. Therefore, their protocol does not achieve the claimed
security. However we explain how to apply our proof of non-membership to fix
it. We obtain a proof system that achieves the security goal and is more efficient
than the original (insecure) solution.

Finally, we briefly present applications of our proof of non-membership to
other settings such as anonymous credentials and privacy-preserving authenti-
cated key exchange.
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2 Preliminaries

In this section we recall various classical definitions, tools used throughout this
paper. We use classical definitions and notations and the familiar reader may
skip this section.

2.1 Definitions

Encryption An encryption scheme E is described through four algorithms (Setup,
KeyGen,Encrypt,Decrypt):

– Setup(1K), where K is the security parameter, generates the global parame-
ters param of the scheme;

– KeyGen(param) outputs a pair of keys, a (public) encryption key ek and a
(private) decryption key dk;

– Encrypt(ek,M ; ρ) outputs a ciphertext C, on the message M , under the
encryption key ek, with randomness ρ;

– Decrypt(dk, C) outputs the plaintext M , encrypted in the ciphertext C or ⊥.

Such encryption scheme is required to have the classical properties, Correct-
ness and Indistinguishability under Chosen Plaintext Attack(see [BCV15,GM84]
for formal definitions).

Zero-Knowledge Proofs Classical definitions and notations for non-interactive
zero-knowledge proof systems are given in the full version [BCV15].

2.2 Classical Hypotheses

A bilinear group is a tuple (p,G1,G2,GT , e, g1, g2) where G1,G2 and GT are
cyclic groups of prime order p, generated respectively by g1,g2 and e(g1, g2) and
e : G1 × G2 → GT is a non-degenerated bilinear form, i.e.:

∀X ∈ G1,∀Y ∈ G2,∀λ, μ ∈ Zp : e(Xλ, Y μ) = e(X,Y )λμ

and e(g1, g2) does indeed generate the prime order group GT . In the following
we will suppose there exists a polynomial time algorithm which outputs such
bilinear groups.

In this paper, we will present concrete instantiation based on standard prob-
lems on groups:
Decisional Diffie Hellman (DDH) [Bon98]: The Decisional Diffie-Hellman hypoth-
esis states that in a group (p,G, g) (written in multiplicative notation), given
(gμ, gν , gψ) for unknown μ, ν

$← Zp, it is hard to decide whether ψ = μν.
Symmetric External Diffie Hellman (SXDH) [ACHdM05]: this variant used in
bilinear groups (p,G1,G2,GT , e, g1, g2), states that DDH is hard in both G1

and G2.
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2.3 Classical Tools

Smooth Projective Hash Functions [CS02] Smooth projective hash functions
(SPHF) were introduced by Cramer and Shoup [CS02]. A projective hashing
family is a family of hash functions that can be evaluated in two ways: using the
(secret) hashing key, one can compute the function on every point in its domain,
whereas using the (public) projected key one can only compute the function on
a special subset of its domain. Such a family is deemed smooth if the value of
the hash function on any point outside the special subset is independent of the
projected key.

Smooth Projective Hashing System: A Smooth Projective Hash Function over
a language L ⊂ X, onto a set G, is defined by five algorithms (Setup,HashKG,
ProjKG,Hash,ProjHash):

– Setup(1K) where K is the security parameter, generates the global parameters
param of the scheme, and the description of an NP language L;

– HashKG(L, param), outputs a hashing key hk for the language L;
– ProjKG(hk, (L, param),W ), derives the projection key hp, possibly depending

on the word W [GL03,ACP09] thanks to the hashing key hk.
– Hash(hk, (L, param),W ), outputs a hash value v ∈ G, thanks to the hashing

key hk, and W
– ProjHash(hp, (L, param),W,w), outputs the hash value v′ ∈ G, thanks to the

projection key hp and the witness w that W ∈ L.

In the following, we consider L as a hard-partitioned subset of X, i.e. it
is computationally hard to distinguish a random element in L from a random
element in X \ L.

A Smooth Projective Hash Function SPHF should satisfy the following prop-
erties:

– Correctness: Let W ∈ L and w a witness of this membership. Then, for all
hashing keys hk and associated projection keys hp we have
Hash(hk, (L, param),W ) = ProjHash(hp, (L, param),W,w).

– Smoothness: For all W ∈ X \ L the following distributions are statistically
indistinguishable:

⎧
⎪⎪⎨

⎪⎪⎩
(L, param, W, hp, v)

param = Setup(1K),
hk = HashKG(L, param),
hp = ProjKG(hk, (L, param), W ),
v = Hash(hk, (L, param), W )

⎫
⎪⎪⎬

⎪⎪⎭

�

⎧
⎪⎪⎨

⎪⎪⎩
(L, param, W, hp, v)

param = Setup(1K),
hk = HashKG(L, param),
hp = ProjKG(hk, (L, param), W ),

v
$← G

⎫
⎪⎪⎬

⎪⎪⎭
.

– Pseudo-Randomness : If W ∈ L, then without a witness of membership the
two previous distributions should remain computationally indistinguishable.
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The article [BBC+13b] introduced a new notation for SPHF: For a language
L, we assume there exist a function Γ and a family of functions Θ, such that
u ∈ L, if and only if, Θ(u) is a linear combination of the rows of Γ (u). We
furthermore require that a user, who knows a witness w of the membership
u ∈ L, can efficiently compute the linear combination λ.

With the above notations, the hashing key is a vector hk = α, while the
projection key is, for a word u, hp = γ(u) = Γ (u) 
 α (where 
 denotes
the Hadamard product, i.e. the entry-wise product). Then, the hash value is:
Hash(hk,u) def= Θ(u) 
 α = λ 
 γ(u) def= ProjHash(hp,u, w).

Groth-Sahai Proof System. Groth and Sahai [GS08] proposed non-interactive
zero-knowledge proofs of satisfiability of certain equations over bilinear groups,
called pairing product equations. To prove satisfiability of an equation (which is
the statement of the proof), a Groth-Sahai proof uses commitments and shows
that the committed values satisfy the equation. The proof consists again of group
elements and is verified by a pairing equation derived from the statement.

We refer to [GS08] for details of the Groth-Sahai proof system.

3 Proof of No-Statement

3.1 Generic Technique

In this section, we are going to present a way to prove exclusion statement,
following a Commit and Prove approach ([CLOS02]).

The underlying idea is that, we are going to try to build a proof of validity
for the statement (which is supposed to not be verified), and prove that we are
failing to do so while being completely honest. Hence once we prove that the
proof is correctly generated, the fact that the verification fails means that the
initial statement did not hold (under the completeness of the proof).

Let us consider a language L. We assume that it is easy to test whether a
word w belongs to L (in probabilistic polynomial time).

Let E = (Setup,KeyGen,Encrypt,Decrypt) be an encryption scheme and let
(ek, dk) be a pair of keys output by KeyGen(param) (where param are global
parameters output by Setup(1K)). We assume that the encryption scheme is with-
out redundancy [PP03]: i.e. all ciphertexts are valid (which means here “reach-
able”), the encryption function is not only a probabilistic injection, but also a
surjection. A prover possesses a word w not in a language L which is encrypted
in C using some randomness r, C = Encrypt(ek, w; r). The prover wants to prove
that C encrypts a word that does not belong to L in zero-knowledge. To con-
struct our proof system, we are going to follow a generic approach by combining
two different proof systems (in our following instantiations the first proof will
be a SPHF, while the second one will be a Groth Sahai NIZK).

Formally, we assume there is a sound and correct non-interactive (NI) proof
system Πa for the language defined by the binary relation R = {(C, (w, r)), C =
Encrypt(ek, w; r) ∧ w ∈ L} and we will construct a NIZK proof system for the
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language defined by the binary relation R̂ = {(C, (w, r)), C = Encrypt(ek, w; r)∧
w /∈ L}.

We assume that Πa satisfies the following properties:

– there exists a randomization algorithm that takes a proof πa output by
Πa.Prove(C, (w, r)) and some randomness r′, ρ′ and outputs a properly dis-
tributed proof π′

a on the same word w encrypted in the ciphertext C′ using
randomness r′1.

– Πa verifies the indistinguishability of proofs property: given a pair (C, (w, r)) ∈
R̂ where C is an encryption of a word w �∈ L using randomness r, it should be
hard to distinguish an invalid proof generating honestly as Πa.Prove(C, (w, r))
from a random value.2

– there exists a NI zero-knowledge proof system Πb where given an output πa

proves that it is indeed the correct result from Πa.Prove(C, (w, r); ρ) even
if w �∈ L. We also require the extra property, that either Πb has perfect
soundness or possesses a trapdoor allowing to recover ρ.

Assuming these three properties, our NI zero-knowledge proof system for the
language defined by the binary relation R̂, Π = (no.Setup, no.TSetup, no.Prove,
no.Verify, no.Simulate), is defined as follows:

no.Setup(1K): runs E .Setup(1K) to compute the global parameters param and
also
KeyGen(param) to obtain a key pair (ek, dk). It also runs Πa.Setup(1K) to
obtain crsa and Πb.Setup(1K) to obtain crsb. It outputs the common reference
string crs = (crsa, crsb, param, ek).

no.TSetup(1K): runs E .Setup(1K) to compute the global parameters param and
also KeyGen(param) to obtain a key pair (ek, dk). It also runs Πa.Setup(1K)
to obtain crsa and Πb.TSetup(1K) to obtain (crsb, τb). It outputs the common
reference string crs = (crsa, crsb, param, ek) and the trapdoor τ = (dk, τb).

no.Prove(C, w, s, crs; ρ): Computes πa := Πa.Prove(C, (w, r); ρ), and a proof πb :=
Πb.Prove(πa, C, (w, r), ρ; ρ′), and outputs (πa, πb)

no.Verify(C, πa, πb): returns 1 if and only if πa is invalid for Πa and πb is valid
for Πb ((i.e. Πa.Verify(C, πa) = 0 and Πb.Verify(πb, πa, C) = 1).

no.Simulate(C, τ): picks uniformly at random πa and uses the trapdoor τb to run
Πb.Simulate(τb, πa, C) to get πb. It outputs (πa, πb).

The correctness follows immediately from the correctness of the two proofs.
Indeed if (πa, πb) is output by no.Prove(C, w, s, crs; ρ), πa output should not verify
(i.e. Πa.Verify(C, πa) = 0) as the input (C, (w, s)) /∈ R.
1 The idea is that there is no “weak” randomness, and so if the adversary breaks the

completeness of the proof for a pair w, ρ, any pair w, ρ′ leads to invalid proofs even
in w is in L. This property is easy to achieve with homomorphic proof system, Groth
Sahai and SPHF are good candidates for example.

2 This property does not hold for Groth Sahai proofs, given a correctly computed invalid
proof for an equation like X = A, when in fact X = B, one can simply rely on the
homomorphic properties of the verification to check if GS.Verify(π, C, B) holds, hence
distinguishing π from a random value.
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Theorem 1. The proof system Π is sound if Πa is correct and Πb is sound.

Proof. We assume there exists an adversary against the soundness of our proof
system, we will show there exists an adversary B that can use this adversary to
break the soundness of Πb. An adversary against the soundness of our scheme
outputs (C, πa, πb) such that while no.Verify(C, πa, πb) holds, the plaintext in C
does indeed belong to L.

We will distinguish two kind of adversaries, those who compute πa honestly,
and those who does not. This means that either πa is invalid for a valid word w
and some randomness ρ, or that the adversary gives an incorrect output πa and
managed to build a proof πb stating that it is computed correctly.

The adversary B now decrypts the ciphertext C to recover the word w, picks
some fresh r′ and encrypts it into a C′ (this is a randomization of the first
ciphertext) and tries to compute Πa.Prove(C′, w, r′; ρ′). Either with advantage
greater than ε/2 this proof does not hold, and so B managed to break the
correctness of the proof system Πa. Either with advantage greater than ε/2 this
proof holds, this means that the πa output by the adversary was not correctly
computed, hence this lead to breaking the soundness of Πb. (As the second proof
given by the adversary is valid while proving an incorrect statement). �
Theorem 2. The proof system Π is zero-knowledge assuming the zero-knowledge
property of Πb and the indistinguishability of proofs of Πa.

Proof. It is easy to see that the output of no.TSetup and no.Setup are indis-
tinguishable (by the zero-knowledge property of Πb). We assume there exists
an adversary against the Zero-Knowledge property of our scheme with advan-
tage ε, we are going to follow a sequence of games to give an upper bound on
this value. We have to prove that the distributions {Prove(crs, C, (w, r))} and
{Simulate(crs, C)} are indistinguishable for a ciphertext C = Encrypt(ek, w; r)
with w /∈ L generated by the adversary.

G0 We start from the real game (i.e. π
$← Prove(crs, C, (w, r))).

G1 In this game, the simulator uses the Zero-Knowledge trapdoor τb from Πb

to simulate the proofs on the valid statement πa (i.e. it outputs πa :=
Πa.Prove(C, (w, r); ρ) and πb := Πb.Simulate(πa, C, (w, r); ρ′).
Here the adversary has advantage ε1 ≤ ε + AdvZK,

G2 In this game, the simulator outputs a random value instead of πa and sim-
ulates πb. Under the indistinguishability of the proofs on πa, this game is
similar to the previous one.
Here the adversary has advantage ε2 ≤ ε1 + Advindπ ,

In this last game, one obtains the algorithm no.Simulate(C, τ) and we get ε ≤
AdvZK + Advind. �
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Prover Verifier
V, v, wv Lp,Lu

(hpv, hkv) := (Γv(Lp) � αv , αv )

Hv := Θv(V,Lp) � αv

V = (hpv, Hv, v)−−−−−−−−−−−−−−−→ H ′
v := Lu � hpv � ?= Hv

hpu←−−−−−−−−−−−−−−− (hpu, hku) := (Γu(V) � αu , αu)

H ′
u := (wv , hkv) � hpu

H ′
u−−−−−−−−−−−−−−−→ H ′

u
?= Θu(V) � hku.

Fig. 1. Generic SPHF-based proof of exclusion

3.2 Concrete Examples

In order to instantiate the previous proposition, we need some techniques to
prove that a statement is invalid. To do so, we propose the approach consisting
in generating a proof as if the statement was valid, and show that while this
proof does not hold it was honestly generated.

As we show in our application to zero-knowledge with witness elimination
in Section 4, Kiayias and Zhou aimed to do so in [KZ09], but incompletely.
Additionally, they did it using an external proof system, that adds several rounds
of interaction. (i.e. they use a sigma protocol to prove the (partial-)validity of a
proof based on smooth projective hash functions.)

In the following we propose new techniques to do so via classical proof sys-
tems, first by proving the validity of a SPHF-proof via another SPHF, and then
by mixing Groth-Sahai methodology with SPHF. Our generic approach from
Section 3.1, requires the second proof to be zero-knowledge, and the first one to
be homomorphicly randomizable and to achieve the indistinguishability on the
proof. Groth Sahai provides the zero-knowledge while smooth projective hashing
provides the indistinguishability via its pseudo-randomness.

We are going to work on SPHF-friendly languages. Recent works have drasti-
cally increased the range of languages manageable with SPHF (e.g. [BBC+13a,
BBC+13b]), to every kind of pairing product equations over graded rings, so
this will not really limit applications of theses techniques in concrete protocols.

We assume that languages L have additional parameters Lp,Lu, the first part
is a public description of a specificity of the language needed to build a smooth
projective hash function on it, while the other one is private and is needed for
verification purpose. (In case of a revocation language L, Lp is a commitment
to the revocation list, while Lu is the randomness from the commitment.)

Non-Zero-Knowledge Proofs, Using Smooth Projective Hash Func-
tions. To show that a word committed into v is not in a language described by
Lp, one ends up doing the following (cf Figure 1):

Where the first SPHF is on the language described by Lp while the other
one is based on the language of a correct computation between a hash value,
a projection key and a ciphertext (as there is a dependency between those two
terms it seems improbable to be able to do better in this case).
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A more concrete example. In order to explain the previous formalism, let us
now give a more concrete example, with a language described by an ElGamal
encryption of a word U . The prover possesses a word V , the verifier the word U
and publishes an ElGamal ciphertext of U : Lp = (hsU, gs). The prover encrypts
his word V using ElGamal encryption scheme and proves to the verifier that V
is not the plaintext encrypted in Lp. Following the previous technique we can
achieve a 3-round proof as described on Figure 2. The second SPHF is smooth

Prover Verifier
V, hrV, gr, r Lp = (hsU, gs), U, s

(hpv, hkv) := (hλgμ, (λ, μ))
V′ = (hpv, hrV, gr)−−−−−−−−−−−−−−−→ H ′

v := hps
v

hpu,Lp←−−−−−−−−−−−−−−− hpu := (hδ(hsU/(hrV ))β , gδ(gs/gr)β ,

hpβ
vgγ),

hku := (δ, β, γ)

H ′
u := hpλ

u,1hp
μ
u,2hp

r
u,3

H ′
u, Hv−−−−−−−−−−−−−−−→ H ′

v � ?= Hv ∧ H ′
u

?= hpδ
vHβ

v (gr)γ .

Hv := (hsU/V )λ(gs)μ

Fig. 2. Tweaked ElGamal based SPHF proof of inequality

if and only if V = U , this means that technically an adversary can break the
soundness of the verification of the valid computation of hpv,Hv when the word
V is different from U . However in this case, the protocol should already return
yes so he cannot gain anything from doing so. The proof requires overall 10
group elements: 2 for the initial commit of U , 2 for the one of V , 2 overall for
hpv,Hv and 4 for hpu,H ′

u.
We stress that, this construction differs from the generic approach in the

sense that Lp instead of being known before the protocol like in the generic
construction from Figure 1, can be set on the fly and postpone to the second
flow. While this proof is not zero-knowledge in any way, it will find some use
in our LAKE (Language-Authenticated Key Exchange) application in the full
version.

Zero-Knowledge Proofs, Using Groth-Sahai Non-Interactive Proof
Technique. We now want to supersede the last proof with a zero-knowledge
proof. So once again we do a smooth projective hash function for the first lan-
guage, and then prove using a Groth Sahai proof that we indeed know the asso-
ciated hash key, such that the hash value and the projection key are consistent,
that way we can reduce the protocol interactivity to one flow as explained in
Figure 3.

A more concrete example. If we consider our former example with a Groth Sahai
proof instead of the second SPHF we end up with a one-round protocol. Overall
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Prover Verifier
V, v, wv Lp,Lu

(hpv, hkv) := (Γv(Lp) � αv , αv )
Hv := Θv(V,Lp) � αv

π = GS.Prove(Hv ∧ hpv; hkw)
V′ = hpv, v, π, Hv−−−−−−−−−−−−−−−→ H ′

v := Lu � hpv

Hv � ?= H ′
v ∧ Verify(π).

Fig. 3. Generic SPHF + NIZK proof of inequality

this would require 4 elements in G1 for the hash proof, 6 other in G1 for the
additional commitments, 4 in each group for the quadratic proof, 1 in G1 for one
of the multi scalar exponentiation equation and 2 scalars for the other. Overall,
the protocol is very efficient and only requires the transmission of 15 elements
in G1, 4 elements in G2 and 2 scalars in Zp.

3.3 Transformation from a NIZK to a SS-NIZK

In one of the following applications, we will need our proof of exclusion to be
simulation-sound ([Sah99]). There is a generic transformation from Groth Sahai
based NIZK proofs to Simulation-Sound.

To construct a Simulation-Sound proof that some word w does not belong
to a language L, one uses the following roadmap, assuming the common refer-
ence string crs contains a common reference string for the Groth-Sahai proof
system crsGS , a verification key pk for a Structure-Preserving Signature scheme
[AFG+10], and the prover already possesses a pair of primary keys (psk, ppk)
for a one-time two-tier signature scheme [BS07]3:

1. generates a secondary signing/verification key pair (ssk, spk) for the one-time
two-tier signature.

2. commits to a random tuple of elements R corresponding to a signature.
3. generates, using Groth Sahai and our exclusion proof, a proof π that either

w does not belong to L, or that R is a valid signature of the verification key
spk of the one-time signature, under the public key pk contained in the CRS
crs.

4. sends this proof π, the verification key of the one-time signature, and the
corresponding one-time signature of everything under (psk, ssk).

Referring to [HJ12], it can be shown that this scheme is Zero-Knowledge
under the Indistinguishability of the two types of Groth-Sahai common reference
strings, and that both the simulation-soundness and the soundness come from
the unforgeability of the two involved signatures.
3 This can easily be achieved by applying a Chameleon Hash on itself for example.
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4 Application to Zero-Knowledge with Witness
Elimination

In [KZ09], Kiayias and Zhou introduced the notion of zero-knowledge proofs
with witness elimination. They described it through a universally composable
ideal functionality, directly giving strong guideline as how to achieve a generic
construction.

Ideal Functionality for Zero-Knowledge with Witness Elimination. In
the universal composability (UC) framework, once a protocol is proved secure,
it can be used in arbitrary contexts retaining its security properties (i.e. when
composed with other instances of the same or other protocols). The security in
this framework is defined in the sense of protocol emulation (i.e. a protocol P
emulates some protocol P ′, if P does not affect the security of anything else
than P ′ would have). To prove security in the UC framework, we define an
ideal functionality F which can be thought of as an incorruptible trusted party
that takes inputs from all parties and hands back outputs to the parties. The
functionality F is a formal specification of a cryptographic task and is secure
by definition. Hence, if a protocol P emulates F , one can infer that it securely
realizes the given task in arbitrary contexts.

The ideal functionality for Zero-Knowledge with Witness Elimination FR,Q
ZKWE

proposed by Kiayias and Zhou builds upon that of Zero-Knowledge (proposed
in 2001 by Canetti [Can01]) , with the extra requirement that the prover shows
that it did not use some eliminated witnesses to prove the statement. We recall
it on Figure 4.

It is parametrized by two binary relations R and Q. The prover P is given an
input 〈x,w〉 (Prove query) and the verifier V is given an input w′ (Verify query).
The verifier should only accept if R(x,w) and ¬Q(w,w′) hold. Furthermore, it
should not learn anything from the protocol except the value x and the existence
of such a witness w. Following the authors of [KZ09], we do not deal here with
adaptive corruptions. The functionality proceeds in three steps:

– Upon receiving a (Prove, sid, 〈x,w〉) query from the prover P: While block-
ing the secret inputs from the adversary, it leaks a bit through the
(LeakProve, sid, 〈x, ϕ〉,P) answer to tell the adversary whether R(x,w) holds.
As explained in [KZ09], this does not affect the security properties of the
protocol as long as the elimination relation Q is such that the FR,Q

ZKWE func-
tionality emulates the FR

ZK functionality (the prover can easily learn whether
the witness is valid or not). The requirement on Q is that given a witness
w, one can sample a witness w′ such that Q(w,w′) happens with negligible
probability. This is in particular the case for the substring equality consid-
ered in their article and for the more general membership to the languages
considered here (see Section 5).

– Upon receiving a (Verify, sid, w′) query from party V: While blocking the
secret inputs from the adversary, it leaks the information that V sent his
witness through the (LeakVerify, sid,V) answer.
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– Upon receiving a (InflVerify, sid) query from the adversary: it leaks a last bit
through the (RetVerify, sid, b) answer to tell the adversary whether Q(w,w′)
holds. The query InflVerify can be asked only once, capturing a similar prop-
erty to the resistance to offline dictionary attacks in the case of password-
based protocols.

FR,Q
ZKWE is parametrized with the ZK relation R and the elimination relation Q.

– Upon receiving (Prove, sid, 〈x, w〉) from party P where sid = (P, V, sid′), record
〈P, x, w〉, send (LeakProve, sid, 〈x, ϕ〉, P) to the adversary, where ϕ = 1 if
R(x, w) holds, and ϕ = 0 otherwise. Ignore future (Prove, . . .) inputs.

– Upon receiving (Verify, sid, w′) from party V where sid = (P, V, sid′), record
〈T, w′〉 , send (LeakVerify, sid, V) to the adversary. Ignore future (Verify, . . .)
inputs.

– Upon receiving (InflVerify, sid) from the adversary, if R(x, w) and ¬Q(w, w′)
hold, then send (RetVerify, sid, 1) to party V. Else if ¬R(x, w) holds or Q(w, w′)
holds, then send (RetVerify, sid, 0) to party V.

Fig. 4. Functionality FR,Q
ZKWE

Generic Approach. After receiving the witness w′ eliminated by the verifier,
the construction of a zero-knowledge proof with witness elimination as presented
by Kiayias and Zhou in [KZ09] requires two main parts by the prover. First, in a
regular zero-knowledge proof, he starts by proving that the statement R(x,w) is
indeed fulfilled, and then, in another part a little bit trickier, he has to prove that
the witness he used does not belong to the elimination list, which is ¬Q(w,w′).
We recall on Figure 5 their original generic construction. In a nutshell, they
proceed in three steps:

– In a first step, the verifier sends an encryption C′ of the eliminated witness
w′ to the prover.

– In a second step, the prover computes an encryption C of his witness w, gen-
erates a hash key hk = HashKG, computes a projection key hp = ProjKG(hk)
and computes the hash value κ = Hash(C′, (C, w), hk). He sends hp and κ
to the verifier. The aim of this smooth projective hash function is to ensure
that w �= w′.

– In a last step, both players engage in a zero-knowledge proof of membership
(ZKPM) subprotocol to show that R(x,w) holds.

A Flaw in the Original Approach. In the protocol presented in [KZ09] that
we recalled in the previous section, Kiayias and Zhou propose to prove that
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Common reference string: crs = (pk, ρ), where pk is a public key of an encryption
scheme E , and ρ is a reference string of a Zero-Knowledge Proof of Membership
(ZKPM) scheme.

Protocol steps: Upon receiving (Verify, sid, w′) from the environment, party V
selects r′ $← U and computes C′ = Encrypt(pk, w′; r′), and sends (move1, C′) to
party P.
Upon receiving (Prove, sid, x, w) from the environment, party P first checks if
(x, w) ∈ R and waits for a move1 message from party V. After receiving move1
message:

– if ¬R(x, w) holds, then party P sends party V a message
(move2, “no valid proof”),

– else if R(x, w) holds, then party P computes C = Encrypt(pk, w; r), and then
party P sends party V a message (move2, hp, κ), where hk = HashKG, hp =
ProjKG(hk), κ = Hash(C′, (C, w), hk). Now, parties P and V play the roles of
prover and verifier respectively to run a ZKPM subprotocol, to show that
x, C′, κ is consistent:

∃(w, r), (x, w) ∈ R ∧ C = Encrypt(pk, w; r) ∧ κ = Hash(C′, (C, w), hk).

Upon receiving (move2, “no valid proof”) from party P, party V returns
(RetVerify, sid, 0) to the environment. Else if receiving (move2, hp, κ), party V com-
putes κ′ = ProjHash(C, (C′, w′, r′), hp) and if κ �= κ′ party and V accepts the ZKPM
proof in the subprotocol above, then party V returns (RetVerify, sid, 1) to the envi-
ronment; otherwise returns (RetVerify, sid, 0) to the environment.

Fig. 5. Initial Generic construction of the protocol for Zero-Knowledge Proofs
with Witness Elimination

¬Q(w,w′) by doing an implicit proof of equality (i.e. Q(w,w′)) using a smooth
projective hash function. They make the prover send the hash value κ, and ask
the verifier to check whether it is equal to the projected hash value κ′. If those
values are different, then the relation Q(w,w′) does not stand, which proves that
the witness is not eliminated.

However, this requires the prover to be honest in this process, as if he sends
a inconsistent projection key to the verifier, then it will lead to an inequality
between the hash and the projected hash values, meaning that the proof of
membership to the elimination list (i.e. Q(w,w′)) will not hold, and finally
that he will be able to convince the verifier with an invalid statement with
overwhelming probability.

This issue comes from the fact that the validity of the projection key hp is
nowhere verified in the generic description. Intuitively, this verification should
be part of the following ZKPM subprotocol. In their description, the latter does
not involve the computation of hp in any way, so that there is the possibility
for the prover to send a bogus one in order to avoid collision for words in the
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elimination list. This way, the prover is able to get its ZKPM proof for R(x,w)
accepted while using a witness of the elimination list, without being caught by
the verifier.

5 A Generic Fix and Several Concrete Instantiations

Improvement. Before fixing Kiayias and Zhou’s protocol, we start by giving
some other improvements. First, the authors only considered equalities or sub-
string equalities for the relation Q. We improve this by allowing Q to be a more
general relation of membership to a language specified by w′: Q(w,w′) ⇔ w ∈
Lw′ . More precisely, following 3.1, we assume that the description of the lan-
guage is public, meaning that given w′, one learns Lw′ automatically. We also
assume that given w, one can easily and publicly check whether w ∈ Lw′ or
w /∈ Lw′ .

Furthermore, in order to be able to satisfy FR,Q
ZKWE , we assume that given

Lw′ , the simulator will be able to generate w1 ∈ Lw′ and w2 /∈ Lw′ . This is a
natural assumption and can be achieved in different ways: either, this is publicly
achievable by anybody; Or the language Lw′ is randomizable and w′ includes a
witness included in Lw′ from which it is possible to generate w ∈ Lw′ ; Or we
assume that S possesses a trapdoor (stored into the CRS). In most applications,
we will be in the second case, where the language Lw′ is randomizable.

Our second improvement is to replace most of the interactive proofs by pos-
sibly non-interactive proofs of knowledge, using the proofs of non-membership
given in Section 3. More details follow in the next section.

A Generic Fix. As already explained in Section 4, the problem of the initial
generic protocol given by the authors of [KZ09] lies in the Sigma protocol, which
does not involve the computation of hp in any way. To avoid this issue, we now
include in the Zero-Knowledge proof a new proof that the projection key hp was
correctly generated.

Our new generic protocol is presented on Figure 6. From a high point of view,
the proof π1 is the same as in [KZ09] and proves the validity of the statement x
under the witness w, namely that R(x,w) holds.

The non-interactive proof π2 replaces their interactive ZKPM subprotocol,
and ensures that Q(w,w′) does not hold (i.e. w is not in the exclusion language).
As explained in Section 3, this proof consists in the combination of a ciphertext
C of w and a proof π2 of non-membership. This latter proof is divided into a
proof πa of membership of w in the language defined by w′ (which should not
hold), and a second proof πb showing that, while the proof πa does not hold, it
has been honestly generated, so there exists some randomness used to prove π1,
and some extra randomness, such that the expected proof of equality is indeed
πa. By completeness of the proof, this proves that w is indeed not included in
the language defined by w′.
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Common Reference String: crs = (pk, ρ1, ρ2), where pk is a public key of an
encryption scheme E (both Encrypt and no.Encrypt use E), ρ1 is a reference string
of a zero-knowledge proof of membership (for the relation R), and ρ2 is a reference
string of a zero-knowledge proof of non-membership (for the relation Q).

Protocol steps: Upon receiving (Verify, sid, w′) from the environment, party V
selects a random r′ and computes C′ = Encrypt(pk, w′; r′), and sends (move1, C′)
to party P.

Upon receiving (Prove, sid, x, w) from the environment, party P first checks if
R(x, w) holds and waits for a move1 message from party V. After receiving move1
message:

– if ¬R(x, w) holds, then party P sends party V a message
(move2, “no valid proof”),

– else if R(x, w) holds, then party P selects three random values r, r1 and r2 and
sends party V a message (move2, π1, (C, π2)), where π1 = ZK.Prove(x, w, R; r1)
and (C, π2) = SS.no.Prove(w, w′, Q, r1; r2), meaning in particular that C =
Encrypt(pk, w; r).

Upon receiving (move2, “no valid proof”) from party P, party V returns
(RetVerify, sid, 0) to the environment. Else if receiving (move2, π1, (C, π2)), party
V checks both proofs and returns (RetVerify, sid, 1) to the environment if they are
correct, and (RetVerify, sid, 0) otherwise.

Fig. 6. Generic Construction of Zero Knowledge proof with Witness Elimination

Theorem 3. This generic construction fulfils the Zero-Knowledge with Witness-
Elimination Functionality FR,Q

ZKWE under the assumption that π1 is a zero-
knowledge proof of membership for the relation R, and π2 is a zero-knowledge
proof of non-membership for the relation Q, as defined in section 3.

Due to lack of space, the proof of Theorem 3 is provided in the full version.

Concrete Instantiation of the Fixed and Improved Protocol. In their
original article [KZ09], Kiayias and Zhou present a concrete instantiation of the
protocol, where a user proves being in a possession of a valid pair (m,σ) of a
Boneh Boyen [BB04] signature σ, on a message m. To show the potency of our
approach, we propose to instantiate their original scheme more efficiently, in
a round-optimal way, without the initial flaw described in Section 4. In order
to have an easy message recovery, we are going to do a naive bit per bit com-
mitment. While this is not necessarily the most efficient approach in practice,
asymptotically this is already more efficient than their use of Paillier encryption
(a quadratic cost instead of a cubic one using Paillier encryption).

The scheme is described on Figure 7. The proof consists of a commitment to
σ, λ, μ, θ (i.e. 12 group elements), and a proof of two linear multi-scalar expo-
nentiation equations (2 elements each), one of a quadratic (9 group elements),
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and � quadratic scalar equations. Overall, 31+9� group elements are exchanged
4 in two flows. For a concrete security parameter, the initial (flawed) scheme was
more efficient but required 2 additional rounds. However, as many elements live
in a RSA modulus space, asymptotically our scheme has a better efficiency, both
in number of rounds and communication size.

Prover Verifier

(m, σ) σ′

r′, s′ $← Zp

Cv := Encrypt(σ; t, z)
c′

←−−−−−−−−−−−−−−− c′ := Encrypt(σ′; r′, s′)
hpv := (uλgμ, vθgμ)

hkv := (λ, θ, μ)

Hv := (c′
3/σ)μ(c′

1)
λ(c′

2)
θ

π = GS.Prove(hpv , Hv ; hkv , Cv ;
(hpv , Cv , π)−−−−−−−−−−−−−−−→ H′

v := hp
(r′,s′)
v = (uλgμ)r

′
(vθgμ)s

′

σ, t, z, hkv) H′
v � ?= Hv ∧ Verify(π).

The proof π considers the language:

∃t, z, m, λ, θ, μ, σ,

⎧
⎪⎪⎨

⎪⎪⎩

Cv = Encrypt(σ; t, z)

hpv = (uλgμ, vθgμ)

Hs = (c′
3/σ)μ(c′

1)
λ(c′

2)
θ

e(σ, vkgm) = 1T

Fig. 7. Concrete Construction of zero-knowledge with witness elimination

6 Other Applications

6.1 Anonymous Credentials not Verifying a Property

Anonymous Credentials were introduced by Chaum in [Cha85], and were widely
used ever since as a means for users to authenticate themselves while protecting
their privacy.

Most constructions consist in a first interaction, where a user obtains a sig-
nature on some message which corresponds to “his credentials”. When this user
wants to authenticate, he then proves that he knows a signature on a message
he does not want to leak but that fulfils some property.

Camenisch and Groß[CG08] proposed a way to build anonymous credentials
with efficient attributes, and more recently Izabachène et al. proposed in [ILV11]
a nearly non-interactive instantiation of this protocol. Their protocol requires an
4 This estimation is very rough, and optimization like running a KDF on the hash value

could further improve the efficiency, but that is beyond the point of this construction.
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interaction to prove the AND of several credentials. Interestingly, their technique
for proving the NAND of credentials is non-interactive, so combining this tech-
nique with our proof of No-Statement we can non-interactively prove the AND
of several credentials by doing a NOT(NAND). Similarly, we can transform their
non-interactive NOR into the non-interactive OR they were lacking, rendering
their protocol completely non-interactive.

6.2 Language Authenticated Key Exchange

In [BBC+13a], the authors introduced the notion of Language Authenticated
Key Exchange which allows two users to agree on a shared session key if and
only if they each possess a word in a language chosen secretly by the other.

Interestingly, the construction requires their languages to be “randomizable”
which fits well with our description. In [BBC+13a], they handle AND connectives
of languages (i.e. intersection of languages) and limited form of OR connectives
(i.e. union of languages). However, there was no known way to handle exclusion
languages, but our technique allows to solve this and so extend the range of
advanced languages manageable by those LAKE. We can also remove the limi-
tation on the union of languages by using the connective NOT(AND(NOT)).

In their LAKE constructions, the SPHF is of course not zero-knowledge,
and no simulation is required on this part (as everything is managed by the UC
commitment) so one can use our proofs without requiring the “simulation sound”
part. An interesting trade-off can also be achieved if the proof of validity of the
SPHF computation is managed with a SPHF instead of a Groth Sahai proof, at
the cost of (at most) one extra round in the protocol which would allow to avoid
the use of pairings.

In the inner part of a LAKE protocol, those proofs can be run simultaneously
on both sides, making it 4 flows instead of 2 in the original paper, but it allows
to handle previous languages as well as their complements.

Acknowledgements.. This work was supported in part by the French ANR-12-INSE-
0014 SIMPATIC Project.
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1 KRYPTUS Information Security Solutions, Campinas, Brazil
conradoplg@kryptus.com

2 University of Campinas (Unicamp), Campinas, Brazil
jlopez@ic.unicamp.br

Abstract. The Galois/Counter Mode is an authenticated encryption
scheme which is included in protocols such as TLS and IPSec. Its imple-
mentation requires multiplication over a binary finite field, an opera-
tion which is costly to implement in software. Recent processors have
included instructions aimed to speed up binary polynomial multiplica-
tion, an operation which can be used to implement binary field multipli-
cation. Some processors of the ARM architecture, which was reported in
2014 to be present in 95 % of smartphones, include such instructions. In
particular, recent devices such as the iPhone 5 s and Galaxy Note 4 have
ARMv8 processors, which provide instructions able to multiply two 64-
bit binary polynomials and to encrypt using the AES cipher. In this work
we present an optimized and timing-resistant implementation of GCM
over AES-128 using these instructions. We have obtained timings of 1.71
cycles per byte for GCM authenticated encryption (9 times faster than
the timing on ARMv7), 0.51 cycles per byte for GCM authentication
only (11 times faster) and 1.21 cycles per byte for AES-128 encryption
(8 times faster).

Keywords: GCM · Authenticated encryption · ARM · Efficient imple-
mentation

1 Introduction

Authenticated encryption (AE) schemes provide both confidentiality and authen-
tication in a single algorithm, preventing common errors when combining separate
encryption and authentication schemes. The Galois/Counter Mode (GCM) [6] is
an authenticated encryption scheme included the TLS and IPSec protocols and
in the NIST standard SP 800-38D. It uses an underlying block cipher which is
usually AES.

ARM is a RISC processor architecture which ubiquitous in mobile devices
due to its relatively low power consumption. The eighth version of the ARM
architecture (ARMv8) is the first supporting 64-bit processing and it has become
commercially available with the release of the iPhone 5s, a smartphone featuring
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an ARMv8 processor named Apple A7. Other devices with ARMv8 processors
include the iPhone 6 and 6 Plus (Apple A8 processor), the iPad Air 2 (Apple
A8X processor), the Galaxy Note 4 (Cortex A53/A57 processor) and the Nexus
9 (Nvidia Denver processor).

ARMv8 introduced many changes in the architecture, but one specific addi-
tion is a 64-bit multiplier capable of multiplying polynomials over F2, also known
as binary polynomials. The GCM employs multiplications over the finite field
F2128 which in turn can be computed with the help of binary multiplication, rais-
ing the question of how the ARMv8 performs when running GCM. ARMv8 also
supports instructions which are able to carry out AES encryption and decryp-
tion.

In this work, we present an efficient and timing-resistant implementation
of GCM over AES-128 using the new ARMv8 multiplier and AES instructions
along with the ARM vector instruction set (named NEON). We compare it to
an optimized and timing-resistant implementation for the ARMv7 architecture
based on previous works in the literature. We provide benchmarks of our three
implementations (ARMv7, ARMv8 on 32-bit mode and ARMv8 on 64-bit mode)
for six different processors: the ARMv7-based Cortex A9 and Cortex A15, along
with the ARMv8-based Apple A7, Apple A8X and Cortex A53/A57. Our imple-
mentation is available online1 to allow the reproduction of our results.

Related Work. An efficient implementation of GCM for ARMv7 using the
VMULL.P8 NEON instruction, which computes eight 8 × 8-bit polynomial mul-
tiplications, is described in [1]. When encrypting and authenticating large mes-
sages they have achieved 38.6, 41.9 and 31.1 cycles per byte (cpb), for the Cortex
A8, A9 and A15 processors respectively, using a non timing-resistant AES imple-
mentation. When using GCM for authentication only their results are 13.7, 13.6
and 9.2 cpb respectively.

Polyakov [7], working for the OpenSSL project, has improved on the [1]
implementation by unrolling code, improving modular reduction and reordering
instructions, obtaining 8.45 cpb on the Cortex A8, 10.2 cpb on the Cortex A9
and 9.33 cpb on the Snapdragon S4 for GCM authentication.

Recent Intel processors have added the PCLMULQDQ instruction, which is able
to multiply 64-bit binary polynomials, akin to what is now supported by ARMv8.
Gueron and Kounavis [4] describe how to implement GCM with this instruction,
also taking advantage of the Intel AES-NI instructions which support AES.
Gueron reports [3] 1.79, 1.79 and 0.4 cpb for authenticated encryption on the
Sandy Bridge, Ivy Bridge and Haswell processors respectively.

Paper Structure. Section 2 describes the ARM architecture, while Section 3
describes the GCM algorithm. Our software implementation is described in
Section 4 and results are reported in 5. Concluding remarks are given in Section 6.
Appendix A lists the pseudo-assembly code for algorithms described in this work.
1 https://github.com/conradoplg/authenc

https://github.com/conradoplg/authenc
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2 ARM Architecture

ARM is a well known family of RISC processor architectures introduced in 1985
which now holds 95% of the smartphone segment [8]. Up to version 7, ARM was
a 32-bit architecture. Its most recent version, ARMv8, supports both 32-bit and
64-bit processing. The 32-bit ARMv8 architecture is known as AArch32, while
the 64-bit is known as AArch64. An ARMv8 processor can support both, allow-
ing the execution of 32-bit and 64-bit applications. ARM processors may also
support a single-instruction multiple-data (SIMD) module called the “NEON
engine”.

Each architecture is implemented by different core designs, and each core
design can be implemented by different chips. For example, Cortex A9 and Apple
A6 are two core designs following the ARMv7 architecture, while OMAP 4660
and Exynos 4 are chips implementing the same Cortex A9 core design.

ARMv7 and AArch32 feature sixteen 32-bit registers (R0–R15) and sixteen
128-bit NEON registers (Q0–Q15). The NEON registers can also be viewed as
pairs of 64-bit registers (D0–D32) such that, for example, D0 is the lower part of
Q0 and D1 is its higher part.

AArch64 features thirty two 64-bit registers (X0–X31) and thirty two 128-bit
NEON registers (V0–V31). The NEON registers can no longer be viewed as pairs
of 64-bit registers, though the lower part of each register can be referenced as
D0–D15.

2.1 Binary Polynomial Multiplication Support

When restricted to ARMv7, the instruction VMULL.P8 is critical for the efficient
implementation of GCM, as shown in [1]. Its inputs are two 64-bit NEON regis-
ters, each interpreted as eight 8-bit binary polynomials, and its output is a single
128-bit NEON register interpreted as eight 16-bit binary polynomials containing
the eight results of pairwise binary multiplications, as illustrated in Figure 1.
In [1] it is shown how to compute a full 64 × 64-bit multiplication with eight
VMULL.P8 instructions and some additional data processing.

AArch32 provides a new VMULL.P64 instruction. Its inputs are two 64-bit
NEON registers, each interpreted as a single 64-bit binary polynomial, and its
output is a single 128-bit NEON register containing the result of the binary
multiplication of both operands. Therefore, a single instruction can carry out a
64 × 64-bit multiplication. It is also shown in Figure 1.

AArch64 provides two instructions, PMULL and PMULL2, both of which carry
out a single 64 × 64-bit multiplication. In both cases, the inputs are 128-bit
registers; their difference is that in PMULL the lower 64-bit parts of the inputs
are used as operands, while in PMULL2 the higher 64-bit parts are used. Both are
also shown in Figure 1.

2.2 AES Support

ARMv7 does not have any specific AES support, while ARMv8 supports AES
in both AArch32 and AArch64 with the AESE, AESD, AESMC and AESIMC NEON
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Fig. 1. Binary polynomial multiplication NEON instructions: VMULL.P8 (ARMv7),
VMULL.P64 (ARMv8 AArch32) and PMULL/PMULL2 (ARMv8 AArch64)

instructions. AESE performs the AddRoundKey, SubBytes and ShiftRows AES
steps, while AESMC performs MixColumns. The last AddRoundKey step can be
carried out with a regular NEON XOR instruction (VEOR in AArch32, EOR in
AArch64).

Instruction support is summarized in Table 1.

Table 1. Instruction support across devices. Assumes
NEON support (not every chip supports it).

ARMv7 ARMv8

AArch32 AArch64

VMULL.P8 Yes Yes No
VMULL.P64 No Yes No
PMULL/PMULL2 No No Yes
AES instructions No Yes Yes

3 GCM

The Galois/Counter Mode (GCM) [6] is an authenticated encryption scheme
which is built upon a block cipher, usually AES. Its inputs are: a key; a nonce; the
plaintext which will be encrypted and authenticated; and additional data which
will only be authenticated. It outputs the ciphertext and an 128-bit authentica-
tion tag.

The GCM encryption is based on the underlying block cipher in CTR mode,
while its authentication is based on a function named GHASH, described in
Algorithm 1. The GHASH inputs are: the ciphertext; an initial 128-bit value;
and a 128-bit constant H derived from the key. It outputs a 128-bit value used
to compute the authentication tag. The timing consuming operation in GHASH
is the multiplication over the binary field F2128 ; the fact that one of the operands
is always the same (H) can lead into some optimizations.
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Algorithm 1. GHASH function
Input: Input X with n 128-bit blocks, 128-bit initial value Y , 128-bit constant H
Output: Updated Y
1: function GHASH(X, Y, H)
2: X1, . . . , Xn ← X
3: for i ← 1 to n do
4: Y ← (Xi ⊕ Y ) ⊗ H � Multiplication in F2128

5: return Y

An often confusing aspect of GCM is its bit order. When interpreting a byte
vector as a binary field element, two choices must be made: which byte is the least
significant in the vector, and which bit is the least significant in each byte. GCM
chooses a little-endian approach for the byte order, but a big-endian approach for
the bit order. For example, the polynomial a(z) = 1 is represented as the 16-byte
string 80 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00. However, this means that is
not possible to speed up the computation using anything larger than bytes (i.e.
words), since left and right shifts will not respect the byte/bit order of GCM.
This can be solved by either of two approaches: the first is to reverse the bits
inside each byte in the GHASH input before carrying out any computations,
and reversing them again when computing the authentication tag. The second
approach, proposed by [4], is to reverse the bytes in the vector instead. This
leads to a reversed binary field element, which can be correctly multiplied by
reversing the modular reduction algorithm in the binary field multiplication. The
advantage of the second approach is that in most cases it is simpler to reverse
the bytes in a vector than reversing the bits in each byte.

4 Software Implementation

Efficiency is important, but security is even more. A secure implementation offers
some degree of protection against side channel attacks. Our aim is to protect
against timing attacks by avoiding loops, branches and table lookups which are
dependent on secret data.

Given an irreducible m-degree polynomial f(z), the binary field F2128 can be
defined as the set of polynomials with degree at most m−1 over F2. In software,
each field element can be stored in a vector of W -bit words, where each word
contains W coefficients of the polynomial. Field addition is simply the xor of the
operands. Field multiplication consists of the polynomial multiplication of the
operands, followed by a reduction modulo an irreducible polynomial. GCM uses
multiplication in the binary field F2128 with the irreducible polynomial f(z) =
z128 + z7 + z2 + z + 1.

4.1 Binary Polynomial Multiplication

The polynomial multiplication used to be carried out with the help of precom-
puted tables, shifts and xors [5]. However, this has changed with the advent of
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instructions supporting binary polynomial multiplication. In ARMv7, we simply
followed the approach described in [1], which builds a 64×64-bit multiplier using
eight invocations of the VMULL.P8 instruction. This multiplier is then used three
times (with the Karatsuba algorithm) to build the full 128 × 128-bit multiplier.

In AArch32, the whole 64×64-bit multiplication is available in the VMULL.P64
instruction. Again, we use Karatsuba to build the full 128 × 128-bit multiplier,
which is listed in Algorithm 2, using three VMULL.P64 calls. In AArch64, however,
our approach is a little different. While the PMULL and PMULL2 instructions offer
the same operation of VMULL.P64, in AArch64 is no longer possible to reference
the upper part of a 128-bit register as a separate 64-bit register. In order to get
the upper part we use the EXT instruction with a register zeroed beforehand. To
reduce the use of EXT we abandon Karatsuba and call PMULL(2) four times. Our
AArch64 multiplier is listed in Algorithm 3.

Algorithm 2. 128 × 128-bit binary polynomial multiplier for ARMv8 AArch32
(VMULL.P64)

Input: 128-bit registers aq (ah|al) (first operand), bq (bh|bl) (second operand).
Output: 128-bit registers r0q (r0h|r0l) (lower 128 bits of the result), r1q

(r1h|r1l) (higher 128 bits of the result).
Uses temporary 128-bit register tq (th|tl).

1: vmull.p64 r0q, al, bl

2: vmull.p64 r1q, ah, bh

3: veor th, bl, bh

4: veor tl, al, ah

5: vmull.p64 tq, th, tl

6: veor tq, r0q

7: veor tq, r1q

8: veor r0h, tl

9: veor r1l, th

Algorithm 3. 128 × 128-bit binary polynomial multiplier for ARMv8 AArch64
(PMULL)

Input: 128-bit registers a (first operand), b (second operand), z (zeroed register).
Output: 128-bit registers r0 (lower 128 bits of the result), r1 (higher 128 bits of the

result).
Uses temporary 128-bit registers t0, t1.

1: pmull r0.1q, a.1d, b.1d

2: pmull2 r1.1q, a.2d, b.2d

3: ext.16b t0, b, b, #8

4: pmull t1.1q, a.1d, t0.1d

5: pmull2 t0.1q, a.2d, t0.2d

6: eor.16b t0, t0, t1

7: ext.16b t1, z, t0, #8

8: eor.16b r0, r0, t1

9: ext.16b t1, t0, z, #8

10: eor.16b r1, r1, t1
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Algorithm 4 . 256-bit to 128-bit GCM reflected polynomial reduction for
ARMv8 AArch32 using VMULL.P64

Input: 128-bit registers r0q (r0h|r0l) (lower 128 bits of the operand), r1q

(r1h|r1l) (higher 128 bits of the operand), 64-bit register pd (holding constant
0xc200000000000000)

Output: 128-bit register aq (ah|al).
Uses temporary 128-bit register t0 (t0h|t0l). Clobbers inputs.

1: vmull.p64 t0q, r0l, pd

2: veor r0h, t0l

3: veor r1l, t0h

4: vmull.p64 t0q, r0h, pd

5: veor r1q, t0q

6: veor aq, r0q, r1q

4.2 GCM Reflection

In ARMv7 there is no straightforward procedure to reflect the bits of each byte
in a byte vector using NEON instructions. For this reason, in order to avoid
the costly lookup tables required for the reflection, we used the reflection trick
described in [4] which requires inverting the bytes of 16-byte vectors. This is car-
ried out in NEON using the VREV64.8 instruction, which can reverse the bytes
inside a pair of 64-bit registers. These registers can then be swapped using the
VSWP instruction to finish the procedure. In ARMv8 AArch32 the same app-
roach is used. ARMv8 AArch64, however, supports the RBIT instruction which
reverses the bits of each byte in a byte vector (including 16-byte vectors). This
is exactly what is required by GCM and in this case the reflection trick is no
longer necessary.

4.3 Modular Reduction

Modular reduction is slightly more complex. Write the GCM modulus as f(z) =
z128 +r(z), where r(z) = z7 +z2 +z +1. The well known approach is to consider
that z128 ≡ r(z) (mod z128 + r(z)), allowing us to write the 256-bit operand
to be reduced as a(z) = h(z)z128 + �(z) ≡ h(z)r(z) + �(z). That is, we simply
multiply the higher part of the operand by r(z) and add it to �(z). If the result
is still larger than 128 bits, we reduce again.

The old approach to compute the multiplication by r(z) is to use shift and
xors. However, it is now possible to simply compute it with the binary multipli-
cation instructions, using the constant r(z) as one of the operands; this is the
approach we used on both ARMv8 AArch32 and AArch64 with VMULL.P64 and
PMULL. Nevertheless, on ARMv7, the shift and xors approach is slightly faster
due to the non straightforward use of the VMULL.P8 multiplier required to carry
out the reduction. Our reduction algorithms are listed in Algorithms 4 and 5.
The ARMv7 reduction is from [7] and is listed for reference in Algorithm 8 in
the Appendix.
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Algorithm 5 . 256-bit to 128-bit GCM polynomial reduction for ARMv8
AArch64 using PMULL

Input: 128-bit registers r0 (lower 128 bits of the operand), r1 (higher 128 bits of the
operand), p (holding constant 0x00000000000000870000000000000087), z (zeroed)

Output: 128-bit register a.
Uses temporary 128-bit registers t0, t1. Clobbers inputs.

1: pmull2 t0.1q, r1.2d, p.2d

2: ext t1.16b, t0.16b, z.16b, #8

3: eor.16b r1, r1, t1

4: ext t1.16b, z.16b, t0.16b, #8

5: eor.16b r0, r0, t1

6: pmull t0.1q, a1.1d, p.1d

7: eor.16b a, r0, t0

Lazy reduction. On ARMv8 the polynomial multiplication is very fast due to
the instruction support for 64-bit polynomial multiplication. For this reason,
the modular reduction becomes comparatively more expensive and starts to
dominate the running time of the field multiplication. Thus we have employed
the technique known as “lazy reduction”, described in the GCM context in [4]. It
requires the unrolling of the GHASH function, as follows. GHASH can be written
recursively as Yi = (Xi⊕Yi−1)⊗H which, by decoupling the field multiplication,
becomes Yi = (Xi⊕Yi−1)·H mod f(z). This can be unrolled, for example, as Yi =
[(Xi ·H)⊕(Xi−1 ·H2)⊕(Xi−2 ·H3)⊕(Xi−3 ·H4)] mod f(z) which requires a single
modular reduction for every four polynomial multiplications. This requires 256-
bit polynomial addition, which is simple, and the precomputation of powers of
the H value, which can be precomputed in advance since H only depends on the
key. In our implementation we use a eightfold unrolling of GHASH; the powers
of H are entirely kept in NEON registers during the GHASH computation.

4.4 AES

ARMv7 does not have any AES instructions. For this reason, we have used
a bitsliced, timing-resistant NEON-based implementation from Bernstein and
Schwabe available in SUPERCOP2.

ARMv8 does support AES with special instructions, as mentioned. The 128-
bit key AES with its 10 rounds requires ten AESE instructions, nine AESMC
and one xor, totaling twenty instructions. Since these instructions operate on the
same 128-bit value they present a great deal of dependency between then, slowing
their execution. For this reason, we interleave two AES block encryptions in order
to reduce these dependencies (this is possible since GCM uses the counter mode
for encryption). For efficiency, we keep the entire AES expanded key in NEON
registers throughout the encryption. Algorithm 9 in the Appendix illustrates the
use of AES instructions in the encryption of a single block in AES-CTR.
2 http://bench.cr.yp.to/supercop.html

http://bench.cr.yp.to/supercop.html
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Contrasting with the Intel AES instructions, ARMv8 does not offer instruc-
tions for computing the AES key schedule, which therefore must be implemented.
The key schedule requires S-box lookups, which are usually implemented with
precomputed tables. However, this approach is subject to timing attacks since
the indexes are secret. (This may seem to be a non-issue since the key schedule
is usually run only once for each key, which makes side channel attacks very
difficult. However, we believe it is best to not rely on assumptions on the cipher
usage — for example, a simplified API could run the key schedule for every
encryption.) In order to offer timing resistance and good performance, we have
implemented the key schedule with the help of a function which is able to lookup
four bytes in the S-box. It is possible to write this function based on AES instruc-
tions, as described for the Intel processor in [2], but we need to adapt the code
to the ARM/NEON architecture. We implemented it with the AESE instruction
by observing that, when used with a zeroed round key, the instruction simply
lookups sixteen bytes in the S-box and shuffles them with MixColumns. By
unshuffling the bytes it is possible to build our lookup function with AESE in
a timing-resistant manner. While it could be possible to lookup sixteen bytes
with a single instruction, we use only four, since the AES key schedule works in
groups of four bytes.

Our four-byte S-box lookup algorithm works by filling a 16-byte register with
the constant 0x52 in each byte, then writing the four bytes to look up in the
lower four bytes. AESE is called with a zero round key, leading to a shuffled 16-
byte substituted result. Each 0x52 in the input is substituted by zeroes with
AESE, and the four substituted bytes we are interested in are now in different
columns due to MixColumns. We now simply add the columns (recall that AES
works in column-major order) in order to get a four-byte result. Our code is
listed in Algorithms 6 and 7.

Algorithm 6. Four-byte AES S-box lookup for ARMv8 AArch32 using AESE

Input: 32-bit register r0 (four bytes to lookup in the S-box).
Output: 32-bit register r0 (values after lookup).

Uses temporary 128-bit registers q0 (d1|d0, s3|s2|s1|s0), q1.
1: vmov.i8 q0, #0x52

2: vmov.i8 q1, #0

3: vmov s0, r0

4: aese q0, q1

5: veor d0, d1

6: vpadd.i32 d0, d0, d1

7: vmov r0, s0

4.5 GCM

With the binary multiplier and the AES encryption, the rest of the GCM
implementation is straightforward. There are two approaches: encryption can
be interleaved with GHASH, or the encryption is completely carried out and
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Algorithm 7. Four-byte AES S-box lookup for ARMv8 AArch64 using AESE

Input: 32-bit register w0 (four bytes to lookup in the S-box).
Output: 32-bit register w0 (values after lookup).

Uses temporary 128-bit registers v0, v1.
1: movi.16b v0, #0x52

2: movi.16b v1, #0

3: mov v0.S[0], w0

4: aese.16b v0, v1

5: addv s0, v0.4s

6: mov w0, v0.S[0]

then GHASH is executed. We have followed the latter approach, since it allows
to keep the all AES round keys in NEON registers throughout the encryption.
The former approach has the advantage that each block of ciphertext is written
once and is never read again by GCM (since GHASH can read it directly from
a NEON register after the encryption); we have not tried this approach but we
believe it would be slower. The first approach does imply that is not possible to
use a streaming API that encrypts or decrypts an arbitrary amount of data, since
the entire message must be encrypted and the ciphertext must be read from the
start in order to compute its GHASH. However, we think this is not a problem
since streaming APIs can be dangerous: they release plaintext to the user before
authenticating it, burdening the user with the task of destroying any plaintext
stored if it is found to be not authentic. It is still possible to build a stream-
ing API by dividing the plaintext in packets and encrypting and authenticating
them separately.

5 Performance Results

Timings were obtained by measuring the time taken by the encryption of a
10,000-byte message inside a loop with 256 iterations. We did not use the popu-
lar SUPERCOP benchmark tool since it does not support the iOS and Android
operating systems which were required for our experiments. The performance
was measured on a PandaBoard board with a 1GHz ARMv7 Cortex-A9 proces-
sor, an Arndale board with a 1.7GHz ARMv7 Cortex-A15 processor, a Galaxy
Note 4 SM-N910C with a hybrid 8-core processor (four 1.3GHz ARMv8 Cortex-
A53 cores and four 1.9GHz ARMv8 Cortex-A57 cores — all of them supporting
only the AArch32 mode), an iPhone 5s with a 1.3GHz ARMv8 Apple A7 pro-
cessor and an iPad Air 2 with a 1.5GHz ARMv8 Apple A8X processor. On the
Note 4 and Cortex boards time was measured with the clock gettime function,
while on the iPhone and iPad we used the mach absolute time function. Tim-
ings were converted to cycles assuming the clocks listed. On the Note 4 we forced
our program to run on a specific core using the sched setaffinity function.
Our results are reported in Table 2. Algorithm timings do not include the time
required for key setup, which is listed separately.
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Table 2. Results in cycles per byte (except key setup, given in cycles)

Cortex A9 A15 A53 A57
ARMv7 ARMv7 ARMv8 ARMv8

AArch32 AArch32
.P8a .P8a .P8a .P64b .P8a .P64b

AES-128-CTR 22.0 15.6 22.3 1.88 15.6 1.84
AES-128 setup 3358 2437 3244 690 2386 647
GCM auth only 10.7 8.3 9.6 1.21 8.1 0.95
GCM encryption 32.8 23.9 32.5 3.08 23.4 2.78
GCM setup 6450 4651 6337 1423 4582 1216

Apple A7 A8X
ARMv8 ARMv8

AArch32 AArch64 AArch32 AArch64
.P8a .P64b PMULLc .P8a .P64b PMULLc

AES-128-CTR 9.8 1.21 1.21 9.8 1.19 1.19
AES-128 setup 1420 901 739 1419 875 749
GCM auth only 6.0 0.51 0.50 5.9 0.48 0.51
GCM encryption 15.9 1.71 1.71 15.7 1.68 1.70
GCM setup 2771 1298 1075 2706 1323 1062
a Bitsliced software AES; VMULL.P8-based binary multiplier
b AES instructions; VMULL.P64-based binary multiplier
c AES instructions; PMULL-based binary multiplier

First, note that simply changing from the Cortex A15 to the Apple A7 pro-
cessor, using the same implementation, leads to a 33% speedup in GCM. This
can be attributed in advancements in the processor design, with a larger num-
ber of instructions being issued on the same cycle. However, changing from the
Cortex A15 to the Cortex A57 leads to small timing differences, which probably
means that the design of these processors are mostly the same, apart from the
ARMv8 AArch32 support of the latter. We also found no significant difference
between the results for the Apple A7 and A8X processors. The Cortex A53 is
slower than the A57 by up to 10% (.P64) and 40% (.P8) as expected, since it’s
supposed to be a simpler core which consumes less energy.

Comparing the VMULL.P8 and VMULL.P64 implementations on the Apple A7,
it can be seen that GCM authentication is 11.76 times faster using the new
VMULL.P64 instruction; AES-128-CTR encryption is 8.1 faster using the new AES
instructions. Combined, these results lead to GCM authenticated encryption
being 9.3 faster. The A8X processor shows similar results. On the Cortex A53
these speedups are 7.9, 11.9 and 10.6 while on the A57 they are 8.5, 8.5 and 8.4
respectively.

The VMULL.P64 and PMULL implementations offer practically the same per-
formance. This is not surprising since the implementations do not differ greatly.
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The 64-bit architecture does not make much difference since our code is mostly
NEON and practically does not uses regular ARM registers for data processing.

Finally, when comparing the Apple A7 and Cortex A57 processors, we observe
that the first is 46% faster for VMULL.P64 GCM authentication and 34% faster
for AES-128-CTR with AES instructions, leading to a 38% faster GCM authen-
ticated encryption.

6 Conclusions and Future Work

The GCM mode is known for the hardness in implementing it in an efficient
and secure manner. However, the ARMv8 binary polynomial multiplication and
AES instructions can make GCM up to 10 times faster compared to an efficient
timing-resistant ARMv7 implementation, making the scheme an ideal choice for
protecting communications in smartphones. These instructions enable a natu-
ral resistance against timing attacks, since no branches nor table lookups are
required.

Finally, our techniques for binary multiplication in F2128 can be extended for
larger binary fields which can be used for a fast and secure software implemen-
tation of binary elliptic curves.

A Additional Algorithms

Algorithm 8 . 256-bit to 128-bit GCM reflected polynomial reduction for
ARMv7 from [7]

Input: 128-bit registers r0q (r0h|r0l) (lower 128 bits of the operand), r1q

(r1h|r1l) (higher 128 bits of the operand).
Output: 128-bit register aq (ah|al).

Uses temporary 128-bit registers t0 (t0h|t0l), t1 (t1h|t1l). Clobbers inputs.
1: vshl.i64 t0q, r0q, #57

2: vshl.i64 t1q, r0q, #62

3: veor t1q, t1q, t0q

4: vshl.i64 t0q, r0q, #63

5: veor t1q, t1q, t0q

6: veor r0h, r0h, t1l

7: veor r1l, r1l, t1h

8: vshr.u64 t1q, r0q, #1

9: veor r1q, r1q, r0q

10: veor r0q, r0q, t1q

11: vshr.u64 t1q, t1q, #6

12: vshr.u64 r0q, r0q, #1

13: veor r0q, r0q, r1q

14: veor aq, r0q, t1q
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Algorithm 9. AES-128-CTR encryption of a single block with AES instructions
Input: 128-bit registers k0-k10 (AES round keys), ctr (counter); regular ARM reg-

isters in (pointer to 128-bit input block), out (pointer to 128-bit output block)
Output: Encrypted counter xored with input written to memory pointed by out.

Uses temporary 128-bit registers t0, t1.
1: mov.16b t0, ctr

2: aese.16b t0, k00

3: aesmc.16b t0, t0

4: aese.16b t0, k01

5: aesmc.16b t0, t0

6: aese.16b t0, k02

7: aesmc.16b t0, t0

8: aese.16b t0, k03

9: aesmc.16b t0, t0

10: aese.16b t0, k04

11: aesmc.16b t0, t0

12: aese.16b t0, k05

13: aesmc.16b t0, t0

14: aese.16b t0, k06

15: aesmc.16b t0, t0

16: aese.16b t0, k07

17: aesmc.16b t0, t0

18: aese.16b t0, k08

19: aesmc.16b t0, t0

20: aese.16b t0, k09

21: eor.16b t0, t0, k10

22: ld1.16b {t1}, [in], #16

23: eor.16b t1, t1, t0

24: st1.16b {t1}, [out], #16
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Abstract. Real-world software implementations of cryptographic algo-
rithms need to be able to resist various kinds of side-channel attacks, in
particular Differential Power Analysis (DPA). Masking is a widely-used
countermeasure to protect block ciphers like the Advanced Encryption
Standard (AES) against DPA attacks. The basic principle is to split all
sensitive intermediate variables manipulated by the algorithm into two
shares and process these shares separately. However, this approach still
succumbs to higher-order DPA attacks, which exploit the joint leakage
of a number of intermediate variables. A viable solution is to generalize
masking such that at least d + 1 shares are used to protect against d-th
order attacks. Unfortunately, all current higher-order masking schemes
introduce a significant computational overhead compared to unmasked
implementations. To facilitate the deployment of higher-order masking
for the AES in practice, we developed a vector implementation of Coron
et al’s masking scheme (FSE 2012) for ARM NEON processors. After a
comprehensive complexity analysis, we found that Coron et al’s scheme
with n shares for each sensitive variable needs O(n2) multiplications in
the field GF(28) and O(n2) random-number generations. Both of these
performance-critical operations are executed with only 15 instructions
in our software, which is possible thanks to the rich functionality of the
NEON instruction set. Our experimental results demonstrate that the
performance penalty caused by the integration of higher-order masking
is significantly lower than in generally assumed and reported in previous
papers. For example, our second-order DPA-protected AES (with three
shares for each sensitive variable) is merely eight times slower than an
unmasked baseline implementation that resists cache-timing attacks.

1 Introduction

Differential Power Analysis (DPA) [4] is a cryptanalytic technique that exploits
variations in the power consumption of a cryptographic device (e.g. smart card)
to obtain the secret key. DPA attacks first appeared in the literature in the late
c© Springer International Publishing Switzerland 2015
K. Nyberg (ed.): CT-RSA 2015, LNCS 9048, pp. 181–198, 2015.
DOI: 10.1007/978-3-319-16715-2 10
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1990s [17] and have since then received much attention from the cryptographic
research community. Basically, a DPA attack consists of two phases, namely an
acquisition phase and an analysis phase. In the former phase, the attacker has
to acquire a set of power consumption traces of the target device while it exe-
cutes a cryptographic algorithm with different inputs (i.e. different plaintexts
or ciphertexts). Then, in the analysis phase, he applies sophisticated statistical
techniques to determine the correlation between the measured power traces and
certain intermediate values of the cryptographic algorithm based on the known
inputs and a predicted (i.e. guessed) part of the secret key. More precisely, the
attacker uses the computed intermediate values to partition the power traces
into several categories and determines the correlation (e.g. the difference in the
averages of the categories) between the measured traces and the intermediate
values. Normally, the highest correlation is obtained with a partitioning where
the guessed key is the actual secret key processed by the device [18].

Masking is a widely-used method to protect symmetric ciphers, such as the
AES [9], against DPA attacks by randomizing all sensitive intermediate values
[18]. The basic idea is to split the intermediate values into multiple shares, and
then process all operations on each share separately throughout the execution
of the algorithm. Of course, at the end of the computation, the shares have to
be recombined to get the correct result. For example, a sensitive value x can be
split into two shares x1 and x2, whereby x1 is a newly generated random value
(the so-called mask) and x2 is computed as x2 = x ⊗ x1 for a certain operation
⊗ that depends on the algorithm. Based on the nature of this operation, we can
distinguish between arithmetic masking, Boolean masking, and multiplicative
masking1. In any case, the power consumption does not depend on the sensitive
value any more, i.e. information leaked from the mask x1 alone or the masked
value x2 alone is not sufficient to reveal x.

DPA attacks involving only a single independent variable are referred to as
first-order DPA attacks. In contrast, higher-order DPA attacks exploit the joint
leakage of several variables manipulated by a (masked) implementation of an
algorithm. Here, the term order denotes the number of intermediate variables
exposed to the attacker. An implementation made first-order DPA resistant via
masking is still vulnerable to second-order DPA attacks [6,7,19,23], which aim
to exploit the combined leakage from two intermediate variables at the expense
of increased effort (i.e. more power samples are required and the analysis phase
is computationally more costly). For example, if two points in the power traces
are correlated to intermediate values x and y, where the secret z = x ⊕ y, then
the combination of leakage information of these two intermediate values can be
used to predict the secret z. In general, an n-th order masking scheme can be
defeated by an (n + 1)-th order DPA attack [5].

No single countermeasure is able to fully protect a cryptosystem against all
higher-order DPA attacks. However, the effort to successfully mount a higher-
order DPA attack grows exponentially as the order increases. Thus, taking into
account the attacker’s ability, it suffices in practice when an implementation is
1 In this paper, we focus on the AES and, hence, ⊗ is in our case ⊕ (logical XOR).
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made resistant against DPA attacks up to a certain order [18]. In general, in a
d-th order masking scheme, every sensitive value is split into n = d + 1 shares
such that x = x1 ⊕ · · · ⊕ xn, whereby x1, · · · , xn−1 are independently generated
random masks, and xn = x ⊕ x1 ⊕ · · · ⊕ xn−1 is the masked data. When a d-th
order masking scheme is executed, each share xi gets processed separately so as
to ensure that the combination of any d shares is independent of the sensitive
variable, i.e. the combination of d leakages does not leak information about the
sensitive variable. As a consequence, a d-th order DPA attack exploiting up to
d joint leakages can not reveal the secret key anymore.

The AES consists of several rounds, each performing linear transformations
and one non-linear transformation called SubBytes [9]. The linear parts can be
trivially masked by applying the transformations on each share separately since
f(x) = f(x1) ⊕ · · · ⊕ f(xn), where f(·) denotes a linear function and x is given
as x = x1 ⊕ · · · ⊕ xn. However, the actual difficulty is the secure masking of the
SubBytes transformation, especially the secure masking of the S-box. At CHES
2010, Rivain and Prouff [20] introduced a generic masking scheme for the AES
to make it secure against d-th order attacks. Very recently, Coron et al showed
that said scheme is not resistant to d-th order attacks as claimed and provided
a fix [8]. A comprehensive treatment of various higher-order masking schemes
proposed in the literature can be found in [12,13]. The main problem with all
current proposals is the massive computational overhead they introduce; in the
most extreme case, the performance penalty exceeds three orders of magnitude
[7]. As a consequence, it is widely presumed that higher-order masking of the
AES is not suitable for adoption in real-world applications.

In this paper we show that high-order masking for the AES, if implemented
efficiently, incurs significantly less overhead than widely assumed and reported
in related literature. To this end, we developed a masked AES implementation
for ARM NEON processors (e.g. Cortex-A8) [1] that combines algorithmic im-
provements with a vector-parallel execution of the underlying operations. The
algorithmic improvements we describe in the following sections include the use
of a composite-field representation along with Barrett reduction for performing
multiplications in the binary finite field GF(28) [10]. We first present a baseline
AES implementation that is resistant against so-called cache attacks (but does
not include DPA countermeasures) using NEON instructions. When compared
with Brian Gladman’s lookup-table-based implementation for 32-bit processors
[11], it turns out that our baseline software is roughly 50% slower, but able to
withstand any form of cache attack. Therefore, it is suited to serve as reference
for performance comparisons. We then present the first vector implementation
of a high-order DPA countermeasure for the AES using the NEON instruction
set. Our masked AES is based on Coron et al’s corrected version of the Rivain-
Prouff countermeasure. After a thorough complexity analysis, we found that the
most performance-critical parts are the field multiplications and pseudorandom
number generations. Thanks to the rich functionality of the NEON instruction
set, these two operations can be executed with only 15 instructions.
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Algorithm 1. SecMult: Masked multiplication in GF(28) with n shares [7]

Input: Shares xi satisfying x1 ⊕ · · · ⊕ xn = x, shares yi satisfying y1 ⊕ · · · ⊕ yn = y
Output: Shares zi satisfying z1 ⊕ · · · ⊕ zn = xy
1: for i = 1 to n do
2: zi ← xi · yi

3: end for
4: for i = 1 to n do
5: for j = i + 1 to n do
6: r0 ← GF(28)
7: r1 ← (r0 ⊕ xi · yj) ⊕ xj · yi

8: zi ← zi ⊕ r0
9: zj ← zj ⊕ r1

10: end for
11: end for
12: return z1, . . . , zn

2 Previous Work

This section covers existing algorithms for secure higher-order masking of the
AES. We first review the higher-order masking scheme proposed by Rivain and
Prouff [20]. Then, we describe the flaw in the original algorithm and its fix due
to Coron et al [8].

2.1 Provably Secure Higher-Order Masking of the AES

The first technique to protect the AES against higher-order DPA attacks was
presented by Rivain and Prouff at CHES 2010 [20]. Their approach is based on
the higher-order masking scheme proposed by Ishai, Sahai and Wagner (ISW)
to protect any circuit against a d-limited adversary who can tap any d wires in
the circuit at a given time [15]. The major idea behind the ISW framework is
to represent a circuit performing a cryptographic operation as a combination
of Boolean AND and NOT gates (which is possible since NAND is a universal
gate), and to protect these gates independently. Securing a NOT gate is trivial
because NOT(x1 ⊕ x2 ⊕ · · · ⊕ xn) = NOT(x1) ⊕ x2 ⊕ · · · ⊕ xn. To protect an
AND gate, they introduced an elegant technique that requires each of the two
input bits to be split up into 2d + 1 shares. Rivain and Prouff showed that this
method can be extended from AND, i.e. multiplication in GF(2), to multiplica-
tion in any field of characteristic 2, including GF(28). We recall their solution
in Algorithm 1. They also reduced the number of shares for a d-th order secure
masking scheme from 2d + 1 (as required for the ISW method) to d + 1.

As mentioned before, masking a linear function f(·) is easy because

f(x) = f(x1) ⊕ f(x2) ⊕ · · · ⊕ f(xn) (1)

The only non-linear operation of the AES S-box is inversion in the finite field
GF(28). Since the inverse x−1 of x ∈ GF(28) equals x254, the authors perform
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the secure computation of inversion via secure exponentiation, which comprises
several secure multiplications and squarings in GF(28). To securely mask the
field multiplications, the authors extended the technique for masking a logical
AND (i.e. a multiplication in GF(2)) proposed in [15], which can be applied to
securely mask a multiplication in any field of characteristic 2. Furthermore, to
protect the power function x → x254, Rivain and Prouff proposed an algorithm
that requires only four field multiplications (see Appendix A). Later, Kim et al
improved the efficiency of this algorithm via composite-field arithmetic [16].

2.2 Higher-Order Side-Channel Security and Mask Refreshing

Algorithm 5 (included in Appendix A) executes a RefreshMasks function before
SecMult to ensure that the inputs are independent2. RefreshMasks modifies the
shares using freshly-generated (pseudo-)random numbers. When we denote the
new random numbers with (ri)1≤i≤d, then a call of RefreshMasks((xi)1≤i≤d+1)
performs the following operation:

x0 = x0 ⊕
⊕

1≤i≤d

ri (2)

(xi)1≤i≤d = xi ⊕ ri (3)

Even though the functions RefreshMasks and SecMult are “individually” secure
against d-th order attacks, Coron et al discovered in [8] that a flaw arises when
they are used together for computations of the form x · g(x), where g(·) is a lin-
ear function. As demonstrated in [8], a joint leakage of �n/2� + 1 intermediate
variables can be exploited due to the involvement of the RefreshMasks function
in certain cases. Therefore, the claim that the Rivain-Prouff masking scheme is
secure against d-th order attacks (where d = n − 1) is not valid anymore. To
eventually eliminate this flaw, Coron et al presented a new d-th order masked
multiplication of the form x · g(x). In detail, suppose

f(x, y) = (x · g(y)) ⊕ (g(x) · y) (4)

where x, y ∈ GF(28) and g(·) is a linear function over GF(28). Then,

f(x, y) = f(x, r) ⊕ f(x, y ⊕ r) (5)

due to the bilinearity of f(·) [8]. Hence, the flaw is fixed by recalculating r1 in
line 7 of Algorithm 1 as follows

r1 = r0 ⊕ f(xi, xj)
= (r0 ⊕ f(xi, r

′
0)) ⊕ f(xi, xj ⊕ r′

0) (6)

2 As explained in the full version of [20], SecMult is only secure when the inputs are
d-independent of each other. Namely, every 2d-tuple containing d elements from the
input x (i.e. (xi)1≤i≤d+1) and d elements from the input y (i.e. (yi)1≤i≤d+1) should
be uniformly distributed and independent of x and y.
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Algorithm 2. SecH: Masked multiplication h(x) = x ·g(x) over GF(28) with n shares,
where g(·) is a linear function [8]

Input: Shares xi satisfying x1 ⊕ · · · ⊕ xn = x, and g(xi) for each xi

Output: Shares yi, satisfying y1 ⊕ · · · ⊕ yn = y = x · g(x)
1: for i = 1 to n do
2: yi ← xi · g(xi)
3: end for
4: for i = 1 to n do
5: for j = i + 1 to n do
6: r0 ← GF(28)
7: r′

0 ← GF(28)
8: r1 ← r0 ⊕ (xi · g(r′

0)) ⊕ (r′
0 · g(xi)) ⊕ (xi · g(xj ⊕ r′

0)) ⊕ ((xj ⊕ r′
0) · g(xi))

9: yi ← yi ⊕ r0
10: yj ← yj ⊕ r1
11: end for
12: end for
13: return y1, . . . , yn

where r′
0 is a freshly-generated random element of the field GF(28). Algorithm

2 shows a variant of this technique for secure computation of h = x · g(x) with
linear memory complexity. For each pair of shares xi, xj , this algorithm has to
generate an extra random number to split up the computation of f(xi, xj) as
specified by Equation (6). The computation of r1 in line 8 of Algorithm 2 also
requires four extra additions and two more multiplications in GF(28) compared
to line 7 of Algorithm 1. Nonetheless, by using look-up tables for the function
h(x) = x · g(x), Coron et al managed to reduce the execution time of a masked
S-box operation by between 24% (for d = 1) and 35% (for d = 3) in relation to
the Rivain-Prouff method. Therefore, they concluded in [8] that their masking
scheme is not only secure, but also faster than the original one.

3 Our Implementation

In this section, we describe our implementation of the higher-order secure AES
from [8] for ARM NEON processors (e.g. Cortex-A8, A15). We first introduce
our approach for performing multiplication in GF(28), which is, according to
our analysis, the most costly operation of a masked AES, and then describe a
method to secure the full cipher.

3.1 Vector Implementation of Multiplication in GF(28)

Barrett Reduction for Integers. In order to optimize the modular reduc-
tion operation r = a mod n, where a, n are integers and a < n2, Barrett came
up with an algorithm that requires a pre-computed constant depending only on
the modulus n [2]. This so-called Barrett reduction is designed to replace the
trial division with multiplications, which yields much better performance.
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The general idea of Barrett reduction is based on the following equation

a mod n = a −
⌊a

n

⌋
n. (7)

One can precompute m = 1/n, in which case the modular reduction operation
is transformed into two multiplications and one subtraction. However, since the
quotient m = 1/n can only be represented as a floating point number and
Barrett’s algorithm is supposed to work with integers, it adopts a trick to avoid
calculating on floating numbers. Suppose k is the minimal integer such that
2k > n, which means we can precompute m = �22k/n�. Let q = �ma/4k�,
r = a − qn then �a/n� − 1 < q ≤ �a/n� and

a mod n =
{

r if r < n,
r − n otherwise. (8)

The entire algorithm requires two multiplications, one shift operation3 and at
most two subtractions.

Modular Reduction in Fq[x]. In order to perform modular reduction over
Fq[x], Dhem generalized Barrett’s modular reduction over integers to work with
polynomials [10]. Theorem 1 indicates that Barrett modular reduction can be
adapted to extension fields with polynomial presentation.

Theorem 1 (Quotient Evaluation in Fq[x], adpated from [10]). Suppose
U(x), N(x), Z(x) and Q(x) are polynomials over Fq, and U(x) = Q(x)N(x) +
Z(x) (i.e., Z(x) = U(x) mod N(x)), then

Q(x) =
⌊

U(x)
N(x)

⌋

=

⎢
⎢
⎢
⎣

⌊
U(x)
xp

⌋ ⌊
xp+β

N(x)

⌋

xβ

⎥
⎥
⎥
⎦ =

⌊
T (x)R(x)

xβ

⌋

, (9)

where p = deg(N(x))4, β ≥ deg(U(x)/xp) and �A(x)/B(x)� stands for the quo-
tient of polynomial division A(x)/B(x), ignoring the reminder.

According to Theorem 1, we can perform the modular reduction operation
U(x) = Z(x) mod N(x) over Fq[x] in three steps as follows.

Step 1. Evaluate the quotient Q(x) = �U(x)/N(x)� according to Theorem 1.
Step 2. Calculate the product V (x) = Q(x)N(x).
Step 3. Obtain the reminder Z(x) = U(x) − V (x).
In most applications, N(x) is fixed, e.g., N(x) = x8+x4+x3+x+1 in the case

of AES. Therefore, we can accelerate the computation of Q(x) by pre-computing
R(x) = �xp+β/N(x)�. Although Theorem 1 holds when β ≥ deg(U(x)/xp), there
is no need to choose β > deg(U(x)/xp), because the bigger β, the bigger R(x)
and the more computation is required. In general, we can choose β = α−p, where
3 A division by 4k is nothing else than a simple right-shift operation by 2k bits.
4 deg(A(x)) stands for the degree of polynomial A(x).
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deg(U(x)) is bounded by some constant value α. Thus, the evaluation of Q(x)
is simplified to one multiplication and two shift operations (i.e., division by xp

and xβ , similar to the case of integers 3). Overall, a Barrett modular reduction
for polynomials over Fq[x] consists of two multiplications, two shift operations
and one subtraction.

Field Multiplication in F28 (i.e., GF(28)). A complete field multiplication
in F28 = F2[x]/q(x), where q(x) = x8 + x4 + x3 + x + 1, consists of two steps:
multiplying two polynomials a(x) and b(x) of degree ≤ 7 and modular reduction
of the product p(x) with respect to q(x). Since we have vmull.p8 instruction in
NEON, a polynomial multiplication can be easily carried out in parallel. Hence,
the only operation we have to pay attention to is the modular reduction.

Polynomial operations over F2[x] have some special characteristics (given
below), which can be used to speed up the modular reduction operation. 5

1. A polynomial of degree m − 1 can be represented by an array of m bits.
2. The subtraction of two polynomials is same as addition.
3. The product of a polynomial of degree m − 1 and a polynomial of degree

n − 1 is a polynomial of degree m + n − 2, which can be represented by
(m + n − 1) bits. In the case of GF(28), we have m,n ≤ 7, and therefore
m + n − 2 ≤ 12. However, for two integers consisting of m and n bits, the
product has a length of (m + n) bits.

4. The addition of two polynomials of degree m is a polynomial of degree m.
In case of two integers of m-bit length, the addition may have a length of
(m + 1) bits.

5. The reminder of division of two polynomials is one degree smaller than the
divisor (modulus). In the case of GF(28), the degree of the irreducible poly-
nomial q(x) is 8. However, in the case of integers, the reminder might have
the same length as the divisor (in binary representation).

Using the observations above, we designed Algorithm 3, which realizes field mul-
tiplications in GF(28).

In the pre-computations stage, we know that the degree of the product of
two polynomials of degree ≤ p − 1 cannot exceed α = 2 ∗ (p − 1). Here, p =
deg(N(x)) = 8 and hence β ≥ α − p = 6. In order to optimize the computation,
we can choose an R(x) that can be stored in a single byte, which means R(x)
should have a degree of ≤ 7. Since R(x) = �xp+β/N(x)�, we can for example
pick β = 6 and R(x) = x6 + x2 + x. Alternatively, we can pick β = 7 and
R(x) = x7 + x3 + x2 + 1. However, for β ≥ 8, R(x) has a degree ≥ 8, which is
not desirable.

In total, one field multiplication requires three polynomial multiplications,
two shift operations and one addition. Moreover, the execution sequence of this
technique for field multiplication is independent of the processed operands and,
hence, it is resistant against timing attacks.
5 Some of the characteristics are also valid in Fq[x], where q > 2.
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Algorithm 3. Multiplication in GF(28) using Barrett reduction

Input: Polynomials A(x), B(x) ∈ GF(28)
Output: Polynomial Z(x) = A(x) ·B(x) mod N(x), where N(x) = x8+x4+x3+x+1

Pre-computation:

1: p ← deg(N(x)) � p = 8
2: α ← 2(p − 1) � α = 14
3: β ≥ α − p � β ≥ 6
4: R(x) ← �xp+β/N(x)� � R(x) = x6 + x2 + x if β = 6

Polynomial multiplication and Barrett modular reduction (Theorem 1):

1: U(x) ← A(x) · B(x) � deg(U(x)) ≤ 14
2: T (x) ← �U(x)/xp� � deg(T (x)) ≤ 6
3: S(x) ← T (x) · R(x) � deg(S(x)) ≤ β + 6
4: Q(x) ← �S(x)/xβ� � deg(Q(x)) ≤ 6
5: V (x) ← Q(x) · N(x) � deg(V (x)) ≤ 14
6: Z(x) ← U(x) + V (x)
7: return Z(x)

Vector Implementation of Field Multiplication in GF(28). Since the
AES state consists of 16 bytes, we aim at vectorizing the transformations on all
the 16 bytes. In order to perform 16 field multiplications in parallel, we define a
function named fmult as follows:

uint8x16_t fmult(uint8x16_t a, uint8x16_t b);

The fmult function takes two arguments of type uint8x16 t6 (i.e. a vector of 16
bytes) and returns a vector of 16 bytes. The most and least significant eight bytes
of the vector U(x) = A(x) · B(x) can be calculated in parallel using vmull.p8

instruction. To compute T (x) = �U(x)
x8 �, we right shift every element in U(x) by

8 bits with help of the vshrn.i16 instruction. The vectors S(x) = T (x) · R(x)
and Q(x) = �S(x)

x6 � can similarly be calculated using vmull.p8 and vshrn.i16
respectively. Since the most significant byte of each element in V (x) and U(x) are
the same so that they cancel out each other in the last step (namely, V (x)+U(x)),
we only need to calculate the least significant byte of each element of V (x). Since
V (x) = Q(x) · N(x), where N(x) = x8 + x4 + x3 + x + 1 is 100011011 in binary
presentation (0x11B in hexadecimal format), we have

V (x) mod x8 = (Q(x) mod x8) · (N(x) mod x8).

Since deg(Q(x)) ≤ 7 and N(x) mod x8 = x4 + x3 + x + 1, the least significant
byte of V (x), i.e., V (x) mod x8, is calculated in the following way,

V (x) mod x8 = (Q(x) mod x8) · (x4 + x3 + x + 1).

6 In NEON jargon, uint8x16 t is a quadword vector of 16 unsigned 8-bit integers.
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Finally, the veor instruction conducts the XOR operation (addition) of the
least significant byte of each element in U(x) and V (x). Consequently, only 15
instructions are used in our vector implementation of the field multiplication in
GF(28), which is less than one instruction per byte.

3.2 Vector Implementation of Round Operations

We now describe our implementation of all the round operations of AES. 7 It is
easy to mask a linear function f(·), since

f(x) = f(x1) ⊕ · · · ⊕ f(xn), (10)

where x = x1 ⊕ · · · ⊕ xn. The operations AddRoundKey, ShiftRows and Mix-
Columns are linear and can be implemented in a straightforward way. The non-
linear part of the cipher i.e., S-Box consists of an inversion in GF(28) and an
affine transformation. Masking the affine transformation is similar to masking
a linear function. Masking the inversion involves several subroutines: masking
the field squaring, masking the field multiplication and masking h(x) = x · g(x),
where g(·) is a linear function. We will discuss these subroutines separately below.

AddRoundKey. AddRoundKey is a linear function, because it is simply an
XOR operation. Due to the convenient vector XOR instruction veor, we only
need one instruction to implement this operation.

ShiftRows. ShiftRows left-rotates bytes in the n-th row of the state matrix by
(n − 1) positions.

ShiftRows :

⎡

⎢
⎢
⎣

x00 x01 x02 x03

x10 x11 x12 x13

x20 x21 x22 x23

x30 x31 x32 x33

⎤

⎥
⎥
⎦ �→

⎡

⎢
⎢
⎣

x00 x01 x02 x03

x11 x12 x13 x10

x22 x23 x20 x21

x33 x30 x31 x32

⎤

⎥
⎥
⎦ (11)

As it only rearranges the order of bytes in an AES state, it is also a linear
transformation. We use a lookup table based on the number of shifts required
for each byte and store it in a static array. We then reorder the state bytes
according to the look-up table by using the vector table look-up instruction
vtbl.8. 8 We require four instructions to implement ShiftRows operation, two
each for loading the table and reordering the state bytes.

7 We do not describe the implementation of key expansion as it can be obtained in a
similar way.

8 Note that the table look-up here is not based on the secret key, hence is not vulnerable
to cache-timing attacks.
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MixColumns. MixColumns can be performed by left-multiplying each column
with a constant byte matrix M with four rows and four columns, where the
multiplication is applied on GF(28).

MixColumns :

⎡

⎢
⎢
⎣

x0

x1

x2

x3

⎤

⎥
⎥
⎦ �→

⎡

⎢
⎢
⎣

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

x0

x1

x2

x3

⎤

⎥
⎥
⎦ (12)

The multiply by 2 can be realized via a single left-shift and a XOR operation;
the multiply by 3 is realized via combination of a multiply by 2 and an XOR
operation. The parallel implementation of MixColumns resistant against tim-
ing attacks (i.e., without conditional branches) can be obtained with only 13
instructions.

Field Squaring. Squaring is a linear operation in F
n
2 and hence can be masked

by squaring the shares independently.

Field Multiplication. The vector implementation of the field multiplication
can be carried out in a straightforward way using SecMult (Algorithm 1) and
fmult function.

Masking h(x) = x · g(x). Table lookups are a common way to improve the
execution time of this operation. To mask h(x) = x · g(x), we can also store
a look-up table for h(x). However, we cannot perform vector-parallel look-ups
into a table of more than 32 elements with NEON instructions. Hence, in our
implementation, we manually compute the values (as in Line 8 of Algorithm 3).

Affine Transformation. Suppose the byte x = [x0x1 · · · x7], where x0, · · · , x7

are bits, is one of the shares of the multiplicative inverse calculated in the last
step. After the affine transformation, x should be modified as follows:

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x7

x6

x5

x4

x3

x2

x1

x0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x7 ⊕ x6 ⊕ x5 ⊕ x4 ⊕ x3

x6 ⊕ x5 ⊕ x4 ⊕ x3 ⊕ x2

x5 ⊕ x4 ⊕ x3 ⊕ x2 ⊕ x1

x4 ⊕ x3 ⊕ x2 ⊕ x1 ⊕ x0

x7 ⊕ x3 ⊕ x2 ⊕ x1 ⊕ x0

x7 ⊕ x6 x2 ⊕ x1 ⊕ x0

x7 ⊕ x6 ⊕ x5 ⊕ x1 ⊕ x0

x7 ⊕ x6 ⊕ x5 ⊕ x4 ⊕ x0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⊕

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
1
0
0
0
1
1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(13)

Hence, five steps have to be carried out to implement the affine transforma-
tion.

Step 1. Cyclic left shift of x by one bit: y = [x7x0x1x2x3x4x5x6].
Step 2. Cyclic left shift of x by two bits: z = [x6x7x0x1x2x3x4x5].
Step 3. Cyclic left shift of x by three bits: v = [x5x6x7x0x1x2x3x4].
Step 4. Cyclic left shift of x by four bits: w = [x4x5x6x7x0x1x2x3].
Step 5. Finally, x = x ⊕ y ⊕ z ⊕ v ⊕ w ⊕ 0x63.
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4 Improved Implementation of Secure Inversion over
Composite Field

The most costly operation in the implementation of the AES S-box is com-
puting the multiplicative inverse over finite field GF(28). In order to accelerate
the evaluation of inversion operation, several composite field methods were pro-
posed [21,22]. Kim et al., [16] used this idea to fasten the secure high-order
masking of AES S-box proposed by Rivian-Prouff [20]. However, as it also uses
RefreshMaks procedure, the attack from [8] is also valid here. In this section,
we describe a method to overcome the attack.

Composite Field. In a typical composite field method, one first maps an
element over GF(28) into an element over composite field using an isomorphism
function δ. Then, the inversion is computed over the composite field. In the end,
the result is transformed back to an element over GF(28) by the inverse mapping
function δ−1. More precisely, for any element A = ahγ + al in composite field
GF ((24)2), where ah, al ∈ GF ((24)2), the multiplicative inverse of A can be
carried out as A−1 = (A17)−1 · A16, according to the equation in [14]. Here, A16

can be computed by four bitwise XOR operations, since A16 = ahγ + (ah + al).
The value A17 can be obtained by multiplying A and A16 over GF ((24)2), i.e.,
A17 = λa2

h + (ah + al)al (since γ2 + γ = λ). Hence, the inversion of x ∈ GF (28)
can be completed by performing the following steps:

Step 1. Apply the isomorphism function δ, such that A = ahγ +al = δ(x) ∈
GF ((24)2), where al, ah ∈ GF (24).
Step 2. Compute A17 as d = λa2

h + (ah + al)al ∈ GF (24).
Step 3. Evaluate the inversion of A17, namely, d′ = d−1.
Step 4. Compute the inversion A−1 = (A17)−1 · A16 = a′

hλ + a′
l where

a′
h = d′ah ∈ GF (24) and a′

l = d(ah + al) ∈ GF (24).
Step 5. Compute the inversion of x by applying the inverse mapping func-
tion δ′, i.e., x−1 = δ′(a′

hγ + a′
l).

Secure Inversion over Composite Field. Instead of securely raising an ele-
ment to 254, [16] performs secure inversion by using composite field method, i.e.,
they securely mask the aforementioned five steps.

As previously mentioned, the linear functions δ and δ′ can be masked by
simply applying the function on each share separately. The field multiplication
in GF (24) can be masked in the same way as shown in Algorithm 1. The multi-
plicative inversion in GF (24), i.e., raising the operand to 14, can be implemented
as a combination of two linear operations (namely, squaring and raising to power
4) and one secure field multiplication, which is constructed as follows,

x
x2

−→ x2 x2x−−−−−−−−−−→
RefreshMasks

x3 (x3)4−−−→ x12 x12x2

−−−→ x14. (14)

All these operations can be directly masked using the techniques proposed in [20].
To implement their solutions on embedded systems, the authors suggest to pre-
compute several tables of 16 elements or 256 elements, such as field multiplication
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table, squaring table and isomorphism function table, which can significantly
improve the overall performance. The running times can be further reduced by
combining the inverse isomorphism function and affine function.

Our Improved Implementation of Secure Inversion over Composite
Field. Due to the involvement of RefreshMasks procedure, the secure inversion
in [16] is also vulnerable to the attack mentioned in [8]. In order to avoid this attack,
we propose a new secure inversion algorithm as shown in Algorithm 4, where SecH
is a variant of Algorithm 2 over GF (24). The security of Algorithm 2 directly fol-
lows from the proof given in Section 4 of [8]. To optimize the performance, we store
a pre-computed table for the function h in our corrected implementation.

Algorithm 4. SecInv4: Masked exponentiation by 14 over F24 with n shares

Input: Shares xi satisfying x1 ⊕ · · · ⊕ xn = x
Output: Shares yi satisfying y1 ⊕ · · · ⊕ yn = x254

1: for i = 1 to n do
2: wi ← x2

i �
⊕

i wi = x2

3: end for
4: (z1, · · · , zn) ← SecH((x1, · · · , xn), (w1, · · · , wn)) �

⊕
i zi = x3

5: for i = 1 to n do
6: zi ← z4

i �
⊕

i zi = x12

7: end for
8: (y1, · · · , yn) ← SecMult((z1, · · · , zn), (w1, · · · , wn)) �

⊕
i yi = x14

The vector table look-up instruction vtbl.8 can do a parallelized look-up in a
table of at most 32 elements, and hence is not suitable for tables of 256 elements
such as the field multiplication table over GF (24), the isomorphism and inverse
isomorphism tables. For the field multiplication over GF (24), we again utilize
the Barrett’s reduction technique. Compared to Algorithm 3, the algorithm to
perform field multiplication over GF (24) is simpler. More preciously, we can
ignore Step 3 and Step 4 in Algorithm 3, since in the case of GF (24), if we
choose β = 2, the polynomial R(x) = xβ = x2 and these two steps actually
cancel each other and do nothing but set Q(x) = T (x). Besides, all temporary
values in the algorithm can be stored in a single byte. Consequently, only 6
instructions are used in our vector implementation of the field multiplication in
GF (24), which is much faster than table look-up. We present our algorithm to
perform field multiplication over GF (24) in Appendix B.

5 Implementation Results

5.1 Baseline Implementation

For performance comparison, we need a baseline implementation that is resistant
against timing attacks, i.e., we need an implementation that does not use look-up
tables. Hence, we developed a baseline implementation using the ARM NEON
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instruction set from scratch, which performs the inversion in GF(28) by using
composite field method. In fact, the baseline implementation is exactly the imple-
mentation that we mentioned in Section 4 where only one share (i.e., without any
freshly generated random masks) is involved. To achieve better performance, we
optimized the baseline implementation with pure NEON assembly language and
unrolled all the loops, i.e., we eliminated all avoidable loss of efficiency.

Usually, Gladman’s AES implementation [11] is used as a starting point for
comparison. However, his implementation [11] uses look-up tables, and is vulner-
able to cache-timing attacks. Hence, it is not suitable as baseline implementation
for comparison, even though it achieves very good execution time. Nevertheless,
we do a comparison between Gladman’s implementation and our baseline imple-
mentation and it shows that both the key expansion and the encryption process
of our baseline implementation is only marginally (1.5 times) slower than Glad-
man’s implementation.

5.2 Comparison

Our Implementation. In Table 1, we present the speedup factor of our
improved implementation (in Section 4) where the secure inversion in GF(28) is
computed over composite field, compared with our implementation of [8](given
in Section 3) where we compute the secure inversion through exponentiation.
Table 1 also shows the penalty factor due to the integration of high-order DPA
countermeasures into our implementation (in Section 4) compared to the base-
line implementation (given in Section 5.1). In the case of first-, second- and

Table 1. Speedup factor of our improved implementation in Section 4 compared to
Section 3, and penalty factor of our improved implementation compared to the baseline
implementation

order unmasked 1 2 3 4 5 6 7

Section 3 2,281 10,050 21,277 36,808 69,022 97,578 131,164 169,806
Section 4 1,141 4,869 9,127 14,855 34,875 47,640 61,915 77,820
Speedup Factor 2.0 2.1 2.3 2.5 2.0 2.0 2.1 2.2
Penalty Factor - 4.3 8.0 13.0 30.6 41.8 54.3 68.2

third-order, we use the highly-optimized “pure” NEON assembly implementa-
tion, which is approximately (order + 1)2 times slower than the baseline imple-
mentation. In all other cases, we use the mixed C and NEON assembly (i.e. the
generic) implementation, which is a little more than (order + 1)2 times slower
than the baseline implementation.

A Note on Random Numbers. We used a Pseudorandom Number Generator
(PRNG) based on Linear Feedback Shift Register (LFSR). However most of the
LFSR based PRNG are not cryptographically secure. To avoid this, one can
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replace the PRNG used with a stream cipher such as Salsa20.9 The vectorized
implementation of Salsa20 requires only 5.6 cycles/byte [3] and hence do not
significantly impact our results.

Related Work. Here, we compare our implementation results with different
countermeasures from CHES 2010 [20], CHES 2011 [16] and Eurocrypt 2014
[7]. However, in the original papers, the implementations were evaluated on
platforms that are completely different from ARM NEON, which means these
comparisons have to be taken with a pinch of salt. For example, the implemen-
tation reported in [16] was written in C and evaluated on an 8-bit ATmega128
processor, while Coron’s [7] implementation was in C on a MacBook Air with
a 64-bit Intel processor clocked at 1.86 GHz. Therefore, it makes only sense to
compare the penalty factor of the different implementations for a given orders
(see Table 2), but not the absolute execution times. Table 2 shows that our
results are significantly better than that of the others. With our proposed imple-
mentation, the second and third order secure AES is only 8 and 13 times slower
than the unmasked implementation. Moreover, our results achieve a speedup
factor of three compared with the fastest solutions available.

Table 2. Penalty factor of different masking implementations

Implementation Platform 1st-order 2nd-order 3rd-order 4th-order

Rivain-Prouff [20] 8-bit 8051 65 132 235 –
Kim et al [16] 8-bit AVR – 22 39 –
Coron [7] 64-bit Intel 439 1205 2411 4003
Our work (Sect. 3) 32-bit ARM 9 19 32 60
Our work (Sect. 4) 32-bit ARM 4 8 13 31

6 Conclusions

We addressed the efficiency problem of masking schemes for the AES, which is
particularly pronounced if one aims to achieve higher-order DPA resistance. In
fact, all higher-order masking schemes described in the open literature perform
very badly in software and are, therefore, little attractive for use in real-world
applications. We found that the performance-critical operations of the Rivain-
Prouff scheme (and its corrected version) are the multiplication in GF(28) and
the generation of random numbers. By combining algorithmic improvements in
the low-level arithmetic (e.g. composite-field representation, Barrett reduction)
with an efficient implementation that exploits the vector-level parallelism of the
NEON engine, we managed to reduce the computational overhead to a degree
that is (more) acceptable in practice. For example, our vector implementation
of the AES with integrated second-order countermeasures (using three shares
9 For further improving the security of random numbers, one could also use True

Random Number Generator (TRNG) to seed the PRNG.
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per sensitive variable) is only eight times slower than a baseline implementation
without DPA countermeasures. A third-order DPA protected implementation is
about 13 times slower than our baseline variant. In summary, our work shows
that higher-order masking of the AES, when implemented efficiently, is not pro-
hibitively expensive in terms of execution time. Besides the AES, also various
AES-based authenticated encryption schemes, which are currently evaluated in
the CAESAR competition, can take advantage of the masking implementation
described in this paper.

Acknowledgments. This work was partially supported by the National Natural Sci-
ence Foundation of China under grant No. 61173139. The full source code of the imple-
mentation described in this paper is available under MIT license on GitHub at https://
github.com/junwei-wang/AES-ARM-NEON.

A Algorithm for Secure Exponentiation in GF(28)

Algorithm 5. SecExp254: Masked exponentiation by 254 in GF(28) with n shares [20]

Input: Shares xi satisfying x1 ⊕ · · · ⊕ xn = x
Output: Shares yi satisfying y1 ⊕ · · · ⊕ yn = y = x254

1: for i = 1 to n do
2: zi ← x2

i �
⊕

i zi = x2

3: end for
4: RefreshMasks(z1, · · · , zn)
5: (y1, · · · , yn) ← SecMult((z1, · · · , zn), (x1, · · · , xn)) �

⊕
i yi = x3

6: for i = 1 to n do
7: wi ← y4

i �
⊕

i wi = x12

8: end for
9: RefreshMasks(w1, · · · , wn)

10: (y1, · · · , yn) ← SecMult((y1, · · · , yn), (w1, · · · , wn)) �
⊕

i yi = x15

11: for i = 1 to n do
12: yi ← y16

i �
⊕

i yi = x240

13: end for
14: (y1, · · · , yn) ← SecMult((y1, · · · , yn), (w1, · · · , wn)) �

⊕
i yi = x252

15: (y1, · · · , yn) ← SecMult((y1, · · · , yn), (z1, · · · , zn)) �
⊕

i yi = x254

16: return y1, · · · , yn

https://github.com/junwei-wang/AES-ARM-NEON
https://github.com/junwei-wang/AES-ARM-NEON
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B Algorithm for Field Multiplication in GF (24)

Algorithm 6. Field multiplication in GF (24)

Input: Polynomials A(x) and B(x) in GF (24)
Output: Polynomial Z(x) = A(x) · B(x) mod N(x), where N(x) = x4 + x + 1.

Pre-computation:

1: p ← deg(N(x)) � p = 4
2: α ← 2 ∗ (p − 1) � α = 6
3: β ≥ α − p � β ≥ 2

4: R(x) ← �xp+β

N(x)
� � R(x) = x2 if β = 2

Multiplication with Barrett modular reduction(Theorem 1):

1: U(x) ← A(x) · B(x) � deg(U(x)) ≤ 14

2: T (x) ← �U(x)
xp � � deg(T (x)) ≤ 6 and Q(x) = T (x)

3: V (x) ← Q(x) · N(x) � deg(V (x)) ≤ 14
4: Z(x) ← U(x) + V (x)
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Abstract. Applebaum (EUROCRYPT 2011, J. Cryptology 2014)
showed that it is possible to convert a public key encryption (PKE)
scheme which is key dependent message (KDM) secure with respect to
projection functions (also called projection-KDM secure) into a PKE
scheme which is KDM secure with respect to any function family that can
be computed in fixed polynomial time, without using any other assump-
tion. This result holds in both of the chosen plaintext attack (CPA) and
the chosen ciphertext attack (CCA) settings. In the CPA setting, he fur-
thermore showed that even a projection-KDM secure 1-bit PKE scheme
is sufficient to construct a KDM secure PKE scheme with respect to
polynomial time computable functions. The existence of the latter triv-
ially implies that of the former, and in this sense, he mentioned that
single-bit projection-KDM security in the CPA setting and (multi-bit)
projection-KDM security in the CCA setting are complete.

In this paper, we show that single-bit projection-KDM security is com-
plete also in the CCA setting. More specifically, as our main technical
result, we show how to construct a projection-KDM-CCA secure multi-
bit PKE scheme from a projection-KDM-CCA secure 1-bit PKE scheme,
without using any other assumption. The combination of our result and
Applebaum’s result shows that one can construct a PKE scheme which
is KDM-CCA secure with respect to any polynomial time computable
functions from a projection-KDM-CCA secure 1-bit PKE scheme, with-
out using additional assumptions.

Keywords: Public key encryption · KDM security · Chosen ciphertext
security · Projection function

1 Introduction

1.1 Background and Motivation

Key dependent message (KDM) security, introduced by Black, Rogaway, and
Shrimption [11], and independently by Camenisch and Lysyanskaya [16], guar-
antees confidentiality of communication even if an adversary can get a ciphertext
c© Springer International Publishing Switzerland 2015
K. Nyberg (ed.): CT-RSA 2015, LNCS 9048, pp. 201–219, 2015.
DOI: 10.1007/978-3-319-16715-2 11
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of secret keys. KDM security is useful for many practical applications including
anonymous credential systems [16] and hard disk encryption systems (e.g., Bit-
Locker [11]). In addition, KDM security is also theoretically important because
it can be used to show that computational security and axiomatic security are
equivalent [1,2]. KDM security is defined in both the chosen plaintext attack
(CPA) and chosen ciphertext attack (CCA) settings. In order to take active
adversaries into consideration, we need CCA security for many applications.
Moreover, CCA security implies non-malleability [9,18], and thus it is also con-
sidered as a desirable security notion for public key encryption (PKE) schemes
used in practice. In this paper, we focus on PKE schemes that satisfy KDM
security under CCA, namely KDM-CCA security.

KDM security is defined with respect to a function family F . Let � denote
the number of keys and sk = (sk1, · · · , sk �) be secret keys. Informally, a PKE
scheme 1 is said to be F-KDM secure if confidentiality of messages is protected
even when an adversary can see a ciphertext of f(sk) under j-th public key
for any f ∈ F and j ∈ {1, · · · , �}. In order to take various situations into
consideration, it is desirable to construct a PKE scheme which is KDM secure
with respect to a rich function family.

Today, it has been widely studied how to construct a KDM secure PKE
scheme with respect to a rich function family based on a KDM secure PKE
scheme with respect to a simpler function family [7,10,14]. Applebaum [3] called
such a procedure KDM amplification, and he achieved a large KDM amplifica-
tion gap. Specifically, he showed how to construct a PKE scheme which is KDM
secure with respect to functions that can be computed in a-priori fixed poly-
nomial time of the input and output length (also called length-dependent KDM
secure [7]) using a PKE scheme which is KDM secure with respect to projection
functions (projeciton-KDM secuce, for short). A projection function is a function
each of whose output bit depends on at most one bit of an input. The projec-
tion function family is one of the simplest function families, and it is known
that length-dependent KDM security is strong enough for various applications
(e.g., axiomatic security applications [1,2,7]). We note that his result on KDM
amplification works also in the CCA setting. Moreover, in the CPA setting, he
showed that even a projection-KDM secure 1-bit PKE scheme is sufficient to
construct a length-dependent secure PKE scheme. The existence of the latter
trivially implies that of the former, and in this sense, he mentioned that single-
bit projection-KDM security is complete in the CPA setting.

On the other hand, to the best of our knowledge, we need a non-interactive
zero-knowledge (NIZK) proof system for NP languages to construct a length-
dependent KDM-CCA secure scheme from a projection-KDM-CCA secure “1-
bit” scheme. (For symmetric key encryption schemes, it is known that single-bit
projection-KDM security is complete in the CCA setting [3,6].) This is because
we need to use Camenisch, Chandran and Shoup’s [15] transformation from
a F-KDM-CPA secure scheme to a F-KDM-CCA secure scheme, where F is
1 Unless stated otherwise, we assume that the message space of a PKE scheme is

{0, 1}∗.



Completeness of Single-Bit Projection-KDM Security 203

a function family. In addition, it is still unknown whether we can construct
a NIZK proof system from a KDM-CCA secure PKE scheme. Therefore, that
we need to use a NIZK proof system to amplify KDM-CCA security means
that we need to use an additional assumption, and thus, the “completeness” of
single-bit projection-KDM security has not been shown in the CCA setting. In
cryptography, it is very important to clarify the minimum assumption to realize
various primitives. Furthermore, NIZK proofs are usually quite impractical, and
the known efficient NIZK proofs (such as the Groth-Sahai proofs [19]) can only be
used for languages related to bilinear groups, and thus their applicability is not
so wide. Therefore, it is both theoretically and practically meaningful to clarify
whether we can show the completeness of single-bit projection-KDM security
in the CCA setting. Hence, in this paper, we tackle the following question: Is
single-bit projection-KDM security complete in the CCA setting?

1.2 Our Results

Based on the above motivation, we tackle the above question and show the
positive result. Namely we prove that single-bit projection-KDM-CCA security
is complete in the sense of the following theorem.

Theorem 1 (Informal). If there exists a projection-KDM-CCA secure 1-bit
PKE scheme, then there also exists a length-dependent KDM-CCA secure PKE
scheme.

More specifically, as our main technical result, we show how to construct a
projection-KDM-CCA secure multi-bit PKE scheme using a projection-KDM-
DCCA secure 1-bit PKE scheme and a (non-KDM-)CCA secure PKE scheme.
DCCA security is a security notion defined by Hohenberger, Lewko and Waters
[21], and it is weaker than CCA security. We note that KDM-CCA security
implies KDM-DCCA security, and we can construct a (non-KDM-)CCA secure
scheme from a projection-KDM-CCA secure 1-bit scheme [21,24]. Therefore,
we do not use any additional assumption, and we obtain Theorem 1 based on
the combination of our result and the result by Applebaum [3]. We describe an
overview of the results on KDM secure PKE in Fig 1.

As mentioned in Section 1.1, to the best of our knowledge, when we construct
a length-dependent KDM-CCA secure PKE scheme using existing results, we
need to use a NIZK proof system. Since a NIZK proof system is quite inefficient,
it is an important problem to construct a length-dependent KDM-CCA secure
PKE scheme without using a NIZK proof system. From our result, in order
to solve this problem, we only have to construct a PKE scheme which satisfies
single-bit projection-KDM-DCCA security that is much weaker and simpler, and
thus potentially easier to achieve, than length-dependent KDM-CCA security.

1.3 Overview of Our Techniques

In this paper, as our main technical result, we show how to expand the message
space of a projection-KDM-CCA secure PKE scheme. Our construction consists
of two steps. In this section, we provide an overview of each step.
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Fig. 1. Overview of the results on KDM secure PKE. An arrow from box X to box Y
indicates that X can be used to construct Y. The dashed arrows indicate that NIZK
proofs are additionally required.

First step: First, we explain why, in the CCA setting, we cannot use the same
construction as Applebaum [3] used in the CPA setting to expand the message
space of a projection-KDM secure PKE scheme. Specifically, he constructed the
following bit-by-bit PKE scheme using a 1-bit PKE scheme. When the scheme
encrypts arbitrary length message m = m1 · · · mn, the scheme first encrypts
m1, · · · ,mn into c1, · · · , cn using the building block 1-bit scheme, and then out-
puts c1‖ · · · ‖cn as a resulting ciphertext. Here, we note that a projection function
is a function each of whose output bit depends on at most one bit of an input,
and thus we can decompose a projection function f into n single-bit projection
functions f1(·), · · · , fn(·) such that f(·) = f1(·)‖ · · · ‖fn(·), where n is the out-
put length of f . Due to this property, the bit-by-bit scheme can be shown to be
projection-KDM-CPA secure, if so is the building block scheme.

However, we cannot use this bit-by-bit construction to expand the message
space of (both KDM- and non-KDM-)CCA secure PKE scheme. This is because,
in the security game, an adversary can make a decryption query which contains
a part of the challenge ciphertext, and get a partial decryption result of it.
However, we notice that the bit-by-bit scheme is not in general CCA secure, but
is secure in the sense of DCCA security defined by Hohenberger, Lewko, and
Waters [21]. (Also, DCCA security can be seen as a generalization of Unquoted
CCA security defined by Myers and Shelat [24].)

A DCCA secure PKE scheme has a detecting function F in addition to the ordi-
narykeygeneration, encryptionanddecryptionalgorithms.Thedetecting function
F is a boolean function which, given two ciphertexts c∗ and c, checks whether the
decryption result of c is useful to distinguish c∗. (If a ciphertext c is useful, then F
outputs 1.) Then DCCA security guarantees confidentiality as long as an adversary
doesnotget thedecryptionresultofaciphertextcwhichsatisfiesF(c∗, c) = 1,where
c∗ is the challenge ciphertext. Also, a DCCA secure PKE scheme is required to sat-
isfya securitynotioncalledunpredictability.Unpredictabilityguarantees thatwith-
out seeing a target ciphertext c∗, an adversary cannot generate a ciphertext c which
satisfies F(c∗, c) = 1. In this paper, we extend DCCA security to the KDM setting,
and define KDM security for a detectable PKE scheme. We call it KDM-DCCA
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security. In addition, the bit-by-bit scheme can be shown to be projection-KDM-
DCCA secure, if the building block 1-bit PKE scheme is projection-KDM-CCA
secure. (Actually, we show that a projection-KDM-“D”CCA secure 1-bit scheme
is sufficient as a building block.)

Second step: In the second step, we show how to construct a projection-KDM-
CCA secure PKE scheme using a projection-KDM-DCCA secure PKE scheme
and a (non-KDM-)CCA secure PKE scheme as building blocks. Specifically, we
construct a “double-layered” encryption scheme whose inner layer scheme is a
projeciton-KDM-DCCA secure scheme Πin and whose outer layer scheme is a
CCA secure PKE scheme Πout. Myers and Shelat [24], and Hohenberger et al.
[21] also used the double-layered construction to construct a CCA secure multi-
bit PKE scheme, but there is a big difference between theirs and ours. Both of
the constructions [21,24] encrypt the outer scheme’s random coin by the inner
scheme. When decrypting a ciphertext, both constructions check the validity of
the ciphertext by re-encrypting the inner ciphertext using the random coin that
is recovered by decrypting the inner ciphertext, and checking if it equals the
received ciphertext (which is a ciphertext of the outer scheme). This validity
check by re-encryption is necessary in the constructions of [21,24] for achieving
CCA security. However, interestingly, we will show that neither “embedding of
randomness into the inner scheme” nor “the validity check by re-encryption” is
needed in our construction. This is because in our construction, we use a CCA
secure PKE scheme as the outer scheme, which is strong enough to enable us to
avoid complicated arguments required in the security proofs of the constructions
in [21,24]. We note that the goal of [21,24] was to achieve CCA security, and thus
using a CCA secure scheme as one of the building blocks does not make sense in
their works. On the other hand, our goal is to achieve a projection-KDM-CCA
secure scheme, something stronger than ordinary CCA security, and thus using
a CCA secure scheme makes sense in our case. Furthermore, due to the results
of [21,24], we can construct a CCA secure multi-bit PKE scheme based only on
a projection-KDM-CCA secure 1-bit PKE scheme, and thus using a CCA secure
scheme is not an additional assumption.

Security of our double-layered PKE scheme. Finally, we provide an intuitive
explanation that our double-layered PKE scheme Π is projection-KDM-CCA
secure. In our construction, a message is first encrypted into cin by the inner
scheme Πin, which is in turn encrypted into cout by the outer scheme Πout, and
this cout is a ciphertext of our construction Π. In the security game of projection-
KDM security, an adversary can make a KDM query which is composed of an
index of a key j and a projection function f . For this KDM query, according
to the challenge bit, a challenger returns a ciphertext of f(sk) or 0|f(sk)| under
j-th public key, where sk = (sk1, · · · , sk �) and � is the number of keys. For
simplicity of the explanation here, suppose an adversary makes only one KDM
query, in which case the result c∗

out of the query can be considered as the challenge
ciphertext of the adversary. Suppose c∗

out is an encryption of the inner ciphertext
c∗
in. Intuitively, it may seem that since the outer scheme Πout is CCA secure,
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the adversary is not able to gain any information about c∗
in from c∗

out, and also
since the inner scheme Πin satisfies unpredictability, the adversary cannot make
a decryption query cout whose inner ciphertext cin satisfies F(c∗

in, cin) = 1 in
the security game. (We call such a decryption query a bad decryption query.)
Therefore, it also may seem that we can easily reduce the KDM security of our
construction Π to the KDM security of the inner scheme Πin. However, there
is one problem. A secret key sk of our construction Π consists of two parts
(sk in, skout), where sk in and skout are a secret key of the inner scheme Πin and
that of Πout, respectively, and thus a KDM query for Π is a function of sk =
(sk in, skout), while the KDM query for the inner scheme Πin is a function of only
sk in. Therefore, in order to reduce the KDM security of Π to the KDM security
of Πin, the reduction algorithm has to convert a KDM query for Π to a KDM
query for Πin. Namely, let skin = (sk1

in, · · · , sk �
in) and skout = (sk1

out, · · · , sk �
out),

then we have to convert a projection function f to a projection function f̃ such
that f(skin, skout) = f̃(skin). It is not clear whether we can conduct such a
conversion between KDM queries for general function classes. However, we show
that we can conduct such a conversion for the projection function family due to
the property that each output bit of a projection function depends on at most
one bit of an input. Therefore, we can solve the above problem and prove the
security of our scheme.

1.4 Related Work

Circular security, defined by Camenisch and Lysyanskaya [16], guarantees con-
fidentiality of communication even when there is a key cycle encryption in the
system. Key cycle encryption means encrypting sk i under pk (i mod �)+1 when
there are � pairs of keys in the system. KDM security is a generalization of
circular security.

Boneh, Halevi, Hamburg, and Ostrovsky [12] constructed the first KDM
secure PKE scheme in the standard model based on the decisional Diffie-Hellman
(DDH) assumption. Their scheme is KDM secure with respect to the family of
affine functions (affine-KDM secure, for short) which is a relatively simple func-
tion family. Today, we know constructions of affine-KDM secure PKE schemes
based on the learning with errors (LWE) [4], quadratic residuosity (QR) [13],
decisional composite residuosity (DCR) [13,23] and learning parity with noise
(LPN) [4] assumptions. Also, Hofheinz [20] showed the first construction of a
circular-CCA secure scheme whose security can be directly proved from number-
theoretic assumptions.

Barak, Haitner, Hofheinz, and Ishai [7] and Brakerski, Goldwasser, and Kalai
[14] showed KDM amplification results. Both of the results achieve a large ampli-
fication gap, while require some additional properties on the building blocks
(other than that the building blocks are KDM secure). In addition, unlike Apple-
baum’s KDM amplification method, it is unclear whether these KDM amplifica-
tion results [7,14] work in the CCA setting. Bellare, Hoang, and Rogaway [10]
showed a KDM amplification method that works only in the CPA setting but is
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more efficient than Applebaum’s. Recently, Kitagawa, Matsuda, Hanaoka, and
Tanaka [22] showed a similar result that works in the CCA setting.

Unruh et al. [5] defined a security notion called adKDM security. adKDM
security takes adaptive corruptions and arbitrary active attacks into considera-
tion, and thus it is a stronger security notion than ordinary KDM security. In
addition, they showed that the OAEP encryption scheme satisfies adKDM secu-
rity in the random oracle model. Recently, Davies and Stam [17] studied KDM
security of hybrid encryption in the random oracle model.

2 Preliminaries

In this section we define some notations and cryptographic primitives.

2.1 Notations

In this paper, x
r←− X denotes selecting an element from a finite set X uniformly

at random, and y ← A(x) denotes assigning to y the output of an algorithm A
on an input x. For strings x and y, x‖y denotes the concatenation of x and y.
λ denotes a security parameter. A function f(λ) is a negligible function if f(λ)
tends to 0 faster than 1

λc for every constant c > 0. We write f(λ) = negl(λ) to
denote f(λ) being a negligible function. PPT stands for probabilistic polynomial
time. [�] denotes the set of integers {1, · · · , �}. φ denotes an empty set.

2.2 Public Key Encryption

In this section we define public key encryption (PKE).

Definition 1 (Public key encryption). A PKE scheme Π is a three tuple
(KG,Enc,Dec) of PPT algorithms.

– The key generation algorithm KG, given a security parameter 1λ, outputs a
public key pk and a secret key sk.

– The encryption algorithm Enc, given a public key pk and a message m ∈ M,
outputs a ciphertext c, where M is the plaintext space of Π.

– The decryption algorithm Dec, given a secret key sk and a ciphertext c,
outputs a message m̃ ∈ {⊥} ∪ M.

Correctness. We require Dec(sk ,Enc(pk ,m)) = m for every m ∈ M and (pk ,
sk) ← KG(1λ).

Next, we define KDM-CCA security for PKE schemes.

Definition 2 (KDM-CCA security). Let Π be a PKE scheme, F be a func-
tion family, and � be the number of keys. We define the F-KDM-CCA game
between a challenger and an adversary A as follows. sk denotes (sk1, · · · , sk �).
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Initialization. First the challenger selects a challenge bit b
r←− {0, 1}. Next

the challenger generates � key pairs (pk j , sk j) ← KG(1λ)(j = 1, · · · , �) and
sends (pk1, · · · , pk �) to A. Finally, the challenger prepares the KDM query
list Lkdm into which pairs of the form (j, c) will be stored, where j ∈ [�] is
an index and c is a ciphertext, and which is initially empty.
A may adaptively make palynomially many queries of the following two types.

KDM queries. (j∗, f), where j∗ ∈ [�] and f ∈ F . If b = 1 then the challenger
returns c∗ ← Enc(pk j∗

, f(sk)); If b = 0 then the challenger returns c∗ ←
Enc(pk j∗

, 0|f(sk)|). Finally, the challenger adds (j∗, c∗) to Lkdm.
Decryption queries. (j, c), where j ∈ [�] and c is a ciphertext. The chal-

lenger returns ⊥ if (j, c) ∈ Lkdm; Otherwise, the challenger returns m ←
Dec(sk j , c).

Final phase. A outputs b′ ∈ {0, 1}.
We say that the PKE scheme Π is F-KDM-CCA secure if for any PPT adver-
sary A, we have AdvF-kdmcca

Π,A (λ) := |Pr[b = b′] − 1
2 | = negl(λ).

As we can see, KDM security is defined with respect to function families.
In this paper, we focus on KDM-CCA security with respect to the following
function families.

Projection functions. A projection function is a function in which each out-
put bit depends on at most a single bit of an input. Let f be a function and
y = y1 · · · ym be the output of the function f on an input x = x1 · · · xn, that
is f(x) = y. We say that f is a projection function if it satisfies the following
property.

∀j ∈ [m],∃i ∈ [n] : yj ∈ {0, 1, xi, 1 − xi}
Let P�

u,v = {f |f : ({0, 1}u)� → {0, 1}v is a projection function.} and P�
u =

{f |f : ({0, 1}u)� → {0, 1}∗ is a projection function.}.
Constant functions. A constant function always outputs the same value

regardless of an input. Let the function family C be {f : {0, 1}∗ → {0, 1}∗ is
a constant function.}. Then we notice that C-KDM-CCA security is equiv-
alent to CCA security. More precisely, C-KDM-CCA security is equivalent
to CCA security in the multi-user setting formalized by Bellare et al. [8].
In addition, Bellare et al. show that multi-user CCA security is equivalent
to (single-user) CCA security. Therefore we see that C-KDM-CCA security
is equivalent to CCA security. Also, a constant function is a special case
of a projection function, and thus C is a subset of the family of projection
functions.

Polynomial time computable functions. A polynomial time computable
function is a function which can be computed in polynomial time of the
input and output length. KDM security with respect to any polynomial
time computable function is the strongest notion of KDM security, which
is called full-KDM security. Then there is a slightly weaker notion called
length-dependent KDM security [7]. Specifically, let p be a polynomial and
the function family L�,p

u be {f : ({0, 1}u)� → {0, 1}∗ is a function which can
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be computed in fixed polynomial p of the input and output length.}, then we
say that a PKE scheme is p-length-dependent KDM secure if the scheme is
L�,p

u -KDM secure for every polynomial �. It is known that length-dependent
KDM security is strong enough for various applications (e.g., axiomatic secu-
rity applications [1,2,7]).

Applebaum [3] showed that single-bit projection-KDM security in the CPA
setting and projection-KDM security in the CCA setting are complete. Here, we
only review the result in the CCA setting.

Theorem 2 (Completeness of projection-KDM-CCA security [3]). Let
Π ′ be a PKE scheme which is P�

u-KDM-CCA secure for every polynomial �.
Then, for every polynomial p, we can construct a p-length-dependent KDM-CCA
secure PKE scheme Π using Π ′ as a building block, without using any other
assumption.

2.3 Detectable Public Key Encryption

Hohenberger et al. [21] define detectable PKE. In this section, we review the
definition.

Definition 3 (Detectable public key encryption). A detectable PKE scheme
Π is a four tuple (KG,Enc,Dec,F) of PPT algorithms.

– KG, Enc and Dec are defined in exactly the same way as those of a PKE
scheme.

– The detecting function F, given a public key pk and two ciphertexts c∗ and
c, outputs b ∈ {0, 1}. If b = 1, then we say that c∗ and c are related.

The correctness of a detectable PKE scheme is defined in the same way as that
of a PKE scheme.

Moreover, we require the following unpredictability for a detectable PKE
scheme.

Definition 4 (Unpredictability). Let Π be a detectable PKE scheme. We
define the unpredictability game between a challenger and an adversary A as
follows.

Initialization. The challenger generates (pk , sk) ← KG(1λ) and sends pk to A.
A may make polynomially many decryption queries.

Decryption queries. c which is a ciphertext. The challenger returns m ←
Dec(sk , c).

Final phase. The adversary sends a message m∗ ∈ M and a ciphertext c to
the challenger, and the challenger computes c∗ ← Enc(pk ,m∗).

We say that the detectable PKE scheme Π satisfies unpredictability if for any
PPT adversary A, we have Advunp

Π,A(λ) := Pr[F(pk , c∗, c) = 1] = negl(λ).
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Hohenberger et al. consider a security notion for a detectable PKE scheme,
which is called DCCA security (which stands for detectable CCA security). Here,
we extend it to the KDM setting, and define KDM security for a detectable PKE
scheme. We call it KDM-DCCA security.

Definition 5 (KDM-DCCA security). Let Π be a detectable PKE scheme,
F be a function family, and � be the number of keys. We define the F-
KDM-DCCA game between a challenger and an adversary A in the same way as
the F-KDM-CCA game except that the way the challenger responds to decryption
queries is changed as follows.

Decryption queries. (j, c), where j ∈ [�] and c is a ciphertext. The challenger
returns ⊥ if there is an entry (j∗, c∗) ∈ Lkdm which satisfies j∗ = j and
F(pk j , c∗, c) = 1; Otherwise, the challenger returns m ← Dec(sk j , c).

We say that the detectable PKE scheme Π is F-KDM-DCCA secure if for any
PPT adversary A, we have AdvF-kdmdcca

Π,A (λ) := |Pr[b = b′] − 1
2 | = negl(λ).

3 From Single-bit Projection-KDM-DCCA Security to
Multi-bit Projection-KDM-CCA Security

In this section, we show our main technical result: how to construct a multi-bit
projection-KDM-CCA secure PKE scheme from a single-bit projection-
KDM-DCCA secure detectable PKE scheme. More specifically, we construct
a PKE scheme which is P�

s+t-KDM-CCA secure for every polynomial � using a
detectable PKE scheme which is P�

s,1-KDM-DCCA secure for every polynomial �
as a building block, where s is the secret key length of the building block scheme,
and t is some polynomial (to be specified later).

There are two steps in our construction. In the first step (Section 3.1),
we construct a P�

s-KDM-DCCA secure detectable PKE scheme from a P�
s,1-

KDM-DCCA secure detectable PKE scheme, and in the second step (Section
3.2), we construct a P�

s+t-KDM-CCA secure PKE scheme using a P�
s-KDM-

DCCA secure detectable PKE scheme and a CCA secure PKE scheme as build-
ing blocks, where t is the secret key length of the building block CCA secure
scheme.

3.1 Single-bit to Multi-bit Amplification of Projection-KDM-DCCA
Security

In this section, we show how to construct a multi-bit detectable PKE scheme
which satisfies projection-KDM-DCCA security and unpredictability, using a
1-bit detectable PKE scheme which satisfies the same security notions. The
construction is as follows. Let Π ′ = (KG′,Enc′,Dec′,F′) be a 1-bit detectable
PKE scheme. Then, using Π ′ as the building block, we construct a multi-bit
detectable PKE scheme Π = (KG,Enc,Dec,F) as described in Fig. 2. We note
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KG(1λ) :

(pk , sk) ← KG′(1λ)
return (pk , sk)

Dec(sk , c) :
c1‖ · · · ‖cnd ← c
(Parse c to ciphertexts of Π ′)
mi ← Dec′(sk , ci) (i = 1, · · · , nd)
If Dec′ returns at least one ⊥, then return ⊥
return m ← m1‖ · · · ‖mnd

Enc(pk , m) :
m1‖ · · · ‖mne ← m
(Parse m to 1-bit blocks)
ci ← Enc′(pk , mi) (i = 1, · · · , ne)
return c ← c1‖ · · · ‖cne

F(pk , c∗, c) :
c∗
1‖ · · · ‖c∗

n∗
f

← c∗; c1‖ · · · ‖cnf ← c

If ∃(i, j) ∈ [n∗
f ] × [nf ] : F′(pk , c∗

i , cj) = 1,
then return 1

else return 0

Fig. 2. The “bit-by-bit” construction of a projection-KDM-DCCA secure multi-bit
detectable PKE scheme Π from a projection-KDM-DCCA 1-bit detectable PKE
scheme Π ′.

that the message space of Π is {0, 1}∗. Hereafter, let s be the length of a secret
key of Π ′.

Hohenberger et al. [21] show that this bit-by-bit scheme is DCCA secure if
the building block 1-bit detectable PKE scheme is DCCA secure. Particularly,
they show that if the building block satisfies unpredictability, then so does the
resulting scheme. Formally, the following theorem holds.

Theorem 3. [21] Let Π ′ be a detectable PKE scheme which satisfies unpre-
dictability. Then Π is also a detectable PKE scheme which satisfies unpredictabil-
ity.

We prove that if the 1-bit detectable PKE scheme Π ′ is P�
s,1-KDM-DCCA

secure for every polynomial � which denotes the number of keys, then the multi-
bit detectable PKE scheme Π is P�

s-KDM-DCCA secure for every polynomial �.
Formally, the following theorem holds.

Theorem 4. Let Π ′ be a detectable PKE scheme which is P�
s,1-KDM-DCCA

secure for every polynomial �. Then Π is a detectable PKE scheme which is
P�

s-KDM-DCCA secure for every polynomial �.

Proof. Let � be a polynomial. Using an adversary A that attacks the P�
s-

KDM-DCCA security of Π, we construct the following adversary B that attacks
the P�

s,1-KDM-DCCA security of Π ′.

Initialization. On input � public keys (pk1, · · · , pk �) of Π ′, B sends these �
public keys to A.

KDM queries. For a KDM query (j∗, f) ∈ [�] × P�
s from A, B first computes

a projection functions f1, · · · , fne
∈ P�

s,1 such that f(·) = f1(·)‖ · · · ‖fne
(·),

where ne is the output length of f . (We note that since f is projection
function, f1, · · · , fne

are also projection functions.) Then B makes KDM
queries (j∗, f1), · · · , (j∗, fne

) to the challenger to get the answers c1, · · · , cne
,

and returns c ← c1‖ · · · ‖cne
to A.

Decryption queries. For a decryption query (j, c) from A, B returns ⊥ to A
if F(pk j , c∗, c) = 1 holds for an answer c∗ of a previous KDM query whose
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KG(1λ) :

(pk in, sk in) ← KGin(1
λ)

(pkout, skout) ← KGout(1
λ)

PK ← (pk in, pkout)
SK ← (sk in, skout)
return (PK ,SK )

Enc(PK , m) :
(pk in, pkout) ← PK
cin ← Encin(pk in, m)
cout ← Encout(pkout, cin)
return cout

Dec(SK , cout) :
(sk in, skout) ← SK
cin ← Decout(skout, cout)
If cin = ⊥ then return ⊥
m ← Decin(sk in, cin)
return m

Fig. 3. The “double-layered” construction of a projection-KDM-CCA secure scheme
Π from a projectoin-KDM-DCCA secure multi-bit detectable PKE scheme Πin and a
(non-KDM-)CCA secure PKE scheme Πout.

index of the key is j. Otherwise B parses c as c1, · · · , cnd
and queries these

nd ciphertexts as decryption queries to the challenger to get the answers
m1, · · · ,mnd

. If the challenger returns at least one ⊥, then B returns ⊥ to
A. Otherwise, B returns m ← m1‖ · · · ‖mnd

to A.
Final phase. When A terminates with output b′ ∈ {0, 1}, B outputs β′ = b′.

We note that, for A, B perfectly simulates the P�
s-KDM-DCCA game in

which the challenge bit is the same as that of P�
s,1-KDM-DCCA game between

the challenger and B, and B just outputs A’s output. Therefore, we have

Adv
P�

s,1-kdmdcca

Π′,B (λ) = Adv
P�

s-kdmdcca
Π,A (λ). Since Π ′ is P�

s,1-KDM-DCCA secure,

we see that Adv
P�

s-kdmdcca
Π,A (λ) = negl(λ). Since the choice of � is arbitrary, Π is

P�
s-KDM-DCCA secure for every polynomial �. � (Theorem 4)

3.2 From Projection-KDM-DCCA Security to Projection-
KDM-CCA Security

In this section, using a projection-KDM-DCCA secure PKE scheme as a building
block, we construct a projection-KDM-CCA secure PKE scheme. The construc-
tion is as follows. Let Πin = (KGin,Encin,Decin,F) be a detectable PKE scheme
and Πout = (KGout,Encout,Decout) be a PKE scheme. (For convenience, we call
Πin the inner scheme and Πout the outer scheme.) We require that the message
space of Πin and that of Πout are {0, 1}∗. Then, we construct a PKE scheme
Π as described in Fig. 3. We note that the message space of Π is also {0, 1}∗.
Hereafter, we assume that the length of a secret key of Πin and that of Πout are
s and t, respectively, and thus that of Π is s + t. Then we show the following
theorem.

Theorem 5. Let Πin be a detectable PKE scheme which is unpredictable and
P�

s-KDM-DCCA secure for every polynomial �, and let Πout be a CCA secure
PKE scheme. Then Π is a PKE scheme which is P�

s+t-KDM-CCA secure for
every polynomial �.

Proof. We prove this theorem via a sequence of games. Let � be a polynomial,
and let A be an adversary that attacks the P�

s+t-KDM-CCA security of our
scheme Π, and makes at most Qkdm KDM queries and Qdec decryption queries.
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In the proof, SK, skin, and skout denote (SK 1, · · · ,SK �), (sk1
in, · · · , sk �

in), and
(sk1

out, · · · , sk �
out), respectively. In the original KDM-CCA game of Definition 2,

each entry of Lkdm is of the form (j, cout), where j is the index of the key and
cout is the resulting ciphertext of a KDM query. For convenience, we assume
that Lkdm also stores the information of the inner ciphertext cin in addition
to (j, cout), that is the challenger adds the index of the key j∗, the resulting
ciphertext c∗

out, and Πin’s ciphertext c∗
in to Lkdm after responding to a KDM

query. This change does not affect A’s view since A cannot see Lkdm. Now,
consider the following sequence of games.

Game 0. This is the P�
s+t-KDM-CCA game regarding our PKE scheme Π.

Here, we define a bad decryption query as follows.

Bad decryption query: A decryption query (j, cout) which satisfies both of
the following conditions: (a) (j, cout, ∗) /∈ Lkdm; Decout(sk

j
out, cout) = cin �=

⊥, and (b) there is an entry (j∗, c∗
out, c

∗
in) ∈ Lkdm which satisfies j∗ = j

and F(pk j
in, c

∗
in, cin) = 1. Furthermore, in addition to (b), if (j∗, c∗

out, c
∗
in) is

the entry which the challenger added when responding to i∗-th KDM query,
then we say that such a decryption query is a bad decryption query for i∗-th
KDM query.

Game 1. Same as Game 0 except that if A makes a bad decryption query, then
the challenger returns ⊥.

Game 2. Same as Game 1 except that if A makes a KDM query (j∗, f), then
c∗
in is always computed by c∗

in ← Encin(pk
j∗
in , 0|f(SK)|).

Game 3. Same as Game 2 except that if A makes a KDM query (j∗, f), then
c∗
out is computed by c∗

out ← Encout(pk
j∗
out, 0|c∗

in|).

For i = 0, ..., 3, we define the following events in Game i:

Si: A succeeds in guessing the challenge bit, that is b = b′ occurs.
Bi: A makes at least one bad decryption query.

Then, we can estimate Adv
P�

s+t-kdmcca

Π,A (λ) as follows:

Adv
P�

s+t-kdmcca

Π,A (λ) = |Pr[S0] − 1
2
|

≤ |Pr[S0] − Pr[S1]| + |Pr[S1] − 1
2
|

(∗)
≤ |Pr[S1] − 1

2
| + Pr[B1]

≤ |Pr[S1] − 1
2
| +

∑

i∈[2]

|Pr[Bi] − Pr[Bi+1]| + Pr[B3] (1)

We notice that Game 0 and Game 1 are identical unless the event B0 (resp. B1)
occurs in Game 0 (reap. Game 1). Therefore, we see that |Pr[S0] − Pr[S1]| ≤
Pr[B0] = Pr[B1], and thus we get the inequality (∗). Below, we show that each
term of the right side of the inequality (1) is negligible.
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Lemma 1. Let Πin be P�
s-KDM-DCCA secure. Then |Pr[S1] − 1

2 | = negl(λ).

Proof. Using the adversary A that attacks Π, we construct an adversary B that
attacks the P�

s-KDM-DCCA security of Πin. In order to simulate Game 1 for
A, for a KDM query (j∗, f) ∈ [�] × P�

s+t from A, B has to return a ciphertext
of f(SK) or 0|f(SK)| according to the challenge bit. However, B does not have
skin which are secret keys of Πin. Therefore, B has to compute f̃ ∈ P�

s such that
f(SK) = f̃(skin) using skout, and make a KDM query (j∗, f̃) to the challenger.

We first describe such a conversion of a projection function. Let f ∈ P�
s+t,

and z = (z1, · · · , z�) = (x1‖y1, · · · , x�‖y�) be a variable of f , where xu ∈ {0, 1}s

and yu ∈ {0, 1}t(u = 1, · · · , �). Let x = (x1, · · · , x�) and y = (y1, · · · , y�). In the
following, we describe the conversion algorithm conv which, given a projection
function f ∈ P�

s+t and a vector y∗ ∈ ({0, 1}t)� (which is considered as constants),
outputs a projection function f̃ ∈ P�

s such that f(z) = f̃(x). (Note that the
variable of f̃ is x.) In the description of conv, xu,v (resp. yu,v) denotes the v-th
bit of xu (resp. yu), and fw (resp. f̃w) denotes the function which computes the
w-th bit of the output of f(resp. f̃) for every input. 2

conv(f,y∗):
n ← the output length of f
f1‖ · · · ‖fn ← f
for (w = 1 to n)

If fw(z) = yu,v for some (u, v) ∈ [�] × [t], then define f̃w(x) := yu,v
∗ (const.)

If fw(z) = 1 − yu,v for some (u, v) ∈ [�] × [t], then define
f̃w(x) := 1 − yu,v

∗ (const.)
If fw(z) = xu,v for some (u, v) ∈ [�] × [s], then define f̃w(x) := xu,v

If fw(z) = 1 − xu,v for some (u, v) ∈ [�] × [s], then define f̃w(x) := 1 − xu,v

If fw(z) = d ∈ {0, 1}(i.e. fw is a constant function), then define
f̃w(x) := d(const.)

define f̃(x) := f̃1(x)‖ · · · ‖f̃n(x)
return f̃

We can see that f̃ ∈ P�
s , and it holds that f(z) = f̃(x) for every fixed y.

We notice that conv is computable in polynomial time. Then, we describe the
adversary B as follows.

Initialization. On input � public keys (pk1
in, · · · , pk �

in) of Πin, B first generates
� pairs of Πout’s keys (pk j

out, sk
j
out) ← KGout(1λ)(j = 1, · · · , �). Then B sets

PK j ← (pk j
in, pk

j
out)(j = 1, · · · , �) and skout ← (sk1

out, · · · , sk �
out), and sends

(PK 1, · · · ,PK �) to A. Finally B sets Lkdm ← φ.
KDM queries. For a KDM query (j∗, f) ∈ [�]×P�

s+t from A, B first computes
f̃ ← conv(f, skout). Then B makes a KDM query (j∗, f̃) to the challenger
to get the answer c∗

in, and computes c∗
out ← Encout(pk

j∗
out, c

∗
in). Finally, B

returns c∗
out to A and adds (j∗, c∗

out, c
∗
in) to Lkdm.

2 Note that since f is a projection function, each fw(z) is one of the following forms:{0
or 1 (const.), xu,v or 1 − xu,v for some (u, v) ∈ [�] × [s], yu,v or 1 − yu,v for some
(u, v) ∈ [�] × [t]}.
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Decryption queries. For a decryption query (j, cout) from A, B returns ⊥ to
A if (j, cout, ∗) ∈ Lkdm. Otherwise B computes cin ← Decout(sk

j
out, cout) and

returns ⊥ to A if cin = ⊥ or there is an entry (j∗, c∗
out, c

∗
in) ∈ Lkdm which

satisfies j∗ = j and F(pk j
in, c

∗
in, cin) = 1. Otherwise B makes a decryption

query (j, cin) to the challenger to get the answer m, and returns m to A.
Final phase. When A terminates with output b′ ∈ {0, 1}, B outputs β′ = b′.

We note that, for A, B perfectly simulates Game 1 in which the challenge bit
for A is the same as that in the game between the challenger and B. Moreover,
B just outputs A’s output. Therefore, we have |Pr[S1] − 1

2 | = Adv
P�

s-kdmdcca
Πin,B (λ).

Since Πin is P�
s-KDM-DCCA secure, we see that |Pr[S1] − 1

2 | = negl(λ).
� (Lemma 1)

Lemma 2. Let Πin be P�
s-KDM-DCCA secure. Then |Pr[B1] − Pr[B2]| =

negl(λ).

Proof. Using the adversary A that attacks Π, we construct the following adver-
sary B that attacks the P�

s-KDM-DCCA security of Πin.

Initialization. On input � public keys (pk1
in, · · · , pk �

in) of Πin, B first selects b
r←−

{0, 1} and generates � pairs of Πout’s keys (pk j
out, sk

j
out) ← KGout(1λ)(j =

1, · · · , �). Then B sets PK j ← (pk j
in, pk

j
out)(j = 1, · · · , �) and skout ← (sk1

out,

· · · , sk �
out), and sends (PK 1, · · · ,PK �) to A. Finally, B sets Lkdm = φ.

KDM queries. For a KDM query (j∗, f) ∈ [�]×P�
s+t from A, B first computes

the following two functions: a projection function f1 ← conv(f, skout) and a
constant function f0 such that f0(·) = 0|f(·)|, where conv is the conversion
algorithm between projection functions that we described in the proof of
Lemma 1. Then B makes a KDM query (j∗, fb) to the challenger to get the
answer c∗

in, and computes c∗
out ← Encout(pk

j∗
out, c

∗
in). Finally, B returns c∗

out

to A and adds (j∗, c∗
out, c

∗
in) to Lkdm.

Decryption queries. For a decryption query from A, B responds in the same
manner as B in the proof of Lemma 1.

Final phase. When A terminates, B checks whether A made at least one bad
decryption query. If this is the case, then B outputs β′ = 1; Otherwise, B
outputs β′ = 0.

Let β be a challenge bit in the game between the challenger and B. When
β = 0, for a KDM query (j∗, f) from A, c∗

in is always a ciphertext of 0|f(SK)|.
Therefore, B perfectly simulates Game 2 for A if β = 0. On the other hand,
when β = 1, B perfectly simulates Game 1 in which the challenge bit for A is b.
This is because, when β = 1, whether c∗

in is a ciphertext of f(SK) or 0|f(SK)| is
determined according to the bit b chosen randomly by B. Moreover, regardless of
the choice of β, B outputs 1 only if A makes at least one bad decryption query.
Therefore, we have

Adv
P�

s-kdmdcca
Πin,B (λ) =

1
2
|Pr[β′ = 1|β = 1] − Pr[β′ = 1|β = 0]|

=
1
2
|Pr[B1] − Pr[B2]|.



216 F. Kitagawa et al.

Since Πin is P�
s-KDM-DCCA secure, we see that |Pr[B1] − Pr[B2]| = negl(λ).

� (Lemma 2)

Lemma 3. Let Πout be CCA secure. Then |Pr[B2] − Pr[B3]| = negl(λ).

Proof. Let C = {f : {0, 1}∗ → {0, 1}∗ is a constant function.}. As mentioned in
Section 2.2, CCA security is equivalent to C-KDM-CCA security. In this proof,
using the adversary A that attacks Π, we construct the following adversary B
that attacks the C-KDM-CCA security of Πout.

Initialization. On input � public keys (pk1
out, · · · , pk �

out) of Πout, B first gener-
ates � pairs of Πin’s keys (pk j

in, sk
j
in) ← KGin(1λ)(j = 1, · · · , �). Then B sets

PK j ← (pk j
in, pk

j
out)(j = 1, · · · , �) and sends (PK 1, · · · ,PK �) to A. Finally,

B sets Lkdm = φ.
KDM queries. For a KDM query (j∗, f) ∈ [�] × P�

s+t from A, B computes
c∗
in ← Encin(pk

j∗
in , 0|f(SK)|) and a constant function fc ∈ C such that fc(·) =

c∗
in. Then B makes a KDM query (j∗, fc) to the challenger to get the answer

c∗
out. Finally, B returns c∗

out to A and adds (j∗, c∗
out, c

∗
in) to Lkdm.

Decryption queries. For a decryption query (j, cout) from A, B returns ⊥
to A if (j, cout, ∗) ∈ Lkdm. Otherwise B makes a decryption query (j, cout)
to the challenger and gets the answer cin. If cin = ⊥ or there is an entry
(j∗, c∗

out, c
∗
in) ∈ Lkdm which satisfies j∗ = j and F(pk j

in, c
∗
in, cin) = 1, then B

returns ⊥ to A; Otherwise B computes m ← Decin(sk
j
in, cin) and returns m

to A.
Final phase. When A terminates, B checks whether A made at least one bad

decryption query. If this is the case, then B outputs β′ = 1; Otherwise, B
outputs β′ = 0.

Let β be a challenge bit in the game between the challenger and B. When
β = 1, for a KDM query (j∗, f), c∗

out is a ciphertext of c∗
in (and c∗

in is in turn a
ciphertext of 0|f(SK)|). Therefore, B perfectly simulates Game 2 for A if β = 1.
On the other hand, when β = 0, c∗

out is a ciphertext of 0|c∗
in|, hence B perfectly

simulates Game 3 for A if β = 0. Moreover, in both cases, B outputs 1 only if
A makes at least one bad decryption query. Therefore, we have

AdvC-kdmcca
Πout,B (λ) =

1
2
|Pr[β′ = 1|β = 1] − Pr[β′ = 1|β = 0]| =

1
2
|Pr[B2] − Pr[B3]|.

Since Πout is CCA secure, and hence C-KDM-CCA secure, we have
AdvC-kdmcca

Πout,B (λ) = negl(λ). Therefore, we see that |Pr[B2] − Pr[B3]| = negl(λ).
� (Lemma 3)

Lemma 4. Let Πin be unpredictable. Then Pr[B3] = negl(λ).

Proof. Using the adversary A that attacks Π, we construct the following adver-
sary B that attacks the unpredictability of Πin.
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Initialization. On input a public key pk∗
in of Πin, B first selects r0

r←− [�]
and sets pkr0

in ← pk∗
in. Then B generates � − 1 pairs of Πin’s keys

(pk j
in, sk

j
in) ← KGin(1λ)(j = 1, · · · , r0 − 1, r0 + 1, · · · , �) and � pairs of

Πout’s keys (pk j
out, sk

j
out) ← KGout(1λ)(j = 1, · · · , �). Next, B sets PK j ←

(pk j
in, pk

j
out)(j = 1, · · · , �) and sends (PK 1, · · · ,PK �) to A. Finally, B sets

Lkdm = φ.
KDM queries. For a KDM query (j∗, f) ∈ [�] × P�

s+t from A, B computes
c∗
in ← Encin(pk

j∗
in , 0|f(SK)|) and c∗

out ← Encout(pk
j∗
out, 0|c∗

in|), and returns c∗
out

to A. Finally, B adds (j∗, c∗
out, c

∗
in) to Lkdm.

Decryption queries. For a decryption query (j, cout) from A, B returns ⊥ to
A if (j, cout, ∗) ∈ Lkdm. Otherwise B computes cin ← Decout(sk

j
out, cout) and

returns ⊥ to A if cin = ⊥ or there is an entry (j∗, c∗
out, c

∗
in) ∈ Lkdm which

satisfies j∗ = j and F(pk j
in, c

∗
in, cin) = 1. Otherwise if j = r0, then B makes a

decryption query cin to the challenger to get the answer m, and returns m
to A; if j �= r0, then B computes m ← Decin(sk

j
in, cin) and returns m to A.

Final phase. When A terminates, B first selects r1
r←− [Qkdm] and r2

r←− [Qdec].
Let (jr1 , fr1) be the r1-th KDM query and let (jr2 , cr2

out) be the r2-th decryp-
tion query made by A. B aborts if it holds that (jr2 , cr2

out, ∗) ∈ Lkdm or
jr1 �= jr2 or jr2 �= r0 or Decout(sk

jr2

out, c
r2
out) = cr2

in = ⊥. Otherwise, B outputs
(cr2

in , 0|fr1 (SK)|).

We see that B perfectly simulates Game 3 for A. In Game 3, an answer c∗
out

for a KDM query does not contain any information about c∗
in. In addition, the

distribution of each c∗
in generated in Game 3 is identical to that of the ciphertext

which B’s challenger generates in the unpredictability game. Therefore, we see
that B succeeds in attacking the unpredictability of Πin with the probability
that r0, r1 and r2 are chosen randomly, r2-th decryption query from A is a bad
decryption query for r1-th KDM query and the index of the key is r0. We define
the following event Bi1,i2

3 for every i1 ∈ [Qkdm] and i2 ∈ [Qdec].

Bi1,i2
3 : In Game 3, the i2-th decryption query made by A is a bad decryption

query for the i1-th KDM query made by A.

Then we have Pr[B3] ≤ ∑
i1∈[Qkdm]

∑
i2∈[Qdec]

Pr[Bi1,i2
3 ]. The choices of r0, r1,

and r2 are uniformly random and independent of A, and thus does not affect
the behavior of A. Therefore we see that

Advunp
Πin,B(λ) =

∑

i1∈[Qkdm]

∑

i2∈[Qdec]

Pr[Bi1,i2
3 ∧ r1 = i1 ∧ r2 = i2 ∧ jr1 = r0]

=
∑

i1∈[Qkdm]

∑

i2∈[Qdec]

Pr[Bi1,i2
3 ] · Pr[r1 = i1] · Pr[r2 = i2] · Pr[jr1 = r0]

=
1

QkdmQdec�

∑

i1∈[Qkdm]

∑

i2∈[Qdec]

Pr[Bi1,i2
3 ]

From the above, we have Pr[B3] ≤ QkdmQdec� ·Advunp
Πin,B(λ). Since Πin is unpre-

dictable, and Qkdm, Qdec, and � are polynomials, we see that Pr[B3] = negl(λ).
� (Lemma 4)
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From the inequality (1) and Lemmas 1 to 4, we have Adv
P�

s+t-kdmcca

Π,A (λ) =
negl(λ). Since the choice of � is arbitrary, we see that Π is P�

s+t-KDM-CCA
secure for every polynomial �. � (Theorem 5)

4 Conclusion

From Theorems 3, 4 and 5, we showed that it is possible to construct a projection-
KDM-CCA secure multi-bit PKE scheme using only a projection-KDM-DCCA
secure 1-bit PKE scheme. Due to our result and Theorem 2 (which is shown
by Applebaum [3]), we can conclude that we can obtain a length-dependent
KDM-CCA secure PKE scheme from a projection-KDM-DCCA secure 1-bit
PKE scheme, without using any other assumption. Formally, the following the-
orem holds.

Theorem 6 (Completeness of single-bit projection-KDM-DCCA secu-
rity). Let Π ′ be a detectable PKE scheme whose secret key length is s and which
is unpredictable and P�

s,1-KDM-DCCA secure for every polynomial �. Then, for
every polynomial p, we can construct a p-length-dependent KDM-CCA secure
PKE scheme Π using Π ′ as a building block, without using any other assump-
tion.

As mentioned earlier, it is still unknown how to construct a length-dependent
KDM-CCA secure PKE scheme without using a NIZK proof system, and thus it
is an important open problem. From our result, in order to solve this problem,
we can concentrate on the construction of a 1-bit detectable PKE scheme which
satisfies unpredictability and projection-KDM-DCCA security.
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Abstract. The principle of padding oracle attacks has been known in
the cryptography research community since 1998. It has been general-
ized to exploit any property of decrypted ciphertexts, either stemming
from the encryption scheme, or the application data format. However,
this attack principle is being leveraged time and again against proposed
standards and real-world applications. This may be attributed to sev-
eral factors, e.g., the backward compatibility with standards selecting
oracle-prone mechanisms, the difficulty of safely implementing decryp-
tion operations, and the misuse of libraries by non cryptography-savvy
developers. In this article, we present several format oracles discovered in
applications and libraries implementing the OpenPGP message format,
among which the popular GnuPG application. We show that, if the ora-
cles they implement are made available to an adversary, e.g., by a front-
end application, he can, by querying repeatedly these oracles, decrypt all
OpenPGP symmetrically encrypted packets. The corresponding asymp-
totic query complexities range from 2 to 28 oracle requests per plaintext
byte to recover.

Keywords: GnuPG · Authenticated encryption · Chosen ciphertext
attacks · Padding oracle · Format oracle · Implementation

1 Introduction

As defined in [4], a padding oracle attack is a particular type of side-channel
attack where the attacker is assumed to have access to an oracle which returns
True only when a chosen ciphertext corresponds to a correctly padded plaintext
under a given scheme. Bleichenbacher [5] first applied this kind of attack to the
PKCS#1 version v1.5 asymmetric encryption scheme. Vaudenay [15] showed
that the same principle can be applied in the case of symmetric encryption
when structured padding schemes are used. The “padding” terminology was
introduced because the first attacks of this kind applied to specific padding
schemes. They can be generalized to any format constraint on the plaintext
providing redundancy, either imposed by the cryptographic scheme, or by the
application using encryption, as illustrated by Kĺıma and Rosa on the PKCS#7

This work was partially supported by the French National Research Agency through
the BLOC project (contract ANR-11-INS-011).

c© Springer International Publishing Switzerland 2015
K. Nyberg (ed.): CT-RSA 2015, LNCS 9048, pp. 220–236, 2015.
DOI: 10.1007/978-3-319-16715-2 12



Format Oracles on OpenPGP 221

format [10] and Mitchell [12]. We call this generalized form of oracle attacks
format oracle attacks.

This type of attacks initially stems from the misconception that encryption
mechanisms can provide a weak form of integrity through the following proce-
dure: a format containing redundancy, e.g., fixed byte values, or linear relations,
is applied to the plaintext before encryption. After decryption, it is checked
whether the result satisfies the redundancy. Due to the malleability of some
encryption schemes, and use of format properties that are satisfied with relatively
high probability by random messages, this opens the way to chosen-ciphertext
plaintext recovery attacks. Indeed, a format oracle leaks some information on
the decryption of the submitted request. If all submitted requests are related to
the same target ciphertext, its decryption may be obtained by aggregating the
corresponding information leakage.

Format oracle answers come in different flavours. They all rely on a vari-
ation of the behaviour of the decryption procedure related to some property
of the decrypted value: specific byte values expected at some positions or high-
level consistency constraints for example. The most explicit forms of information
leakage are characteristic error messages. Format oracles can also be obtained
by exploring logged information. Finally, more implicit oracles, relying on tim-
ing leaks, memory caching strategies, and other side-channels, are also possible.
Even though the principle of padding, and format, oracles has been known for
over 15 years, numerous publications [1,2,4,7,13,14] attest that they are quite
pervasive, and may continue to be instantiated in modern applications.

A general countermeasure against these attacks consists in checking the
integrity of ciphertexts before performing any decryption, thus eliminating any
chosen-ciphertext attack possibility by construction. Unfortunately, due to back-
ward compatibility issues, many standards still do not support proper authenti-
cated encryption. Moreover, this may require a two-pass authenticated decryp-
tion that may be impractical when large streams of data are processed. As
a consequence, a less satisfying fallback solution has been adopted in several
contexts: ensuring implementations do not instantiate format oracles in order
to avoid the exploitation of these attacks. This sometimes leads to convoluted
implementations, since one has to ensure that no side-channel leaks information.
Another concern is the misuse of cryptographic toolkits and libraries. Such soft-
ware is developed by programmers proficient in cryptography. They strive to
make their implementation resistant against state-of-the-art attacks, by select-
ing robust cryptography, and by avoiding side-channel leakage. Yet, most pro-
grammers using cryptographic libraries are not expert cryptographic security
evaluators. They can legitimately expect them to behave as secure modules,
unless explicetely advised otherwise. Therefore, if sufficient warnings are not
made, they may incorrectly perceive some of their outputs, e.g., sensitive error
messages, as innocuous.

OpenPGP [9] is a message format used to preserve privacy by providing
encryption. It is notably implemented in the popular GnuPG toolkit. Recently,
two JavaScript libraries, OpenPGP.js and Google-backed End-to-End, have been
released.
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Previous attacks against OpenPGP implementations leveraged the malleabil-
ity of the encryption mode used in OpenPGP to recover plaintexts. A first
attack [8], by Jallad, Katz and Schneier, achieves complete decryption of cipher-
texts but requires access to a decryption oracle, that may be implemented by an
inadvertent user transmitting random-looking decryption results to the adver-
sary. A second attack [11], by Mister and Zuccherato, takes advantage of a less
powerful oracle related to the CFB-mode variation used by OpenPGP to detect
the use of an erroneous decryption key and enables to recover two bytes from
every ciphertext block. This second attack is an example of a padding oracle
attack. Some mitigation measures have been adopted against these attacks, like
removing the CFB-mode oracle when decryption relies on asymmetric cryptog-
raphy, or introducing encryption with integrity. However some implementations
still leak in certain use cases the information exploited by these attacks: the
security ultimately relies on the careful use of the application.

The main contribution of this article is the identification of several new for-
mat oracles in OpenPGP implementations. We show that many OpenPGP appli-
cations and libraries, e.g., GnuPG, OpenPGP.js, and End-to-End, actually leak
sensitive information in error messages raised during the decryption of OpenPGP
encrypted messages. If these error messages are mishandled, e.g., by a front-end
application, the identified oracles can be leveraged to fully decrypt any encrypted
message, thus demonstrating that the error messages are not innocuous with
regards to confidentiality. This leads us to believe that the handling of errors,
e.g., decryption errors, is a part of the API of cryptographic libraries that should
receive more attention. To minimize the risk of implementation errors, crypto-
graphic library providers should prevent any unnecessary leakage of information,
and clearly identify the elements of the API that are sensitive.

Similarly to previously published padding oracle attacks, these attacks are
chosen-ciphertext attacks requiring interactions with a legitimate recipient of
the target message. The complexity of these format oracle attacks ranges from
2 to 28 queries to the format oracle per byte to decrypt, according to the lever-
aged oracle. We implemented these attacks against GnuPG and experimentally
confirmed their complexity.

We reported our findings to the developers of the mentioned OpenPGP imple-
mentations. They took them into account by patching their implementations to
remove some possible oracles (cf Section 5 for details).

In Section 2.1, we give an overview of the OpenPGP message format and
its (authenticated) encryption mechanism. Section 3 presents format oracles,
which are implemented by GnuPG, OpenPGP.js, and End-to-End, when they
are viewed as libraries, and Section 4 how these format oracles can be leveraged
to decrypt ciphertexts. In Section 5, we discuss countermeasures to thwart them.

Notations. We denote E a block cipher and n its blocksize expressed in bytes.
EK denotes encryption under key K.

Let || denote the concatenation. Let P be a non-empty messageP ∈ ({0, 1}8)∗.
Let |P | be its byte length. It can be decomposed into a sequence of blocks
P1||P2|| . . . ||Pm, where Pi is an n-byte block for i < m, and Pm is a non-empty,
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possibly incomplete, block.1 Let ‖P‖ = m denote the number of blocks of P
in this decomposition. Furthermore, for j ∈ [1, |P |], let P [j] be the j-th byte of
message P . Pi[j] is the j-th byte of the i-th block of P . For j ∈ [1, |P |], P [−j] is
the j-th byte from the end: P [−j] = P [|P | + 1 − j]. Let P = P [−2]||P [−1] be
the concatenation of the last two bytes of P .

Explicit byte values are given in hexadecimal form, e.g., 0xD3. 0x00u denotes
the concatenation of u zero bytes.

2 OpenPGP Format Description

2.1 Packet Structure of OpenPGP Message Format

Overview. All values (data, keys, etc.) considered by OpenPGP are structured
and processed in packets. Well-formed OpenPGP messages follow a grammar
described in [9, section 11.3], which specifies a recursive composition of packets
and OpenPGP messages: an OpenPGP message is a concatenation of packets,
some of which may contain a processed form of an OpenPGP message. Each
packet is a sequence of bytes, with a (tag, length, value) structure.2 The first
byte, called the tag, encodes the type of information that the packet contains.
The length field encodes the length of the value field. The value contains the
payload of the packet, and its structure depends on the considered packet type.

Data Packet Structures. All user data is found either in literal, compressed,
or encrypted packets. Encrypted packets come in two flavours, one providing only
confidentiality, another providing both confidentiality and integrity protection.

Literal Packets. We denote T� the one-byte tag value of literal packets. The
literal packet LitPacket(D) stores data D in an unprocessed way, preceded by
a header containing some metadata, e.g., a file name or a date.

Compressed Packets. We denote Tc the one-byte tag value of compressed pack-
ets. The compressed packet CompPacketTa(Z) stores the value Z resulting from
the compression under algorithm Ta of an OpenPGP message. The payload of
compressed packets contains a byte Ta, encoding the compression algorithm,
followed by the compressed value Z.

Encrypted Packets. Let Te be the one-byte tag value of encrypted data packets.
The encrypted packet EncPacketE

K(C) without integrity protection stores the
ciphertext resulting from an encryption. The payload is simply the ciphertext C
resulting from the encryption of an OpenPGP message using block cipher E
with key K. The encryption procedure is detailed in Section 2.2.
1 We abusively also refer to this part of the decomposition as a block.
2 This is an approximation, since the new length format introduced in the specifica-

tion [9] supports partial length values, but this does not affect our attacks.
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Encrypted Integrity Protected Packets. We denote TE the one-byte tag value of
encrypted integrity protected data packets. The encrypted integrity protected
packet EncIntPacketE

K(C) stores data after integrity protection and encryption
steps, detailed in Section 2.2. The payload of the packet contains a version
byte, set to 1, followed by the ciphertext C resulting from the encryption of an
OpenPGP message using block cipher E with key K.

Key Packets. The generation/decryption of the ciphertext contained in an
encrypted packet, with or without integrity protection, involves a secret key K
that is securely stored in a key packet KeyPacketA(K,E), that is transmitted
along with the encrypted packet. This key packet also encodes the block cipher
primitive E selected by the sender. Only recipient A can extract the key from
the key packet, because he either shares a passphrase with the sender, or he owns
a given private key. The latter is the general use case, and is a form of hybrid
encryption, where asymmetric encryption protects a message key used to sym-
metrically encrypt data. In the following, we assume that the legitimate recipient
unlocks the message key, and focus on the symmetric encryption mechanism.

2.2 Encryption Procedures

Encryption with integrity protection uses a block cipher in CFB mode with
an all-zero IV. Initial encryption randomization is obtained by prepending to
the plaintext packet(s) a block R of n random bytes. The last two bytes of the
random block R = R[−2]||R[−1] are repeated as the first two bytes of the second
block. This redundancy provides an early way to detect the use of a wrong key
derived for example from an erroneous passphrase. This test was used in [11] to
recover 16 bits of plaintext per block.

A suffix starting with two fixed byte values, 0xD3||0x14 is appended. These
represent the header (tag and length) of an OpenPGP Modification Detection
Code (MDC) packet. Then, a SHA-1 digest is computed over the concatena-
tion of the prefix, the plaintext packet(s), and the header of the MDC packet.
The resulting 20 bytes are the payload of the MDC packet, which are further
appended in order to obtain the input P of the encryption. A graphical rep-
resentation of the encoding of P can be found in Figure 1. The CFB chaining
equation is given by the following formula3:

Ci = EK(Ci−1) ⊕ Pi (1)

We comment briefly on the security of encryption with integrity protection
in OpenPGP in Appendix A.

Encryption without integrity protection presents only slight variations. First,
no suffix is appended after the plaintext. Second, the state of the CFB encryption
function is resynchronized after the encryption of the prefix. That is to say, the
first n + 2 bytes are encrypted using CFB mode, then the CFB state is set to
3 By convention C0 is the all-zero IV, and is not transmitted. Note also that in case

the last Pi is shorter than a block, the value of EK(Ci−1) is truncated accordingly.
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plaintext packet(s)
random
block R R MDC packet0xD3 0x14 digest

Encryption

SHA-1

tag
Te/TE

1 encrypted data C

K

Fig. 1. Encrypted packets format and encryption procedures. The elements on gray
background only appear in encrypted integrity protected packets.

the last n bytes of the current ciphertext, i.e., starting from the third byte, and
the encryption of the plaintext in CFB mode resumes from this point.

3 Format Oracles

A format oracle describes a side-channel leaking information on the decrypted
values corresponding to given ciphertexts. Format oracles generalize padding ora-
cles in two directions. Firstly, the test performed by the oracle is not restricted to
the padding of the plaintext, but can also take into account any constraint of the
(application-related) format of the plaintext. Secondly, the format oracles may
leak plaintext information faster than classical padding oracles. We say a format
oracle is boolean when its output is simply the result of some format verification
on the decrypted ciphertext, and leaky if it provides additional information.

As we shall see in the rest of this section, OpenPGP libraries leak through
their error messages partial information on the decrypted values corresponding
to submitted ciphertexts. For example, GnuPG generally emits non-fatal errors
on the standard error stream stderr if the result of decryption presents format
inconsistencies. Among these messages, it is worthwhile to distinguish so-called
status messages, that are specifically intended to provide information to appli-
cations using GnuPG as a backend. Thus, any leakage through status messages
is particularly worrisome.

Should the mentioned error messages be made available to an adversary by
an inadvertent application, a format oracle would be instantiated. In particular,
JavaScript libraries are expected to run in possibly hostile environment, where
exceptions and error messages should be sanitized.

It is difficult to formalize completely the oracle definitions, because they
rely on the format of OpenPGP messages. We shall see in the Section 4 that
for specially crafted ciphertexts, most of these oracles enable to test whether a
decrypted ciphertext byte takes a value in a specific set, possibly a singleton.

The Invalid Identifier Oracles. An OpenPGP packet contains several con-
strained values. For example, the RFC specifies that the packet tag is a one-byte
value with its most significant bit (MSB) set to 1. Such constrained identifiers
are pervasive in the OpenPGP specification: packet tags, compression methods,
encryption algorithms, etc.
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Definition 1. An invalid identifier oracle is a leaky oracle taking as input a
key packet KeyPacketA(K,E) containing a key K for an algorithm E, and a
symmetrically encrypted packet containing a ciphertext C. It tests whether, when
parsing the packets in the decrypted ciphertext, all bytes interpreted as some type
of identifiers respect the associated constraints. Furthermore, it leaks the values
of the bytes that do not satisfy this format.

The GnuPG error messages invalid packet (ctb=XX), where XX is an offend-
ing packet tag,withMSBequal to 0, provide an invalid tag oracle. TheOpenPGP.js
exception messages Compression algorithm XX not implemented provide an
invalid compression method oracle leaking the offending compression method XX.
For End-to-End, the Unsupported id: XX exception messages provide an invalid
algorithm identifier oracle.

The Double Literal Oracle. The OpenPGP specification [9] states that only
a single literal data packet may be found in any OpenPGP message. OpenPGP
implementations may check that only one such packet exists in a message or
otherwise emit a specific error message. This leads us to consider the following
format oracle:

Definition 2. The double literal oracle is a boolean format oracle that takes the
same input as the invalid identifier oracle. It tests whether the tags of any two
consecutive OpenPGP packets in the decrypted ciphertext are both literal packet
tags.

The GnuPG WARNING: multiple plaintexts seen error messages and the
proc pkt.plaintext 89 BAD DATA status messages4 provide a double literal ora-
cle. OpenPGP.js provides this oracle as well.

The MDC Packet Header Oracle. A potential format oracle can be found in
the encryption with integrity protection mechanism of OpenPGP. As described
in Section 2.1, the input of the encryption function during the encryption with
integrity protection process is infused with some format so that the plaintext is
the concatenation of an OpenPGP message followed by an MDC packet. Fur-
thermore, OpenPGP mandates the use of SHA-1 as the hash function for MDC
packets during encryption, and defines the header of these packets (tag and
length). Thus, for the decryption of a legitimate ciphertext, the 22nd and 21st
bytes counting from the end after decryption have prescribed values. This leads
us to consider the following format oracle:

Definition 3. The MDC packet header oracle is a boolean format oracle that
takes as input a key packet KeyPacketA(K,E) containing a key K for an algo-
rithm E, and EncIntPacketE

K(C), a symmetrically encrypted integrity protected
packet. Denoting P the decrypted ciphertext, the oracle tests whether P [−22] =
0xD3 and P [−21] = 0x14.
4 These status message are emitted unless they are explicitely inhibited by the caller,

through setting the flag --allow-multiple-messages.
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GnuPG mdc packet with invalid encoding error messages provide an MDC
packet header oracle, as well as its DECRYPTION FAILED status messages combined
with the absence of a BAD MDC status messages. Modification Detection Code not
properly formatted error messages, that can be returned by a low-level function
of the End-to-End library, provide the same oracle.

The definition of the MDC packet header oracle is a slight simplification of
the behaviour that can be found in OpenPGP libraries. More details are given
in Appendix B.

4 Plaintext Recovery Attacks

4.1 Overview of Format Oracle Attacks Against OpenPGP

In the following, we consider an encrypted packet whose payload contains the
target ciphertext value C∗, and a corresponding key packet KeyPacketA(K,E).
Note that the attacker does not have access to the key K that protects the
target encrypted packet. Only user A can recover K from the key packet, using
a passphrase or a private key. The objective of the attacker is to recover the
decryption P ∗ of C∗ by leveraging a format oracle implemented by user A. The
attacker performs several requests to the oracle, with specially crafted, format
oracle specific, ciphertexts C = C(B, u, a), were B is the target block, u is the
target position in the block, and a is the tested value. The oracle answers leak
information allowing to decrypt ciphertext C∗ step by step.

OpenPGP symmetric encryption relies on variants of the CFB mode of oper-
ation. Let us notice that in order to decrypt a CFB encrypted message, it is
sufficient to be able to recover the encrypted value of any block. Applying this
recovery procedure on block C∗

i , we get EK(C∗
i ) which can be used to decrypt

C∗
i+1 through Equation 1: P ∗

i+1 = C∗
i+1 ⊕ EK(C∗

i ).
The attacks presented enables to attack any type of encrypted data, be it

encrypted packets with/without integrity protection, or symmetrically encrypted
session key packets. More details are given in Appendix C.

A general attack overview is given in Algorithm 1. The attack complexities
are expressed in the maximal number of queries to the format oracle. The corre-
sponding average complexity is half the maximal complexity. We now describe,
for the format oracles described in Section 3 the structure of the submitted
ciphertexts C(B, u, a). The presented query ciphertexts only contain the pay-
load specific to the studied oracle. If the decryption function enforces other con-
straints, e.g., checks the initial redundancy of OpenPGP plaintexts, the query
ciphertexts can be tweaked, as described in Appendix B.

4.2 Plaintext Recovery Using Tag Oracles

First we describe how to leverage an invalid tag oracle, that is a specific case of
an invalid identifier oracle, or a double literal oracle. The same principle can be
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Algorithm 1. Transforming a format oracle into an attack: overview
for all ciphertext blocks C∗

i do
for all (byte) positions 1 ≤ u ≤ n in the ciphertext block do

for all possible (byte) values a do
Submit ciphertext C(C∗

i , u, a) to the oracle
if oracle returns True then

deduce the value of EK(C∗
i ) at position u from a

applied to leverage any invalid identifier oracle. In order to recover EK(B)[u],
we consider ciphertexts with the following format:

C(B, u, a) = T� ⊕ α||U ⊕ β||0x00n−2||B||0x00u−1||a,

where U is the byte whose value is 2n + u − 3, and α and β are the bytes used
to decrypt the first two bytes of ciphertext. We can assume that these two bytes
can be predicted by an attacker from C∗ (cf Appendix B).

These ciphertexts are built so that the corresponding plaintexts contain a
first literal packet of length U = 2n + u − 3. The zero paddings ensure that B
starts at a block boundary, and that the tag of the second packet is located at
position u of the block following B. For the double literal oracle (resp. for the
invalid packet tag oracle), we let a (resp. the MSB of a) take all possible values.
After decryption, this lets the tag (resp. the MSB of the tag) of the second
packet take all possible values. The format oracle returns True if EK(B)[u] ⊕ a
is a valid tag (resp. it leaks EK(B)[u] ⊕ a if its MSB is 0). We give a graphical
representation of this procedure in Figure 2. The maximal number of requests
to recover this byte is approximatively 26 (resp. 2). Only about 26 requests are
needed instead of 28, because there are 5 possible tag values (cf [9]).
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Fig. 2. Recovery procedure of x = EK(B)[u], using a tag oracle
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4.3 Plaintext Recovery using the MDC Packet Header Oracle

Basic Recovery of the Encrypted Value of a Block. To recover EK(B),
we consider the ciphertexts with the following format:

C(B, u, (a, b)) = B||0x00u−1||a||b||0x0020.

B is block aligned, 1 ≤ u ≤ n − 2 pads the ciphertext so that the target bytes
are located at position u and u + 1 of the following block, and the final 20 zeros
ensures that a and b are considered as the MDC header.

Recovering EK(B)[u] and EK(B)[u + 1]. In order to recover two consecutive
bytes of EK(B), we let a and b take all possible 216 values. This lets the bytes
located at the MDC packet header position after decryption take all 216 possible
values. Thus the format oracle returns True for a unique pair a′, b′, and we have,
through Equation 1: EK(B)[u] = 0xD3 ⊕ a′, EK(B)[u + 1] = 0x14 ⊕ b′. We give
a graphical representation of a special case of this procedure in Figure 3. The
maximal number of requests to recover these bytes is 216.
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Fig. 3. Recovery of the last two bytes of
EK(B)
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Fig. 4. Recovery of x = EK(B)[u], knowing
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Recovering EK(B)[u] knowing EK(B)[u + 1]. We can use the knowledge of
EK(B)[u + 1] to speed up the recovery of EK(B)[u]. We fix b = EK(B)[u +
1]⊕0x14 and let byte a take all possible values. This fixes the second byte of the
MDC packet header after decryption to the 0x14 value and lets the first byte
of the header take all possible 28 values. Thus the format oracle returns True
for a unique value a′, and we have through Equation 1: EK(B)[u] = 0xD3 ⊕ a′.
We give a graphical representation of this procedure in Figure 4. The number of
requests to recover this byte is 28. It is straightforward to adapt this procedure
to recover EK(B)[u + 1] using the knowledge of EK(B)[u], 1 ≤ u ≤ n − 1, for
a cost of 28 requests. By incrementally applying these procedures after initially
recovering two consecutive bytes of the encrypted value of the block, we can
recover EK(B) with 216 + (n − 2)28 requests. Overall, we can decrypt the whole
ciphertext with ‖C∗‖(216 + (n − 2)28) requests.
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Improved Recovery Procedure. It is possible to lower further the complexity
of these attacks to 28 requests per byte to decrypt for long messages. These
optimisations are detailed in Appendix D.

5 Security Analysis

Mitigation. A basic way of preventing the attacks presented in section 4 would
be to remove all leakage through error messages produced by the application
during decryption. Adopting this measure for cryptographic libraries and appli-
cations that may be used as backend for other applications ensures that the
leakage is not mishandled by calling applications. It can be seen as a misuse-
resistance property.

However this may not remove more implicit forms of format oracles. A sound
way to prevent format oracle attacks would be to thwart chosen-ciphertext
attacks by systematically using authenticated encryption and implementing a
thorough “Verify-then-Decrypt” paradigm during decryption, so that no check
is performed on the decryption result before the integrity of the ciphertext is
cryptographically verified. Such a paradigm cannot be implemented in the case
of OpenPGP, since the ciphertext needs to be decrypted before the integrity can
be verified. However, it is still possible to obtain a safe implementation by adopt-
ing a “Verify-then-Release” paradigm, i.e., the decryption result is buffered, and
any processing of the decryption result is deferred until the integrity has been
verified. Note that for this solution to be effective, serious compatibility issues
can be raised. Indeed, in the case of OpenPGP, this solution would require to
deprecate the decryption of messages encrypted without integrity protection.
Indeed, if this operation leaks information, it can be used to attack packets
encrypted with integrity protection through a downgrade attack, as detailed in
Appendix C.

Note also that this cannot be reduced to the choice of the authenticated
encryption mode: the implementation of the decryption procedure is crucial to
the security of authenticated encryption. In the case of GnuPG implementation
of OpenPGP encryption with integrity protection, decryption and MAC com-
putations are performed in parallel, and the decryption result is interpreted on
the fly before MAC verification. This behaviour is at odds with the security
models under which authenticated encryption modes are evaluated. Even an
implementation of the “Encrypt-then-MAC” paradigm, mode that is perceived
to be generally safe, can be implemented in this way, and may thus be vulnerable
to oracle attacks.

When relying on authenticated encryption to prevent format oracles is not an
option, cryptographic toolkits/libraries have to settle for establishing a safe API,
that is resistant against misuse by a non cryptography-savvy developer. This can
be done by eliminating as much as possible potential leakage of information, by
providing a high-level API free of such leakage, and/or explicitly advertising the
sensitive information leaked by the API. Errors raised by the exported functions
are part of the API and should be considered when studying the leakage channels.



Format Oracles on OpenPGP 231

Future Perspective: State-of-the-Art Authenticated Encryption. The
international competition CAESAR, which aims at identifying good authen-
ticated encryption schemes, has seen the formalisation of security properties
related to the security of the decryption procedure, e.g., the definition of the
Release of Unverified Plaintext setting [3]. Some of the CAESAR candidates
may turn out to provide a solution suitable in the context of OpenPGP, and
resistance against chosen-ciphertexts attacks even if the decrypted value is pro-
cessed on-the-fly. Another interesting venue of research that can be followed is to
consider the decryption errors into the security model used to study the authen-
ticated encryption mode, following [6]. In both cases however, it is not easily
achievable for existing applications to adopt an authenticated encryption mode
satisfying stronger security notions. In the case of OpenPGP, it would require
an update of the OpenPGP specifications and may entail interoperability issues.

Disclosure. We reported our findings to the developers of three OpenPGP
applications/libraries: GnuPG, End-to-End and OpenPGP.js.

GnuPG developers acknowledged that unattended usages of their library
leaked information via the standard error stream. However, they consider that
GnuPG is not at fault, and that it is the responsibility of the users and integra-
tors not to mishandle the leaked warnings and error messages. A patch partially
removing the MDC packet header oracle has been integrated in GnuPG 1.4.17
and GnuPG 2.0.23. The inclusion in GnuPG documentation of a security dis-
claimer warning against padding/format oracles was also discussed.

Google End-to-End developers stated that ”the API contract [they] should
try to follow is that users of [the high-level API of the library] should be safe to
print to an untrusted adversary the errors it throws” and that information leaks
conveying useful information should be considered as security bugs. As a result,
they tracked every unhandled exceptions in End-to-End. They also removed the
MDC packet header leak. OpenPGP.js developers followed a similar approach.

6 Conclusion

We highlighted potential format oracles in the OpenPGP message format. If the
error messages of the three OpenPGP applications/libraries we studied, GnuPG,
OpenPGP.js, and End-to-End, are mishandled, the format oracles are imple-
mented, and they can be used to decrypt data encrypted using OpenPGP.

Modern cryptographic standards should provide strong integrity guarantees,
by using only authenticated encryption. Cryptographic application and library
providers should be aware of the presented attacks, and develop their products
with the following idea in mind: while decrypting a message, no information
should be leaked about the plaintext until the integrity has been checked. In
particular, this includes format constraint checks and timing info leaks. The
safest way to meet this requirement is to forbid any processing of the plaintext
until the integrity has been checked. Library developers should at least strive to
specify high-level API free of format oracles, and document the outputs of their
libraries that are susceptible to leak sensitive information.
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A Discussion on OpenPGP Authenticated Encryption
Scheme

OpenPGP provides encryption with integrity protection, claiming to use the
Hash-then-Encrypt paradigm ([9, section 5.13], “An MDC is intentionally not a
MAC”). This paradigm is known not to satisfy state-of-the-art integrity require-
ments. However, the first random block R that is prepended to the plaintext
before encryption and hash computation acts as a MAC session key, for a MAC
of the form H(K||M).5 Thus, OpenPGP actually seems to implement a form of
the MAC-then-Encrypt paradigm. The complete security analysis of this mode
is not the object of this paper and is left as an open question.

B Adapting Crafted Ciphertexts to the Format Oracle

The access to the MDC packet header format oracle may be subject to some
conditions on the decrypted ciphertext. We found that it was easy to tweak the
submitted ciphertext to accommodate the conditions we encountered.

Guessing C∗
2 [3] and C∗

2 [4]. The first real plaintext bytes, C∗
2 [3] and C∗

2 [4], are
part of the tag header. In practice, two cases may arise, depending on the pref-
erences included in the recipient’s key:

– the data is compressed, which corresponds to a Tc tag, followed by the com-
pression algorithm Ta, thus C∗

2 [3] = Tc and C∗
2 [4] = Ta ;

– the data is simply a litteral, which leads to a C∗
2 [3] = T�, with the following

bytes encoding the litteral length. This length (and therefore C∗
2 [4]) can be

deduced from the overall encrypted packet size.

Random Prefix Redundancy. As seen in section 2.1, prior encryption, a random
prefix with basic redundancy is prepended to the payload. The check on the
redundancy at the beginning of decryption is meant to get an early detection
method that a wrong key is used to decrypt. In case the key is derived from
a passphrase, this enables to detect erroneous passphrase inputs. [11] used this
check to instantiate a format oracle that led to the ability to decrypt the first
16 bit of any ciphertext block. This redundancy check may still be present and
a failure may suppress the “MDC packet header” oracle. In order to ensure that
the random prefix redundancy check is always satisfied, it is sufficient to prefix
any ciphertext considered in our attacks with the first two blocks of the target
ciphertext: instead of submitting C, the attacker submits C∗

1 ||C∗
2 ||C. In the case

of tag format oracles, only the first two bytes of C∗
2 are used, with the payload

ciphertext immediately following.
5 This MAC is known to be vulnerable to classical extension attacks, but they seem

to be irrelevant in the OpenPGP context, since the MAC value is encrypted.
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Compression. Some implementations, as GnuPG, process in parallel decryption
and decompression, and abort decryption if a decompression error is detected.
In order to ensure no compression error occurs, the attacker can tweak the
submitted ciphertext to trick the implementation into considering the content
as a literal packet. This is relatively easy, since it only depends on the third byte
of the second block of the encryption input. If the target ciphertext corresponds
to a compressed packet, we have C∗

2 [3] ⊕ EK(C∗
1 )[3] = Tc. If we consider the

block C# = C∗
2 ⊕ (0x002||T� ⊕ Tc||0x00n−3), the decryption of ciphertexts of

the form C∗
1 ||C#||C verifies the redundancy of the prefix and the plaintext first

packet will be considered a literal packet.

C Attacking Any Encrypted Packet Types

We show in this section that the malleability of packet tags allows for masquerad-
ing a given packet as a packet of a different type. In particular, it allows us to use
the MDC packet header oracle to decrypt any symmetrically encrypted packet.
The same conclusion holds for the other format oracles: it is thus possible to
use a format oracle present in the encryption-only part of a library to attack an
encrypted packet with integrity protection.

Encrypted Packets without Integrity Protection. It is worthwhile to note that
encrypted packets without integrity protection can also be decrypted by using
the MDC packet header oracle. Indeed, the target key packet can be used indif-
ferently for encryption with or without integrity protection. Furthermore, the
encryption procedure of encrypted packets without integrity protection is also
based on CFB mode, with an all-zero IV and a random prefix composed of a
random block of n bytes followed by the repetition of the last two bytes of the
random block. The variation introduced by the CFB state resynchronization
does not modify the attack principle, it only introduces a slight shift in the
splitting of the ciphertext into blocks. In order to decrypt EncPacketE

K(C∗), an
encrypted data packet without integrity protection, containing ciphertext C∗,
it is enough to recover the encryption of the blocks of the truncated ciphertext
obtained by removing the first two bytes of C∗. The random prefix redundancy
constraints and compression constraints can be satisfied in the same manner as
for encrypted integrity protected packets.

Note that, considering only the MDC packet header oracle, this leads to
the non-intuitive result that the implementation of an authenticated encryption
scheme weakens the security of the encryption scheme without integrity.

Symmetrically Encrypted Session Key Packets. We give additional details on
symmetrically encrypted key packets. The protection of the key stored by these
packets relies on a passphrase. The key packet contains the information necessary
to derive a key Kp from the passphrase. If the key packet contains an encrypted
key, it can be decrypted into K using Kp with the appropriate block cipher in
CFB mode, with an all zero IV. Otherwise, Kp is used directly to process data,
K = Kp.
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The attacks can also be applied to the decryption of symmetrically encrypted
session key packets, when they contain an encrypted key. Indeed, the same
encryption algorithm, CFB with an all-zero IV is used. Furthermore, by remov-
ing the encrypted session key from the target encrypted session key packet, one
gets a session key packet for the key derived from the passphrase, that can be
used to mount the attack. Contrary to the cases of encrypted data packets,
no ciphertext blocks corresponding to a plaintext satisfying the random prefix
redundancy are available. However, by performing 216 requests, with an identical
first block, and all possible values for the first two bytes of the second block,
such a pair of ciphertext block can be found, if necessary. Attacking session key
packets may be preferable to attacking the data packets they protect, since they
are usually shorter, and thus their decryption requires less requests.

By the way, the fact that truncating a session key packet gives a valid key
packet that can be used to attack the confidentiality of the initial packet is an
undesirable property of the symmetrically encrypted session key packet format.
It would have been better to build the format of these packets around a key
wrap mechanism, providing both confidentiality and integrity of the session key
and its metadata.

D Details of the Improved Recovery Procedure Using
the MDC Packet Header Oracle

The cost of the basic recovery procedure described in the previous section can
be decomposed, for each block, into an expensive first step that recovers initial
knowledge on an encrypted block, followed by several cheaper steps that recover
the rest of the encrypted block. Starting from the information leaked by the
target ciphertext C∗, it would be tempting to apply only the cheaper steps, for
a cost of 28 requests per byte to decrypt. But a direct approach fails because
of the behaviour of decryption at block boundaries. We describe two procedures
enabling to recover initial knowledge on EK(B) for about 28 requests. We then
discuss the cost of decrypting C∗ as a function of its length.

Type I procedure. This procedure enables to test whether EK(B)[n] = a ⊕ 0xD3
for one request, provided a test block T satisfying T [n] = a and EK(T )[1] is
known. The format of the request ciphertext is B||T ||(EK(T )[1]⊕0x14)||0x0020.
A graphical representation is given in Figure 5.

Type II procedure. This procedure enables to recover EK(B)[1] for 28 requests,
provided B[n] = a and a test block T satisfying EK(T )[n] = a ⊕ 0xD3. The
format of the request ciphertexts is T ||B||b||0x0020, with b a byte taking all
possible values. A graphical representation is given in Figure 5.

Decryption Strategy. Note that each of the previous procedures can be applied
to any block to recover a first byte of its encrypted value for a cost of 28 once
a collection of 28 test blocks, presenting all variations of a, has been obtained.
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Fig. 6. Number of requests to decrypt a ciphertext as a function of its byte length,
assuming 128-bit blocks. When ciphertexts are long enough, the complexity is linear,
equal to 28 requests per byte.

In order to decrypt the target ciphertext C∗, one starts by recovering the block
corresponding to the position of the MDC header. Every time a block is recov-
ered, it may provide a new test block that may help to start recovering the
remaining ones. Type II and type I procedures are applied as much as possible
to start recovering blocks, and the incremental basic procedure is used to finish
the encrypted block recovery. If type I and type II procedures cannot be applied,
we either apply directly the basic block recovery procedure, or apply type I and
type II procedures to extra (pseudo-)ciphertext blocks.

Decryption Complexity. We performed simulations to identify the best strategy,
with regards to the ciphertext length. If the number of ciphertext block is small,
‖C‖ ≤ 25, it is best to apply the basic recovery procedure when the type I
and type II procedures cannot be applied. If the number of block is medium
26 ≤ ‖C‖ ≤ 267, the best strategy is to artificially add random ciphertext
blocks to have 267 blocks. The message is longer, but it is cheaper to decrypt
because the type I and II procedures are applied more often. For long messages,
‖C‖ > 267, it is not necessary to add random blocks, since the cost of decrypting
additional block exceeds the cost benefit. In the rare cases were type I and II
procedures are not sufficient, one resorts to the basic procedure. Furthermore,
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for very long messages, the decryption cost is effectively 28 requests per byte.
Assuming a 128-bit block cipher, 25 (resp. 267) blocks translate into 400B (resp.
4KB). The results are summarized in Figure 6.
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Abstract. The λi-gap λi/λ1 among the successive minima of a lat-
tice especially its λ2-gap often provides useful information for analyz-
ing the security of lattice-based cryptographic schemes. In this paper,
we mainly study the efficiency of shortest vector problem (SVP) algo-
rithms for lattices with λi-gap. First, we prove new upper bounds for
the packing density of this type of lattices. Based on these results, we
discuss the efficiency of the ListSieve-Birthday algorithm proposed by
Pujol and Stehlé for SVP, and obtain the conclusion that the complexity
will decrease obviously as the λi-gap increases. Particularly, ListSieve-
Birthday becomes faster than the current best deterministic (Voronoi
cell-based) algorithm for SVP, as long as λ2-gap is larger than 1.78.
When λ2-gap is up to 28, the time complexity is 20.9992n+o(n), and the
coefficient factor of n is approximately to 0.802 if λ2-gap is large enough.
Moreover, we provide an SVP approximation algorithm modified by the
ListSieve-Birthday algorithm. This algorithm terminates sieve process
earlier and relaxes the birthday search, and hence decreases the time
complexity significantly.

Keywords: Lattice · Successive minima · Shortest vector problem ·
Gap · Sieve

1 Introduction

A lattice is a discrete subgroup of Rm whose elements are integer linear com-
binations of n (n ≤ m) linearly independent vectors. Shortest vector problem
(SVP) and closest vector problem (CVP) are hard problems in complexity the-
ory. The intractability of two problems guarantees the security of lattice-based
cryptographic schemes. Therefore, the study of fast algorithms for SVP, CVP,
as well as their approximate variants, is of cryptographic importance.
c© Springer International Publishing Switzerland 2015
K. Nyberg (ed.): CT-RSA 2015, LNCS 9048, pp. 239–257, 2015.
DOI: 10.1007/978-3-319-16715-2 13
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Successive minima in a lattice are a sequence {λi}1≤i≤n, where λi is the radius
of the smallest ball centered in the origin containing i linearly independent lattice
vectors. We call λi/λ1 the λi-gap. Gaps, especially the λ2-gap, are found in some
well-known lattice-based cryptosystems. For example, the first provable lattice
cryptosystem proposed by Ajtai [1] is based on the hardness of solving the uSVPγ

problem ( i.e., finding the shortest vector for lattices with λ2/λ1 > γ) with
γ = nc for some positive constant c. As to the security of cryptographic schemes
based on uSVP, Lyubashevsky and Micciancio [17] established reductions from
a decision variant of approximate SVP and bounded distance decoding problem
(a special case of closest vector problem) to uSVPγ .

However, some cryptographic schemes face serious security problems because
of the gap between λ2 and λ1 in their corresponding lattices(see [6]). For exam-
ple, general knapsack cryptosystems [4,18] are vulnerable to low density attacks
because of the λ2-gap in the lattices on which they are based; the λ2-gap in the
embedded lattice of GGH [7,23] makes it easier to search the shortest vector. For
the public-key cryptosystem NTRU, Coppersmith and Shamir [5] constructed a
cryptographic lattice with dimension 2N to analyze its security. A heuristic
analysis reported in [12] indicates that NTRU lattice has λN+1-gap. Hence it is
obvious that fast search algorithms for SVP of lattices with gaps are practically
important in lattice-based cryptanalysis.

Solving SVP has been a problem of lasting interest. Many deterministic
enumeration algorithms are found in the literature (e.g., [13,26,32]), with com-
putational time ranging from 2O(n2) to 2O(n log n) and with polynomial (in dimen-
sion n) space. In 2010, Micciancio and Voulgaris [21] provided a deterministic
algorithm for SVP which is based on the Voronoi cell computation with compu-
tational time 22n+o(n) and space 2n+o(n). Another type of algorithms for SVP
is the random sieve which was first proposed by Ajtai et al. [2] in 2001. This
algorithm, known as AKS sieve, is the first single exponential time complex-
ity (2O(n)) algorithm for solving SVP with 2O(n) space. In 2010, Micciancio
and Voulgaris [22] presented another random sieve algorithm named ListSieve,
which solves SVP in time 23.199n+o(n) and space 21.325n+o(n). The time com-
plexity was further improved to 22.465n+o(n) by Pujol and Stehlé [27] using the
birthday attack, and this improved algorithm named ListSieve-Birthday is the
best theoretically provable sieving algorithm for SVP up until now. Also, under
some random assumptions, there are heuristic versions of AKS sieve algorithm
[24,33,34], which are more efficient in practice.

This paper primarily concerns shortest vectors for lattices with gaps. Our
main purpose is to study the efficiency of the ListSieve-Birthday algorithm for
SVP on lattices with λi-gap. Firstly, we estimate the packing density of lat-
tices possessing λ2-gap, then analyze the efficiency of the ListSieve-Birthday
algorithm for SVP in this type of lattices. Particularly, we indicate that this
algorithm becomes more and more efficient as the λ2-gap increases. The time
and space complexity will be less than 21.999n+o(n) and 20.999n+o(n) respectively
when λ2-gap is larger than 1.78. The coefficient factor of n in the time complex-
ity decreases to 0.9992 if λ2-gap is up to 28, and approximately to 0.802 when
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λ2-gap is large enough. Secondly, we generalize the above results to λi-gap. The
analysis shows that the reduction of complexity of ListSieve-Birthday not only
depends on the value of λi-gap, but also the position of λi (2 ≤ i ≤ n). Finally,
we give a modified version of the ListSieve-Birthday algorithm [27] focusing on
approximate SVP algorithm. This modification produces shorter lattice vectors
with much less time compared to that in [27] by stopping the sieve early and
relaxing the birthday search.

This paper is organized as follows: Section 2 is the preliminaries where some
notations and useful lemmas are included. In section 3, we revisit the ListSieve-
Birthday algorithm combining with our new estimation of the packing density
in lattices with λ2-gap. Section 4 shows the efficiency of ListSieve-Birthday on
lattices possessing λi-gap (2 ≤ i ≤ n). In section 5, we present an approximate
SVP algorithm modified by ListSieve-Birthday. Section 6 concludes the paper.

2 Preliminaries

2.1 Notations and Background

Let B = {b1, . . . ,bn} ⊆ R
m consist of n linearly independent vectors. The

lattice generated by the basis B is defined as

L(B) =

{
n∑

i=1

xibi : xi ∈ Z

}

.

The integers n and m are called its rank and dimension. If m = n, we say that
the lattice is full-rank. Without loss of generality, we only consider the shortest
vector problem in the full-rank lattices, since other cases can be converted to
full-rank lattices with dimension n.

The fundamental parallelepiped P(B) is defined to be {Σixibi : 0 ≤ xi < 1}.
For any x ∈ R

n, there exists a unique vector y ∈ P(B) such that y − x ∈
L(B). This vector is denoted as y = x mod P(B), and it can be computed in
polynomial time given B and x.

In this paper, we use ‖x‖ to denote the Euclidean norm of a vector x =
(x1, x2, . . . , xn) ∈ R

n, i.e., ‖x‖ =
√

x2
1 + x2

2 + · · · + x2
n. The n-dimensional ball

centered at x with radius r is denoted by Bn(x, r); x is omitted when it is the
origin. For any finite set C, denote |C| as its number of elements.

Next, we give some computational complexity problems and some results in
lattice theory that are of relevance to our discussion.

• Shortest Vector Problem (SVP): Given a basis of a lattice L, find a
nonzero lattice vector v such that ‖v‖ ≤ ‖u‖ for any nonzero vector u ∈ L.
• γ-Approximate Shortest Vector Problem (SVPγ): Given a basis of
a lattice L, find a nonzero lattice vector v such that ‖v‖ ≤ γ‖u‖, for any
nonzero vector u ∈ L.
• γ-Unique Shortest Vector Problem (uSVPγ): Given a basis of a
lattice L such that λ2(L) > γ · λ1(L), find a shortest nonzero vector in L.
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• γ-Bounded Distance Decoding (BDDγ): Given a basis of a lattice
L and a target vector t ∈ R

n such that dist(t,L) < γλ1(L), find a lattice
vector v closest to t, i.e., dist(v, t) ≤ dist(u, t) for any vector u ∈ L.

Given a basis of an n-dimensional lattice, the LLL algorithm [16] produces
another basis of the lattice which consists of shorter vectors and is referred as
an LLL-reduced basis. The size of the reduced basis can be bounded as follows.

Lemma 1. [16] Let b1,b2, . . . ,bn be an LLL-reduced basis, then ‖bj‖
≤

(
(1 + ε)

√
4
3

)n−1

λj.

According to the above property of LLL-reduced basis, for a fixed i (1 ≤ i ≤
n), we can guess a μi such that λi ≤ μi ≤ (1+ 1

n )λi by polynomially many trials
of μi. This approximation is essential in ListSieve-Birthday and our approximate
SVP algorithm in Section 5. When i = 1, we simply write μ1 as μ.

Finally in this subsection, we recall the conceptual modification τ which was
first presented by Regev [30]. Here, we introduce the version from the reference
[27]. Let s be a shortest lattice vector and Is = {x ∈ Bn(ξμ) : x + s ∈ Bn(ξμ)},
where μ is an approximate value of λ1 and ξ is a fixed positive parameter (see
Fig. 1). Let τ : Bn(ξμ) −→ Bn(ξμ) be a map such that τ(x) = x + s, if x ∈ Is;
τ(x) = −x, if x /∈ Is. This transformation τ preserves the uniform distribution on
Bn(ξμ). Usually, τ is applied to prove the success probability in sieve algorithms
for SVP.

Fig. 1. τ Transformation

2.2 The ListSieve-Birthday Algorithm

We recall the ListSieve-Birthday algorithm whose efficiency is the main concern
in this paper. We also need some technical lemmas from the reference [27] for
proving the new upper bound for the complexity of ListSieve-Birthday with the
occurrence of gaps among λi for 1 ≤ i ≤ n.

Briefly, the ListSieve-Birthday algorithm contains a main body and two rou-
tines, i.e., Sample Algorithm and Reduction Algorithm. It is clear that the main
body algorithm has two loops. The first loop constructs a list T by reducing each
randomly generated vector with vectors previously added to the list. The second
loop produces another list U whose elements are reduced in terms of the list T .
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Sample Algorithm

Input: An LLL-reduced basis of a lattice L, perturbation radius ξμ,where ξ > 1
2

Output: A lattice vector u and a perturbed vector u′

1: Choose x uniformly in Bn(ξμ)
2: u′ ←− (−x) mod P(B)
3: u ←− u′ + x
4: Return (u,u′)

Reduction Algorithm

Input: A pair (u,u′) returned from Sample Algorithm, where u is a lattice vector
and u′ is a perturbed vector, a List T ⊆ L and reduced factor δ < 1
Output: A reduced pair (u,u′)
1: While (∃w ∈ T ) : ‖u′ − w‖ ≤ δ‖u′‖
2: (u,u′) ←− (u − w,u′ − w)
3: end while
4: Return (u,u′)

Algorithm 1. The ListSieve-Birthday Algorithm

Input: An LLL reduced basis B, N1,N2,γ > 1, reduced factor δ < 1, γ
2

>ξ > 1
2
, μ � λ1

Output: A shortest non-zero lattice vector
1: T ←− ∅,U ←− ∅
2: for i = 1 to N1 do
3: (ti, t

′
i) ←− Reduction(Sample(B,ξμ),T,δ)

4: If ‖ti‖ > γμ then
5: T ←− T ∪ {ti}
6: end if
7: end for
8: for i = 1 to N2 do
9: (ui,u

′
i) ←− Reduction(Sample(B,ξμ),T,δ)

10: U ←− U ∪ {ui}
11: end for
12: find closest distinct points (ui,uj) in U
13: Return ui − uj

This implies that the vectors in U are not only short (with high probability) but
also independent and identically distributed.

It is proved in the reference [27] that with suitable choices of the parameters
N1,N2,γ, δ, ξ and μ, the ListSieve-Birthday algorithm can be used to solve SVP
with probability 1−2−Ω(n)1 in time 22.465n+o(n). We will use the same parameters
in our discussions in this paper. The precise choices of these parameters are given
in the following lemmas.

Lemma 2. [27] Let cl = − 1
2 log2(1 − 2ξ

γ ) + 0.401. The List T in the algorithm
contains at most NL(n) = 2cln+o(n) vectors.

1 One writes f(n) = Ω(g(n)), if there exist two positive constants c and n0, for all
n ≥ n0, 0 ≤ cg(n) ≤ f(n).
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Lemma 3. [24] Let cg = − 1
2 log2(1 − 1

4ξ2 ), and s be a shortest non-zero vector
of L(B). Denote Is = {x ∈ Bn(ξμ) : x + s ∈ Bn(ξμ)}. If x is chosen uniformly
in Bn(ξμ), then Pr(x ∈ Is) ≥ 1

NG
, where NG = 2cgn+o(n).

The parameter N1 is related to the number Nmax
1 = 4�NLNG	. The following

lemma is from Lemma 6 of reference [27].

Lemma 4. Consider the ListSieve-Birthday algorithm with N1 chosen uniformly
in the set {0, 1, 2,
. . . , Nmax

1 −1}. Let Ei be the event ‖ui‖ ≤ γμ for i ≤ N2, and p = Pr(Ei|xi ∈ Is).
Then p > 1

2 holds with probability higher than 1
2 .

3 Revisiting the ListSieve-Birthday Algorithm
on Lattices with λ2-gap

The gap between λ1 and λ2 leads to certain sparse distribution of lattice points,
which will certainly help us find the shortest lattice vector in this case. In this
section, we estimate a new upper bound on the number of lattice points in
a sphere. Combining with the new bound, we analyze the effect of λ2-gap on
the complexity of the ListSieve-Birthday algorithm. Furthermore, we give some
discussions on the complexity of solving SVP in cryptographic instances with
λ2-gaps.

3.1 Packing Density of Lattices with λ2-gap

In this subsection, we prove the new upper bound for packing density of lattices
with λ2-gap, which results in reducing the complexity of ListSieve-Birthday. The
following lemma, which was proven in [14], is a main tool to our proof.

Lemma 5. [14] Let E ∈ R
n\{0}. If there exists φ0 > 0 such that for any

u,v ∈ E, we have φu,v > φ0 where φu,v denotes the angle between u and v,
then |E| ≤ 2cn+o(n) with c = − 1

2 log2[1 − cos(min(φ0, 62.99◦))] − 0.099.

In the following, we prove the upper bound of packing density by counting
the number of lattice points in a sphere.

Theorem 1. For an n-dimensional lattice L, if λ2(L) > αλ1(L), then |Bn(γμ)∩
L| ≤ NB(n) = 2cbn+o(n), where cb = log2 γ − log2 α + 0.401, and 1 ≤ α < γ ≤
cα ≤ poly(n) with a numerical constant c > 1.

Proof. Let β = 1 + 1
n . The ball Bn(αλ1) contains exactly 1 + 2�α� lattice

points. We partition Bn(γμ)\Bn(αλ1) into coronas Tr = Bn(βr)\Bn(r) for r =
αλ1, αλ1β, · · · , αλ1β

k with k ≤ n log2
γ
α = Õ(n). It is sufficient to show that

any corona contains at most 2cbn+o(n) lattice points.
Lattice points contained in Tr can be divided into two sets according to the

following rule.
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1. Initialize A and B to be two null sets.
2. Randomly select a lattice point x from Tr. Put x into A.
3. For each point z ∈ L ∩ Tr,

if there exists a lattice point y ∈ A such that ‖z − y‖ < αλ1,
then store z into B,

else store z into A.
This rule partitions Tr ∩L into two sets A and B. It is clear that any distinct

points u,v ∈ A satisfy ‖u−v‖ ≥ αλ1. Notice that the construction of A depends
on the initial point selected into it. Accordingly, there are many selections of A.
Whereas we just need one of them to support our proof. The definition of B
apparently relies on A. From the above process, we define B = {w ∈ (Tr∩L)\A :
∃v ∈ A, such that ‖w − v‖ < αλ1}. Next we estimate the size of A and B
separately.

From the definition of B, it is clear that each point of B is located in a sphere
centered at some point of A with radius αλ1. Considering the fact that Bn(αλ1)
contains 1 + 2�α� lattice points, we obtain

|B| ≤ (1 + 2�α�)|A|.
Next, the only work is to determine the size of A. Since any points u, v ∈ A

satisfy ‖u − v‖ ≥ αλ1, it is easy to know that,

〈u,v〉 ≤ 1
2

(‖u‖2 + ‖v‖2 − α2λ2
1

)
.

This implies that,

cos φu,v =
〈u,v〉

‖u‖ · ‖v‖
≤ 1

2

(‖u‖
‖v‖ +

‖v‖
‖u‖ − α2λ2

1

‖u‖ · ‖v‖
)

≤ 1 +
1
n

− α2λ2
1

2γ2μ2

≤ 1 +
1
n

− α2

2(1 + 1
n )2γ2

.

Since γ > α, for any sufficiently large n we have

lim
n→∞

(

1 +
1
n

− α2

2(1 + 1
n )2γ2

)

= 1 − α2

2γ2
>

1
2
.

So arccos(1− α2

2γ2 ) < 60◦. Because 1+ 1
n − α2

2(1+ 1
n )2γ2 is decreasing as the growth

of n, 1 + 1
n − α2

2(1+ 1
n )2γ2 ≤ 1 − α2

2γ2 + ε holds for sufficiently large n and any

ε ≤ α2

2γ2 . Denote φ0 = arccos(1 − α2

2γ2 + ε), then φ0 ≤ arccos(1 − α2

2γ2 ) < 60◦. By
φu,v ≥ arccos φ0 and Lemma 5, we get

|A| ≤ 2cbn+o(n),
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where cb = log2 γ − log2 α + 0.401 − log2(
√

1 − 2γ2ε
α2 ). The last item of cb is

essentially o(1) due to the choice of ε. So we get |A| ≤ 2cbn+o(n), where cb =
log2 γ − log2 α + 0.401.

Therefore, we obtain an estimation of the number of lattice points in Tr as
follows,

|A| + |B| = (2 + 2�α�)|A| ≤ poly(n)2cbn+o(n) = 2cbn+o(n),

where cb = log2 γ − log2 α + 0.401.
Since the number of Tr is polynomial, we finally get

|Bn(γμ) ∩ L| ≤ NB(n) = 2cbn+o(n),

where cb = log2 γ − log2 α + 0.401. ��

3.2 The Complexity of ListSieve-Birthday on Lattices with λ2-gap

Utilizing the result of Theorem 1, we analyze the efficiency of the ListSieve-
Birthday on lattices with λ2-gap. As mentioned above, the most efficient deter-
ministic algorithm [21] can solve SVP in time 22n+o(n) and space 2n+o(n). Our
computation reveals that, ListSieve-Birthday algorithm is faster than the deter-
ministic algorithm so long as the λ2-gap of the lattice is larger than 1.78. The
complexity will decrease further as the λ2-gap increases.

Theorem 2. For sufficiently large n, ListSieve-Birthday returns a shortest
nonzero lattice vector with probability ≥ 1/8.

The proof is the same as Lemma 7 in the reference[27] since the gap does
not influence the correctness of the algorithm. For the sake of completeness, we
provide it in Appendix A.

We renew the upper bound for the complexity of ListSieve-Birthday on lat-
tices with λ2-gap in the following theorem.

Theorem 3. For an n-dimensional lattice L with λ2(L) > αλ1(L), the ListSieve-
Birthday algorithm returns a shortest nonzero lattice vector with probability higher
than 1/8 in time 2ctimen+o(n) and space 2cspacen+o(n), where ctime = max(cg +
2cl, 2cg + cb), cspace = max(cl, cg + cb/2), cl = − 1

2 log2(1 − 2ξ
γ ) + 0.401, cg =

− 1
2 log2(1 − 1

4ξ2 ), cb = log2 γ − log2 α + 0.401. Particularly, if α ≥ 1.78, we can
get ctime ≤ 1.999 and cspace ≤ 0.999 by optimizing ξ and γ.

Proof. The time complexity of the first loop is |T |N1 ≤ 2(cg+2cl)n+o(n) and
that of the second loop is |T | · |U | ≤ 2(cl+cg+cb/2)n+o(n). The time to find the
closest pair in U is |U |2 ≤ 2(2cg+cb)n+o(n). Among these three parts, the cost
of the second loop is small enough to be negligible. So the total time com-
plexity is 2ctimen+o(n) with ctime = max(cg + 2cl, 2cg + cb). It is clear that
the space complexity is |T | + |U | = 2cspacen+o(n), where |T | ≤ 2cln+o(n) and
|U | ≤ 2(cg+cb/2)n+o(n). So cspace = max(cl, cg + cb/2).
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Table 1. ctimes corresponding to different values of λ2-gap

α ξ γ ctime

1.78 1.0020 4.0409 1.9969

2 1.0163 4.3316 1.9158

3 1.0759 5.6593 1.6677

5 1.1768 8.3301 1.4246

8 1.2992 12.3483 1.2585

12 1.4308 17.7075 1.1502

28 1.7952 39.0991 0.9992

100 2.6293 134.8910 0.8859

500 4.4019 664.7420 0.8306

To minimize the time complexity, let 2cl = cg + cb. This implies that,

γ = 2ξ + 2log2 α+0.401

√

1 − 1
4ξ2

.

When the λ2-gap α = 1.7723, by selecting ξ = 1.0015 and γ = 4.0308, we get
ctime ≤ 1.999 and cspace ≤ 0.999. ��

In order to illustrate the efficiency of ListSieve-Birthday on lattices with gaps,
we calculate some instances of the coefficient factor ctime in the time complexity
corresponding to different values of λ2-gap α in Table 1. It can be found that
the time complexity drops off obviously with respect to the growth of λ2-gap.

3.3 Discussions on SVP Search for Some Lattice-Based
Cryptosystems

In practice, most cryptographic lattices possess λ2-gap, which may lead to serious
security problems. Based on the analysis in subsection 3.1 and 3.2, we will discuss
the time complexity of solving the SVP on some cryptosystems with λ2-gap.

In 2005, Regev proposed a cryptosystem [31] based on the LWE (Learn-
ing with Errors) problem[31]. After that, various LWE-based cryptosystems
have been designed and some of them provided new functionalities, such as
fully-homomorphic encryption, noisy multilinear maps, and indistinguishability
obfuscation[9,10,15,28,31]. The input of LWE problem is a pair (A,v = As+e),
where A ∈ Z

m×n
q and s ∈ Z

n
q are chosen uniformly, and e ∈ Z

m
q is chosen accord-

ing to some distribution χ. The search version of LWE is to recover s and the
decision one is to distinguish v from a uniformly distributed vector in Z

m
q . The

hardness of LWE problem was studied in[31] and it is proved that for the dis-
crete Gaussian distribution DZm,αq with αq ≥ 2

√
n, the search-LWE is at least

as hard as quantumly approximating a worst-case (the decision variant of) SVP
of n-dimensional lattice within an approximation factor Õ(n/α). In [25], Peikert
presented a classical reduction for (the decision variant of) SVP at the cost of
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increasing q. Several years later, at STOC 2013, Brakerski et. al. gave a real
classical reduction [3].

The search LWE problem is to find a closest lattice vector from the target v
in the q-ary lattice Λq(AT ) = {y ∈ Z

m : y = As mod q for s ∈ Z
n
q }, so it can be

regarded as an instance of BDD problem. Based on the embedding technique,
a lower bound of the λ2-gap in an embedded lattice to solve LWE problem was
computed in the reference[19]. Because the expression of lower bound of λ2-gap
is complicated, the authors get a simple expression by analyzing the identity-
based encryption system based on LWE proposed by Gentry et. al. [11]. In
this system, the set of parameters are selected as m = 6n log2 q, where q is a
prime in [n2/2, n2], and the error samples from the Gaussian distribution DZm,δq

where δ = 1√
m log2

2 m
. It is concluded that the corresponding embedded lattice

of this LWE problem has a λ2-gap larger than 7.3 log22 m[19]. The technique is
based on the fact that the hardness of the LWE problem cannot be increased by
enlarging the dimension m, which is similar to the discussion on SIS problem in
the reference [20].

By our analysis of ListSieve-Birthday on lattices with λ2-gap, we give a
further assessment to this scheme as follows.

Corollary 1. ListSieve-Birthday can find the unique shortest vector of the LWE
embedded lattice in the identity-based encryption system[11] with time and space
complexity about 20.802m+o(m) and 20.401m+o(m) respectively.

Proof. Let cg + 2cl = 2cg + cb to minimize the time complexity as in the proof
of Theorem 3, where cl = − 1

2 log2(1 − 2ξ
γ ) + 0.401, cg = − 1

2 log2(1 − 1
4ξ2 ),

cb = log2 γ − log2 α + 0.401, and α = 7.3 log22 m is the λ2-gap. Then we have

γ = 2ξ + 2log2 α+0.401

√

1 − 1
4ξ2

.

Together with α = 7.3 log22 m, we get the time complexity 2ctimen+o(n) with

ctime = cg + 2cl

= 0.802 + log2(
1

√
1 − 1

4ξ2

+
2ξ

α · 20.401(1 − 1
4ξ2 )

).

If the parameter n is selected to be larger than 128, then the λ2-gap of
the embedded lattice could be estimated as 1288 at least. The time and space
complexity are 20.8172m+o(m) and 20.4086m+o(m) by selecting ξ = 6.0033 and
γ = 1706.8020. The coefficient factor of ctime in the time complexity becomes
smaller when m is larger, and it is approximately to 0.802 when m is large
enough by chosing the parameter ξ = o(α). ��

The Ajtai-Dwork cryptosystem was the first cryptosystem based on the
worst-case hardness of uSVPO(n8), and the approximation factor was subse-
quently improved to O(n2)[8]. Another cryptosystem based on the hardness of
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uSVPO(n1.5) was proposed by Regev [29]. Since the gap of uSVP lattices may
cause security threats, cryptosystems based on the hardness of standard prob-
lems on general lattices aroused new interest, such as cryptosystems based on
the hardness of GapSVP proposed by Regev [31] and Peikert[25]. Considering
the reduction from uSVPγ to GapSVPγ [17], the cryptosystem [25] could be
equivalently based on the hardness of uSVPÕ(n2). For lattices possessing poly-
nomial λ2-gap, similarly as the analysis in Corollary 1, the factor ctime in the
time complexity of ListSieve-Birthday is approximately to 0.802 if n is large
enough.

Another type of cryptography instances are the BDD-based cryptosystems.
Among them, the Goldreich-Goldwasser-Halevi (GGH) cryptosystem [7] is a
typical one. We make a brief description of the GGH cryptosystem. The private
key is a short basis R. Transform R to a non-reduced basis B, which is the public
key. Define L to be the lattice generated by R. A message m ∈ Z

n is encrypted
to c = mB + e where the error vector e is uniformly chosen from {−δ, δ}n

and δ is a parameter usually selected as 3. The ciphertext can be decrypted as
m = �cR−1	RB−1. In the reference [23], Nguyen gave some approximations of
the embedded lattice gap corresponding to instances of GGH challenges. Among
the five challenges, the expected λ2-gap is larger than 9.4. By Theorem 3, the
factor ctime in the time complexity of ListSieve-Birthday is 1.2120 by selecting
ξ = 1.3485 and γ = 14.2243.

4 Complexity of ListSieve-Birthday on Lattices
with λi+1-gap

An n-dimensional lattice L possessing a λi+1-gap α means that, there exists a
α > 1 such that λi+1(L) > αλ1(L). In this section, we prove the upper bound for
packing density of lattices with λi+1-gap. Based on the upper bound, we compute
the new complexity of ListSieve-Birthday on this type of lattices, which is related
to the size and location of gaps.

4.1 Packing Density of Lattices with λi+1-gap

The upper bound for packing density of lattices with λi+1-gap is given in the
following theorem. The sketch of this proof is similar to that of Theorem 1.

Theorem 4. For an n-dimensional lattice L, if λi+1(L) > αλ1(L), then |Bn(γμ)
∩ L| ≤ NB(n) = 2(log2 γ−log2 α+0.401)n+(log2 α+0.401)i+o(n), where 1 ≤ α < γ ≤
cα ≤ poly(n) with a numerical constant c > 1.

Proof. Similar to the proof of Theorem 1, let β = 1 + 1
n and partition Bn(γμ)

\Bn(αλ1) into coronas Tr = Bn(βr)\Bn(r) for r = αλ1, αλ1β, · · · , αλ1β
k with

k = Õ(n). Divide L ∩ Tr into two sets (A, B) by the same rule in Theorem 1.
According to the analysis in Theorem 1, an upper bound 2(log2 γ−log2 α+0.401)

n+o(n) for the size of A can be obtained immediately. Since any point of B lies
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in a sphere centered in some point of A with radius αλ1, we can get

|B| ≤ |L ∩ Bn(αλ1)| · |A|.
Next, we give an upper bound for the number of lattice points in Bn(αλ1).

Because λi+1(L) > αλ1(L), there are at most i linearly independent lattice
vectors in Bn(αλ1). Suppose {b1, . . . ,bi} be a set of linearly independent vectors
in L ∩ Bn(αλ1). Then L ∩ Bn(αλ1) ⊂ L ∩ span(b1, . . . ,bi), which implies that
L∩Bn(αλ1) = L∩(Bn(αλ1)∩span(b1, . . . ,bi)). Thus the rank of L∩Bn(αλ1) is
i and L∩Bn(αλ1) consists of lattice vectors lie in Bn(αλ1)∩span(b1, . . . ,bi). By
some transformation of coordinates, L ∩ Bn(αλ1) can be regarded as the lattice
points in the new coordinates, which lie in the i-dimensional sphere with radius
αλ1. By Lemma 5, this can be bounded by 2(log2 α+0.401)i+o(i). Then, we get

|B| ≤ |A| · 2(log2 α+0.401)i+o(i).

Therefore, the number of lattice points in Tr is at most

|A|+|B| ≤ (1+2(log2 α+0.401)i+o(i))|A| ≤ 2(log2 γ−log2 α+0.401)n+(log2 α+0.401)i+o(n).

Finally, we get

|Bn(γμ) ∩ L| ≤ poly(n) · (|A| + |B|) ≤ 2(log2 γ−log2 α+0.401)n+(log2 α+0.401)i+o(n).

��
The location of gap happened among the successive minima will significantly

influence the density of lattice points distribution. We care about the range of
i, which makes ListSieve-Birthday algorithm faster than all the existing random
SVP algorithms except the heuristic ones. From 2(log2 γ−log2 α+0.401)n+(log2 α+

0.401)i+o(n) ≤ 2(log2 γ+0.401)n+o(n) where the right of the inequality is the packing
density bound for general lattices[27], it can be derived that i ≤ log2 α

log2 α+0.401n.
This gives the upper bound for i. We list the ranges of i corresponding to some
instances of α in Table 2.

Table 2. i’bounds corresponding to different instances of α

α k 1.78 2 3 5 8 12 28 100 500

i(≤) 0.6747n 0.7138n 0.7981n 0.8527n 0.8821n 0.8994n 0.9230n 0.9431n 0.9572n

4.2 Complexity of ListSieve-Birthday on Lattices with λi+1-gap

The complexity of the ListSieve-Birthday algorithm on lattices with λi+1-gap
can be obtained in the same way with Theorem 3, so the proof is omitted.

Theorem 5. For an n-dimensional lattice L with λi+1(L) > αλ1(L), the
ListSieve-Birthday algorithm returns a shortest nonzero lattice vector with proba-
bility higher than 1/8 in time 2ctimen+o(n) and space 2cspacen+o(n), where ctime =
max(cg +2cl, 2cg + cd), cspace = max(cl, cg + cd/2). Here, cl = − 1

2 log2(1− 2ξ
γ )+

0.401, cg = − 1
2 log2(1 − 1

4ξ2 ), cd = log2 γ − log2 α + 0.401 + (log2 α + 0.401) i
n .
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To minimize the time complexity, let 2cl = cg + cd, which implies

γ = 2ξ + 2(log2 α+0.401)(1− i
n )

√

1 − 1
4ξ2

.

Then

ctime = 0.802 + log2 (
1

√
1 − 1

4ξ2

+
2ξ

(γ − 2ξ)
√

1 − 1
4ξ2

)

= 0.802 + log2 (
1

√
1 − 1

4ξ2

+
2ξ

(α · 20.401)(1− i
n )

√
1 − 1

4ξ2

).

We compute some values of ctime corresponding to different α and i in the
following Table 3. It illustrates that the time complexity not only depends on
the value of α, but also the location of λi-gap.

Table 3. ctime corresponding to different α and i

�
��i
α

1.78 2 3 5 8 12 28 100 500

n
16

1.9225 1.8539 1.6417 1.4282 1.2767 1.1744 1.0244 0.9035 0.8393

n
8

1.9574 1.8916 1.6862 1.4757 1.3231 1.2180 1.0597 0.9261 0.8508

n
4

2.0297 1.9703 1.7814 1.5805 1.4287 1.3200 1.1473 0.9875 0.8857

n
2

2.1848 2.1411 1.9972 1.8337 1.7000 1.5968 1.4145 1.2116 1.0455

3n
4

2.3541 2.3302 2.2490 2.1513 2.0658 1.9956 1.8587 1.6777 1.4876

Among various lattice-based cryptographic schemes, the NTRU encryption
cryptosystem is very practical, and it was adopted to the standard of IEEE Std
1363.1 in 2008. To analyze its security, Coppersmith and Shamir[5] constructed
a cryptographic lattice with dimension 2N . A heuristic analysis reported in[12]
indicates that NTRU lattice has λN+1-gap, which is approximately√

Nq
4πe(df ·dg)1/2

, where N, q, df , dg is a series of parameters. In the intial version

[12], a group of recommended parameters is N = 503, q = 256, df = 216, and
dg = 72. Substituting these values into the evaluation of the λN+1-gap yields
5.4980. By numerical computation, the time to solve this SVP of NTRU lattice
is 21.8054n+o(n), where n = 2N is the dimension of the NTRU lattice.

5 The Approximate SVP Algorithm

In this section, we propose an SVP approximation algorithm modified from the
ListSieve-Birthday algorithm [27], which is used to obtain sufficiently many
γ-approximate shortest vectors. Compared with ListSieve-Birthday, our Algo-
rithm 2 terminates sieve process earlier and relaxes the birthday search. The num-
ber N2 of sieved vectors is much smaller than that of the ListSieve-Birthday
algorithm, which decreases the time complexity significantly.
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Algorithm 2. The Approximate SVP Algorithm

Input: An LLL reduced basis B, N1,N2,γ > 1, d ≥ 1, dimension n, reduced factor
δ < 1, γ

1+1/δ
> ξ > 1

2
, μ � λ1

Output: A shortest non-zero lattice vector or a pair of sets (U, U) with U the set of

sieved lattice vectors, U = {u ∈ U : ‖u‖ ≤ γμ} and |U | ≥ d

1: T ←− ∅,U ←− ∅,U ←− ∅
2: for i = 1 to N1 do
3: (ti, t

′
i) ←− Reduction(Sample(B,ξμ),T,δ)

4: If ‖ti‖ > γμ then
5: T ←− T ∪ {ti}
6: end if
7: end for
8: for i = 1 to N2 do
9: (ui,u

′
i) ←− Reduction(Sample(B,ξμ),T,δ)

10: U ←− U ∪ {ui}
11: if ‖ui‖ ≤ γμ then

12: U ←− U ∪ {ui}
13: end if
14: end for
15: find closest distinct points (ui,uj) in U
16: if ‖ui − uj‖ ≤ μ
17: Return ui − uj

18:else

19: Return (U ,U)

The sieve steps in Algorithm 2 and ListSieve-Birthday are the same except
that we store an additional set U which is a subset of U satisfying U = {u ∈ U :
‖u‖ ≤ γμ}. The approximation factor γ is exactly the same as the sieving para-
meter in ListSieve-Birthday. So, the previous analysis from Lemma 2, Lemma 3
and Lemma 4 applies to our Algorithm 2 as well.

In the description of Algorithm 2, we use the same notations as in Lemma 2,
Lemma 3 and Lemma 4. The algorithm succeeds if a shortest non-zero lattice
vector is returned or U contains at least d distinct lattice vectors whose pertur-
bation x is in Is. Some parameters are given as follows: N1 is chosen uniformly
from the set {0, 1, 2, . . . , Nmax

1 − 1}, N2 = 8dNG, δ = 1 − 1
n . Other parameters

will be determined later.
The following lemma proves the correctness of Algorithm 2. Its proof is sim-

ilar to that of Lemma 7 in the reference [27]. One can refer to Appendix B for
the details.

Lemma 6. Let N2 = 8dNG, and assume that n is sufficiently large. Then with
probability higher than 1/8, Algorithm 2 succeeds.

Now, we are able to estimate the complexity of Algorithm 2.

Theorem 6. Let ctime = max{2cl + cg, 2cg} and cspace = max{cl, cg}. Let
d = 2o(cgn). Then with probability 1 − 2−Ω(n), Algorithm 2 succeeds with time
2ctimen+o(n) and space 2cspacen+o(n).
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Proof. The time complexity of the first loop in steps 2-7 is N1NL, and that of
the second loop of steps 8-14 is N2NL. The complexity of steps 15-19 is N2

2 .
So the total time complexity is 2ctimen+o(n), where ctime = max{2cl + cg, 2cg}.
It is obvious that space complexity is |T | + |U | = 2cspacen+o(n), where cspace =
max{cl, cg}.

Calling the algorithm n times ensures that it succeeds with probability expo-
nentially close to 1. �

We remark that the expression of the time complexity bound in Theorem
6 reaches its optimal value when ξ =

3√γ

2 . In this case we see that ctime =
0.802−1.5 log2(1−γ− 2

3 ), and the corresponding cspace is 0.401−0.5 log2(1−γ− 2
3 ).

We compare the complexity bounds for Algorithm 2 and Algorithm 1
(ListSieve-Birthday) for uSVPγ in Table 4. The SVPγ algorithm can be triv-
ially applied to find the unique shortest lattice vector with λ2-gap≥ γ. But from
Table 4, it is easy to see that ListSieve-Birthday based on our new analysis
appears more efficient than the direct application of SVPγ algorithm.

Table 4. Comparision of complexity bounds for algorithm 2 and ListSieve-Birthday
for uSVPγ

Algorithm 2 ListSieve-Birthday for uSVPγ

γ ξ ctime ξ ctime

2.71 0.6971 2.3655 1.0594 1.7250

3.61 0.7670 1.9993 1.1089 1.5712

8 1 1.4246 1.2992 1.2585

15 1.2331 1.1907 1.5143 1.1019

6 Conclusion

In this paper, we prove new upper bounds for the packing density of lattices with
λi-gap and renew the complexity of the ListSieve-Birthday algorithm. We show
that, the complexity will drop off obviously as the growth of λi-gap. Specifically,
the time complexity of ListSieve-Birthday is less than 21.999n+o(n) if λ2-gap is
larger than 1.78. The coefficient factor of n in the time complexity is approx-
imately to 0.802 when λ2-gap is large enough. Moreover, we modify ListSieve-
Birthday to obtain an SVP approximation algorithm, which decreases the time
complexity obviously.
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Appendix

A. Let s be a shortest vector of lattice L whose norm is approximately μ, and
recall that Is = {x ∈ Bn(ξu) : x + s ∈ Bn(ξu)}. Let N2 = �8NG	�√NB	.
According to Lemma 4, with probability higher than 1/2, Pr(‖ui‖ ≤ γμ|yi ∈
Is) ≥ 1

2 holds for any i ≤ N2. Thus

Pr ((‖ui‖ < γμ) ∩ (yi ∈ Is)) = Pr (‖ui‖ < γμ|yi ∈ Is) Pr(yi ∈ Is) ≥ 1
2NG

.

Let Y = |{i ≤ N2 : ‖ui‖ ≤ γμ,yi ∈ Is}|. Based on the analysis above,
the random variable Y obeys a binomial distribution of parameter p ≥ 1

2NG
.

Since the expectation and variance are E(Y ) = pN2 ≥ 4�√NB	 and Var(Y ) =
p(1 − p)N2 ≤ E(Y ) respectively, by Chebyshev’s inequality we have

Pr(Y > 2�
√

NB	) = 1 − Pr(Y ≤ 2�
√

NB	)
≥ 1 − Pr(|Y − E(Y )| ≥ E(Y ) − 2�

√
NB	)

≥ 1 − Var(Y )
(E(Y ) − 2�√NB	)2

≥ 1 − E(Y )
(E(Y ) − 2�√NB	)2

≥ 1 − 1
�√NB	

≥ 4
5
,

when NB ≥ 25.
This implies that there are at least 2�√NB	 independent and identically dis-

tributed lattice points with probability higher than 4/5 which could be sampled
into the ball with radius γμ. Let S = Bn(γμ) ∩ L, the probability of a collision
occurs (which means there exist two distinct indices i, j ≤ N2 such that ui = uj

and yi,yj ∈ Is) is greater than

1

2
× 4

5
×
⎛

⎝1 −
∏

i≤2�√
NB	

(
1 − i

|S|
)⎞

⎠ ≥ 2

5

(
1 − exp

(
−2�√NB�(2�√NB� − 1)

2NB

))

≥ 2

5

(
1 − 1

e

)
≥ 1

4
.

Since the perturbations yi are chosen randomly in Bn(γμ), the probability
of yi ∈ Is be sampled is the same with yi + s ∈ Is + s. So, the two pertur-
bations corresponding to the collision could be yi + s and yj with probability
1/4. Because the corresponding pair of yi and yi + s are (u′

i,ui) and (u′
i,ui + s)
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respectively, and the actions of the reduction only depend on the perturbed vec-
tors, the collision occurs with corresponding lattice points ui + s and uj(= ui).
Similarly, the two perturbations corresponding to the collision could be yi and
yj + s with probability 1/4. Thus, the there exist two lattice points in the list
U at a distance of μ with probability 1/2. Hence, ListSieve-Birthday can return
a shortest nonzero lattice vector with probability higher than 1/8.

B. Let s be a shortest vector of the lattice whose norm is approximately μ.
According to Lemma 4, with probability higher than 1

2 , Pr(‖ui‖ ≤ γμ|xi ∈
Is) ≥ 1

2 holds. Since the vectors in the list U are independent and identically
distributed and the relation ui − u′

i = xi is preserved during the sieve process,
we see that

Pr((‖ui‖ ≤ γμ) ∩ (xi ∈ Is)) = Pr(‖ui‖ ≤ γμ|xi ∈ Is)Pr(xi ∈ Is) ≥ 1
2NG

.

Let X = {i ≤ N2 : ‖ui‖ ≤ γμ,xi ∈ Is}. Based on the analysis above,
the random variable |X| obeys a binomial distribution of parameter p ≥ 1

2NG
.

Since the expectation and variance are E(|X|) = pN2 and D(|X|) = p(1 − p)N2

respectively, by Chebyshev’s inequality we have

Pr(|X| ≤ d) ≤ Pr(||X| − E(|X|)| ≥ E(|X|) − d) ≤ D(|X|)
(E(|X|) − d)2

≤ 4
9d

≤ 1
2

when d ≥ 1.
That means we have |X| > d with probability higher than 1

2 . The following
discussion will be divided into two cases.

Case 1. If there are distinct i, j ∈ X such that ui = uj , we claim that a
shortest vector can be found by pairwise subtracting the elements in U with high
probability.

We modify the Sample Algorithm in the second loop by applying τ with
probability 1/2 on every perturbation x. τ maintains the uniform distribution
on Bn(ξμ), and the output distribution of the modified algorithm should be
exactly the same as that of the original algorithm. Furthermore, we have

u′
x = −x mod P(B) = τ(−x) mod P(B) = u′

τ(−x).

This means that for x ∈ Is, if the original Sample Algorithm returns (u,u′),
then its modification (i.e., after τ transformation) outputs (u + s,u′). Since in
the Reduction Algorithm, the sieve makes its decision based on u′ instead of u,
the τ transformation has no effect on the Reduction Algorithm.

Since ui = uj , with probability 1/2, ui is changed to ui + s, or uj is changed
to uj + s, but not both, after using τ to the second loop. This means that the
shortest vector s is in {w1−w2 : w1,w2 ∈ U}. Since the modified algorithm does
not change the the distribution in U , Algorithm 2 returns the shortest vector in
this step as well.

Case 2. If for any distinct i, j ∈ X, ui �= uj , then at least d distinct vectors
whose perturbation x is in Is are in U .
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Multiplying the three probabilities together, the success probability of Algo-
rithm 2 is higher than 1

8 .
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Abstract. Given two integers N1 = p1q1 and N2 = p2q2 with α-bit
primes q1, q2, suppose that the t least significant bits of p1 and p2 are
equal. May and Ritzenhofen (PKC 2009) developed a factoring algorithm
for N1, N2 when t ≥ 2α+3; Kurosawa and Ueda (IWSEC 2013) improved
the bound to t ≥ 2α + 1. In this paper, we propose a polynomial-time
algorithm in a parameter κ, with an improved bound t = 2α − O(log κ);
it is the first non-constant improvement of the bound. Both the con-
struction and the proof of our algorithm are very simple; the worst-case
complexity of our algorithm is evaluated by an easy argument. We also
give some computer experimental results showing the efficiency of our
algorithm for concrete parameters, and discuss potential applications of
our result to security evaluations of existing factoring-based primitives.

Keywords: Integer factorization with implicit hint · Gaussian reduction

1 Introduction

For a large number of computationally secure cryptographic schemes in the lit-
erature, including the RSA cryptosystem [12], the (expected) computational
hardness of integer factorization is a necessary (and sometimes sufficient) condi-
tion for their security. Consequently, the actual hardness of integer factorization
has been intensively studied so far, e.g., [5,6,11].

Among these work, there exists a direction of studies on integer factorization
with hints. One of the most remarkable results was given by Coppersmith [2]; the
factorization of a composite integer N = pq with primes p, q becomes efficient
when a half of the most significant bits of p are revealed. In the setting, a hint
for the factorization is given explicitly.

On the other hand, there are also previous results where some implicit hints
are supposed. May and Ritzenhofen [8] considered the following setting: Given
two RSA moduli N1 = p1q1 and N2 = p2q2, it is supposed that the t least

c© Springer International Publishing Switzerland 2015
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significant bits of p1 and of p2 are equal. Here the precise values of their t common
bits are not given; i.e., the hint is only implicit. They showed that, if q1 and q2
are α-bit primes and t ≥ 2α + 3, then N1 and N2 can be factorized efficiently.
Recently, Kurosawa and Ueda [4] gave an improved algorithm providing a better
bound t ≥ 2α + 1; they also slightly generalized the situation in such a way
that p1 ≡ p2 (mod T ) for some parameter T > q1

2 + q2
2 (the original case

corresponds to T = 2t). In this paper, we improve these results further, yielding
a better bound for T .

1.1 Our Contributions

In this paper, we study the integer factorization of composite integers N1 = p1q1
and N2 = p2q2 with implicit hint p1 ≡ p2 (mod T ). We aim at developing a
polynomial-time algorithm with respect to a certain parameter κ; for example,
in potential applications of the result to security evaluations of the Okamoto–
Uchiyama cryptosystem [10] and Takagi’s variant of the RSA cryptosystem [14]
(discussed in Sect. 5), κ is the security parameter for each scheme. Then we
propose an algorithm to factorize N1 or N2 with probability one in polynomial
time with respect to the parameter κ under the condition1

log T = 2 log Q − O(log κ) (1)

where Q is an upper bound for q1, q2. When Q = 2α and T = 2t for integer
parameters α and t, our condition above is equivalent to

2α − t = O(log κ)

which is significantly better than the best existing bound 2α−t ≤ −1 in [4].2 We
emphasize that our result is the first result achieving non-constant improvement
of the bound (which is independent of the size of the other factors p1 and p2).

The essence of our remarkable improvement from the previous results [4,8]
can be explained as follows. In the previous results, a two-dimensional lattice
L associated to the given composite integers N1, N2 is defined, and it is shown
that its shortest vector, calculated by Gaussian reduction algorithm, coincides
with the vector (q1, q2) of the target factors under their condition for T and Q
(or t and α, when T = 2t and Q = 2α). Now we point out that, the Gaussian
reduction algorithm outputs not only the shortest vector, but also the second
shortest vector of the lattice L. Our main idea is to utilize the second shortest
vector (together with the shortest vector) which was not previously used; this
new ingredient enables us to improve the algorithm.

Another noteworthy characteristic of our result is its simplicity; it relies solely
on the basic fact that the vector q = (q1, q2), which lies in the lattice L, can be

1 In fact, some easy-to-satisfy conditions are also required for the sake of completeness.
2 It was shown in [4] that their algorithm fails (rather than being inefficient) when

the bound is not satisfied; hence our result is indeed an improvement of the previous
work.
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expressed by using the shortest vector v and the second shortest vector u of L
as q = av+bu for some integers a, b. Our algorithm finds the correct coefficients
a, b by exhaustive search; now our improved condition (1) guarantees that there
are only polynomially many (with respect to κ) candidates of (a, b). Our proof
is also very simple and elementary; it does not use any typical facts for lattices
such as Minkowski bound and Hadamard’s inequality (which were used in the
previous work [4,8]).

We performed some computer experiments, which show that our proposed
algorithm indeed works efficiently (e.g., the average running time on an ordinary
PC was approximately 221 sec. ≈ 4 min. for α = 250 and t = 475). We also
discuss potential applications of our proposed algorithm to some existing schemes
such as the Okamoto–Uchiyama cryptosystem [10] and Takagi’s variant of the
RSA cryptosystem [14]. We emphasize that our algorithm does not require the
implicitly correlated factors p1, p2 to be primes; this property is necessary for
applications to the security evaluations of these two schemes.

1.2 Related Work

As mentioned above, for the case of the factorization of two integers, our result
improves the previous results by May and Ritzenhofen [8] and Kurosawa and
Ueda [4]. On the other hand, May and Ritzenhofen also studied the factorization
of three or more integers which are implicitly correlated in a similar manner. Such
an extension of our result is left as a future research topic.

Sarkar and Maitra [13] analyzed the more general cases by using the technique
of Coppersmith [2] in which (i) some least significant bits (LSBs) of p1 and p2
are the same, (ii) some most significant bits (MSBs) of them are the same and
(iii) some LSBs and some MSBs are the same.3 We note that (ii) and (iii) are
out of the scope of this paper.

In their method, however, it is assumed that p1 and p2 are primes of same
size. On the other hand, in our method, p1 and p2 can be of different sizes, and
they do not need to be primes.

Finally, the proposed algorithm would play a significant role in its poten-
tial applications to security evaluations of factoring-based schemes where the
hard-to-factorize composite integers are highly unbalanced. Such schemes include
recent variants of the (batch) fully homomorphic encryption over integers based
on the error-free approximate GCD assumptions [1,9]. We emphasize that, the
above-mentioned advantage of our proposed algorithm, i.e., it has no restrictions
for the properties of p1 and p2, is indispensable in these applications.

1.3 Organization of the Paper

In Sect. 2, we summarize basic notations and terminology, as well as some prop-
erties of Gaussian reduction algorithm for two-dimensional lattice. In Sect. 3,
we clarify our problem setting, describe our proposed factorization algorithm,
3 In a recent preprint [7], Lu et al. announced that they improved these results.
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and then show its correctness and computational complexity. In Sect. 4, we give
the results of our computer experiments to show the efficiency of our proposed
algorithm. Finally, in Sect. 5, we discuss potential applications to security eval-
uations of some existing cryptographic schemes.

2 Preliminaries

For two-dimensional vectors v = (v1, v2),u = (u1, u2) ∈ R
2, let ||v|| =√

v12 + v22 and (v,u) = v1u1 + v2u2 denote the Euclidean norm and the stan-
dard inner product. For a two-dimensional lattice L ⊂ Z

2, let λ1 = λ1(L) and
λ2 = λ2(L) denote the successive minima of L; i.e., λi is the minimal radius of
a ball containing i linearly independent vectors of L.

We recall that, in a two-dimensional lattice L, a basis (v1,v2) of L satisfying
||v1|| = λ1 and ||v2|| = λ2 can be efficiently obtained by Gaussian reduction
algorithm. Here we describe the algorithm:

Definition 1 (Gaussian reduction algorithm). Given any basis (b1, b2) of
a lattice L, Gaussian reduction algorithm performs as follows:

1. First, order the vectors b1, b2 and rename those as v1,v2, in such a way
that ||v1|| ≤ ||v2||.

2. Set μ := 	(v1,v2)/||v1||2
, i.e., the integer closest to (v1,v2)/||v1||2 (if two
integers have equal smallest distance from the value, then choose the one
with smaller absolute value).

3. Repeat the following, until μ becomes 0:
(a) Update v2 by v2 ← v2 − μv1.
(b) If ||v2|| < ||v1||, then swap v1 and v2.
(c) Set μ := 	(v1,v2)/||v1||2
.

4. Output the pair (v1,v2).

The following property is well-known; see e.g., [3]:

Proposition 1. The Gaussian reduction algorithm outputs a basis (v1,v2) of
the lattice L satisfying ||v1|| = λ1 and ||v2|| = λ2. Moreover, the computational
complexity of the algorithm is O(log2 max{||b1||, ||b2||}).

We also use the following property of Gaussian reduction algorithm:

Lemma 1. For any input (b1, b2) and the corresponding output (v1,v2) of
Gaussian reduction algorithm, we have |det(b1, b2)| = |det(v1,v2)|, where we

write det((x1, x2), (y1, y2)) := det
(

x1 x2

y1 y2

)

= x1y2 − x2y1.

Proof. The transformations for (v1,v2) performed at each step of Gaussian
reduction algorithm are one of the followings:

– Subtract a scalar multiple of v1 from v2; it preserves the value det(v1,v2).
– Swap v1 and v2; it changes the value det(v1,v2) to −det(v1,v2).

Hence, the absolute value of det(v1,v2) is not changed, as desired.
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3 Our Proposed Algorithm

3.1 Problem Setting

Let N1 = p1q1 and N2 = p2q2 be given composite numbers. Let T ≥ 2 be an
integer parameter (for example, a power of two as in [8]) with T < N1 and
T < N2. In this paper, we consider the following situation:

– We have p1 ≡ p2 ≡ p (mod T ) for some unknown integer p.
– Any two of N1, N2 and T are coprime to each other.

When T = 2t for an integer t, the first condition means that the t least significant
bits of p1 and p2 are equal (the precise t bits are not known). We emphasize that
we do NOT assume that each of p1, p2, q1 and q2 is a prime; this fact plays an
indispensable role in the potential applications of our result discussed in Sect. 5.
The second condition implies that any two of q1, q2 and T are coprime to each
other, and p is coprime to T (indeed, if p and T have a common divisor a > 1,
then p1 and p2, hence N1 and N2, are multiples of a, a contradiction).

3.2 The Algorithm

In order to describe our proposed algorithm, first we define, for given composite
numbers N1 and N2, the following two-dimensional lattice L:

L := {(x1, x2) ∈ Z
2 | N2x1 − N1x2 ≡ 0 (mod T )} .

We have a basis of L consisting of two vectors (1, N2/N1 mod T ) and (0, T ),
where N2/N1 mod T signifies the unique integer ν in [0, T − 1] with N1ν ≡ N2

(mod T ). It is indeed a basis of L, since N1 and T are coprime; if (0, x2) ∈ L,
then we have N1x2 ≡ 0 (mod T ), therefore x2 must be a multiple of T .

We now describe our proposed algorithm to find a non-trivial factor of at
least one of the given composite numbers N1 and N2:

1. Compute, by Gaussian reduction algorithm with initial basis consisting of
(1, N2/N1 mod T ) and (0, T ), a basis (v = (v1, v2),u = (u1, u2)) of the
lattice L above with ||v|| = λ1 = λ1(L) and ||u|| = λ2 = λ2(L).

2. Compute gcd(v1, N1), gcd(v2, N2), gcd(u1, N1) and gcd(u2, N2), and if at
least one of those is different from 1, then output it and stop.

3. If v1u2 − v2u1 < 0, then replace u with −u.
4. For A = 2, 3, . . . , execute the following:

(a) For integers a, b �= 0 satisfying |a| + |b| = A, execute the following: If
|au1 − bv1| is a non-trivial factor of N1, then output it and stop.

3.3 Analysis of Our Algorithm

We analyze the correctness and the efficiency of our proposed algorithm. First,
note that (since T ≥ 2)

||(1, N2/N1 mod T )|| ≤
√

12 + (T − 1)2 < T = ||(0, T )|| , (2)
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therefore by Proposition 1, the complexity of Step 1 of our algorithm (consisting
of Gaussian reduction algorithm) is O(log2 T ). Secondly, the lattice L contains
the vector q := (q1, q2); indeed, we have

N2q1 − N1q2 = p2q2q1 − p1q1q2 ≡ pq2q1 − pq1q2 = 0 (mod T ) .

Now we show the following property for Step 2 of our algorithm:

Lemma 2. If our algorithm stops in Step 2, then the output of the algorithm is
correctly a non-trivial factor of either N1 or N2. Moreover, if ||q|| < λ2, then
our algorithm always stops in Step 2.

Proof. We have λ2 ≤ T by (2), therefore λ2 < N1 and λ2 < N2 by the condition
in Sect. 3.1. This implies that all of |v1|, |v2|, |u1| and |u2| are smaller than N1

and N2. Hence, gcd(v1, N1) will be a non-trivial factor of N1 if gcd(v1, N1) �= 1,
and the same holds for gcd(v2, N2), gcd(u1, N1) and gcd(u2, N2). This implies
the first part of the claim.

For the second part, if ||q|| < λ2, then q and v are linearly dependent by
the definition of λ2 = λ2(L); cv = c′q for some coprime integers c, c′ �= 0.
Since q1 and q2 are coprime, we have |c| = 1 and v = ±c′q. Moreover, since
||q|| ≥ ||v|| by the choice of v, we have |c′| = 1. Therefore, we have |v1| = q1 and
gcd(v1, N1) = q1 �= 1. This completes the proof of Lemma 2.

Note that the computation of gcd in Step 2 can be done in polynomial time
with respect to max{log N1, log N2}. By virtue of Lemma 2, to see the correctness
of our algorithm, we may focus on the case where the algorithm does not stop
at Step 2. Now we have λ2 ≤ ||q|| by Lemma 2.

Since u and v form a basis of L and q ∈ L, there are integers a0, b0 ∈ Z

satisfying
q = a0u + b0v , (3)

or equivalently
(

q1
q2

)

=
(

a0u1 + b0v1
a0u2 + b0v2

)

=
(

u1 v1
u2 v2

)(
a0

b0

)

. (4)

Consequently, if the pair (a, b) in Step 4a of our algorithm becomes (a0,−b0),
then our algorithm stops with output q1, which is indeed a non-trivial factor
of N1. Now we have a0 �= 0 by (3), since q1 is coprime to v1 (note that v1 is
coprime to N1 = p1q1, since our algorithm does not stop at Step 2 by the current
assumption). Similarly, we have b0 �= 0. This completes the proof of the property
that our algorithm stops within a finite computational time and its output is
always a non-trivial factor of either N1 or N2 (we note that |a0|+ |b0| ≥ 2, since
a0, b0 �= 0).

From now, we evaluate the number of iterations in Step 4, by evaluating the
sizes of a0 and b0 above. Now Lemma 1 implies that

det
(

u1 v1
u2 v2

)

= det
(

u1 u2

v1 v2

)

= ±det
(

1 N2/N1 mod T
0 T

)

= ±T ,
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while det
(

u1 v1
u2 v2

)

= u1v2 − u2v1 < 0 by virtue of Step 3 of our algorithm,

therefore we have det
(

u1 v1
u2 v2

)

= −T . Hence the system of equations (4) can be

inverted as
(

a0

b0

)

=
(

u1 v1
u2 v2

)−1 (
q1
q2

)

=
1

−T

(
v2 −v1

−u2 u1

)(
q1
q2

)

,

namely

a0 =
q1v2 − q2v1

−T
, b0 =

−q1u2 + q2u1

−T
. (5)

Now we introduce the following additional assumption, where Q is an integer
parameter:

– We have q1, q2 ≤ Q for any given N1, N2.

We emphasize that the parameter Q is used in the analysis of the algorithm
only, and is not needed by our algorithm itself. By Lemma 2, we may focus
on the case λ2 ≤ ||q||; otherwise, our algorithm stops at Step 2. Note that
||q|| =

√
q12 + q22 ≤ √

2 · Q, therefore λ2 ≤ √
2 · Q. Now by (5), we have

|a0| =
∣
∣
∣
∣
q1v2 − q2v1

−T

∣
∣
∣
∣ ≤ |q1v2| + |q2v1|

T
≤ Q

T
(|v1| + |v2|) ≤ Q

T

√
2 · ||v||

and similarly |b0| ≤ (Q/T )
√

2 · ||u||. Since ||v|| ≤ ||u|| = λ2 by the choice of v
and u, it follows that

|a0|, |b0| ≤ Q

T

√
2 · λ2 ≤ 2Q2

T
,

therefore |a0|+ |b0| ≤ 4Q2/T . Hence, the index A in Step 4 of our algorithm does
not exceed A0 := 	4Q2/T  during the execution. Since Step 4a of our algorithm
is repeated at most 4A times for each choice of A, the total number of executions
of Step 4a is at most

∑A0
A=2 4A = 2A0(A0+1)−4. Moreover, for each 1 ≤ A ≤ A0,

Step 4a for each choice of (a, b) can be done in polynomial time with respect to
log A0, log Q and log N1 (note that |a|, |b| ≤ A0 and |v1|, |u1| ≤ λ2 ≤ √

2 · Q).
Summarizing the argument, our algorithm runs in polynomial time with

respect to the maximum among log T , log N1, log N2, log(4Q2/T ), log Q and
4Q2/T . Here, the values log(4Q2/T ) (≤ 4Q2/T ) and log T (≤ log N1, since
T < N1, N2) are redundant. Moreover, we have max{4Q2/T, log N1} ≥ log Q;
indeed, if 4Q2/T < log Q, then we have 4Q2/N1 < log Q (since T < N1),
N1 > 4Q2/ log Q > 4Q, and log N1 > log Q. Therefore, the value log Q above is
also redundant. Hence, we have the following result:

Theorem 1. In the setting of Sect. 3.1, suppose that q1, q2 ≤ Q. Then our
proposed algorithm in Sect. 3.2 always outputs a non-trivial factor of either N1

or N2, and its computational complexity is polynomially bounded with respect to
max{log N1, log N2, Q

2/T}.
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By Theorem 1, if κ is another parameter (e.g., when the factorization prob-
lem we are discussing is the base of security of some cryptographic scheme,
κ can be chosen as the security parameter for the scheme) and all of log N1,
log N2 and Q2/T are of polynomial order with respect to κ, then our proposed
algorithm runs in polynomial time with respect to κ. For example, we can set
κ = max{log N1, log N2, Q

2/T}. If max{log N1, log N2, Q
2/T} = Q2/T , then

κ = Q2/T . In this case, we have log2 κ = 2α− t where α = log2 Q and t = log2 T
(see Theorem 2 below).

A typical situation for Theorem 1 (studied also in the previous work [4,8])
is that, q1 and q2 are α-bit integers and the t least significant bits of p1 and p2
coincide with each other. In this case, Theorem 1 implies the following result:

Theorem 2. Let κ be a parameter as mentioned above. Suppose that the bit
lengths of N1 and N2 are polynomial in κ, and let Q = 2α and T = 2t. Then
our proposed algorithm runs in polynomial time with respect to κ if

t = 2α − O(log κ) .

More intuitively, if t = 2α−λ, then the proposed algorithm runs in time O(2λ) ·
poly(log N1, log N2). This sufficient condition for t is significantly improved from
the conditions t ≥ 2α + 3 in [8] and t ≥ 2α + 1 in [4]. In particular, this is the
first result achieving that the difference 2α − t can be beyond of constant order.

4 Computer Experiments

We performed a computer experiment to evaluate the running time of our pro-
posed algorithm; see Figure 1. Here we set Q = 2α, α = 250 (i.e., q1 and q2
are 250-bit primes), T = 2t, and the bit length t of implicit hints is chosen as
t = 501, 500, . . . , 475. The other factors p1 and p2 have 750-bit lengths. We used
an ordinary machine environment, namely our algorithm is written in C++ with
NTL for large-integer arithmetic, on CentOS 6.5 with 2.4GHz CPU and 32GB
RAM. For each t, we calculated the average running time of our algorithm for
100 experiments (N1 and N2 are correctly factorized at every experiment). Our
experimental result shows that our algorithm can successfully factorize the inte-
gers efficiently, even for a significantly better parameter t = 475 than the best
bound t ≥ 2α+1 = 501 in the previous results (now the average running time is
approximately 221 sec. ≈ 4 min.). We emphasize that, in the previous paper by
Kurosawa and Ueda [4], their computer experiments showed that, for the same
choice of α = 250, their algorithm succeeded in only 40% of the experiments
when t = 500, and it did not succeed at all when t ≤ 499 (see Table 1 of [4]).
This means that our algorithm is indeed an improvement of the previous results.

We also evaluated the sufficient number A of iterations for the main loop of our
proposed algorithm by computer experiments. We used the same parameters and
machine environment as above. For each t, we calculated the maximum, average,
and minimum of the numbers of iterations for 100 experiments; see Figure 2 (the
factorization succeeded at every experiment again). We note that the upper bound
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Fig. 1. Running time of our proposed algorithm (here the bit lengths of q1 and q2 are
α = 250 bits, T = 2t, and the range of t is {501, 500, . . . , 475})

Fig. 2. Number A of iterations for the main loop (here the bit lengths of q1 and q2 are
α = 250 bits, T = 2t, and the range of t is {500, 499, . . . , 475})
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of A given in our theoretical analysis in Sect. 3.3 is 	4Q2/T  = 2502−t; it is, for
example, 227 ≈ 1.34 × 108 for t = 475. Our experimental result suggests that this
theoretical bound of A would still be far from the precise value; further analyses
to improve the bound of A are left as a future research topic.

5 Potential Applications

It is noteworthy that the implicitly correlated factors p1, p2 need not be primes
in our proposed algorithm; see Sect. 3.1. This widens the potential applications
of our method to security evaluations of existing schemes. In this section, we
consider the cases of the Okamoto–Uchiyama cryptosystem [10] (Sect. 5.1) and
Takagi’s variant of the RSA cryptosystem [14] (Sect. 5.2).

5.1 Okamoto–Uchiyama Cryptosystem

In the Okamoto–Uchiyama cryptosystem [10], the public key involves a compos-
ite number of the form n = (p′)2 · q′, where p′ and q′ are different large primes
of the same bit length. Here p′ and q′ should be secret against the adversary; a
necessary condition for the security of the scheme is the hardness of factorizing
the integer n. Now we regard the integers (p′)2 and q′ as pi and qi in our algo-
rithm, respectively; we emphasize again that the factor pi in our method is not
necessarily a prime.

More precisely, given two public keys n1 = p′
1
2 · q′

1 and n2 = p′
2
2 · q′

2 of the
Okamoto–Uchiyama cryptosystem, we consider the following situation: p′

1
2 ≡

p′
2
2 (mod T ) and q′

1, q
′
2 ≤ Q, where T and Q are parameters. To simplify the

argument, we set Q := 2α where α is the common bit length of p′
i and q′

i. Then
our proposed algorithm factorizes at least one of n1 and n2 in polynomial time
with respect to the security parameter κ, if Q2/T is of polynomial order in κ, or
equivalently, if 2α − log2 T = O(log κ).

From now, we discuss the frequency of the condition p′
1
2 ≡ p′

2
2 (mod T )

being satisfied, in the situation of the previous work [4,8] and our situation.
First, in the situation of [4,8], T and Q should satisfy log2 T ≥ 2α+1, therefore
T ≥ 2p′

1
2 and T ≥ 2p′

2
2. Now the condition p′

1
2 ≡ p′

2
2 (mod T ) implies that

p′
1
2 = p′

2
2 as integers, i.e., p′

1 = p′
2, which is a trivial case. This means that the

algorithms in [4,8] cannot be applied to the present case.
In contrast, in our method, the parameter log2 T may be smaller than 2α,

hence there is a (non-trivial) possibility of the case p′
1
2 ≡ p′

2
2 (mod T ). Going

into detail, p′
1
2 ≡ p′

2
2 (mod T ) is equivalent to p′

1 − p′
2 ≡ 0 (mod T1) and p′

1 +
p′
2 ≡ 0 (mod T2) for some factorization T = T1T2 of T . Hence, to increase

the possibility of the case p′
1
2 ≡ p′

2
2 (mod T ), it would be better to use the

parameter T with many possibilities of appropriate factorizations T = T1T2.
Now if T1 and T2 have an odd common divisor d > 1, then 2p′

1 and 2p′
2, hence

p′
1 and p′

2, are multiples of d. This is not desirable, since p′
1 and p′

2 are primes.
By the observation, it seems better to use a smooth and square-free T ; then
the number of possible factorizations T = T1T2 with coprime factors T1, T2 is
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increased. For example, we may let T be the product of all primes smaller than a
certain threshold. For such parameters T , further evaluations of how frequently
given two composite numbers n1, n2 satisfy the condition above are left as a
future research topic.

5.2 Takagi’s Variant of RSA

A similar argument is also applicable to Takagi’s variant of the RSA cryptosys-
tem [14]. In the scheme, the public key involves a composite number of the form
N = (p′)r ·q′, where p′ and q′ are different large primes of the same bit length and
r ≥ 2. We regard the integers (p′)r and q′ as pi and qi in our algorithm, respec-
tively. Since the case r = 2 is essentially the same as the case of the Okamoto–
Uchiyama cryptosystem (Sect. 5.1), here we focus on the other case r ≥ 3. In the
case, the bit length of the factor (p′)r becomes much larger than that of the other
factor q′, which would make the condition p′

1
r ≡ p′

2
r (mod T ) easier to satisfy

under the requirement log2 T = 2 log2 Q − O(log κ) for our proposed algorithm.
On the other hand, when r ≥ 3, the analysis of the condition p′

1
r ≡ p′

2
r (mod T )

would be more difficult than the condition p′
1
2 ≡ p′

2
2 (mod T ) in the case of the

Okamoto–Uchiyama cryptosystem. A detailed analysis of our method in relation
to Takagi’s RSA is left as a future reserach topic.
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Abstract. Cryptographic constructions are often designed and ana-
lyzed in idealized frameworks such as the random-oracle or ideal-cipher
models. When the underlying primitives are instantiated in the real
world, however, they may be far from ideal. Constructions should there-
fore be robust to known or potential defects in the lower-level primitives.

With this in mind, we study the construction of collision-resistant
hash functions from “defective” ideal ciphers. We introduce a model
for ideal ciphers that are vulnerable to differential related-key attacks,
and explore the security of the classical PGV constructions from such
weakened ciphers. We find that although none of the PGV compression
functions are collision-resistant in our model, it is possible to prove colli-
sion resistance up to the birthday bound for iterated (Merkle-Damg̊ard)
versions of four of the PGV constructions. These four resulting hash
functions are also optimally preimage-resistant.

Keywords: Ideal ciphers · Related key attacks · Hash functions

1 Introduction

Cryptographic constructions based on some lower-level primitive are often
designed and analyzed by modeling the primitive as an ideal object, e.g., a
random oracle [2], a random permutation [14], or an ideal cipher [30]. When the
underlying primitive is instantiated, however, it may turn out to have “defects”
and be far from ideal. An important goal is thus to design constructions that are
robust to known or potential defects in the primitive(s) that will be used when
the constructions are implemented in the real world.

We stress here that our concerns go beyond the well-known results showing
that these idealized models cannot, in general, be instantiated [8,11]. Indeed,
the known counterexamples are contrived, and it is reasonable to conjecture
that “natural” constructions proven secure in these idealized models will remain
secure when instantiated with “sufficiently good” real-world hash functions and
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block ciphers. The question we are concerned with is: what happens if the under-
lying primitive turns out not to be as good as originally thought?

For example, consider a construction analyzed in the ideal-cipher model
which is instantiated with some real-world block cipher. Block ciphers are pri-
marily designed and evaluated as (strong) pseudorandom permutations [15,25];
other properties (e.g., the presence of “weak keys”), though examined to some
extent, receive comparatively less attention. We can ask:

How robust is the given construction when instantiated with a block
cipher that may be a good pseudorandom permutation, but is blatantly
“defective” as an ideal cipher?

Variants of this question have been investigated previously; see our discussion of
related work below.

Here, we focus on one aspect of the above question: we examine constructions
of collision-resistant hash functions when instantiated with block ciphers that are
vulnerable to related-key attacks [3,21]. (In a related-key attack, roughly speak-
ing, there is some predictable relationship between the behavior of the cipher
when using keys that are related in some particular way. A formal definition is
given later.) We choose this aspect for its practical relevance:

– Many prominent hash functions—including SHA-2 as well as some of the
SHA-3 finalists—are based on an underlying (tweakable) block cipher, and
it is important to analyze and understand the security of these construc-
tions. Moreover, from a theoretical perspective it is known that treating
the block cipher as a pseudorandom permutation is insufficient for proving
collision resistance [31]. Beginning with the work of Black, Rogaway, and
Shrimpton [9,10], researchers have analyzed hash-function designs in the
ideal-cipher model.

– Related-key attacks have been demonstrated against several real-world block
ciphers [4,5,12,13,19,20,28], including DES (cf. the well-known complemen-
tation property), GOST, TEA, KASUMI, and AES-192/256 [6,7]. Related-
key attacks on an underlying cipher have also been used specifically to attack
other primitives such as hash functions [5,12] (most famously in a collision
attack on the hash function used in the Microsoft XBox system) as well as
message authentication codes (e.g., an attack on RMAC [22]).

1.1 Our Results

In this work, we focus on differential related-key attacks in which the keys as well
as the plaintexts are chosen with specific differences. The first such attack we
are aware of is due to Kelsey, Schneier, and Wagner [19]. Several other works [4–
7,12,13,20,28] have made use of differential related-key attacks.

Let E denote a block cipher. We consider linear related-key attacks in which
there are fixed constants �k,�x,�y (with �k nonzero1) such that E(k, x) =
1 We exclude the case where �k is zero because an ideal cipher with a predictable

relation in that case would not even be a pseudorandom function.
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E(k ⊕ �k, x ⊕ �x) ⊕ �y for all k, x, y. We remark that this would represent a
serious defect on any practical cipher, and in many known related-key attacks
the above hold only with some probability � 1 over random choice of k, x, y;
this only makes our positive results stronger. On the other hand, the reader can
verify that our attacks do not use the fact that the above relationship holds with
probability 1.

We begin by introducing an appropriate model in which to undertake our
study. In the usual ideal-cipher model, the adversary is given access to an oracle
E : {0, 1}κ × {0, 1}n → {0, 1}n (as well as its inverse E−1), where for each
key k ∈ {0, 1}κ the function E(k, ·) is chosen uniformly from the space of n-
bit permutations.2 Fixing some �k,�x,�y with �k �= 0κ, we model related-
key attacks of the form above by instead choosing, for each (unordered) pair
{k, k⊕�k}, the function E(k, ·) uniformly from the space of n-bit permutations
and then setting E(k ⊕ �k, x ⊕ �x) = E(k, x) ⊕ �y. When we say that a given
construction is secure in our model, we mean that it is secure for every choice
of �k,�x,�y; a secure construction is thus expected to be “robust” to block
ciphers vulnerable to any (linear) related-key attack, regardless of the exact form
the attack takes. We suggest this “defective” ideal-cipher model as a general
way to better understand the real-world security of constructions analyzed in
the (traditional) ideal-cipher model.

We then undertake an analysis in our model of the classical PGV construc-
tions [29] of compression functions from block ciphers. Although these have been
the subject of extensive analysis [9,10,32], there has been no previous compre-
hensive study of their security when instantiated with block ciphers subject to
related-key attacks. We find that none of the PGV compression functions are
collision-resistant in our model; in fact, they do not even offer second-preimage
resistance. This stands in contrast to the fact that some of the PGV compression
functions are collision-resistant in the (traditional) ideal-cipher model [9,10,32].
On the positive side, we show that it is possible to prove collision resistance up
to the birthday bound in our model for the iterated hash functions obtained by
applying the Merkle-Damg̊ard transform to four of the PGV compression func-
tions. (One of these is the Matyas-Meyer-Oseas construction.) These four com-
pression functions share the property that the key to the block cipher depends
only on the chaining variable from the previous block, and not on the message
being hashed.

We also study preimage resistance of the PGV constructions. Most notable
is that the four collision-resistant hash functions we identify, above, can also be
proven to be preimage-resistant in our model up to the optimal O(q/2n) bound.

Interpreting our Results. Our results do not say anything about the security
of the PGV constructions when instantiated with any concrete block cipher, any
more than prior results do. Nevertheless, all else being equal, our results suggest
using a hash-function construction that is robust to related-key weaknesses in
2 For ease of presentation, we set κ = n in our definitions. Our results do not require

that the block length and key length be equal unless required by definition of the
underlying compression function.
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the underlying cipher. Viewed differently, if one uses a hash function secure in
our model and then subsequently a related-key attack on the underlying cipher
is found, one can make plans to gradually phase out the hash function (based
on the expectation that the block cipher might have other, yet-undiscovered
weaknesses) without being concerned about an immediate collision attack.

1.2 Related Work

Several previous works have studied the implications of “weakened” ideal models
for constructions proven secure in those models [18,23,24,27]. Besides the fact
that these works deal with random oracles (and not ideal ciphers), the modeling
is also qualitatively different from what we consider here. Specifically, in [18,24,
27], a random oracle is chosen from the correct (uniform) distribution, but the
attacker is provided with an extra oracle enabling, e.g., inversion. In contrast,
here we model a class of attacks by modifying the distribution from which the
ideal object is chosen.

Baecher et al. [1] recently studied reducibility between constructions of com-
pression functions from ideal ciphers. As part of this work, they discuss the
security of constructions with respect to general (i.e., possibly non-uniform) dis-
tributions over ciphers. (Our positive results deal with iterated hash functions,
not compression functions, and do not follow from their results.) The distribu-
tions they consider are not intended to represent any real-world structural defects
in block ciphers, but are instead contrived distributions used to prove separa-
tion results. The only other work of which we are aware that studies a weakened
ideal-cipher model is by Hirose and Kuwakado [17], who analyze hash-function
constructions in a model where the attacker is given a “key-recovery oracle” that,
for a given input/output pair x, y, returns a key k (if any) for which E(k, x) = y.

Black [8] shows a hash function secure in the ideal-cipher model that is
insecure for any real-world instantiation of the cipher. As in other impossibility
results, the construction is contrived. Our focus is on positive results, subject to
the usual caveats about using idealized models. Hirose [16] shows that for every
PGV construction proven to be secure in the ideal cipher model there exists a
secure pseudorandom permutation that renders the construction insecure.

Lucks [26] studies the problem of constructing a hash function from a weak
compression function. His goal was to achieve properties beyond collision resis-
tance (e.g., k-collision-resistance or second-preimage resistance) even if collisions
can be found in the underlying compression function. Zhang et al. [33] study the
construction of rate-1 MACs from block ciphers under a weaker security notion
than pseudorandomness since the weaker notion is sufficient for secure MACs.

2 Definitions

2.1 Weakened Ideal Ciphers

An ideal cipher is an oracle E : {0, 1}n × {0, 1}n → {0, 1}n where, for each
k ∈ {0, 1}n, the function Ek(·) def= E(k, ·) is chosen uniformly from the set of
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permutations on {0, 1}n. We let E−1 denote the inverse of E; i.e., E−1
k (y) is the

unique x such that Ek(x) = y.
We now define a cipher that is ideal except for the fact that it has a related-

key weakness. By this we mean that the cipher returns related outputs on related
keys/inputs. Specifically, there is a shift �k �= 0n and shifts �x,�y ∈ {0, 1}n

such that Ek(x) = Ek⊕�k(x ⊕ �x) ⊕ �y.3

Definition 1 (Ideal cipher vulnerable to related-key attacks). Let �k ∈
{0, 1}n \ {0n} and �x,�y ∈ {0, 1}n. Let K ⊂ {0, 1}n be such that (K,K ⊕ �k)
is a partition of {0, 1}n. A (�k,�x,�y)-ideal cipher is an oracle E : {0, 1}n ×
{0, 1}n → {0, 1}n where, for each k ∈ K, the function Ek(·) = E(k, ·) is chosen
uniformly from the set of permutations on {0, 1}n, and for k /∈ K we define
Ek(x) def= Ek⊕�k(x ⊕ �x) ⊕ �y.

We let B(�k,�x,�y) denote the set of all functions as in the definition above
(i.e., Ek is a permutation for all k, and Ek(x) = Ek⊕�k(x ⊕ �x) ⊕ �y for all

k, x, y). Then E
$← B(�k,�x,�y) denotes uniform choice of E from this space.

2.2 Hash Functions and Their Security

A (block-cipher-based) hash function is an oracle machine H : D → {0, 1}c,
where D ⊆ {0, 1}∗. This machine expects to have oracle access to a function
E : {0, 1}n × {0, 1}n → {0, 1}n. In this notation, a compression function f is
a hash function whose domain D is equal to {0, 1}c × {0, 1}b, with b ≥ 1. Fix
h0 ∈ {0, 1}c. The iterated hash of compression function f is the hash function
H : ({0, 1}b)∗ → {0, 1}c defined by HE(ε) def= h0 and HE(m1, . . . ,m�)

def= h�

with hi = fE(hi−1,mi).
To quantify the collision resistance of a block-cipher-based hash function H in

our model, we instantiate the block cipher by a uniform E ∈ B(�k,�x,�y). An
adversary A is given oracles for E(·, ·) and E−1(·, ·) and aims to find a collision
for HE , i.e., messages M �= M ′ such HE(M) = HE(M ′).

Definition 2. Let H be a block-cipher-based hash function, and let A be an
adversary. The advantage of A in finding collisions in H is

Advcoll
H,�k,�x,�y(A) = Pr[E $← B(�k,�x,�y); (M,M ′) $← AE,E−1

:

M �= M ′ ∧ HE(M) = HE(M ′)]

For q ≥ 1, we write Advcoll
H,�k,�x,�y(q) = maxA{Advcoll

H,�k,�x,�y(A)} where the
maximum is taken over all adversaries that ask at most q queries to the E and
E−1 oracles.
3 Note that Definition 1 allows only for a single differential. We can easily extend

the definition to allow for multiple differentials �k1 �= �k2 �= · · · �= �kt �= 0n.
Our results hold even for the case of multiple differentials as long as the number of
differentials t is a constant.
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Definition 3. The advantage of finding collisions in H, a block-cipher-based
hash function, is defined as Advcoll

H (q) = max�k �=0n,�x,�y{Advcoll
H,�k,�x,�y(q)}

where the maximum is taken over all �k ∈ {0, 1}n \{0n} and �x,�y ∈ {0, 1}n.

We also define the advantage of an adversary in finding collisions in a compression
function f : {0, 1}c × {0, 1}b → {0, 1}c. Here, (h,m) and (h′,m′) collide under f
if they are distinct and fE(h,m) = fE(h′,m′). We also consider finding (h,m)
such that fE(h,m) = h0, for a fixed h0 ∈ {0, 1}c, to be a collision.

Definition 4 (Collision resistance of a compression function when
instantiated with a (�k,�x,�y)-ideal cipher). Let f be a block cipher
based compression function, f : {0, 1}c × {0, 1}b → {0, 1}c. Fix a constant
h0 ∈ {0, 1}c and an adversary A. The advantage of A in finding collisions in f
is

Advcoll
f,�k,�x,�y(A) = Pr[E $← B(�k,�x,�y); ((h,m), (h′,m′)) $← AE,E−1

:

((h,m) �= (h′,m′) ∧ fE(h,m) = fE(h′,m′)) ∨ fE(h,m) = h0]

For q ≥ 1, we write Advcoll
f,�k,�x,�y(q) = maxA{Advcoll

f,�k,�x,�y(A)} where the
maximum is taken over all adversaries that ask at most q queries to the E and
E−1 oracles.

Definition 5 (Collision resistance of a compression function instanti-
ated with a weakened ideal cipher). Let f be a block-cipher based com-
pression function. Then, the advantage of finding collisions in f is defined as
Advcoll

f (q) = max�k �=0n,�x,�y{Advcoll
f,�k,�x,�y(q)} where the maximum is taken

over all values of �k ∈ {0, 1}n \ {0n} and �x,�y ∈ {0, 1}n.

We consider the inversion resistance of the hash function constructions as
well. We follow the definition of inversion resistance as in [9] where inversion
resistance is defined in terms of inverting a random range point.

Definition 6 (Inversion Resistance of a hash function when instanti-
ated with a (�k,�x,�y)-ideal cipher). Let H be a block cipher based hash
function and let A be an adversary. Then the advantage of A in inverting H is
the real number

Advinv
H,�k,�x,�y(A) = Pr[E $← B(�k,�x,�y);σ $← R;M ← AE,E−1

(σ) :

HE(M) = σ]

For q ≥ 1, we write Advinv
H,�k,�x,�y(q) = maxA{Advinv

H,�k,�x,�y(A)} where the
maximum is taken over all adversaries that ask at most q queries to the E and
E−1 oracles.

Definition 7 (Inversion resistance of a hash function instantiated with
a weakened ideal cipher). The advantage of inverting H, a block-cipher-based
hash function, is defined as Advinv

H (q) = max�k �=0n,�x,�y{Advinv
H,�k,�x,�y(q)}

where the maximum is taken over all values of �k ∈ {0, 1}n\{0n} and �x,�y ∈
{0, 1}n.
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2.3 The PGV Constructions

The 12 group-1 and 8 group-2 schemes in [9] are given in Figure 1. This defines
fi[n] : {0, 1}n × {0, 1}n → {0, 1}n for i ∈ [1 . . . 20]. The iterated hash of these
compression functions give hash functions Hi[n]. We omit writing [n] while refer-
ring to the compression and the hash functions.
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Fig. 1. Compression functions f1, . . . , f20 for the hash functions H1, . . . , H20. The hatch
marks the location of the key.

3 Collision Resistance of the PGV Compression
Functions

We show that none of the 64 PGV compression functions are collision resistant
when the underlying block cipher is instantiated with a weakened ideal cipher.
This is in contrast to the 12 group-1 compression functions f1, . . . , f12 being
collision-resistant in the ideal-cipher model [9].4

4 The remaining compression functions have collisions even in the ideal-cipher model.
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Consider an example where E is a weakened ideal cipher as in Definition 1
with �x = �y = 0n and an arbitrary �k �= 0n, implying Ek⊕�k(x) = Ek(x).
For the Davies-Meyer compression function f5(h,m) = Em(h) ⊕ h, this gives a
collision immediately since f5(h,m) = f5(h,m ⊕ �k) and �k �= 0n. Similarly,
we can find collisions in all the 12 group-1 compression functions for any value
of �k �= 0n and �x, by setting �y as shown in Table 1.

Table 1. Collisions in compression functions f1, . . . , f12 for any �k �= 0n, �x ∈ {0, 1}n

Compression function �y

f1 �x

f2 �x

f3 �k ⊕ �x

f4 �k ⊕ �x

f5 �x

f6 �x

f7 �k ⊕ �x

f8 �k ⊕ �x

f9 �x

f10 �x

f11 �k ⊕ �x

f12 �k ⊕ �x

4 Collision Resistance of the PGV Hash Functions

The group-1 (H1, . . . , H12) and group-2 (H13, . . . , H20) schemes are collision-
resistant in the ideal-cipher model [9]. Somewhat surprisingly, we show that only
hash functions H1,H2,H3 and H4 are collision-resistant, in the general case,
when instantiated with weakened ideal ciphers as in Definition 1. These four
hash functions happen to be those whose key does not depend on the message.

When a construction is such that the key depends on the message, a related-
key attack allows us to get a predictable output for some (non-zero) key-shift.
Thus we can modify the message (which is part of the key) to produce a colli-
sion in the weakened ideal-cipher model. In this section, we prove the collision
resistance of H1, . . . , H4 and show collisions in the hash functions H5, . . . ,H20.

4.1 Collisions in Hash Functions H5, . . . ,H20

We can find collisions in the hash functions H5, . . . , H20 when instantiated with
a weakened ideal cipher as illustrated in Table 2. The collisions in the hash func-
tions H5, . . . , H12 are special cases of the collisions found in the corresponding
compression functions. In Section 3, we showed that when E is a weakened ideal
cipher with �x = �y = 0n implying Ek⊕�k(x) = Ek(x), we get a collision
in the Davies-Meyer compression function f5(h,m) = Em(h) ⊕ h. This leads
to a collision in the Davies-Meyer hash function H5 as well. This is because
H5

E(m1, . . . ,m�) = H5
E(m1, . . . ,m� ⊕ �k)when Ek⊕�k(x) = Ek(x).
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Table 2. Collisions in hash functions H5, . . . , H20

Hash function �x �y

H5 0n 0n

H6 �k �k

H7 0n �k

H8 �k 0n

H9 �k �k

H10 0n 0n

H11 �k 0n

H12 0n �k

H13 �k 0n

H14 �k �k

H15 0n 0n

H16 0n 0n

H17 0n �k

H18 0n �k

H19 �k 0n

H20 �k �k

4.2 Collision Resistance of Hash Functions H1,H2,H3, and H4

We prove that the hash functions H1,H2,H3,H4 (whose key is independent of
the message) are collision-resistant. As shown in Table 1, we can easily find
collisions in their corresponding compression functions f1, . . . , f4. Hence, we can
no longer analyze the collision resistance of the hash functions H1, . . . ,H4 in the
Merkle-D̊amgard paradigm. However, the proof technique illustrated in [9] (to
prove collision resistance for hash functions whose compression functions are not
collision-resistant) can be used here.

Theorem 1 (Collision resistance of hash functions H1,H2,H3,H4 when
instantiated with a weakened ideal cipher). Fix n ≥ 1 and i ∈ [1 . . . 4].
Then Advcoll

Hi[n](q) ≤ 14q(q + 1)/2n for all q ≥ 1.

Proof. Fix constant h0 ∈ {0, 1}n. We prove the theorem for H1 (Matyas-Meyer-
Oseas construction).The Matyas-Meyer-Oseas (MMO) construction is f1(h,m) =
Eh(m)⊕m where E is a block cipher. Let E be a (�k,�x,�y)-ideal cipher. The
definition of collision resistance considered here is the one in Definition 3. Define
a directed graph G = (VG, EG) with vertex set VG = {0, 1}n × {0, 1}n × {0, 1}n

and an arc (x, k, y) → (x′, k′, y′) in EG if and only if k′ = y ⊕ x.5

Let AE,E−1
be an adversary attacking MMO. We analyze the behaviour of

A when its left oracle is instantiated by E : {0, 1}n × {0, 1}n → {0, 1}n. Since
E is a (�k,�x,�y)-ideal cipher, E is chosen as follows. Let K ⊂ {0, 1}n be

5 The condition for an edge between two vertices depends on the compression function
(i.e.) f1 in this case.
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Algorithm 1. SimulateOracles(A,n)
• Initially, i ← 0 and Ek(x) = undefined for all (k, x) ∈ {0, 1}n × {0, 1}n

• Run AE,E−1
, answering oracle queries as follows:

• When A asks a query (k, x) to its left oracle:
1. i ← i + 1;

2. ki ← k; xi ← x; yi
$← Range(Ek); Ek(x) ← yi;

3. k̂i ← k ⊕ �k; x̂i ← x ⊕ �x; ŷi←yi−1 ⊕ �y; Ek⊕�k(x ⊕ �x) ← ŷi;

4. return (xi, ki, yi), (x̂i, k̂i, ŷi) to A;

• When A asks a query (k, y) to its right oracle:
1. i ← i + 1;

2. ki ← k; yi ← y; xi
$← Domain(Ek); Ek(xi) ← y;

3. k̂i ← k ⊕ �k; ŷi ← y ⊕ �y; x̂i←xi−1 ⊕ �x; Ek⊕�k(x̂i) ← y ⊕ �y;

4. return (xi, ki, yi), (x̂i, k̂i, ŷi) to A;

where Domain(Ek) is the set of points x where Ek(x) is no longer undefined and
Domain(Ek) = {0, 1}n−Domain(Ek). Range(Ek) is the set of points y where y = Ek(x)
is no longer undefined and Range(Ek) = {0, 1}n − Range(Ek).

such that (K,K ⊕ �k) is a partition of {0, 1}n. For each key k ∈ K, choose a
random permutation Ek(·) : {0, 1}n → {0, 1}n and for each key k /∈ K, Ek(x) def=
Ek⊕�k(x ⊕ �x) ⊕ �y for fixed �k �= 0n,�x and �y where k ⊕ �k ∈ K. A’s
right oracle is instantiated by E−1, the inverse of E. Assume that A asks at
most q total queries.

Run the algorithm SimulateOracles(A,n) described in Algorithm 1. As A
executes with its (simulated) oracle, colour the vertices of G as follows.6 Initially,
each vertex of G is uncoloured. When A asks an E-query (k, x) (or when A asks
an E−1 query of (k, y)) and this returns (x, k, y) and (x̂, k̂, ŷ), then, for each
vertex that was returned:

– if k = h0 (if k̂ = h0), then vertex (x, k, y) (vertex (x̂, k̂, ŷ)) gets coloured red ;
– otherwise, vertex (x, k, y) (vertex (x̂, k̂, ŷ)) gets coloured black.

Without loss of generality, we assume that the adversary does not ask any oracle
query to which the response is already known. Accordingly, every query the
adversary asks results in exactly two vertices getting coloured, those two formerly
being uncoloured.

A vertex of G is coloured when it gets coloured red or black. A path P in G
is coloured if all of its vertices are coloured. Vertices (x, k, y) and (x′, k′, y′) are
said to collide if y′ ⊕ x′ = y ⊕ x.7 Distinct paths P and P ′ are said to collide if
all of their vertices are coloured and they begin with red vertices and end with
6 Note that the vertices and edges of G are fixed. As A’s execution proceeds, the

vertices of G get coloured depending on A’s queries and the results returned.
7 The condition for collision between two vertices depends on the compression function

(i.e.) f1 in this case.
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colliding vertices. Let C be the event that, as a result of the adversary’s queries,
two colliding paths are formed in G.

Claim. Advcoll
H1[n](q) ≤ Pr[C].

Claim. Pr[C] ≤ 14q(q + 1)/2n.

Proof (Proof Sketch). Let Ci be the event that C occurs by the i-th query.
Let C0 be the null event. Then Pr[C] =

∑q
i=1 Pr[Ci| Ci−1 ∧ . . . ∧ C0]. Given

Ci−1 ∧ . . . ∧ C0, the event Ci occurs in one of the following ways. In the i-th
query, a) a mid vertex (on a path) could get coloured, or b) the start (red) vertex
could get coloured, or c) an end vertex (one of the colliding vertices) could get
coloured, or d) a start vertex that collides with h0 could get coloured. Since
there are two vertices returned when E is instantiated with a (�k,�x,�y)-
ideal cipher, any two events listed above can happen in the i-th query leading
to C, forming of two colliding paths. The analysis can be found in Appendix A.

Combining the two claims, we show that the MMO construction when instan-
tiated with a weakened ideal cipher is collision resistant. The proofs for H2,H3

and H4 can be obtained by adapting the proof above.

4.3 Additional Results on the Collision Resistance of the PGV
Hash Functions

The definition of (�k,�x,�y)-ideal cipher in Definition 1 places only one
requirement on the values of �k,�x,�y, namely, that �k �= 0n. This require-
ment is based on the assumption that block ciphers should at least be pseudo-
random functions. However, if we allow �k = 0n, we can easily find collisions in
H1,H2,H3 and H4 (that were collision-resistant when �k �= 0n by Theorem 1).

In Table 2 of Section 4.1, we show collisions in the hash functions H5, . . . , H20

when instantiated with a weakened ideal cipher. We claim that the collisions
given in Table 2 are the only collisions possible in hash functions H5, . . . , H20.

Theorem 2 (Collision resistance of hash functions H5, . . . , H20 when
instantiated with a weakened ideal cipher). Fix n ≥ 1 and i ∈ [5 . . . 20].
Then we have that ˜Adv

coll

Hi
(q) ≤ 14q(q +1)/2n for all q ≥ 1 where ˜Adv

coll

Hi
(q) =

max{Advcoll
H,�k,�x,�y(q)} where the maximum is taken over all values of �k ∈

{0, 1}n \ {0n},�x ∈ {0, 1}n,�y ∈ {0, 1}n, excluding those (�k,�x,�y) triples
given by Row i − 4 in Table 2.

The proof follows along the same lines as the proof in Theorem 1 and is omitted
here due to space constraints.
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5 Inversion Resistance of the PGV Constructions

Black, Rogaway, and Shrimpton [9] proved that the group-1 and group-2 hash
functions are inversion-resistant with better bounds for the group-1 schemes.

We analyze the inversion resistance of the PGV constructions when the
underlying block cipher is instantiated with a weakened ideal cipher. Compres-
sion functions f1, . . . , f12 are inversion-resistant in our setting as well. Conse-
quently, their hash functions H1, . . . , H12 can be proved to be inversion-resistant
using the Merkle-Damg̊ard paradigm.

Theorem 3 (Inversion resistance of hash functions H1, . . . , H12). Fix n ≥
1 and i ∈ [1 . . . 12]. Then Advinv

Hi[n](q) ≤ q/(3 · 2n−3) for any q ≥ 1.

Proof. We prove that the compression functions f1, . . . , f12 are inversion-resistant
and use Merkle-Damg̊ard to prove inversion resistance of the hash functions.

Lemma 1. Inversion resistance of compression functions f1, . . . , f12] Fix n ≥ 1
and i ∈ [1 . . . 12]. Then Advinv

fi[n](q) ≤ q/(3 · 2n−3) for any q ≥ 1.

Proof. Consider f1. Fix h0 ∈ {0, 1}n. The adversary A has access to oracles
E,E−1 where E is a (�k,�x,�y)-ideal cipher and E−1 is its inverse. The
adversary A is given a range point σ that it tries to invert. Without loss of
generality, assume that when A outputs a message M , A has already made the
necessary E or E−1 queries to compute HE(M) and that A asks q queries in
total to its oracles.

Run SimulateOracles(A,n) as described in Algorithm 1 to get (xj , kj , yj)
and (x̂j , k̂j , ŷj) for j = 1, . . . , q. Let Ij be the event that the adversary finds
an inversion in the j-th query. Let (xj , kj , yj) and (x̂j , k̂j , ŷj) be the two tuples
returned in the j-th query. Either xj ⊕ yj = σ or x̂j ⊕ ŷj = σ. If the adversary
queried for the tuple (xj , kj , yj), either xj or yj was assigned at random from a
set of size at least 2n − (j − 1). So, Pr[Ij ] ≤ 2

2n−(j−1) . Therefore, Pr[(h,m) ←
AE,E−1

(σ) : E(h,m) ⊕ m = σ] = Pr[I1 ∨ . . . ∨ Iq] ≤ ∑q
j=1 Pr[Ij ] ≤ q

3·2n−3 .
Similarly, we can prove this lemma for f2, . . . , f12 as well.

Lemma 2 (Merkle Damg̊ard for inversion resistance). Let f : {0, 1}n ×
{0, 1}n → {0, 1}n be a compression function and H, the iterated hash of f . Then,
Advinv

H (q) ≤ Advinv
f (q) for all q ≥ 1.

Combining Lemmas 1 and 2, we have Advinv
Hi[n](q) ≤ q/3 · 2n−3 for i ∈ [1 . . . 12].

To prove the inversion resistance of hash functions H13, . . . , H20, we cannot
use Merkle-Damg̊ard because their underlying compression functions are not
inversion-resistant. Hence, we use a proof technique similar to that of Theorem 1.
However, here, we use it to prove inversion resistance.8

8 In order to prove the inversion resistance of the group-2 schemes H13, . . . , H20, Black,
Rogaway and Shrimpton use the fact that collision resistance implies inversion resis-
tance. This does not apply here as the group-2 hash functions are no longer collision-
resistant as shown in Table 2.
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Theorem 4 (Inversion resistance of hash functions H13, . . . , H20). Fix
n ≥ 1 and i ∈ [13 . . . 20]. Then Advinv

Hi[n](q) ≤ (4q2 + 16q)/2n−1 for any q ≥ 1.

Proof. Fix constants h0, v ∈ {0, 1}n. We prove the theorem for the case of
H13 where f13(h,m) = Eh⊕m(m) ⊕ v. Here, we consider the case when E
is a (�k,�x,�y)-ideal cipher as in Definition 1. We define a directed graph
G = (VG, EG) with vertex set VG = {0, 1}n × {0, 1}n × {0, 1}n and an arc
(x, k, y) → (x′, k′, y′) in EG if and only if k′ ⊕ x′ = y ⊕ v.

Let AE,E−1
(σ) be an adversary attacking H13. The adversary is given σ as

input and its goal is to invert σ. Assume that A asks at most q total queries.
The adversary’s queries are answered by using SimulateOracles(A,n) as in Algo-
rithm 1. Initially all the vertices of G are uncoloured. When A asks an E-query
(k, x) (or when A asks an E−1 query of (k, y)) and this returns (x, k, y) and
(x̂, k̂, ŷ), then, for each vertex (x, k, y): if x ⊕ k = h0, then vertex (x, k, y) gets
coloured red; otherwise, vertex (x, k, y) gets coloured black.

A vertex of G is coloured when it gets coloured red or black. A path P in G
is coloured if all of its vertices are coloured. Vertex (x, k, y) is said to invert if
y ⊕ v = σ. A path is inverting if all of its vertices are coloured, it starts with a
red vertex and ends in an inverting vertex. Let I be the event that, as a result
of the adversary’s queries, an inverting path is formed in G.

Claim. Advinv
H13[n](q) ≤ Pr[I].

Claim. Pr[I] ≤ (4q2 + 16q)/2n−1.

Proof (Proof Sketch). Let Ij be the event that I occurs by the j-th query. Let I0
be the null event. Then Pr[I] =

∑q
j=1 Pr[Ij | Ij−1 ∧· · ·∧I0]. Given Ij−1 ∧· · ·∧I0,

the event Ij occurs in one of the following ways. In the j-th query, a) the start
(red) vertex could get coloured, or b) a mid vertex (on the path) could get
coloured, or c) the end vertex (inverting vertex) could get coloured, or d) a
vertex that is both a start and an end vertex could get coloured. I could occur
in the j-th query due to any of these events.

Using similar techniques as the proof of Theorem 1, we can prove the two claims.
The proofs for H14, . . . H20 can be obtained in a similar fashion. The proof is
omitted here due to space constraints.

A Proof of Theorem 1 : Collision Resistance of
H1,H2,H3 and H4

Claim. Advcoll
H1[n](q) ≤ Pr[C].

Proof. Suppose that A outputs colliding messages M = m1 . . . ma and M ′ =
m′

1 . . . m′
b, implying that HE(M) = HE(M ′) for the simulated oracle E. Let

P = (x1, k1, y1) → . . . → (xa, ka, ya) where, for each i ∈ [a], xi = mi, ki =
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hi−1, yi = Eki
(xi) and hi = yi ⊕ xi

9. Let P ′ = (x′
1, k

′
1, y

′
1) → . . . → (x′

b, k
′
b, y

′
b)

where, for each i ∈ [b], x′
i = m′

i, k
′
i = h′

i−1, y
′
i = Ek′

i
(x′

i) and h′
i = y′

i ⊕ x′
i and

h′
0 = h0, a fixed constant. We claim that P and P ′ are colliding paths.

We assume that A makes all of the queries necessary to compute H(M) and
H(M ′). So, for each i ∈ [a], A must have made either an E-query (ki, xi) or
(ki ⊕�k, xi ⊕�x) (or an E−1-query (ki, yi) or (ki ⊕�k, yi ⊕�y)). We can then
conclude that P and P ′ are coloured. Moreover, k1 = h0 and k′

1 = h0, so each
of P and P ′ start with a red node.

If a �= b, then clearly P and P ′ are distinct. Consider a = b and M �= M ′.
There is some i ∈ [a] such that mi �= m′

i and so (xi, ki, yi) �= (x′
i, k

′
i, y

′
i), implying

that P and P ′ are distinct.
Finally, if M and M ′ collide, we have ha = h′

b and hence ya ⊕ xa = y′
b ⊕ x′

b.
This implies that (xa, ka, ya) and (x′

b, k
′
b, y

′
b) are colliding vertices. Therefore P

and P ′ are distinct paths that are coloured, start with a red vertex and end with
colliding vertices. This completes the proof.

Claim. Pr[C] ≤ 14q(q + 1)/2n.

Proof. Let Ci be the event that C occurs by the i-th query and C0 be the null
event. Then Pr[C] =

∑q
i=1 Pr[Ci| Ci−1 ∧ . . . ∧ C0]. Let vertices (xi, ki, yi) and

(x̂i, k̂i, ŷi) be the vertices coloured in the i-th query during A’s interaction with
the oracle. The analysis proceeds by considering the probability of Ci given
Ci−1 ∧ . . . ∧ C0. The event Ci can happen in the i-th query if

1. a mid vertex (on a path) gets coloured, or
2. the start (red) vertex gets coloured, or
3. an end vertex (one of the colliding vertices) gets coloured, or
4. a start vertex that collides with h0 gets coloured.

Note that since two vertices are coloured for every query, any two of the events
above can happen in the i-th query leading to Ci. But it is necessary that at
least one of them occur in order to form two colliding paths. So,

Pr[Ci|Ci−1 ∧ . . . ∧ C0] ≤ Pr[Case 1] + Pr[Case 2] + Pr[Case 3] + Pr[Case 4]

Before analyzing the four cases, we define some notation. For 1 ≤ a, b ≤ q, let
Arc(a, b) be the event that there exists in G vertices (xa, ka, ya) and (xb, kb, yb)
coloured on the a-th and b-th queries respectively, and kb = ya ⊕ xa. For 1 ≤
a ≤ q, let Start(a) be the event that there exists in G vertex (xa, ka, ya) coloured
in the a-th query and ka = h0. For 1 ≤ a, b ≤ q, let Collide(a, b) be the event
that there exists in G vertices (xa, ka, ya) and (xb, kb, yb) coloured in the a-th
and b-th queries respectively, and yb ⊕ xb = ya ⊕ xa

10. Two vertices (xa, ka, ya)
and (xb, kb, yb) are adjacent to each other if either Arc(a, b) or Arc(b, a) is true.

9 This again is by the definition of the compression function f1.
10 The conditions for defining an arc, a start (red) vertex and collision depend on the

compression function f1.
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Case 1. A mid-vertex gets coloured. In the i-th query, two vertices (xi, ki, yi) and
(x̂i, k̂i, ŷi) are coloured. This event requires that there exists a vertex (xr, kr, yr)
such that there exists an arc (xr, kr, yr) → (xi, ki, yi) or (xr, kr, yr) → (x̂i, k̂i, ŷi),
where r < i. And there exists a vertex (xj , kj , yj) such that there exists an arc
(xi, ki, yi) → (xj , kj , yj) or (x̂i, k̂i, ŷi) → (xj , kj , yj), where j < i.

This event requires that a) Arc(r, i) ∧ Arc(i, j) or b) Arc(r, î) ∧ Arc(̂i, j) or c)
Arc(r, i) ∧ Arc(i, î) ∧ Arc(̂i, j) or d) Arc(r, î) ∧ Arc(̂i, i) ∧ Arc(i, j) be true. So,

Pr[Case 1] ≤ Pr[Arc(i, j)] + Pr[Arc(̂i, j)] + Pr[Arc(i, î)] + Pr[Arc(̂i, i)]

Analyzing Pr(Arc(i, j)): If Ci occurs via an E-query, then the y-value is a random
value chosen from a set of size at least 2n−(i−1).11 Also, note that the (xj , kj , yj)
could be any of the 2(i − 1) vertices coloured in the previous queries. Then,

Pr[Arc(i, j)] ≤ 2(i − 1)
2n − (i − 1)

Alternatively, if Ci occurs via an E−1 query, then the x-value is a random value
from a set of size at least 2n − (i − 1). Then, Pr[Arc(i, j)] ≤ 2(i−1)

2n−(i−1) . So,

Pr[Arc(i, j)] ≤ 2(i−1)
2n−(i−1) . Similarly, we can show that Pr[Arc(̂i, j)] ≤ 2(i−1)

2n−(i−1)

and Pr[Arc(i, î)] = Pr[Arc(̂i, i)] ≤ 1
2n−(i−1) . So, Pr[Case 1] ≤ 4(i−1)+2

2n−(i−1) .

Case 2. A start vertex gets coloured. In the i-th query, two vertices (xi, ki, yi) and
(x̂i, k̂i, ŷi) are coloured. This event requires that either (xi, ki, yi) or (x̂i, k̂i, ŷi)
is coloured red and there exists a vertex (xj , kj , yj) such that there exists an arc
(xi, ki, yi) → (xj , kj , yj) or (x̂i, k̂i, ŷi) → (xj , kj , yj), where j < i.

This event requires that a) Start(i) ∧ Arc(i, j) or b) Start(̂i) ∧ Arc(̂i, j) or c)
Start(i) ∧ Arc(i, î) ∧ Arc(̂i, j) or d) Start(̂i) ∧ Arc(̂i, i) ∧ Arc(i, j) be true. So,

Pr[Case 2] ≤ Pr[Arc(i, j)] + Pr[Arc(̂i, j)] + Pr[Arc(i, î)] + Pr[Arc(̂i, i)]

The analysis is the same as case 1. So, the probability of this event is 4(i−1)+2
2n−(i−1) .

Case 3. An end vertex gets coloured. This case is analyzed in two sub-cases: 1)
only one vertex coloured in the i-th query is an end vertex and 2) both vertices
coloured in the i-th query are end vertices i.e. the two vertices formed in the i-th
query collide with each other.

1) In the i-th query, two vertices (xi, ki, yi) and (x̂i, k̂i, ŷi) are coloured.
This event requires that there exists a vertex (xj , kj , yj) such that there exists
an arc (xj , kj , yj) → (xi, ki, yi) or (xj , kj , yj) → (x̂i, k̂i, ŷi), where j < i and
there exists a vertex (xr, kr, yr) such that (xr, kr, yr) collides with (xi, ki, yi)
or (x̂i, k̂i, ŷi) where r < i. This requires that a) Arc(j, i) ∧ Collide(i, r) or b)
11 Even though the adversary A learns two triplets for every query, corresponding to

a key k, A could have learnt only (i − 1) y-values and not 2(i − 1). This is because
the two triplets learnt for each query, due to the related key weakness, are for two
different keys since �k �= 0n.
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Arc(j, î) ∧ Collide(̂i, r) or c) Arc(j, i) ∧ Arc(i, î) ∧ Collide(̂i, r) or d) Arc(j, î) ∧
Arc(̂i, i) ∧ Collide(i, r) be true.

If Ci occurs via an E-query, then the y-value is a random value chosen from
a set of size at least 2n − (i − 1). Then,

Pr[Collide(i, r)] ≤ 2(i − 1)
2n − (i − 1)

.

Alternatively, if Ci occurs via an E−1 query, then the x-value is a random value
from a set of size at least 2n − (i − 1). Then, Pr[Collide(i, r)] ≤ 2(i−1)

2n−(i−1) . So,

Pr[Collide(i, r)] ≤ 2(i−1)
2n−(i−1) . We can show that Pr[Collide(̂i, r)] ≤ 2(i−1)

2n−(i−1) and

Pr[Arc(i, î)] = Pr[Arc(̂i, i)] ≤ 1
2n−(i−1) . Hence, Pr[Case 3.1] = 4(i−1)+2

2n−(i−1) .

2) The two vertices coloured in the i-th query, (xi, ki, yi) and (x̂i, k̂i, ŷi) collide
with each other. This event requires that there exists a vertex (xj , kj , yj) such
that there exists an arc (xj , kj , yj) → (xi, ki, yi) and vertex (xp, kp, yp) such that
there exists an arc (xp, kp, yp) → (x̂i, k̂i, ŷi), where p < i and (xi, ki, yi) collides
with (x̂i, k̂i, ŷi).

Thus, for vertices (xi, ki, yi) and (x̂i, k̂i, ŷi) coloured in the i-th query to col-
lide, we require that Arc(j, i)∧Arc(p, î)∧Collide(i, î) to be true. Now, Pr[Arc(j, i)∧
Arc(p, î) ∧ Collide(i, î)] ≤ Pr[Arc(j, i)|Arc(p, î)].

If Ci occurs via an E-query, then the y-value is random value from a set of
size at least 2n − (i − 1). Now, if p �= j,

Pr[Arc(j, i)|Arc(p, î)] ≤ 2(i − 1)
2n − (i − 1)

If p = j,

Pr[Arc(j, i)|Arc(p, î)] ≤ Pr[ki = xj ⊕ yj |ki ⊕ �k = xp ⊕ yp]
= Pr[xp ⊕ yp ⊕ �k = xp ⊕ yp]
= Pr[�k = 0n] = 0

and hence12,

Pr[Arc(j, i) ∧ Arc(p, î) ∧ Collide(i, î)] ≤ 2(i − 1)
2n − (i − 1)

Alternatively, if Ci occurs via an E−1-query, we can still get Pr[Arc(j, i) ∧
Arc(p, î) ∧ Collide(i, î)] ≤ 2(i−1)

2n−(i−1) . So, Pr[Case 3.2] = 2(i−1)
2n−(i−1) . And, hence

Pr[Case 3] = 6(i−1)+2
2n−(i−1) .

Case 4. A vertex colliding with h0 gets coloured. In the i-th query, two vertices
(xi, ki, yi) and (x̂i, k̂i, ŷi) are coloured. This event requires (at least) that either
(xi, ki, yi) is such that xi ⊕ yi = h0 or (x̂i, k̂i, ŷi) is such that x̂i ⊕ ŷi = h0.
12 Note that this requires �k �= 0n. If �k = 0n, the proof does not hold and in fact,

we can find collisions in the hash function.
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Consider the probability of xi ⊕ yi = h0. If this occurs via an E-query, then
the y-value is a random value from a set of size 2n − (i − 1). Then, Pr[xi ⊕ yi =
h0] ≤ 1

2n−(i−1) . Alternatively, if Ci occurs in this case via an E−1 query, then
the x-value is a random value from a set of size at least 2n − (i − 1). Then,
Pr[xi ⊕ yi = h0] ≤ 1

2n−(i−1) . Note that the same analysis works for (x̂i, k̂i, ŷi) as
well. So, Pr[Case 4] = 2

2n−(i−1) .
Combining all four cases, we have that,

Pr[C] ≤
q∑

i=1

Pr[Ci|Ci−1 ∧ . . . ∧ C0] ≤
q∑

i=1

14(i − 1) + 8
2n − (i − 1)

≤ 14q(q + 1)
2n
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Abstract. In this paper, we describe a new variation of PMAC called
PMACX. It generalizes PMAC-with-Parity, a prior work of Yasuda. The
most unique feature of PMACX is its parallel MDS (Maximum Dis-
tance Separating) matrix multiplication on the input message before
the authentication. The scheme is parameterized by a generator matrix
for an MDS linear code over GF (2n). PMACX supports any reason-
able choice of the matrix’s dimension, and this choice of the parameters
reflects the trade-off between efficiency and security. For example, if a
14×12 matrix is used, PMACX will be about 14 % slower than PMAC,
and when n = 128, q = 232 and ρ = 264, the best known bound
for PMAC, O(q2ρ/2n), gives a meaningless result, while our bound,
O(q2/2n + qσρ/22n) in this case, is still in the reasonable order of 2−64.
(q2/2n + qσρ/22n ≤ q2/2n + q2ρ2/22n = 2−64 + 2−64 = 2−63)

We corroborate the above theoretical observation with implementa-
tion results. Our comparative experiment shows that a careful choice of
the MDS matrix can make PMACX faster than PMAC-with-Parity, yet
reducing the number of keys from 4 to 2 and achieving asymptotically
the same security level.

Keywords: Block cipher’s mode of operation · PMAC · Beyond-
birthday-bound security · Long message · Fixed key space

1 Introduction

1.1 MACs as Modes of Operation of Block Ciphers

MACs (Message Authentication Codes) are a class of symmetric cryptographic
schemes that can authenticate messages between two users who share a secret
key. Common MACs that are standardized and implemented in practice often
invoke an underlying block cipher as its building block — the well-known block-
cipher based MACs. Popular examples include the CBC family [1],[4],[2],[11],[9]
and PMAC [5],[17]. Such MAC schemes are important from an engineering per-
spective, as the implementations of popular standardized block ciphers, like AES
[6], are almost everywhere and this omnipresence implies the possibility of simple
add-on implementations and high efficiency for block cipher modes of operations.
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1.2 “Birthday Barrier” and the Demand for Going Beyond It

Most popular MAC schemes are provided with proofs of security, and they gen-
erally provide the so-called “birthday-bound”: the adversarial advantage has the
form of O(q2ρ2/2n) or O(σ2/2n). (Throughout this paper, we use q, ρ, σ to
denote the number of queries, the maximum block length of the padded mes-
sages, and the sum of the block length of the padded messages.) Even better
bounds of the form O(ρq2/2n) have been found for certain schemes like PMAC
[15]. However, even though a large amount of work has been done on achieving
better security for existing schemes (either by more careful analysis [2],[15] or
by adjusting the scheme’s specification [17]), the bounding formula will go into
void when either ρ or q goes above 2n/2. This difficulty of providing security over
the level of O(2n/2) is usually called the “birthday barrier”. Going beyond this
barrier has a practical significance, provided that there are still a lot of legacy
systems deploying 64-bit ciphers (e.g. systems in financial institutions). Further-
more, it would also keep the longevity of the current 128-bit cipher families.

1.3 The Intent of Resisting Long Messages

Among themanyworks thatmanage to go beyond the birthday barrier, researchers
seem to focus more on the number of queries [19,20]. We believe that one of the
practical reasons for such is that most real-world network applications authenti-
cate large number of relatively small messages. Unfortunately, going beyond the
birthday barrier in terms of q makes it necessary to introduce qualitative modifi-
cations to existing schemes, since there exist general attacks with O(2n/2) query
complexity for MAC schemes with n-bit intermediate values [16].

On the other hand, there have not been so many works that focus on reducing
the effect of message length. From our perspective, this question should be con-
sidered the same important as that for number of queries, since quite a few types
of application authenticate long messages (e.g. disk authentication). Therefore,
we propose the following question:

How to go beyond the birthday barrier in terms of ρ, the maximum message
block length, without adding too much complexity and overhead to an existing

scheme like PMAC?

1.4 Related Work

Yasuda has presented PMAC-with-Parity [21], which aims to solve the same
question we asked. The scheme provides a security bound of the form O(q2/2n +
σρq/22n). From our perspective, this scheme is only of theoretical interest since
it requires four independent cipher keys and is at least one and a half times more
slowly than the traditional PMAC (The author also proposed variants that have
different parameters, which we do not consider here for the sake of brevity).

A pictorial description of PMAC-with-Parity is given in Fig. 1. Loosely speak-
ing, a message is first divided into 2 “sub-messages”: one consisting of odd-index
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blocks and the other consisting of even-index blocks, and a new “sub-message”
is obtained by xoring these 2 “sub-messages” (of different parity). Among the
four independent keys, three are used in the “PMAC-way” to authenticate the 3
“sub-messages” independently, while the last is used to do the final enciphering,
in a similar way to PMAC.

Fig. 1. PMAC-with-Parity: achieve beyond-birthday security at a cost of 4 keys and
2/3-rate

Apart from PMAC-with-Parity, there has been a large amount of related work
in going beyond the birthday barrier over almost all kinds of symmetric cryp-
tographic primitives: A general method of providing beyond-birthday-bounds
is given in [13], but their methods focus more on reducing the effect of query
numbers, and the main contribution is a way to convert PRPs into fixed-length
PRFs, instead of MAC schemes. Jaulmes et al. [10] proposed a randomized
variant of the plain CBC-MAC that can resist more than 2n/2 queries. Yasuda
designed several beyond-birthday variants of popular MAC algorithms includ-
ing PMAC [20] and HMAC [18], he also proposed relevant PRF-based solutions
[22] as well. For tweakable block ciphers, Minematsu [14] presented a construc-
tion based on a modified underlying tweakable block cipher that goes beyond
the birthday barrier. A recent work by Landecker et al. [12] solved the prob-
lem of restricted tweak space and rekeying in providing beyond-birthday bounds
for tweakable block ciphers. Finally, there has been related work on providing
beyond-birthday bounds for authenticated encryption as well [7,8].

We remark that almost all related work about beyond-birthday-bounds focuses
on the number of queries. To the best of our knowledge, the only work that is rel-
evant to birthday-bounds of message length is Yasuda’s PMAC-with-Parity [21].

1.5 Our Contribution

We combined the construction of PMAC-with-Parity and MDS-coding to design
PMACX, a new variant of PMAC. It can be viewed as a generalization of
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PMAC-with-Parity (and of PMAC as well), whose “parity processing” part is
replaced with a general MDS generator matrix multiplication. Our scheme has
the following characteristics:

1. PMACX is parameterized by a matrix over GF (2n). This matrix parameter
controls the trade-off between efficiency and security.

2. Theoretically, PMACX can achieve a rate arbitrarily close to 1.
3. PMACX is proved to be secure with a bound of the form: O(q2/2n +

qσρd′−1/2d′n), where d′ is a positive integer determined by the matrix param-
eter.

4. PMACX uses only 2 independent keys, regardless of the matrix parameter.
5. Compared to PMAC, the only major structural modification is the intro-

duction of MDS matrix multiplication. A careful instantiation of it would
make the overhead minimal relative to the cipher computation. See Table 1
(Section 6) for a comparison of performance.

For a clear illustration of the improvement of our security bound, see Fig. 2.
For the sake of simplicity, All the messages are assumed to have the same max-
imum length, ρ. We plot the values of ρ and q that make the three bounds
vacuous: O(q2ρ/2n), the best known bound of PMAC, O(q2/2n + qσρ/22n), the
bound of PMAC-with-Parity, and O(q2/2n + qσρ3/24n), one possible bound of
PMACX. Note that the last bound corresponds to the case where d = 7 or d = 8.
From the graph it is clear that our security bound provides a larger “security
region” of the parameters. In particular, this implies PMACX can theoretically
authenticate more messages before its security vanishes. Consider the example of
authenticating 29n/8 blocks of messages in total: in this case, there is a constraint

ρ0 2n/2 23n/4 2n

q

2n/2

ρq = 29n/8

O(q2/2n + qσρ3/24n)

O(q2/2n + qσρ/22n)

O(q2ρ/2n)

Fig. 2. Values of ρ and q that make the bounds vacuous
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on the choice of ρ and q: qρ ≥ 29n/8. This delimiting line is plotted as well, and
we can see that both PMAC and PMAC-with-Parity fail to achieve this task,
while PMACX can still succeed by choosing q and ρ in the region enclosed by
the dotted and the solid line.

Another outstanding advantage of PMACX is its fixed key space. We remark
that a much more simple generalization would just use as many independent
keys as needed, like the case in PMAC-with-Parity. Such deployment of inde-
pendent keys would make the analysis much easier, and the problem of reducing
the impact of message length could indeed be solved. However, we insist on
acquiring better results. We show that although the reduction of the number of
keys makes the analysis more involved, the provable security does not go away
completely (More concretely, in our analysis the key reduction halves the value
of the exponent, d , in the bound’s formula).

1.6 Organization of the Paper

Section 2 introduces the terminology and basic definitions used throughout the
paper. Section 3 gives the background of the unique notion in PMACX: the MDS
generator matrix. Based on these preliminaries, Section 4 presents the detailed
specification of PMACX, followed by a security proof in Section 5 . A concrete
example of the instantiated generator matrix and the implementation result can
be found in Section 6. At last, the whole paper is concluded in Section 7.

2 Preliminary Notion

We use Σ to denote the binary alphabet, {0, 1}; Σn to denote the set of all binary
strings of length n; Σ∗ to denote the set of all finite binary strings. For a string
M , let |M | be its bit-length, |M |n := �|M | /n� be its n-bit block length (after
padding). Let Func(m,n) be the set of all functions: Σm → Σn. Let Func(∗, n)
denote the set of all functions: Σ∗ → Σn. Let Perm(n) be the set of all permuta-

tions: Σn → Σn. When A is a variable and S is a set, the statement A
$← S repre-

sents the operation of uniformly sampling an element from S and assigning it to
A. The statement M [1]||M [2]|| · · · ||M [s] ←m M ||10∗ represents the operation as
following: first append to M a 1-bit, plus enough many 0’s so that its bit-length
is an integer multiple of m, next divide it into m-bit blocks and assign them to
M [1],M [2], · · · ,M [s] in the natural order. M [1]||M [2]|| · · · ||M [s] ←m M refers
to the same operation without padding. In this case, it is assumed that |M | is
always a positve integer multiple of m.

We use GF (2) to denote the Galois field with two elements: {0, 1} with
addition and multiplication modulo 2 as its operation. We treat an element in
Σn both as an n-bit string and as an element in GF (2n) = GF (2)[x]/p(x). For
the latter case, p(x) is an irreducible degree-n polynomial over GF (2), and an n-
bit string, a = an−1an−2 · · · a0 is identified as a formal polynomial: an−1x

n−1 +
an−2x

n−2 + · · ·+a1x+a0. Throughout the paper we apply these two treatments
interchangeably. When a is treated as an element in GF (2)[x]/p(x), we also use
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the integer representation of it as well, namely N = an−1 · 2n−1 + an−2 · 2n−2 +
· · · + a1 · 2 + a0. For example, the integer 2 refers to the formal polynomial
x ∈ GF (2)[x]/p(x).

For the security notions, we apply the convention of “real versus ideal” as
our PRP and PRF definitions. Specifically, consider an adversary A, which is
a probabilistic Turing machine, given access to either a true oracle of a keyed
function (resp., permutation), or an ideal oracle of a compatible idealized random
function (resp., permutation). The adversary is restricted with the number of
queries q, the time complexity t (with respect to some standard computation
model), the maximum queried message’s block length (after padding), ρ, and the
sum of all queried messages’ block lengths (after padding), σ, and he is supposed
to differentiate between the two oracles he is interacting with, by outputting a
guess bit. We also use the simplified notation: ρl = ρ/l and σl = σ/l for sake of
tidiness (When such notations are used, it is assumed that ρ and σ are integer
multiples of the subscript, l). The PRF-advantage of an adversary A against a
keyed function Fk: Σ∗ → Σn is:

AdvprfF (A) = Pr[AFk(·) = 1; k $← K] −Pr[AR(·) = 1;R $← Func(∗, n)] ,

and the PRP-advantage against a keyed permutation Ek: Σn → Σn is:

AdvprpE (A) = Pr[AEk(·) = 1; k $← K] −Pr[AP (·) = 1;P $← Perm(n)] .

We then define AdvprfF (q, t, ρ, σ) to be the maximum PRF-advantage of all
adversaries who ask at most q queries, whose queried message length is at most
ρ blocks, whose total queried message length is at most σ blocks and whose time
complexity is at most t. A similar definition is made for AdvprpE (q, t). Note that
for PRP-advantage we are only interested in the first two arguments, since for
an n-bit permutation (the only kind of PRP considered in this work), the single
message length is restricted to be n-bit long, and the maximum sum of message
lengths are completely determined from q (which is qn).

3 MDS Matrix

We use the well-known MDS (Maximum Distance Separating) notion in con-
structing our new scheme. Informally speaking, an MDS matrix G of size m × n
(m > n) over a field F , is such that for any non-zero vector in Fn, the multipli-
cation of G and this vector will have as many non-zero elements as possible. In
the following sections we will see that this already well-understood, intensively-
studied property of linear code generator matrix can help us derive a better
bound with respect to the maximum message length. We first formally define
what an MDS matrix is:

Definition 1 (MDS Matrix). An m× l matrix G over a field F , where m > l is
an MDS matrix, if for any non-zero vector x ∈ F l, the matrix-vector multiplica-
tion, y = G·x ∈ Fm, has at least d = m−l+1 non-zero entries. Stated differently
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in terms of coding theory, G is a generator matrix of an MDS (m, l,m − l + 1)-
linear code.

It is well-known that an equivalent characterization of MDS-code is a code
that achieves the Singleton bound: d ≤ m−l+1. It would be clear in our analysis
that this property makes the MDS-code an optimal choice for our design scenario.

4 Description of the Mode PMACX

In this section we present the concrete specification of PMACX. The scheme is
parameterized by two permutations, P1, P2 ∈ Perm(n); plus an MDS matrix G.
We use PMACX[G,P1, P2] to denote the algorithm instantiated with a concrete
choice of the three parameters.

The most important parameter unique to PMACX is the MDS matrix G =
(gi,j), It is an m × l matrix over GF (2n), m > l. This matrix parameter helps
specify three other parameters, which usually are the most direct choices of
design from a practical perspective:

– the interval length: l, number of columns of G. This is the number of blocks
in an “interval”, the atomic unit of parallelizable processing in our scheme.

– the number of masking subkeys: m, number of rows of G.
– the security parameter: d = m − l + 1. The larger this value is, the bet-

ter security bound is achieved. Asymptotically, the bound is in the form:
O(q2/2n + qσρ�(d−1)/2�/2�(d+1)/2�n).

Apart from G, the scheme also invokes two permutations: P1 and P2. The
full specification is shown in Algorithm 1. See Fig. 3 for a graphical illustration.

Input: a message, M ∈ Σ∗

Output: a tag, T ∈ Σn

1 M [1]||M [2]|| · · · ||M [s] ←ln M ||10∗;
2 S ← 0n;
3 for i = 1 to m do
4 Li ← P1(i − 1);
5 end
6 for i = 1 to s do
7 Xi ← G · M [i];
8 Xi[1]||Xi[2]|| · · · ||Xi[m] ←n Xi;
9 for j = 1 to m do

10 XEi[j] ← Xi[j] ⊕ 2i−1Lj ;
11 S ← S ⊕ P1(XEi[j]);

12 end

13 end
14 T ← P2(S);
15 return T

Algorithm 1. PMACX[G,P1, P2]
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M [1]
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L1

P1

L2

P1

Lm

P1

M [2]
G

2L1
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2L2

P1

2Lm

P1

M [s]
G

2s−1L1

P1

2s−1L2

P1

2s−1Lm

P1

S

P2

T

Fig. 3. PMACX[G, P1, P2]: the message blocks {M [i]} are of size ln; the m subkeys are
initialized as Li = P1(i − 1), and the multiplications are in the field GF (2)[x]/p(x)

In practice, P1 and P2 are replaced by a block cipher, E: K × Σn → Σn, with
two independent keys: k = (k1, k2) ∈ K ×K, respectively. We use PMACX[G,E]
to denote the MAC scheme of which the key generation algorithm randomly
chooses (k1, k2), and the authentication algorithm computes PMACX[G,Ek1 , Ek2 ]
in the above.

5 Security Analysis

We now analyze the security of our new scheme. We prove that PMACX[G,E] is
a secure PRF with a security bound of the form O(q2/2n +ρd′−1σq/2d′n), where
d′ = 
(d + 1)/2�:
Theorem 1. Let G = (gi,j) be an m × l MDS matrix over GF (2n), 2 ≤ l < m,
and E : K × Σn → Σn be a block cipher. Let d = m − l + 1 be the Hamming
distance of G. Then PMACX[G,E] is a good PRF with the following bound:

Advprf
PMACX[G,E](t, q, ρ, σ) ≤ m2 + 3q2

2n+1
+

4q(2dσ + qm)(2dρ + m)�(d−1)/2�n

2�(d+1)/2�n +2Advprp
E (t

′
, m+q+mσl) ,

where m + 2max{d,m}ρl ≤ 2n−1, t′ = t + O(m + q + mσl).

Remark. The upper bound on the message length in the hypothesis is a
reasonable one in the practical scenario where long messages are authenticated.

Proof. We first replace the block cipher calls in PMACX[G,E] with indepen-
dently uniformly random permutation: P1 and P2, and next replace the uni-
formly random permutation, P2, with a uniformly random function, F2. These
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replacements cost us at most 2AdvprpE (t′,m + mσl + q) + q2/2n+1, where t′ =
t+O(m+mσl +q). We remark that the whole analysis would be more tidy if we
further replace the uniformly random permutation, P1 as well with a uniformly
random function. However, that replacement would incur a loss term of order
m2σ2

l /2n+1, which is too much a loss respective to the motivation of reducing
the effect of message lengths.

Now consider the transformed algorithm, PMACX[G,P1, F2]. We denote the
inner procedure of generating the variable S in Algorithm 1 as inner[G,P1, L

m],
where Lm = {L1, L2, · · · , Lm}.

Without loss of generality we assume the adversary A never repeats its
queries. Consider the two games in Algorithm 2:

1 setup
2 for i = 1 to m do

3 Li
$← Σn;

4 if Li ∈ Range(P1) then
5 CollMask ← true;

6 Li
$← Range(P1) ;

7 end
8 P1(i − 1) ← Li;

9 end

10 end

11 on the α-th query M (α) do

12 S(α) ← inner[G, P1, L
m](M (α));

13 T (α) $← Σn;

14 if S(β) = S(α) for some β ∈ {1, 2, · · · , α − 1} then
15 if ¬CollS then
16 CollS ← true;

17 CollSβ,α ← true;

18 T (α) ← T (β) ;

19 end

20 end

21 P2(S
(α)) ← T (α);

22 return T (α);

23 end

Algorithm 2. Game G0(with the boxed statement) and Game G1(without
the boxed statement)

It is easy to see that for the two games shown in Algorithm 2, G0 simulates
the real PMACX[G,P1, F2] and G1 simulates a random oracle that always returns
a random n-bit string. Let CollMask, and CollS be the event that the adversary
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sets the corresponding flag interacting with G1. We apply the well-known fun-
damental lemma of game playing [3]:

AdvprfPMACX[G,P1,F2]
(A) = Pr[AG0 outputs 1] −Pr[AG1 outputs 1]

≤ PrG1 [CollMask ∨ CollS]
≤ PrG1 [CollMask] +PrG1 [CollS]

≤ PrG1 [CollMask] +
∑

1≤β<α≤q

(
Pr[AG1 sets Collβ,α]

)
.

It remains to bound the two different kinds of probability terms in the formula
above.

We argue that we can without loss of generality assume that the adversary,
A, is non-adaptive. This is because in the game G1, A always gets back a random
n-bit string that is independent from the setting of the two random flags. Hence
by the technique of coin fixing [3], we could eliminate the interaction between the
game oracle and the adversary, and let the adversary choose q distinct messages:
M (1),M (2), · · · ,M (q) all at once at the very beginning of the game, with the
intent of setting either of the two flags. Stated differently, the q distinct messages
can be assumed to be fixed variables that are not random.

We first bound Pr[AG1 sets CollSβ,α]. Note that in the game G1, L1, · · · , Lm

are independently and uniformly distributed. This is the central part of the whole
proof and its analysis is vital in yielding the desired bounding formula.

Lemma 1. Let G = (gi,j) be an m × l MDS matrix over GF (2n), 2 ≤ l < m.
Let d = m − l + 1 be its Hamming distance. For two different messages whose
bit lengths are both multiples of ln: M and M ′, such that M = M ′, |M | ≥ |M ′|,
2max{d,m} |M |n + m ≤ 2n−1, if the padded messages of A’s α-th and β-th
queries are M and M ′, respectively, then

Pr[AG1 sets CollSβ,α] ≤ 4
(

2d |M |n + m

2n

)�(d+1)/2�
+

2
2n

.

In the above, the probability is taken over the random choice of G1.

Note that in the above lemma, the condition on the message length corre-
sponds exactly to that of Theorem 1.

Proof. We let s and s′ be the number of l-block intervals of M and M ′, respec-
tively; let Xi[j], X ′

i[j], XEi[j], XE′
i[j] be as defined according to Algorithm 1.

As M = M ′, by the MDS property of G, ∃1 ≤ h ≤ s, such that Xh and X ′
h

differ by at least d blocks. We take the convention that if h > s′, namely when
X ′

h is not defined, Xh and X ′
h (undefined) differ by all m blocks. As m ≥ d, Xh

and X ′
h always differ by at least d blocks. For the sake of simplicity, we assume

that these d indices are 1, 2, · · · , d. (The whole following argument will still hold
for other index sets by a simple renaming.)

The overall structure of the proof is like the following: We first define AllColl
as the event that for all 1 ≤ t ≤ d, XEh[t] collides with some other values
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in {XEi[j]}, 1 ≤ i ≤ s, 1 ≤ j ≤ m or {XE′
i[j]}, 1 ≤ i ≤ s′, 1 ≤ j ≤ m, or

{0, 1, · · · ,m−1}. Note that the trivial kind of collision such as XEh[j] = XE′
h[j]

cannot happen since we defined h in such a way that XEh and XE′
h must

differ at all of the d indices. Our main target is to show that this “bad” event
happens with a small probability, and unless it happens, there will be at least one
fresh sampling of the permutation’s image which can help bound the probability
of interest within the order of O(1/2n). The conclusion of lemma would thus
naturally follow.

Consider the following experiment: first compute {Xi[j]} and {X ′
i[j]} from

M and M ′; next fix the masking subkeys: Ld+1, · · · , Lm, and compute {XEi[j]},
{XE′

i[j]} for those d+1 ≤ j ≤ m. We use XEc to denote these fixed permutation
inputs: XEc := {XEi[j] or XE′

i[j] : d + 1 ≤ j ≤ m}. Because of the mutual
independence among the m masking subkeys, the above fixing of a subset of
them will not influence the distribution of the remaining ones. We now focus
more on AllColl conditioned on this fixing and we will derive a general bound on
it, independent of the concrete choice of fixing. The final bound will be the same
one, justified by the conditional probability summation (For the sake of clarity,
in the following analysis we do not explicitly include the conditional notation in
our formula).

The event AllColl can be further divided into subevents of AllCollf that are
parameterized by a function, f : {1, 2, · · · , d} → {1, 2, · · · , d, const}. Intuitively,
f describes the “concrete behavior” of the d collisions: If f(j) = const, XEh[j]
collides with some XE∗

i [f(j)], where the superscript ∗ means either primed or
unprimed, and i can be any interval index. On the other hand, if f(j) = const,
then XEh[j] collides with some constant in {0, 1, · · · ,m − 1}⋃

XEc. Next, we
further divide the set of all functions, F : {1, 2, · · · , d} → {1, 2, · · · , d, const},
into d + 1 classes according to the number of “generalized fixed” points: the
i-th class Fi (0 ≤ i ≤ d) consists of all functions f such that there are exactly
i points in {1, 2, · · · , d} whose image under f equals to either itself or const.
From the union bound, Pr[AllColl] ≤

∑

0≤i≤d

Pr
[⋃

f∈Fi
AllCollf

]
. It remains to

bound Pr
[⋃

f∈Fi
AllCollf

]
for each class, Fi. We would use AllColli to denote

⋃
f∈Fi

AllCollf .
Under the event AllColli, there are i many subkey indices of j ∈

{1, 2, · · · , d}, s.t. XEh[j] = XE∗
t [j], for some interval index t; or XEh[j] = c,

for some c in {0, 1, · · · ,m − 1} ∪ XEc. Since each such equation is a nontrivial
equation about Lj (as there is no trivial collision with the same interval index),
by the union bound and a simple counting, for each such j the collision takes
place with probability at most (s+s′−2)+m+(m−d)(s+s′)

2n ≤ (m−d+1)(s+s′)+m
2n =

l(s+s′)+m
2n ≤ 2|M |n+m

2n . Furthermore, by the mutual independence among {Li},

the probability that these i indices collide is at most
(

2|M |n+m

2n

)i

.
For the remaining d−i subkey indices, they are mapped under f to a different

index, either a larger one or a smaller one. If we further partition these as two
different classes, there will be at least �(d − i)/2� remaining indices such that
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they are all mapped to some indices larger (or smaller) than them. Assume they
are mapped to larger indices (the smaller case would follow exactly the same
argument). It can be easily seen that if we fix �(d − i)/2� many such indices, the
joint event of their collisions can be described by a matrix equation: AL = X,
where A is a matrix of �(d − i)/2� rows, whose entries are either 0 or 2k for some
nonnegative k (corresponds to the interval index), and each row of which has
exactly two nonzero entries; L is the vector of the corresponding masking keys;
and X is a constant vector that only depends on M and M ′. The key observation
is that the matrix A is always in the row-echelon form, since by the choice of
these indices there will never be an (i, j)-th nonzero entry in A where i > j
(that will imply some index collides with another index smaller than it). Stated
differently, if A is an (a × b)-matrix, then for each arbitrary choice of the values
of the a + 1-th, a + 2-th, · · · , b-th entries in the vector L, there corresponds a
unique choice of values of the 1st, 2nd, · · · , a-th entries that satisfies the equation.
Hence, again by the union bound and a simple counting 1, the probability of this

joint collision is at most [d(s+ s′)]	(d−i)/2
 · (1/2n)	(d−i)/2
 ≤
(

2d|M |nl

2n

)	(d−i)/2

.

As a conclusion, so far the upper bound for AllColli is at most ( 2|M |n+m

2n )i ·
( 2d|M |nl

2n )	(d−i)/2
 ≤ ( 2d|M |n+m

2n )i+	(d−i)/2
. Substitute these back:

Pr[AllColl] ≤
d∑

i=0

Pr[AllColli]

≤
d∑

i=0

(
2d |M |n + m

2n

)i+�(d−i)/2�

≤

⎧
⎨

⎩

(
2d|M|n+m

2n

)d/2
+ 2
(

2d|M|n+m

2n

)d/2+1
+ · · · + 2

(
2d|M|n+m

2n

)d
, if d is even;

2
(

2d|M|n+m

2n

)d/2+1/2
+ · · · + 2

(
2d|M|n+m

2n

)d
, if d is odd.

≤

⎧
⎨

⎩

3
(

2d|M|n+m

2n

)d/2
, if d is even;

4
(

2d|M|n+m

2n

)(d+1)/2
, if d is odd.

≤ 4

(
2d |M |n + m

2n

)�(d+1)/2�
.

In the above, the last by one inequality utilizes the condition: 2d |M |n +m ≤
2n−1 (implied by the condition: 2max{d,m} |M |n + m ≤ 2n−1). The inequality
derivation is routine and hence omitted.

Finally, if AllColl does not occur, conditioned on AllColl, there will be at
least one fresh input for P , and so the probability of Pr[AG1 sets Collβ,α]
is at most 1/(2n − m − 2m|M |n

l ) ≤ 2/(2n), since m + 2m|M |n
l ≤ m +

2max{d,m} |M |n ≤ 2n−1. The lemma thus follows by the bounding formula:
Pr[AllColl] +Pr[AG1 sets Collβ,α|AllColl].

1 The index of each row can collide with at most d many indexes in any interval, and
there are in total (s+s′) intervals. Hence, there are at most [d(s+s′)]�(d−i)/2� many
possible such matrix equations.
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It remains to bound Pr[CollMask], which is simple:

Pr[CollMask] ≤ m2

2n+1
.

The whole proof is complete by substituting the above and the result of
Lemma 1 back. We assume that the q queries are sorted in the order of increas-
ing message length. As the summation is over all 2-tuples of the queries, this
reordering of the queries will not change the result.

Advprf
PMACX[G,E]

(t, q, ρ, σ) ≤ Advprf
PMACX[G,P1,F2]

(t, q, ρ, σ) + 2AdvprpE (t′, m + q + mσl) +
q2

2n+1

≤ Pr[CollMask] +
∑

1≤β<q

∑

β<α≤q

(
Pr[AG1 sets Collβ,α]

)

+ 2AdvprpE (t′, m + q + mσl) +
q2

2n+1

≤ m2

2n+1
+

q2

2
· 2

2n
+ q

⎛

⎜
⎝
∑

1≤α≤q

4 ·
(
2d
∣
∣M(α)

∣
∣
n
+ m

2n

)
⌊
d+1
2

⌋⎞

⎟
⎠

+ 2AdvprpE (t′, m + q + mσl) +
q2

2n+1

≤ m2 + 3q2

2n+1
+

4q(2dσ + qm)(2dρ + m)�(d−1)/2�n

2�(d+1)/2�n

+ 2AdvprpE (t′, m + q + mσl) .

6 Concrete Examples and Implementation Results

6.1 On the Choice of the Parameters

We make some general comments on the choice of the matrix parameters. Neglect-
ing the overhead of MDS matrix multiplication, the scheme’s efficiency is reflected
by the ratio of the MDS matrix’s column number and row number. On the other
hand, the security level, more specifically, the exponent that appears in the second
term in Theorem 1 is in positive relation to d = m − l + 1, the difference between
the row number and column number (plus 1). The efficiency and the security level,
therefore, forms a trade-off that can be controlled by choosing appropriate dimen-
sions for the MDS matrix.

One another remark is that compared to PMAC-with-Parity and its gener-
alizations, our scheme only uses 2 keys and this number of keys is independent
from our choice of matrix. We regard this key reduction as the most outstand-
ing superior aspect compared to the prior work. Stated in a qualitative way, our
result shows that the many independent permutations are in fact “unnecessary”,
and can be reduced to the same permutation, except for the last finalization one.
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One drawback of this key reduction, however, is that the security level would
degrade from O(q2/2n + qσρd−1/2dn) to O(q2/2n + qσρ�(d−1)/2�/2�(d+1)/2�n). 2

6.2 Implementation Result

In this section we show a comparative implementation result. In our experi-
ment, we measure the performance, in terms of bytes per cycle, of PMACX and
PMAC-with-Parity. Our target is to beat PMAC-with-Parity in various aspects,
including key space, security, efficiency, etc.. From the above, PMACX already
achieves the goal of key space reduction by its fixed number of keys, and the
efficiency can be improved by choosing an MDS matrix with row-column ratio
close to 1. On the other hand, we would like to maintain the same asymptotic
security level, and by Theorem 1, it is easy to see that the minimum required
distance of MDS code is d = 3, which implies our matrix’s row number should
be two more than its column number. From an implementation perspective, the
simplest ones among such matrices have the form: G = [I|A]T , where I is the
l × l identity matrix and A is the l × 2 redundancy part. It turns out that for
G of this form, the MDS property is equivalent to the following condition: every
element in A must be nonzero, and every two row vectors of A must be linearly
independent.

Based on the above argument, we experiment on MDS matrices of the fol-
lowing sizes: 6 × 4, 7 × 5, 8 × 6, and 14 × 12. In the experiment, we implement
both PMACX and PMAC-with-Parity on a Haswell-family Intel i7 processor,
with enough explicit source-level parallelism to fully utilize the AES hardware
pipelining. We remark that our implementation of the two modes are not aimed
at providing the best performance, but at providing practical comparative results
on the two modes. Theoretically speaking, a 6×4 MDS matrix should be enough
to achieve the same 2/3-rate as the prior work. However, our implementation
result indicates that the overhead of the MDS matrix multiplication cannot be
completely overlooked, hence larger matrices are necessary to achieve better
rates. See Table 1 for our experimental result (For the sake of completeness, we
include the two redundacy rows of each matrix.).

We could see from the last row that the expected outcome is achievable in
practice. Indeed, better rates are possible by choosing large enough matrices.
The other entries in Table 1, however, exhibit some peculiar behaviors: First,
The 7×5-matrix overperforms sharply compared to others. We conjecture that
the reason lies in the fact that the aes-encrypt instruction for Haswell-family
takes exactly seven cycles. Since our implementation does the block encryption
in parallel within each output vector of the MDS matrix multiplication, the very
size of a 7-entry output vector shall take the best advantage of the underlying
AES hardware’s pipelining, and thus achieves a sharp outperformance. Second,
contrary to the theoretical rate, the actual processing rate does not increase too
much with the size of matrix when the matrix is small (In fact, our result shows

2 We omit the analysis for the case of independent keys. We remark that it is almost
a direct generalization of the same analysis for PMAC-with-Parity [21].
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that the larger 8×6 matrix is even more slowly than its smaller 6×4 counterpart).
This is because the larger matrix’s multiplication takes more time to compute
(per byte), counteracting the effect of reducing the average number of block
cipher calls. We hence come to the conclusion: when the matrix is relatively
small, the MDS matrix multiplication overhead counteracts the improvement
of theoretical rate, and that counteraction can be mitigated by choosing large
enough matrices (say, a 14×12 one).

Table 1. Comparison of PMAC-with-Parity and PMACX with different matrix dimen-
sions

Mode Name Rate(Cycle/Byte) First Redundacy
Row

Second Redundacy
Row

PMAC-with-Parity 1.77 N/A N/A

PMACX-6×4 2.04 (1, 1, 1, 2) (1, 2, 3, 1)

PMACX-7×5 1.75 (1, 1, 1, 2, 2) (1, 2, 3, 1, 3)

PMACX-8×6 2.10 (1, 1, 1, 2, 2, 3) (1, 2, 3, 1, 3, 1)

PMACX-14×12 1.60 (1, 1, 1, 1, 2, 2, 2, 3,
3, 3, 5, 5)

(1, 2, 3, 5, 1, 3, 5, 1,
2, 5, 1, 2)

7 Conclusion

We design a new variant of PMAC, PMACX, based on the idea of MDS from
coding theory. Our analysis makes it clear that the nice property of MDS: max-
imizing the number of different output blocks for arbitrarily different inputs
can help reduce the impact of message length, and this reduction is in positive
relation to the maximum distance of the chosen MDS matrix. Specifically, by
choosing MDS matrices with large enough maximum distance, the security level
can be made arbitrarily close to 2n-level for the message length. As a whole, the
security level with respect to message length, and the efficiency of the scheme
forms a natural trade-off of the design.

Our scheme can also be viewed as a generalization of PMAC-with-Parity,
which, by our terminology, is exactly an independently keyed version of PMACX
with a (2,3,2)-MDS matrix. We point out that when instantiated with the same
MDS matrix, our scheme’s security level is worse than PMAC-with-Parity: its
security bound is O(q2/2n+qσ/2n), while the latter achieves O(q2/2n+qσρ/22n).
On the other hand, our scheme reduces the number of keys from 4 to 2, and our
analysis illustrates that the 2 keys are enough for any MDS matrix. We regard
this reduction of key space size and its fixedness with respect to other parameters
another superior property compared to the previous work (In particular, more
keys are needed for the generalizations of PMAC-with-Parity in order to reach
a higher rate).

We leave it an open question whether it is possible to further reduce the key
number from 2 to 1, without making major changes to the scheme’s design and
the security level.



306 Y. Zhang

Acknowledgements. The author would like to thank Dr. Tatsuaki Okamoto
for providing the author a summer internship opportunity in Nippon Telegraph
and Telephone (NTT), Japan. This internship formed the basis of this work.
The author would also like to thank Kan Yasuda, Kazumaro Aoki and Yousuke
Toudou for their valuable discussions with the author and kind help in the imple-
mentation of the algorithm. At last, the author appreciates the feedback and
comments from the CT-RSA 2015 PC reviewers and his advisor, Dr. Phillip
Rogaway.

References

1. Bellare, M., Kilian, J., Rogaway, P.: The security of cipher block chaining. In:
Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 341–358. Springer,
Heidelberg (1994)

2. Bellare, M., Pietrzak, K., Rogaway, P.: Improved security analyses for CBC MACs.
In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 527–545. Springer,
Heidelberg (2005)

3. Bellare, M., Rogaway, P.: Code-Based Game-Playing Proofs and the Security of
Triple Encryption. IACR Cryptology ePrint Archive 2004, 331 (2004)

4. Black, J.A., Rogaway, P.: CBC MACs for arbitrary-length messages:the three-
key constructions. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, p. 197.
Springer, Heidelberg (2000)

5. Black, J.A., Rogaway, P.: A block-cipher mode of operation for parallelizable mes-
sage authentication. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332,
p. 384. Springer, Heidelberg (2002)

6. Daemen, J., Rijmen V.: The design of Rijndael: AES-the advanced encryption
standard. Springer (2002)

7. Iwata, T.: New blockcipher modes of operation with beyond the birthday bound
security. In: Robshaw, M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 310–327. Springer,
Heidelberg (2006)

8. Iwata, T.: Authenticated encryption mode for beyond the birthday bound secu-
rity. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 125–142.
Springer, Heidelberg (2008)

9. Iwata, T., Kurosawa, K.: OMAC: one-key CBC MAC. In: Johansson, T. (ed.) FSE
2003. LNCS, vol. 2887, pp. 129–153. Springer, Heidelberg (2003)

10. Jaulmes, É., Joux, A., Valette, F.: On the security of randomized CBC-MAC
beyond the birthday paradox limit: a new construction. In: Daemen, J., Rijmen,
V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 237–251. Springer, Heidelberg (2002)

11. Kurosawa, K., Iwata, T.: TMAC: two-key CBC MAC. In: Joye, M. (ed.) CT-RSA
2003. LNCS, vol. 2612, pp. 33–49. Springer, Heidelberg (2003)

12. Landecker, W., Shrimpton, T., Terashima, R.S.: Tweakable blockciphers with
beyond birthday-bound security. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO
2012. LNCS, vol. 7417, pp. 14–30. Springer, Heidelberg (2012)

13. Lefranc, D., Painchault, P., Rouat, V., Mayer, E.: A generic method to design
modes of operation beyond the birthday bound. In: Adams, C., Miri, A., Wiener,
M. (eds.) SAC 2007. LNCS, vol. 4876, pp. 328–343. Springer, Heidelberg (2007)

14. Minematsu, K.: Beyond-Birthday-Bound Security Based on Tweakable Block
Cipher. In: Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 308–326. Springer,
Heidelberg (2009)



Using an Error-Correction Code for Fast 307

15. Minematsu, K., Matsushima, T.: New bounds for PMAC, TMAC, and XCBC. In:
Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 434–451. Springer, Heidelberg
(2007)

16. Preneel, B., Van Oorschot, P.C.: MDx-MAC and building fast MACs from hash
functions. In: Advances in Cryptology-CRYPT095, pp. 1–14. Springer (1995)

17. Rogaway, P.: Efficient instantiations of tweakable blockciphers and refinements to
modes OCB and PMAC. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329,
pp. 16–31. Springer, Heidelberg (2004)

18. Yasuda, K.: Multilane HMAC— security beyond the birthday limit. In: Srinathan,
K., Rangan, C.P., Yung, M. (eds.) INDOCRYPT 2007. LNCS, vol. 4859, pp. 18–32.
Springer, Heidelberg (2007)

19. Yasuda, K.: A one-pass mode of operation for deterministic message
authentication— security beyond the birthday barrier. In: Nyberg, K. (ed.) FSE
2008. LNCS, vol. 5086, pp. 316–333. Springer, Heidelberg (2008)

20. Yasuda, K.: A new variant of PMAC: beyond the birthday bound. In: Rogaway, P.
(ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 596–609. Springer, Heidelberg (2011)

21. Yasuda, K.: PMAC with parity: minimizing the query-length influence. In:
Dunkelman, O. (ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 203–214. Springer,
Heidelberg (2012)

22. Yasuda, K.: A parallelizable PRF-based MAC algorithm: Well beyond the birth-
day bound. IEICE TRANSACTIONS on Fundamentals of Electronics, Communi-
cations and Computer Sciences 96(1), 237–241 (2013)



Secure Multiparty Computation



Efficient Leakage Resilient Circuit Compilers

Marcin Andrychowicz3, Ivan Damg̊ard1, Stefan Dziembowski3,
Sebastian Faust2, and Antigoni Polychroniadou1(B)

1 Aarhus University, Aarhus, Denmark
{ivan,antigoni}@cs.au.dk

2 EPFL, Lausanne, Switzerland
sebastian.faust@gmail.com

3 Warsaw University, Warsaw, Poland
{marcin.andrychowicz,stefan.dziembowski}@crypto.edu.pl

Abstract. In this paper, we revisit the problem of constructing general
leakage resilient compilers that can transform any (Boolean) circuit C
into a protected circuit C′ computing the same functionality as C, which
additionally is resilient to certain classes of leakage functions. An impor-
tant problem that has been neglected in most works on leakage resilient
circuits is to minimize the overhead induced by the compiler. In partic-
ular, in earlier works for a circuit C of size s, the transformed circuit C′

has size at least O(sk2), where k is the security parameter. In this work,
using techniques from secure Multi-Party Computation, we show that
in important leakage models such as bounded independent leakage and
leakage from weak complexity classes the size of the transformed circuit
can be reduced to O(sk).
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1 Introduction

Side channel attacks (SCA) that exploit leakage emitting from a device are
among the most severe threats for cryptographic implementations. Since the
introduction of timing attacks to the research community in the late 1990s [22],
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more sources of side channel leakage have been discovered [14,15,23,28]. To
protect cryptographic implementations against these attacks various types of
countermeasures have been proposed. One important and particular effective
countermeasure already suggested in the early works of Kocher [22] is masking.
In a masking scheme the sensitive intermediate data that occurs during the
computation of the cryptographic device is encoded with a randomized encoding
thereby making leakage of the intermediate values independent of the sensitive
values.

The effectiveness of masking as a countermeasure has first been formally
studied in the work of Chari et al. [3]. While [3] only considered a single masked
secret, the concept of leakage resilient circuit compilers – pioneered by Ishai
et al. [19] – studies security guarantees for complicated masked circuits, e.g.,
a masked AES circuitry. More specifically, a circuit compiler takes as input an
arbitrary circuit C computing over some finite field and outputs a protected
circuit Ĉ that has the same functionality as C but comes with built-in security
against certain classes of leakages. It is then shown that even given the leakage
from the computation of the transformed circuit Ĉ the adversary learns nothing
beyond black-box access. Ishai et al. [19] consider an adversary that can learn up
to t intermediate values that appear during the computation – so-called t-probing
adversaries. A large body of recent work has been conducted on extending the
leakage classes beyond t-probing adversaries. This has led to great progress and
by now we have developed feasibility results in surprisingly strong leakage models
(we review the related work in Section 1.1). Since naturally in feasibility results
efficiency plays a secondary role, only little progress has been made in improving
the efficiency of circuit compilers.

In this work, we make a step towards closing this gap and propose new
leakage resilient circuit compilers for broad classes of leakages that come with
significantly improved efficiency. Based on techniques from multiparty compu-
tation and new techniques for inner-product based transformations, we propose
compilers with provable security for global and computationally weak leakages
as introduced in the work of Faust et al. [12] and for polynomial-time com-
putable leakages in the split-state model [11,24]. As in earlier works and the
ones we improve upon [10,12,16,26], we assume that certain simple parts of the
computation are leak-free.

1.1 Previous Works

As already mentioned the circuit compiler of Ishai et al. [19] considers an adver-
sary that can learn up to t intermediate values of the computation. Various
works [2,8,26,27,27,29] consider extensions of the probing model by either
proposing more efficient constructions or developing more practice-oriented mod-
els. We notice that for a circuit of size s all the above works result into cir-
cuits of size O(sk2), where s is the size of the original circuit. In [19] Ishai
et al. also propose an alternative circuit compiler that asymptotically requires
only Õ(k) blow-up, however, in contrast to the other works mentioned above it
only achieves statistical security against non-adaptively chosen probing attacks.
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We next review some broader classes of leakage functions that go beyond the
probing attacks and will be the main focus of this work.

Computationally Weak Leakages. A severe restriction of the probing model
is the fact that the leakage is oblivious to large parts of the circuitry. Faust et
al. [12] eliminate this restriction by considering global leakage functions, i.e.,
the leakage can depend on all the values that are carried on wires during the
computation, but the leakage function is assumed to be computationally bounded
(i.e., it cannot evaluate certain decoding functions). One concrete example given
by the authors is when the shares are k random bits and the decoding function
is the parity. For this setting, [12] shows security with respect to arbitrary global
AC0 leakages. The results for the AC0 setting were recently improved in [25,30].
Similar to the probing case the size of the transformed circuit increases at least
by a factor O(k2) where k is the security parameter.

Circuit Compilers in the Split State Model. The most prominent leak-
age model of leakage resilient cryptography is the so-called bounded leakage
model [11]. In the bounded leakage model the adversary can pick a leakage func-
tion f : {0, 1}n → {0, 1}λ and obtains f(state), where f is efficiently computable
and λ � n. The first work that builds circuits resistant to bounded leakages are
the works of Juma and Vahlis [21], and Goldwasser and Rothblum [16]. They
consider a model where the algorithm is executed by multiple “processors” that
leak independently – so-called split-state leakage. The works of [16,21] use homo-
morphic encryption and hence rely on computational assumptions. The use of
computational assumptions has been eliminated in two recent works [1,10,17]
using techniques from the randomness extractor and require an overhead of at
least O(k2).

1.2 Our Contribution

Our main contribution is to show how to construct leakage resilient circuit com-
pilers that asymptotically increase the size of the circuit only by a factor of Õ(k).
We give an overview of our main results below.

Efficient Compilers Against Computationally Weak Leakage. An impor-
tant building-block of leakage resilient circuit compilers are leakage resilient
encoding schemes. Our main observation to improve the efficiency of previous
compilers for the setting of computationally weak leakages is to use a linear
packed secret sharing scheme to encode the computation. In contrast to the
standard Shamir secret sharing where for a random polynomial p(·) of degree
t we hide the secret at p(0) while p(1), . . . , p(t) are viewed as shares of p(0),
we use some of the points on the polynomial to hide additional secrets. Notice
that this technique has also been used in a series of works starting with Franklin
and Yung [13] to improve the asymptotic efficiency of information theoretically
secure multi-party computation. In particular, our circuit transformation is heav-
ily inspired by the work of Damg̊ard et al. [5], and applies two sequentially exe-
cuted transformations, namely, TR1 and TR2 to produce the protected circuit.
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The first transformation TR1 takes as input the circuit C and produces C ′ ←
TR1(C). Its sole use is to make the circuit ready to be encoded with packed
secret sharing, and it does not contribute to the actual security. The second
transformation Ĉ ← TR2(C ′) takes as input the so prepared C ′ and protects
it by applying packed secret sharing. The transformation uses the same type of
gates as in C ′, and as in several earlier works [10,12,26] a number of leakage-
free gates. We notice that the leak-free components that we use enjoy the same
properties as the leak-free components used in earlier works [10,12,26]: they are
small (linear in the security parameter), stateless and do not take any inputs.
Note that we require two different types of leak-free gates.

We show that the compiler is secure against computationally bounded leak-
ages – so-called AC0 leakages. To this end, we use the framework introduced by
Faust et al. [12] to argue about computationally bounded leakages. As a first
step, we show that the above encoding based on packed secret sharing is hard to
“break” for AC0 leakages. This requires that the underlying field is of constant
size (independent of the security parameter). We use a recent result of Cramer
et al. [4] which presents a linear secret sharing scheme that works for constant
field size. As a next step, we prove that all our transformed gadgets in Ĉ are
reconstructible by constant depth circuits, which by applying the composition
lemma of [12] can be extended to composed circuits made from the transformed
gadgets. The final transformed circuit has size O(s log(s)k).

We also show that the above construction is secure in the probing model of
Ishai et al. [19]. When we allow t probes per transformed gadget then our security
proof relies on the fact that certain parts of the computation are leak-free. If
we aim for security of O(s · polylog(t)/n2) probes in the entire circuit, then we
eliminate the leak-free assumption for the stateless circuit case. The transformed
circuit we obtain has size O(slog(s) · polylog(k)). Further details are provided in
the full version of this extended abstract. We note that a similar construction
using packed-secret sharing has been recently considered in [18].

Efficient Compilers for the Split-State Setting. A second contribution is
an efficient compiler for the split-state bounded leakage model. We show that
the complexity of the compiler of Dziembowski and Faust [10] can be reduced
to O(k log k log log k), where k is the security parameter. This improves earlier
works by at least a quadratic factor in the security parameter. We achieve this
goal by improving the refreshing scheme of [10] which save a linear factor in
complexity compared to earlier work. While this would give us only complexity
of O(k2), we use the fact that the underlying encoding scheme is secure even
if the encoding uses only a small constant number of shares, while we increase
the size of the underlying field to sub-exponential size. As multiplication in such
fields can be done in complexity O(k log k log log k), we obtain our result.

1.3 Notation

Across the paper, we use a capital letter C to label a circuit. A circuit C carries
values from a finite field F on its wires and is composed of addition and multi-
plication gates which compute sums and products in F. The size of C is defined
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as the number of gates in C and denoted by s. We write C(x, k) for a result of
evaluating C on a given input x and the security parameter k. A vector x is a
row vector, and we denote by xT its transposition. We let F be a finite field and
for m,n ∈ N, let F

m×n denote the set of m × n-matrices over F. For a matrix
M ∈ F

m×n and an m bit vector x ∈ F
m we denote by x · M the n-element vec-

tor that results from the matrix vector multiplication of x and M . For a natural
number n let (0)n = (0, . . . , 0). We use x[i] to denote the ith element of a vector x
and x[i, . . . , j] to denote the elements i, i + 1, ..., j of x. In addition, let [x] denote
an encoding which secret shares a block x of � elements and write the k shares as
[x]=(x1, . . . , xk)wherek is the securityparameter.Let [x]c denote anencodedblock
secret shared under a linear code c specified by a generator matrix G. A secret shar-
ing scheme is homomorphic if [x] + [y] and [x][y] are shares of the blocks x+y and
xy. Moreover, let π(x) be a random permutation of the vector x. For two random
variables X0,X1 over X we define the statistical distance between X0 and X1 as
Δ(X0;X1) =

∑
x∈X 1/2|Pr[X0 = x] − Pr[X1 = x]|.

2 Defining a Circuit Transformation

We consider circuits C with secret state m that operate over some finite field F,
take some public input x and produce an output y. We assume that C consists of
two types of elementary gates. First, addition and multiplication gates that both
input two field elements and compute the corresponding operation in F. Second,
the so-called copy-gates that take as input a field element and output two copies
of it to handle fan-out of the circuit. One may think of C as an implementation
of a block cipher where the state is the key and the public input the plaintext.

A circuit transformation TR compiles any circuit C and the associated initial
secret state m0 into a functionally equivalent circuit Ĉ and transformed secret
state m̂0 that is resistant to certain leakage attacks characterized by a family
of functions L. To model the leakage from Ĉ we introduce a leakage game that
is executed by an adversary A. In the leakage game, the adversary can submit
tuples of the form (xi, fi) where xi denotes an input to the circuit and fi ∈ L is
a leakage function. For each query, A receives the output yi when using current
state mi−1 and the corresponding leakage. The exact definition of the leakage
depends on the leakage model and will be specified later in this paper. We denote
by

(
AL � Ĉ[m̂0]

)
the output of A after interacting with the transformed circuit

Ĉ with initial state m̂0. Moreover, we consider a simulated world where a simula-
tor S only obtains black-box access to C[m0], which we denote by (S � C[m0]).
Security of a circuit transformation guarantees that the output of the adversary
in the leakage game is indistinguishable from the output of the simulator in the
ideal world. We define the notion of an L-secure circuit transformation below.

Definition 1. A circuit transformation TR is secure with respect to leakages
from a family of functions L if the following two properties hold:

1. Soundness: For any circuit C and any initial state m0 and any input xi we
have C[mi−1](xi) = Ĉ[m̂i−1](xi).
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2. Security: For any PPT adversary AL and any circuit C with initial state
m0, there exists a simulator S such that for all circuits C with initial state
m0 the following holds: Δ

(
(S � C[m0]) ; (AL � Ĉ[m̂0])

)
≤ negl(k).

The transformed circuit Ĉ shall use the same types of operations as the underlying
circuit C, i.e., if C operates over the binary field, then the elementary operations
used in Ĉ are Boolean operations. Moreover, for some of our security proofs, we will
require so-called opaque gates. Similarly, to earlier works [10,12,16,21] on leakage-
resilient circuit compilers our leak-free gates do not leak from their internals, but
can leak on their outputs. All our leak-free gates do not take any inputs, but merely
sample from some efficiently sampable distribution. We will later in this section
precisely characterize what operation is carried out by our leak-free gates.

All leakage-resilient circuit transformations follow the same paradigm to
transform C into a protected circuit Ĉ. First, they use a leakage resilient encod-
ing scheme Π = (Enc,Dec) to encode the values carried on the wires of C. More
precisely, each wire w in C is represented in Ĉ by a wire-bundle carrying the
encoding Enc(w). Notice that also the content of the memory that, e.g., stores
the secret key is stored in encoded form in Ĉ. Clearly, to show that the trans-
formed circuit Ĉ is secure against leakage functions from L our encoding scheme
has to be resilient for functions from L.

The next (and more challenging) step is to develop a transformation for the
elementary operations of C. For instance, if C is a Boolean circuit, then we need
to give secure implementations for NAND gates. Following earlier works, we
call these transformed elementary operations gadgets. A gadget takes as input
encodings and outputs the encoded result, e.g., if the gadget implements a mul-
tiplication of two encodings Enc(a) and Enc(b), then its output is Enc(a · b). The
difficulty is to design the gadgets in such a way that they guarantee correctness,
i.e., the output encodes the correct result, while at the same time leakage from
the internals of the operations do not reveal any information about the encoded
secrets. To this end, we need to ensure that our gadgets operate on encodings,
by exploiting some homomorphic property of the underlying encoding scheme.
Finally, since our gadgets in the transformed circuit Ĉ work on encoded values,
we need two additional types of gates: an encoder gate that takes as input a
field element x and outputs Enc(x), and a decoding gadget that takes as input
Enc(x) and returns x. These gates may leak but as shown in earlier works they
do not influence the security of transformed circuit and will be ignored for the
remainder of this extended abstract.

The above approach of transforming circuits is called a gate-by-gate trans-
formation, which allows us to explain circuit transformations in a modular way.
That is, given some leakage resilient encoding, we present basic transformations
of the gates used in the original circuit C, which by composing these transformed
gates results in the transformed circuit Ĉ. For both of our schemes, we consider
circuits C that compute over some finite field F and assume that the original
circuit has multiplication and addition gates that carry out the corresponding
operations in the field F.
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3 Transformation for Computationally Weak Leakages

Our first transformation achieves security against a family of leakage functions
L that are computable by polynomial-size constant depth circuits (so-called AC0

circuits). First, we start by defining our general encoding scheme ΠLPSS =
(EncLPSS ,DecLPSS), which is an important tool for the transformation. We
continue presenting the circuit transformation consisting of the transformations
TR1

weak and TR2
weak, where TRweak := TR2

weak ◦ TR1
weak.

The Encoding Scheme ΠLPSS = (EncLPSS,DecLPSS). A (t + 1)-out-of-k
secret sharing scheme takes as input a secret x from some input domain and
outputs k shares, with the property that it is possible to efficiently reconstruct
x from every subset of t + 1 shares, but every subset of at most t shares reveals
nothing about the secret x. Informally, Shamir’s secret-sharing scheme [32] is
defined by a polynomial p(·) of degree at most t, such that p(0) = x. The shares
are defined to be p(ai) for every i ∈ 1, . . . , k where a1, . . . , ak are any distinct
non-zero elements of F. The reconstruction algorithm of the scheme is based
on the fact that any t + 1 points define exactly one polynomial of degree t.
Thus, using Lagrange interpolation, it is possible to efficiently reconstruct the
polynomial p(·) given any subset of t + 1 points and compute x = p(0).

Our underlying leakage resilient encoding scheme is a packed secret sharing
scheme. The idea of packed secret sharing dates back to Yung and Franklin [13]
who used the technique to reduce the complexity of multiparty computation
protocols. The idea is similar to standard Shamir secret-sharing [32] over a field
F, but where a block of � different secret values x = (x1, . . . , x�) is shared at once
using a single polynomial p(·) of degree d that now evaluates to (x1, . . . , x�) in �
distinct points. It is easy to see that we can obtain security against a t-probing
adversary by choosing d + 1 = t + �.

To obtain security against leakages described by low-depth Boolean circuits,
we need a scheme that works over constant size fields such that the underlying
operations can be evaluated by small-depth Boolean circuits.1 Hence, our under-
lying leakage resilient encoding scheme uses the packed secret sharing scheme
of Cramer et al. [4] who showed how packed secret sharing can be combined
with techniques from algebraic geometry to make it work for constant field sizes.
Since we need a more general model for our purposes rather than the special
case of Shamir’s scheme, we follow the approach from [4] and define our packed
secret sharing scheme in terms of linear codes.

More specifically, a linear packed secret sharing scheme over the finite field F

is defined by the following parameters: number of shares k, secret length � > 1,
randomness length e, privacy threshold t and reconstruction threshold r such
that any subset of at most t shares have distribution independent of the secret
block and from any set of at least r shares, one can reconstruct the secret block.
Also, such a linear secret sharing scheme can define a linear code c with generator
1 Jumping ahead this is needed to carry out an AC0 reduction to the hardness of the

inner product.
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matrix G ∈ F
k×(�+e), and in this case the set of all encodings [x]c form a linear

code c. 2

Formally, our encoding ΠLPSS = (EncLPSS ,DecLPSS), is as follows:

– Public parameters of the scheme: Let G ∈ F
k×(�+e) be a fixed generator matrix

of a linear code c. More details on how this matrix will look like are given
in [4].

– Encoding algorithm EncLPSS(x): On input the block x = (x1, . . . , x�), choose
a random vector ρ ← F

e and compute the encoded block under the code c as:
[x]c = G · (x1, . . . , x�, ρ1, . . . , ρe)T. Output [x]c ∈ F

k.
– Decoding algorithm DecLPSS([x]c): On input r shares of [x]c , recover the block

x consisting of the first � values of the computation (G−1 · [x]c) ∈ F
�+e.

Multiplying Shares. If two encodings [x]c and [y]c are multiplied then [xy]c∗

is obtained where the multiplication yields a codeword under a new code c∗

defined considering the derived generator matrix3 G∗. The code c∗ is defined to
be the code obtained by taking the linear span of all products of the codewords
in c. Hence, the above encoding scheme ΠLPSS applies to any generator matrix,
e.g. the matrix G∗.

An important feature of the above encoding scheme, which makes it applica-
ble for masking schemes, is the fact that it exhibits homomorphic properties. In
particular, any linear combination of encodings corresponds to a linear combi-
nations of the underlying secrets, provided that the same secret locations were
used in all encodings (in the above case these are the position (1, . . . , �)).

The Transformation C ′ ← TR1
weak(C, k). The circuit transformation takes

as input the security parameter k and the description of an arbitrary circuit
C and compiles it into a transformed circuit C ′. The goal of TR1

weak(C, k) is
to prepare the circuit C such that it can efficiently compute on values encoded
with ΠLPSS . The use of packed secret sharing allows to securely compute addi-
tion/multiplication on � values in parallel, at the price of what a single opera-
tion would cost using normal secret sharing. To this end, the circuit has to be
arranged in such a way that it can operate on blocks of secrets in parallel. The
work of [5] achieves this goal with overhead O(log |s|), a detailed description can
be found in the full version of this extended abstract. Intuitively, the transfor-
mation arranges the circuit C such that every layer contains only one type of
gates, i.e., either addition or multiplication operations. In addition, sets of shared
blocks S1, S2, . . . must be produced such that blocks in Si contain the i’th input
bit to the gates in a given layer, in some fixed order. In order to achieve the
above, the values in the computation will have to be permuted between layers
2 For example, in the special case of packed Shamir secret sharing over polynomials

of degree d, the set of all encodings [x]d forms a linear code, where the generator
matrix is formed from a product of two VanderMonde matrices.

3 Analogously, if packed Shamir secret sharing over polynomials is used, then the
multiplication of the shares [a]d and [b]d under a polynomial of degree d yields a
share of [ab]2d under a polynomial of degree 2d.



Efficient Leakage Resilient Circuit Compilers 319

by swap gates in arbitrary ways that depend on the concrete circuit. The basic
idea is to handle the arbitrary permutations between blocks using Benes per-
mutation networks. The only non-trivial issue is how to permute the elements
inside a shared block. For this reason we add permutation block-gadgets which
are described in TR2

weak.
Since the resulting circuit C ′ is compiled to work on packed secret shar-

ing, it can be described by block-gadgets, which operate on blocks of � secrets.
More specifically, we have the following block-gadgets: (1) multiplication and
addition block gadgets that carry out the respective operation over blocks of
� field elements, (2) copy gadgets that handle fan out and output two copies
of their inputs, and (3) permutation gadgets (for some fixed number of log(k)
permutations), which take as input a block and output a permutation of the ele-
ments. Note that the block-gadgets is just an abstraction to make the exposition
in the next step simpler, and all block-gadgets are built out of the elementary
multiplication and addition gates that work over the underlying field F.

The Transformation Ĉ ← TR2
weak(C ′, k). TR2

weak(C ′, k) takes as input a cir-
cuit C ′, prepared by TR1

weak to work on blocks of � secrets, and compiles it
into a circuit Ĉ that works on encodings of blocks. Recall that C ′ operates on
blocks, so as a first step, TR2

weak(C ′, k) encodes blocks using ΠLPSS . Moreover,
we can replace the block-gadgets by operations that work on encoded blocks.
The gadgets are built out of the elementary operations: multiplication, addi-
tion and swapping. Moreover, we will use a class of a leak-free gadget which
is described in more detail below. The transformation for the different block-
gadgets is described in Figure 1. The addition block-gadget directly uses the
fact that the encoding scheme is additively homomorphic, and hence to com-
pute the output it suffices to compute component-wise addition of the shares.
The transformation for the multiplication block-gadget is more complicated and
makes use of a leak-free gate. Specifically, we first compute the component-wise
product of the shares. Notice that the resulting shares [ab]c∗ , are now shares
of the code c∗ since once we multiply them the underlying code was changed
from c to c∗. Next, we use the opaque gadget Or, which returns encodings
[r]c and [r]c∗ of a random block r. We use [r]c∗ to “mask” [ab]c∗ , which will
allow us to open/decode the random encoding [ab + r]c∗ to the block (ab + r).
Intuitively, the opening is allowed since the secret data is masked by a random
unknown value r. Hence, the opened values does not reveal any information
about the secret data. After reconstructing/encoding the block (ab + r) under
the code c, we subtract [r]c from it, which results into a random encoding [ab]c .
The reconstruction of [ab + r]c carried out during the multiplication operation
can be implemented using a small sub-circuit with linear complexity. Notice
that the Permutation block-gadget acts in the same way as the multiplication
block-gadget. Moreover, we use a similar leak-free gate, Oπ, which for some
fixed permutation π outputs [r]c and [r′]c for some random block r ← F

� and
r′ = π(r). The leak-free gates do not perform any heavy computations, take no
inputs and keep no secret internal states, which makes them independent of the
computation in the circuit.
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Fig. 1. Multiply, Addition and Permutation block-gadgets for the ΠLPSS encoding

Efficiency of TRweak. As already mentioned above, TR1
weak(C, k) introduces

overhead of O(log s) resulting into a circuit of size O(s log s). Regarding TR2
weak

(C ′, k), the blow up of the circuit is linear in k because we replace the gates by
block-gadgets of cost O(k). The efficiency of the transformation TR2

weak(C ′, k) is
achieved by using the packed secret sharing scheme ΠLPSS which allows to amor-
tize the cost over many gates. More specifically, our multiplication/permutation
block-gadgets have at most quadratic overhead due to the matrix-vector multi-
plication induced by running EncLPSS ,DecLPSS . However, with packed secret
sharing we process � blocks in parallel, so amortize the cost over many gates we
get linear complexity since � = Θ(k). Therefore, the total size of the transformed
circuits is O(k s log s).

Soundness of TRweak. We show that the input-output functionality of the circuit
C is identical to that of Ĉ. The proof of soundness can be found in the full version.

Lemma 1. [Soundness] The circuit transformation TRweak(C, k) is sound.
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3.1 Security Against Global and Computational Bounded Leakage

We now show that our leakage-resilient compiler TRweak protects against global,
continuous and computationally weak leakages. In particular, we will prove that
such circuits protect against leakages that can be computed by circuits of con-
stant depth – so-called AC0 leakages. The security proof of our transformation
follows the general approach presented in the work of Faust et al. [12] which
requires two main ingredients, a secure encoding scheme and simulatable gad-
gets. Informally, given these two ingredients one can apply the composition the-
orem of Faust et al. [12] and get security for the entire transformation.

We start by showing a general result, working with arbitrary fields, such
that the operations of the computation are efficiently simulatable by SHALLOW
circuits – in particular, we will require that they can be computed by circuits in
the class SHALLOW(d, s) for some constant depth d and size s. We assume that
these circuits are deterministic and the only basic operations they are allowed to
carry out are additions, permutations and multiplications. Next, in Section 3.2,
we consider the case where the shallow functions operate over binary fields and
in this case we can show that the class of leakage functions that can be tolerated
is in AC0. For this we need that the size of the field is constant and we need to
show that our encoding scheme ΠLPSS is secure against AC0 leakages.

To formalize the notion of shallow simulators we use the formalism of recon-
structors, defined in [12], for some class L of leakage functions. A reconstructor
takes as input the inputs and outputs of a gadget and is able to simulate its
internals in a way that looks indistinguishable for leakages from L. Since we
are interested in efficient simulations and reductions, we will explicitly state the
complexity of the reconstructors. Below, we denote the distribution on the wires
of Ĉ on input X conditioned on the output being Y by WĈ(X|Y ).

Definition 2 (Reconstructor for circuits [12]). Let Ĉ be a (transformed)
circuit. We say that a pair of strings (X,Y ) is plausible for Ĉ if Ĉ might output
Y on input X, i.e., if Pr[Ĉ(X) = Y ] > 0.

Consider a distribution RECĈ over the functions whose input is a pair of
strings, and whose output is an assignment to the wires of Ĉ. Define RECĈ(X,Y )
as the distribution obtained by sampling RĈ ← RECĈ and computing RĈ(X,Y ).
Such a distribution is called a (L, ε)-reconstructor for Ĉ if for any plausible
(X,Y ), the following two wire assignment distributions are ε close under leakages
from L, i.e., for any function f ∈ L the following holds:

Δ(f(WĈ(X|Y )); f(RECĈ(X,Y ))) ≤ ε,

where the randomness above is over the randomness of sampling RECĈ and the
internal randomness used by Ĉ. We say that Ĉ is reconstructible by SHALLOW(d,
s) if the support of the distribution RECĈ is computable by circuits in SHALLOW
(d, s).
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Security and Reconstructibility of Block-gadgets. We show that our trans-
formed Multiply block-gadget is reconstructible by SHALLOW circuits. Moreover,
the proofs and the reconstructors of the Permutation and Additon block-gadget
can be found in the full version.

Lemma 2 (The Multiply block-gadgets of TRweak are Reconstructible).
Let k be the security parameter. The Multiply block-gadget is (L, 0)-reconstructi
ble by SHALLOW(2,O(k)) for any L.

3.2 Security Against AC0 Leakage

While the above work, in this section, we consider security with respect to AC0

leakages. To this end, we will first show that the packed secret sharing scheme
from Section 2 is secure against AC0 leakages (see lemma below). Then, we use
the composition theorems from [12] together with the fact that all block-gadgets
are proven to be reconstructible by shallow circuits. This will show that the
transformed circuits are resilient to AC0 leakages according to Definition 1. In
the following, we show that the encoding is secure against AC0 leakages.

Security of the ΠLPSS Encoding. Recall that the circuit compiler TRweak

uses the ΠLPSS packed secret sharing scheme over a constant size field F. In
general, the decoding function DecLPSS is a function that maps a set of shares
to a secret block and the adversary gets to apply an AC0 function to an encoding.
We show that the decoding function is hard to compute in AC0. The proof of
the Lemma can be found in the full version.

Lemma 3. For k ∈ N>0, the decoding function DecLPSS
4 defined by a decoding

vector (a) = (a1, . . . , ak) ∈ F
k as DecLPSS : (s1, . . . , sk) �→ ∑k

i=1 siai = aT s
does not belong to the AC0.

Notice that the above claim proves that the ΠLPSS encoding is secure against
AC0 leakages, i.e., for any leakage function f computable by AC0 circuits and for
any two blocks of secrets x and x′ the following two distributions are statistically
close: Δ(f(EncLPSS(x)); f(EncLPSS(x′)) ≤ negl(k).

Security of Circuits. In Section 3.1, we showed that all block-gadgets can be
reconstructed by shallow simulators given only the inputs and outputs. More-
over, all gadgets are re-randomizable as the outputs are re-randomized by fresh
encodings that are output by leak-free gates. Furthermore, by the claim above
the encoding is resilient to AC0 leakages and all block-gadgets are reconstructible
by constant depth circuits, and the composition theorem of [12] combines both
terms additively, i.e., the loss in the reduction is only in an additive constant
factor in circuit depth. This all together shows that the transformed circuits are
secure against AC0 circuits.
4 We actually encode blocks of elements, but for simplicity of exposition we will assume

that we encode single elements.
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4 Transformation for Independent Leakages

Dziembowski and Faust [10] proposed a compiler, which transforms arbitrary cir-
cuits over some field F into functionally equivalent circuits secure against any con-
tinual leakage assuming that: (i) the memory is divided into sub-computations,
which leak independently, (ii) the leakage from each sub-computation is bounded
and (iii) the circuit has an access to a leak-free component, which samples random
pairs of orthogonal vectors. Their transformation also proceeds in a gate-by-gate
fashion but the pivotal ingredient of their construction is a protocol for refresh-
ing the Leakage-Resilient-Storage used among others in the multiplication gadget
protocol.

We present a more efficient and simpler protocol for refreshing using the
same assumption of a leak-free gadget. Our solution needs O(k) operations to
fully refresh the encoding of the secret in contrast to Ω(k2) that was required by
earlier works, where k is a security parameter proportional to the bound on the
leakage from each sub-computation. More precisely, the blow-up of the circuit’s
size during compilation with the new refreshing protocol is equal to O(k2). It is a
significant improvement compared to Ω(k4) by Dziembowski and Faust [10], and
Ω(k3) by Goldwasser and Rothblum [30] where ciphertext-banks are needed.

Moreover, we show that by operating over larger fields (exponential in the
security parameter k) and using an efficient field multiplication algorithm, we
can achieve even more efficient construction, namely one with a (multiplicative)
overhead O(k log k log log k) regardless whether the new refreshing algorithm is
used or not. Although the usage of the more efficient refreshing algorithm does
not influence the complexity of the compiler in this case, it is still valuable,
because it decreases the size of the transformed circuit by a huge constant factor
and is simpler than the original refreshing algorithm.

In contrast, in the previous section we aimed on protecting against low-
complexity leakages, in this section we are interested in bounded leakage that
occurs independently from two parts of the memory. To this end, we need to use
an alternative encoding – the so-called inner-product encoding – that has been
used in a series of works [7,10,17]. The inner product encoding scheme, defined
by ΦIP = (Encode : M → X × Y,Decode : X × Y → M), works as follows.
On an input message m ∈ M, we choose uniformly at random two vectors l
and r over the field F subject to the constraint that their inner product 〈l, r〉
is equal to the message m. The encoding scheme outputs (l, r). The decoding
function is deterministic and takes as input two shares (l, r) and outputs their
inner product 〈l, r〉. In [6,9] it is shown that the above encoding is secure, which
means that the adversary learning some partial information f(l) about l and
(independently) g(r) about r gains no information about the encoded message
m. The idea is to keep l and r separated (e.g. on different memory chips). We
will model this setting assuming that they are kept by different players, which
can perform computation and exchange messages. We discuss our encoding more
formally in Section 4.2.
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4.1 Leakage Model

Our model of leakage is based on [10] and we only recall some important details.
The compiler produces a circuit, which is divided into sub-computations. An
adversary will be allowed to extract from each sub-computation no more that λ
bits of information for some constant λ. For a non-adaptive adversary, it means
that it is allowed to adaptively choose any (e.g. polynomially uncomputable)
function with range {0, 1}λ, which value depends on all information used in that
sub-computation. Except from the above condition, the total amount of leakage
during the whole computation is unlimited (in comparison to models, when an
adversary can for example obtain values on a fixed number of wires). Because of
that, this kind of leakage model is usually called continual leakage.

Moreover, we will assume that the sub-computations leak independently, that
is a leakage function in each observation may only depend on data from one sub-
computation. In practice, the separation of sub-computations may be achieved
by dividing the memory into parts (e.g. separate RAM chips) and placing the
data used in different sub-computations on different memory chips.

We model the execution of such circuit as a protocol executed between �
players (denoted P1, P2, . . . , P�), where each player performs one of the sub-
computations. The adversary can then learn some partial information about the
internal states of the players. Informally, an adversary, called λ-limited leakage
adversary is allowed to extract at most λ bits of information about the internal
state of each players. More formal definitions follows in the next paragraphs.

Leakage from Memory. Based on Definition 1 we model independent leakage
from memory parts in form of a leakage game, where the adversary can adaptively
learn information from the memory parts. More precisely, for some u, �, λ ∈ N let
M1, . . . ,M� ∈ {0, 1}u denote the contents of the memory parts, then we define a
λ-leakage game in which a λ-limited leakage adversary A, submits (adaptively)
tuples of the form {(xi, fi)}m

i=1 where m ∈ N, xi ∈ {1, . . . , �} denotes which
memory part leaks at the current step and fi is a leakage function, such that
fi : {0, 1}u → {0, 1}λ′

and λ′ ≤ λ. To each such a query the oracle replies
with fi(Mxi

) and we say that in this case the adversary A retrieved the value
fi(Mxi

) from Mxi
. The only restriction is that in total the adversary does not

retrieve more than λ bits from each memory part. In the following, let (A �
(M1, . . . ,M�)) be the output of A at the end of this game. Without loss of
generality, we assume that (A � (M1, . . . ,M�)) := (f1(Mx1), . . . , fm(Mxm

)).

Leakage from Computation. We model an execution of the circuit as a
protocol executed between players P1, P2, . . . P�, where each player corresponds
to one of the sub-computations. At the beginning of the game, some of the players
(so-called input-players) hold inputs. The execution of the protocol proceeds in
rounds. During each round one player is active and can send messages to the
other players. The messages can depend on his input (if it is an input-player), the
messages he received in previous rounds and his local randomness. An the end of
the game, some of the players (called output-players) output the values, which
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are considered the output of the protocol. Let viewi denote all the information,
which were available to Pi, that is all the messages sent or received by Pi, his
inputs and his local randomness. After the protocol is executed the adversary
plays a game A � (view1, . . . , view�).

4.2 Leakage-Resilient Storage

The notion of leakage-resilient storage Φ = (Encode,Decode) was introduced
by Davi et al. [7]. An Φ allows to store a secret in an encoded form of two
shares l and r, such that it should be impossible to learn anything about the
secret given independent leakages from both shares. One of the constructions
that they propose uses two-source extractors and can be shown to be secure in
the independent leakage model.

A Φ scheme is said to be (λ, ε)-secure, if for any s, s′ ∈ M and any λ-limited
adversary A, we have Δ(A � (l, r);A � (l′, r′)) ≤ ε, where (l, r) ← Encode(s)
and (l′, r′) ← Encode(s′), for any two secrets s, s′ ∈ M. We consider a leakage-
resilient storage scheme Φ that allows to efficiently store elements from M = F. It
is a variant of a scheme proposed in [9] and based on the inner-product extractor.
For some security parameter n ∈ N and a finite field F, Φn

F
:= (Encoden

F
,Decoden

F
)

is defined as follows. Security is proven by [10] with the lemma below.

– Encoding algorithm Encoden
F
(s): On input the vector s sample (l[2, . . . , n],

r[2, . . . , n]) ← (
F

n−1
)2 and set l[1] ← F \ {0} and

r[1] := l[1]−1 · (s − 〈(l[2, . . . , n], r[2, . . . , n])〉). The output is (l, r).
– Decoding algorithm Decoden

F
(l, r): On input (l, r) output 〈l, r〉.

Lemma 4. Let n ∈ N and let F such that |F| = Ω(n). For any 1/2 > δ > 0, γ >
0 the Φn

F
scheme as defined above is (λ, ε)-secure, with λ = (1/2 − δ)n log |F| −

log γ−1 − 1 and ε = 2(|F|3/2−nδ + |F| γ).

Exponentially Large Fields. In the above construction we have two security
parameters: n and |F| (notice that δ and γ are just artifacts of the lemma and do
not influence the construction), which influence the leakage bound λ, statistical
closeness parameter ε and the complexity of the scheme. So far [9,10], n has
been treated as a main security parameter and F was implicitly assumed to be
rather small (operations in F were assumed to take constant time).

To simplify the exposition we introduce a single security parameter k and
assume that n and |F| are functions of k. We are interested in choice of n and |F|
(as functions of k) such that λ = Ω(k) and ε is negligible in k. The instantiation
from [10] can be viewed as n = k and |F| = Θ(k). The fact that length of the
shares n was of the same order as k caused overhead Ω(k4).

In this paper we propose a different choice of the parameters n and |F|.
Namely, we show that by using shares of the constant length and an exponentially
big (in terms of k) fields F we get the same security guarantee and a much
better efficiency. Namely, taking n = 24, |F| = 2k, δ = 1/4, γ = 2−2k in Lemma
4 gives λ = 4k − 1 and ε = O(2−k). With a constant n each gadget produced
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by the compiler from [10] performs a constant number of operations over the
field F. In [31] they show that multiplication in GF (2k) can be done in time
O(k log k log log k). Hence, setting F = GF (2k) and a constant n we get the
compiler with the O(k log k log log k) overhead. This complexity does not depend
whether the new refreshing algorithm is used or not, because in this case all
shares have constant lengths independent of k.

In the rest of this section we present the new refreshing algorithm. The only
assumption about F, which is necessary for its security is |F| ≥ 4n.

Non-zero Flavor of Leakage-Resilient Storage. For technical reasons we
slightly change the encoding by assuming that the coordinates of l and r are all
non-zero (e.i. l, r ∈ (F \ {0})n. Therefore, Encoden

F
procedure can easily be mod-

ified to generate only vectors with non-zero coordinates. It is enough to use the
already presented Encoden

F
protocol and check at the end if the computed vec-

tors have all coordinates non-zero. If it is not the case, the protocol is restarted
with fresh randomness. It does not influence the efficiency of the construction,
because a random vector has at least one coordinate equal to zero with a proba-
bility at most 1/4 regardless of n (but assuming |F| ≥ 4n). It is easy to see that
this modification changes the security of the Leakage-Resilient Storage only by
a negligible factor.

4.3 The Leak-Free Component

As in [10], we assume that the players have access to a leak-free component that
samples uniformly random pairs of orthogonal vectors. More specifically, we will
assume that we have access to a gate O′ that samples a uniformly random
vector ((a, ã), (b, b̃)) ∈ (Fn)4, subject to the constraint that the following three
conditions hold: (i)〈a,b〉 + 〈ã, b̃〉 = 0, (ii) {ai �= 0}i∈[n] and (iii) {b̃i �= 0}i∈[n].

Note that this gate is different from the gate O used earlier in [9] that simply
samples pairs (a,b) of orthogonal vectors. It is easy to see, however, that this
“new” gate O′ can be “simulated” by the players that have access to O that
samples pairs (c,d) of orthogonal vectors of length 2n each. First, observe that
c ∈ F

2n can be interpreted as a pair (a, ã) ∈ (Fn)2 (where a||ã = c), and in the
same way d ∈ F

2n can be interpreted as a pair (b, b̃) ∈ (Fn)2 (where b||b̃ = d).
By the basic properties of the inner product we get that 〈a,b〉+〈ã, b̃〉 = 〈c,d〉 =
0. Hence, condition (i) is satisfied. Conditions (ii) and (iii) can be simply verified
by the players Pl and Pr respectively. If one of these conditions is not satisfied,
then the players sample a fresh pair (c,d) from O (it happens only with a
constant probability, because |F| ≥ 4n).

4.4 Leakage-Resilient Refreshing of LRS

Recall than the pivotal element of the compiler from [10] is the protocol for
refreshing the encodings of the secrets encoded with Φn

F
. Such protocol takes an

encoding of the secret and produces a fresh encoding of the same secret. However,
we can not just decode the secret and then re-encode it with a fresh randomness,
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Protocol RefreshnF (l, r):Initial state:
– player Pl holds l ∈ (F \ {0})n and player Pr holds r ∈ (F \ {0})n.

1. Let ((a, ã), (b, b̃)) ← O′ and give (a, ã) to Pl and (b, b̃) to Pr.

Refreshing the share of Pr:
2. Pl computes a vector v such that {vi := li

−1 · ai}i∈[n] and sends v to Pr.
3. Pr computes a vector x such that {xi := vi · bi}i∈[n] and sets r′ := r+ x.
4. If there exists i such that r′

i = 0, then the protocol is restarted from the
beginning with new vectors sampled from O′.

Refreshing the share of Pl:
5. Pr computes a vector ṽ such that {ṽi := r′

i
−1 · b̃i}i∈[n] and sends ṽ to Pl.

6. Pl computes a vector x̃ such that {x̃i := ṽi · ãi}i∈[n] and sets l′ := l + x̃.
7. If there exists i such that l′i = 0, then the protocol is restarted from the

beginning with new vectors sampled from O′.
Final state:

– player Pl holds l′ and player Pr holds r′.

Views: The view viewl of player Pl is (l,a,v, ã, ṽ) and the view viewr of player
Pr is (r,b,v, b̃, ṽ).

Fig. 2. Protocol RefreshnF . Gate O′ samples random vectors (a, ã,b, b̃) ∈ (F \ {0})n ×
F
n ×F

n × (F \ {0})n such that 〈ta,b〉 = −〈ã, b̃〉. Note that the inverses in Steps 2 and
5 always exist, because l, r ∈ (F \ {0})n. Steps 4 and 7 guarantee that this condition
is preserved under the execution of the protocol RefreshnF . The protocol is restarted
with a bounded probability regardless of n (but keeping |F| ≥ 4n), so it changes the
efficiency of the algorithm only by a constant factor.

because an adversary could leak the secret, while it is decoded. Therefore, we
need a way to compute a new encoding of a secret without decoding it. The new
refreshing protocol performs O(n) operations over the field F in comparison to
Ω(n2) for a protocol from [10].

The refreshing protocol, Refreshn
F

described in Figure 2 is based on the one
proposed in [10] (cf. Section 3), but it is more efficient. The protocol Refreshn

F

refreshes the secrets encoded with Φn
F
. Refreshn

F
is run between two players Pl and

Pr, which initially hold shares l and r in (F \ {0})n. At the end of the protocol,
Pl holds l′ and Pr holds r′ such that 〈l, r〉 = 〈l′, r′〉. The refreshing scheme is
presented in Figure 2. The main idea behind this protocol is as follows. Denote
α := 〈a,b〉(= −〈ã, b̃〉). Steps 2 and 3 are needed to refresh the share of Pr. This
is done by generating, with the “help” of (a,b) (coming from O′) a vector x
such that 〈l,x〉 = α.

〈l,x〉 = α comes from the above summation: 〈l,x〉 =
∑n

i=1 lixi =
∑n

i=1 livibi

=
∑n

i=1 lil−1
i aibi = 〈a,b〉 = α. Then, vector x is added to the share of Pr by

setting (in Step 3) r′ := r + x. Hence, we get 〈l, r′〉 = 〈l, r〉 + 〈l,x〉 = 〈l, r〉 + α.
Symmetrically, in Steps 5 and 6 the players refresh the share of Pl, by first gener-
ating x̃ such that 〈x̃, r′〉 = −α, and then setting l′ = l + x̃. By similar reasoning
as before, we get 〈l′, r′〉 = 〈l, r′〉 − α, which, in turn is equal to 〈l, r〉. Hence, the
following lemma is true. The reconstructor for the Refreshn

F
and its proof can be

found in the full version.
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Lemma 5 (Soundness). For every l, r ∈ (F \ {0})n we have that
Decoden

F
(Refreshn

F
(l, r)) = Decoden

F
(l, r).
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Abstract. Multi-party fair exchange (MFE) and fair secure multi-party
computation (fair SMPC) are under-studied fields of research, with prac-
tical importance. We examine MFE scenarios where every participant
has some item, and at the end of the protocol, either every participant
receives every other participant’s item, or no participant receives any-
thing. This is a particularly hard scenario, even though it is directly appli-
cable to protocols such as fair SMPC or multi-party contract
signing. We further generalize our protocol to work for any exchange
topology. We analyze the case where a trusted third party (TTP) is
optimistically available, although we emphasize that the trust put on
the TTP is only regarding the fairness, and our protocols preserve the
privacy of the exchanged items even against a malicious TTP.

We construct an asymptotically optimal (for the complete topology)
multi-party fair exchange protocol that requires a constant number of
rounds, in comparison to linear, and O(n2) messages, in comparison to
cubic, where n is the number of participating parties. We enable the
parties to efficiently exchange any item that can be efficiently put into a
verifiable escrow (e.g., signatures on a contract). We show how to apply
this protocol on top of any SMPC protocol to achieve a fairness guar-
antee with very little overhead, especially if the SMPC protocol works
with arithmetic circuits. Our protocol guarantees fairness in its strongest
sense: even if all n − 1 other participants are malicious and colluding,
fairness will hold.

Keywords: Fair exchange · Optimistic model · Secure and fair compu-
tation · Electronic payments

1 Introduction

An exchange protocol allows two or more parties to exchange items. It is fair
when the exchange guarantees that either all parties receive their desired items
or none of them receives any item. Examples of such exchanges include sign-
ing electronic contracts, certified e-mail delivery, and fair purchase of electronic
goods over the internet. In addition, a fair exchange protocol can be adopted
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by secure two- or multi-party computation protocols [7,10,17,26,29,36,45] to
achieve fairness [30].

Even in two-party fair exchange scenarios, preventing unfairness completely
and efficiently without a trusted third party (TTP) is shown to be impossible
[21,41]. The main reason is that one of the parties will be sending the last message
of the protocol, regardless of how the protocol looks like, and may choose not
to send that message, potentially causing unfairness. In an optimistic protocol,
the TTP is involved in the protocol only when there is a malicious behavior
[3,4]. However, it is important not to give a lot of work to the TTP, since this
can cause a bottleneck. Furthermore, the TTP is required only for fairness, and
should not learn more about the exchange than is required to provide fairness.
In particular, in our protocols, we show that the TTP does not learn
the items that are exchanged.

Fair exchange with two parties have been extensively studied and efficient
solutions [4,9,32–34] have been proposed, but the multi-party case does not have
efficient and general solutions. Multi-party fair exchange (MFE) can be described
based on exchange topologies. For example, a ring topology describes an MFE
scenario where each party receives an item from the previous party in the ring
[5,27,38,38]. A common scenario with the ring topology is a customer who wants
to buy an item offered by a provider: the provider gives the item to the customer,
the customer sends a payment authorization to her bank, the customer’s bank
sends the payment to the provider’s bank, and finally the provider’s bank credits
the provider’s account.

Ring topology cannot be used in scenarios like contract-signing and secure
multi-party computation (SMPC), since in such scenarios the parties want items
from all other parties. In particular, in such settings, we want that either
every participant receives every other participant’s item, or no par-
ticipant receives anything. This corresponds to the contract being signed
only if everyone agrees, or the SMPC output to be revealed only when every
participant receives it. We call this kind of topology a complete topology. We
can think of the parties as nodes in a complete graph and the edges between
parties show the exchange links. The complete topology was researched mostly
in the contract-signing setting [8,24,25], with one exception [3]. Unfortunately,
all these protocols are inefficient compared to ours (see Table 1). Since there was
no an efficient MFE protocol that achieves the complete topology, the fairness
problem in SMPC protocols still could not be completely solved. Existing fair
SMPC solutions either work with inefficient gradual release [23], or require the
use of bitcoins [1,11].

Our Contributions: We suggest a new optimistic multi-party fair exchange
protocol that guarantees fairness in every topology, including the complete topol-
ogy, efficiently.

– Our MFE requires only O(n2) messages and constant number of rounds for
n parties, being much more efficient than the previous works (see Table 1).
These are asymptotically optimal for a complete topology, since each party
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Table 1. Efficiency comparison with previous works. n is the total number of parties, t
is number of dishonest parties, and MPCS means multi-party contract signing protocol.

Solution for Topology
Round

Complexity
Number of
Messages

Broadcast

[25] MPCS Complete O(n2) O(n3) Yes

[8] MPCS Complete O(tn) O(tn2) Yes

[40] MPCS Complete O(n) O(n3) Yes

[39] MPCS Complete O(n) O(n2)� Yes

[3] MFE � Any � O(1) � O(n3) Yes

Ours MFE � Any � O(1) � O(n2) � No �

should send his item to all the other parties, even in an unfair exchange.
Furthermore, our MFE does not necessitate a broadcast.

– Our MFE optimally guarantees fairness (for honest parties) even when n−1
out of n parties are malicious and colluding.

– Our MFE has an easy setup phase, which is employed only once for exchang-
ing multiple sets of items, thus improving efficiency even further for repeated
exchanges among the same set of participants.

– The TTP for fairness in our MFE is in the optimistic model [4]. The TTP
has a very low workload, since the parties only employ efficient discrete-
logarithm-based sigma proofs to show their honesty. More importantly, the
TTP does not learn any exchanged item, so privacy against the TTP is
preserved.

– We show how to employ our MFE protocol for any exchange topology,
with the performance improving as the topology gets sparser.

– We formulate MFE as a secure multi-party computation protocol. We then
prove security and fairness via ideal-real world simulation [30]. To the
best of our knowledge, no multi-party fair exchange protocol was proven as
an SMPC protocol before.

– Based on the definition in [30], we provide an ideal world definition for fair
SMPC, and prove via simulation that our MFE can be employed on top
of any SMPC protocol to obtain a fair SMPC protocol, with the fair-
ness extension leaking nothing about the inputs, and without necessitating
a payment system.

2 Related Works

Multi-party Fair Exchange: Asokan et al. [3] described a generic optimistic
fair exchange with a general topology. The parties are restricted to exchange
exchangeable items, requiring the TTP to be able to replace or revoke the items,
greatly decreasing the applicability of their protocol. In addition, broadcast is
used to send the items, rendering their protocol inefficient.

Ring Topologies: Bao et al. [6] proposed an optimistic multi-party fair exchange
protocol based on the ring topology. In their protocol, one of the participants is
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Table 2. Efficiency comparison with previous works in the ring topology. n is number of
parties. ‘All or None’ represents our fairness definition, where either the whole topology
is satisfied, or no exchange occurs.

Number Messages All or None
TTP-Party
Dependency

TTP Privacy

[6] O(n) No Yes Not Private

[27] O(n2) No Yes Not Private

[38] O(n) No Yes Not Private

Ours O(n2) Yes � No � Private �

the initiator, who starts the first and second phases of the protocol. The initiator
is required to contact the TTP to acknowledge the completion of the first phase
of the protocol. Thus, firstly, this is not a strictly optimistic protocol, secondly,
there is a necessity of trusting the initiator.

Later, Gonzales-Deleito and Markowitch [27] solved the malicious initiator
problem of Bao et al. [6]. But, the problem in their protocol is in the recovery
protocol: when one of the participants contacts the TTP, the TTP has to contact
the previous participant in the ring. This is not preferable because it is not
guaranteed that previous participant will be available. The protocol in [38] have
also the problem in the recovery protocol.

Understanding Fairness: There is an important difference between our under-
standing of fairness, and existing ring-topology protocols’ [6,27,38]. According
to their definition, in the end, there will be no party such that he does not
receive his desired item from the previous party but sends his item to the next
party. It means that there can be some parties who received their desired items
and some other parties who did not receive or send anything. Whereas, accord-
ing to our definition, either the whole topology is satisfied (all the
necessary exchanges are complete), or no exchange takes place.

Complete Topologies: Multi-party contract signing indeed corresponds to a
complete topology. Garay and Mackenzie [24] proposed the first optimistic multi-
party contract signing protocol that requires O(n2) rounds and O(n3) messages.
Because of its inefficiency, Baum-Waidner and Waidner [8] suggested a more effi-
cient protocol, whose complexity depends on the number of dishonest parties,
and if the number of dishonest parties is n − 1, its efficiency is the same as [24].
Mukhamedov and Ryan [40] decreased the round complexity to O(n). Lastly,
Mauw et al. [39] gave the lower bound of O(n2) for the number of messages to
achieve fairness. Their protocol requires O(n2) messages, but the round com-
plexity is not constant. We achieve both lower bounds (O(n2) messages
and constant round) for the first time.

Fair Secure Multi-party Computation: Secure multi-party computation
had an important position in the last decades, but its fairness property did not
receive a lot of attention. One SMPC protocol that achieves fairness is designed
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by Garay et al. [28]. It uses gradual release, which is the drawback of this proto-
col, because each party broadcasts its output gradually in each round. At each
round the number of messages is O(n3) and there are a lot of rounds due to
gradual release.

Another approach is using bitcoin to achieve fairness using a TTP in the opti-
mistic model [1,11]. When one of the parties does not receive the output of the
computation, he receives a bitcoin instead. This fairness approach was used by
Lindell [35] for the two-party computation case, and by Küpçü and Lysyanskaya
[33] and Belenkiy et al. [9] for peer-to-peer systems. However, this approach
is not appropriate for multi-party computation since we do not necessar-
ily know how valuable the output will be before evaluation. Finally,
reputation-based fairness solutions [2] talk about fairness probabilities.

3 Definitions and Preliminaries

3.1 Preliminaries

Threshold Public Key Encryption: In such schemes, encryption is done with
a single public key, generated jointly by n decrypters, but decryption requires at
least k decrypters to cooperate. It consists of the probabilistic polynomial time
(PPT) protocols Key Generation, Verification, Decryption and a PPT algorithm
for Encryption [44]. We describe these via the ElGamal (n, k = n) threshold
encryption scheme we will employ, as follows:

– Key Generation: It generates a list of private keys SK = {x1, ..., xn}, where
xi ∈ Zp, public key PK = (g, h), where g is a generator of a large prime
p-order subgroup of Z∗

q with q prime, together with h = g
∑

xi , and public
verification key V K = {vk1, ..., vkn} = {gx1 , ..., gxn}, where n ≥ 1. Note
that this can be done in a distributed manner [43].

– Encryption: It computes the ciphertext for plaintext m as E = (a, b) =
(gr,mhr) where r ∈ Zp.

– Verification: It is between a verifier and a prover. Verifier, using V K,E, and
the given decryption share of the prover di = grxi , outputs valid if prover
shows that logg vki is equal to loga di. Otherwise, it outputs invalid.

– Decryption: It takes as input n decryption shares {d1, ..., dn}, where di =
grxi , V K, and E. Then, it outputs a message m with the following compu-
tation (in Z

∗
q),

b
∏

di
=

mhr

gr
∑

xi
=

mhr

hr
= m

or ⊥ if the decryption shares are invalid.

Verifiable Encryption: It is an encryption that enables the recipient to verify,
using a public key, that the plaintext satisfies some relation, without perform-
ing any decryption [14,15]. A public non-malleable label can be attached to a
verifiable encryption [44].



Optimally Efficient MFE and Fair SMPC 335

Verifiable Escrow: An escrow is a ciphertext under the public key of the TTP.
A verifiable escrow [4,15] is a verifiable encryption under the public key of the
TTP. We employ ElGamal verifiable encryption scheme [13,20].

Notation. The n parties in the protocol are represented by Pi, where i ∈
{1, ..., n}. Ph is to show the honest parties, and Pc is to show the corrupted
parties controlled by the adversary A.

V Ei and V Si is used to show the verifiable encryption and escrow prepared
by Pi, respectively. The descriptive notation for verifiable encryption and escrow
is V (E, pk; l){(v, ξ) ∈ R}. It denotes the verifiable encryption and escrow for the
ciphertext E whereby ξ –whose relation R with the public value v can be verified–
is encrypted under the public key pk, and labeled by l. For escrows, pk is the
TTP’s public key.

PK(v){(v, ξ) ∈ R} denotes a zero-knowledge proof of knowledge of ξ that
has a relation R with the public value v. All relations R in our protocols have
an honest-verifier zero-knowledge three-move proof of knowledge [18], so can be
implemented very efficiently. z shows the number z in the Figure 1.

3.2 Definitions

Optimistic Fair Secure Multi-Party Computation: A group of parties with
their private inputs wi desire to compute a function φ [8,26]. This computation
is secure when the parties do not learn anything beyond what is revealed by the
output of the computation. It is fair if either all of the parties learn the output in
the end of the computation, or none of them learns the output. For an optimistic
protocol, the TTP is involved only when there is a dispute about fairness between
parties. This is formalized by ideal-real world simulations, defined below.

Ideal World: It consists of an adversary A that corrupts the set Pc of m
parties where m ∈ {1, ..., n − 1}, the set of remaining honest party(s) Ph, and
the universal trusted party U (not the TTP). The ideal protocol is as follows:

1. U receives inputs {wi}{i∈Pc} or the message abort from A, and {wj}{j∈Ph}
from the honest party(s). If the inputs are invalid or A sends the message
abort, then U sends ⊥ to all of the parties and halts.

2. Otherwise U computes φ(w1, ..., wn) = (φ1(w1, ..., wn), ..., φn(w1, ..., wn)).
Let φi = φi(w1, ..., wn) be the ith output. Then he sends {φi}{i∈Pc} to A
and {φj}{j∈Ph} to the corresponding honest party(s).

The outputs of the parties in an ideal execution between the honest party(s) and
A controlling the corrupted parties where U computes φ is denoted
IDEALφ,A(aux)(w1, w2, ...wn, λ), where {wi}1≤i≤n are the respective private
inputs of the parties, aux is an auxiliary input of A, and λ is the security
parameter.

Real World: There is no U for a real protocol π to compute the functionality
φ. There is an adversary A that controls the set Pc of corrupted parties and
a TTP involved in the protocol when there is an unfair behavior. The pair of
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outputs of the honest party(s) Ph and A in the real execution of the protocol
π, possibly employing the TTP, is denoted REALπ,TTP,A(aux)(w1, w2, ...wn, λ),
where w1, w2, ...wn, aux, and λ are like above.

Note that U and TTP are not related to each other. TTP is the part of the
real protocol to solve the fairness problem when it is necessary, but U is not real
(just an ideal entity).

Definition 1 (Fair Secure Multi-Party Computation). Let π be a proba-
bilistic polynomial time (PPT) protocol and let φ be a PPT multi-party function-
ality. We say that π computes φ fairly and securely if for every non-uniform
PPT real world adversary A attacking π, there exists a non-uniform PPT ideal
world simulator S so that for every w1, w2, ..., wn, λ ∈ {0, 1}∗, the ideal and real
world outputs are computationally indistinguishable:

{IDEALφ,S(aux)(w1, w2, ..., wn, λ)} ≡c {REALπ,TTP,A(aux)(w1, w2, ..., wn, λ)}

The standard secure multi-party ideal world definition [37] lets the adversary
A to abort after learning his output but before the honest party(s) learns her
output. Thus, proving protocols secure using the old definition would not meet
the fairness requirements. Therefore, we prove our protocols’ security and fair-
ness under the modified definition above. Canetti [16] gives general definitions
for security for multi-party protocols with the same intuition as the security and
fairness definition above. Further realize that since the TTP T does not exist in
the ideal world, the simulator should also simulate its behavior.

Optimistic Multi-Party Fair Exchange: The participants are P1, P2, ..., Pn.
Each participant Pi has an item fi to exchange, and wants to exchange his own
item fi with the other parties’ items {fj}j �=i, , where i, j ∈ {1, ..., n}. Thus, at
the end, every participant obtains {fi}1≤i≤n in a complete topology, or some
subset of it defined by some other exchange topology.

Multi-Party fair exchange is also a multi-party computation where the func-
tionality φ is defined via its parts φi as below (we exemplify using a complete
topology):

φi(f1, ..., fn) = (f1, f2, ..., fi−1, fi+1, ..., fn)

The actual φi would depend on the topology. For example, for the ring topology,
it would be defined as φi(f1, ..., fn) = fi−1 if i �= 1, φi(f1, ..., fn) = fn if i = 1.
Therefore we can use Definition 1 as the security definition of the multi-party
fair exchange, using the φi representing the desired topology.

Adversarial Model: When there is dispute between the parties, the TTP
resolves the conflict atomically. We assume that the adversary cannot prevent
the honest party(s) from reaching the TTP before the specified time interval.
Secure channels are used to exchange the decryption shares and when contacting
the TTP. The adversary may control up to n−1 out of n parties in the exchange,
and is probabilistic polynomial time (PPT).
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4 Description of the Protocol

Remember that our aim is to create efficient multi-party fair exchange protocols
for every topology. The most important challenges of these kind of protocols are
the following:

– Even if there are n − 1 colluding parties, the protocol has to guarantee the
fairness. Consider a simple protocol for the complete topology: each party
first sends the verifiable escrow of the his/her item to the other parties, and
after all the verifiable escrows are received, each of them sends the (plaintext)
items to each other. If one of the parties comes to the TTP for resolution,
the TTP decrypts the verifiable escrow(s) and stores the contacting party’s
item for the other parties.
Assume now that Pi and Pj are colluding, and Pi receives verifiable escrow of
the honest party Ph. Then Pi contacts the TTP, receives fh via the decryp-
tion of the verifiable escrow of Ph, and gives his item fi to the TTP. At
this moment, if Pi and Pj leave the protocol before Pj sends his verifiable
escrow to Ph, then fairness is violated because Ph never gets the item of Pj ,
whereas, by colluding with Pi, Pj also received fh.
Thus, it is important not to let a party learn some item before all the parties
are guaranteed that they will get all the items. We used this intuition while
designing our protocols. Therefore, we oblige parties to depend on some
input from every party in every phase of the protocol. Hence, even
if there is only one honest party, the dishonest ones have to contact and
provide their correct values to the honest party so that they can continue
with the protocol.

– It is desirable and more applicable to use a semi-honest TTP. Hence, privacy
against the TTP needs to be satisfied. In the protocol above, the privacy
against the TTP is violated since the TTP learns the items of the parties.

– The parties do not receive or send any item to some of the other parties in
some topologies (e.g., in the ring topology, P2 receives an item only from
P1 and sends an item to P3 only). Yet, a multi-party fair exchange protocol
must ensure that either the whole topology is satisfied, or no party obtains
any item. Previous protocols fail in this regard, and allow, for example P2

to receive the item of P1 as long as she sends her item to P3, while it may
be the case that P4 did not receive the item of P3. The main issue here is
that, if a multi-party fair exchange protocol lets the topology to be partially
satisfied, we might as well replace that protocol with multiple executions of
two-party fair exchange protocols. The main goal of MFE is to ensure that
either the whole topology is satisfied, or no exchange happens.

We succeed in overcoming the challenges above with our MFE protocol. We
first describe the protocol for the complete topology for the sake of simplic-
ity. Then, we show how we can use our MFE protocol for other topologies in
Section 5. All zero-knowledge proof of knowledge protocols are executed non-
interactively in the random oracle model [12].
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Fig. 1. Our MFE Protocol. Each (i, j) message pair can be performed in any order or
in parallel within a step.

4.1 Multi-Party Fair Exchange Protocol (MFE)

There is a trusted third party (TTP) that is involved in the protocol when a
dispute happens between the participants about fairness. His public key pk is
known to every participant.

Overview: The protocol has three phases. In the first phase, parties jointly gen-
erate a public key for the threshold encryption scheme using their private shares.
This phase needs to be done only once among the same set of participants. In
the second phase, they send to each other the verifiable encryptions of the items
that they want to exchange. If anything goes wrong up till here, the protocol
is aborted. In the final phase, they exchange decryption shares for each item.
If something goes wrong during the final phase, resolutions with the TTP are
performed. The details are below (see also Figure 1).

Phase 1 ( 1 and 2 in Figure 1): All participants agree on the prime p-order
subgroup of Z∗

q , where q is a large prime, and a generator g of this subgroup.
Then each Pi does the following [43]:

– Pi randomly selects his share xi from Zp and computes the verification key
hi = gxi . Then he commits to hi and sends the commitment Ci to other
parties [43].

– After receiving all commitments from the other parties, Pi opens Ci and
obtains all other parties’ hj .
Note that this must be done after exchanging all the commitments, since
otherwise we cannot claim independence of the shares, and then the threshold
encryption scheme’s security argument would fail. But with the two steps
above, the security proof for threshold encryption holds here.

– After receiving all hi values successfully, Pi computes the threshold encryp-
tion’s public key

h =
∏

i

hi =
∏

i

gxi = g
∑

i xi = gx.
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Phase 1 is executed only once. Afterward, the same set of parties can exchange
as many items as they want by performing only Phase 2 and Phase 3.

Phase 2 ( 3 in Figure 1): Firstly, parties agree on two time parameters t1 and
t2, and identification id of the protocol. (Time parameters can also be agreed in
Phase 1.) Each participant Pi does the following:

– Pi sends a verifiable encryption of his item fi as

V Ei = V ((gri , fih
ri), h; ∅){(v, fi) ∈ Ritem}

where ri is randomly selected from Zp. For the notation simplicity, we denote
(ai, bi) = (gri , fih

ri). V Ei includes the encryption of the item fi with public
key h and it can be verified that the encrypted item fi and the public value
vi has the relation Ritem. Shortly, Pi proves he encrypts desired item. (e.g.,
if fi is a signature on a contract, then vi contains the signature verification
key of Pi together with the contract, and Ritem is the relation that fi is a
valid signature with respect to vi.)
Note that without knowing n decryption shares, no party can decrypt any
V Ej and learn the items. Thus, if anything goes wrong up to this point, the
parties can locally abort the protocol. After this point, they need to obtain
all the decryption shares. This is done in the following phase.

Phase 3 ( 4 and 5 in Figure 1): No party begins this phase without com-
pleting Phase 2 and receiving all verifiable encryptions V Ej correctly.

– Pi sends to other parties a verifiable escrow V Si that includes the decryption
shares for each verifiable encryption V Ej . V Si is computed as

V Si = V (Ei, pk; t1, t2, id, Pi){(hi, {axi

k }1≤k≤n) ∈ Rshare}
where Ei is the encryption of axi

1 , axi
2 , ..., axi

n with the TTP’s public key pk.
The relation Rshare is:

logg hi = logak
axi

k for each k. (1)

Simply, the verifiable escrow V Si includes the encryption of the decryption
shares of Pi that will be used to decrypt the encrypted items of all parties.
It can be verified that it has the correct decryption shares. In addition, only
the TTP can open it. The label t1, t2, id, Pi contains the public parameters
of the protocol, and Pi is just a name that the participant chooses. Here, we
assume that each party knows the other parties’ names.

Remark: The name Pi is necessary to show the V Si belongs him. It is not
beneficial to put a wrong name in a verifiable escrow’s label, since a cor-
rupted party can convince TTP to decrypt V Si by showing Pi is dishonest.
The other labels id, t1, t2 are to show the protocol parameters to the TTP.
Exchange identifier id is necessary to prevent corrupted parties to induce
TTP to decrypt V Sj for another exchange. Consider that some exchange
protocol ended unsuccessfully, which means nobody received any item. The
corrupted party can go to the TTP as if V Sj is the verifiable escrow of the
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next protocol, and have it decrypted, if we were not using exchange identi-
fiers. We will see in our resolution protocols that cheating in the labels do
not provide any advantage to an adversary. Furthermore, the party
names can be random and distinct in each exchange, as long as the parties
know each others’ names, and so it does not violate the privacy of the parties.

– Pi waits for V Sj from each Pj . If anything is wrong with some V Sj (e.g.,
verification fails or the label is not as expected), or Pi does not receive the
verifiable escrow from at least one participant, he executes Resolve 1 before
t1. Otherwise, Pi continues with the next step.

– Pi sends his decryption shares (axi
1 , axi

2 , ..., axi
n ) to each Pj . In addition, he

executes the zero-knowledge proof of knowledge showing that these are the
correct decryption shares

PK(hi, {ak}k∈N ){(hi, {axi

k }1≤k≤n) ∈ Rshare}. (2)

– Pi waits for (axj

1 , a
xj

2 , ..., a
xj
n ) from each Pj , together with the same proof

that he does. If one of the values that he receives is not as expected or if he
does not receive them from some Pj , he performs Resolve 2 protocol with
the TTP, before t2 and after t1. Otherwise, Pi continues with the next step.

– After receiving all the necessary values, Pi can decrypt each V Ei and get all
the items. The decryption for item fj is as below:

bj/
∏

k

axk
j = fjh

rj/grj

∑
k xk = fjh

rj/(g
∑

k xk)rj = fjh
rj/hrj = fj

Resolve 1. The goal of Resolve 1 is to record the corrupted parties that did not
send their verifiable escrow in 4 . Resolve 1 needs to be done before t1. Parties
do not learn any decryption shares here. They can just complain about other
parties to the TTP. The TTP creates a fresh complaintList for the protocol with
parameters id, t1, t2. The complaintList contains the names of pairs of parties
having a dispute because of the missing V S. The complainant is the party that
complains, whose name is saved as the first of the pair, and the complainee is
saved as the second of the pair. The TTP saves also complainee’s verification key
given by the complainant; in the case that the complainee contacts the TTP, he
will be able to prove that he is the complainee. See Algorithm 1.

Algorithm 1. Resolve 1

Pi sends id, t1, t2, Pj , hj to the TTP where Pj

is the party that did not send V Sj to Pi. The
TTP does the following:
if currenttime > t1 then

send msg “Abort Resolve 1”
else

complaintList = GetComplaintList(id, t1, t2)

if complaintList == NULL then

complaintList = EmptyList(id, t1, t2)
// initialize empty list
solvedList = EmptyList(id, t1, t2) //
will be used in Resolve 2

end if
complaintList.add(Pi, (Pj , hj))
send msg “Come after t1 for Resolve 2”

end if
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Resolve 2. Resolve 2 is the resolution protocol where the parties come to the
TTP to ask him to decrypt verifiable escrows and the TTP solves the complaint
problems recorded in Resolve 1. The TTP does not decrypt any verifiable escrow
until the complaintList is empty.

The party Pi, who comes for Resolve 2 between t1 and t2, gives all veri-
fiable escrows that he has already received from the other parties and his own
verifiable escrow to the TTP. The TTP uses these verifiable escrows to save the
decryption shares required to solve the complaints in the complaintList. If the
complaintList is not empty in the end, Pi comes after t2 for Resolve 3. Other-
wise, Pi can perform Resolve 3 immediately and get all the decryption shares
that he requests.

Algorithm 2. Resolve 2

Pi gives M, which is the set of verifiable
escrows that Pi has. The TTP does the fol-
lowing:
complaintList = GetComplaintList(id, t1, t2)
for all V Sj in M do

if (∗, (Pj , hj)) ∈ complaintList AND
CheckCorrectness(V Sj , hj) is true then

sharesj = Decrypt(sk, V Sj)
solvedList.Save(Pj , sharesj)

complaintList.Remove((∗, (Pj , hj)))
end if

end for
if complaintList is empty then

send msg “Do Resolve 3”
else

send msg “Come after t2 for Resolve 3”
end if

CheckCorrectness(V Sj , hj) returns true if the TTP can verify the relation in equation (1) using

verifiable escrow V Sj and hj . Otherwise it returns false.

Resolve 3. If the complaintList still has parties, even after t2, the TTP answers
each resolving party saying that the protocol is aborted, which means nobody
is able to learn any item. If the complaintList is empty, the TTP decrypts
any verifiable escrow that is given to him. Besides, if the complainants in the
solvedList come, he gives the stored decryption shares. See Algorithm 3.

Algorithm 3. Resolve 3

Pi gives C, which is the set of parties that

did not perform step 4 or 5 with Pi, and
V, which is the set of verifiable escrows that
belongs to parties in C who performed step

4 . The TTP does the following:
complaintList = GetComplaintList(id, t1, t2)

if complaintList.isEmpty() then
for all Pj in C do

if V Sj ∈ V then

send Decrypt(sk, V Sj)
else

send solvedList.GetShares(Pj)
end if

end for
else if currenttime > t2 then

send msg “Protocol is aborted”
else

send msg “Try after t2”
end if
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4.2 Security

Theorem 1. The MFE protocol above is fair according to Definition 1, assum-
ing that ElGamal threshold encryption scheme is a secure threshold encryption
scheme, the associated verifiable escrow scheme is secure, all commitments are
hiding and binding, and the discrete logarithm problem is hard (so that the proofs
are sound and zero-knowledge).

Proof Sketch: The proof of Theorem 1 is in the full version of this paper [31].
Assume the worst-case that adversary A corrupts n − 1 parties. The simulator
S simulates the honest party in the real world and the corrupted parties in the
ideal world. S also acts as the TTP in the protocol if any resolution protocol
occurs, so S publishes a public key pk as the TTP, and knows the corresponding
secret key. Let’s assume that S simulates the honest party P1 without loss of
generality in real world.

S behaves the same as in the real protocol for Phase 1. Then in Phase 2, he
encrypts random item f̃1 since he does not know real f1 and sends the verifiable
encryption ˜V E1 to other parties. While he receives other parties’ V Es, he learns
the other parties’ items behaving as the extractor of verifiable encryption.

He behaves as in Phase 3. Additionally he learns decryption shares of the
parties that send verifiable escrow using the extractor.

If he receives all verifiable escrows of the other parties, it means it is guaran-
teed that the real honest party would obtain her desired items, because S in the
real world is now able to learn all the decryption shares from the corrupted par-
ties via resolutions. So he sends the items of the other parties to U and receives
f1. Then he calculates Equation 3 to find the appropriate decryption share d1
such that the other parties can get the item f1 from a1, b1 using d1. The other
decryption shares are calculated as in the real protocol.

d1 =
b1

f1a
x2
i ...axn

i

(3)

Otherwise S simulates the resolve protocols and does not send his decryption
shares as in real protocol. In the end of t2, if complaintList is empty, S sends
items of corrupted parties to U and receives f1. Then he calculates d1 from
Equation 3. In this point, when some parties come for Resolve 3, S can give
every share that they want. If complaintList is not empty in the end of t2, S
sends message abort to U .

5 All Topologies for MFE

In this section, we adapt our MFE protocol to every topology. Our fairness
definition remains the same: either the whole topology is satisfied, or no party
learns any item. As an example, consider the ring topology as in Figure 3. Parties
want an item from only the previous party. For example, P2 only wants P1’s
item f1. However, P2 should contact all other parties because of our all-or-none
fairness condition. Besides, we are not limited with a topology that follows a
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specific pattern such as the number of parties and items being necessarily equal.
For example, it is possible to provide fairness in the topology in Figure 5 even
though P2, P3, and P4 do not have exchange item with each other.

f1 f2 f3 f4
P1 �
P2 �
P3 �
P4 �

Fig. 2. Desired
items by each
parties in
matrix form
in the ring
topology

Fig. 3. Graph
representation of
the ring topology

f1 f2 f3 f4 f5
P1 � � � �
P2 �
P3 �
P4 �

Fig. 4. Matrix
representation of a
topology

Fig. 5. Graph repre-
sentation of a topol-
ogy in Figure 4

Consider some arbitrary topology described by the matrix in Figure 6. If a
party desires an item from another party, he should have all the shares of the item
as shown in Figure 7. In general, we can say that if a party Pi wants the item ft

he should receive {a
xj

t }{1≤j≤n} from all the parties {Pj}{1≤j≤n}. Therefore, our
MFE can be applied to any topology with the same fairness condition, which is
all parties will receive all their desired items or none of them receives
anything in the end of the protocol.

f1 f2 f3 f4 f5
P1 � �
P2 � � �
P3 � �
P4 � � � �

Fig. 6. Each party wants the marked
items corresponding to his/her row. Pi

has fi, except P4 has both f4 and f5.

f1 f2 f3 f4 f5
P1 {axi

2 } {axi
3 } {axi

5 }
P2 {axi

1 } {axi
4 } {axi

5 }
P3 {axi

1 } {axi
3 }

P4 {axi
1 } {axi

2 } {axi
3 } {axi

5 }

Fig. 7. Necessary shares for each party
to get the desired items that are
shown in Figure 6. Sets are over i ∈
{1, 2, ..., 5}

Our strong fairness condition requires that all parties have to depend each
other. Even though Pi does not want an item fj from Pj , getting his desired
item has to also depend on Pj . Therefore we cannot decrease number of messages
even in a simpler (e.g., ring) topology.

On the other hand, the size of the verifiable escrow, meaning that the number
of shares in the verifiable escrow, decreases in topologies other than the complete
one. If we represent the topology in a matrix form as in Figure 6, each party Pi
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has to add the number of � many shares corresponding to the row of the party
Pj to the verifiable escrow that is sent to Pj . We can conclude that the total size
of the verifiable escrows that a party sends is O(#�) where � is as in Figure 6.

6 Efficient Fair Secure Multi-Party Computation

In this section, we show how to adapt the MFE protocol to any secure multi-
party computation (SMPC) protocol [7,10,17,26,46] to achieve fairness.

Assume n participants want to compute a function φ(w1, ..., wn) =
(φ1(w1, ..., wn), ..., φn(w1, ..., wn)), where wi is the input and φi = φi(w1, ..., wn)
is the output of party Pi.

– Pi randomly chooses a share xi ∈ Zp. Then Pi gives his share and wi to
an SMPC protocol that outputs the computation of the functionality ψ
where ψi(z1, z2, ..., zn) = (Ei(φi(w1, ..., wn)), {gxj}1≤j≤n) is the output to,
and zi = (wi, xi) is the input of Pi. This corresponds to a circuit encrypting
the outputs of the original function φ using the shares provided as input, and
also outputting the verification shares of all parties to everyone. Encryption
Ei is done with the key h = g

∑n
j=1 xj as follows:

Ei(φi(w1, ..., wn)) = (gri , φih
ri)

where ri ∈ Zp are random numbers chosen by the circuit (or they can also
be inputs to the circuit), similar to the original MFE protocol.
It is expected that everyone learns the output of ψ before a fair exchange
occurs. If some party did not receive his output at the end of the SMPC
protocol, then they do not proceed with the fair exchange, and hence no
party will be able to decrypt and learn their output.

– If everyone received their output from the SMPC protocol, then they execute
the Phase 3 of the MFE protocol above, using gxi values obtained from
the output of ψ as verification shares, and xi values as their secret shares.
Furthermore, the ai, bi values are obtained from Ei.
Note that each function output is encrypted with all the shares. But, for
party Pi, she need not provide her decryption share for fi to any other party.
Furthermore, instead of providing n decryption shares to each other party as
in a complete topology, she needs to provide only one decryption share, axi

j ,
to each Pj . Therefore, the Phase 3 of MFE here is a more efficient version.
Indeed, the verifiable escrows, the decryption shares, and their proofs each
need to be only on a single value instead of n values.
Phases 1 and 2 of the fair exchange protocol have already been done during

the modified SMPC protocol, since the parties get the encryption of the output
that is encrypted by their shares. Since the SMPC protocol is secure, it is guar-
anteed to output the correct ciphertexts, and we do not need further verification.
We also do not need to commit to xi values, since the SMPC protocol ensures
independence of inputs as well. So, the parties only need to perform Phase 3.

In the end of the exchange, each party can decrypt only their own
output, because they do not disclose their own decryption shares. Indeed,
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if a symmetric functionality is desired for SMPC, ψ(z1, z2, ..., zn) =
{Ei(φi(w1, ..., wn)), gxi}1≤i≤n may be computed, and since Pi does not give the
decryption share of fi to anyone else, each party will still only be able to decrypt
their own output. Hence, a symmetric functionality SMPC protocol may
be employed to compute an asymmetric functionality fairly using our
modification . Note also that we view the SMPC protocol as black box.

Our overhead over performing unfair SMPC is minimal. Even though the
input and output sizes are extended additionally by O(n) values and the circuit
is extended to perform encryptions, these are minimal requirements, especially
if the underlying SMPC protocol works over arithmetic circuits (e.g., [7,46]). In
such a case, performing ElGamal and creating verification values gxi are very
easy. Afterward, we only add two rounds of interaction for the sake of fairness
(i.e., Phase 3 of MFE, with smaller messages). Moreover, all the benefits of our
MFE protocol apply here as well.

Theorem 2. The SMPC protocol above is fair and secure according to Defi-
nition 1 for the functionality φ, assuming that ElGamal threshold encryption
scheme is a secure, the discrete logarithm assumption holds, and the underlying
SMPC protocol that computes functionality ψ is secure.

Proof Sketch: The proof of Theorem 2 is in the full version of this paper
[31]. Assume that A corrupts n − 1 parties, which is the worst possible case.
The simulator S simulates the honest party in the real world and the corrupted
parties in the ideal world. S uses random input and acts as the simulator of
underlying SMPC protocol. The only difference between simulator of SMPC
and S is that S does not send inputs of the corrupted parties to U directly
after learning inputs of them because he needs to be sure that all parties will
receive output before sending inputs to U . The output of the simulated SMPC
protocol is encryptions of random outputs. Because of the security of ElGamal
encryption, these encryptions are indistinguishable from real ones.

In the end, S behaves as the simulator of MFE protocol for Phase 3 to
simulate the exchange. If it is guarantee all parties learn outputs, S sends inputs
of Pc’s to U and receives the output of Ph. Then he calculates each share di as
in Equation 3. Otherwise he sends the message abort to U .

Table 3 compares our fair SMPC solution. Our advantage is in terms of
efficiency, having no requirement for an external payment mechanism,
and proving security and fairness together via ideal/real simulation.

7 Performance and Privacy Analysis

MFE: Each party Pi in MFE prepares one verifiable encryption and one ver-
ifiable escrow, and sends them to n − 1 parties. The verification of them are
efficient because the relation they show can be proven using discrete-logarithm-
based honest-verifier zero-knowledge three-move proofs of knowledge [18]. In the
end, Pi sends a message including decryption shares to n− 1 parties, again with
an efficient proof of knowledge. So, for each party Pi, the number of messages
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Table 3. Comparison of our fair SMPC solution with previous works. NFS indicates
simulation proof given but not for fairness, FS indicates full simulation proof including
fairness, and λ is the security parameter.

Solutions Technique TTP Number of Rounds Proof Technique

[23] Gradual Release No O(λ) NFS

[11] Bitcoin Yes Constant � NFS

[1] Bitcoin Yes Constant � NFS

Ours MFE Yes Constant � FS �

that he sends is O(n). Since there are n parties, the total message complexity
is O(n2). Note that there is no requirement to have these messages broadcast;
just ensuring all previous step’s messages are received before moving further is
enough for security. Table 1 shows the comparison to the previous works, MFE
is much more efficient, obtaining optimal asymptotic efficiency.

When there is a malicious party or a party suffering from network failure,
MFE protocol ends at the latest, immediately after t2. In the worst case, n
parties contact the TTP, so it is important to reduce his workload. TTP’s duties
include checking some list from his records, verifying efficient zero-knowledge
proofs of knowledge from some number of parties (depending on the size of the
complaintList), and decrypting verifiable escrows. These actions are all efficient.

Moreover, the privacy against the TTP is preserved. He just learns
some decryption shares, but he cannot decrypt the encryption of exchanged
items, since he never gets the encrypted items.

We used ElGamal threshold encryption for presentation simplicity. Instead,
any threshold encryption scheme such as the Pailler cryptosystem [42], Franklin
and Haber’s cryptosystem [22], or Damgard-Jurik cryptosystem [19] can be used.

Finally, our MFE protocol achieves the intuitive fairness definition of ‘either
the whole topology is satisfied, or no item is exchanged’ for any topology. Such a
strong fairness definition necessitates that the exchanges depend on all parties,
necessitating quadratic number of messages.

Fair MPC: The overhead of our fairness solution on top of an existing
unfair SMPC protocol is increased input/output size, and additional computa-
tion of encryptions and verification shares. If an arithmetic circuit is used in the
underlying SMPC protocol [7,17,46], then there are only O(n) additional expo-
nentiations required, which does not extend circuit size a lot. If boolean circuits
are used, the size of the circuit increases more than arithmetic circuits would
have, but it is still tolerable considering in comparison to the related work.

As seen in Table 3, [23] uses gradual release for fairness. However, this brings
many extra rounds and messages to the protocol. Each round each party releases
his item by broadcasting it. Recent, bitcoin-based approaches [1,11] also require
broadcasting in the bitcoin network, which increases message complexity. Our
only overhead is a constant number of rounds, and O(n2) messages. Remember
again that these are asymptotically optimal, since fair SMPC necessitates a
complete topology.
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41. Pagnia, H., Gärtner, F.C.: On the impossibility of fair exchange without a trusted
third party. Technical report (1999)

42. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999)

43. Pedersen, T.P.: A threshold cryptosystem without a trusted party. In: Davies,
D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 522–526. Springer, Heidelberg
(1991)

44. Shoup, V., Gennaro, R.: Securing threshold cryptosystems against chosen cipher-
text attack. J. Cryptology, 75–96 (2002)

45. Yao, A.C.: Protocols for secure computations. In: FOCS (1982)
46. Zamani, M., Movahedi, M., Saia, J.: Millions of millionaires: Multiparty computa-

tion in large networks



Authenticated Encryption



How to Incorporate Associated Data
in Sponge-Based Authenticated Encryption

Yu Sasaki(B) and Kan Yasuda

NTT Secure Platform Laboratories, Tokyo, Japan
{sasaki.yu,yasuda.kan}@lab.ntt.co.jp

Abstract. We explore ways to combine associated data A with a sponge-
based authenticated encryption (AE) scheme. In addition to the popular
“header” and “trailer” methods, this paper investigates two other meth-
ods, concurrent absorption and ciphertext translation. The concurrent
absorption is a novel method unique to the sponge construction. The
advantage of the concurrent absorption is its efficiency; the number of
permutation calls reduces to max

{|A|/c, |M |/r
}

where | · | denotes the
bit length, c the capacity size in bits, and r the rate size. In particular,
if the size of A is relatively small, i.e. |A|/c ≤ |M |/r, then there is no
need of extra permutation calls for processing A. On the other hand,
the ciphertext translation is a generic technique developed by Rogaway
(ACM CCS 2002), and in this paper it is concretized as a sponge-based
AE scheme. The advantage of the sponge-based ciphertext translation
is that it can start encrypting a message M irrespective of the relative
arrival time of A.The efficiency of header and trailer methods can also be
improved by using a similar technique. Remarkably, all of these methods
are highly secure; the key length being denoted by κ, all methods achieve
min
{
2(r+c)/2, 2c/r, 2κ

}
security against nonce-respecting adversaries in

the ideal model, as recently shown by Jovanovic et al. (Asiacrypt 2014)
for the conventional header and trailer methods.

Keywords: CAESAR · AEAD · Sponge · Duplex · Donkey · Monkey ·
Capacity · Beyond 2c/2 security

1 Introduction

If one invents a new type of authenticated encryption (AE) scheme, then the
scheme might face the problem of handling associated data. The problem is how
to efficiently authenticate both associated data A and a message M , where A
needs to be sent in the clear and M needs to be encrypted. This would become
an easy task if the scheme was of “two-pass” generic composition, say Enc-then-
MAC [5]. Then simply the scheme would first encrypt M to get ciphertext C
and then authenticate A ‖ C to generate a tag T .

However, several people, including Kaliski [22], noticed that no obvious solu-
tion exists for a scheme like OCB [23] where authentication and encryption are
tightly integrated in a “one-pass” mechanism. For such schemes Rogaway [22]
c© Springer International Publishing Switzerland 2015
K. Nyberg (ed.): CT-RSA 2015, LNCS 9048, pp. 353–370, 2015.
DOI: 10.1007/978-3-319-16715-2 19
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Fig. 1. An illustration of SpongeWrap [8] iterating a “monolithic” permutation f .
The rate and capacity sizes are denoted by r and c, respectively. The function pad is
used for domain separation between A and M , as well as for wrapping the key K and
the last blocks of A and M ; pad adds a “frame bit” to each block of A and M . The
function trunc chops off the frame bits, unwraps the last block of M , and truncates
the tag T .

suggested two solutions: nonce stealing and ciphertext translation. The nonce
stealing works when A “fits” in the gap between the acceptable size of nonce
input (being larger) and the actual size of the nonce used (being smaller). In
such a case one can feed N ‖A to the nonce input, where N is the original nonce.
On the other hand, the ciphertext translation works for A of arbitrary size by
using a keyed hash function to compress A and xoring the hash value onto the
ciphertext C or onto the tag T .

Today we have another new type of AE scheme which is based on the sponge [7]
or more precisely duplex [8] construction. SpongeWrap [8] is a primitive AE
scheme of this type, and its basic structure is illustrated inFigure 1.SpongeWrap
iterates a “monolithic” permutation f to perform authentication and encryption
in a uniform, single-pass manner. Many engineers consider SpongeWrap as an
attractive design for realizing AE. Indeed, a number of CAESAR [6] submissions
adoptSpongeWrap-like modes of operation, e.g.Ascon [13], CBEAM [24], ICE-
POLE [20], Keyak [9], NORX [3], PRIMATEs [2], Prøst-APE [18], and
STRIBOB [25].

Moreover, SpongeWrap-like AE schemes have turned out to be highly
secure. Recently, Jovanovic et al. [16,17] have shown that all of the above CAE-
SAR candidates, except APE of PRIMATEs and Prøst-APE, achieve security
of min

{
2(r+c)/2, 2c/r, 2κ

}
rather than previously believed min

{
2c/2, 2κ

}
, where

κ, r and c denote the key, rate and capacity sizes, respectively. The older bound
was based on the indifferentiability result of the sponge construction [7], which
was tight for hashing but not for AE.

As illustrated in Figure 1, SpongeWrap handles associated data A as a
“header,” processing A ‖ M in a single pass, with A in the sponge mode and M
in the duplex mode. A special operation is needed between A and M in order
to make the “boundary” explicit. Almost all of the above CAESAR candidates
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Fig. 2. The donkeySponge construction for message authentication code (MAC)

follow this header approach for handling A. The only exception is NORX, which
accepts both header and “trailer,” as A1 ‖ M ‖ A2.

The header method has a potential drawback. The problem is that the entire
header A needs to be “available” before starting encryption. Although this issue
does not exist in the typical case of packet headers [22], it would be desirable to
handle A independent of its relative arrival time. This issue was recently raised
by Reyhanitabar and Vizár [21] in the context of authenticated online ciphers,
but the observation equally applies to nonce-based, sponge-type AE schemes.
The trailer method does not fundamentally resolve this issue. As pointed out by
Reyhanitabar and Vizár, the issue does not exist in the ciphertext translation.

Another drawback is inefficiency. The header and trailer methods require
roughly

(|A|+|M |)/r-many invocations of the underlying permutation. This does
not seem to be optimal, as is evident from the donkeySponge construction [10] to
build a message authentication code (MAC), which is described in Figure 2. The
donkeySponge construction suggests that the capacity could “absorb” associated
data for the purpose of authentication.

The SpongeWrap construction requires a single use of A, i.e. the same A
cannot be processed twice under the same K, in order to ensure confidentiality.
The monkeyDuplex construction [10] is a reconfiguration of SpongeWrap as a
nonce-based scheme. The monkeyDuplex construction embeds K and N to the
IV and then calls permutation f to mix the state with K and N . As long as a
new pair of (K,N) is used, the state gets fully randomized. The monkeyDuplex
construction also improves efficiency, because f is called only once for processing
(K,N), while the SpongeWrap construction calls f at least twice, one for
processing K and another for N .

Contributions of this Paper. Given the fact that all existing schemes adopt
primarily the header and trailer approach, and also the fact that these two
popular methods have potential drawbacks, we would like to explore other pos-
sible ways of incorporating associated data into a sponge-based AE scheme.
This paper presents three different methods. The aim is to improve the con-
ventional header and trailer methods with respect to either the timing issue or
the inefficiency, or both. The key idea is to effectively utilize the capacity for
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processing A. Fortunately, the resulting AE schemes do not sacrifice security,
achieving the latest bound of min

{
2(r+c)/2, 2c/r, 2κ

}
.

1. Proposing Concurrent Absorption Method. This is a novel method
that essentially removes the permutation calls for processing A in a typical
usage. The basic idea is that while r bits of M are absorbed in rate for each
block, we absorb c bits of A in capacity. This improves the number of per-
mutation calls from (|A|+ |M |)/r to max{|A|/c, |M |/r}. In many protocols,
|A| is small, say 160 bits [14]. Then, the cost becomes only |M |/r calls of f .

2. Concretizing Sponge-Based Ciphertext Translation. We concretize
the ciphertext translation in the sponge-based AE setting. The basic idea is
the combination of SpongeWrap and donkeySponge, using the latter for
hashing associated data A. As pointed out recently [21], this can resolve the
arrival timing issue. A straightforward method would require two keys, one
for processing M and another for processing A. We devise domain separation
so that the whole scheme uses only a single key.

3. Proposing donkeyHeaderTrailer Method. We improve the efficiency
of processing the header and trailer in SpongeWrap with the idea of don-
keySponge. Namely, A is absorbed both in rate and capacity. This reduces
the number of permutation calls from |A|/r to |A|/(r + c).

For all the three constructions, we prove the same security bound as the previous
work. Note that several sponge-based AE schemes use the frame bit(s) for the
separation of A and M . We argue that this is a potential efficiency loss, espe-
cially when implementors avoid the bit-wise coding and thus 1 byte per block is
occupied for the frame bit. Using K multiple times like GIBBON [2] can avoid
the frame bit, but it causes another inefficiency. In this work, we present a new
separation method with the doubling operation, which avoids the frame bit only
with a single key usage.

Finally, we show comprehensive studies for further optimization of processing
A. We apply the nonce stealing [22] to sponge-based AEs. Because the size of IV
in permutation based AEs is usually bigger than the one in block-cipher based
AEs, the nonce stealing works more efficiently. We then propose a new technique
called “key translation” to process more bits of A during the initialization. We
survey existing sponge-based AEs and discuss the impact of our methods.

2 New Constructions

This section specifies three constructions. The constructions are: concurrent
absorption, ciphertext translation, and donkeyHeaderTrailer.

2.1 The Concurrent Absorption Method

The concurrent absorption is a novel mode of operation unique to the sponge
construction. The concurrent absorption is illustrated in Figure 3. Its pseudo-
code is given in Figure 4. The basic idea is to absorb associated data A in the
capacity part concurrently with absorbing a message M in the rate part.
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Fig. 3. The concurrent absorption mode of operation. Upper: case |A|/c < |M |/r.
Lower: case |A|/c ≥ |M |/r. The multiplication by “2” in the finite field GF(2c) (rel-
ative to some primitive polynomial) right before outputting the tag T is crucial for
security.�� The standard 10∗ padding is used for both A and M . The ciphertext C is
truncated to the length of M . The tag T can be truncated if necessary.

2.2 Sponge-Based Ciphertext Translation

The ciphertext translation is a generic technique developed by Rogaway [22].
We concretize it as a sponge-based construction, as illustrated in Figure 5. The
basic idea is to utilize the donkeySponge for “hashing” associated data A, while
using the same key for hashing A and for encrypting a message M . The domain
separation is realized by using the initial value 0 for hashing A and using a nonce
N �= 0 for encrypting M . We omit pseudo-code for the ciphertext translation.

2.3 The donkeyHeaderTrailer Construction

The conventional header and trailer methods can be boosted via donkeySponge
construction. It is illustrated in Figure 6. The domain separation is a bit tricky
here; we need a special padding 10∗1 for wrapping A′ and A′′, as well as a
multiplication by 2 of the capacity value at the end of encrypting M . We omit
pseudo-code of donkeyHeaderTrailer.
�� Though an appropriate operation here is crucial, it does not need to be the multi-

plication by 2 in the large field. A more efficient operation can be used, e.g. a word
permutation [15]. The authors are grateful to Tetsu Iwata for pointing this out.
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1: function EK(N, A, M)
2: L ← ⌈(|M | + 1)/r

⌉

3:
(
M [1], M [2], · · · , M [L]

) r←−
M ‖ 10∗

4:
(
A[1], A[2], · · · , A[L]

) c←−
A ‖ 10∗

5:
(
C[0], Y ′[0]

)← (N, K)
6: for i = 1 to L do
7: (X[i], Y [i]) ← f

(
C[i −

1], Y ′[i − 1]
)

8: C[i] ← X[i] ⊕ M [i]
9: Y ′[i] ← Y [i] ⊕ A[i]

10: end for
11: L′ ← ⌈(|A| + 1)/c

⌉

12: if L′ ≤ L then
13: (T, Y [L + 1]) ←

f
(
C[L], 2Y ′[L]

)

14: else
15: (X[L + 1], Y [L + 1]) ←

f
(
C[L], Y ′[L]

)

16: for i = L + 1 to L′ − 1
do

17: Y ′[i] ← Y [i] ⊕ A[i]
18: (X[i + 1], Y [i + 1]) ←

f
(
X[i], Y ′[i]

)

19: end for
20: Y ′[L′+1] ← Y [L′]⊕A[L′]
21: (T, Y [L′ + 1]) ←

f
(
X[L′], 2Y ′[L′]

)

22: end if
23: C ← (C[1] ‖ · · · ‖ C[L]

)∣∣
|M|

24: return (C, T )
25: end function

1: function DK(N, A, C, T )
2: L ← ⌈(|C| + 1)/r

⌉

3:
(
C[1], C[2], · · · , C[L]

) r←− C

4:
(
A[1], A[2], · · · , A[L]

) c←− A ‖ 10∗

5:
(
C[0], Y ′[0]

)← (N, K)
6: for i = 1 to L do
7: (X[i], Y [i]) ← f

(
C[i − 1], Y ′[i − 1]

)

8: M [i] ← X[i] ⊕ C[i]
9: Y ′[i] ← Y [i] ⊕ A[i]

10: end for
11: L′ ← ⌈(|A| + 1)/c

⌉

12: if L′ ≤ L then
13: (T ′, Y [L + 1]) ←

f
(
C[L]‖X[L]

∣∣
r−|C[L]|, 2Y ′[L]

)

14: else
15: (X[L + 1], Y [L + 1]) ←

f
(
C[L]‖X[L]

∣∣
r−|C[L]|, Y

′[L]
)

16: for i = L + 1 to L′ − 1 do
17: Y ′[i] ← Y [i] ⊕ A[i]
18: (X[i+1], Y [i+1]) ← f

(
X[i], Y ′[i]

)

19: end for
20: Y ′[L′ + 1] ← Y [L′] ⊕ A[L′]
21: (T ′, Y [L′ + 1]) ← f

(
X[L′], 2Y ′[L′]

)

22: end if
23: M ← (M [1] ‖ · · · ‖ M [L]

)∣∣
|C|

24: if T ′ = T then
25: return (C, T )
26: else
27: return ⊥
28: end if
29: end function

Fig. 4. Pseudo-code of the concurrent absorption. The function E is the encryption
algorithm and D the decryption.

3 Security Definitions

We define adversarial model and security notions. The proofs will be done in the
ideal model, regarding the underlying primitive f as a random permutation.

3.1 Adversarial Model

We give adversary A access to the primitive oracle f(·), f−1(·) as well as to the
encryption oracle EK(·, ·, ·) and the decryption oracle DK(·, ·, ·, ·). We denote by
qf , qE , qD the number of queries that A makes to the oracles, respectively. We
also write σE , σD for the total complexities of the queries made to the oracles,
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Fig. 5. The ciphertext translation concretized as a sponge-based construction. We
require N �= 0. If A = ∅, then the value V = 0 is xored onto the tag. Note the
“⊕1” in the capacity right before outputting the tag T . This ⊕1 is necessary to make
a distinction between C and T when A = ∅.

Fig. 6. Boosting the header and trailer methods using donkeySponge. A special
padding 10∗1 is used for wrapping A′ and A′′. If A′ = ∅, then we set N ′ ← N
and K′ ← K. If A′′ = ∅, then T ← T ′′ is used as a tag. The standard 10∗ padding is
used for M , including the case M = ∅. The ciphertext C is truncated to the length
of M . The tag T can be truncated if necessary.

respectively. We leave the running time of A implicit; it does not have to be
bounded. The notation AO means the value returned by A after interacting
with its oracle O(·).

3.2 Privacy

The privacy of an AE scheme Π = (E ,D) is defined in terms of indistinguishabil-
ity between the real world and the random world. The real oracle is the encryp-
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tion algorithm EK(·, ·, ·), and the random one is the oracle $(·, ·, ·) which simply
returns a fresh, random string of an appropriate length upon a query (N,A,M).
In either the world the adversary A has access to the primitive oracle f(·) and its
inverse, where f is regarded as an independent random permutation. We define

Advpriv
Π (A) := Pr

[AEK ,f,f−1
= 1

] − Pr
[A$,f,f−1

= 1
]
,

where A is assumed to be nonce-respecting with its E-oracle. The probabilities
are defined over the choice of key K and the randomness of f and $ and, if any,
random coins used by A.

3.3 Authenticity

The authenticity of Π = (E ,D) is defined in terms of unforgeability in the above
adversarial model. We put

Advauth
Π (A) := Pr

[AEK ,DK ,f,f−1
forges

]
,

where by “forges” we mean the event that oracle DK(·, ·, ·, ·) returns something
other than the reject symbol ⊥. Again, we assume that A is nonce-respecting
with its E-oracle. Also, we forbid A from making a trivial-win query, that is, a
query (N,A,C, T ) to the D-oracle where (C, T ) was a value returned by E-oracle
on some previous query (N,A,M).

4 Security Proofs

We prove the security of the concurrent absorption as the basic case. Given
the proof of concurrent absorption, the security of the ciphertext translation is
almost automatically implied from the generic results given by Rogaway [23].
Also, the security of donkeyHeaderTrailer can be proven via similar techniques.

Our privacy and authenticity bounds are almost identical to those of the
original sponge (or more precisely, of NORX) [16,17]. In fact, even the proofs
are almost identical; they go through without much modification. The intuition
behind the sameness is that xoring associated data onto the capacity does not
essentially introduce new types of “bad” events. This fact can be verified by
carefully going through each step in the proofs by Jovanovic et al. [16,17].

4.1 Privacy of the Concurrent Absorption

Theorem 1. Let Π = (E ,D) be the concurrent absorption. Then we have

Advpriv
Π (A) ≤ 3(qf + σE)2

2r+c+1
+

(
8eqfσE
2r+c

)1/2

+
(r + 1)qf + σE

2c
,

where e = 2.71 . . . is the base of the natural logarithm.
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Proof. As we have mentioned above, we follow the approach developed by
Jovanovic et al. [16,17]. We start with a PRP-PRF switch, in which the random
permutation f is replaced with independent random functions g and g−1. We
forbid A from making trivial queries across f -oracle and f−1-oracle. This switch
costs us

(
qf+σE

2

)
/2r+c ≤ (qf + σE)2/2r+c+1.

We call g±1-queries made by A “direct queries.” We call g-queries induced
by queries to E-oracle “indirect queries.” When running AE,g,g−1

, consider the
following events:

• guess: This corresponds to an indirect query colliding with a direct query, or
vice versa.

• hit: This corresponds to a collision between two different indirect queries,
including the initial states (N,K).

Then it can be directly verified that unless one of these events occurs, AE,g,g−1

and A$,g,g−1
are identical. Hence Advpriv

Π (A) ≤ Pr
[
guess ∨ hit

]
.

It remains to bound Pr
[
guess ∨ hit

]
. Let us introduce two additional events:

• key: This corresponds to a direct query with its capacity part identical to
the key value K.

• multi: To define this event, we first set a threshold value ρ. Then multi cor-
responds to an event where the number of indirect queries having the same
rate part exceeds ρ.

Now we use the inequality

Pr
[
guess ∨ hit

] ≤ Pr
[
guess ∨ hit

∣
∣ ¬(key ∨ multi)

]
+ Pr

[
key ∨ multi

]
.

We first bound Pr
[
guess

∣
∣ ¬(key ∨ multi)

]
. By ¬multi there are at most ρ-many

capacity values having a given rate value. Therefore, the probability that any
direct query setting guess is at most ρqf/2c. On the other hand, for each indirect
query, the probability of setting guess is at most qf/2r+c, and hence the prob-
ability of any indirect query setting guess is at most qfσE/2r+c. So the overall
probability is at most ρqf/2c + qfσE/2r+c.

We next evaluate Pr
[
hit

∣
∣ ¬(key ∨ multi)

]
. This event happening with one

of the initial states is at most σE/2c. This event happening outside the initial
states is at most

(
σE
2

)
/2r+c ≤ σ2

E/2r+c+1. So the overall probability is at most
σE/2c + σ2

E/2r+c+1.
We go on to Pr

[
key

]
. This can be simply bounded by qf/2c.

Finally we bound Pr
[
multi

]
. For a given rate value, the probability of setting

multi with this particular rate value is at most
(
σE
ρ

)
(1/2r)ρ ≤ (eσE/ρ2r)ρ, using

Stirling’s approximation. Hence the probability of multi for any rate value is at
most 2r(eσE/ρ2r)ρ.

Summing up all terms gives

Pr
[
guess ∨ hit

] ≤ qfσE + σ2
E/2

2r+c
+

ρqf + qf + σE
2c

+ 2r

(
eσE
ρ2r

)ρ

.
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By setting ρ := max
{
r, (2eσE2c/qf2r)1/2

}
and assuming 2eqfσE/2r+c < 1, we

obtain the desired bound. ��

4.2 Authenticity of the Concurrent Absorption

Theorem 2. Let Π = (E ,D) be the concurrent absorption. Then we have

Advauth
Π (A) ≤ (qf + σE + σD)2

2r+c+1
+

(
8eqfσE
2r+c

)1/2

+
(r + 1)qf + σE + σD

2c
+

(qf + σE + σD)σD
2c

+
qD
2r

,

where e = 2.71 . . . is the base of the natural logarithm.

Proof. We inherit the notation from the privacy proof. Redefining the events
guess and hit through not only E-oracle but also D-oracle, we get

Pr
[
guess ∨ hit

] ≤ (qf + σE + σD)2

2r+c+1
+

(
8eqfσE
2r+c

)1/2

+
(r + 1)qf + σE + σD

2c
,

as we have done in the privacy proof. Now since we have

Pr
[A forges

] ≤ Pr
[A forges

∣
∣ ¬(guess ∨ hit)

]
+ Pr

[
guess ∨ hit

]
,

it remains to bound Pr
[A forges

∣
∣ ¬(guess ∨ hit)

]
. If A succeeds in forgery with

a fresh invocation of g (Recall that the permutation f has been already replaced
with random functions g and g−1), then such an event occurs with a probability
at most qD/2r. Otherwise, the invocation of g to produce T is “old,” meaning
that it has collided with some previous direct or indirect queries of g. Such a
collision cannot be a trivial one, because of the 10∗ padding for M and A and
also due to the multiplication by 2 in the finite field GF(2c). Therefore, the
probability that the invocation of g is old is at most (qf + σE + σD)σD/2c. This
completes the proof. ��

5 Comprehensive Studies

5.1 Survey of Existing Schemes

Several sponge based AEs were proposed in CAESAR. Those include Ascon
[13], CBEAM [24], ICEPOLE [20], Keyak [9], NORX [3], PRIMATEs (GIBBON
and HANUMAN) [2], and STRIBOB [25]. The parameters, i.e. permutation size,
rate size, capacity size, rough ratio of rate to capacity, key size, nonce size, and
the number of bits in security are summarized in Table 1.

The ways to incorporate A (including the way of domain separation) and
to utilize capacity are our main concerns. Such information is summarized in
Table 2. The domain separation is usually achieved by either of the following
two ways. First, fix a few bits of each input block for the separation of A and
M (frame bits). Second, xor a constant to c for the separation of A and M . For
some security purpose, some design xores K to the capacity.
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Table 1. Parameters of sponge based AE schemes

Scheme b r c r/c |K| |N | Integrity Confidentiality

Ascon-96 320 128 192 2/3 96 96 96 96
Ascon-128 320 64 256 1/4 128 128 128 128

CBEAM 256 66 190 1/3 128 64 63 127

ICEPOLE-128 1280 1026 254 4 128 128 128 128
ICEPOLE-128a 1280 1026 254 4 128 96 128 128
ICEPOLE-256a 1280 962 318 3 256 96 128 256

RIVER Keyak 800 548 252 2 128 − 224 128 128 128
LAKE Keyak 1600 1348 252 5 128 − 224 128 128 128

NORX 32 512 320 192 5/3 128 64 128 128
NORX 64 1024 640 384 5/3 256 128 256 256

GIBBON/ 200 41 159 1/4 80 80 80 80
HANUMAN 280 41 239 1/6 120 120 120 120

STRIBOB 512 256 254 1 192 128 127 191

5.2 Parameter and Design Choices

Choosing the best ratio of r and c. Given a b-bit permutation, what
is the best choice of the rate size r and the capacity size c? On one hand,
Jovanovic et al. proved that the security bound of the sponge based AE was
min{2b/2, 2c/r, 2κ}, and suggested to increase r (thus decrease c) to absorb
more input bits per block [16,17]. On the other hand, the concurrent absorption
method in this paper absorbs A in the capacity. Using a small c makes a process
of A slow.

For the donkeyHeaderTrailer and the sponge-based ciphertext translation, A
is absorbed in the entire b bits per block. Hence, the ratio of r to c does not
affect the performance. They can be chosen to satisfy the suggestion by Jovanovic
et al. [16,17]. Thus, setting the capacity size equal to the security parameter,
i.e. c = κ, is the best choice.

The concurrent absorption requires a careful analysis. In many cases, |A| is
much smaller than |M |. For instance, the Internet protocol [14] specifies that a
typical Internet header is 20 bytes. Suppose that |M | is 1,000 bytes. Processing
the 1,000-byte M requires 8000/r blocks, while processing 20-byte A requires
160/c blocks. With a practical choice of r and c, processing M is the bottleneck.
Thus, minimizing the capacity size (c = κ) is the best choice.

When |M | is as small as |A|, using a bigger c can be optimal. Such a situation
may occur for light-weight protocols. Actually several AE schemes, e.g. CLOC
[26,27] and SILC [28], were designed to efficiently process short input, though
they are block-cipher based schemes.

Let us discuss an example with |A| = |M | = 160 processed by Ascon-96
(b = 320 and κ = 96). With the suggestion by [16,17], c is set to κ = 96 bits,
and thus r is 320 − 96 = 224 bits. Then, 160 bits of M can be absorbed in r
only in one block, while 160 bits of A needs two blocks to be absorbed in c.
Clearly, processing A is the bottleneck. Let us set c to 160 bits which is bigger
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Table 2. Summary of sponge based AE schemes with respect to A and capacity

Scheme Position of A Utilization of capacity

Ascon Header Capacity is initialized to K||N . 0∗‖K and K‖0∗ are
xored after the initialization and before the finalization.
A bit ‘1’ is xored for the separation of A and M .

CBEAM Header Several bits are fixed as variant of frame bits termed
“multiplex padding.”

ICEPOLE Header One bit is fixed as the frame bit.
Keyak Header/Middle Two bits are fixed as the frame bits.
NORX Header/Trailer Parameter information is xored to capacity during the

initialization. Two bits are xored to capacity in all
blocks for the domain separation.

GIBBON Header IV is initialized to 0∗‖K‖N . K‖0∗ are xored after the
first and before the last permutation calls.

HANUMAN Header Capacity leaves untouched.
STRIBOB Header Several bits are fixed as “multiplex padding.”

than the suggestion by [16,17], and thus r is 160 bits. Then, both of M and A
are absorbed in 1 block.

In general, the longer M becomes, the larger r can be. Considering the prac-
tical ratio of r to c in Table 1, the smallest one is 1/6. Hence, if |M | can be
supposed to be at least 6 times bigger than |A| (|M | > 960 for |A| = 160), the
size of c can be set to κ. Otherwise, a special attention is needed as the above
example of Ascon-96. Note that nonce stealing and key translation schemes
explained in the next subsection can also increase the speed of processing A.
The size of c should be determined by taking those techniques into account.

Choosing the Best Construction Depending on Applications. The best
choice of the three constructions of the donkeyHeaderTrailer, concurrent absorp-
tion, and sponge-based ciphertext translation depends on the implementation
environment and applications.

• If the scheme is designed to be used in a resource-constraint environment,
minimizing the number of permutation calls may be crucial, e.g. for mini-
mizing the energy consumption of the device. In this case, the concurrent
absorption can meet the requirement most.

• In the concurrent absorption, A and M need to arrive at the same time.
When the scheme is implemented in a high-end environment with sufficient
memory amount, firstly arrived A or M can be stored easily until the other
one arrives. Then using the concurrent absorption to minimize the number
of permutation calls would be the best strategy.

• Suppose that A is a fixed value in the protocol. Then by storing and reusing
the intermediate values after A, the performance can be improved. The
sponge-based ciphertext translation fits to this scenario by processing A and
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(N,M) independently. The donkeyHeaderTrailer can also be used. However,
different from the convention, A must be processed prior to N .

• If the construction needs to be chosen before the application is determined,
the sponge-based ciphertext translation may be preferred to handle various
or unknown locations of A.

5.3 Further Optimization

Nonce Stealing. The nonce stealing was proposed by Rogaway [22]. In the
block-cipher based AE with nonce, the nonce is often set to the plaintext,
i.e. EK(N) is computed. Besides, the provable security is often up to the birth-
day bound. Then, setting |N | to the half of the block size makes a balance. This
yields a free space for the other half of the block when EK(N) is computed. The
idea of the nonce stealing is using this free space to process A, i.e. computing
EK(N‖A). The nonce stealing can increase the performance especially when |A|
is smaller than the half of the block size.

We point out that the nonce stealing can also be applied to the sponge
based schemes. (See Figure 7). As suggested by monkeyDuplex [10], IV can
be initialized to N‖K and the padding bits. In the sponge based schemes, the
permutation size b is much bigger than the aimed security bits κ. Thus the effect
of the nonce stealing is big. Many designs chose to satisfy c > 2κ by following the
old security bound. Then, by setting |N | = |K| = κ, N‖K can fit in c, and the
entire rate, r bits, can be used for processing A. Note that K must be located
in capacity rather than rate, otherwise the security proof will be invalidated.
Also note that this constraint can usually be satisfied due to the security bound
min{2b/2, 2c/r, 2κ}, which suggests c = κ by ignoring a small factor of 1/r.

Key Translation. The key translation is our new technique to further increase
the speed of processing A. In the monkeyDuplex construction, IV is set to N‖K
and the padding bits, in which K occupies |K| bits of the capacity part of IV .
Then, the permutation is called to mix the state depending on N and K, which
makes the scheme secure in the nonce-respecting model.

The idea of the key translation is absorbing |K| bits of A before the initial
permutation call, which improves the efficiency only with a small security loss
(See Figure 8). The key translation runs contrary to the security goal of the
monkeyDuplex, as it absorbs |K|-bit input before the first permutation call.
However, we can still prove the same security even with the key translation as
long as the same (N,K) is never iterated.

The key translation allows a trivial related-key attack.� � � Suppose that there
are two oracles with K and K ⊕ Δ, where Δ is known to the attacker. Then,
(N,A) for the oracle with K and (N,A ⊕ Δ) for the oracle with K ⊕ Δ return

� � � The importance of the related-key nonce-respecting model is unclear and as far as
we know, the related-key security has never been discussed for keyed sponge-based
constructions before.
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the same result. Note that this related-key attack can be prevented by ensuring
that each nonce is used only once even for different keys, which is likely to be
implemented in practice by using a counter as a source of nonce.

Attacks using different key lengths must be avoided carefully. If the scheme
supports different key sizes, the key must be padded appropriately in order to
prevent the key length extension attack.

The sponge-based AE basically does not provide any confidentiality in the
nonce-repeat setting. However, it is worth noting that the key translation offers
only κ/2-bit security with the κ-bit key in the nonce-repeat setting. This is
because the key recovery attack proposed by Mendel [19] using a time-memory
tradeoff which can recover the κ-bit key with a tradeoff of TM = 2κ. In the offline
phase of this attack, the attacker fixes all input information but for K and A in
the initialization, and run the encryption process by choosing 2X distinct values
of K⊕A. The results are stored in the memory. In the online phase of this attack,
the attacker iterates the input value fixed in the offline phase, and make oracle
queries by choosing 2Y distinct values of A, such that 2X ×2Y = 2κ. One match
between offline and online results is expected, which tells the correct value of K.
By setting X = Y = κ/2, the attack cost is minimized to 2κ/2.

Case Study. Let us apply the two techniques to ICEPOLE-128 as an example,
in which b = 1280, c = 254 and |K| = |N | = 128. K is set to 128 bits of c and
N is set to 126 bits of c and 2 bits of r. ICEPOLE uses 1 bit as the frame bit.
The application is illustrated in Figure 9.

With the nonce stealing, up to 1280 − 128 − 128 − 1 = 1023 bits of A can
be processed in IV . We can further add 128 bits of A with the key translation.
Thus in total up to 1151 bits of A can be processed. As mentioned before, |A| is
usually short. Two techniques have a big impact in practice.
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A Our Techniques from Another Viewpoint: Utilizing
Capacity

The goal of this work is to optimize the speed of processing A. This work can
be regarded also as part of the series of researches aiming to utilize the capac-
ity of sponge, or more generally, to utilize state bits whose original purpose
was meant for security rather than for efficiency. For example, according to the
designers, donkeySponge was inspired by the ALRED construction [12] which
is a CBC-MAC-based construction optimized with 4-round AES. Similarly, our
constructions were inspired by a series of researches, as follows.

A.1 Boosting Merkle-Damg̊ard

The donkey header, donkey trailer and concurrent absorption increase the speed
of processing associated data. The similar idea can be seen in the boosted Merkle-
Damg̊ard (MD) approach [30] which improves the efficiency of a hash function
based MAC, i.e. HMAC [4]. Let H, CF and trunc be a hash function, a com-
pression function and the truncation function, respectively. Also, let n, m and t
be the chaining variable size, the message block size, and the tag size (t < n),
respectively. HMAC computes the tag T for a message M = M1‖M2‖ · · · ‖ML

under the key K as follows.

h1 ← CF (IV ,K ⊕ ipad), // initialization
hi+1 ← CF (hi,Mi), for i = 1, 2, . . . , L. // main

T ← trunc
(
H

(
(K ⊕ opad)‖hL+1

))
. // finalization

During the main iteration, only m-bit message is processed in each call of CF ,
while the input size is in each block is m + n bits. In other words, n bits of the
state is just used for mixing the compression function, which takes exactly the
same role as the capacity in the sponge construction. The boosted MD approach
allows xoring (absorbing) n-bits of the message to the chaining variable with a
very small loss of security. Its construction is illustrated in Figure 10.

A.2 Absorbing Additional Information in Capacity

When it is focused on the sponge construction, utilizing the capacity in more
meaningful ways has been a challenging task. Several constructions made a
progress in this direction.
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• The JH hash function [29] uses the capacity to receive feed-forward from the
previous chaining variable. This can contribute to increase security. The JH
mode was adopted in a later hash function design SPN-hash [11]. One of the
CAESAR candidates Artemia [1] adopted the JH mode for the AEAD.

• The donkeySponge construction [10] for MAC absorbs message bits in capac-
ity as well as rate. There is similarity between the donkeySponge and the
boosted MD for improving the performance of the MAC computation.

• The monkeyDuplex construction [10] absorbs the key K in the capacity
during the initialization process before the first permutation call, which also
improves the performance.

Considering the above previous work, our constructions can be regarded as the
utilization of the capacity in order to optimize the computation of associated
data in sponge-based AEAD schemes.
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Abstract. We present a detailed security analysis of the CAESAR can-
didate Ascon. Amongst others, cube-like, differential and linear crypt-
analysis are used to evaluate the security of Ascon. Our results are
practical key-recovery attacks on round-reduced versions of Ascon-128,
where the initialization is reduced to 5 out of 12 rounds. Theoretical key-
recovery attacks are possible for up to 6 rounds of initialization. More-
over, we present a practical forgery attack for 3 rounds of the finalization,
a theoretical forgery attack for 4 rounds finalization and zero-sum distin-
guishers for the full 12-round Ascon permutation. Besides, we present
the first results regarding linear cryptanalysis of Ascon, improve upon
the results of the designers regarding differential cryptanalysis, and prove
bounds on the minimum number of (linearly and differentially) active S-
boxes for the Ascon permutation.

Keywords: Ascon · CAESAR initiative · Cryptanalysis · Authenti-
cated encryption

1 Introduction

The CAESAR competition [20] is an ongoing cryptographic competition, where
numerous authenticated encryption schemes are challenging each other with the
goal of finding a portfolio of ciphers, suitable for different use-cases. Currently,
more than 45 ciphers are still participating in the competition. In the near future,
this portfolio will be further reduced to focus the attention of the crypto com-
munity on a few candidates. Therefore, analyzing the security of the candidate
ciphers is of great importance to enable the committee to judge them adequately.

Ascon is a submission by Dobraunig et al. [11] to the CAESAR competition.
In the submission document, the designers discuss the design rationale for the
cipher and give first cryptanalytic results, in particular on the differential prop-
erties of the Ascon permutation. Since the cipher was only recently presented,
results of external cryptanalysis are scarce so far. Jovanovic et al. [15] prove
the security of Ascon’s mode of operation under idealness assumptions for the
permutation.
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Our Contribution. We present a detailed security analysis of the CAESAR
candidate Ascon-128. Based on the low algebraic degree of Ascon, we are
able to construct a zero-sum distinguisher with complexity 2130 for the full
12-round Ascon permutation in Section 3. In Section 4, we use similar alge-
braic properties to construct a distinguisher based on cube testers. We also
use cube-like techniques to obtain a key-recovery attack for a round-reduced
version of Ascon with 5-round initialization with practical complexity. The-
oretical key-recovery attacks are possible for up to 6 rounds of initialization.
Moreover, in Section 5, we present the first results on linear cryptanalysis, and
improve the results by the designers on differential cryptanalysis. Our results
include linear and differential characteristics obtained with heuristic search, as
well as a computer-aided proof of security bounds against linear and differential
cryptanalysis (minimum number of active S-boxes). Using our results on linear-
differential analysis, we present a practical forgery attack for 3 rounds of the
finalization and a theoretical forgery attack for 4-round finalization. Our results
are summarized in Table 1.

Table 1. Results for Ascon-128. Attacks performed on the initialization or finalization.

type rounds time method source

permutation distinguisher 12 / 12 2130 zero-sum Section 3

key recovery

6 / 12 266

cube-like Section 4.4
5 / 12 235

5 / 12 236

differential-linear Section 5.4
4 / 12 218

forgery
4 / 12 2101

differential Section 5.3
3 / 12 233

2 Ascon

Ascon is a submission by Dobraunig et al. [11] to the ongoing CAESAR com-
petition. It is based on a sponge-like construction with a state size of 320 bits
(consisting of five 64-bit words x0, . . . , x4). Ascon comes in two flavors, Ascon-
128 and Ascon-96, with different security levels and parameters, as summarized
in Table 2. The analysis in this paper is focused on Ascon-128. In the following,
we give a brief overview about the mode of operation and the permutation of
Ascon. For a complete description, we refer to the design document [11].

Mode of Operation. Ascon’s mode of operation is based on MonkeyDu-
plex [8]. As illustrated in Fig. 1, the encryption is partitioned into four phases:
initialization, processing associated data, processing the plaintext, and final-
ization. Those phases use two different permutations pa and pb. The stronger
variant pa is used for initialization and finalization, while pb is used in the data
processing phases.
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Table 2. Parameters for Ascon [11]

name
bit size of rounds

key nonce tag data block pa pb

Ascon-128 128 128 128 64 12 6
Ascon-96 96 96 96 128 12 8
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Fig. 1. The encryption of Ascon [11]

The initialization takes as input the secret key K and the public nonce N . The
initialization ensures that we start with a random-looking state at the beginning
of the data procession phase for every new nonce. In the subsequent processing
of the associated data, r-bit blocks are absorbed by xoring them to the state,
separated by invocations of pb. If no associated data needs to be processed,
the whole phase can be omitted. Plaintext is processed in r-bit blocks in a
similar manner, with ciphertext blocks extracted from the state right after adding
the plaintext. For domain separation between associated data and plaintext,
a constant is xored to the secret part of the internal state. After all data is
processed, the finalization starts and the k-bit tag T is returned.

Table 3. The S-box of Ascon [11]

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S(x) 4 11 31 20 26 21 9 2 27 5 8 18 29 3 6 28

x 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

S(x) 30 19 7 14 0 13 17 24 16 12 1 25 22 10 15 23

Permutation. Ascon uses the two permutations pa and pb. Both iteratively
apply the same round function p: a rounds for pa, and b rounds for pb. The
round transformation p consists of a constant addition to x2, followed by the
application of a nonlinear substitution layer and a linear layer.
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The substitution layer uses a 5-bit S-box (Table 3), which is affine equivalent
to the Keccak [2] χ mapping. The Ascon S-box is applied 64 times in parallel
on the state. Each bit of the 5 64-bit words (x0, . . . , x4) contributes one bit to
each of the 64 S-boxes, where x0 always serves as most significant bit.

The linear layer is derived from the Σ-function of SHA-2 [19]. The Σ-function
is applied to each of the 5 state-words and uses different rotation values for each
word:

Σ0(x0) = x0 ⊕ (x0 ≫ 19) ⊕ (x0 ≫ 28)
Σ1(x1) = x1 ⊕ (x1 ≫ 61) ⊕ (x1 ≫ 39)
Σ2(x2) = x2 ⊕ (x2 ≫ 1) ⊕ (x2 ≫ 6)
Σ3(x3) = x3 ⊕ (x3 ≫ 10) ⊕ (x3 ≫ 17)
Σ4(x4) = x4 ⊕ (x4 ≫ 7) ⊕ (x4 ≫ 41)

3 Zero-Sum Distinguishers

In this section, we apply zero-sum distinguishers used in the analysis of Kec-
cak [1,6,7] to Ascon. Zero-sum distinguishers have been used to show non-ideal
properties of round-reduced versions for the Keccak permutation. With the help
of zero-sum distinguishers, Boura et al. have have been able to distinguish the
full 24-round Keccak permutation from a random permutation. Since the core
of the Ascon S-box corresponds to the Keccak S-box, we are able to construct
distinguishers for the full 12 rounds (or up to 20 rounds) of the Ascon permu-
tation.

Algebraic Model of Ascon. As the name zero-sum distinguishers suggests,
we search for a set of inputs and corresponding outputs of an n-bit permutation
which sum to zero over Fn

2 . To create this set of input-output pairs, we start in the
middle of the permutation and compute outwards. Furthermore, we keep a set of
320−d bits constant and vary the other d bits through all possible assignments.
Thus, we get 2d possible intermediate states. For all these 2d intermediate states,
we calculate the respective outputs. If the degree of the function determining
the output bits is strictly smaller than d, the resulting outputs will sum to zero
over Fn

2 [1,6]. After that, we calculate the input values of the permutation using
the 2d intermediate states. Again, if the degree of the inverse function is smaller
than d, the inputs sum to zero over F

n
2 . The result is a zero-sum distinguisher,

or rather, a family of zero-sum distinguishers.
To apply the technique to Ascon, we have to bound the degree of multiple

rounds of the Ascon permutation and its inverse. The algebraic degree of one
Ascon S-box is 2, with respect to F2, and can be easily determined from its
algebraic normal form (ANF):
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y0 = x4x1 + x3 + x2x1 + x2 + x1x0 + x1 + x0

y1 = x4 + x3x2 + x3x1 + x3 + x2x1 + x2 + x1 + x0

y2 = x4x3 + x4 + x2 + x1 + 1
y3 = x4x0 + x4 + x3x0 + x3 + x2 + x1 + x0

y4 = x4x1 + x4 + x3 + x1x0 + x1

Here, x0, x1, x2, x3, x4, and y0, y1, y2, y3, y4 represent the input, and output
of an S-box, with x0/y0 representing the most significant bit. The S-boxes in one
substitution layer are applied in parallel to the state, and the linear layer and
constant addition do not increase the algebraic degree. Consequently, the overall
degree of one Ascon permutation round is 2, and the degree of r rounds is at
most 2r.

To determine the degree of the inverse permutation, we use the ANF of the
inverse Ascon S-box:

x0 = y4y3y2 + y4y3y1 + y4y3y0 + y3y2y0 + y3y2 + y3 + y2 + y1y0 + y1 + 1
x1 = y4y2y0 + y4 + y3y2 + y2y0 + y1 + y0

x2 = y4y3y1 + y4y3 + y4y2y1 + y4y2 + y3y1y0 + y3y1 + y2y1y0

+ y2y1 + y2 + 1 + x1

x3 = y4y2y1 + y4y2y0 + y4y2 + y4y1 + y4 + y3 + y2y1 + y2y0 + y1

x4 = y4y3y2 + y4y2y1 + y4y2y0 + y4y2 + y3y2y0 + y3y2 + y3

+ y2y1 + y2y0 + y1y0

The algebraic degree of the ANF of the inverse Ascon S-box is 3. Therefore,
the degree for an r-round inverse Ascon permutation is at most 3r.

Basic Distinguisher for 12 Rounds. To create a zero-sum distinguisher for
the 12-round Ascon permutation that is used for the cipher’s initialization and
finalization, we target the intermediate state after round 5. Thus, we attack
5 backward (inverse) rounds and 7 forward rounds. An upper bound for the
degree of the 7-round permutation is 27 = 128, while for the 5 inverse rounds,
an upper bound is 35 = 243. So we choose d = 244, fix 320 − 244 = 76 bits of
the intermediate state and vary the remaining 244 bits to create a set of 2244

intermediate states. For all these states, we calculate 7 rounds forward and 5
rounds backward. The sum of all the resulting input and output values over Fn

2 is
zero. A similar attack is possible for 11 = 4+7 rounds (with d = max{81, 128}+
1 = 129) and for 13 = 5 + 8 rounds (with d = max{243, 256} + 1 = 257).

Improvement Using Walsh Spectrum Analysis. The complexity of the
12-round distinguisher can be further improved by analyzing the permutation’s
Walsh spectrum and applying the techniques by Boura and Canteaut [6]: If
the Walsh spectrum of a function F : F

n
2 → F

n
2 is 2�-divisible, then for any

G : Fn
2 → F

n
2 , we have

deg(G ◦ F ) ≤ n − � + deg(G).
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As Boura and Canteaut show, the Walsh spectrum of the Keccak S-box is 23-
divisible. The affine linear preprocessing and postprocessing that the Ascon S-
box adds compared to the Keccak S-box does not change this number. The
same holds true for the inverse S-box. The Ascon nonlinear layer applies this
S-box 64 times in parallel. The Walsh spectrum of a parallel composition is the
multiplication of the individual Walsh spectra [6]. Thus, the Walsh spectrum of
the complete nonlinear layer is divisible by 23·64 = 2192. Let p denote one round
of the Ascon permutation, and p−1 its inverse. A closer bound on the degree of
5 rounds of the inverse permutation, p−5, is then obtained by

deg(p−5) = deg(p−4 ◦ p−1) ≤ 320 − 192 + deg(p−4) ≤ 320 − 192 + 81 = 209.

Thus, d = max{209, 128} + 1 = 210 is sufficient for 12 = 5 + 7 rounds of the
Ascon permutation.

Adding a Free Round in the Middle. Additionally, as Boura and Can-
teaut [6] observe, an additional round can be added to the attack (almost) for
free as follows: The original attack requires an intermediate state where n − d
bits are fixed to a constant, while d bits loop through all possible valuations.
Now, we set d to be a multiple of the 5-bit S-box size and furthermore, choose
the d variable bits such that they always include complete S-boxes. Then, the
inputs (and consequently outputs) of some S-boxes are constant, while the other
S-boxes have their inputs (and consequently outputs) loop through all possible
values. If we look at the output of the nonlinear layer after this intermediate
step, we observe it adheres to the same pattern as the input: n− d bits are fixed
and d bits enumerate through all their possible values. We can now use the orig-
inal intermediate step as the starting point for the backwards rounds, and the
output of the nonlinear layer as the starting point for the forward rounds (plus
an additional, free linear layer). This way, we can extend the previous attacks
by one round each, with the only additional cost of choosing d as a multiple of
5. We get zero-sum distinguishers on 12, 13, and 14 rounds with d = 130, 210,
and 260, respectively.

More Rounds. Finally, the results of Boura et al. [7, Theorem 2] are also
directly applicable to our previous results to distinguish up to 20 permutation
rounds with d = 319 (using 9 backward rounds with degree ≤ 318 and 11 forward
rounds with degree ≤ 317, no free middle round possible).

Using a zero-sum distinguisher, we can show non-random properties for the
full 12-round permutation of Ascon. However, the designers already state [11]
that the permutation is not ideal and are aware of such distinguishers. The non-
ideal properties of the permutation do not seem to affect the security of Ascon.
In particular, the complexity of 2130 is above the cipher’s claimed security level.

4 Cube Attacks

Recently, Dinur et al. [9] published various cube and cube-like attacks on sev-
eral keyed primitives using the Keccak permutation. Those cube-like attacks
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include cube testers, which can serve as distinguishers, and also cube-like attacks
to recover the secret key. In this section, we apply two attacks presented by
Dinur et al. [9] to Ascon.

4.1 Brief Description of Cube Attacks

The cube attack is an algebraic attack developed by Dinur and Shamir [10].
This algebraic attack builds on the fact that for most ciphers, each output bit
can be represented as a polynomial over F

n
2 in algebraic normal form (ANF).

The variables xi of this polynomial may be single bits of plaintext, key-bits,
or constants. Dinur and Shamir made the following observation: If a carefully
chosen set of plaintext bits is varied over all possible values and the other bits
are kept constant, the sum of one bit of the output (cube sum) might be the
result of a linear polynomial (called superpoly) consisting solely of bits of the
secret key. By gathering many of these linear polynomials, the secret key can be
found.

To perform such a cube attack on a cipher, two things have to be done. First,
an attacker has to find such cubes (variables to vary and the resulting linear key
relations). This is done in an offline preprocessing phase. Here, the attacker
determines the cubes by selecting the cube variables randomly and check if the
resulting superpoly is linear and contains the key. This preprocessing phase has
to be carried out once for each cipher. In an online phase, the attacker uses the
knowledge of the cubes to recover the secret key of his target. To perform the
attack, the attacker has to be able to choose the plaintext according to his needs
and obtain the corresponding ciphertext outputs.

4.2 Cube Attack on Ascon

Now we want to investigate the potential threat of cube attacks to Ascon.
If we look at the different phases of Ascon, the only phase where a nonce-
respecting adversary can easily keep some inputs of the permutation constant
and deterministically influence others is the initialization. In this scenario, the
key is kept secret and the attacker has the ability to choose the nonce according
to his needs.

As evaluated in Section 3, the degree of a 5-round initialization of Ascon is
at most 32. Thus, if we search for cubes of 31 variables, the resulting superpoly
is definitely linear or constant. Considering 6 rounds of the initialization, we
have to look for cubes with at most 63 variables, for 7 rounds with at most 127
variables and so on. So it is likely that a practical cube attack on 6 rounds is
already hard to achieve. However, we have not searched for cubes, but instead
performed cube-like attacks on Ascon to recover the secret key in Section 4.4.

4.3 Distinguishers Using Cube Testers

Below, we describe a cube tester for 6 rounds of the Ascon permutation with
the property that the generated output bits sum to zero over F2. Moreover, this
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cube tester has a practical complexity of only 233, although the expected degree
for 6 rounds of the Ascon permutation is about 64. To achieve this, we have to
take a closer look at the internal structure of Ascon.

The permutation of Ascon starts with the substitution layer. In this layer,
the 5-bit S-box is applied 64 times in parallel to the internal state of Ascon.
Each of the five 64-bit words of the internal state contributes exactly one bit to
each instantiation of a 5-bit S-box. So if all cube variables lie within the same
word of the state, they do not appear together in one term after the application
of the S-box layer. Hence, after 5 more rounds, at most 32 variables of one state-
word appear together in one term. As a consequence, selecting a cube of 33
variables of the same state-word definitely results in an empty superpoly and all
233 generated outputs sum to zero.

This distinguisher can be used to distinguish the key-stream generated by
Ascon-128 in a nonce-misuse scenario, where the attacker can keep the nonce
constant while varying the plaintext. For Ascon-128, 64-bit blocks of plaintext
are xored with the state-word x0. Thus, the attacker can vary 33 bits of the first
plaintext block, while keeping the remaining 31 bits and the bits of a second
plaintext block constant. The resulting 233 second ciphertext blocks will sum
to zero. However, the designers of Ascon strictly forbid nonce reuse, and no
security claims are made for such a scenario.

Similar cube testers can be applied to reduced versions of Ascon with only
6 rounds (instead of 12 rounds) of initialization. Then, an attacker with con-
trol over the nonce can observe the first key-stream block. In contrast to the
nonce-misuse scenario, attacks on round-reduced versions of Ascon in a nonce-
respecting scenario give insight in the expected security of Ascon and are there-
fore of more value. Next, we will show how to extend the observations made in
this section to a key-recovery attack on round-reduced versions of Ascon.

4.4 Key Recovery Using Cube-Like Attacks

Dinur et al. [9] published a key recovery attack where the superpoly does not
necessarily have to be a linear function of the secret key bits, but can also be
non-linear. Such attacks are also possible for round-reduced versions of Ascon,
with the initialization reduced to 5 or 6 out of 12 rounds. The attack on 5 rounds
has practical complexity and has been implemented. We will discuss the working
principle of the attack by means of a 5-round version of Ascon-128. For a 6-
round initialization, the attack works similarly. The attack itself is divided into
two steps, each with an online and an offline phase, and relies on the following
two observations.

Observations. The first observation has already been discussed in the context
of cube testers: If all cube variables are located within one state-word, they do
not appear in the same term of the output polynomial after one application of
the substitution layer.

To discuss the second observation, we have to take a look at the ANF of the
S-box and consider the positions of the initial values. During the initialization,
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the constant C is written to x0, the first word K1 of the key to x1, the second key
word K2 to x2, the first word N1 of the nonce to x3, and the second nonce word
N2 to x4. We use the ANF of the S-box to get the relations for the state words
x0, . . . , x4 after the first call of the substitution layer. The index i represents the
corresponding bit position of the 64-bit word.

x0[i] = N2[i]K1[i] + N1[i] + K2[i]K1[i] + K2[i] + K1[i]C[i] + K1[i] + C[i]
x1[i] = N2[i] + N1[i](K2[i] + K1[i]) + N1[i] + K2[i]K1[i] + K2[i] + K1[i] + C[i]
x2[i] = N2[i]N1[i] + N2[i] + K2[i] + K1[i] + 1
x3[i] = N2[i]C[i] + N2[i] + N1[i]C[i] + N1[i] + K2[i] + K1[i] + C[i]
x4[i] = N2[i]K1[i] + N2[i] + N1[i] + K1[i]C[i] + K1[i]

Observe that N2[i] is only combined nonlinearly with key bit K1[i], and N1[i]
only with K1[i] and K2[i]. As demonstrated by Dinur et al. [9], we can make use
of this fact to build a so-called borderline cube. For instance, we select N2[0..15]
as our cube variables. The rest of the nonce is kept constant. After round 1, our
cube variables only appear with K1[0..15] in one term and definitely not together
with the other bits of the secret key. After 4 more rounds, all of the cube variables
may appear together in one term, possibly combined with a selection of the key
bits K1[0..15], but never together with the rest of the key bits. Thus, the cube
sum depends on K1[0..15], but it does not depend on K1[16..63], or K2[0..63].
This fact leads to the following attack.

Step 1. In the first step, we recover the key-word K1 in 16-bit chunks. Therefore,
we select 4 different borderline cubes with 16 variables in N2 and probe the online
oracle with each of these 4 sets. So we get 4 sums of key-stream blocks, each
dependent on 16 different key bits of K1. In the upcoming offline phase, we use
the fact that the sum of the outputs (key-stream blocks) only depends on 16 key
bits. So we set the rest of the key bits to a constant and calculate cube sums
for every possible 16-bit key part. If such a cube sum corresponds to the cube
sum received in the online phase, we get a key candidate. In our experiments,
we only received one key candidate per 16-bit block on average. Therefore, we
only have one key candidate on average for K1.

Step 2. In the second step, we recover K2 in 16-bit chunks. To do so, we
use N1[i] to create our borderline cubes. In contrast to the step before, we
have a dependency of the output on bits of K1, too. So we have to repeat the
offline phase for every guess of K1 received in the previous step. The rest of the
procedure works in the same manner as for the recovery of K1. Again, we only
received one key guess for K2 on average in our implementation of the attack.

The complexity of the described attack depends on the number of key can-
didates for K1 and K2. Since the attack on 5 rounds is practical and we have
implemented it, we can state that we only have one key candidate on average. So
we estimate that the time complexity is about 8 ·232. The attack works similarly
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for reduced versions of Ascon with only 6 initialization rounds. Here, we need
borderline cubes of size 32. If we make the optimistic assumption that we only
have one key guess for each recovered key word, the estimated time complexity
for the 6 round attack is 4 · 264.

5 Differential and Linear Cryptanalysis

Differential [5] and linear [18] cryptanalysis are two standard tools for cryptanal-
ysis. New designs are typically expected to come with some kind of arguments
of security against these attacks. For this reason, the designers of Ascon pro-
vided security arguments for the individual building blocks (S-box, linear layer),
and included first practical results on the differential analysis of Ascon in the
design document. In this section, we show some improvements over the existing
differential characteristics and present the first linear characteristics for Ascon,
including computer-aided proofs on the minimum number of active S-boxes for
3-round characteristics. In addition, we use the combination of differential and
linear characteristics to perform practical key-recovery attacks on round-reduced
versions of Ascon.

5.1 Linear and Differential Bounds

Beside using heuristic search techniques to find actual characteristics for
Ascon (see Section 5.2), we have also used complete search tools (MILP and
SAT) to prove bounds on the best possible linear and differential characteristics.
The results are given in this section.

Linear Programming. We have first modelled the problem of minimizing
the number of active S-boxes in differential characteristics for round-reduced
versions of the Ascon permutation as a mixed integer linear program (MILP).
The model for R rounds uses the following variables:

– xr,w,b ∈ {0, 1} specifies whether bit b of word w of the S-box input in round r
is different between the two messages, where b = 0, . . . , 63 and w = 0, . . . , 4.

– yr,w,b ∈ {0, 1} specifies whether bit b of word w of the S-box output in round
r is different between the two messages, where b = 0, . . . , 63 and w = 0, . . . , 4.

– dr,b ∈ {0, 1} specifies if S-box b of round r is active, b = 0, . . . , 63.
– ur,w,b ∈ {0, 1, 2} is a helper for the linear layer model in word w of round r.

The optimization objective is to minimize the number of active S-boxes,

min
R∑

r=1

63∑

b=0

dr,b.

The S-box is modelled only by specifying its branch number, and linking it with
the S-box activeness for each r = 1, . . . , R and b = 0, . . . , 63:

dr,b ≤
63∑

w=0

xr,w,b ≤ 5dr,b,

63∑

w=0

(xr,w,b + yr,w,b) ≥ 3dr,b, dr,b ≤
63∑

w=0

yr,w,b ≤ 5dr,b
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The linear layer is modelled explicitly for r = 1, . . . , R and b = 0, . . . , 63:

yr,0,b + yr,0,b+19 + yr,0,b+28 + xr+1,0,b = 2 · ur,0,b

yr,1,b + yr,1,b+61 + yr,1,b+39 + xr+1,1,b = 2 · ur,1,b

yr,2,b + yr,2,b+1 + yr,2,b+6 + xr+1,2,b = 2 · ur,2,b

yr,3,b + yr,3,b+10 + yr,3,b+17 + xr+1,3,b = 2 · ur,3,b

yr,4,b + yr,4,b+7 + yr,4,b+41 + xr+1,4,b = 2 · ur,4,b

Finally, at least one S-box needs to be active:

4∑

w=0

x0,w,0 ≥ 1

The model for linear cryptanalysis is essentially identical, except for different
rotation values. This MILP can then be solved using an off-the-shelf linear opti-
mization tool, such as CPLEX. Unfortunately, it turns out that the highly com-
binatorial nature of the problem is not well suited for linear solvers, and that
SAT solvers are a better fit for this type of problem.

SAT Solvers. For SAT solvers, we can model essentially the same description
by using an extended modelling language, as is used by Satisfiability Modulo
Theory (SMT) solvers. We used the constraint solver STP by Ganesh et al. [13]
to translate a bitvector-based CVC model to conjunctive normal form (CNF).
This CNF model can then be solved using a parallel SAT solver, such as Biere’s
Treengeling [3]. Instead of an optimization problem, the problem has to be
phrased in terms of satisfiability; i.e., the questions is whether solutions below a
specific bound exist.

Modelling the S-box only in terms of its branch number is not very effective
for obtaining tight bounds. As a trade-off between the all-too-simplistic branch
number model and the complex complete differential description of the S-box
(differential distribution table), we chose the following approximation. The lin-
ear preprocessing and postprocessing part of the S-box can easily be modelled
exactly for both differential and linear cryptanalysis. The nonlinear core (equiv-
alent to the Keccak S-box) is approximated, i.e., the model allows a few tran-
sitions that are not possible according to the differential or linear distribution
table. For the differential model, we use the following word-wise constraint in
terms of input difference words a0, . . . , a4 ∈ F

64
2 and output difference words

b0, . . . , b4 ∈ F
64
2 :

bi = ai ⊕ ((ai+1 ∨ ai+2) ∧ ti), ti ∈ F
64
2 , i = 0, . . . , 4.

For the linear model with word-wise linear input mask a0, . . . , a4 ∈ F
64
2 and

output mask b0, . . . , b4 ∈ F
64
2 , the constraints are similar:

ai = bi ⊕ ((bi−1 ∨ bi−2) ∧ ti), ti ∈ F
64
2 , i = 0, . . . , 4.
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With this model, we can easily prove that the 3-round Ascon permutation has at
least 15 differentially active S-boxes (probability ≤ 2−30), and at least 13 linearly
active S-boxes (bias ≤ 2−14, complexity ≥ 228). The bounds on the number of
active S-boxes are tight, but not necessarily those on the probability. Using
these results, we can prove that the full 12-round initialization or finalization
has at least 60 differentially active S-boxes (probability ≤ 2−120) and at least
52 linearly active S-boxes (bias ≤ 2−53, complexity ≥ 2106). These bounds are
almost certainly not tight, but we were not able to derive bounds for more than
3 rounds using SAT solvers. This motivates the use of heuristic search tools to
find explicit characteristics.

5.2 Differential and Linear Characteristics

In Table 4, we present an overview of our best differential and linear characteris-
tics for different round numbers of the Ascon permutation. We have been able
to improve the differential characteristic for 4 rounds of the Ascon permutation
compared to the previous best results by the designers [11]. Since the design-
ers included no results on linear cryptanalysis in the submission document, we
provide the first linear analysis. When comparing the best differential character-
istics with the best linear characteristics, we see that for more than two rounds
of the Ascon permutation, the linear characteristics have fewer active S-boxes.
This might indicate that Ascon is more vulnerable to linear cryptanalysis. Nev-
ertheless, for 5 rounds of Ascon, the best found linear characteristic has more
than 64 active S-boxes. Assuming the best possible bias for all active S-boxes,
the attack complexity is already higher than 2128.

Table 4. Minimum number of active S-boxes for the Ascon permutation

result rounds differential linear

proof
1 1 1
2 4 4
3 15 13

heuristic
4 44 43

≥ 5 > 64 > 64

5.3 Forgery Attack on Round-Reduced Ascon

Usually, the characteristics from Section 5.2 cannot be directly used in an attack,
since there might be additional requirements that the characteristic has to fulfill.
In the case of an attack on the finalization of Ascon-128, suitable characteristics
may only contain differences in stateword x0 at the input of the permutation.
The rest of the statewords have to be free of differences. For the output of the
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finalization, the only requirement is that there is some fixed difference pattern
in x3 and x4. Knowledge about the expected differences in x0, x1, and x2 at the
output of the permutation is not required.

For round-reduced versions of Ascon, we have found suitable characteristics
for a reduced 3-round finalization with a probability of 2−33 and for 4-round
finalization with a probability of 2−101. The used characteristic for the three
round attack is given in Table 6 and the differential for the four round attack is
given in Table 7 in Appendix A.

5.4 Differential-Linear Cryptanalysis

In differential-linear cryptanalysis, differential and linear characteristics are used
together in an attack. This kind of analysis was introduced by Langford and
Hellman [17]. Later on, it was demonstrated that this type of analysis is also
suitable for cases where the differential and the linear part have a probability
different from 1 [4,16]. Differential-linear cryptanalysis is especially useful if the
combined success probability of one short differential characteristic and one short
linear characteristic is better than the probability of a longer linear or differential
characteristic. One reason for such a behavior might be a bad diffusion for fewer
rounds. For the attack to work, the individual probabilities of the two used
characteristics have to be relatively high. According to Dunkelman et al. [12],
the bias at the output of such a differential-linear characteristic is about 2pq2,
where q is the bias of the linear part and p the probability of the differential
characteristic. This results in a data complexity of O(p−2q−4).

Outline of the Attack. For Ascon-128, we can use differential-linear charac-
teristics as key-stream distinguisher. Like for cube-tester (Section 4.3), we can
target either the initialization in a nonce-respecting scenario, or the processing
of the plaintext in a nonce-misuse scenario. Here, we focus on the initialization.
Therefore, differences are only allowed in the nonce (x3, x4), whereas the linear
active bits have to be observable and therefore must be in x0.

Analysis of the Initialization. We start with the analysis of a 4-round ini-
tialization and create a differential-linear characteristic for it. For the differential
part, we place two differences in the same S-box of round 1. With probability
2−2, we have one active bit at the output of this S-box. The linear layer ensures
that 3 S-boxes are active in the second round. Those 3 S-boxes have the dif-
ference at the same bit-position of their input. All 3 active S-boxes of round 2
have the same output pattern of 2 active bits with probability 2−3. Due to the
linear layer, we then have differences on 11 S-boxes of round 3. For the linear
characteristic, we use a characteristic with one active S-box in round 4 and 5
active S-boxes in round 3. The bias of the linear characteristic is 2−8. In addi-
tion, we place the S-boxes in a way that the linear active S-boxes in round 3 do
not overlap with the 11 S-boxes that have differences at their inputs. The bias
of the generated differential-linear characteristic is 2pq2 = 2−20. In practice, we
are only interested in the bias of the output bit for the specific differences at the
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input. Due to the vast amount of possible combinations of differential and linear
characteristics that achieve these requirements, we expect a much better bias.

Practical Evaluation of the Bias. In the best case, we place differences in
bit 63 of x3 and x4, and get a bias of 2−2 in bit 9 of x0 on the output of the
substitution layer of round 4. This is much better than the result of 2−20 that we
obtained from the theoretical analysis. It is possible to combine multiple charac-
teristics to also get to a bias of 2−2 in theory. However, we decided to reduce our
differential-linear analysis to statistical tests, where we place differences at the
input and try to measure a bias at the output bits. We think that this method
is sufficient for practical attacks. For a 5-round initialization, we observe a bias
of 2−10 on x0[16] (last substitution layer) for differences in x3[63], and x4[63].
This bias can be improved to 2−9 if we only use nonces with the same sign of
the difference (the concrete pairs for both x3[63] and x4[63] are either (0, 1) or
(1, 0)). In the case of a 6-round initialization, we were not able to observe a bias
by using a set of 236 inputs. The biases were averaged for randomly-chosen keys.

Observing Key-Dependency of the Bias. As shown by Huang et al. [14],
the bias observed at the output depends on the concrete values of secret and con-
stant bits. They used this observation to recover the secret state of ICEPOLE in
a nonce-misuse scenario. So we expect that a similar attack is possible on round-
reduced versions of Ascon-128. In contrast to Huang et al., we want to recover
the secret key directly and attack round-reduced versions of the initialization.
This also transfers the attack to a nonce-respecting scenario. For a reduced ini-
talization of 4 out of 12 rounds, we observed the bias patterns shown in Table 5.
This table shows that the observable bias depends on the concrete values of two
key bits which contribute to the same S-box as the used difference. Moreover,
the bias is completely independent of the concrete value of the constant in x0.
This leads to the following straightforward attack.

Table 5. Bias of bit x0[i + 1] in the S-box outputs of round 4 for differences in input
bits x3[i] and x4[i] (230 different inputs)

inputs (x1[i], x2[i]) key-bit pair (0, 0) (0, 1) (1, 0) (1, 1)

output x0[i + 1]
sign +1 −1 +1 −1
bias 2−2.68 2−3.68 2−3.30 2−2.30

Key-Recovery Attack on Round-Reduced Ascon. The target of this
attack is a round-reduced version of Ascon-128, where the initialization is
reduced to 4 out of 12 rounds. In this setting, the attacker has the ability to
choose the nonce and is able to observe the resulting key stream. The attacker
performs a sufficient amount of queries, with pairs of nonces which have differ-
ences in x3[63] and x4[63], and calculates the bias of x0[0] of the key-stream.
With the help of Table 5, the attacker is able to recover two bits of the key by
matching the expected bias with his calculated bias. Since the characteristics of



Cryptanalysis of Ascon 385

Ascon are rotation-invariant within the 64-bit words, the same method can be
used to recover the other key bits by placing differences in bits i and observing
the bias at position i + 1 mod 64. Already 212 samples per bit position i are
sufficient to get stable results. This results in an expected time complexity of
218 for the key-recovery attack on 4 rounds. However, in practice, we use the
bias of all the bits and compute the correlation with the results of a precompu-
tation (fingerprinting) phase to get better results. This way, we were also able to
mount a key-recovery attack on the initialization of Ascon-128 reduced to 5 out
of 12 rounds. In particular, we can reliably recover all key-bit pairs with values
(0, 0) and (1, 1) with a low complexity of 236. However, we need to brute-force
the other pairs, which results in an additional complexity of 232 on average and
264 in the worst case. Thus, the expected attack complexity is about 236. The
complexities of both attacks on 4 and 5 rounds of the initialization have been
practically verified.
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A Differentials to Create Forgery

Table 6 contains the differential characteristic and Table 7 contains the differen-
tial used for the forgery attacks of Section 5.3. One column corresponds to the
five 64-bit words of the state, and the xor differences are given in hexadecimal
notation (truncated in the last round).

Table 6. Differential characteristic to create forgery for round-reduced Ascon-128
with a 3-round finalization. The differential probability is 2−33.

input difference after 1 round after 2 rounds after 3 rounds

x0 8000000000000000 8000100800000000 8000000002000080 ????????????????

x1 0000000000000000 8000000001000004 9002904800000000 ????????????????

x2 0000000000000000 → 0000000000000000 → d200000001840006 → ????????????????

x3 0000000000000000 0000000000000000 0102000001004084 4291316c5aa02140

x4 0000000000000000 0000000000000000 0000000000000000 090280200302c084

B Differential-Linear Key Recovery Attack on 4 Rounds

Fig. 2 illustrates the observed bias in bit x0[i] in the key-stream for the diffe-
rential-linear attack of Section 5.4, grouped by the values of the key-bit pair
(x1[63], x2[63]).
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Table 7. Differential to create forgery for round-reduced Ascon-128 with a 4-round
finalization. The differential probability is 2−101.

input difference after 4 rounds

x0 8000000000000000 ????????????????

x1 0000000000000000 ????????????????

x2 0000000000000000 → ????????????????

x3 0000000000000000 280380ec6a0e9024

x4 0000000000000000 eb2541b2a0e438b0
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Fig. 2. Biases for the differential-linear attack on the initialization of Ascon reduced
to 4 (out of 12) rounds for the key-bit pair values (0, 0), (0, 1), (1, 0), (1, 1)
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Abstract. We revisit the notion of Decentralized Traceable Attribute-
Based Signatures (DTABS) introduced by El Kaafarani et al. (CT-RSA
2014) and improve the state-of-the-art in three dimensions: Firstly, we
provide a new stronger security model which circumvents some short-
comings in existing models. Our model minimizes the trust placed in
attribute authorities and hence provides, among other things, a stronger
definition for non-frameability. In addition, our model captures the notion
of tracing soundness which is important for many applications of the
primitive. Secondly, we provide a generic construction that is secure
w.r.t. our strong security model and show two example instantiations
in the standard model which are more efficient than existing construc-
tions (secure under weaker security definitions). Finally, we dispense with
the need for the expensive zero-knowledge proofs required for proving
tracing correctness by the tracing authority. As a result, tracing a sig-
nature in our constructions is significantly more efficient than existing
constructions, both in terms of the size of the tracing proof and the
computational cost required to generate and verify it. For instance, ver-
ifying tracing correctness in our constructions requires only 4 pairings
compared to 34 pairings in the most efficient existing construction.

Keywords: Attribute-based signatures · Security definitions · Trace-
ability · Standard model

1 Introduction

In Attribute-Based Signatures (ABS) [25,26], messages are signed w.r.t. signing
policies expressed as predicates. A signature convinces the verifier that it it was
produced by a user with attributes satisfying the signing policy, revealing nei-
ther the identity of the user nor the attributes used. Attribute-based signatures
have many applications, including trust negotiation, e.g. [12], attribute-based
messaging, e.g. [9], and leaking secrets. Refer to [26,29] for more details.

The security of attribute-based signatures [25] requires user’s privacy and
unforgeability. Informally, user’s privacy requires that signatures reveal neither
the user’s identity nor the attributes used in the signing. On the other hand,
c© Springer International Publishing Switzerland 2015
K. Nyberg (ed.): CT-RSA 2015, LNCS 9048, pp. 391–409, 2015.
DOI: 10.1007/978-3-319-16715-2 21
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unforgeability requires that a user cannot forge a signature w.r.t. a signing pred-
icate that her attributes do not satisfy, even if she colludes with other users.

Traceable Attribute-Based Signatures (TABS) [11] extend standard attribute-
based signatures by adding an anonymity revocation mechanism which allows a
tracing authority to recover the identity of the signer. Such a feature is important
for enforcing accountability and deterring abuse.
Related Work. Various constructions of attribute-based signatures exist in the
literature [13,20,23,24,26,28,29,31]. Those constructions vary in terms of the
expressiveness of the policies they support and whether they offer selective or
adaptive security. Adaptively secure schemes supporting more expressive policies
are preferable since they cover a larger scale of potential applications.

While there exist constructions supporting threshold policies with constant-
size signatures, e.g. [13,20], constructions supporting monotonic/non-monotonic
policies, e.g. [26,28,29], yield signatures that are linearly dependent on the num-
ber of attributes in the policy or the systems’ security parameter.

Supporting multiple attribute authorities was first considered by [25,28]. How-
ever, it still had the problem of requiring a central trusted authority. Okamoto and
Takashima [29] proposed the first fully decentralized construction.

Escala et al. [11] added the traceability feature to standard ABS schemes
and proposed a model for the single attribute authority setting. More recently,
El Kaafarani et al. [10] proposed a security model and two generic construc-
tions for decentralized traceable attribute-based signatures. They also provided
instantiations without random oracles [5]. Besides correctness, the recent model
of [10] defines three security requirements: anonymity, full unforgeability and
traceability. Informally, anonymity requires that a signature reveals neither the
identity of the signer nor the set of attributes used in the signing; full unforge-
ability requires that users cannot forge signatures w.r.t. signing policies their
individual attributes do not satisfy even if they collude, which also captures
non-frameability; and traceability requires that the tracing authority is always
able to establish the identity of the signer and prove such a claim.
Shortcomings in Existing Models. The unforgeability/non-frameability
requirements in all existing models for traceable attribute-based signatures [10,
11] (and even those for standard (i.e. non-traceable) attribute-based signatures,
e.g. [25,28,29]) besides placing full trust in attribute authorities, assume the
existence of secure means for the delivery of the secret attributes’ keys from
attribute authorities to users. More specifically, learning the key for any attribute
a user owns allows framing the user w.r.t. to those attributes. For instance,
the non-frameability definition in the single-authority model of [11] relies on
the assumption that the attribute authority is fully honest, whereas the full
unforgeability definition (also capturing non-frameability) in the stronger and
more recent model of [10] assumes that at least one attribute authority is fully
honest.

While this is not an issue in standard attribute-based signatures (since it
is infeasible for any party to identify the signer), we emphasize that this could
be a serious limitation in the traceable setting. In particular, the innocence of
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users could be jeopardized by being falsely accused of producing signatures they
have not produced. A misbehaving attribute authority or any party intercepting
the secret attributes’ keys is capable of signing on behalf of the user w.r.t. any
predicate satisfied by the compromised subset of attributes.

We believe that the overly strong assumptions upon which the notions in
existing models rely is the result of the absence of the assignment of personal
keys to the users. Moreover, the absence of users’ personal keys further com-
plicates the constructions and degrades the efficiency. For instance, the recent
constructions in [10], similarly to [26], rely on the so-called pseudo-attribute
technique in order to bind the signature to the message.

Another shortcoming of existing models is the absence of the tracing sound-
ness requirement [30]. This requirement ensures that a valid signature can only
trace to a single user even if all entities in the system are fully corrupt. It is vital
for many applications, e.g., applications where users get rewarded for signatures
they produced or where abusing signing rights might result in legal consequences.
In addition, tracing in existing constructions is costly, both in terms of the size of
the tracing proof and the cost for producing and verifying it. The most efficient
existing construction [10] requires 34 pairings to verify the opening of a single
signature.
Our Contribution. We rectify the aforementioned shortcomings in existing
models by presenting a stronger security model. Our model is for the dynamic
and fully decentralized setting where attributes’ management is distributed
among different authorities who may not even be aware of one another, and
where users and attribute authorities can join the system at any time. Our
model offers a stronger definition for non-frameability and captures the useful
notion of tracing soundness [30]. In addition, it provides a cleaner definition for
traceability.

Our second contribution is a generic construction for the primitive which per-
mits expressive signing policies and meets strong adaptive security requirements.
Our generic construction dispenses with the expensive zero-knowledge proofs
required by existing constructions for proving tracing correctness by deploying
a robust, non-interactive tag-based encryption scheme.

Finally, we provide two example instantiations of the generic framework in
the standard model. Besides offering stronger security, our instantiations are
more efficient than existing constructions. In addition, our constructions have
much smaller computation and communication overhead for tracing.
Paper Organization. In Section 2, we give some preliminary definitions. We
present our model in Section 3. We list the building blocks we use in Section
4. In Section 5, we present our generic construction and prove its security. In
Section 6, we present instantiations in the standard model.
Notation. A function ν(.) : N → R

+ is negligible in c if for every polynomial
p(.) and all sufficiently large values of c, it holds that ν(c) < 1

p(c) . Given a prob-
ability distribution S, we denote by y ← S the operation of selecting an element
according to S. If A is a probabilistic machine, we denote by A(x1, . . . , xn) the
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output distribution of A on inputs (x1, . . . , xn). By PPT we mean running in
probabilistic polynomial time in the relevant security parameter.

2 Preliminaries

In this section we provide some preliminary definitions.
Bilinear Groups. LetG1 := 〈G〉,G2 := 〈G̃〉 andGT be groups of a prime order p.
A bilinear group is a tuple P := (G1,G2,GT , p,G, G̃, e) where e : G1 × G2 −→ GT

is a non-degenerate bilinear map. We will use multiplicative notation for all the
groups and let G×

1 := G1 \ {1G1} and G
×
2 := G2 \ {1G2}. We will accent elements

fromG2 with˜for the sake of clarity. We use Type-3 groups [14] whereG1 �= G2 and
there is no efficient isomorphism between the groups in either direction. We assume
the existence of an algorithm BGrpSetup which on input a security parameter λ
outputs a description of bilinear groups.
Complexity Assumptions. We use the following existing assumptions:

SXDH. This assumption requires that the Decisional Diffie-Hellman (DDH)
assumption holds in both groups G1 and G2.

XDLING1 [1] 1. Given P and the tuple (Gh, Gv, Gu, Grh, Gsv, Gut, G̃h, G̃v, G̃u,
G̃rh, G̃sv) ∈ G

6
1 ×G

5
2 for unknown h, r, s, t, u, v ∈ Zp, it is hard to determine

whether or not t = r + s.
q-SDH [8]. Given (G,Gx, . . . , Gxq

, G̃, G̃x) for x ← Zp, it is hard to output a
pair (c,G

1
x+c ) ∈ Zp × G1 for an arbitrary c ∈ Zp\{−x}.

q-AGHO [3]. Given a uniformly random tuple (G, G̃, W̃ , X̃, Ỹ ) ∈ G1 × G
4
2,

and q uniformly random tuples (Ai, Bi, Ri, D̃i) ∈ G
3
1 × G2, each satisfying

e(Ai, D̃i) = e(G, G̃) and e(G, X̃) = e(Ai, W̃ )e(Bi, G̃)e(Ri, Ỹ ), it is hard to
output a new tuple (A∗, B∗, R∗, D̃∗) satisfying the above equations.

Span Programs. For a field F and a variable set A = {α1, . . . , αn}, a monotone
span program [21] is defined by a β × γ matrix S (over F) along with a labeling
map ρ which associates each row in S with an element αi ∈ A. The span program
accepts a set A′ iff 1 ∈ Span(SA′), where SA′ is the sub-matrix of S containing
only rows with labels αi ∈ A′, i.e., the program only accepts A′ if there exists a
vector z s.t. zSA′ = [1, 0, . . . , 0].

3 Syntax and Security of Decentralized Traceable
Attribute-Based Signatures

The entities involved in a DTABS scheme are: a set of attribute authorities, each
with a unique identity aid and a pair of secret/verification keys (askaid, avkaid); a
tracing authority TA with a secret tracing key tk that is used to identify the signer
of a given signature; a set of users, each with a unique identity uid, a personal
1 It can similarly be defined in G2.
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secret/public key pair (usk[uid],uvk[uid]) and a set of attributes A ⊆ A (where A
is the attribute universe). Users and attribute authorities can join the system at
any time. Attributes in the system can be distinctly identified by concatenating
the identity of the managing authority with the name of the attribute. This
way, the identities (and hence the public keys) of attribute authorities managing
attributes appearing in the signing policy can be inferred from the predicate
itself which eliminates the need for any additional meta-data to be attached.

A DTABS scheme is a tuple of polynomial-time algorithms DT ABS :=
(Setup,AKeyGen,UKeyGen,AttKeyGen,Sign,Verify,Trace, Judge). The definition
of the algorithms are as follows; to aid notation all algorithms bar the first three
take as implicit input the public parameters pp output by Setup.

• Setup(1λ) is run by some trusted third party. On input a security parameter
1λ, it outputs public parameters pp and a tracing key tk.

• AKeyGen(pp, aid) is run by attribute authority aid to generate its key pair
(askaid, avkaid). The attribute authority publishes its public key avkaid.

• UKeyGen(pp) generates a personal secret/verification key pair (usk[uid],
uvk[uid]) for the user with identity uid. We assume that the public key
table uvk is publicly available (possibly via some PKI) so that anyone can
obtain authentic copies of uers’ public keys.

• AttKeyGen(askaid(α), uid,uvk[uid], α) on input the secret key of the attribute
authority managing attribute α (i.e. askaid(α)), a user’s identity uid, a user’s
personal public key uvk[uid] and an attribute α ∈ A, it outputs a secret key
skuid,α for attribute α for the user. The key skuid,α is given to uid.

• Sign({avkaid(α)}α∈A, uid,usk[uid],uvk[uid], {skuid,α}α∈A,m,P) on input an
ordered list of attribute authorities’ verification keys {avkaid(α)}α∈A, a user’s
identity uid, a user’s secret and public keys (usk[uid],uvk[uid]), an ordered
list of attributes’ secret keys {skuid,α}α∈A for attributes A that user uid
owns, a message m and a signing predicate P such that P(A) = 1, it outputs
a signature Σ on m w.r.t. P.

• Verify({avkaid(α)}α∈P,m,Σ,P) on input an ordered list of authorities’ verifi-
cation keys {avkaid(α)}α∈P, a message m, a signature Σ and a predicate P, it
verifies whether Σ is valid on m w.r.t. P, outputting a bit accordingly.

• Trace(tk,m,Σ,P,uvk) on input the tracing authority’s key tk, a message
m, a signature Σ, a signing predicate P, and the public keys table uvk, it
outputs an identity uid > 0 of the signer of Σ and a proof πTrace attesting to
this claim. If it is unable to trace the signature, it returns (0, πTrace).

• Judge({avkaid(α)}α∈P,m,Σ,P, uid,uvk[uid], πTrace) on input an ordered list of
attribute authorities’ verification keys {avkaid(α)}α∈P, a message m, a signa-
ture Σ, a signing predicate P, a user’s identity uid, a user’s public verification
key uvk[uid], and a tracing proof πTrace, it outputs 1 if πTrace is a valid proof
that uid has produced Σ or 0 otherwise.

Security of Decentralized Traceble Attribute-Based Signatures. The
security properties we require from a DTABS scheme are: correctness, anonymity,
unforgeability, non-frameability, traceability, and tracing soundness. Unlike the



396 E. Ghadafi

Fig. 1. Oracles used in the security games for DTABS

model of El Kaafrani et al. [10], we split the games of unforgeability and non-
frameability in order to strengthen the definition of the latter where we allow for
the corruption of all authorities. Even though the games of unforgeability and
non-frameability could be combined into one game, separating them preserves
simplicity. Also, unlike previous models, our model defines the notion of tracing
soundness which was recently proposed in the context of group signatures [30].

In our model, we distinguish between bad entities, i.e. those who were initially
honest until the adversary learned their secret keys and corrupt entities whose
keys have been chosen by the adversary itself.

The experiments defining the above requirements are in Fig. 2 where the
following global lists are maintained: HUL is a list of honest users; HAL is a
list of honest attribute authorities; HAttL is a list of honestly created users’
attributes and has entries of the form (uid, α); BUL is a list of bad users; BAttL
is a list of bad users’ attributes whose keys have been revealed to the adversary
with entries of the form (uid, α); BAL is a list of bad attribute authorities; CUL
is a list of corrupt users; CAL is a list of corrupt attribute authorities; SL is a list
of signatures obtained from the Sign oracle; CL is a list of challenge signatures.

The details of the following oracles are given in Fig. 1.
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AddA(aid) adds an honest attribute authority with identity aid.
AddU(uid) adds an honest user with identity uid.
AddAtt(uid,A) adds honest attributes A ⊆ A for user uid. It can be called mul-

tiple times to add more attributes for an existing user.
CrptA(aid, vk) adds a corrupt attribute authority.
CrptU(uid, vk) adds a corrupt user with identity uid.
RevealA(aid) returns the secret key askaid of the honest attribute authority aid.
RevealU(uid) returns the personal secret key usk[uid] of user uid.
RevealAtt(uid,A) returns the secret keys {skuid,α}α∈A for attributes A ⊆ A

owned by user uid. It can be called multiple times.
Sign(uid,A,m,P) returns a signature Σ on m using attributes A belonging to

user uid where P(A) = 1.
CHb((uid0,A0), (uid1,A1),m,P) on input (uid0,A0), (uid1,A1), a message m and

a signing policy P with P(A0) = P(A1) = 1, it returns a signature on m using
attributes Ab belonging to user uidb for b ← {0, 1}.

Trace(m,Σ,P) allows the adversary to ask for signatures to be traced.

The details of the security requirements are as follows:
Correctness. This requires that honestly generated signatures verify correctly
and trace to the user who produced them. In addition, the Judge algorithm
accepts the tracing proof produced by the Trace algorithm. Formally, a DTABS
scheme is correct if for all λ ∈ N, all PPT adversaries B have a negligible advan-
tage AdvCorr

DT ABS,B(λ) := Pr[ExpCorr
DT ABS,B(λ) = 1].

Anonymity. This requires that a signature reveals neither the identity of the
user nor the attributes used in the signing. In the game, the adversary chooses
a message, a signing policy and two users with two, possibly different, sets of
attributes satisfying the signing policy. The adversary gets a signature by either
user and wins if it correctly guesses the user. The adversary can fully corrupt
all attribute authorities and learn any user’s personal secret key/attribute keys
including those used for the challenge. Thus, our definition captures full-key
exposure attacks. Since the adversary can sign on behalf of any user, it is redun-
dant to provide it with a sign oracle. The only restriction we impose on the
adversary is that it may not query the Trace oracle on the challenge signature.

Our definition captures unlinkability since the adversary has access to all
users’ personal secret keys/attribute keys. Formally, a DTABS scheme is (fully)
anonymous if for all λ ∈ N, all PPT adversaries B have a negligible advantage
AdvAnon

DT ABS,B(λ) :=
∣
∣
∣Pr[ExpAnon-1

DT ABS,B(λ) = 1] − Pr[ExpAnon-0
DT ABS,B(λ) = 1]

∣
∣
∣.

Unforgeability. This captures unforgeability scenarios where the forgery opens
to a particular user. It guarantees that even if all users in the system pool
their individual attributes, they cannot output a signature that traces to a user
whose individual attributes do not satisfy the signing predicate. In the game,
the adversary can adaptively create corrupt attribute authorities and learn some
of the honest authorities’ secret keys as long as there is at least a single honest
attribute authority managing one of the attributes required for satisfying the
policy used in the forgery. The adversary can also fully corrupt the tracing
authority.
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Fig. 2. Security experiments for decentralized traceable attribute-based signatures

Our definition is adaptive and allows the adversary to adaptively choose
both the signing predicate and the message used in the forgery. Note that we
consider the stronger variant of unforgeability, i.e. (strong unforgeability) where
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the adversary wins even if it forges a new signature on a message/predicate
pair that was queried to the sign oracle. It is easy to adapt the definition if
the weaker variant of unforgeability is desired. Formally, a DTABS scheme is
unforgeable if for all λ ∈ N, all PPT adversaries B have a negligible advantage
AdvUnforge

DT ABS,B(λ) := Pr[ExpUnforge
DT ABS,B(λ) = 1].

Non-Frameability. This ensures that even if all authorities and users col-
lude, they cannot frame an honest user. This guarantees that even if the secret
attributes’ keys for attributes owned by a user are leaked (for instance, by means
of interception or leakage by dishonest attribute authorities), it is still impossi-
ble to sign on behalf of the user without knowledge of her personal secret key.
Thus, unlike previous models [10,11], ours protects innocent users from being
framed by dishonest attribute authorities or parties intercepting the communi-
cation between the user and the attribute authorities.

In the game, the adversary can fully corrupt all attribute authorities, the
tracing authority and as many users of the system as it wishes. We just require
that the forgery is a valid signature and traces to a user whose personal secret
key has not been revealed to the adversary. Formally, a DTABS scheme is non-
frameable if for all λ ∈ N, all PPT adversaries B have a negligible advantage
AdvNF

DT ABS,B(λ) := Pr[ExpNF
DT ABS,B(λ) = 1].

Traceability. This ensures that the adversary cannot produce a signature that
cannot be traced. In the game, the adversary is allowed to corrupt the tracing
authority and learn both the personal secret key and attributes’ keys of any user.
Here we require that all the attribute authorities are honest as knowing the secret
key of any attribute authority would allow the adversary to grant attributes to
dummy users resulting in untraceable signature. Formally, a DTABS scheme is
traceable if for all λ ∈ N, all PPT adversaries B have a negligible advantage
AdvTraceDT ABS,B(λ) := Pr[ExpTraceDT ABS,B(λ) = 1].

Tracing Soundness. This new requirement, which was not defined in
previous models, ensures that even if all authorities (including the tracing author-
ity) and users in the system are all corrupt and collude, they cannot pro-
duce a valid signature that traces to two different users. Among other things,
this prevents users from claiming authorship of signatures they did not pro-
duce or imputing possibly problematic signatures to other users. Formally, a
DTABS scheme satisfies tracing soundness if for all λ ∈ N, the advantage
AdvTS

DT ABS,B(λ) := Pr[ExpTS
DT ABS,B(λ) = 1] is negligible for all PPT adver-

saries B.

4 Building Blocks

In this section we present the building blocks that we use in our constructions.
Digital Signatures. A digital signature for a message space MDS is a tuple of
polynomial-time algorithms DS := (KeyGen,Sign,Verify), where KeyGen outputs
a pair of secret/verification keys (sk, vk); Sign(sk,m) outputs a signature σ on the
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Fig. 3. The full Boneh-Boyen (Left) and the weak Boneh-Boyen (Right) signatures

T S.KeyGen(P)

- x1, x2, y ← Zp, sk := (x1, x2, y).

- (X1, X2, Ỹ ) := (Gx1 , Gx2 , G̃y).

- vk :=
(
X1, X2, Ỹ

)
. Return (sk, vk).

T S.Sign(sk, τ̃ , M̃)

- a ← Zp, A := Ga, B := Ay.

- D̃ := (G̃ · τ̃−x1 · M̃−x2 )
1
a .

- Return σ :=
(

A, B, D̃
)
.

T S.Verify(vk, τ̃ , M̃, σ)

- Return 1 if e(A, Ỹ ) = e(B, G̃) and

e(A, D̃)e(X1, τ̃)e(X2, M̃) = e(G, G̃).

T S.KeyGen(P)

- w, x, {yi}3
i=1 ← Zp, (W̃ , X̃, Ỹi) := (G̃w, G̃x, G̃yi ).

- sk := (w, x, {yi}3
i=1), vk := (W̃ , X̃, {Ỹi}3

i=1).

- Return (sk, vk).

T S.Sign(sk, τ, M)

- R ← G, a ← Zp, A := Ga, D̃ := G̃
1
a .

- B := Gx−aw · R−y1 · τ−y2 · M−y3 .

- Return σ :=
(

A, B, D̃, R
)
.

T S.Verify(vk, τ, M, σ)

- Return 1 if e(A, D̃) = e(G, G̃) and

e(G, X̃) = e(A, W̃ )e(B, G̃)e(R, Ỹ1)e(τ, Ỹ2)e(M, Ỹ3).

Fig. 4. Two instantiations of tagged signatures

message m; Verify(vk,m, σ) outputs 1 if σ is a valid signature on m. Existential
unforgeability under an adaptive chosen-message attack requires that all PPT
adversaries B, which are given the verification key and access to a signing oracle,
have a negligible advantage in forging a signature on a new message. A weaker
variant of existential unforgeability (i.e. existential unforgeability under a weak
chosen-message attack) requires that the adversary sends all its signing queries
before seeing the verification key.

We use the full (Fig. 3 (Left)) and weak (Fig. 3 (Right)) Boneh-Boyen signa-
ture schemes, where in the figure, P is the description of an asymmetric bilinear
group. Both schemes are secure under the q-SDH assumption. The weaker scheme
is only secure under a weak chosen-message attack.
Tagged Signatures. Tagged signatures [10] are digital signatures where the
signing and verification algorithms take as an additional input a tag τ . Formally,
a tagged signature scheme for a message space MT S and a tag space TT S is a
tuple of polynomial-time algorithms T S := (Setup,KeyGen,Sign,Verify), where
Setup(1λ) outputs common public parameters param; KeyGen(param) outputs
a pair of secret/verification keys (sk, vk); the rest of the algorithms are sim-
ilar to those of standard digital signatures. Besides correctness, the security
of a tagged signature [10] requires existential unforgeability under an adaptive
chosen-message-tag attack which is similar to the existential unforgeability of
digital signatures.
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We use two instantiations of tagged signatures based on two structure-preser-
ving signature schemes [2] by Abe et al. [3]. The first instantiation (shown in Fig.
4 (Left)), which we refer to as AGHO1, is based on the re-randomizable signature
scheme in [3] which signs messages in G

2
2. Its unforgeability rests on an interactive

assumption. See [3] for more details. The second instantiation (shown in Fig. 4
(Right)), which we refer to as AGHO2, is based on the strongly unforgeable
signature scheme from [3] whose unforgeability reduces to the non-interactive q-
AGHO assumption (cf. Section 2). In both instantiations T S.Setup(1λ) outputs
P := (G1,G2,GT , p,G, G̃, e) which is the description of an asymmetric bilinear
group.

Strongly Unforgeable One-Time Signatures. A one-time signature scheme
is a signature scheme that is unforgeable against an adversary who makes a
single signing query. Strong Unforgeability requires that the adversary cannot
even forge a new signature on a message queried the sign oracle on. Here we use
the full Boneh-Boyen signature scheme (Fig. 3) as a one-time signature scheme.

Non-Interactive Zero-KnowledgeProofs. Let R be an efficiently computable
relation on pairs (x,w), where we call x the statement and w the witness. We define
the corresponding language L as all the statements x in R. A Non-Interactive
Zero-Knowledge (NIZK) proof system [7] for R is defined by a tuple of algorithms
NIZK := (Setup,Prove,Verify,Extract,SimSetup,SimProve). Setup takes as input
a security parameter 1λ and outputs a common reference string crs and an extrac-
tion key xk which allows for witness extraction. Prove takes as input (crs, x, w) and
outputs a proof π that (x,w) ∈ R. Verify takes as input (crs, x, π) and outputs 1 if
the proof is valid, or 0 otherwise. Extract takes as input (crs, xk, x, π) and outputs
a witness. SimSetup takes as input a security parameter 1λ and outputs a simu-
lated reference string crsSim and a trapdoor key tr that allows for proof simulation.
SimProve takes as input (crsSim, tr, x) and outputs a simulated proof πSim without
a witness.

We require: completeness, soundness and zero-knowledge. Completeness
requires that honestly generated proofs are accepted; Soundness requires that
it is infeasible (but for a small probability) to produce a convincing proof for
a false statement; Zero-knowledge requires that a proof reveals no information
about the witness used. The formal definitions are in the full version [15].
Groth-Sahai Proofs. Groth-Sahai (GS) proofs [19] are efficient non-interac-
tive proofs in the Common Reference String (CRS) model. In this paper, we will
be using the SXDH-based instantiation, which is the most efficient instantiation
of the proofs [18]. The language for the system has the form:

L := {statement | ∃witness : En
i=1(statement,witness) hold },

where Ei(statement, ·) is one of the types of equation summarized in Fig. 5, where
Xm

i=1 ∈ G1, Ỹ n
i=1 ∈ G2, xm

i=1, ỹ
n
i=1 ∈ Zp are secret variables (hence underlined),

whereas Ai, T ∈ G1, B̃i, T̃ ∈ G2, ai, b̃i, ki,j , t ∈ Zp, tT ∈ GT are public constants.
For clarity, we also accent exponents to be mapped to group G2 with .̃ The
system works by first committing to the elements of the witness and then proving
that the commitments satisfy the source equations. The proof system has perfect
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• Pairing Product Equation (PPE):
n∏

i=1
e(Ai, Ỹi)

m∏

i=1
e(Xi, B̃i)

m∏

i=1

n∏

j=1
e(Xi, Ỹj)

ki,j = tT ·

• Multi-Scalar Multiplication Equation (MSME) in G1:
n∏

i=1
A

ỹi
i

m∏

i=1
Xi

b̃i
m∏

i=1

n∏

j=1
Xi

ki,j ỹj = T ·

• Multi-Scalar Multiplication Equation (MSME) in G2:
n∏

i=1
Ỹi

ai
m∏

i=1
B̃

xi
i

m∏

i=1

n∏

j=1
Ỹj

ki,jxi = T̃ ·

• Quadratic Equation (QE) in Zp:
n∑

i=1
aiỹi +

m∑

i=1
xib̃i +

m∑

i=1

n∑

j=1
xiỹj = t·

Fig. 5. Types of equations over bilinear groups

Fig. 6. The transposed 1-out-of-1 variant of the distributed tag-based encryption
scheme in [16]

completeness, (perfect) soundness, composable witness-indistinguishability/ze-
ro-knowledge. Refer to [19] for more details.
RobustNon-InteractiveDistributed/ThresholdTag-BasedEncryption.
In distributed tag-based encryption [4,16], the (tag-based) ciphertexts can only
be decrypted if all n decryption servers compute their decryption shares correctly.
In the threshold variant, at least κ out of n decryption servers must compute their
decryption shares correctly for the decryption to succeed. The scheme is non-
interactive if decrypting a ciphertext involves no interaction among the decryption
servers. The scheme is robust if invalid decryption shares can be identified by the
combiner. If the well-formedness of the ciphertext is publicly verifiable, we say the
scheme has public verifiability.

Formally, a DTBE scheme for a message space MDT BE and a tag space
TDT BE is a tuple of polynomial-time algorithms (Setup,Enc, IsValid,ShareDec,
ShareVerify,Combine), where Setup(1λ, n) outputs a public key and vectors svk =
(svk1, . . . , svkn) and sk = (sk1, . . . , skn) of verification/secret keys for the decryp-
tion servers; Enc(pk, t,m) outputs a ciphertext Cdtbe on the message m using tag
t; IsValid(pk, t, Cdtbe) outputs 1 if the ciphertext is valid under the tag t w.r.t.
pk or 0 otherwise; ShareDec(pk, ski, t, Cdtbe) outputs the i-th server decryption
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share νi of Cdtbe or the symbol ⊥; ShareVerify(pk, svki, t, Cdtbe, νi) verifies the
decryption share νi and outputs either 0 or 1; Combine(pk, {svki}n

i=1, {νi}n
i=1,

Cdtbe, t) outputs either the message m or ⊥.
Besides correctness, we require Selective-Tag weak Indistinguishability agai-

nst Adaptive Chosen Ciphertext Attacks (ST-wIND-CCA) [22] and Decryption
Consistency (DEC-CON). Informally, the former requires that an adversary who
gets a decryption oracle for any ciphertext under a tag different from the target
tag (which is chosen beforehand), cannot distinguish which challenge message
was encrypted. The latter requires that an adversary cannot output two different
sets of decryption shares of a ciphertext which open differently. The formal
definitions are in the full version [15].

For our purpose, it suffices to have a single decryption server, i.e. 1-out-
of-1 scheme. We stress, however, that any variant of distributed/threshold tag-
based encryption scheme satisfying the properties above can be used. Besides the
original scheme in [16], we also use a variant of [16] (shown in Fig. 6) where we
transpose the groups in which the public key and the ciphertext lie. Since here
we only consider a single decryption server, the verification key svk is redundant
as we include all the public elements in the public key pk. Maintaining it is solely
for the sake of consistency with the definition of the algorithms.

5 Our Generic Construction

In this section, we present our generic construction.
Overview of the Construction. We eliminate the need for some of the costly
tools required by previous constructions, including the so-called pseudo-attribute
technique and the expensive zero-knowledge proofs required for proving tracing
correctness. As a result, we obtain more efficient constructions while offering
stronger security than previous ones.

Our construction requires a NIZK proof of knowledge proof system NIZK,
a selective-tag weakly IND-CCA robust non-interactive (1-out-of-1) distributed
tag-based encryption scheme DT BE , a tagged signature scheme T S, an existen-
tially unforgeable signature scheme WDS secure against a weak chosen-message
attack, and a strongly unforgeable one-time signature scheme OT S. Addition-
ally, we require two collision-resistant hash functions Ĥ : {0, 1}∗ → TDT BE and
H : {0, 1}∗ → MOT S . It is sufficient for WDS to be existentially unforgeable
against a weak chosen-message attack as we will use this scheme to sign the
verification keys of the one-time signature scheme OT S.

The Setup algorithm generates a common reference string crs for NIZK
and runs DT BE .Setup to generate the server’s secret esk, the verification key
esvk and the public key epk. The public parameters of the system is set to
pp := (1λ, crs, epk, esvk, Ĥ,H). The tracing authority’s key is set to tk := esk.

When a new attribute authority joins the system, it creates a verifi-
cation/secret key pair (avkaid, askaid) for the tagged signature scheme T S.
When a user joins the system, she generates a verification/secret key pair
(uvk[uid],usk[uid]) for the digital signature scheme WDS.
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Fig. 7. Our generic construction for DTABS

To generate a signing key for attribute α ∈ A for user uid, the managing
attribute authority signs the user’s public key uvk[uid] (used as tag) along with
the attribute α using her secret tagged signature signing key. The resulting
signature σα is used as the secret key skuid,α for that attribute by user uid.

To sign a message m w.r.t. a signing policy P, the user chooses a fresh key
pair (otsvk, otssk) for the one-time signature OT S and encrypts her public key
uvk[uid] using the distributed tag-based encryption scheme DT BE (and possibly
some randomness μ) using Ĥ(otsvk) as a tag to obtain a ciphertext Cdtbe. She
then signs Ĥ(otsvk) using the digital signature scheme WDS and her personal
secret key usk[uid] to obtain a signature σ. Using NIZK, she then computes
a proof π that: she encrypted her public key correctly, she has a signature σ
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on Ĥ(otsvk) that verifies w.r.t. her public key uvk[uid], and she has enough
attributes on her public key to satisfy the signing predicate P. To prove the
latter, we use a span program (see Section 2) represented by the matrix S: the
user proves that she knows a secret vector z ∈ Z

|P|
p s.t. zS = [1, 0, . . . , 0]. She

also needs to show that she possesses a valid tagged signature on each attribute
in the signing predicate P for which the corresponding element in z is non-
zero. For attributes appearing in P that the signer does not own, she chooses
random signatures. Finally, she signs (H(m,P), π, Cdtbe, otsvk) using the one-
time signature OT S to obtain a one-time signature σots.

To verify a signature, the proof π and the one-time signature σots are verified.
We note here that if T S and/or WDS are re-randomizable, one can reveal the
signature components which are independent of uvk[uid] after re-randomizing
them. This simplifies the NIZK proof π and thus improves the efficiency.

To trace a signature, the tracing authority uses its secret key to produce the
decryption share ν of the ciphertext Cdtbe which allows anyone to recover the
user’s public key vkuid encrypted. It then searches in the public key table uvk to
identify the entry matching vkuid. It returns (uid, ν) if such entry exists, or (0, ν)
otherwise. To verify the tracing correctness, the judge just needs to verify the
validity of the decryption share ν and then recovers the plaintext and verifies
that it decrypts to the concerned user.

The construction is in Fig. 7. The language associated with the NIZK system
is as follows, where for clarity we underline the elements of the witness:

L :
{(

(Cdtbe, Ĥ(otsvk), epk, {avkaid(αi)}|P|
i=1, {αi}|P|

i=1), (uvk[uid], μ,z, {σαi
}|P|

i=1)
)

:
(
zS = [1, 0, . . . , 0]

∧|P|
i=1 if zi �= 0 ⇒ T S.Verify(avkaid(αi),uvk[uid], αi, σαi

) = 1
)

∧
WDS.Verify(uvk[uid], Ĥ(otsvk), σ) = 1 ∧ DT BE .Enc(epk, Ĥ(otsvk),uvk[uid];μ) = Cdtbe

}
·

The full proof of the following Theorem is in full version [15]. Next, we present
two instantiations in the standard model.

Theorem 1. The construction in Fig. 7 is a secure decentralized traceable
attribute-based signature if the building blocks are secure w.r.t. their require-
ments.

6 Instantiations in the Standard Model

Instantiation I. We instantiate T S using the AGHO1 signature scheme (see
Fig. 4 (Left)) and instantiate WDS and OT S using the weak and full Boneh-
Boyen signature schemes, respectively. We instantiate NIZK using the Groth-
Sahai system, and DT BE using the scheme in Fig. 6.

Let S ∈ Z
|P|,β
p be the span program for P. To sign, proceed as follows:

• To prove that zS = [1, 0, . . . , 0], the signer proves the following equations:
∑|P|

i=1(ziS̃i,1) = 1
∑|P|

i=1(ziS̃i,j) = 0, for j = 2, . . . , β
• To prove if zi �= 0 ⇒ T S.Verify(avkaid(αi),uvk[uid], αi, σαi

) = 1, where
σαi

= (A′
i, B

′
i, D̃

′
i) ∈ G

2
1 × G2 and avkaid(αi) = (Xi,1,Xi,2, Ỹi) ∈ G

2
1 × G2.
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The signer re-randomizes σαi
by choosing a′ ← Z

∗
p and computing σαi

:=

(Ai, Bi, D̃i) = (A′
i
a′

, B′
i
a′

, D̃′
i

1
a′ ), and proves the following

˘̃Di = D̃i
zi ˘̃Yi = Ỹ

zi

i
˘̃vki =

∼
uvk[uid]zi ˘̃Gi = G̃zi

e(Ai,
˘̃Yi) = e(Bi,

˘̃Gi) e(Ai,
˘̃Di)e(Xi,1,

˘̃vki)e(Xi,2,
˘̃Gi

αi

) = e(G, ˘̃Gi)

The verifier can on her own compute a Groth-Sahai commitment to ˘̃Gi

αi

by
computing Cαi

˘̃Gi

, where C ˘̃Gi
is the Groth-Sahai commitment to ˘̃Gi. Also, we

only need to commit to the vector z in G1. This improves the efficiency.
• To prove WDS.Verify(uvk[uid], Ĥ(otsvk), σ) = 1, the signer proves that

e(σ,
∼

uvk[uid])e(σ, G̃Ĥ(otsvk))e(G, G̃) = 1 G − G = 0
• To prove DT BE .Enc(epk, Ĥ(otsvk),uvk[uid]; (r1, r2)) = Cdtbe , it is sufficient

to prove that C̃1, C̃2 and C̃3 were computed correctly and the rest can be
verified by checking that e(H, C̃4) = e(U Ĥ(otsvk) · W, C̃1) and e(V, C̃5) =
e(U Ĥ(otsvk) · Z, C̃2). Thus, this requires proving C̃1 = H̃r1 , C̃2 = Ṽ r2 and

C̃3 = Ũr1 · Ũr2 ·
∼

uvk[uid].

The total size of the signature is G
27·|P|+19
1 + G

22·|P|+15
2 + Z

β+3
p . The proof for

the following Theorem follows from that of Theorem 1.

Theorem 2. The instantiation is secure if the AGHO1 signature scheme is
unforgeable and the assumptions XDLING2 , SXDH, and q-SDH all hold.

Instantiation II. To get an instantiation that is based on falsifiable assumptions
[27], we instantiate T S using the AGHO2 signature scheme as shown in Fig. 4
(Right). We needed to transpose the groups from which the public key and
the signature components of WDS are chosen. We also transpose the groups in
DT BE . The rest of the tools remain the same as in Instantiation I.

The proofs required in the signing are similar to those in Instantiation I with
the exception that here z is committed to in G2, whereas the ciphertext is in
G1. See the full version [15] for details. We detail below how the signer proves
she has a signature on an attribute. Here σαi

= (Ai, Bi, Ri, D̃i) ∈ G
3
1 × G2 and

avkaid(αi) = (W̃i, X̃i, Ỹi,1, Ỹi,2, Ỹi,3) ∈ G
5
2, the signer proves:

Ăi = Ai
z̃i B̆i = Bi

z̃i R̆i = Ri
z̃i Ği = Gz̃i

v̆ki = uvk[uid]z̃i e(Ăi, D̃) = e(Ği, G̃)
e(Ği, X̃i) = e(Ăi, W̃i)e(B̆i, G̃)e(R̆i, Ỹi,1)e(v̆ki, Ỹi,2)e(Ği

αi
, Ỹi,3)

The same two efficiency-enhancing observations used in Instantiation I apply
but now in the opposite groups. The total size of the signature is G

30·|P|+18
1 +

G
30·|P|+16
2 + Z

β+3
p . The proof for the following Theorem follows from that of

Theorem 1.

Theorem 3. The instantiation is secure if the assumptions XDLING1 , q-SDH,
q-AGHO, and SXDH all hold.
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Table 1. Efficiency comparison

Scheme Signature Size Model Setting Tracing
Size Compute Verify

[11] G
|P|+β+7 ROM Composite N/A N/A N/A

[10] G
34·|P|+28
1 + G

32·|P|+32
2 + Z

β+1
p STD Prime G

3
1 ×G

4
2 4EG1 + 6EG1 34P

Inst. I G
27·|P|+19
1 + G

22·|P|+15
2 + Z

β+3
p STD Prime G

2
2 2EG2 4P

Inst. II G
30·|P|+18
1 + G

30·|P|+16
2 + Z

β+3
p STD Prime G

2
1 2EG1 4P

We end by noting that in both instantiations signature verification can be mode
more efficient by batch verifying GS proofs [6,17].
Efficiency Comparison. We compare the efficiency of our instantiations with
that of existing constructions in Table 1. In the table, P stands for pairing and
E is a multi-scalar exponentiation in the group. Note that the construction in
[11] only supports a single attribute authority.
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Abstract. In this paper, we introduce a new functionality for proxy
re-encryption (PRE) that we call re-encryption verifiability. In a PRE
scheme with re-encryption verifiability (which we simply call verifiable
PRE, or VPRE), a receiver of a re-encrypted ciphertext can verify
whether the received ciphertext is correctly transformed from an original
ciphertext by a proxy, and thus can detect illegal activities of the proxy.
We formalize the security model for a VPRE scheme, and show that
the single-hop uni-directional PRE scheme by Hanaoka et al. (CT-RSA
2012) can be extended to a secure VPRE scheme.

Keywords: Proxy Re-encryption · Re-encryption verifiability · Sound-
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1 Introduction

Proxy re-encryption (PRE) is an interesting extension of traditional public key
encryption (PKE). In addition to the normal operations of PKE, with a dedi-
cated re-encryption key (generated by receiver A), a semi-trusted party called
proxy can turn a class of ciphertexts destined for user A into those for user B.
A remarkable property of PRE is that the proxy carrying out the transform is
totally ignorant of the plaintext. PRE was first formalized by Blaze et al. [5]
and has received much attention in recent years. There are many models as well
as implementations [1,5,7,9,11,13,16,22]. The type of PRE we focus on in this
paper is “single-hop” and “uni-directional”, where a ciphertext1 can be trans-
formed only once, and a re-encryption key used to transform a ciphertext for
user A to that for user B cannot be used to transform for the opposite direction.
1 In the context of single-hop uni-directional PRE, an original ciphertext (which can be

re-encrypted) and a re-encrypted ciphertext (which cannot be re-encrypted further)
are typically called a second-level ciphertext and a first-level ciphertext, respec-
tively [11,16], and we will also use the names.
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In ordinary PRE schemes, a proxy is modeled as a semi-trusted party, and
is typically assumed to perform the re-encryption process honestly. This means
that we have to put relatively high level of trust on proxies, and it may be
undesirable for some applications of PRE, e.g. cloud-based file sharing systems.
In this paper, we study a mechanism that enables us to reduce the level of trust
on proxies in PRE systems.

To motivate it further, consider a cloud storage service, one of the major
applications of PRE, in which users store a (possibly large) encrypted data c.
PRE allows an easy way to share the encrypted data in the cloud with another
user: if an owner (say user A) of the encrypted data c wants to share it with user
B, it can simply give a re-encryption key rkA→B to the cloud manager, and can
go off-line; when later B requests the data for the cloud manager, he/she can
transform c into a re-encrypted ciphertext ĉ that can be decrypted by user B.
However, in this situation, can user B be sure if ĉ is actually a re-encryption of
c? Can B detect whether the cloud manager (proxy) has misbehaved? However,
an ordinary PRE scheme is not required to support the functionality to check
the relation between an original ciphertext c and a re-encrypted ciphertext ĉ
(if user A reveals its secret key to user B, then B can check the relation, but
it is clearly undesirable). It is therefore desirable if there is a PRE scheme in
which the relation between original and re-encrypted ciphertexts can be checked
efficiently by a recipient of a re-encrypted ciphertext (user B in this example),
without the help of the other entities.

1.1 Our Contribution

In this paper, we introduce a new functionality for PRE that we call re-encryption
verifiability. In a PRE scheme with re-encryption verifiability (which we simply
call verifiable PRE, or VPRE), a receiver of a re-encrypted ciphertext can verify
whether the received ciphertext is correctly transformed from an original cipher-
text by a proxy, and thus can detect an illegal activity of the proxy. We may
even expect that the existence of re-encryption verifiability suppresses proxy’s
illegal activities, and this functionality enables us to relax the level of trust that
we have to put on proxies. We achieve re-encryption verifiability by introducing
a new algorithm that we call the re-encryption verification algorithm, into the
syntax of (single-hop, uni-directional) PRE. This algorithm takes two cipher-
texts c and ĉ, a secret key skB (of the receiver B) and a public key pkA (of
another user A) as input, and can tell whether ĉ is transformed from c using a
re-encryption key that transforms a ciphertext from user A to user B. We stress
that this algorithm needs not only a re-encrypted ciphertext ĉ but also a (candi-
date) original ciphertext c (while to normally decrypt a re-encrypted ciphertext,
original ciphertext c is not required). Note that such a situation is natural in the
applications of PRE which we explained earlier.

We formalize the security model for a VPRE scheme. In particular, in order
for the re-encryption verification algorithm to be meaningful, in addition to ordi-
nary chosen ciphertext (CCA) security (for both original/transformed cipher-
texts), we introduce a new security notion that we call soundness. Our security
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model for CCA security is based on the one used by Hanaoka et al. [11], and is
extended to take the existence of the re-encryption verification algorithm into
account. For “backward compatibility” with the model of ordinary PRE (without
the re-encryption verification algorithm), we show that a VPRE scheme secure
in our model is in general secure as a PRE scheme in the model of [11]. Then,
we show that the PRE scheme by Hanaoka et al. [11] (which we call “HKK+”)
can be extended to a VPRE scheme (which we call “eHKK+”), by augmenting
the HKK+ scheme with the dedicated re-encryption verification algorithm. To
prove the security of the VPRE scheme eHKK+, we need the property that we
call strong smoothness (which is essentially the same notion as that introduced
in [10] with the name γ-uniformity) for the underlying threshold PKE scheme.
This property is satisfied by natural TPKE schemes, and thus is not a strong
assumption at all. For more details, see Section 4.

Naive Approaches and Their Problems. Although one might think that
the problem of checking dishonest behaviors of a proxy can be resolved by
using a signature scheme in a PRE scheme (that is, by considering a proxy
re-“signcryption” scheme), we argue that this approach does not work. Specifi-
cally, consider a situation where a sender holds a key pair of a signature scheme,
and consider the typical “Sign-then-Encrypt”-style construction of a proxy re-
signcryption scheme, i.e. the construction where a ciphertext is generated by
first signing the plaintext, and then the plaintext together with the signature
are encrypted by the PRE scheme. Note that what is verified in such a proxy
re-signcryption scheme (by a recipient of a re-encrypted ciphertext) is that the
original plaintext has not been modified and that it is indeed generated by the
sender, but not that the transformed ciphertext resulted from re-encryption
performed by the proxy. For example, such a construction is vulnerable to the
following attack: a sender generates several ciphertexts to the proxy, then the
proxy re-encrypts one of them, and sends it to the recipient. The recipient may
find that the plaintext recovered from the received ciphertext indeed comes from
the sender, but he will not be sure which of the ciphertexts the proxy owns was
re-encrypted (and even that whether the received ciphertext is a re-encryption
of one of the ciphertexts). In the “Encrypt-then-Sign”-style construction, i.e. the
construction where the sender first encrypts a plaintext and then generates a sig-
nature on the ciphertext, the situation is worse, because the signature attached to
the original ciphertext will not be a valid signature for a re-encrypted ciphertext.
Furthermore, these proxy re-signcryption-style approaches also have a potential
drawback that the receiver needs to be aware of the sender who generates the
original ciphertext, which is not necessary in our VPRE model (and in an ordi-
nary PRE scheme), and may be a barrier for some applications of (V)PRE. In
summary, we emphasize that what is achieved by proxy re-signcryption-style
approaches and what we achieve in this paper (i.e. verifiability of a dishonest
behavior of a proxy) are two very different properties, and one approach cannot
be a solution for the other.
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On the Choice of Security Models on which Our Security Definitions
Are Based. We note that, as mentioned above, our definitions for VPRE are
based on those of PRE adopted by Hanaoka et al. [11]. Their security definitions
(of chosen ciphertext security) are known to be one of the strongest in the
literature of PRE. Notably, besides capturing the chosen ciphertext security (not
re-playable variant [8]), the security models in [11] do not assume the so-called
knowledge-of-secret-key (KOSK) assumption [6], in which an adversary can use
any public key for corrupted users, without revealing the corresponding secret
key. The KOSK assumption typically appears in security models of cryptographic
primitives in which multiple users are inherently involved (e.g. multi-receiver
PKE [2,20], multi-signature [4,6,21]). The KOSK assumption does not reflect
the reality quite well, and there are several critiques on this assumption (e.g. in
the discussions in [4,20,21]). To the best of our knowledge, the Hanaoka et al.
model is the only security definitions for PRE that do not assume the KOSK
assumption, and thus we base our security definitions on theirs.

As far as we are aware, most popular PRE schemes without random oracles
are secure only under the KOSK assumption (e.g. [13,16]). 2 Therefore, we do
not think these schemes can be shown to achieve re-encryption verifiability in
our model. However, we do not rule out the possibility that these existing PRE
schemes can be extended to VPRE schemes that can be shown to be secure in
the security models that are appropriately extended from the security models
in which the original PRE schemes are proved secure. Especially, the pairing-
based schemes (e.g. [13,16]) seem to allow strong validity checking properties
between a re-encrypted ciphertext and an original ciphertext, and we think they
are good candidates of VPRE schemes. We would like to leave it as our future
work whether these existing PRE schemes can be extended to VPRE schemes
and can be proven secure in security models appropriately extended from the
original security models.

1.2 Related Work

We briefly review the related work. Mambo and Okamoto introduced the con-
cept of proxy decryption [17]. Later, Ivan and Dodis [14] proposed a generic
construction of proxy cryptography based on sequential multiple encryption.
Blaze, Bleumer and Strauss formulated the concept of PRE cryptosystems [5]
and proposed the first bidirectional PRE scheme based on the ElGamal PKE
scheme. Subsequently, Ateniese et al. [1], Canetti and Hohenberger [7], Libert
and Vergnaud [16], and Chow et al. [9], proposed different PRE schemes with
various properties. Shao and Cao [22] proposed a PRE scheme without pairings.
Later, however, Zhang et al. [24] pointed out that it is not secure in the Libert-
Vergnaud security model [16]; that is, it does not provide master key security.
2 To be more precise, in the security models adopted in these papers, public keys (of

even a corrupted user) that can be used in the security games (say, in a re-encryption
key generation and/or re-encryption queries) are generated by the challenger, who
always generates these keys honestly. Therefore, the KOSK assumption is automat-
ically assumed in these security models.
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Subsequently, Matsuda et al. proposed a PRE scheme without pairings [18], but
later, Weng, Zhao, and Hanaoka [23] pointed out that their scheme is not chosen-
ciphertext secure. Hanaoka et al. [11] proposed a new definition of CCA secu-
rity in PRE and showed a generic construction of uni-directional PRE. Isshiki
et al. [13] proposed a CCA secure PRE scheme. 3 Kirshanova [15] proposed a
lattice-based PRE scheme. To the best of our knowledge, none of the previous
works considered the re-encryption verifiability.

2 Preliminaries

Basic Notation. N denotes the set of all natural numbers, and for n ∈ N,
we let [n] := {1, . . . , n}. “x ← y” denotes that x is chosen uniformly at random
from y if y is a finite set, x is output from y if y is a function or an algorithm,
or y is assigned to x otherwise. “x‖y” denotes a concatenation of x and y.
“|x|” denotes the size of the set if x is a finite set or bit length of x if x is a
string. “PPT” stands for probabilistic polynomial-time. If A is a probabilistic
algorithm then y ← A(x; r) denotes that A computes y as output by taking x as
input and using r as randomness. k denotes the security parameter. A function
f(k) : N → [0, 1] is said to be negligible if for all positive polynomials p and all
sufficiently large k ∈ N, we have f(k) < 1/p(k).

2.1 Re-Splittable Threshold Public Key Encryption

Here, we review the definition of re-splittable threshold PKE [11,19]. This is
a special class of TPKE in which a secret key can be split multiple times, and
security of the scheme is maintained as long as the number of corrupted secret key
shares under the same splitting is less than the threshold. The first re-splittable
TPKE scheme was proposed by [11]. Recently, Ohata et al. [19] proposed three
more schemes. (All schemes so far are based on bilinear maps.)

Formally, a re-splittable TPKE scheme consists of the following six PPT
algorithms:

TKG This is the key generation algorithm that takes 1k, n, and t such that
0 < t ≤ n as input, and outputs a secret key tsk and a public key tpk.

TEnc This is the encryption algorithm that takes tpk and a plaintext m as input,
outputs a ciphertext c.

TSplit This is the key-splitting algorithm that takes tsk as input, and outputs
n secret key shares tsk1, · · · , tskn and a verification key tvk.

3 Although it is claimed that their security model is stronger than that of [11], they are
actually incomparable. The security model for a transformed ciphertext (first-level
ciphertext) in [13] allows an adversary a slightly more flexible challenge query than
that of [11]. However, all public keys in the security models of [13] that can be used
for re-encryption key generation and re-encryption queries must be generated by the
challenger, and such restriction is not posed in the model of [11].
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TShDec This is the share-decryption algorithm that takes tpk, a secret key share
tski (i ∈ [n]) output by TSplit(tsk), and c as input, and outputs a decryption
share μi (which could be the special symbol ⊥ meaning that c is invalid).

TShVer This is the share-verification algorithm that takes tpk, tvk, c, an index
i ∈ [n], and a decryption share μ as input, and outputs � or ⊥. When the
output is � (resp. ⊥), we say that μ is a valid (resp. invalid) decryption
share of the ciphertext c.

TCom This is the combining algorithm that takes tpk, tvk, c, and t decryption
shares (generated under distinct secret key shares) as input, and outputs a
decryption result m (which could be the special symbol ⊥).

For any k ∈ N, any polynomials t, n such that 0 < t ≤ n, any
(tsk, tpk) ← TKG(1k, n, t) and any (tsk1, · · · , tskn, tvk) ← TSplit(tsk), we
require the following two correctness properties: (1) For any ciphertext c, if
μ = TShDec(tpk, tski, c), then we have TShVer(tpk, tvk, c, i, μ) = �. (2) For any
plaintext m, if c is output from TEnc(tpk,m) and S = {μs1 , · · · , μst} is a set of
decryption shares (i.e. μsi = TShDec(tpk, tsksi , c) for all i ∈ [t]), then we have
TCom(tpk, tvk, c, S) = m.

Chosen Ciphertext Security. CCA security of a re-splittable TPKE scheme
is defined using the following game which is parameterized by two integers t, n
with 0 ≤ t ≤ n and is played by the challenger and an adversary A: The
challenger first runs (tsk, tpk) ← TKG(1k, n, t) and gives tpk to A. Then A can
adaptively make the following types of queries.

Split&corruption query: On input a set of indices S = {s1, . . . , st−1}, the
challenger runs (tsk1, . . . , tskn, tvk) ← TSplit(tsk) and returns (tsks1 , . . . ,
tskst−1 , tvk) to A. The challenger also stores {tski}i∈[n] and tvk for later
share decryption queries from A.

Share decryption query: On input (tvk, i, c), where tvk is required to be one
of the answers to previously asked split&corruption queries, i ∈ [n], and
c 	= c∗, the challenger finds tski that is previously generated together with
tvk, and returns a decryption share μi ← TShDec(tpk, tski, c) to A.

Challenge query: This query is asked only once. On input (m0,m1), the chal-
lenger randomly picks b ∈ {0, 1} and returns c∗ ← TEnc(tpk,mb) to A.

Finally, A outputs its guess b′ for b, and wins the game if b = b′. We define
the advantage of A by AdvCCA-TPKE(A,n,t) (k) = |Pr[b = b′] − 1/2|. We say that a re-
splittable TPKE scheme is CCA secure, if for any PPT adversary A and for any
polynomials t and n with 0 < t ≤ n, AdvCCA-TPKE(A,n,t) (k) is negligible.

Decryption Consistency. Decryption consistency is defined using the game
which is defined in the same way as the CCA game, without the challenge
query. The adversary A finally outputs a ciphertext c, a verification key tvk,
and two sets of decryption shares S = {μs1 , . . . , μst} and S′ = {μ′

s′
1
, . . . , μ′

s′
t
}. A

wins if (a) tvk is one of verification keys returned as a response to one of A’s
split&corruption queries. (b) All shares in S and S′ are valid for a ciphertext
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c under tvk. That is, TShVer(tpk, tvk, c, i, μSi
) = TShVer(tpk, tvk, c, i, μ′

S′
i
) = �

for all i ∈ [t]. (c) S and S′ are sets that are distinct regardless of re-ordering the
elements. (d) TCom(tpk, tvk, c, S) 	= TCom(tpk, tvk, c, S′). We let AdvDC-TPKE(A,n,t)(k)
denote the probability of A winning in this game. We say that a TPKE scheme
has decryption consistency, if for any PPT adversary A and for any polynomials
t and n such that 0 < t ≤ n, AdvDC-TPKE(A,n,t)(k) is negligible.

Strong Smoothness. In this paper, we will use the property which we call
strong smoothness. This is introduced under the name of γ-uniformity in [10] for
ordinary PKE, and is a stronger version of smoothness used in [3]. (We borrow
the name from [3] because we believe it describes the property more directly.)

Formally, we say that a re-splittable TPKE scheme has strong smoothness if
the following quantity

Smth(k) = max
c,m,R,

(tpk,tsk)←TKG(1k;R),

Pr
c′←TEnc(tpk,m)

[c = c′]

is negligible. Here, R is a randomness used by TKG.
We note that strong smoothness is satisfied if a ciphertext contains an unpre-

dictable component (such as a random group element gr with a generator g of a
cyclic group and a randomness r), and we are not aware of any natural construc-
tion of (re-splittable) TPKE based on bilinear maps that does not have strong
smoothness. For example, the re-splittable TPKE schemes proposed in [11,19]
have this property unconditionally.

2.2 Other Primitives

Public Key Encryption. A public key encryption scheme (PKE) consists of
the following three algorithms (PKG,PEnc,PDec). PKG is the key generation
algorithm that takes 1k as input, and outputs a pair of decryption key dk and
public key pk. PEnc is the encryption algorithm that takes a public key pk
and a plaintext m as input, and outputs a ciphertext c. PDec is the decryption
algorithm that takes a decryption key dk and a ciphertext c as input, and outputs
a decryption result m (which could be the special symbol ⊥ meaning that c is
invalid). We require the standard correctness for a PKE scheme, namely, for any
(dk, pk) ← PKG(1k) and any plaintext m, we have m = PDec(dk,PEnc(pk,m)).
We will use chosen ciphertext security of PKE. The formal definition will be
given in the full version.

Signature. A signature scheme consists of the following three algorithms (SKG,
Sign,SVer). SKG is the key generation algorithm that takes 1k as input, and out-
puts a signing key sk and a verification key vk. Sign is the signing algorithm
that takes a signing key sk and a message m as input, and outputs a signature
σ. SVer is the verification algorithm that takes a verification key vk, a message
m, and a signature σ as input, and outputs either � or ⊥ (indicating whether
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the signature is valid or not). We require the standard correctness for a signa-
ture scheme, namely, for any (sk, vk) ← SKG(1k) and any message m, we have
SVer(vk,m,Sign(sk,m)) = �. We will use strong unforgeability of signature.
The formal definition will be given in the full version.

3 Proxy Re-Encryption with Re-Encryption Verifiability

In this section, we present the model and the security definitions of VPRE. Note
that we only focus on a single-hop uni-directional scheme.

This section is organized as follows: In Section 3.1, we define the syntax of a
VPRE scheme. In Section 3.2, based on the definitions given in [11] for (ordinary)
PRE, we define three kinds of security definitions of VPRE. In particular, we
introduce soundness, which plays an important role for VPRE. We also explain
the difference between our definitions and those of [11]. Finally, in Section 3.3,
we show that a VPRE secure in our definitions is also secure (as an ordinary
PRE scheme) in the definitions of [11], and thus our definitions have “backward
compatibility” with [11].

3.1 Syntax

Here, we define the syntax of VPRE. As mentioned earlier, the main feature of
VPRE is the re-encryption verification algorithm REncVer.

Formally, a VPRE scheme consists of the following seven algorithms:

KG This is the key generation algorithm that takes 1k as input, and outputs
a secret key sk and a public key pk. This process is written as (sk, pk) ←
KG(1k).

RKG This is the re-encryption key generation algorithm that takes a secret key
ski of user i and a public key pkj of user j as input, and outputs a re-
encryption key rki→j . This process is written as rki→j ← RKG(ski, pkj).

Enc This is the encryption algorithm that takes a public key pk and a plaintext
m as input, and outputs a second-level ciphertext c that can be re-encrypted
for another party. This process is written as c ← Enc(pk,m).

REnc This is the re-encryption algorithm that takes a second-level ciphertext c
(for user i) and a re-encryption key rki→j as input, and outputs a first-level
ciphertext ĉ (for user j) or the special symbol ⊥ meaning that (rki→j or) c
is invalid. This process is written as ĉ (or ⊥) ← REnc(rki→j , c).

REncVer This is the re-encryption verification algorithm that takes a public key
pki of user i, a secret key skj of user j, a second-level ciphertext c, and a
first-level ciphertext ĉ as input, and outputs � (meaning that ĉ is a valid
re-encrypted ciphertext of ci) or ⊥. This process is written as � (or ⊥) ←
REncVer(pki, skj , c, ĉ).

Dec1 This is the first-level decryption algorithm that takes a secret key sk and
a first-level ciphertext ĉ as input, and outputs a decryption result m (which
could be the special symbol ⊥ meaning that ĉ is invalid). This process is
written as m ← Dec1(sk, ĉ).
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Dec2 This is the second-level decryption algorithm that takes a secret key sk
and a second-level ciphertext c as input, and outputs a decryption result m
(which could be ⊥ as above). This process is written as m ← Dec2(sk, c).

The REncVer algorithm needs not only a re-encrypted ciphertext ĉ but also a
(candidate) original ciphertext c. We again stress that such a situation is natural
in the applications of PRE which we explained in Section 1. We remark that
as in [11], we do not consider the direct first-level encryption algorithm (that
generates a first-level ciphertext that cannot be re-encrypted further), because
such a functionality can be realized by just using a CCA secure PKE scheme in
addition to a (V)PRE scheme.

We say that a VPRE scheme is correct if for all (ski, pki) and (skj , pkj) output
from KG(1k), all plaintexts m, all rki→j ← RKG(ski, pkj), all ci ← Enc(pki,m),
and all ĉj ← REnc(rki→j , ci), we have: (1) Dec2(ski, ci) = m, (2) Dec1(skj , ĉj) =
m, and (3) REncVer(pki, skj , ci, ĉj) = �.

3.2 Security Definitions

In this subsection, we give the formal security definitions of VPRE.

Soundness. According to the correctness requirement, an algorithm that out-
puts 1 for any input is “correct” as the re-encryption verification algorithm
REncVer. However, this is clearly not what we expect for REncVer. To avoid
such triviality and a meaningless definition, here we introduce soundness of
the REncVer algorithm. Roughly, our soundness definition guarantees that if an
adversary who owns a re-encryption key rki→j and is given an original (second-
level) ciphertext c, it can produce only a re-encrypted ciphertext ĉ that can
decrypt to the same value as the decryption result of c. Furthermore, if an
adversary does not have the re-encryption key rki→j , then it cannot produce a
valid re-encrypted ciphertext ĉ at all.

Formally, we define the soundness of re-encryption with the following game
which is parameterized by an integer n ∈ N and is played between the challenger
and an adversary A:

Firstly, the challenger generates honest users’ key pairs (ski, pki) ← KG(1k)
for i ∈ [n], and sets PK = {pki}i∈[n]. Next, the challenger generates a challenge
user’s key pair (ski∗ , pki∗) ← KG(1k). Then, the challenger gives 1k and PK∗ =
PK ∪ {pki∗} to A. Then, A can adaptively make the following types of queries:

Re-encryption key generation (RKG) query: On input (pki ∈ PK∗, pkj),
where pkj is an arbitrary public key of A’s choice (for which A is not required
to reveal the corresponding secret key), the challenger responds as follows: If
pki = pki∗ and pkj /∈ PK∗, then the challenger responds with ⊥. Otherwise,
the challenger responds with RKG(ski, pkj).

Re-encryption (REnc) query: On input (pki ∈ PK∗, pkj , c), where pkj is an
arbitrary public key of A’s choice (for which A is not required to reveal
the corresponding secret key), the challenger responds with REnc(RKG(ski,
pkj), c).
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Re-encryption verification (REncVer) query: On input (pki, pkj ∈ PK∗, c,
ĉ), where pki is an arbitrary public key of A’s choice (for which A is not
required to reveal the corresponding secret key), the challenger responds
with REncVer(pki, skj , c, ĉ).

Challenge query: This query is asked only once. On input m∗, the challenger
runs c∗ ← Enc(pki∗ ,m∗), and returns c∗ to A.

First-level decryption (Dec1) query: On input (pkj ∈ PK∗, ĉ), the chal-
lenger responds with Dec1(skj , ĉ).

Second-level decryption (Dec2) query: On input (pki ∈ PK∗, c), the chal-
lenger responds with Dec2(ski, c).

Finally, A outputs (pkj ∈ PK∗, ĉ∗) and wins the game if they satisfy the
following three conditions:

1. REncVer(pki∗ , skj , c
∗, ĉ∗) = �

2. ĉ∗ is not an answer to some of A’s REnc queries of the form (pki∗ , pkj , c
∗)

3. Either of the following conditions is satisfied:
– In the case that A has submitted a RKG query of the form (pki∗ , pkj)

and obtained a re-encryption key rki∗→j : Dec1(skj , ĉ∗) 	= m∗.
– Otherwise: Dec1(skj , ĉ∗) 	= ⊥.

We define the advantage of A by AdvSND-VPRE(A,n) (k) = Pr[A wins].

Definition 1 (Soundness of Re-encryption). We say that a VPRE scheme
satisfies soundness, if for any PPT adversary A and for all positive polynomials
n, AdvSND-VPRE(A,n) (k) is negligible.

Second-Level CCA Security. Here, we define the security for second-level
ciphertexts (second-level CCA security) with the following game which is param-
eterized by an integer n ∈ N and is played between the challenger and an adver-
sary A:

Firstly, the challenger generates honest users’ key pairs (ski, pki) ← KG(1k)
for i ∈ [n], and sets PK = {pki}i∈[n]. Next, the challenger generates the challenge
user’s key pair (ski∗ , pki∗) ← KG(1k). Then, the challenger gives 1k and PK∗ =
PK ∪ {pki∗} to A. Then, A can adaptively make the following types of queries:

Re-encryption key generation (RKG) and Re-encryption verification
(REncVer) queries:

These are the same as those in the soundness game.
Re-encryption (REnc) query: On input (pki ∈ PK∗, pkj , c), where pkj is an

arbitrary public key of A’s choice (for which A is not required to reveal the
corresponding secret key), the challenger responds as follows. If (pki, c) =
(pki∗ , c∗) and pkj /∈ PK∗, then the challenger returns ⊥ to A. Otherwise,
the challenger responds with REnc(RKG(ski, pkj), c).

Challenge query: This query is asked only once. On input (m0,m1), the chal-
lenger picks a bit b ∈ {0, 1} uniformly at random, and computes c∗ ←
Enc(pki∗ ,mb). Then it gives c∗ to A.
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First-level decryption (Dec1) query: On input (pkj ∈ PK∗, ĉ), the chal-
lenger responds as follow: If REncVer(pki∗ , skj , c

∗, ĉ) = �, then the challenger
returns ⊥ to A. Otherwise, the challenger responds with Dec1(skj , ĉ).

Second-level decryption (Dec2) query: On input (pki ∈ PK∗, c), the chal-
lenger responds with Dec2(ski, c), except that if (pki, c) = (pki∗ , c∗), then the
challenger returns the special symbol ⊥ to A.

Finally, A outputs its guess b′ for b and wins the game if b = b′. We define
the advantage of A by Advsecond-VPRE(A,n) (k) = |Pr[b = b′] − 1/2|.
Definition 2 (Second-Level CCA Security). We say that a VPRE scheme
is second-level CCA secure, if for any PPT adversary A and all positive poly-
nomials n, Advsecond-VPRE(A,n) (k) is negligible.

First-Level CCA Security. Next, we define the security for first-level cipher-
texts (first-level CCA security) with the following game between the challenger
and an adversary A: Firstly, the challenger generates the challenge key pair (sk∗,
pk∗) ← KG(1k), and gives 1k and pk∗ to A. Then, A can adaptively make the
following types of queries:

Re-encryption key generation (RKG) query: On input pk, where pk is an
arbitrary public key of A’s choice (for which A is not required to reveal the
corresponding secret key), the challenger responds with RKG(sk∗, pk).

Re-encryption verification (REncVer) query: On input (pk, c, ĉ), where pk
is an arbitrary public of A’s choice (for which A is not required to reveal
the corresponding secret key), the challenger responds with REncVer(pk,
sk∗, c, ĉ).

Challenge query: This query is asked only once. On input (skA, pkA,m0,m1)
where (skA, pkA) is required to be a valid key pair 4, the challenger picks
the challenge bit b ∈ {0, 1} randomly and runs c ← Enc(pkA,mb) and ĉ∗ ←
REnc(RKG(skA, pk∗), c). It then returns ĉ∗ to A.

First-level decryption (Dec1) query: On input ĉ, the challenger responds
with Dec1(sk∗, ĉ), except that if ĉ = ĉ∗, then the challenger returns the
special symbol ⊥ to A.

Second-level decryption (Dec2) query: On input c, the challenger responds
with Dec2(sk∗, c).

Finally, A outputs its guess b′ for b and wins the game if b = b′. We define
the advantage of A by Advfirst-VPREA (k) = |Pr[b = b′] − 1/2|.
Definition 3 (First-Level CCA Security). We say that a VPRE scheme is
first-level CCA secure, if for any PPT adversary A, Advfirst-VPREA (k) is negligible.

4 That is, (skA, pkA) is required to be in the range of KG(1k).
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Difference with the Definitions (for PRE) in [11]. Soundness is a new
security definition for VPRE. Furthermore, regarding the definition of first-level
CCA security, we naturally allow REncVer queries for an adversary in addition
to queries allowed in the first-level CCA definition of [11, Definition 2].

For the security definition of second-level ciphertexts, we also allow an adver-
sary to make REncVer queries. Furthermore, there is a remarkable difference in
the response to Dec1 queries. The response to Dec1 queries in the second-level
CCA security game defined in [11, Definition1] is as follows (where we emphasize
the difference).

First-level decryption query (of [11]) : On input (pkj ∈ PK∗, ĉ), the chal-
lenger responds as follows: If A has asked a REnc query of the form (pki∗ , pkj
∈ PK, c∗) and obtained ĉi previously, then the challenger returns ⊥ to A.
Else if A has asked a RKG query of the form (pki∗ , pkj ∈ PK) previously
and Dec1(ski, ĉ) ∈ {m0,m1} holds, then the challenger returns the special
symbol test to A. Otherwise, the challenger responds with Dec1(ski, ĉ). (We
note that here, test is a symbol that is distinguished from ⊥.)

Note that in a CCA security definition, what we expect is that an adversary
can ask any ciphertext that does not trivially allow it to decrypt the challenge
ciphertext. The emphasized sentences above are the definitional approach taken
in [11] to avoid such “self-broken” definition considered in [11]. On the other
hand, our definition of second-level CCA security given in this subsection uses
REncVer for deciding “prohibited” decryption queries, and thus is simplified (of
course, we additionally need soundness in order for REncVer to be meaningful).
Our use of REncVer for deciding “prohibited” queries in the CCA security game
for an encryption scheme has some similarity with secretly detectable re-playable
CCA security of [8] and detectable PKE of [12], and we believe these connections
to be interesting.

3.3 Implications to the Definitions of [11]

Here, we show a “backward compatibility” of our security definitions. Namely,
we show that if a VPRE scheme satisfies security definitions given in Section 3.2,
then it is also secure as a (V)PRE under the definitions of [11].

Theorem 1. If a VPRE scheme is first-level CCA secure in the sense of Def-
inition 3, then the VPRE scheme is first-level CCA secure in the sense of [11,
Definition 2].

This is obvious from the definition. In particular, an adversary in our first-
level CCA security definition is only more powerful than that of [11, Definition2]
(our adversary can make REncVer queries which are not considered in [11]).

Theorem 2. If a VPRE scheme is second-level CCA secure in the sense of
Definition 2 and satisfies soundness (Definition 1), then the VPRE scheme is
second-level CCA secure in the sense of [11, Definition1].
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Proof of Theorem 2. Let n > 0 be a polynomial, and A be any PPT adversary
that attacks a VPRE scheme in the sense of [11, Definition 1] and makes Q > 0
Dec1 queries. (Since A is PPT, Q is polynomial.) Consider the following games.

Game 0. The second-level CCA game of [11, Definition 1].
Game 1. Same as Game 0, except that if A submits a Dec1 query (pkj , ĉ) such

that (1) REncVer(pki∗ , skj , ci∗ , ĉ) = �, and (2) ĉ is not an answer to some of
A’s REnc queries of the form (pki∗ , pkj , c

∗), then the challenger responds as
follows:
If A has submitted a RKG query (pki∗ , pkj) before, then the challenger
returns test to A. Otherwise, the challenger returns ⊥ to A.

For i ∈ {0, 1}, let Succi be the event that in Game i A succeeds in guessing
the challenge bit (i.e. b′ = b occurs), and let Badi be the event that in Game
i, A submits at least one Dec1 query (pkj , ĉ) such that it satisfies the following
conditions simultaneously:

1. REncVer(pki∗ , skj , c
∗, ĉ) = �.

2. ĉ has not appeared as an answer to some of A’s previous REnc queries of the
form (pki∗ , pkj , c

∗).
3. Either of the following conditions is satisfied:

– In the case that A has submitted a RKG query (pki∗ , pkj) and obtained
a re-encryption key rki∗→j : Dec1(skj , ĉ) /∈ {m0,m1}.

– Otherwise: Dec1(skj , ĉ) 	= ⊥.

A’s advantage (in the second-level CCA definition of [11, Definition1]) is
calculated as follows:

|Pr[Succ0] − 1
2
| ≤ |Pr[Succ0] − Pr[Succ1]| + |Pr[Succ1] − 1

2
|.

Thus, it suffices to show that each term in the right hand side of the above
inequality is negligible.

Firstly, note that Game 0 and Game 1 proceed identically unless Bad0 or Bad1
occurs in the corresponding games. Hence, we have |Pr[Succ0] − Pr[Succ1]| ≤
Pr[Bad0] = Pr[Bad1]. Then, we show that we can construct a soundness adver-
sary B such that AdvSND-VPRE(B,n) (k) ≥ (1/Q) · Pr[Bad1], which implies that Pr[Bad1]
is negligible.

The construction of B is as follows: First, B is given public keys (pk1, · · · , pkn,
pki∗) from the soundness challenger. Then B forwards them to A.

B answers to A’s queries (except for the challenge query) exactly as specified
in Game 1. This is possible because B can also query to B’s challenger except for
the challenge query. When A submits the challenge query (m0,m1), B randomly
picks d ← {0, 1}, submits md as B’s challenge to B’s challenger, receives c∗, and
returns c∗ to A.

When A terminates, from A’s Dec1 queries, B randomly picks one query
(pkj , ĉ), and terminates with output (pkj , ĉ).
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The above completes the description of B. It is not hard to see that B simu-
lates Game 1 perfectly for A until A submits a Dec1 query satisfying the condi-
tions of the event Bad1. Therefore, the probability that A submits a Dec1 query
satisfying the conditions of Bad1 in the game simulated by B is exactly the same
as the probability of this event occurring in Game 1. Furthermore, once A makes
such a query, B can pick it with probability at least 1/Q. Therefore, we have
AdvSND-VPRE(B,n) (k) ≥ (1/Q) · Pr[Bad1]. Hence, Pr[Bad1] is negligible. This in turn
implies that |Pr[Succ0] − Pr[Succ1]| is negligible.

To prove Theorem 2, it remains to show that |Pr[Succ1] − 1/2| is negligi-
ble. However, it is straightforward from the definition of the second-level CCA
security of the VPRE scheme (in the sense of Definition 2). In particular, a
second-level CCA adversary (in the sense of Definition 2) can simulate Game 1
perfectly for A, and such adversary has advantage exactly |Pr[Succ1]−1/2|. �

4 A Concrete VPRE Scheme

In this section, we show a concrete VPRE scheme. Specifically, our VPRE scheme
is a simple extension of the PRE scheme by Hanaoka et al. (which we denoted
by HKK+) [11], and we show how to implement the re-encryption verification
algorithm for it.

Intuition for Realizing Re-encryption Verification. Consider a situation
in which a second-level ciphertext cA for user A is re-encrypted into a first-level
ciphertext ĉB for user B. In order to achieve PRE with re-encryption verifiability,
one promising approach is to design a PRE scheme with the following properties:
(1) When re-encrypting cA into ĉB, cA is somehow embedded into ĉB in such
a way that when user B decrypts ĉB , the embedded second-level ciphertext cA
can be extracted. (2) In re-encryption verification (between ĉB and a candidate
second-level ciphertext c′

A) user B checks whether an extracted ciphertext cA
is equal to the given candidate c′

A. We observe that the HKK+ scheme has the
desirable properties, and this is the reason why we focus on this PRE scheme.
We next explain how we extend it into a VPRE scheme.

Extending the Hanaoka et al. PRE [11] to VPRE. Recall that the PRE
scheme HKK+ is a generic construction from a re-splittable TPKE scheme, an
(ordinary) PKE scheme, and a signature scheme. We observe that a re-encrypted
ciphertext (i.e. first-level ciphertext) ĉ of the HKK+ scheme contains the infor-
mation on an original ciphertext (i.e. second-level ciphertext) c which is just a
ciphertext of the underlying TPKE scheme. Our re-encryption verification algo-
rithm is thus fairly simple: On input (pki, skj , c, ĉ), it executes the first-level
decryption algorithm of the HKK+ scheme partway to recover the “embedded”
second-level ciphertext c′, and checks whether c = c′ holds.

Now, we formally describe the VPRE scheme, which we denote eHKK+

(which stands for “extended HKK+”). Let (TKG, TEnc, TSplit, TShDec, TShVer,
TCom) be a re-splittable TPKE scheme, (PKG, PEnc, PDec) be a PKE scheme,
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and (SKG, Sign, SVer) be a signature scheme. Using these as building blocks, the
VPRE scheme eHKK+ is constructed as in Fig. 1.

Security. We show that eHKK+ satisfies the three kinds of security of VPRE.

Theorem 3. If the PKE scheme is CCA secure, the signature scheme is strongly
unforgeable, and the re-splittable TPKE scheme has decryption consistency, then
the VPRE scheme eHKK+ satisfies soundness.

Intuition. Due to the lack of space, we omit the security proof. Here, we give
an intuition of the security proof of soundness. Recall that the third winning
condition of an adversary A who outputs a pair (pkj , ĉ∗) in the soundness game
is different depending on whether A has obtained a re-encryption key rki∗→j by
making a RKG query of the form (pki∗ , pkj). If A has issued such a RKG query,
then the condition is “Dec1(skj , ĉ∗) 	= m∗”, where m∗ is the challenge message,
while if A has not done so, then the condition is “Dec1(skj , ĉ∗) 	= ⊥”.

We will show that the probability of the adversary A coming up with the pair
(pkj , ĉ∗) in the latter case is negligible, mainly due to the strong unforgeability
of the signature scheme. Intuitively this can be shown because if A can output
(pkj , ĉ∗) such that Dec1(skj , ĉ∗) 	= ⊥ without using a re-encryption key rki∗→j ,
(among other things) A must have generated a forged signature in the plaintext
of ĉ∗, without relying on RKG queries. However, note that A may indirectly
obtain rki∗→j through a REnc query of the form (pki∗ , pkj , c) where c is some
second-level ciphertext. Therefore, we also need to use the CCA security of the
PKE scheme to guarantee that REnc queries of the above form do not help A to
indirectly obtain rki∗→j .

To show that the probability of the adversary A coming up with a cipher-
text ĉ∗ such that Dec1(skj , ĉ∗) 	= m∗ in case A has obtained rki∗→j (via a RKG
query), we will use the decryption consistency of the re-splittable TPKE scheme.
In doing so, as above we have to use the CCA security of the PKE scheme to
guarantee that REnc queries do not help, and also to guarantee that the informa-
tion of tski∗.1 does not leak from a re-encryption key rki∗→j that is obtained by
A through the RKG query that A issued. Finally, note that the decryption con-
sistency is guaranteed only under an honestly generated verification key tvki∗ ,
but A may have generated the ciphertext ĉ∗ in such a way that tvki∗ is generated
maliciously by A. To prevent it, we will again rely on the strong unforgeability
of the signature scheme, which ensures that the only way to generate a valid re-
encrypted ciphertext is to use a re-encryption key which is generated honestly
(and thus tvki∗ is also honestly generated).

Theorem 4. If the PKE scheme is CCA secure, the signature scheme is strongly
unforgeable, and the re-splittable TPKE scheme is CCA secure, then the VPRE
scheme eHKK+ is second-level CCA secure.

Intuition. Due to the lack of space, we omit the security proof. Here, we give
an intuition of the security proof of second-level CCA security. The proof fol-
lows closely to the above proof of soundness, and the original security proof
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KG(1k) :
(tsk, tpk) ← TKG(1k, 2, 2)

(d̂k, p̂k) ← PKG(1k)
(dk, pk) ← PKG(1k)
(sk, vk) ← SKG(1k)

sk ← (tsk, d̂k, dk, sk)

pk ← (tpk, p̂k, pk, vk)
Return (sk, pk).

Enc(pki, m) :

(tpki, p̂ki, pki, vki) ← pki
Return c ← TEnc(tpki, m).

RKG(ski, pkj) :

(tski, d̂ki, dki, ski) ← ski
(tpkj , p̂kj , pkj , vkj) ← pkj
(tski.1, tski.2, tvki) ← TSplit(tski)
ψ ← PEnc(pkj , tski.1)
σ ← Sign(ski, 〈ψ‖tvki‖pki‖pkj〉)
rki→j ← (pki, pkj , tski.2, ψ, tvki, σ)
Return rki→j .

Dec1(skj , ĉj) :

(tskj , d̂kj , dkj , skj) ← skj
M̂ ← PDec(d̂kj , ĉj)

If M̂ = ⊥ then return ⊥.

〈pk′
i‖pk′

j‖ci‖μ2‖ψ‖tvki‖σ〉 ← M̂
If pk′

j �= pkj then return ⊥.

(tpki, p̂ki, pki, vki) ← pk′
i

If SVer(vki, 〈ψ‖tvki‖pk′
i‖pk′

j〉, σ) = ⊥
then return ⊥.

tski.1 ← PDec(dkj , ψ)
If tski.1 = ⊥ then return ⊥.
μ1 ← TShDec(tpki, tski.1, ci)
If μ1 = ⊥ then return ⊥.
If TShVer(tpki, tvki, ci, 2, μ2) = ⊥

then return ⊥.
m ← TCom(tpki, tvki, ci, {μ1, μ2})
Return m.

REnc(rki→j , ci) :
(pki, pkj , tski.2, ψ, tvki, σ) ← rki→j

(tpki, p̂ki, pki, vki) ← pki
If SVer(vki, 〈ψ‖tvki||pki‖pkj〉, σ) = ⊥

then return ⊥.

(tpkj , p̂kj , pkj , vkj) ← pkj
μ2 ← TShDec(tpki, tski.2, ci)
If μ2 = ⊥ then return ⊥.

M̂ ← 〈pki‖pkj‖ci‖μ2‖ψ‖tvki‖σ〉
Return ĉj ← PEnc(p̂kj , M̂).

Dec2(ski, c) :

(tpki, p̂ki, pki, vki) ← pki
(tski, d̂ki, dki, ski) ← ski
(tski.1, tski.2, tvki) ← TSplit(tski)
μ1 ← TShDec(tpki, tski.1, c)
If μ1 = ⊥ then return ⊥.
μ2 ← TShDec(tpki, tski.2, c)
If μ2 = ⊥ then return ⊥.
m ← TCom(tpki, tvki, c, {μ1, μ2})
Return m.

REncVer(pki, skj , c
′
i, ĉj) :

(tpki, p̂ki, pki, vki) ← pki
(tskj , d̂kj , dkj , skj) ← skj
M̂ ← PDec(d̂kj , ĉj)

If M̂ = ⊥ then return ⊥.

〈pk′
i‖pk′

j‖ci‖μ2‖ψ‖tvki‖σ〉 ← M̂
If (pk′

i, pk
′
j) �= (pki, pkj) then return ⊥.

If SVer(vki, 〈ψ‖tvki‖pk′
i‖pk′

j〉, σ) = ⊥
then return ⊥.

tski.1 ← PDec(dkj , ψ)
If tski.1 = ⊥ then return ⊥.
μ1 ← TShDec(tpki, tski.1, ci)
If μ1 = ⊥ then return ⊥.
If TShVer(tpki, tvki, ci, 2, μ2) = ⊥

then return ⊥.
If c′

i = ci then return � else return ⊥.

Fig. 1. The VPRE scheme eHKK+ based on the PRE scheme by Hanaoka et al. [11].
Since Dec2 described above needs to run TSplit, it is probabilistic. However, it can be
made deterministic by running (tsk1, tsk2) ← TSplit(tsk) in KG (instead of running it
in Dec2) and including (tsk1, tsk2) into sk. We do not take this approach in the above
so that the description is kept close to the original one shown in [11].
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of the HKK+ scheme [11]. More specifically, the difference is that we calculate
the (differences of the) probabilities of A succeeding in guessing the challenge
bit (instead of the event that an adversary succeeds in breaking the conditions
of soundness). In the final game, we can show that there exists a PPT CCA
adversary B against the re-splittable TPKE scheme such that its advantage
AdvCCA-TPKE(B,n) (k) is exactly the difference between the success probability of A in
the final game and 1/2.

Theorem 5. If the PKE scheme is CCA secure and the re-splittable TPKE
scheme has strong smoothness, then the VPRE scheme eHKK+ is first-level CCA
secure.

Intuition. Due to the lack of space, we omit the security proof. Here, we give
an intuition of the security proof of first-level CCA security. As shown in [11], a
first-level ciphertext in the eHKK+ scheme is wrapped entirely by the underlying
PKE scheme (regarding p̂k), and thus its CCA security naturally leads to first-
level CCA security, if it were not for re-encryption verification queries.

The main difference from the proof in [11] is that we need the strong smooth-
ness of the underlying re-splittable TPKE scheme, which was not necessary in
the original proof of [11], in order to deal with REncVer queries. More specifi-
cally, recall that in the first-level CCA security game, an adversary A can choose
a key pair (skA, pkA) for the second-level encryption of the challenge query. In
particular, A can know tskA. Now, suppose that this TPKE scheme has a “weak
plaintext” mw in the sense that it is easy to find given tskA, and its encryption
cw ← TEnc(tpkA,mw) is easy to guess. (Such property does not contradict the
CCA security of the TPKE scheme, because mw could be hard to find without
tskA.) Then A can choose such mw as one of the challenge plaintexts, submit
it with (skA, pkA) as a challenge query, and obtain the challenge ciphertext ĉ∗.
Then A by itself calculates the “easy-to-guess” ciphertext cw corresponding to
mw, and submits a REncVer query (pkA, cw, ĉ∗), which by definition reveals the
challenge bit (because its answer essentially tells whether “ĉ∗ is a re-encryption
of cw”). However, if the underlying re-splittable TPKE scheme is guaranteed to
have strong smoothness, such weak plaintexts cannot exist, and hence we can
conclude that REncVer queries do not help A.
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Abstract. Public key cryptographic algorithms are typically based on
group exponentiation algorithms where the exponent is unknown to an
adversary. A collision attack applied to an instance of an exponentiation
is typically where an adversary seeks to determine whether two opera-
tions in the exponentiation have the same input. In this paper, we extend
this to an adversary who seeks to determine whether the output of one
operation is used as the input to another. We describe implementations
of these attacks applied to a 192-bit scalar multiplication over an ellip-
tic curve that only require a single power consumption trace to succeed
with a high probability. Moreover, our attacks do not require any knowl-
edge of the input to the exponentiation algorithm. These attacks would,
therefore, be applicable to algorithms, such as EC-DSA, where an expo-
nent is ephemeral, or to implementations where an exponent is blinded.
We then demonstrate that a side-channel resistant implementation of a
group exponentiation algorithm will require countermeasures that intro-
duce enough noise such that an attack is not practical, as algorithmic
countermeasures are not possible. (The work described in this paper was
conducted when the last two authors were part of the Cryptography
Group at the University of Bristol, United Kingdom.)

1 Introduction

It has been shown in the literature that an adversary can potentially derive a
private key used to generate an RSA [1] or EC-DSA [2] signature by observ-
ing the power consumption during the computation of a näıvely implemented
group exponentiation algorithm. The attack, defined by Kocher et al. [3], tar-
gets implementations of group multiplication and squaring operations used in
the binary exponentiation algorithm. This vulnerability was present because the
c© Springer International Publishing Switzerland 2015
K. Nyberg (ed.): CT-RSA 2015, LNCS 9048, pp. 431–448, 2015.
DOI: 10.1007/978-3-319-16715-2 23
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instantaneous power consumption during the computation of a group squaring
operation was different to that of a group multiplication, and could, therefore,
be distinguished by simply inspecting a power consumption trace. Many group
exponentiation algorithms have since been proposed in the literature, designed
such that an adversary cannot implement side-channel attacks by inspecting a
power consumption trace (see [4] for a survey).

Typically, one would assume that blinding is used such that the input to an
exponentiation algorithm is not known to an adversary. Walter [5] observed that
one could potentially derive the bits of an exponent by comparing two parts of
a consumption trace corresponding to two operations in a group exponentiation
and described some simulations. Amiel and Feix [6], and Kim et al. [7] described
some attacks and implementations of this strategy applied to the BRIP expo-
nentiation algorithm [8]. A similar attack has been documented by Witteman
et al. [9] applicable to Coron’s double-and-add-always exponentiation algorithm,
and Kim et al. [7] also detail how one could apply such an attack to the Mont-
gomery ladder [10,11].

A typical requirement for the implementations of the attacks described in the
literature is that an adversary needs numerous traces with the same input and
same exponent to derive an unknown exponent using collisions [6–9,12]. That is,
an adversary will take numerous acquisitions and reduce noise in the acquired
power consumption traces by computing a mean trace. Clavier et al. [13] defined
attacks where one would only require one trace to succeed, although no practical
results are given. In this paper we build on the work defined by Clavier et al.
and show that these are attacks are practical.

One feature common to the attacks mentioned in the literature is that attacks
are based on determining whether the input to two operations is the same. Herein,
we extend this to consider an adversary who is able to determine whether the out-
put of one operation is used as the input to another operation, thus allowing an
adversary to apply collision attacks to more algorithms, and overcoming the coun-
termeasures described by Kim et al. [7] to protect the Montgomery ladder.

Given that our practical work justifies our extended adversarial model for
collision attacks, we define attacks that could be applied to exponentiation algo-
rithms that are considered to be resistant to collision attacks. We prove that it
is not possible to define a countermeasure that prevents collision attacks being
applied to an addition chain-based exponentiation algorithm.

2 Preliminaries

In this section, we provide some background and notation that we will refer to
in later sections.

2.1 Addition Chain-based Exponentiation

Addition chain-based exponentiation methods are used to find a sequence of
elements, in a given multiplicative group G, such that the first number is 1G
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and the last is sχ for some arbitrary s ∈ G and χ ∈ Z>0. Each member of the
sequence is the product of two previous members of the sequence. More formally,

Definition 1. An addition chain of length τ in group G for a group element
s ∈ G is a sequence of group elements (ω0, ω1, ω2, . . . , ωτ ) such that ω0 = 1G,
ω1 = s and ωk = ωi ⊗ ωj, 0 ≤ i ≤ j < k ≤ τ , and ⊗ is the group operation. The
values of i and j are chosen such that ωk is a chosen power of ω1.

Kocher et al. [3] demonstrated that under some circumstances, it is possible to
distinguish a multiplication from a squaring operation using some side-channel,
thus revealing all or part of an exponent. To counter this, many highly regular
exponentiation algorithms have been proposed in the literature [11,14]. We define
highly regular as:

Definition 2. A group G exponentiation algorithm is defined as highly regular
if it consists of an operation on g ∈ G that is composed of g ⊗ · · · ⊗ g ⊗ g, where
⊗ is the group operation, g occurs κ ∈ Z>0 times, and κ is fixed for an exponent
of a given bit length.

2.2 Elliptic Curves

Let Fq be a finite field. An elliptic curve E over Fq consists of points (x, y), with
x, y in Fq, that satisfy the full Weierstraß equation

E : y2 + α1 x y + α3 y = x3 + α2 x2 + α4 x + α6

with αi ∈ Fq (1 ≤ i ≤ 6), and the point at infinity denoted as OOO. The set E(Fq)
is defined as

E(Fq) = {(x, y) ∈ E |x, y ∈ Fq} ∪ {OOO} ,

where E(Fq) forms an Abelian group under the chord-and-tangent rule and OOO is
the identity element.

The addition of two points PPP = (x1, y1) and QQQ = (x2, y2) with PPP �= −QQQ is
given by PPP + QQQ = (x3, y3), where

x3 = λ2 + α1 λ − α2 − x1 − x2, y3 = (x1 − x3)λ − y1 − α1 x3 − α3 (1)

with λ =

⎧
⎪⎨

⎪⎩

y1 − y2
x1 − x2

if PPP �= QQQ ,

3x1
2 + 2α2 x1 + α4 − α1 y1
2 y1 + α1 x1 + α3

if PPP = QQQ .

Provided that the characteristic of the field Fq is not 2 or 3, we can take α1 =
α2 = α3 = 0. In the following, we will also assume that q = p is prime. We define
the short Weierstraß form over prime field Fp by the equation

y2 = x3 + α x + b . (2)
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Note that the slope λ in the doubling then becomes λ = (3x1
2+α)/(2 y1), which

can be rewritten as 3(x1 − 1)(x1 + 1)/(2 y1) when α = −3.
The scalar multiplication of a given point is equivalent to an addition chain-

based exponentiation and is a fundamental operation in cryptographic algo-
rithms that use elliptic curve arithmetic, i.e., kPPP for some integer k < |E|. We
concentrate on the short Weierstraß form since it is used in standards, such as
the FIPS 186-3 [2], WTLS [15], and ANSI X9.62 [16].

3 Previous Work

One would typically assume that an input to a group exponentiation used in
a cryptographic algorithm is blinded (or ephemeral) such that the input to an
exponentiation algorithm is not known to an adversary. Walter [5] observed that
one could potentially derive the bits of an exponent by comparing two parts of
the same power consumption trace corresponding to two operations in a group
exponentiation without requiring the input. However, Walter only presented
results based on simulations.

Amiel and Feix [6], and Kim et al. [7] reported some attacks implementing a
collision attack strategy proposed by Okeya and Sakura [12]. They explicated a
collision attack on the BRIP exponentiation algorithm [8]. They observed that
in the i-th round, the first operation operates on the same value as the last
operation in round (i − 1) depending on the value of bits of the exponent. An
adversary can then compute the correlation between two power consumption
traces taken while computing these operations to determine if the same value
was used. A similar attack has been described by Witteman et al. [9] appli-
cable to Coron’s double-and-add-always exponentiation algorithm [17]. Witte-
man et al. demonstrated that this attack works on an ASIC implementation.
Kim et al. [7] also determined how one could apply such an attack to the
Montgomery ladder [10,11] and how one could prevent these collision attacks
by modifying the algorithm (We show how this countermeasure can be over-
come in Section 4.5). The practical results described in the literature require
numerous acquisitions to be taken to reduce noise to the point where an attack
will function.

Clavier et al. have outlined how one could implement these attacks using
only one trace [13], although only simulated attacks are described. Recent work
by Bauer et al. has also detailed how one could apply such collision attacks to
implementations of scalar multiplications over elliptic curves [18]. Again, only
simulated results are given. In this paper, we describe how to implement such
attacks using a single trace on on both software and hardware platforms.

4 Attacking Addition Chain-based Exponentiation
Algorithms

In this section, we describe how one can attack group exponentiation algorithms
using collisions between group operations. For each attack, we shall assume that
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an adversary is obliged to attack individual traces independently rather than
build up knowledge from numerous traces. This represents a significant advan-
tage over the implementations of collision attacks described in the literature that
typically require numerous traces to succeed [7,9].

Two principle strategies appear in the literature that one could use to protect
a group exponentiation algorithm from side-channel analysis.

1. The first countermeasure to protect a group exponentiation algorithm was
proposed by Coron [17], where dummy operations are included to provide a
regular structure to a group exponentiation algorithm.

2. A set of highly-regular algorithms have been defined where a group expo-
nentiation algorithm is broken up into indistinguishable atomic operations,
as first described by Chevallier-Mames et al. [19]. In this paper, we consider
unified formulae defined by Brier and Joye [20] as our instance of indistin-
guishable atomic operations.

We consider one example of each of these strategies to define an attack that
an adversary could use, which are applicable to many other algorithms defined in
the literature. We also address the Montgomery ladder [10,11], since the version
described resists all the collision-based attacks provided in the literature, and
describe a novel attack against this version.

In analyzing an implementation of a group exponentiation, the aim of an
adversary is to produce a hypothesis that will enable the exponent to be derived
in a practical amount of time. This is determined to be less than 254 operations,
based on the boundary set for block ciphers by Biryukov et al. [21]. It can only be
considered to be an approximate guide because public key algorithms typically
require significantly more time to compute than a block cipher. We also define
an attack of time complexity less than 240 to be trivial (while not strictly trivial,
this represents an arbitrary threshold for what could be achieved with modest
resources). We note that these attacks typically cannot determine the first and
last bit treated by an exponentiation algorithm, which also impacts the time
complexity of the subsequent analysis.

The expected number of operations can be determined using Stinson’s algo-
rithm [22], where t-bits have been incorrectly determined in an n-bit hypothesis
leads to the scalar in time complexity O

(
n

∑�t/2�
i=0

(
n/2

i

))
(see Tunstall and Joye

for details [23]). Hence, we define t ≤ 21 to be a practical attack and t ≤ 13 to
be a trivial attack.

4.1 Attack Platforms

We focus on implementations of a scalar multiplication over elliptic curves
because of their use in standards, as described in Section 2.2. Specifically, we
discuss attacks on the P192 curve defined in the FIPS 186-3 standard [2]. In
each implementation, we use projective coordinates [24] where the base point is
blinded by replacing the z-coordinate with a 192-bit random value and modifying
the x and y-coordinates as required.
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For each of three chosen exponentiation algorithms, we describe attack strate-
gies for attacking implementations on two platforms. The purpose of these imple-
mentations is to demonstrate the feasibility of the attack on both software and
hardware platforms.

The first platform we considered an embedded software implementation on an
ARM7TDMI microprocessor, using homogenous projective coordinates and the
point addition algorithm proposed by Izu and Takagi [25]. The implementation
was based on a series of functions for manipulating large numbers written in
the ARM7 assembly language. The multiplication instructions were used such
that no change in the execution time would occur for different inputs by using
algorithms defined by Großschäedl et al. [26].

The power consumption acquisitions were taken with the microprocessor
clocked at 7.37 MHz. The entire scalar multiplication generation was recorded
at 125 MS/s and then filtered using a low-pass filter with a corner frequency
set to 7.37 MHz. Experimentation while conducting the attacks described below
determined that this improved the success rate of any subsequent side-channel
analysis.

The second platform was a VHDL implementation on a SASEBO-G FPGA
board [27], using a Montgomery multiplier based on the CIOS algorithm [28] con-
taining a single 32-bit single-precision multiplier. Homogenous projective coor-
dinates were used in conjunction with the point addition algorithm proposed
by Cohen et al. [29], and the doubling algorithm proposed by Bernstein and
Lange [30]. The underlying architecture is similar to that presented in [31], with
a single ALU containing a modular Montgomery multiplication unit and an addi-
tion/subtraction unit, controlled via ROM programmed during synthesis. The
power consumption acquisitions were taken with the FPGA clocked at 24 MHz.
The entire scalar multiplication algorithm was recorded at 250 MS/s and filtered
with both a high-pass filter to remove a DC drift in the traces, and a low-pass
filter to remove high frequency noise.

4.2 Implementing the Attacks

In each case described below, we divide the acquired power consumption traces
into smaller traces corresponding to individual operations. That is, if we consider
a trace T , we can describe the trace as a series of m subtraces

T = {O1, O2, O3, . . . , Om−1, Om} ,

where the exponentiation algorithm consists of m group operations. That is, Oi

for i ∈ {1, . . . , m} will be the power consumption during the i-th group operation
in trace T . A group operation is defined as either an addition, a doubling, or
a field operation and it should be clear from the context to which we refer. A
description of how one achieves this and a description of an attack using these
subtraces as a set of traces is given by Clavier et al. [32].

To give an example of how one can extract these subtraces, Figure 1 shows
a portion of two power consumption traces, each of which show nine field mul-
tiplications visible as a repeating pattern.
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Fig. 1. Example power consumption trace showing the individual field multiplication
operations in a group operation for the ARM7 (left) and Virtex-II (right) implemen-
tations

The attacks described in the literature typically require an adversary to take
a certain number of traces and generate a mean trace by computing the mean
power consumption at each point in the set of traces [7,9]. This strategy gives
a trace that is representative of the power consumption without high frequency
noise, since noise will be removed as one computes the mean. In our implemen-
tations, we took a different strategy.

We took all the subtraces {O1, O2, O3, . . . , Om−1, Om} and computed a mean
subtrace Ô. This mean trace was then subtracted point-by-point from each ele-
ment in {O1, O2, O3, . . . , Om−1, Om} to give {O′

1, O
′
2, O

′
3, . . . , O

′
m−1, O

′
m}. This

has the effect of removing instruction dependent power consumption from the
resulting set of subtraces, leaving noise and variation caused by the manipulated
data.

We discuss our attacks using Pearson’s correlation coefficient as a means of
detecting collisions, and we also provide results for using the Euclidean distance.
A variety of methods are present in the literature, for example, Bauer et al.
present results based on simulations using mutual information [18]. The possible
choices are too numerous to list all of them, but similar results should be possible.

4.3 Highly-Regular Right-to-Left Scalar Multiplication

In the additive group formed over an elliptic curve, a group exponentiation has
been defined by Joye that only uses additions [14] as shown in Algorithm 1. An
attack can be defined as a straightforward variant of the attacks described by
Kim et al. [7] and Witteman et al. [9]. We note that, in one loop of Algorithm 1,
RRR0 remains the same when ki+1 = 0 and RRR1 remains the same when ki+1 = 1.
That is, one can observe a collision between the second addition in the loop
treating the bit ki and the first addition in the next loop treating the bit ki+1

where ki+1=1.
Hence, we wish to compare the power consumption during the second addi-

tion of a given round with the first addition of the next round. If we consider the
u-point addition traces ai that make up the power consumption trace A taken
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Algorithm 1. Joye’s Add-Only Scalar Multiplication [14]
Input: PPP a point on elliptic curve E , an n-bit scalar k = (kn−1, kn−2, . . . , k0)2
Output: QQQ = kPPP

1 RRR0 ← OOO ; RRR1 ← PPP ; RRR2 ← PPP ;
2 for i ← 0 to n − 1 do
3 RRR1−ki ← RRR1−ki + RRR2 ;
4 RRR2 ← RRR0 + RRR1 ;

5 end
6 return RRR0

during the computation of a n-bit scalar multiplication as defined in Algorithm 1,
then

A = {a1,1 . . . a1,u , a2,1 . . . a2,u , . . . , am,1 . . . am,u}
using the notation above O′

i = ai,1 . . . ai,u − â1 . . . âu = āi for all 1 ≤ i < m, i.e.,
each āi is a trace consisting of u points with the mean subtracted. For a n-bit
scaler, m is equal to 2n since there are always two point additions per round.

To locate the points in the group addition trace where collisions would occur,
one can compute a trace where we assume that a collision always occurs at every
possible location, i.e., we assume that the input of the second addition in round
� is always equal to the first addition in round � + 1. This gives

C = ρ((ā2, ā4, . . . , ām−2) , (ā3, ā5, . . . , ām−1)) ,

where ρ computes Pearson’s correlation coefficient for each of the u points in
the group addition trace independently. The correlation trace C consisting of u
points will show a significant correlation, where a collision could be detected if
present. That is, enough of (āi, āi+1) will collide, without knowing which, that it
will be visible in a correlation trace to find the relevant points in time, which are
then used to find the actual collisions. An example trace is shown in Figure 2.

Fig. 2. An example correlation trace showing the correlation across one operation
assuming that a collision occurs in every loop of the exponentiation. The example
is generated from one power consumption trace taken while a Virtex-II FPGA was
computing an exponentiation using Joye’s add-only exponentiation algorithm.
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A threshold can then be chosen where all points that have a magnitude above
this threshold have their index noted, where the choice of threshold depends on
the platform one is attacking, which must be decided on a case-by-case basis.
Extracting these points, one can form a trace from v-point subtraces by con-
catenating the points at the selected indices from each āi. For example, we can
denote:

A′ = {a′
1,1 . . . a′

1,v, a′
2,1 . . . a′

2,v, . . . , a′
m,1 . . . a′

m,v} = {ā′
1, ā

′
2, . . . , ā

′
m} .

This trace is then used to determine whether a collision occurs between individ-
ual operations. For example, using Pearson’s correlation coefficient to detect a
collision, one computes a trace

D = d1 . . . dn−1 = {ρ(ā′
2, ā

′
3) , ρ(ā′

4, ā
′
5) , . . . , ρ(ā′

m−2, ā
′
m−1)} .

The correlation coefficients in D can then be converted to hypothetical values
for bits of the exponent by observing whether they fall above or below the mean
correlation across all di for i ∈ {1, . . . , n − 1}. Hence, the value of di will give a
hypothesis for the i-th bit of the exponent for i ∈ {1, . . . , n − 1}.

An attack, as described above, was applied independently to each trace in a set
of 1000, taken while an ARM7 microprocessor was computing a scalar multipli-
cation, and 8000 taken while a SASEBO board was computing a scalar multipli-
cation using Joye’s add-only exponentiation algorithm. The only difference in the
way that the attack was applied was in the way that the threshold used to select
points from C is chosen. In the application to the SASEBO board, the threshold
was set to the mean correlation of c1 . . . cu. This approach could not be taken with
the implementation of the attack applied to the ARM7 implementation because
of the number of points in each trace. An arbitrarily chosen threshold of 0.55 was
chosen to select the majority of peaks in the observed traces.

In both cases we studied, an attack can be defined where an adversary can
deduce the exponent with a high probability. Indeed, the majority of the values
for the time complexity fall well below our defined threshold for a trivial attack.
However, the correlation coefficient is less effective than the Euclidean distance.
The results are summarized in Table 1 at the end of this section.

4.4 Scalar Multiplication with Dummy Operations

One of the first countermeasures defined to prevent the identification of group
operations in an instance of a group exponentiation algorithm was proposed
by Coron [17]. In the additive group formed over an elliptic curve, the resulting
algorithm is shown in Algorithm 2. Witteman et al. [9] described an attack based
on the observation that in the i-th round, the first operation operates on the
same value as the last operation in round (i − 1) if the output of this operation
is discarded under the assumption that the operation is the same. However,
their attack was applied to exponentiation in Zn. When implementing a scalar
multiplication, one would use different operations to compute an addition and
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Algorithm 2. Coron’s Double-and-Add-Always Algorithm [17]
Input: PPP a point on elliptic curve E , an n-bit scalar k = (kn−1, kn−2, . . . , k0)2
Output: QQQ = kPPP

1 RRR0 ← PPP ; RRR1 ← PPP ;
2 for i ← n − 2 down to 0 do
3 RRR0 ← 2RRR0 ;
4 RRR1−ki ← RRR0 + PPP ;

5 end
6 return RRR0

a doubling operation, making a direct comparison problematic. In this section,
we show how one could still implement such an attack.

We consider a trace T made up of subtraces corresponding to doubling oper-
ations δi and additions αi as follows:

T = {δ1, α1, δ2, α2 . . . , δn−1, αn−1} ,

where a doubling operation δi and addition αi for i ∈ {1, . . . , n − 1} consist of f
and h field multiplications, respectively. We assume that the power consumption
taken during one field multiplication consists of u points. One can then compare
all of the field multiplications in a doubling operation with all of those in the
following addition in a manner similar to that described in Section 4.3, i.e.,
initially assuming that a collision occurs in every round in order to find the
points of interest. This gives the f × h matrix

C =

⎛

⎜
⎜
⎜
⎝

c̄1,1 c̄1,2 . . . c̄1,h

c̄2,1 c̄2,2 . . . c̄2,h

...
...

. . .
...

c̄f,1 c̄f,2 . . . c̄f,h

⎞

⎟
⎟
⎟
⎠

where each c̄i,j , for 1 ≤ i ≤ f and 1 ≤ j ≤ h, is a u-point trace. For convenience,
only the field multiplications were considered, with the other field operations
discarded.

Two different approaches of using this matrix were explored. In applying
the collision attack to traces taken while an ARM7 microprocessor was comput-
ing a scalar multiplication using Coron’s dummy-and-add-always algorithm, we
noted that a significant number of operations that should have no linear relation
produced significant correlation coefficients. We, therefore, computed a second
matrix where no collisions were possible, i.e., by randomly selecting operations to
compare. This matrix was then subtracted from the first matrix point-by-point
to remove spurious peaks in the correlation matrix.

As for the attack described in Section 4.3, an arbitrary threshold set to 0.55
was used to determine which points from which operations were selected. As
previously, if there are v indices that are selected, then we form one trace from
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the points indicated on one dimension by extracting the relevant points from
each subtrace in T . Then, as in Section 4.3, we define

A′ = {a′
1,1 . . . a′

1,v , a′
2,1 . . . a′

2,v , . . . , a′
2 (n−1),1 . . . a′

2 (n−1),v}
= {ā′

1 , ā′
2 , . . . , ā′

2 (n−1)} ,

from points indicated in one dimension and

B′ = {b′
1,1 . . . b′

1,v , b′
2,1 . . . b′

2,v , . . . , b′
2 (n−1),1 . . . b′

2 (n−1),v}
= {b̄′

1 , b̄′
2 , . . . , b̄′

2 (n−1)} ,

from the other. That is, computing ρ(ā′
i , b̄′

i) will compute the correlation coeffi-
cient between all the combinations of points indicated by C.

As previously mentioned, one can use the indicated points to generate a trace
of correlation coefficients,

D = d1 . . . dn−1 = {ρ(ā′
2 , b̄′

3) , ρ(ā′
4 , b̄′

5) , . . . , ρ(ā′
2n−4 , b̄′

2n−3)}

The mean of these coefficients was used to determine whether a given bit of the
exponent is set to 1 or 0, and hence generate a hypothesis for the exponent.
The attack was repeated on 1000 power consumption traces as before, with the
results summarized in Table 1.

In applying the collision attack to traces taken while a SASEBO board was
computing a scalar multiplication using Coron’s dummy-and-add-always algo-
rithm, we generated traces by selecting them from matrix C given our knowledge
of the algorithms used to compute additions and doubling operations. That is,
we concatenated the subtraces of interest from C that should allow a collision
to be determined. Given the algorithms used, six field multiplications were com-
pared to allow collisions to be detected, and the mean value of the concatenated
subtraces was used as a threshold to extract the points that would be used to
generate A′ and B′. These traces were then used to generate a series of correla-
tion coefficients D to form hypotheses on the bits of the exponent as described
in Section 4.3. The attack was repeated on 8000 power consumption traces, and
the results are summarized in Table 1 at the end of this section.

Remark 1. The ARM7 implementation can be attacked readily as the median
case is well below our defined threshold for a trivial attack. Contrary to the
previous attack, the correlation coefficient provides a better method of detect-
ing collision than using the Euclidean distance when applied to our SASEBO
implementation. An adversary using the correlation coefficient would expect to
succeed in an attack after examining 280 traces, where each exponent is distinct,
to produce a result that can be analyzed with a trivial complexity. That is, if
the adversary expended a maximum effort of 240 operations per trace a valid
attack will have an overall time complexity of 248 before the key is expected to
be broken.
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4.5 Montgomery Ladder

Another variant of addition chain-based exponentiation is the Montgomery lad-
der [10,11], as shown in Algorithm 3. A method of attacking the Montgomery
ladder has been described by Kim et al. [7]. However, it requires that Line 3 in
Algorithm 3 to be

RRR¬ki
= RRR0 + RRR1 .

This is because they used the collision between input operands of the addition
and doubling operation. In each loop, their implementation computes RRR0 + RRR1

and RRR0 +RRR0 when a bit of the scalar is 0, and RRR0 +RRR1 and RRR1 +RRR1 when a bit
of the scalar is 1. That is, the second operands are different when a given bit of
a scalar is equal to 0 and equal otherwise.

Algorithm 3. Montgomery Ladder [10,11]
Input: PPP a point on elliptic curve E , an n-bit scalar k = (kn−1, kn−2, . . . , k0)2
Output: QQQ = kPPP

1 RRR0 ← OOO ; RRR1 ← PPP ;
2 for i = n − 1 down to 0 do
3 RRR¬ki ← RRRki + RRR¬ki ;
4 RRRki ← 2RRRki ;

5 end
6 return RRR0 ;

This attack described by Kim et al. [7] cannot be applied to Algorithm 3
since Line 3 is

RRR¬ki
← RRRki

+ RRR¬ki
.

However, one can still observe collisions between variables:

– In Algorithm 3, if the bits treated in two consecutive loops are the same,
then the output of the operation in Line 4 in the first loop will be the input
to the operation in Line 4 in the second loop.

– In Algorithm 3, if the bits treated in two consecutive loops are different,
then the output of the operation in Line 3 in the first loop will be the input
to the operation in Line 4 in the second loop.

An attack is not straightforward since one cannot compare field operations
directly. This is because one wishes to compare the input of one operation with
the output of another operation. We describe how one can achieve this below.

We consider a trace T made up of subtraces corresponding to doubling oper-
ations Di and additions Ai as follows:

T = {α1, δ1, α2, δ2, . . . , αn−1, δn−1} .

We wish to compare the output of a doubling operations with the input of
the subsequent addition and doubling operations. That is, we wish to detect
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collisions which allow us to determine if two consecutive bits of the exponent are
the same.

Then, to evaluate whether a collision occurs, as indicated by our first observa-
tion above, we aim to compare the power consumption during the computation
of the output of an addition with the power consumption during the processing of
the input to a doubling operation. We shall assume that the power consumption
corresponding to a group doubling and a group addition operation consists of ud

and ua points, respectively. We determine a matrix of correlation coefficients C

C =

⎛

⎜
⎜
⎜
⎝

c̄1,1 c̄1,2 . . . c̄1,ua

c̄2,1 c̄2,2 . . . c̄2,ua

...
...

. . .
...

c̄ud,1 c̄ud,2 . . . c̄ud,ua

⎞

⎟
⎟
⎟
⎠

where c̄i,j is the correlation of the i-th point from the doubling operation with
the j-th point from the addition across, 1 ≤ i ≤ ud and 1 ≤ j ≤ ua, comprising
all the pairs of operations that could produce a collision.

As with the attack described in Section 4.4, the correlation coefficients gen-
erated in the matrix contained many spurious, yet seemingly significant, correla-
tion coefficients. A second matrix was again generated, where no collisions were
possible, and was subtracted from the matrix to remove the spurious correlation
coefficients. From this differential matrix, we chose all indices where the corre-
lation coefficient was greater than an arbitrarily chosen threshold of 0.15. As
previously, if there are v indices that are selected, then we form one trace from
the points indicated on one dimension by extracting the relevant points from
each subtrace in T , giving

A′ = {a′
1,1 . . . a′

1,v , a′
2,1 . . . a′

2,v , . . . , a′
2 (n−1),1 . . . a′

2 (n−1),v}
= {ā′

1 , ā′
2 , . . . , ā′

2 (n−1)} ,

and another trace from points indicated on the other dimension

B′ = {b′
1,1 . . . b′

1,v , b′
2,1 . . . b′

2,v , . . . , b′
2 (n−1),1 . . . b′

2 (n−1),v}
= {b̄′

1 , b̄′
2 , . . . , b̄′

2 (n−1)} .

Hence, computing ρ(ā′
i , b̄′

i) will compute the correlation coefficient between all
the combinations of points indicated by C.

One can then use these reduced traces to generated a series of correlation
coefficients

D = d1 . . . dn−1 = {ρ(ā′
2 , b̄′

3) , ρ(ā′
4 , b̄′

5) , . . . , ρ(ā′
2n−4 , b̄′

2n−3)}

as described in Section 4.3, and the mean of these coefficients are used to generate
hypotheses for the exponent.

This can be repeated to compare a doubling operation with the following
doubling operation to evaluate the collisions. This analysis produces two traces
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of correlation coefficients that can be used to produce hypotheses for each bit
of the exponent. Where the hypotheses differ, we selected the hypothesis with
the largest difference from the mean correlation coefficient under the assumption
that this will be the strongest distinguisher.

However, once an estimation for the exponent used in an implementation
of the Montgomery ladder is determined, one cannot directly apply Stinson’s
algorithm. This is because each time one wishes to flip a bit, all the bits that
are less significant also need to be flipped. However, adapting the algorithm is
straightforward, and the expected time complexity of an attack will be the same.

This attack applied to the ARM7 implementation can be readily conducted
as the median case is well below our defined threshold for a trivial attack when
the correlation coefficient is used. The results of the attack applied to 1000 traces
are summarized in Table 1.

No practical attack was derived for for our SASEBO implementation. We
assume that the leakage required to conduct this attack is not present. That is,
the data does not leak in a similar fashion at two different points in time.

Table 1. The probability of successfully attacking an implementation of the add-only
exponentiation algorithm on an ARM7 microprocessor given 1k observations and a
Virtex-II FPGA given 8k observations. Where Pr(triv.) and Pr(prac.) are the proba-
bility of a successful attack with a trivial and practical attack complexity, respectively.

Platform Algorithm Matching Method E (#Errors) σ Pr(triv.) Pr(prac.)

ARM7

Add-only
Euclidean distance 5.78 4.30 0.926 0.991
Correlation Coefficient 5.52 4.96 0.935 0.993

Dummy
Euclidean distance 6.10 7.10 0.894 0.968
Correlation Coefficient 8.40 8.66 0.820 0.920

Montgomery
Euclidean distance 14.7 4.35 0.306 0.926
Correlation Coefficient 21.7 4.74 0.0110 0.409

SASEBO
Add-only

Euclidean distance 7.69 2.68 0.955 1
Correlation Coefficient 24.8 4.93 0.00338 0.190

Dummy
Euclidean distance 37.7 5.88 0.00188 0.00225
Correlation Coefficient 24.4 4.88 0.00525 0.207

5 Extending the Attack

To resist the attacks described in Section 4, one would need to use an exponenti-
ation algorithm that is highly regular, see Definition 2. If values are reused once
created, then, to resist our attacks, the order they are used should not reveal any
information to an adversary. That is, an adversary should not be able to find
meaningful collisions based on comparing the input or output of one operation
with the input or output of another operation. Hence, we define the following
property:
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Definition 3. An exponentiation is defined as to be totally regular if it consists
of operations g1, g2, . . . , gκ, that are composed gκ◦· · ·◦g2◦g1, where κ ∈ Z is fixed
for an exponent of a given bit length and each gi is of the form zi = gi(xi, yi) for
i ∈ {1, . . . , κ}. Given the function H = gi for i ∈ {1, . . . , κ} and some function
H, the address is fixed for each xi, yi, zi for i ∈ {1, . . . , κ}.
However, such an exponentiation algorithm is not possible.

Lemma 1. A totally regular addition chain-based exponentiation algorithm that
can compute sχ for any s, χ ∈ Z>0, assuming χ has a fixed bit length, does not
exist.

Proof. Let A be an addition chain that can be used to compute sχ from n for
some arbitrary s, χ ∈ Z>0. That is, there will exist some function

F : Z>0 −→ Z>0 : s 
−→ sχ ,

that uses addition chain A to compute F(n) for some arbitrary χ of a given bit
length. If F is totally regular, this would imply that A would remain unchanged
for all possible exponents that have the same bit length as χ . However, by
Definition 1, the last element of A is sχ, and we note that χ cannot be changed
by modifying s0, s1. Hence,

F ⇐⇒ A
and a totally regular addition chain-based exponentiation algorithm is not pos-
sible. �
Given the attacks described above, it is straightforward to define attacks applica-
ble to exponentiation algorithms that have been previously considered resistant
to collision attacks. Hence, if one wishes to resist the attacks in this paper,
one needs to ensure that such a side-channel analysis produces results that are
sufficiently noisy, that subsequent analysis would be computationally infeasible.

6 Conclusion

We describe attacks based on collisions of arbitrarily chosen variables manipu-
lated in group operations to determine an unknown exponent and demonstrate
that they can be applied to a single trace without requiring any profiling. This
represents a significant advantage over practical attacks described in the litera-
ture that typically require numerous traces to be acquired [7,9].

We show that collision attacks can be applied to instances of exponentiation
algorithms, where only a single trace can be analyzed by an attacker (i.e., the
exponent is blinded or ephemeral). We demonstrated that it is possible to com-
pare the input or output of one operation with the input or output of another
operation. This leads to a very strong attack model, and we prove that it is
not possible to construct an algorithm to resist these attacks. In implementing
an exponentiation algorithm sufficient countermeasures need to be included to
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reduce the accuracy of the hypotheses made by an adversary, such that any sub-
sequent analysis would be prohibitively time consuming. This can range from
inserting noise into the implementation through hardware countermeasures [33]
to a random ordering of group operations in an exponentiation algorithm [34].
We refer the reader to Fan and Verbauwhede [35] for a thorough treatment of
this topic.
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Koç, Paar, C., (eds.) CHES 2002. LNCS, vol. 2523, 291–302. Springer, Heidelberg
(2003)

http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf


Exploiting Collisions in Addition Chain-Based Exponentiation Algorithms 447

12. Okeya, K., Sakurai, K.: A Second-Order DPA Attack Breaks a Window-Method
Based Countermeasure against Side Channel Attacks. In: Chan, A.H., Gligor, V.D.
(eds.) ISC 2002. LNCS, vol. 2433, pp. 389–401. Springer, Heidelberg (2002)

13. Clavier, C., Feix, B., Gagnerot, G., Giraud, C., Roussellet, M., Verneuil, V.:
ROSETTA for Single Trace Analysis. In: Galbraith, S., Nandi, M. (eds.)
INDOCRYPT 2012. LNCS, vol. 7668, pp. 140–155. Springer, Heidelberg (2012)

14. Joye, M.: Highly Regular Right-to-Left Algorithms for Scalar Multiplication. In:
Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 135–147.
Springer, Heidelberg (2007)

15. Wireless Application Protocol (WAP) Forum: Wireless transport layer security
(WTLS) specification. http://www.wapforum.org

16. X9.62, A.: Public key cryptography for the financial services industry, the elliptic
curve digital signature algorithm (ECDSA) (1999)

17. Coron, J.-S.: Resistance against Differential Power Analysis for Elliptic Curve
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Abstract. In a cold boot attack a cryptosystem is compromised by
analysing a noisy version of its internal state. For instance, if a computer
is rebooted the memory contents are rarely fully reset; instead, after
the reboot an adversary might recover a noisy image of the old memory
contents and use it as a stepping stone for reconstructing secret keys.
While such attacks were known for a long time, they recently experi-
enced a revival in the academic literature. Here, typically either RSA-
based schemes or blockciphers are targeted.

We observe that essentially no work on cold boot attacks on schemes
defined in the discrete logarithm setting (DL) and particularly for elliptic
curve cryptography (ECC) has been conducted. In this paper we hence
consider cold boot attacks on selected wide-spread implementations of
DL-based cryptography. We first introduce a generic framework to anal-
yse cold boot settings and construct corresponding key-recovery algo-
rithms. We then study common in-memory encodings of secret keys (in
particular those of the wNAF-based and comb-based ECC implementa-
tions used in OpenSSL and PolarSSL, respectively), identify how redun-
dancies can be exploited to make cold boot attacks effective, and develop
efficient dedicated key-recovery algorithms. We complete our work by
providing theoretical bounds for the success probability of our attacks.

1 Introduction

Cold boot attacks. Since they were reported in the literature by Halderman et al.
in 2008 [4], cold boot attacks have received a great deal of attention. The attacks
rely on the fact that computer memory typically retains information when going
through a power-down power-up cycle; this might allow an adversary to get
access to confidential information such as cryptographic keys. Unfortunately (for
the attacker), while the power is cut the bits in memory will decay over time,
which means that any information obtained is likely to be ‘noisy’. The focus of
cold boot attacks resides in modelling quality and quantity of noise and applying
intelligent algorithms to extracted memory images in order to fully recover keys.

The amount of time for which information is retained without power depends
on the particular memory type (modern technologies imply a quicker decay) and
the environment temperature (information degrades more quickly at higher tem-
peratures). After power is switched off, the decay proceeds in a quite predictable
c© Springer International Publishing Switzerland 2015
K. Nyberg (ed.): CT-RSA 2015, LNCS 9048, pp. 449–465, 2015.
DOI: 10.1007/978-3-319-16715-2 24
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pattern [3,20]. More precisely, memory is partitioned into regions, and each
region has a ‘ground state’ which is either 0 or 1. In a 0 ground state, the 1 bits
will eventually decay to a 0. The probability of a 0 bit decaying to a 1 is very
small, but not vanishing (a typical probability is 0.001 [4]). When the ground
state is 1, the opposite is true.

Previous cold boot key-recovery algorithms. The general possibility of using
cold boot attacks to recover data from memory chips has been known since
at least the 1970s. However, in the academic literature it was not until 2008
that Halderman et al. became the first to focus on reconstructing cryptographic
private keys from information obtained via this type of attack. There is now
an abundance of literature concerning the cold boot recovery of private keys.
RSA key-recovery algorithms are without doubt the most popular [4,7,8,11–
13,16,19], whilst symmetric-key cryptographic schemes have received less atten-
tion [1,4,10,21]. One area that remains comparatively unexplored is the discrete
logarithm setting. As far as we are aware, this issue has only been discussed
in [13].

Published cold boot analyses almost ubiquitously assume that attackers can
obtain a (noisy) copy of a private key that was stored with some form of redun-
dancy. For instance, in the case of RSA, while in principle it is only necessary
for the private key to contain the prime factors p and q, the PKCS#1 stan-
dard [9] suggests storing several extra values (such as d, dp, dq, and q−1

p ) in order
to increase the efficiency of decryption and signing operations. It is this redun-
dancy that was exploited by previous authors to recover private keys even when
they were subjected to very high noise levels. In contrast, the discrete logarithm
analysis of Lee et al. [13] assumes that an attacker only has access to the public
key X = gx and a decayed version of the private key x. Consequently, given
that there is no further redundancy, their proposed algorithm would be unable
to efficiently recover keys that were affected by high noise levels.

Our contributions. Given the above discussion it is natural to ask whether in
practical discrete logarithm-based software implementations there are any pri-
vate key representations that contain redundancy that can be used to improve
cold boot key-recovery algorithms. It turns out that such cases are indeed the
rule, and they will form the basis of this paper. The scenarios we consider are
taken from two wide-spread ECC implementations found in TLS libraries: the
windowed non-adjacent form (wNAF) representation used in OpenSSL, and the
PolarSSL comb-based approach. By exploiting redundancies in the respective
in-memory representations of private keys we are able to vastly improve upon
the results from [13].

Our techniques are based on a novel statistical test that allows a trade-off
between success rate and execution speed. We stress that this test is not only
applicable to the discrete logarithm setting, but is applicable to all types of
key. In particular, it complements the framework of Paterson et al. [16] for the
RSA setting. We observe that the statistical test proposed in [16] has a bounded
running-time, but no lower bound on the success of the algorithm is provided in
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the scenario where keys are subjected to asymmetric errors. In contrast, for our
algorithm we succeed in lower-bounding the success rate. Although we provide
no bound on the running time of our primary algorithm, we note that various
modifications allow an attacker to seek her own compromise between a preferred
success rate and a desired running-time.

2 Multinomial Distributions and the Multinomial Test

The general strategy behind key-recovery procedures for cold boot attacks is to
only consider small parts of the targeted key at a time. For instance, RSA-based
reconstruction procedures usually start with the least significant bits (LSB) [7,
8,12,13,16,19], but it is also possible to begin with the most significant bits
(MSB) [18]. It is typical to use an iterative process to guess a couple of bits of
the key and assess the plausibility of the guess on the basis of both a model
of the decay process and the available redundancy in the encoding. Previous
cold boot papers have proposed various methods by which the plausibility of the
guess is ascertained. Examples are the Hamming distance approach of [7] and the
maximum-likelihood method of [16]. The theoretical success of the algorithm is
usually based on assumptions that are typically only true for a specific key being
considered, and are possibly not easy to generalise. In this section we propose a
general statistical test that can be used in various scenarios. The test is based
on multinomial distributions and works well for scenarios when the distribution
of private key bits is known (such as RSA), but can also be modified to work
even when the attacker knows nothing of the distribution of the private key.

We will now study the multinomial distribution and its associated test. Multi-
nomial distributions are a generalisation of the binomial distribution. The distri-
bution has k mutually exclusive events with probabilities p = (p1, . . . , pk), where
∑k

i=1 pi = 1 and for all i we have pi �= 0. If there are n trials, we let the ran-
dom variables X1, . . . , Xk denote the amount of times the ith event occurs and
say that X = (X1, . . . , Xk) follows a multinomial distribution with parameters n
and p. Given a set of observed values, x = (x1, . . . , xk), we can use a multinomial
test to see if these values are consistent with the probability vector p (which is
the null hypothesis, denoted H0). The alternative hypothesis (denoted H1) for
the probability vector is π = (x1/n, . . . , xk/n), where each component is the
maximum-likelihood estimate for each probability. The two hypotheses can be
compared via the calculation −2

∑k
i=1 xi ln(pi/πi), which is called the multi-

nomial test statistic. When the null hypothesis is true, the distribution of this
statistic converges to the chi-squared distribution with k − 1 degrees of freedom
as n → ∞.

We will now see how the multinomial test statistic may be applied in cold
boot key recovery algorithms. Let si denote a (partial) candidate solution for the
private key (including the redundant representation) across a (partial) section of
bits. When comparing a partial candidate solution si to the noisy information r
we define ni

01 to be the number of positions at which there is a 0 in the candidate
solution and a 1 in the corresponding position in the noisy information r. We
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define ni
00, ni

10, and ni
11 correspondingly, so n = n00 + n01 + n11 + n10. Cru-

cially, this count only considers the newly-guessed bits generated at the relevant
phase of the algorithm, while all previous guesses are ignored. It is clear that
these counts follow a multinomial distribution. Let α := P(0 → 1) denote the
probability that a 0 bit flips to a 1 in the execution of the cold boot attack,
and let β := P(1 → 0) denote the probability that a 1 flips to a 0. For the cor-
rect candidate solution, sc, the probability of observing each of the four values
(nc

00, n
c
01, n

c
11, n

c
10) is precisely H0 : p = (p0(1 − α), p0α, p1(1 − β), p1β), where

pb, b ∈ {0, 1}, is the probability of a b-bit appearing in the correct candidate
solution. Notice that we require α, β �= 0 since each component of the probability
vector must be non-zero. The test may be modified to cover the case when α or
β is zero, but we defer this discussion to the full version [17]. For each candidate
solution we could use the previous set of probabilities as the null hypothesis of
the multinomial test. We would like to test whether our guessed candidate solu-
tion is consistent with this probability vector. The alternative hypothesis is that
the set of probabilities for the four bit-pairs is equal to the maximum-likelihood
estimates for each category. That is, H1 : p = (ni

00/n, ni
01/n, ni

11/n, ni
10/n) for

each candidate i. We define our first statistical test, which we call Correlate′,
to be

Correlate′(si, r) := −2ni
00 ln

(
np0(1 − α)

ni
00

)

− 2ni
01 ln

(
np0α

ni
01

)

−2ni
11 ln

(
np1(1 − β)

ni
11

)

− 2ni
10 ln

(
np1β

ni
10

)

, (1)

where the values in brackets are the null hypothesis values divided by the alter-
native hypothesis values. Correlate′ outputs a numerical value (≥ 0) for each
candidate. We now need to discuss when we consider this test to pass or fail.
It is well known that when the null hypothesis is correct the distribution of the
right-hand side of equation (1) converges to a chi-squared distribution with k−1
degrees of freedom as n → ∞. In our analysis we have k = 4, hence the test
statistic converges to a chi-squared distribution with three degrees of freedom.
We can therefore set a threshold C such that any candidate whose test statistic
is less than C is retained, otherwise the candidate is discarded. We therefore
define

CorrelateC(si, r) = pass ⇔ Correlate′(si, r) < C ,

where C would be an additional (user-chosen) input to the algorithm. The chi-
squared distribution can tell us how to set the threshold C to achieve any desired
success rate. If we set the threshold C such that

∫ C

0
χ2
3(x)dx = γ, we know that,

asymptotically, the probability that the correct candidate’s correlation value
Correlate′(si, r) is less than C is equal to γ. Recall that the Correlate′ test
only considers the newly generated bits at each stage of the algorithm, and
all previous bits are ignored. This eases the success analysis of the algorithm
since the probability of passing each Correlate test is independent in this case.
Therefore, if the private key has been parsed into m distinct parts, and the
attacker applies a Correlate test to each of the m parts, the probability that the
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correct private key is recovered is γm, assuming the same threshold C is used
for each Correlate test.

The only issue yet to be addressed is specifying the values that p0 and p1
should take. If the distribution of the private key is known, then it is easy to
assign values to these parameters. For example, in the RSA setting, the anal-
yses of [8,16] assume that the entire private key would have approximately an
equal number of zeros and ones. Therefore, if we were to use the Correlate′ test
(equation (1)) in the RSA setting we would set p0 = p1 = 1/2. Notice that this
immediately gives us a threshold-based approach for recovering noisy RSA pri-
vate keys that have been degraded according to an asymmetric binary channel
(i.e., α �= β), and such an approach is currently lacking in the literature.

In other settings it may not be possible to accurately assign values to these
parameters. The approach we use to overcome this issue is to conduct two sepa-
rate multinomial tests: one for the 0 bits and another for the 1s. The advantage
of using two separate tests is that we do not need to estimate the values of p0
and p1, and hence our algorithm’s success will not be harmed by a poor esti-
mation of these parameters. For the correct solution, each 0 can flip to a 1 with
probability α or it can remain a 0 with probability 1 − α. Hence, if there are
n0 zeros in the correct solution, then (n01, n00) follows a multinomial distribu-
tion with parameters n0 and p = (α, 1−α). Similarly, if there are n1 ones in the
correct solution, then (n10, n11) follows a multinomial distribution with param-
eters n1 and p = (β, 1 − β). We may now use the multinomial test to examine
each candidate solution without having to estimate p0 and p1. Specifically, we
define

Correlate0(si, r) := −2ni
00 ln

(
n0(1 − α)

ni
00

)

− 2ni
01 ln

(
n0α

ni
01

)

(2)

and

Correlate1(si, r) := −2ni
11 ln

(
n1(1 − β)

ni
11

)

− 2ni
10 ln

(
n1β

ni
10

)

. (3)

Then we define CorrelateC(si, r) such that

CorrelateC(si, r) = pass ⇔ Correlate0(si, r) < C ∧ Correlate1(si, r) < C . (4)

Notice now that Correlate0 and Correlate1 are functions with one degree of
freedom. Therefore the probability that Correlate0 < C is γ =

∫ C

0
χ2
1(x)dx. The

same holds for the probability that Correlate1 < C.

3 Exponentiation Algorithms

As all discrete log keys considered in this paper are defined over elliptic curves
we use the additive notation Q = aP to denote a public key Q, where P is the
base point and scalar a is the private key. We write O for the point at infinity,
i.e., the neutral element in that group.
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A core part of any DLP-based cryptosystem realised in the elliptic curve
setting is a point multiplication routine. Here, a curve point P , also refered
to as base point, is multiplied with a scalar a ∈ N to obtain another curve
point Q = aP . The overall performance of this operation depends on various
factors, including the representation of field elements, the availability of opti-
mised formulas for basic group operations like point addition and doubling, the
representation of curve points, and the scheduler that specifies how the basic
group operations are combined to achieve a full point multiplication algorithm
(see [2] for a recent survey on available options and trade-offs in all these cat-
egories). In the context of cold boot attacks particularly the scheduler seems
to be an interesting target to analyse: in ECC-based cryptosystems, secret keys
typically correspond with scalars, i.e., with precisely the information the sched-
uler works with. In the following we give a brief overview over the most relevant
such algorithms [5]. We analyse the resilience of specific instances against cold
book attacks in later sections of this paper.

The textbook method for performing point multiplication is the double-and-
add algorithm. Given scalar a ∈ N and an appropriate length parameter � ∈ N, it
requires that a is represented by its binary expansion [a]1 = (a�, . . . , a0), where
a =

∑�
i=0 ai2i and a�, . . . , a0 ∈ {0, 1}. Given [a]1, and denoting ‘right-shifting’

a by k positions with a 	 k, we observe

aP =

(
�∑

i=0

ai2i

)

P = 2

(
�−1∑

i=0

ai+12i

)

P + a0P = 2(a 	 1)P + a0P .

This recursion can be unrolled to

aP = 2(2(2(. . . + a3P ) + a2P ) + a1P ) + a0P . (5)

The double-and-add algorithm for computing Q = aP is now immediate: it
initializes Q with O and iteratively updates Q ← 2Q + aiP , where the ai are
considered ‘left-to-right’ (i.e., i counts backwards from � down to 0).

3.1 (Windowed) Signed-Digit Representations

A common property of most encodings used to represent elliptic curve points
is that group negation is a cheap operation [2,5] and hence point subtraction
performs as efficient as point addition. This is exploited in point multiplication
algorithms that are based on the signed-digit representation of scalars.

Formally, for fixed window size w we denote with [a]±w = (a�, . . . , a0) any
decomposition of a ∈ N such that a =

∑�
i=0 ai2i and ai ∈ [−2w−1 .. 2w−1 − 1].

As equation (5) still holds if the coefficients ai are negative or greater than 1, a
‘double-and-add-or-subtract’ algorithm that operates on such signed-digit rep-
resentations is readily derived. The key idea is that the extra freedom obtained
by allowing coefficients to be large or negative will make it possible to find
particularly sparse scalar representations, i.e., representations for which only a
minimum number of group additions/subtractions is required.
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We describe three common signed-digit normal forms for representing scalars
a ∈ N. The first one, non-adjacent form (NAF), limits the digit set to {0,±1}
and requires that no two consecutive coefficients are non-zero. The second and
third are defined in respect to a window size w. Specifically, while the fixed-
window NAF is an encoding of the form [a]±w that requires ai = 0 for all i �≡ 0
(mod w), the sliding-window NAF (wNAF) ensures that all non-zero ai are odd
and all w-length subsequences of [a]±w contain at most one such element. All
three types of encoding are unique. Note that storing a NAF or wNAF might
require one extra digit over the plain binary expansion. For instance, consider
that the binary expansion of the decimal number 15 is the sequence (1, 1, 1, 1),
while its NAF is (1, 0, 0, 0, 1̄), where we write 1̄ for −1.

Algorithm 1 gives instructions on how to derive the wNAF of a scalar a ∈ N.
Observe that the computation is conducted in a greedy right-to-left fashion, with
a (w − 1)-look-ahead. As the latter property will become relevant in our later
analyses, we state it formally.

Fact 1 (Suffix property of wNAF) . Fix a scalar a ∈ N and a window size w.
Denote a’s binary expansion with (a�, . . . , a0) and its wNAF with (b�, . . . , b0), for
an appropriate length parameter �. Then for all 0 ≤ t ≤ � − w + 1 it holds that
(bt, . . . , b0) is fully determined by (at+w−1, . . . , a0).

Fig. 1. In Algorithm 1, operator ‘smod’ computes signed remainders of integer divisions
by powers of two. Precisely, for integers a, b we have b = a smod 2w iff ∃k : a =
k2w + b ∧ b ∈ [−2w−1 .. 2w−1 − 1]. In Algorithm 2, for same-size bit-vectors α, β, γ, δ, ε
we write (α, β) = γ � δ iff 2αi + βi = γi + δi for all i. Correspondingly we write
(α, β) = γ � δ � ε iff 2αi + βi = γi + δi + εi. That is, the addition is bit-wise and the
sum is stored in βi, with αi taking the carry.

3.2 Point Multiplication in OpenSSL

We give details about the elliptic curve point multiplication routine used in
OpenSSL. Specifically, we studied the code from file crypto/ec/ec mult.c of
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OpenSSL version 1.0.1h from March 2012, which is the latest stable release. Rele-
vant for this work is particularly the function compute wNAF defined in line 193,
which computes a so-called modified wNAF. In brief, while a regular wNAF
requires every w-length subsequence of digits to contain at most one non-zero ele-
ment, in modified wNAFs [15] this requirement is relaxed for the most significant
non-zero position, in order to potentially allow saving a final doubling operation
(see the full version [17] for further details). OpenSSL’s compute wNAF function
computes the modified wNAF with default window size w = 4 (see line 816).
The resulting coefficients bi ∈ [−2w−1 .. 2w−1 − 1] are encoded into an array of
octets (data type ‘signed char’), using a standard two-complement in-memory
representation. For instance, we have −3 → 11111101 and +1 → 00000001.

3.3 Comb-Based Methods

The wNAF method for point multiplication aims at requiring less point additions
than the double-and-add technique; the number of doubling operations, however,
remains invariant (or is even increased). In contrast, comb-based methods [14] get
along with significantly fewer doublings—at the expense of some precomputation
dependent on the base point. In the following we give a rudimentary introduction
to comb-based multiplication techniques. See [5] for further details.

Fix a base point P and parameters w, d ∈ N. For any scalar a ∈ N with
0 ≤ a < 2wd let [a]1 = (awd−1, . . . , a0) denote its binary expansion. For all
i ∈ [0 .. d − 1] let Ki = (Ki

w−1, . . . ,K
i
0) where Ki

j = ai+jd as illustrated in
Figure 2. That is, as values Ki

j ∈ {0, 1} are assigned such that

a =
wd−1∑

i=0

2iai =
d−1∑

i=0

w−1∑

j=0

2i+jdKi
j =

d−1∑

i=0

2i
w−1∑

j=0

2jdKi
j ,

we have that

aP =
d−1∑

i=0

2iT (Ki
w−1, . . . ,K

i
0) where T : (kw−1, . . . , k0) →

w−1∑

j=0

2jdkjP .

The fundamental idea behind comb-based point multiplication is to precompute
table T ; as we have seen, the remaining part of the operation can then be con-
ducted with not more than d additions and doublings.

As first observed by Hedabou et al. [6], implementations of the described
point multiplication method might offer only limited resilience against side-
channel attacks based on simple power analysis (SPA). This comes from the
fact that adding neutral element T (0, . . . , 0) = O to an accumulator is an event
that is likely recognizable by analysing power traces.

To mitigate the threat, [6] proposes a comb-based scheduler where situa-
tion Ki = (0, . . . , 0) does not occur. In a nutshell, it (a) considers only odd
scalars (this guarantees K0 �= (0, . . . , 0)), (b) introduces for each i ∈ [0 .. d − 1]
a flag σi ∈ {±1} that defaults to σi = +1 and indicates whether the cor-
responding Ki should be considered ‘positive’ or ‘negative’, and (c) examines
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Kd−1
w−1 Kd−1

1 K0
1 K0

0

awd−1 a2d−1 ad a0

Fig. 2. Visualization of the comb method, for parameters (w, d) = (4, 10). The cells
represent the bits of the scalar, the bold rectangles mark the prongs of a comb posi-
tioned at offset i = 2.

vectors K1, . . . ,Kd−1 (in that order) and for each particular Ki that is equal
to (0, . . . , 0) it updates Ki ← Ki−1 and σi−1 ← −1. Observe that restric-
tion (a) does not impose a real limitation in groups of prime order q because
aP = −(−aP ) = −(q − a)P and either a or q − a is odd. Observe also that the
steps introduced in (c) do not affect the overall outcome of the point multipli-
cation as for all integers x we have x = 2 · x + (−1) · x.

3.4 Point Multiplication in PolarSSL

We analysed the source code of the point multiplication routine deployed in
PolarSSL1 version 1.3.8, published on July 11 2014. The scheduler (function
ecp comb fixed in file library/ecp.c) is comb-based, and comments in the
code give explicit credit to the results of [6]. However, as a matter of fact the
actually implemented algorithm significantly improves on the referred-to work,
as we detail below. We believe that this is the first description of this point
multiplication method in the academic literature.

PolarSSL borrows from [6] both the restriction to handle only odd scalars and
the introduction of flags σi ∈ {±1} that indicate whether corresponding Ki are
considered ‘positive’ or ‘negative’. Novel is that the iteration over K1, . . . ,Kd−1

that before was solely concerned about fixing the Ki = (0, . . . , 0) condition is now
replaced by an iteration over the same values where action is taken roughly every
second time, namely whenever Ki

0 = 0. Concretely, in this case the algorithm sets
σi−1 ← −1 (similarly to [6]) and replaces Ki by Ki � Ki−1, where addition ‘�’
is understood position-wise, carrying over into Ki+1. This method ensures that
all Ki have Ki

0 = 1, and effectively makes precomputed table T half-size. On
the downside, for recording the carries of the final ‘�’ step, vector Kd−1, . . . ,K0

has to be extended by an auxiliary component Kd. The details on the procedure
are given in Algorithm 2.

We conclude by describing how resulting sequence Kd, (σd−1,Kd−1), . . . ,
(σ0,K0) is encoded in computer memory. PolarSSL imposes the requirement
w ∈ [2 .. 7] (in practice w ∈ {4, 5} is used, see line 1382 of ecp.c) and can hence
store each Ki in a separate octet (data type ‘unsigned char’). The remaining
eighth bit is used to store the corresponding sign indicator; precisely, σi = +1
1 Available at https://polarssl.org.

https://polarssl.org
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and σi = −1 are encoded as 0 and 1, respectively. For example, if w = 3 and
σi = −1 and Ki = (1, 0, 1), the in-memory representation is 10000101.

Similarly to Fact 1 we can state a suffix property for this encoding.

Fact 2 (Suffix property of PolarSSL’s comb encoding) . Fix a scalar a ∈
N and parameters w, d. Denote a’s binary expansion with (awd−1, . . . , a0), its
comb encoding with (K̄d−1, . . . , K̄0) where K̄i

j = ai+jd, and its PolarSSL comb
encoding with (Kd, σd−1,Kd−1, . . . , σ0,K0). Then it holds for all 1 ≤ t ≤ d that
(Kt−1, σt−2,Kt−2, . . . , σ0,K0) is fully determined by (K̄t−1, . . . , K̄0).

4 General Procedures for Recovering Noisy Keys

We present next our algorithms that recover the private keys of DL-based cryp-
tosystems from noisy memory images. Separate algorithms are proposed for
OpenSSL and PolarSSL and, thus, each will have its own analysis of success
probability. We start with specifying the attack model.

4.1 Attack Model

Both in OpenSSL and PolarSSL, discrete log secret keys and their NAF or comb
encodings reside in computer memory simultaneously, at least for a short period
of time. Our cold boot attack model hence assumes that the adversary can obtain
noisy versions of the original private key and its encoding, and aims at recovering
the private key. We assume that a 0 bit will flip with probability α = P(0 → 1)
and a 1 bit will flip with probability β = P(1 → 0). Furthermore, we assume
that the attacker knows the values of α and β. Such an assumption is possible
because an adversary can easily estimate using an analysis similar to [7]. We
refer the reader to that paper for the details.

4.2 NAF Encodings

Algorithm 3 attempts to recover a key that has been encoded with either the
textbook wNAF or the modified NAF of OpenSSL. It takes several inputs: the
public key, Q = aP ; the noisy memory image, M∗; the length of the private
key, �; the window size, w; a variable parameter, t; a constant k. We first discuss
the textbook NAF, for which k = 0. The algorithm will output either a (the
private key) or ⊥, which represents failure. The recovery procedure begins by
initialising a set CandSet to be empty. The set CandSet will store (partial) can-
didate solutions for the private key a. At each stage of the algorithm we wish to
compute t new wNAF digits for each candidate solution. To be certain of out-
putting the first t signed digits of the wNAF, the algorithm requires knowledge
of the least t + w − 1 bits of the binary representation (cf. Fact 1). Hence, the
first stage of the algorithm (cf. lines 1–5) takes all bit strings of length t + w − 1
(giving us the ability to calculate the least t signed digits of the wNAF), con-
verts them to integers, then calculates their corresponding wNAFs for positions



Cold Boot Attacks in the Discrete Logarithm Setting 459

bt−1, . . . , b0 (prepending zeros if necessary, and ignoring any bj for j ≥ t if they
exist). The algorithm then compares each bit string and its corresponding wNAF
against M∗ via the Correlate function (see Section 2). If the candidate passes
the Correlate test, then the candidate solution is added to the set CandSet, oth-
erwise it is discarded. Once all bit strings of length t+w − 1 have been checked,
we move on to the second stage of the algorithm (cf. lines 6–12). We first ini-
tialise a set CandSet′ to be empty. For each string x in CandSet, we prepend all
bit strings of length t to x (giving us the ability to compute the next t signed
digits of the wNAF). We then calculate the wNAFs of (the integer conversions
of) all the strings. Again, we prepend zeros to the wNAF if necessary, and we
ignore any bj for j ≥ 2t. Then the algorithm compares each bit string and its
corresponding wNAF against M∗ via the Correlate function. If the candidate
solution passes the test it is added to CandSet′. When all appropriate strings
have been checked, we overwrite CandSet ← CandSet′. If we let �′ denote the
length of the partial candidates, then we repeat the previous stage of the algo-
rithm until �′ > � − t (because, at this point, prepending t bits to the candidate
solutions would result in them having a greater length than the private key a).
At this juncture the algorithm will prepend all bit-strings of length � − �′ to
all the strings in CandSet (cf. lines 13–16). Each of these new strings x is then
compared against the public key Q = aP , via the calculation xP . If there is
a match with Q = aP , then the algorithm outputs x, otherwise the algorithm
outputs ⊥.

Algorithm 3 Generic key-recovery for textbook and OpenSSL wNAF.

Input: noisy memory image M∗, reference public key Q = aP , parameters �, w, t, k;
use k = 0 for textbook wNAF recovery, and k > 0 otherwise.

Output: secret key a or ⊥
1: CandSet ← ∅
2: for all x ∈ {0, 1}t+w−1 do

3: calculate partial representation Mx of x
4: if Correlate(Mx, M∗) = pass then

5: add x to CandSet
6: for i ← 2 to �(� − k + 1 − w)/t� do

7: CandSet′ ← ∅
8: for all x ∈ {0, 1}t × CandSet do

9: calculate partial representation Mx of x

10: if Correlate(Mx, M∗) = pass then

11: add x to CandSet′

12: CandSet ← CandSet′

13: for all x ∈ {0, 1}k+(�−k−w+1 mod t) × CandSet do

14: a ←
∑

�−1
i=0 2ixi

15: if Q = aP then

16: return a
17: return ⊥

We will now discuss the modifications that we make for the OpenSSL imple-
mentation of the wNAF encoding. First, we will discuss how the textbook wNAF
is converted to the modified wNAF used in OpenSSL. If the most significant w+1
digits of the standard wNAF (excluding leading zeros) are a 1, followed by w−1
zeros, followed by a negative signed-digit b̄, then we apply a transformation to
the leading w + 1 digits as follows:

1 0 . . . 0︸ ︷︷ ︸
w−1

b̄ → 01 0 . . . 0︸ ︷︷ ︸
w−2

β ,
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where β := 2w−1 − b. Hence, the textbook wNAF is only affected in (at most)
the most significant w +1 digits (excluding leading zeros). Algorithm 3 relies on
the fact that textbook wNAFs can be built up in a bit-by-bit fashion from the
least significant bit (cf. Fact 1), but this is no longer possible with the modified
wNAF. Therefore, when dealing with the OpenSSL NAF, we include an extra
parameter k > 0 in Algorithm 3, where k ∈ N

>0. The only difference is that
instead of entering the final stage of the algorithm when �′ > �− t, we now enter
the final stage when �′ > �−t−k. That is, we stop k bits earlier than with k = 0,
and then the final stage appends �− �′ bits to each string in CandSet and checks
whether any of these new strings matches the private key, a. The reasoning
behind this is that if the bit representation of an integer has a leading 1 in
position i, then the standard wNAF will only be affected in positions i + 1 to
i−w+1. In Algorithm 3, at most we compute �−k−w+1 signed digits for each
candidate solution. For a uniformly random private key a, the higher we set k,
the more likely it is that the textbook wNAF and modified wNAF of a agree
in the positions our algorithm computes (since a uniformly random key is more
likely to have a leading 1 in bit positions � − 1 to � − k − 1, meaning the first
� − k − w + 1 signed digits remain unaffected). This will be discussed in more
detail in Section 4.4. However, there is a trade-off between running-time and
success. A higher k results in a higher success, but the last stage of Algorithm 3
appends bit-strings of at least length k to all surviving candidates. Hence, the
greater k is, the longer the running-time of this final phase. A typical value for k
would be below 10.

4.3 Comb Encodings

In this section we consider key-recovery for comb-based methods. The textbook
comb encoding together with the original key represents merely a repetition
code, and there are standard techniques to recover the key for such a code.
Hence, we shall proceed straight to the discussion of PolarSSL combs. To pre-
vent side-channel attacks (cf. Section 3.3), the PolarSSL comb uses a lookahead
algorithm, so we will need a more sophisticated algorithm than the standard
techniques used for repetition codes. The pseudocode for our algorithm can
be found in Algorithm 4. The inputs are: the noisy memory image, M∗; the
public key, Q = aP ; the length of the comb (i.e., the number of prongs), w;
the number of comb positions, d; and a variable parameter t. To calculate
component K0 of the comb requires knowledge of bits a(w−1)d, ad, . . . , a0 (and
only these bits). If we want to calculate K1 and σ0, we additionally need bits
a1+(w−1)d, a1+d, . . . , a1, and so on (cf. Fact 2). Our algorithm considers t-many
comb components at each stage. During the first stage (cf. lines 1–9) we wish
to compute Kt−1, (σt−2,Kt−2), . . . , (σ0,K0) for each candidate solution. To cal-
culate these components only requires knowledge of tw bits (in the appropriate
positions of the key). Since PolarSSL only handles odd scalars, there are 2tw−1

candidate solutions across these tw bits. For each of these candidate strings, we
compare the bits of the string x and its comb with the noisy versions via the
Correlate function. If the candidate passes the Correlate test, the string is added
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to CandSet (which we initialize to empty), otherwise it is discarded. We then (cf.
lines 10–20) repeat the procedure by combining each surviving candidate with
all possible bit combinations in the tw positions that will allow us to compute
the next t comb components, which are K2t−1, (σ2t−2,K2t−2), . . . , (σt,Kt). If �′

denotes the length of the current candidates, the algorithm exits this particular
For loop when dw − �′ ≤ tw (i.e., when adding t more K̄j would result in there
being more K̄j than exist for the private key). At this point, the algorithm fills
in all the missing bits with all possible combinations (cf. lines 21–26). Then the
algorithm checks whether any of the strings is a match for the private key (by
using the public information Q = aP ). If there is a match, the algorithm outputs
the string, otherwise it outputs ⊥.

Algorithm 4 Generic key-recovery algorithm for PolarSSL comb method.

Input: noisy memory image M∗, reference public key Q = aP , parameters d, w, t
Output: secret key a or ⊥

1: CandSet ← ∅
2: for all x ∈ {0, 1}tw−1 × {1} do

3: for j ← 0 to t − 1 do

4: K̄j ← (x(j+1)w−1, . . . , xjw)

5: compute Kt−1, (σt−2, Kt−2), . . . , (σ0, K0)
6: using lines 3–8 of Algorithm 2
7: calculate partial representation Mx

8: if Correlate(Mx, M∗) = pass then

9: add x to CandSet
10: for i ← 2 to �d/t	 − 1 do

11: CandSet′ ← ∅
12: for all x ∈ {0, 1}tw × CandSet do

13: for j ← 0 to it − 1 do

14: K̄j ← (x(j+1)w−1, . . . , xjw)

15: compute Kit−1, (σit−2, Kit−2), . . . , (σ0, K0)
16: using lines 3–8 of Algorithm 2
17: calculate partial representation Mx

18: if Correlate(Mx, M∗) = pass then

19: add x to CandSet′

20: CandSet ← CandSet′

21: for all x ∈ {0, 1}wd−(�d/t�−1)tw × CandSet do

22: for j ← 0 to d − 1 do

23: K̄j ← (x(j+1)w−1, . . . , xjw)

24: a ←
∑

d−1
j=0

∑
w−1
i=0 2j+idK̄j

i

25: if Q = aP then

26: return a
27: return ⊥

Remark 1. We note that in some cases there is a simple way to slightly increase
the efficiency of Algorithm 4. If � is the length of the private key, but � �= wd, then
the private key will have to be prepended with wd − � zero bits. Algorithm 4
can be improved by utilising this information and only considering candidate
solutions with zeros in these particular positions. However, as in practice w = 4
or w = 5 is used and we consider � = 160 in our simulations, there will be
no need for prepended zeros and our algorithm will run exactly as presented in
Algorithm 4.

Remark 2 (Optimality of Algorithms 3 and 4). We do not claim that Algo-
rithms 3 or 4 are the optimal procedures for recovering keys in their respective
scenarios. However, these algorithms are appealing because we are able to pro-
vide a theoretical analysis of the success rate (cf. Section 2). Furthermore, the
experimental results we obtain from these algorithms are good in practice, as we
shall see in the coming sections.
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4.4 Success Analysis of OpenSSL Implementation

We now analyse the success probability of Algorithm 3 when combined with the
Correlate test from Section 2. The success probability is relatively straightfor-
ward to calculate if the input is an image of a textbook wNAF: The correct
candidate will pass the Correlate test (equation (4)) with probability γ2, where
γ =

∫ C

0
χ2
1(x)dx. Hence, the probability of recovering the correct key would

be γ2·�(�+1−w)/t� because there are �(� + 1 − w)/t� Correlate tests to pass and
the probability of passing each test is independent (because Correlate considers
only the newly computed bits at each stage). However, since a modified NAF
is used in OpenSSL, the corresponding analysis of success will differ slightly.
Fortunately, the difference between textbook NAF and modified NAF is only
in the most significant w + 1 bits (and sometimes there is no difference at all):
If the leading 1 bit of the discrete logarithm key is in position i then, at most,
only signed digits i − w + 1 to i + 1 of the standard wNAF will be affected by
the transformation to the modified wNAF. Therefore the standard and modified
wNAFs will agree up to position i − w. Algorithm 3 only computes the least
significant j = � − k − w + 1 − (� − k − w + 1 mod t) digits of the wNAF, i.e.,
bj−1, . . . , b0. Therefore, we must now bound the probability that a randomly cho-
sen private key’s standard wNAF is equal to its modified NAF up to digit bj−1.
If the private key has a 1 bit anywhere between positions j + w − 1 and � − 1
then the computed NAF digits will be identical to the modified wNAF digits up
to position j − 1, and then the multinomial test will behave exactly as expected
(having probability γ of passing each test). The probability of a 1 bit appearing
in any of these positions is precisely

1 − 2−k−(�−k−w+1 mod t) .

If we let M-NAF denote the modified wNAF, and wNAFj−1 (resp. M-NAFj−1)
denote digits 0 to j − 1 of wNAF (resp. M-NAF), then it follows that

P(success) = P(success|w-NAFj−1 = M-NAFj−1) · P(w-NAFj−1 = M-NAFj−1)
+ P(success|w-NAFj−1 �= M-NAFj−1) · P(w-NAFj−1 �= M-NAFj−1)

≥
(
1 − 2−k−(�−k−w+1 mod t)

)
· γ2·�(�−k+1−w)/t� .

Thus, by setting the thresholds k and C (and, hence, γ) appropriately, we can
achieve any desired success rate (potentially at the expense of a long running
time).

If either α = 0 or β = 0 our algorithm has a slightly different analysis. Since
neither α nor β will be zero in practice, we have relegated this analysis to the
full version [17].

4.5 Success Analysis of PolarSSL Implementation

Given the previous discussion regarding the success of recovering keys of the
NAF algorithms, it is now very easy to analyse the success of Algorithm 4. It
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is clear from the algorithm that there are �d/t� − 1 Correlate tests to pass. The
correlate function is in equation (4), and the correct candidate has probability γ2

of passing the test, where γ =
∫ C

0
χ2
1(x)dx. Since each Correlate test only con-

siders the newly calculated bits, the probability of passing each Correlate test is
independent, so we have P(success) = γ2·(�d/t�−1).

5 Implemented Simulations of Key Recovery

We present the results of some simulations of Algorithms 3 and 4 using the
Correlate test from equation (4). Unless otherwise stated, we ran 100 tests for
each set of parameters. The results for OpenSSL can be seen in Table 1a and
those for PolarSSL in Table 1b. The values displayed in these tables are merely
to support the validity of our theoretical analysis, and they do not represent
the practical limits of our algorithms. However, it is clear that any algorithm
attempting key recovery in the PolarSSL and OpenSSL settings will not be able
to match the performance of the RSA algorithms. We discuss the reasons why
in the full version [17]. For each set of parameters, the table shows the predicted
theoretical success of the algorithms and the success rate we achieved with our
100 simulations. Note that as the noise rate increases the success rate will slowly
decline. However, for OpenSSL, the success rate for β = 0.15 was higher than
for β = 0.10, despite all other parameters being the same. This is merely an
outlier, which is a result of the limited number of simulations we ran. If we
were to perform a much larger number of simulations, we expect this outlier to
disappear. All values we have used for α and β are practical, but higher values
of β are much rarer in practice. For small values of β (which are most common)
our algorithms have a good success rate. For example, for OpenSSL we have a
success rate of 45% when β = 0.05. Furthermore, for small values such as this
we could significantly improve the success by increasing theshold C. For such
small values of β this would not greatly affect the running time. We note that
the practical success is generally much higher than the predicted success. There
is an easy explanation for this, which we will defer to the full version [17].

6 Conclusions

We propose key-recovery algorithms for various discrete log cryptosystems, with
particular emphasis on the widely deployed PolarSSL and OpenSSL implemen-
tations. These algorithms represent a large improvement over previous key-
recovery algorithms for discrete-log cold boot attacks. We provide a theoreti-
cal analysis that lower-bounds the success of our algorithms. Furthermore, the
statistical test we use in our framework provides an avenue to obtain arbitrary
success rates in the RSA setting when the errors are asymmetric. Such results
were only previously available in the symmetric setting. We provide results of
several key-recovery simulations, both for PolarSSL and OpenSSL, that fully
support our theoretical analyses and show that our attacks are practical.



464 B. Poettering and D.L. Sibborn

Table 1. Results from simulations of cold boot attacks against the point multipliers
of OpenSSL and PolarSSL. All simulations used a 160-bit key. The estimated success,
based on the convergence to the chi-squared distribution, is in the columns labelled
‘χ2 est.’

w α β t C k χ2 est. prac. suc.

2 0.001 0.01 7 6 3 0.51 0.92

2 0.001 0.05 10 3.5 3 0.15 0.45

2 0.001 0.10 10 3.5 3 0.15 0.17

2 0.001 0.15 10 3.5 3 0.15 0.20

2 0.001 0.20 14 2 3 0.02 0.07

2 0.001 0.25 12 2 3 0.01 0.06

2 0.001 0.30 12 2 3 0.01 0.04

2 0.001 0.35 14 0.75 3 0 0.02

(a) OpenSSL

w d α β t C χ2 est. prac. suc.

4 40 0.001 0.01 2 7 0.73 0.81

4 40 0.001 0.02 2 5 0.38 0.65

4 40 0.001 0.03 2 4 0.17 0.60

4 40 0.001 0.05 2 3.5 0.09 0.58

4 40 0.001 0.06 2 3 0.04 0.55

4 40 0.001 0.07 2 3 0.04 0.52

4 40 0.001 0.08 2 2.5 0.01 0.37

4 40 0.001 0.10 2 2.5 0.01 0.08

(b) PolarSSL
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Abstract. Asymmetric fingerprinting schemes — introduced by Pfitz-
mann and Schunter in Eurocrypt 1996 — enable the transmission of
a file stored in a server to a set of users so that each user obtains a
variation of the file. The security considerations of these schemes are as
follows: if any (appropriately bounded) subset of users collude to produce
a “pirate” copy of the file, it is always possible for the server to prove
to a third party judge the implication of at least one of them, while a
malicious server can never implicate innocent users.

Given that asymmetric fingerprinting is supposed to distribute files
of substantial size (e.g., media files including video and audio) any com-
munication rate (defined as the size of the file over the total transmission
length) less than 1 would render them practically useless. The existence
of such schemes is currently open. Building on a rate close to 1 oblivious
transfer (constructed from recently proposed rate optimal homomorphic
encryption), we present the first asymmetric fingerprinting scheme that
is communication optimal, i.e., its communication rate is arbitrarily close
to 1 (for sufficiently large files) thus resolving this open question. Our
scheme is based on Tardos codes, and we prove our scheme secure in an
extended formal security model where we also deal with the important
but previously unnoticed (in the context of asymmetric fingerprinting)
security considerations of accusation withdrawal and adversarial aborts.

Keywords: Asymmetric fingerprinting · Tardos Code · Rate optimal ·
Group accusation

1 Introduction

In a fingerprinting scheme, cf. [4], a server (or service provider SP) distributes a
file to a set of users. The server has the flexibility to furnish a different version
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of the file to each user. This is done by splitting the file into segments and
offering at least two variations per segment. Given these segments, the file can
be assembled in a fingerprinted fashion: at each segment the variation obtained
corresponds to a symbol over an alphabet. Therefore, each user’s file determines
a string over that alphabet - the user’s fingerprint (e.g., the data M is divided
into n blocks, for each block i, there are two versions m0

i ,m
1
i , a user assigned

with a binary codeword b1, . . . , bn will receive his versions as mb1
1 || . . . ||mbn

n ).
The objective here is that if the users collude to produce a “pirate” version of
the file by combining their segments, the server is still capable of discovering (at
least some) of the identities of the colluding users.

If the SP alone generates the fingerprints for users and directly transmits
them the fingerprinted files, we have what is known as a symmetric fingerprinting
scheme. As the server is fully trusted in this setting, the security requirement
is that malicious users cannot collude to frame any innocent user or evade the
tracing algorithm. The subtle issue in this case is that the server and the user
are both able to produce a pirate file so when a pirate copy is brought to light,
an honest SP cannot provide an “undeniable” proof that a user is at fault and
symmetrically an honest user cannot defend herself against a malicious SP that
frames her (say, due to e.g., an insider attack on the SP side).

In order to resolve the above issue, [21] introduced asymmetric fingerprinting
schemes in which no one (even the server) should be capable to implicate an
innocent user. Thus when a dispute happens, the server can provide a convincing
proof that a guilty user is at fault. It follows that the server should not be fully
aware of the fingerprint of each user (otherwise it is capable of impersonating
them) and hence this suggests that the download of the fingerprinted file should
be performed in an oblivious manner from the servers’ point of view. Now in
this case, the Judge could resolve the dispute between the server and a user (i.e.,
guilty users will be found guilty by the judge while the server will not be able
to implicate an innocent user in the eyes of the judge).

In the original papers [21–23] the file transfer stage was treated generically as
an instance of secure two party computation. Unfortunately, even with “commu-
nication efficient” secure two-party computation [8,10,14,20] the communication
overhead of the resulting protocol is prohibitively high (e.g., even with the most
communication efficient generic protocols, [10,14], the communication rate —
the size of the file over total number of bits transmitted — will be at most 0.5
and their use will impose the additional cost of a prohibitively large CRS which
needs to be known a-priori to both client and server). With the discovery of
optimal length binary fingerprinting codes by Tardos [26], Charpentier et al. [6]
observed that oblivious transfer could be used as a building block for a Tardos-
based asymmetric fingerprinting. Their proposed solution however is sub-optimal
(it has a rate still at most 0.5) and in order to achieve the fingerprint generation
it relies on commutative encryption, a primitive not known to be constructible in
a way that the resulting scheme can be shown provably secure. Furthermore no
complete security analysis is provided in [6] which leaves a number of important
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security issues unaddressed (specifically “accusation withdrawals” and “selective
aborts” – see below).

Achieving rate close to 1 is the most critical open question in the context of
asymmetric fingerprinting from an efficiency point of view. Indeed, any asym-
metric fingerprinting is particularly sensitive to its communication overhead: the
file to be transmitted by the sender can be quite large (e.g., a movie file) and
thus any scheme whose communication rate is not close to 1 is likely to be useless
in a practical setting. We note that efficient asymmetric fingerprinting schemes
can enable more complex applications; e.g., as building blocks for “anonymous
buyer-seller watermarking” [24,25]; these systems rely on asymmetric finger-
printing schemes to enable copyright protection (but they do not consider the
implementation of such fingerprinting schemes explicitly).

Furthermore, analyzing the security of an asymmetric fingerprinting scheme
is involved as the security requirements require that the SP cannot frame an
innocent user, while at the same time the malicious users should still not be
able to escape from tracing. The analysis should rely both on the security of the
protocol and on the property of the code, specifically, no user should be able
to produce a pirate file that makes the SP and the judge disagree. Given that
Tardos tracing accuses a subset of the users (based on a threshold condition)
it is possible for the judge and the SP to disagree on some users. This type of
attack has not been considered before; we call it accusation withdrawal as it
forces the SP to withdraw an originally made accusation since the judge cannot
support it. Ensuring that no accusation withdrawal happens protects the SP
from starting accusation procedures that are not going to succeed with high
probability. Finally, during the file transfer stage the user may abort. Given that
these file transfer procedures can be lengthy (due to the large size of the files to
be downloaded) the possibility of an adversary exploiting aborting and restarting
as an attack strategy is important to be included in the security model (and in
fact we show an explicit attack if many aborts are permitted — see below).

1.1 Our Contributions

Rate-Optimality. We propose the first rate-optimal (rate is defined as the size
of the actual data over the size of total communication) asymmetric fingerprint-
ing scheme. Our scheme is based on Tardos codes [26]. To achieve this property,
we use a rate optimal 1-out-of-2 oblivious transfer ((2,1)-OT), and a new rate-
optimal 1-out-of-2 strong conditional oblivious transfer ((2, 1)-SCOT, [3]). Both
are constructed in [16], and they are built on the rate-optimal homomorphic
encryption scheme developed in the same paper. Based on these rate optimal
protocols, we propose a rate-optimal fingerprinted data transfer protocol (tai-
lored specifically for bias-based codes including Tardos codes).

More precisely, in a fingerprinted data transfer protocol, the sender has as
private input two pairs of messages and biases. The sender and the receiver
simulate two private biased coin tosses using SCOT and the receiver obtains one
message from each pair (which one of the two it receives, is determined by the
outcome of the biased coin flip). The actual message transmission is based on the
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rate optimal OT protocol. Furthermore the sender selects randomly one of the
two SCOT-s and revokes its receiver security, i.e., the sender will learn which
one of the two versions the receiver has obtained in this SCOT. This partial
revocation of receiver-security will enable the sender to correlate “pirate” files
that are generated by coalitions of malicious users. Our final scheme inherits the
communication efficiency of the underlying SCOT and OT protocols and thus it
is communication-optimal: the rate of each data transfer is asymptotically 1.
A Complete Security Analysis in the (extended) Pfitzmann-Schunter
Model: we analyze the security of our construction in an extended version of
the Pfitzmann-Schunder model [22]. The extension we present is two-fold: first
we extend the model to capture the setting of multiple accusations. In the origi-
nal modeling only a single colluder was required to be accused. In the extended
model we allow a set of users to be accused. This accommodates accusation
algorithms based on Tardos fingerprinting [26] that have this capability. Group
accusation in asymmetric schemes needs special care from a security point of
view: it makes the system prone to accusation withdrawal, the setting where
the server will have to withdraw an accusation because the judge is unable to
verify it. We demonstrate (through actual implementation experiments, see Fig
2) that the straightforward application of Tardos identification (as may naively
be inferred from the description of [6]) does not preclude accusation withdrawal.
We subsequently show how to modify the accusation algorithm between judge
and server so that no accusation withdrawal can take place. Our second model
extension concerns the explicit treatment of the abort operation within the secu-
rity model: all known asymmetric fingerprinting schemes rely on two-party coin
tossing. Given that fair coin tossing is known to be unattainable [7] it follows
that it may be possible for an adversarial set of users to exploit this weakness
and utilize a transmission abort strategy with the purpose of evading detection.
We demonstrate that an explicit treatment of this in the security model is essen-
tial as if one enables users to restart after an abort, it is possible to completely
break server security! (this fact went entirely unnoticed before). By properly
controlling aborts and restarts we show how security can be maintained.

2 Rate-Optimal OT and SCOT Protocols

We recall that an OT protocol and a strong conditional OT (SCOT, [3]) pro-
tocol for predicate Q (s.t. Q(x, y) ∈ {0, 1}) implement securely the following
functionalities respectively (W.l.o.g., assume |m0| = |m1|):

fOT(b, (m0,m1)) = (mb,⊥), fQ−SCOT(x, (y,m0,m1)) = (mQ(x,y),⊥) .

Here, we will use the rate optimal OT and SCOT protocols derived in
[16] from their recently developed rate optimal large-output branching pro-
gram homomorphic encryption (LHE) scheme. We recall that their LHE scheme
enables the receiver to compute on ciphertexts the value f(x, y), where x is his
input, y is sender input, and f is an arbitrary function that can be evaluated by a
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polynomial-size (integer-valued) branching program. In the LHE scheme of [16],
the receiver encrypts (by using a variant of the Damg̊ard-Jurik cryptosystem [9])
his input x, and sends the ciphertext Encr(x) to the sender. The sender evalu-
ates privately large-output branching programs like in [15,19], but does it in a
communication-preserving manner. Let the output of the evaluation be denoted
as Eval(P,Encr(x)), where P is a large-output branching program that evaluates
f(·, y) on input x. The sender returns a single “ciphertext” to the receiver, who
then (multiple-)decrypts it as in [15,19]. The rate of the LHE scheme is defined
as r = (|x| + |P (x)|)/(|Encr(x)| + |Encr(P (x))|). Assuming |f(x, y)| is large, [16]
showed by using an intricate analysis how to achieve a rate 1 − o(1). We refer
to [16] for more information.
Rate-optimal OT. As shown in [16], one can define a rate-optimal (2, 1)-
oblivious transfer protocol as follows. Let the server have a database (m0,m1)
and assume that P [x, (m0,m1)] = mx for x ∈ {0, 1}. Thus, the size of P is
1. Since rate-optimal (2, 1)-OT has many applications, we will call it oblivious
download (OD). Let ODs[Encr(x), (m0,m1)] denote the server side computation
in this protocol, given client ciphertext Encr(x) and server input (m0,m1).
Rate-optimal SCOT. Also, as shown in [16], one can use the LHE of to con-
struct an efficient SCOT protocol for the functionality fQ−SCOT(x, (y,m0,m1)),
where Q has a polynomial-size branching program (i.e., Q ∈ L/poly), as follows.
Let P ′ be an efficient branching program that evaluates the predicate Q(x, y).
Let P be a large-value branching program, obtained from P ′ by just replacing
the leaf value 0 with m0 and 1 with m1. The LHE scheme (and thus also the
resulting SCOT protocol) will have computation, linear in the size of P ′, and
communication (1 + o(1))(|x| + |m0|) and thus rate 1 − o(1). In the rest of the
paper we will need the next instantiation of a new rate-optimal SCOT protocol.
Rate-optimal SCOT for the LEQ Predicate. Denote LEQ(x, y) := [x ≤ y].
It is easy to see that LEQ can be evaluated by a branching program of size and
length � := max(|x|, |y|). Thus, one can implement fLEQ−SCOT securely in time
Θ(�) and rate 1 − o(1). Let us denote server computation in this protocol as
LEQs[Encr(x), (y,m0,m1)].
Remark. The security of the OD,SCOT protocols are simple corollaries of the
security proofs from [15,16]. Also, one can also use an arbitrary efficient — with
communication o(|mi|) — millionaire’s protocol, like the one in [3,12,18] to find
out b = [x < y], and then use the oblivious download protocol to implement an
optimal-rate SCOT protocol for the LEQ predicate. However, we think that the
use of optimal-rate LHE from [16] (instead of composing a millionaire’s protocol
and an OD protocol) is more elegant.

3 Fingerprinted Data Transfer for Bias-Based Codes

In this section, we will introduce the main building block of our Tardos-based
asymmetric fingerprinting scheme, which we call fingerprinted data transfer.
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As our fingerprinting scheme relies on the properties of fingerprinting codes
(we only focus on binary codes here), let us first recall the basics about fin-
gerprinting codes. A binary fingerprinting code [17] is a pair of algorithms
(gen, trace), where gen is a probabilistic algorithm taking a number N , an
optional number (upper-bound on the detected coalition size) t ∈ [N ] =
{1, . . . , N} and security parameter ε as input and outputs N bit-strings C =
{C1, . . . , CN} (called codewords), where Ci = ci

1 . . . ci
n for i ∈ [N ] and a tracing

key tk. trace is a deterministic algorithm inputting the tracing key tk and a
“pirate” codeword C∗, and outputting a subset Uacc ⊆ [N ] of accused users. A
code is called bias-based [2] if each codeword Cj = cj

1 . . . cj
n is sampled according

to a vector of biases 〈p1, . . . , pn〉, where ∀j ∈ [N ],∀i ∈ [n],Pr[cj
i = 1] = pi, and

pi ∈ [0, 1].
A fingerprinting code is called t−collusion resistant (fully collusion resistant

if t = N) if for any adversary A who corrupts up to t users (whose indices form
a set Ucor ⊂ {1, · · · , N}), and outputs a pirate codeword C∗ = c∗

1 . . . c∗
n (which

satisfies the marking assumption, i.e., for each i ∈ [n], c∗
i = cj

i for some j ∈ Ucor),
Pr[Uacc = ∅ or Uacc �⊆ Ucor : Uacc ← trace(tk, C∗)] ≤ ε (i.e., the probability that
no users are accused or an innocent user is accused is bounded by ε).

We also recall the Tardos code [26] Fntε here, it has length n = 100t2k,
with k = log 1

ε . The gen algorithm generates a codeword as follows. For each
segment index j ∈ [n], it chooses a bias pj ∈ [0, 1] according to a distribution
μ (see [26] for the definition of μ). Each bias satisfies 1

300t ≤ pj ≤ 1 − 1
300t ,

where t is the collusion size. For each codeword C = c1 . . . cn outputted by gen,
Pr[cj = 1] = pj , and Pr[cj = 0] = 1 − pj for all j ∈ [n]. Regarding security,
there is a trace algorithm such that, for any coalition of size at most t, with
probability at least 1 − εt/4 accuses a member of the coalition, while any non-
member is accused with probability at most ε.

3.1 Definitions of Fingerprinted Data Transfer

Now we define our main building block of fingerprinted data transfer (FDT
for short). Recall that each user should receive a fingerprinted copy of the file
according to his codeword. In the case of asymmetric fingerprinting, the segments
of the file will be transferred in an oblivious fashion so that the server should
be aware of only half of the user fingerprinting code. To be more specific, all
segments are transmitted using oblivious transfer to enable the user to receive
one of the versions, and for each pair of segments (2i − 1, 2i), where i ∈ [n], the
server will know one of the segments, the version that the user receives.

Intuitively, if we double the length of the fingerprinting code (dividing the file
into 2n segments), each user is essentially assigned two codewords, one is known
to the server, thus the trace algorithm can be executed to identify malicious
users; the other one is unknown to the server, and will be revealed to the judge
only when dispute happens. A user will be accused only when both codewords
are considered contributing to a pirate file. In this way, a malicious SP S frames
an honest user unless innocent users may be accused in the fingerprinting code.
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We also need to be careful that if malicious users know which half of the
codeword is known to the server, they may collude in a way that every codeword
in the collusion only contribute to half of the file thus no one will be accused on
both fingerprints. Thus for the segments (2i − 1, 2i) for i ∈ [n], the index that
the segment version is revealed to the server is also oblivious to the user.

The asymmetric fingerprinting scheme will essentially be running FDT
(defined below) in parallel for all pairs of the segments (2i − 1, 2i), thus it is
enough for us to illustrate the idea by considering only the sub-protocol for one
pair of segments. As Tardos code is binary, there are only two versions for each
segment. Consider two parties, a sender S and a receiver R. The sender has two
pairs of messages, two rational valued “biases” in [0, 1] and one bit c as inputs.
The receiver has no input. After the execution of the FDT protocol, R will
sample one message from each of the two pairs following the binary probability
distribution defined by the two biases and S will learn the output of the receiver
for the c-th pair. This describes the ideal operation of the primitive for the case
of one pair of segments. It is straightforward to extend to an arbitrary number
of pairs. The following is the formal definition of the fingerprinted data transfer
for bias-based codes including our main target Tardos code [26]. And following
the standard simulation base paradigm [13], we can also define the security of
the FDT protocol, and we defer it to the full version.

Definition 1. A fingerprinted data transfer functionality Π involves two par-
ties, a sender S and a receiver R. The sender inputs two biases p0, p1 ∈ [0, 1],
four messages (m0

0,m
1
0), (m

0
1,m

1
1), and a bit c ∈ {0, 1}; at the end of the protocol,

R outputs {mbi
i } for i, bi ∈ {0, 1} such that Pr[bi = 1] = pi; while S outputs bc.

We can express this (probabilistic) functionality as:

Π[⊥, ((p0, p1), (m0
0,m

1
0,m

0
1,m

1
1), c)] = [(mb0

0 ,mb1
1 ), bc],where Pr[bi = 1] = pi

Somewhat similar functionalities have been used for completely different
applications, see, e.g. [1,11]. The FDT protocol of Sect. 3.2 might be modified
so as to be used in these applications; we omit further discussions.

3.2 A Communication-Optimal Fingerprinted Data Transfer

On the receiver R side, for each pair of messages, say pair 0, FDT will enable an
oblivious sampling of one message from (m0

0,m
1
0) according to the bias p0, i.e., R

receives m1
0 with probability p0. To enable efficient oblivious sampling, suppose

p0 ≈ t0/T for some t0, where T = 2� and � is the precision level (this provides an
exponentially good approximation). To run a coin tossing protocol to generate
a random coin u, R and the SP S can utilize a SCOT protocol (e.g., [3]) to
transmit the data in a way that the user receives m1

0 iff u ≤ t0. Doing this will
allow the receiver to get m1

0 with probability close to p0 = t0/T . Furthermore,
they can run such procedure twice for the two pairs, and then run a (2, 1)-OT
protocol to reveal one of the bit to the SP.

Unfortunately, directly applying the SCOT protocol from, e.g, [3] will result
in a communication rate as low as 1/�, as the sender has to send � ciphertexts
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with similar size to m0
i . Moreover, a malicious user may abort after receiving

the file without revealing half of his bits. To deal with these concerns, our pro-
tocol will be divided into two phases, the first (the handshake phase) samples
only the codewords according to the biases that are specified by the sender;
the second (the content-transfer phase) transfers the actual content according
to the codewords that have been drawn. In our implementation, we will only
use the SCOT protocol to sample the distribution (transfer only short messages)
and then employ a rate-optimal OT protocol (we call oblivious download, OD
for short)to execute the content-transfer after the OT protocol is run in which
the SP is the receiver and the SP sees one of the bits. We assume that during the
hand-shake phase, the sender and receiver exchange their public keys with the
corresponding certificates.

Now we proceed to construct the new fingerprinted data transfer protocol.
Suppose the sender has p0 = t0

T , p1 = t1
T ; these determine two distributions over

{0, 1}. The sender also has two pairs of messages as inputs (m0
0,m

1
0), (m

0
1,m

1
1),

and prepares another two pairs of (h0
0, h

1
0), (h

0
1, h

1
1), where hb

i = H(mb
i )|i|b for

i, b ∈ {0, 1}. We assume that H is a collision resistant hash function shared by
the sender and the receiver, and Com is a secure (binding and hiding) commit-
ment scheme. We choose Encr and Encs to be good rate additive homomorphic
encryption schemes (e.g. using the Damgard-Jurik [9] encryption to encrypt the
message bit by bit as in [16]). Here, R knows the secret key of Encr and S
knows the secret key of Encs. Recall that LEQs[Encr(x), (y,m0,m1)] denotes the
sender computation in a concrete SCOT protocol that implements fLEQ−SCOT,
and ODs[Encr(x), (m0,m1)] denote the computation of the server in this proto-
col, given client ciphertext Encr(x) and server input (m0,m1) (defined in Section
2). The full protocol of FDT is presented in Fig 1.

We can estimate the communication rate α of our FDT protocol as follows:

1

α
≈ 2(|Com(r0)| + |Encr(s0)| + |Encr(hb0

0 )|) + |Encs(c)| + |Encs(hbc
c )| + 2|Encr(mb0

0 )|
2|mb0

0 | + 1

≈ o(|mb0
0 |)

2|mb0
0 | +

|Encr(b0)| + |Encr(mb
0)|

|b0| + |P [b0, (m0
0, m

1
0)]|

→ 1

r
, when m → ∞ ,

where m is the message size and r is the rate as defined in Sect. 2. We can
group several terms into o(|mb0

0 |) as all those are encryptions (or commitments)
of fixed size short messages. Thus, when the LHE scheme is rate optimal as [16],
our FDT protocol (and further our asymmetric fingerprinting scheme, see next
section) is also rate optimal.
Security Analysis. We briefly explain the properties of our protocol in the
semi-honest model. Correctness follows from the coin tossing and the property
of the LHE [16]. For instance, μ0 = Encr(h1

0), C0 = Encr(m1
0), if r0 ⊕ s0 ≤ t0, in

this case, Pr[b0 = 1] = t0/T = p0. For security, as we are working in the semi-
honest model for now, the sender and receiver views can be simulated easily to
preserve the consistency with the output. For detailed proofs, we refer to the full
version.
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Receiver R Sender S
S selects r0, r1 ←r ZT , and

Com(r0),Com(r1)←−−−−−−−−−−−−−− computes commitments Com(r0),Com(r1)

R selects s0, s1 ←r

ZT

Encr(s0),Encr(s1)−−−−−−−−−−−−−−→

S computes c0 = Encr(r0 ⊕ s0)
S computes c1 = Encr(r1 ⊕ s1)
S computes μ0 = LEQs[c0, (t0, h

1
0, h

0
0)]

µ0,µ1,Encs(c)←−−−−−−−−−−−−−− S computes μ1 = LEQs[c1, (t1, h
1
1, h

0
1)]

R retrieves hb0
0 , hb1

1

and computes uc =

ODs[Encs(c), (h
b0
0 , hb1

1 )]
uc−−−−−−−−−−−−−−→

S decrypts uc and checks the validity
S computes Encr(b0) = LEQs[c0, (t0, 1, 0)]
S computes Encr(b1) = LEQs[(c1, (t1, 1, 0)]
S computes C0 = ODs[Encr(b0), (m

0
0, m

1
0)]

C0,C1←−−−−−−−−−−−−−− S computes C1 = ODs[Encr(b1), (m
0
1, m

1
1)]

R checks the validity,

outputs: mb0
0 , mb1

1 S outputs bc (as inferred by hbc
c )

Fig. 1. Fingerprinted Data Transfer. {(m0
b , m

1
b), pb = tb

T
)}b=0,1, c are inputs of S.

Lemma 1. Our protocol shown in Fig. 1 securely implements the fingerprinted
data transfer functionality. Specifically, it is correct; and it satisfies receiver secu-
rity if the underlying encryption Encr is IND-CPA secure; it satisfies sender
security if the underlying commitment scheme Com(·) is computationally hiding,
and the encryption Encs is IND-CPA secure.

Work in the Malicious Model. Ultimately, we would like to design proto-
cols to defend against malicious adversaries who may arbitrarily deviate from
the protocol. The general method that in every step, both parties deploy zero-
knowledge proofs to show that they follow the protocol, could be inefficient. Note
that our protocol is highly structured, user misbehaviors can be easily detected
by the SP with some routine checks about the consistency in the transcripts. In
the 2nd round in coin tossing phase, the user could not learn any extra informa-
tion by not following protocol, as simulation for malicious user is not influenced
by the choices of s0, s1. While in the 4th round, the SP checks the validity of
hbc

c = H(mbc
c )||c||bc, if uc is not calculated as in the protocol and passes the

checking, it means the malicious user finds a value equal to H(m1−bc
c ). As the

message segment m1−bc
c has sufficient entropy thus h1−bc

c is also unpredictable,
otherwise, the user could easily find a collision by randomly sample messages
from the distribution of m1−bc

c . To be more specific, suppose M is the space of
m1−bc

c and D is its distribution, and H(M) = {H(m) : m ∈ M}, D will induce a
distribution H on H(M). Suppose the sender can predict h(m1−bc

c ) with proba-
bility δ, then the maximum probability of H is no less than δ. Let us use h0 to
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denote the most probable value in H(M). The adversary A simply sample mi

randomly according to D, and computes the hash value. Following the Chernoff
bound, using O( 1

δ2 ) many samples, A will almost certainly reach h0 twice. At
the same time, the probability that there are two same messages appear in the
sampled messages is exponentially small, as the most probable message from D
appears with negligible probability. Based on these two facts, A found a collision.

Regarding malicious SP, the user can also do some simple checks of
the consistency of the hash values. Note that there is a trusted judge that
makes the final decision about the set of accused users. We will show in next
section (as the judge is not involved with the FDT protocol) how we can take
advantage of this third-party to “force” the SP to follow the protocol, by adding
some simple and efficient “proofs of behavior”. We require the SP signs on each
round of messages she sends together with the user identity, and the user also
signs on each round of messages he sends. We also let user store part of the
transcripts and reveal them to the judge in case of dispute. Through a careful
analysis of Tardos code property together with these simple mechanisms, we can
argue security of our asymmetric fingerprinting scheme in the malicious model.

4 An Optimal Asymmetric Fingerprinting Scheme Based
on Tardos Code

Pfitzmann and Schunter [22] define an asymmetric fingerprinting scheme to be a
collection of four protocols 〈key gen, fing, identify, dispute〉. The algorithm key gen
can be used by a user to produce a public and a secret-key. The protocol fing is a
two-party protocol between a user and an SP that will result in the user obtain-
ing the fingerprinted copy of the file and the SP receiving some state of the user
codeword. The algorithm identify is an algorithm that, given a pirate copy and
the state of the SP, outputs a non-empty set of public keys (corresponding to
the accused user identities). Finally the algorithm dispute is a 3-party protocol
between the judge (or arbiter as it is called in [22]), the user and the SP that
either accepts the SP’s accusation or rejects it (depending on the evidence pre-
sented by the involved parties). For brevity we refer to [22] for the full syntax of
the scheme. Regarding the security model, an asymmetric fingerprinting scheme
should satisfy two security properties: (i) security for the SP, that states that
no malicious coalition of less than t users can escape the accusation of one of its
members from the identify algorithm as well as the validation of this accusation
by the dispute protocol, and (ii) security for the user, that states that an inno-
cent user cannot be implicated by a malicious SP (who can also corrupt other
users) in being responsible for a certain pirate copy. For formal definitions of an
asymmetric fingerprinting scheme, we refer to the full version.

In addition to the above basic requirements, we put forth two additional
properties that will be of interest.
Communication efficiency. The communication rate of an asymmetric finger-
printing scheme is measured as the ratio of the length of the file that is distributed
to the users over the total communication complexity of the fing protocol. In a
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communication optimal asymmetric fingerprinting scheme it holds that the rate
approaches 1 as the length of the file becomes larger. All known schemes in the
literature [6,21–23] have rate at most 0.5.
Security for the SP under group accusations. In [22] the algorithm identify is
responsible for producing a single colluder whose implication is guaranteed to
be validated by the dispute algorithm. In [6] this is extended to group accusa-
tion, i.e., the identify algorithm produces a set of accused users as output (this is
possible given that the underlying fingerprinting code enables such group accu-
sation). For SP security to be preserved under group accusations however, it
should be the case that for each accused user, its implication to the construction
of the pirate copy is validated by the dispute protocol. In the other case, the
SP will have to withdraw at least one accusation (something that may lead to
problems in a practical deployment). Therefore a protocol solution should guar-
antee in the setting of group accusation no accusation withdrawal can occur with
non-negligible probability. We refer the formal definitions to the full version.

4.1 Our Construction

We next describe our construction which satisfies the original security require-
ments of [22] as well as the two properties that we described above. Specifically it
is the first asymmetric fingerprinting scheme with both optimal communication
complexity and code length. And one can easily adapt our construction to other
asymmetric fingerprinting scheme from any bias-based code.

Recall the definition of Tardos code as explained in section 3, the main task is
the fing protocol, which will be constructed from our fingerprinted data transfer
protocol (see Fig 1) with some extra checks to achieve security in the malicious
model in which the adversary may not follow the protocol. To describe the
generation of the fingerprinted copy of each user in more detail, let us abstract
each variant of a segment mb

i with a value in {0, 1},where i ∈ [2n], b ∈ {0, 1}
and 2n is the length of the fingerprint. Thus, the fingerprinted file of each user
is a 2n-bit string, where each bit signifies which variant of the corresponding
segment the user received. It will be generated so that n bits from a set L ⊆ [2n]
will be known to the SP, while the other n bits (from [2n] \ L) will only be
known by the user. The user, however, will not know if a given location belongs
to L or not. Each of the parts L and [2n] \ L is an instance of the Tardos code
[26]. The two parts are produced by generating two segments at a time, using
the functionality achieved by the protocol in Figure 1, i.e., for the i-th pair of
segments (2i−1, 2i), where i ∈ [n], the user and the server runs the fingerprinted
data transfer with the SP taking [(p2i−1, p2i), (m0

2i−1,m
1
2i−1), (m

0
2i,m

1
2i), ci] as

inputs. Based on the security properties of this protocol, the user receives two
variants of two different segments, while the SP does not know one of them
and the user is oblivious regarding which one the SP knows. Our asymmetric
fingerprinting scheme proceeds as follows:
Key generation. The key gen for the user is simply the generation of two public-
secret key pairs (pk1, sk1), (pk2, sk2). The first is for a digital signature scheme
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(which we use as black-box), and the second is for the additively homomorphic
encryption Encr used in the fingerprinted data transfer.
The fing protocol. The user has as input its public and secret keys while the SP
has as input SP public keys, and system parameters, e.g., the level of precision
�. Furthermore, the protocol is stateful from the point of view of the SP. The
state of the SP contains the definition of the Tardos code parameters (e.g.,
probabilities {pi}). Also, the SP has as private inputs a set L = {c1, . . . , cn},
and a file that is divided in 2n segments for each one of which there are two
variations. The i-th segment, b-th variant is denoted by mb

i .
The fing protocol proceeds as follows: the SP and the user first carry out a

handshake protocol to prepare the system parameters including the exchange of
the public keys of each other; then for each i-th pair of segments with indices
(2i−1, 2i) where i ∈ [n], the user and the server runs the FDT with the SP taking
[(p2i−1, p2i), (m0

2i−1,m
1
2i−1), (m

0
2i,m

1
2i), ci] as inputs, and these n protocols are

run in parallel. Also in each round, if the SP sends out a message, she signs on
the message together with the user’s identity; if the user sends a message, he
signs it as well. During protocol execution each party verifies that the messages
they receive are proper and if they are not they will abort the protocol.

Furthermore some additional checks are in place to detect the malicious
behavior within fing as explained at the end of section 3.2. These are as follows:
The user checks after receiving the actual data segments (in the last round)
whether they are consistent with the hash values (see Remark in section 3.2)
he received in the 3-rd round. The SP, checks the validity of the hash value
she received in the 4-th round. Also, both parties will store some information for
input to the dispute protocol. The user keeps the commitments received from the
first round and the hashed values and the encrypted bits of {Encsci} for i ∈ L,
received in the 4-th round; the SP keeps the encrypted random coins of the user
received in the 2nd round. Note that these checks do not enforce semi-honest
behavior - nevertheless we will show (see Theorem 1,2) they are sufficient for
security against malicious parties in the presence of the judge (which is assumed
honest).

We see that our fing protocol essentially runs out FDT protocol in parallel
with only some extra signatures, thus it inherits the rate optimality from FDT.
The identify algorithm. This algorithm takes a pirate file M , and all users’
half codeword X1, . . . , XN together with the location indices L1, . . . , LN and
the vector of biases 〈p1, . . . , p2n〉 as inputs. It first extracts a codeword Y =
y1 . . . y2n ∈ {0, 1}2n from M (as we assume each bit is publicly computable from
the segment). For the ease of presentation, we describe the algorithm for one
user with stored codeword X = xc1 . . . xcn

and L = {c1, . . . , cn}. For each j ∈ L,
it computes:

Uj =

⎧
⎨

⎩

√
1−pj

pj
, if xj = 1;

−
√

pj

1−pj
, if xj = 0

as in [26]. The service provider calculates the score of the user over the locations
in L; S =

∑
j∈L yjUj , and if S > Z, where Z = 20tk, the SP reports this user to
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the judge. This is repeated for every user and a list of accused users is compiled
and reported to the judge.
The dispute protocol. This is a protocol among the SP, the judge and a user.
The two parties first submit to the judge the protocol transcript they stored. In
more detail, the user submits SP’s commitments sent in the 1st round and the
hash values; also, the SP submits the biases and the encryptions from the user in
the 2nd round as well as openings of her commitments. The judge first verifies the
code parameters, then does the following checks, (1). the validity of the segments,
i.e., they should be one of the versions. (2). the validity of all signatures, if any
signature is invalid, accuse the party who submits it. (3). Otherwise, the judge
checks whether the user codeword is generated properly, i.e., each bit of the
codeword is consistent with the coin-tosses – whether bi = [ri+si ≤ ti] where bi is
the i-th bit, ri, si, ti are as in the FDT (the notation [·] here denotes a predicate).
To finish this check, the judge requires the SP to open her commitments, and the
user to reveal his coins in the ciphertext {Encr(si)}and prove their validity. (4).
Furthermore, the judge requests from the user to submit the encrypted locations
{Encs(ci)} and requests the SP to decrypt it and prove a correct decryption, so
that the judge calculates the set of locations L. Any party failed to prove the
correct decryption will be accused.

If all the checks pass, the judge will recover user’s fingerprint x′ from the bits
{bi}, also he inspects the pirate content and extracts the fingerprint y′. Then
he computes the U ′ as in the identify algorithm for locations L′ = [2n]\L using
x′, y′ as inputs. Finally, for any user reported, the judge calculates his score over
the locations in L′; S′ =

∑
j∈L′ y′

jU
′
j , and make decisions if S′ > Z ′, where

Z ′ = Z/2 = 10tk, he validates the accusation; otherwise, the user is acquitted.
Note that we are using a lower threshold on the judge-side, to counter-balance

the probability that a user is accused over L, but not over [2n] \ L. In fact this
is an essential feature of our scheme to ensure security for the SP under group
accusations. We in fact show that if Z ′ = Z it can happen with high probability
that the SP will have to withdraw an accusation; in Fig 2, we explore this exper-
imentally by having a coalition of 40 users where the pirate strategy is as follows:
the pirate content is formed via a majority strategy by the segments available to
the coalition of size t. For each segment with probability p (a parameter of the
strategy) the pirate segment is determined with probability p to be the major-
ity of the segments of all t users or with probability 1 − p the segment of the
first user. We variate the parameter p of the strategy and we demonstrate from
experimental data that for suitable choice of p the number of accusation with-
drawals can be as high as as a quarter of the coalition. One would expect that
in practice, such high level of accusation withdrawal would impact seriously the
credibility of the SP. In our construction, by appropriately differentiating the
tracing algorithm between the judge and the SP we circumvent this problem
entirely. It should be noted that this issue was not addressed in [6] where the
Tardos tracing algorithm was also used for determining the implication of users.
Remark: There are two phases when the judge requests one of the two par-
ties to prove a valid decryption of a bit. As we are using a variant of DJ
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Fig. 2. The vertical axis represents the number of accusation withdrawals (i.e., for
how many users the service provider has to abandon its accusation); the total number
of colluding users is 40. The horizontal access is the parameter of the colluding strategy
p; for a suitably choice of p the accusation withdrawals reach 25% of colluders.

encryption [9], the prover can simply reveal the message together with the
random coins used in encryption as it decodes uniquely in this form. Specifi-
cally, if a message m is encrypted with random coin r, it results in a ciphertext
c = (n + 1)mrns

mod ns+1, the prover can decrypts c to recover m and then
obtains r = dn−s mod φ(n) mod n, where d = rns

mod n is computed from
c · (n + 1)−m mod (ns+1).

4.2 Security Analysis

We give here explain the intuitions about the security analysis of our asymmetric
fingerprinting scheme, for the details of the proofs, we refer to the full version.
Security for the innocent user. We will show that no innocent user will
be framed. In the case of a semi-honest SP, she follows the fingerprinted data
transfer protocol and the accusation procedure, but will try to make a pirate
copy to frame some innocent user. As the FDT protocol satisfies the simulation
based definition, from the composition lemma [5], A semi-honest SP will have
the similar behavior interacting with only an oracle which returns her half of the
codeword. In this case, the SP wins only when she is able to break the innocent
user security of Tardos code as shown in Theorem 2.1 in [26] that an innocent
user will be framed with a probability no bigger than ε regardless of what biases
are used and what is the pirate copy.

Lemma 2. An innocent user will be accused with negligible probability by a semi-
honest service provider if the encryption Encr used is IND-CPA secure.

Now we consider a malicious SP who may arbitrarily deviate from the proto-
col. With the simple checks, there is only one class of deviations left (which is not
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yet clear whether always detectable): the malicious SP submits different biases
to the judge with those used during fing; This includes many subtle attacks,
e.g., in one instance of FDT, the malicious SP uses the same messages in each
pair to do the transmission, i.e., SP inputs (mb0

0 ,mb0
0 ), (mb1

1 ,mb1
1 ) (same for the

hash values). Doing this the malicious SP will know the complete codeword of
the user. Similarly, the SP could swap the messages in each pair, i.e., transmit
version 1 − bi if the code is bi. Both of these behavior can be seen as special
case of the above deviation. In the first case, the user codeword is essentially
generated using a vector of probabilities 〈p1, . . . , p2n〉, where each pi ∈ {0, 1},
while the latter case is that each pi = 1−p′

i where p′
i is the reported bias. As the

judge will check the constancy of the codeword with the coin tossing, the more
indices the SP reports different biases, the hight the probability she got caught.
Through a careful analysis, we manage to show that the probability of accusing
an innocent user and the probability of reporting different biases without being
detected can never be non-negligible simultaneously, which further implies that
either the malicious SP deviates without hurting the innocent user security, or
the deviation will be almost always detected by the judge.

Theorem 1. A malicious service provider can frame an innocent user without
being detected by the judge with negligible probability if the underlying encryption
Encr is IND-CPA secure, the commitment scheme is computationally binding,
the digital signature scheme we use as black-box is existentially unforgeable, and
the hash function is collision resistant.

Security for the SP under group accusations. The analysis for the effec-
tiveness of the accusation procedure will also proceed in two steps. We first deal
with semi-honest users who will follow the fing protocol and the accusation pro-
cedure, but they will try to make a pirate copy and avoid being accused. From
the half fingerprint known to the SP, the SP can always identify colluders. As
the FDT satisfies the simulation based security, the behavior of the adversary
is essentially the same as the one interacting with only an oracle returning the
codewords of corrupted users, while no information about which half of the code-
words are known to the SP is leaked. Further we can show that by relaxing the
threshold on the judge side, whoever accused by the SP using the half fingerprint
will also be accused by the judge using another half fingerprint.

Lemma 3. Suppose Ucor, with |Ucor| ≤ t, is a coalition of users. If all users are
semi-honest during the fing protocol execution. The probability that no user is
accused or an accused user is acquitted by the judge is ε1/16+εt/4+ε0, where ε is
the parameter from the Tardos code, ε0 is negligible (to the security parameter),
if the underlying commitment scheme Com(·) is computationally hiding, and the
encryption Encs is IND-CPA secure.

The case that malicious users can arbitrarily deviate from the protocol are
easier to analyze than Theorem 1 due to the simple checks. It is easy to see that
in each round, the user is forced to be behave honestly, otherwise the deviation
will be detected with overwhelming probability.



484 A. Kiayias et al.

Theorem 2. Suppose Ucor, with |Ucor| ≤ t, is a coalition of users. Assuming
Encs is IND-CPA secure, the commitment scheme Com(·) is computationally
hiding and the signature scheme used is existentially unforgeable, and the hash
function is collision resistent. Then the probability that no user is accused or an
accused user is acquitted by the judge is ε1/16 + εt/4 + ε0, where ε is the error
probability from the Tardos code, ε0 is negligible (to the security parameter).

5 Security Implications of Protocol Restarts

In the following, we consider the original Tardos code with length m = 100t2k
and threshold Z = 20tk, where c is the number of colluders and k = log 1

ε the
security parameter. For simplicity, we take t equal to the number of users n.

If the colluders are allowed restarts, they can act as follows. They do (μ − 1)
restarts each to receive a total of μmn bits. For the pirate codeword, they output
a zero whenever they can. Formally, for any j ∈ [m], let x be the number of ones
the pirates have received collectively at location j. They set yj , the bit of the
pirate copy at j, as follows.

yj =

{
1 if x = μn;
0 otherwise.

We are going to show that with this simple strategy, each pirate escapes with
high probability. Let p denote the bias-vector, X the codeword of an arbitrary
pirate, Y the pirate copy generated by the aforementioned strategy, and

Uj =

⎧
⎨

⎩

√
1−pj

pj
, ifXj = 1;

−
√

pj

1−pj
, ifXj = 0.

The score of the pirate can be expressed as S =
∑

j∈[m] YjUj . Our task is to
upper-bound Pr[S > Z]. We’ll use ex ≤ 1 + x + x2, valid for x ≤ 1. Since
|Uj | <

√
300n, choosing α < 1

10n we have

E[eαS ] = E[
∏

eαYjUj ] =
∏

E[eαYjUj ] ≤ ∏
E[1 + αYjUj + α2Y 2

j U2
j ]

≤ ∏
(1 + αE[YjUj ] + α2E[U2

j ]) =
∏

(1 + αE[YjUj ] + α2).

For any j ∈ [m] we have

E[YjUj ] = Epj

[
pμn

j

√
1−pj

pj

]
=

1
π/2 − 2t′

∫ π/2−t′

t′
sin2μn−1r cos r dr

=
1

π/2 − 2t′
· 1
2μn

· sin2μnr

∣
∣
∣
∣

π/2−t′

t′
=

(1 − t)μn − tμn

(π − 4t′)μn
≤ 1

3μn
.

Putting things together, and using 1 + x ≤ ex, we obtain E[eαS ] ≤ ∏
(1 +

α/(3μn)+α2) ≤ eα2m+αm/(3μn). An application of Markov’s inequality now gives
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that: Pr[S > Z] < E[eαS ]
eαZ ≤ eα2m+αm/(3μn)−αZ . For m = 100n2k, Z = 20nk,

k = log(1/ε), α = 1
10n (1 − 5

3μ ), μ > 1, we conclude that:

Pr[S > Z] < ε(1− 5
3μ )2 .

Thus, even allowing a single restart per user, is sufficient for the pirates to
escape with high probability. Another way to view this, is that an instantiation of
Tardos code that can handle a coalition of size t, is not secure against a coalition
of size 2t. The simple way around this, is to instantiate the code so as to handle
coalition size μt, and allow each user at most μ − 1 restarts.

6 Conclusion

In this paper, we constructed the first communication optimal asymmetric fin-
gerprinting scheme, (i.e., the total number of bits transmitted in the protocol
is almost the same as the length of the files), based on Tardos code. This is
an appealing feature, especially for fingerprinting schemes in which large data
(like movies) are transmitted. Besides rate optimality, we also considered two
properties: security against accusation withdrawal and security under adversar-
ial aborts, which are overlooked in previous asymmetric fingerprinting schemes.
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Abstract. We design a linearly homomorphic encryption scheme whose
security relies on the hardness of the decisional Diffie-Hellman problem.
Our approach requires some special features of the underlying group.
In particular, its order is unknown and it contains a subgroup in which
the discrete logarithm problem is tractable. Therefore, our instantiation
holds in the class group of a non maximal order of an imaginary quadratic
field. Its algebraic structure makes it possible to obtain such a linearly
homomorphic scheme whose message space is the whole set of integers
modulo a prime p and which supports an unbounded number of additions
modulo p from the ciphertexts. A notable difference with previous works
is that, for the first time, the security does not depend on the hardness of
the factorization of integers. As a consequence, under some conditions,
the prime p can be scaled to fit the application needs.

1 Introduction

A widely deployed kind of encryption scheme has an “algebraic” property which
precludes it to reach the highest level of security. It is called homomorphic,
because an operation on the ciphertexts translates into an operation on the
underlying plaintexts. This homomorphic property is actually very important
for many applications, like e-voting for instance. Indeed, an additively homo-
morphic encryption makes it possible to obtain an encryption of the sum of all
the ballots (which consists in 0 or 1 in the case of a 2-choice referendum for
instance) from their encryption, so that a single decryption will reveal the result
of the election, saving a lot of computational resources which would have been
necessary to decrypt all the ciphertexts one by one. A tremendous breakthrough
related to homomorphic encryption was Gentry’s theoretical construction of a
fully homomorphic encryption scheme [Gen09], which actually allows to evaluate
any function on messages given their ciphertexts.

Currently, no linearly homomorphic encryption scheme is secure under a
discrete logarithm related assumption. This theoretical question has been open
for thirty years. In this paper, we provide the first construction of such a scheme.
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Related Work. The story of homomorphic encryption begins with the first prob-
abilistic encryption scheme [GM84], which was also homomorphic, improved in
[Ben88,NS98,OU98]. One of the most achieved system was actually designed by
Paillier [Pai99]. Its semantic security relies on the decisional composite residu-
osity assumption. Paillier’s scheme has then been generalized by Damg̊ard and
Jurik [DJ01], allowing to encrypt larger messages. This family of practical lin-
early homomorphic schemes is still growing with the recent work of Joye and
Libert [JL13]. The security of these schemes is based on the problem of factoring
RSA integers (including the elliptic curve variant of Paillier [Gal02]).

To design a linearly homomorphic encryption based on the Discrete Loga-
rithm problem (DL), a folklore solution consists in encoding the message in the
exponent of an Elgamal encryption, i.e., in encrypting m as (gr, hrgm) where g
is a generator of a cyclic group G = 〈g〉 and h = gx is the public key. Unfor-
tunately, to decrypt, one has to recover m from gm and as the DL problem in
G must be intractable, m has to be small enough to ensure a fast decryption.
As a result, only a logarithmic number of additions is possible. There have been
some attempts to reach a fully additive homomorphy based on the DL problem,
with a variant of Elgamal modulo p2 ([CPP06]) or with messages encoded as a
small smooth number ([CC07]); both solutions still have a partial homomorphy.
In [W+11], the map m �→ gm

0 mod p0 is used with the plain Elgamal, where
p0 is a prime such that p0 − 1 is smooth and g0 is a primitive root modulo p0.
Unfortunately, although not clearly stated, this scheme only supports a limited
number of additions, and it is not semantically secure as the set of encoded mes-
sages does not belong to a proper subgroup of (Z/pZ)× where the Decisional
Diffie-Hellman assumption (DDH) holds.

A full solution was proposed by Bresson et al. in [BCP03]. However, their
scheme is not only based on the DL problem but also on the factorization prob-
lem. It is less efficient than [Pai99] but has an additional property: it has a double
trapdoor. The idea is to use the same setting as Paillier: In (Z/N2Z)×, the DL
problem in basis f = 1 + N is easy. Bresson et al. use an Elgamal encryption of
the message m as (gr, fm · hr) modulo N2, where N is an RSA integer.

To our knowledge, designing a linearly homomorphic scheme based on the
sole hardness of the DL problem is an open problem, as stated in [CPP06]. Some
other schemes allow more homomorphic operations, like [BGN05] or [CL12]. As
already mentioned, a fully homomorphic encryption (FHE) scheme appeared in
2009 [Gen09]. Its security relies on hard problems related to lattices. The lat-
est developments of FHE [BV14] are getting more and more efficient and might
become operational soon for applications that need a complex treatment over
ciphertexts. Meanwhile, for applications that need only to add ciphertexts, pro-
tocols that rely on “classical” algorithmic assumptions are still more competitive,
in particular in terms of compactness.

Our Contributions. Our contribution has both a theoretical and a practical
impact. On one hand, we propose a linearly homomorphic encryption scheme
whose security relies on the hardness of the decisional Diffie-Hellman problem.
In particular it is the first time that the security of such a scheme does not
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depend on the hardness of the factorization of integers. On the other hand, we
provide an efficient implementation within some specific group, namely the class
group of orders in imaginary quadratic fields.

The design of our scheme is somehow similar to the one of [BCP03]. We
use a group G = 〈g〉 such that the DDH assumption holds in G and such that
there exists a subgroup 〈f〉 of G where the DL problem is easy (called a DDH
group with an easy DL subgroup). Then the core of the protocol is an Elgamal
encryption of the message m as (gr, fm · hr) for a random r. In our case, the
message space will be (Z/pZ)∗, where p is a prime. Compared to some other
linearly homomorphic schemes, ours allows some flexibility as p can be chosen
(with some restrictions) independently from the security parameter.

To reach this unnatural feature without involving the factorization problem,
we had to use the particular algebraic structure of class groups of imaginary
quadratic fields, which have some specificities which seem hard to find in other
groups. We designed a method to compute a group of unknown1 order (to insure
the hardness of a partial discrete logarithm assumption) which contains an easy
DL subgroup (of known order). The interest of class group of orders in imagi-
nary (or real) quadratic fields in cryptography decreased after critical attacks by
Castagnos et al. [CL09,CJLN09] on some specific cryptosystems such as NICE
[HPT99,PT00] and its real variant [JSW08]. These attacks will not apply in our
setting. Indeed, these attacks recover the secret key by exposing the factoriza-
tion of the discriminant of the field, thanks to the structure of the kernel of the
surjection between the class group of a non maximal order to the class group
of the maximal order. In our case, the factorization of the discriminant will be
public and we will use constructively the ideas of [CL09]: the subgroup with
an easy DL will be precisely the kernel of this surjection. The security of our
scheme is proved to rely only on the hardness of the DDH problem in the class
group of a non maximal order and on the hardness of computing class numbers.
Several systems that adapt either Diffie-Hellman or Elgamal in class groups are
already based on the DL problem and the DDH assumption in class groups of
maximal order ([BW88,BDW90,SP05,BH01,BV07]) of discriminant ΔK . The
current best known algorithms to solve these problems have a sub-exponential
complexity of complexity L|ΔK |(1/2, o(1)) (cf. [BJS10]). It means that the factor-
ization problem (or the discrete logarithm problem in a finite field) can be solved
asymptotically faster than the discrete logarithm in the class group.2 Moreover,
arithmetic operations in class groups are very efficient, since the reduction and
composition of quadratic forms have a quadratic time complexity (and even quasi
linear using fast arithmetic).

As a result, our scheme is very competitive. With a straightforward imple-
mentation and using an underlying arithmetics very favorable to [Pai99,BCP03],

1 There have been some use of groups of unknown order [Bre00,CHN99,DF02].
2 Note that it is well known (see [HM00] for instance) that computing the class number

of a quadratic field of discriminant Δ allows to factor Δ . However for our scheme,
the factorization of the discriminant Δ will be public or Δ will be a prime, so we
will not rely on the hardness of the factorization problem.
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it compares very well with these linearly homomorphic protocols. With a similar
level of security, it is faster than [BCP03] with a 2048 bits modulus, and the
decryption process is faster than Paillier’s for a 3072 bits modulus.

A very nice application of our protocol is that it can be used directly in
Catalano and Fiore’s linearly homomorphic encryption transformation to eval-
uate degree-2 computations on ciphertexts [CF14]. Their technique requires the
message space to be a public ring in which it is possible to sample elements
uniformly at random. Our scheme has this feature naturally, contrary to some
of the other additively homomorphic schemes. It is therefore a very competitive
candidate in 2-server delegation of computation over encrypted data (see [CF14]
for more details).

2 DDH Group with an Easy DL Subgroup

In this section, we introduce and formalize the concept of a group in which
the decisional Diffie-Hellman problem is hard, whereas it contains a subgroup
in which the discrete logarithm problem is easy. This problem has already been
used to design cryptosystems, including, for instance, Bresson et al.’s encryption
scheme [BCP03]. It will be adjusted to build our new encryption protocol.

2.1 Definitions and Reductions

Definition 1. We define a DDH group with an easy DL subgroup as a pair
of algorithms (Gen,Solve). The Gen algorithm is a group generator which takes
as input two parameters λ and μ and outputs a tuple (B,n, p, s, g, f,G, F ). The
integers B,n, p and s are such that s is a λ-bit integer, p is a μ-bit integer,
gcd(p, s) = 1, n = p · s and B is an upper bound for s. The set (G, ·) is a
cyclic group of order n generated by g, and F ⊂ G is the subgroup of G of
order p and f is a generator of F . The upper bound B is chosen such that the
distribution induced by {gr, r

$←− {0, . . . , Bp−1}} is statistically indistinguishable
from the uniform distribution on G. We assume that the canonical surjection
π : G → G/F is efficiently computable from the description of G,H and p and
that given an element h ∈ G/F one can efficiently lift h in G, i.e., compute an
element h� ∈ π−1(h). We suppose moreover that:

1. The DL problem is easy in F . The Solve algorithm is a deterministic poly-
nomial time algorithm that solves the discrete logarithm problem in F :
Pr

[
x = x� : (B,n, p, s, g, f,G, F ) $←− Gen(1λ, 1μ), x $←− Z/pZ,X = fx,

x� ← Solve(B, p, g, f,G, F,X)
]

= 1
2. The DDH problem is hard in G even with access to the Solve algorithm:∣

∣
∣
∣Pr

[
b = b� : (B,n, p, s, g, f,G, F ) $←− Gen(1λ, 1μ), x, y, z

$←− Z/nZ,

X = gx, Y = gy, b
$←− {0, 1}, Z0 = gz, Z1 = gxy,

b� $←− A(B, p, g, f,G, F,X, Y, Zb,Solve(.))
] − 1

2

∣
∣
∣
∣

is negligible for all probabilistic polynomial time attacker A.
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The bound B for the order s in Definition 1 can be chosen as B = 22λ. Indeed,
the statistical distance of {gr, r

$←− {0, . . . , Bp − 1}} to the uniform distribution
can be shown to be upper bounded by n/(4pB) = s/22λ+2 � 2−λ−2 which a
negligible function of λ.

It is fundamental to note that in this definition, the order n of the group
G is not an input of the adversary or of the Solve algorithm: Only the bound
Bp is implicitly given. Indeed, if n or s were efficiently computable from the
description of G, a DDH group with an easy DL subgroup would not exist since
it would be possible to partially compute discrete logarithms. More formally, let
us define the following partial discrete logarithm problem initially introduced by
Paillier in [Pai99], in the context of the group (Z/N2Z)×.

Definition 2 (Partial Discrete Logarithm (PDL) Problem). Let us denote
by (Gen,Solve) a DDH group with an easy DL subgroup. Let (B,n, p, s, g, f,G, F )

be an output of Gen(1λ, 1μ), x
$←− Z/nZ,X = gx. The Partial Discrete Loga-

rithm Problem consists in computing x modulo p; given (B, p, g, f,G, F,X) and
access to the Solve algorithm.

The proofs of the two following lemmas can be found in the full version of
this article [CL15].

Lemma 1. Let (Gen,Solve) be a DDH group with an easy DL subgroup and let
the tuple (B,n, p, s, g, f,G, F ) be an output of Gen(1λ, 1μ). The knowledge of n
makes the PDL problem easy.

Lemma 2. Let G be a DDH group with an easy DL subgroup. The DDH problem
in G reduces to the PDL problem.

Remark 1. Combining Lemmas 1 and 2 we get that as previously mentioned,
with the notation of Definition 1, if n is easily computable from the description
of G, then the DDH problem in G is easy so, G can not be a DDH group with
an easy DL subgroup.

The following problem was introduced in [BCP03] in (Z/N2Z)×. It is a vari-
ant of the Diffie-Hellman problem, that we adapt to our general context.

Definition 3 (Lift Diffie-Hellman (LDH) Problem). Let (Gen,Solve) be a

DDH group with an easy DL subgroup. Let (B,n, p, s, g, f,G, F ) $←− Gen(1λ, 1μ).

Let x, y
$←− Z/nZ,X = gx, Y = gy and Z = gxy and π : G → G/F be the

canonical surjection. The Lift Discrete Logarithm Problem consists in computing
Z, given the tuple (B, p, g, f,G, F,X, Y, π(Z)) and access to the Solve algorithm.

In the following theorem we prove that this problem is equivalent to the PDL
problem. Curiously only one implication was proved in [BCP03].

Theorem 1. In a DDH group with an easy DL subgroup, the LDH and PDL are
equivalent.
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Proof. In all the proof, we implicitly set s = n/p and α ∈ (Z/pZ)× such that
gs = fα and denote β ≡ α−1 (mod p). Let us first prove that the PDL problem
reduces to the LDH problem, which is a direct generalization of the proof of
[BCP03, Theorem10]. Let (B, p, g, f,G, F,X) be a PDL challenge and let denote

X = gx where x = x1 + x2p with x1 = x mod p. The adversary draws r1
$←−

{0, . . . , B−1}, r2
$←− {0, . . . , p−1} and sets Y = gr1fr2 . Note that Y = gr1+sβr2 .

Let us prove that the random variable Y is statistically indistinguishable from
the uniform distribution in G.

The distance between Y and the uniform distribution in G is the same
than the distance between Y ′ = r1 + sβr2 mod n with r1 uniformly drawn
in {0, . . . , B − 1} and r2 independently uniformly drawn in {0, . . . , p − 1} and
the uniform distribution in {0, . . . , n− 1}. Let y be an element of {0, . . . , n− 1},
we denote y = y1 + y2s with y1 ∈ {0, . . . , s − 1} and y2 ∈ {0, . . . , p − 1} the
euclidean division of y by s. We have

Pr[Y ′ = y] = Pr[Y ′ = y1 + y2s] = Pr[r1 + sβr2 ≡ y1 + y2s (mod n)] =

Pr[r1 ≡ y1 (mod s)] Pr[r2β ≡ y2 (mod p)] = Pr[r1 ≡ y1 (mod s)]/p

as β 
≡ 0 (mod p). Now let B = qs + r with 0 � r < s be the euclidean division
of B by s. We proceed as in the proof of [CL15, Lemma 4, Appendix C]. For
y1 < r, Pr[r1 ≡ y1 (mod s)] = (q + 1)/B > 1

s and for y1 � r, Pr[r1 ≡ y1

(mod s)] = q/B � 1
s . Eventually, Δ(X,Y ) = r

(
q+1
Bp − 1

n

)
= r(s−r)

Bn = r(n−pr)
pBn �

r(n−r)
pBn · This last quantity is the statistical distance of {gr, r

$←− {0, . . . , Bp− 1}}
to the uniform distribution in G which is suppose to be negligible. This proves
that Y is statistically indistinguishable from the uniform distribution in G.

The adversary then compute Z ′ = π(Xr1) = π(Xr1+sβr2) and queries the
LDH oracle with (B, p, g, f,G, F,X, Y, Z′). Then the oracle provides with non
negligible probability Z = Xr1+sβr2 = Xr1(gx)sβr2 = Xr1g(x1+x2p)(sβr2) =
Xr1gx1sβr2 = Xr1fx1r2 . Then, Z/Xr1 = fx1r2 and running the Solve algorithm
on this value gives x1r2 (mod p) to the adversary from which he can get x1, the
answer to the PDL instance.

Now, let us prove that the LDH problem reduces to the PDL problem. Let
us consider X = gx, Y = gy, Z = gxy for random x and y, such that the LDH
challenge writes as (B, p, g, f,G, F,X, Y, Z′ = π(Z)). The adversary makes two
queries to the PDL oracle relative to X and Y , from which he obtains x (mod p)

and y (mod p). The adversary draws r1
$←− {0, . . . B−1} and r2

$←− {0, . . . , p−1}
and sets U = gr1fr2 , which is as before statistically indistinguishable from the
uniform distribution in G. The adversary queries the PDL oracle with U , which
gives r1 + sβr2 (mod p) as U = gr1+sβr2 . From this answer, the adversary can
compute sβ (mod p). From the definition of a DDH group with an easy DL

subgroup, the adversary can compute Z ′
� ∈ π−1(Z ′). He then draws r

$←− Z/pZ
and computes V = frZ ′

�. The random variable V is uniformly distributed in G.
As π(V ) = Z ′ = π(Z), there exists γ ∈ Z/pZ such that V = fγZ = gsβγ+xy.
From a last call to the PDL oracle, the adversary can get sβγ +xy (mod p) from
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which he can compute γ since gcd(sβ, p) = 1. Eventually, the adversary deduces
Z from V = fγZ. ��

We now further analyze the relations between the problems in G/F and G.
We first give a lemma that shows that we can define a morphism in order to lift
the elements from G/F to G. The proofs can be found in the full version of this
article [CL15].

Lemma 3. Let (B,n, p, s, g, f,G, F ) $←− Gen(1λ, 1μ) where (Gen,Solve) is a DDH
group with an easy DL subgroup. Denote π : G → G/F the canonical surjection.
The map ψ : G/F → G s.t. h �→ hp

� , where h� ∈ π−1(h), is an effective injective
morphism.

Theorem 2. Let (B,n, p, s, g, f,G, F ) $←− Gen(1λ, 1μ) where (Gen,Solve) is a
DDH group with an easy DL subgroup. The DL problem in G/F reduces to the
DL problem in G.

Unfortunately, it seems unlikely that a similar reduction of the DDH problem
in G/F to the DDH problem in G exists. Indeed, a DDH challenge in G/F can
be lifted into ψ(G/F ) ⊂ G. But G = ψ(G/F ) × F , so the reduction has to fill
the F−part to keep the DDH challenge’s form. This seems impossible with a
non-negligeable advantage.

2.2 A Generic Linearly Homomorphic Encryption Scheme

From a DDH group with an easy DL subgroup, we can devise generically a
linearly homomorphic encryption scheme. An Elgamal type scheme is used in G,
with plaintext message m ∈ Z/pZ mapped to fm ∈ F . The resulted scheme is
linearly homomorphic. Thanks to the Solve algorithm, the decryption does not
need a complex DL computation. We depict this scheme in Fig. 1. Note that the
outputs n and s of Gen are not used in the algorithms.

Let us prove the homomorphic property of the scheme. Let us consider an
output of the EvalSum algorithm on an input corresponding to encryptions of
m and m′. Due to Elgamal’s multiplicativity, the first line of the decryption
algorithm applied on this output gives M = fmfm′

= fm+m′ mod p as f as
multiplicative order p. As a consequence, the decryption process indeed returns
m + m′ mod p, and the EvalSum algorithm gives a random encryption of m +
m′ (mod p) (in the sense that it has the same output distribution than the
encryption algorithm on the input m+m′ (mod p)). The same argument works
for the EvalScal algorithm, with any scalar α ∈ Z/pZ.

2.3 Security

The total break of our scheme (tb − cpa attack) consists in finding x from
(B, p, g, gx, f), i.e., in computing a discrete logarithm in G. From Theorem 2,
this is harder than computing a discrete logarithm in G/F .
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KeyGen(1λ)

1. (B, n, p, s, g, f, G, F )
$←− Gen(1λ, 1μ)

2. Picka x
$←− {0, . . . , Bp − 1}, set h ← gx

3. Set pk ← (B, p, g, h, f) and sk ← x.
4. Return (pk, sk)

Encrypt(1λ, pk, m)

1. Pick r
$←− {0, . . . , Bp − 1}

2. Compute c1 ← gr

3. Compute c2 ← fmhr

4. Return (c1, c2)

a As n will be unknown in the sequel, x is
picked at random in {0, . . . , Bp − 1}

Decrypt(1λ, pk, sk, (c1, c2))

1. Compute M ← c2/cx
1

2. m ← Solve(p, g, f, G, F, M)
3. Return m

EvalSum(1λ, pk, (c1, c2), (c
′
1, c

′
2))

1. Compute c′′
1 ← c1c

′
1, c′′

2 ← c2c
′
2

2. Pick r
$←− {0, . . . , Bp − 1}

3. Return (c′′
1gr, c′′

2hr)

EvalScal(1λ, pk, (c1, c2), α)

1. Compute c′
1 ← cα

1 and c′
2 ← cα

2

2. Pick r
$←− {0, . . . , Bp − 1}

3. Return (c′
1g

r, c′
2h

r)

Fig. 1. A generic linearly homomorphic encryption scheme

Theorem 3. The scheme described in Fig. 1 is one-way under chosen plaintext
attack (ow − cpa) if and only if the Lift Diffie-Hellman (LDH) problem is hard
(so if and only if the partial discrete logarithm problem (PDL) is hard).

Proof. See [CL15].

Theorem 4. The scheme described in Fig. 1 is semantically secure under cho-
sen plaintext attacks (ind−cpa) if and only the decisional Diffie-Hellman problem
is hard in G.

Proof. Let’s construct a reduction R that solve the DDH assumption using an
efficient ind−cpa adversary A. R takes as input (B, p, g, f,G, F,X, Y, Z), a DDH
instance, and sets pk = (B, p, g,X, f). When A requests an encryption of one
of his choice of challenge messages m0 and m1, R flips a bit b encrypts mb as
(Y, fmbZ) and sends this ciphertext as its answer to A. If Z was not a random
element, this ciphertext would be indistinguishable from a true encryption of
mb because of the choice of the bound B, and A will correctly answer with
its (non-negligeable) advantage ε. Otherwise, the encryption is independent of
the message and A’s advantage to distinguish is 1/2. Therefore, the reduction
returns one if and only A correctly guessed b and has advantage ε/2 to solve the
DDH assumption. ��

3 A Linearly Homomorphic Encryption from DDH

We prove that, somewhat like in Paillier’s encryption scheme [Pai99] within
Z/N2Z, a subgroup with an easy discrete logarithm problem exists in class
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groups of imaginary quadratic fields, and it allows to design a new linearly
homomorphic encryption scheme. We refer the reader to Appendix A for back-
ground on class groups of imaginary quadratic fields and their use in Discrete
Logarithm based cryptography.

3.1 A Subgroup with an Easy DL Problem

The next proposition, inspired by [CL09, Theorem2], establish the existence of a
subgroup of a class group of an imaginary quadratic fields where the DL problem
is easy.

Proposition 1. Let ΔK be a fundamental discriminant with ΔK ≡ 1 (mod 4)
of the form ΔK = −pq where p is an odd prime and q a non-negative integer
prime to p such that q > 4p. Let = (p2, p) be an ideal of OΔp

, the order of
discriminant Δp = ΔKp2. Denote by f = [ ] the class of in C(OΔp

). For
m ∈ {1, . . . , p − 1}, Red(fm) = (p2, L(m)p) where L(m) is the odd integer
in [−p, p] such that L(m) ≡ 1/m (mod p). Moreover, f is a generator of the
subgroup of order p of C(OΔp

).

Proof. We consider the surjection ϕ̄p : C(OΔp
) −→ C(OΔK

). From [CL09,
Lemma1] and [Cox99, Prop. 7.22 and Th. 7.24], the kernel of ϕ̄p is isomorphic to
(OΔK

/pOΔK
)×/(Z/pZ)×. As p | ΔK , the group (OΔK

/pOΔK
)× is isomorphic

to (Fp[X]/(X2))×. This group contains p(p−1) elements of the form a+ b
√

ΔK

where a ∈ (Z/pZ)× and b ∈ Z/pZ. Now let us consider the quotient group
(OΔK

/pOΔK
)×/(Z/pZ)× where [x] = [y] with x, y ∈ (OΔK

/pOΔK
)× if and

only if there exists λ ∈ (Z/pZ)× such that x = λy. This quotient is cyclic of
order p and a system of representatives is [1] and [a+

√
ΔK ] where a is an element

of (Z/pZ)×. Let g = [1+
√

ΔK ], one has gm = [1+m
√

ΔK ] = [L(m)+
√

ΔK ] for
all m ∈ {1, . . . , p − 1} and gp = [1]. Let αm = L(m)+

√
ΔK

2 ∈ OΔK
. Then αm is a

representative of the class gm. The element gm maps to the class [ϕ−1
p (αmOΔK

)]
of the kernel of ϕ̄p. From [BTW95, Prop.2.9], one can see that αmOΔK

=
(N(αm),−L(m) mod 2N(αm)) where the remainder is computed from the cen-
tered euclidean division. Now, ϕ−1

p (αmOΔK
) = (N(αm),−L(m)p mod 2N(αm)) .

As N(αm) = L(m)2−ΔK

4 and q > 4p, it follows that p2 < N(αm) and that
−L(m)p mod 2N(αm) = −L(m)p. As a consequence, ϕ−1

p (αmOΔK
) corresponds

to the form (L(m)2−ΔK

4 ,−L(m)p, p2), of discriminant Δp which is equivalent

to (p2, L(m)p, L(m)2−ΔK

4 ) which corresponds to the ideal (p2, L(m)p). Finally,
this ideal of OΔp

is reduced as |L(m)p| < p2 <
√|Δp|/2, where the second

inequality holds because q > 4p. Consequently, if = (p2, p), then [ ] generates
the kernel of ϕ̄p as [ ] = [ϕ−1

p (α1OΔK
)]. Moreover, [ ]m = [ϕ−1

p (αmOΔK
)] so

Red([ ]m) = (p2, L(m)p), for m ∈ {1, . . . , p − 1}. ��
We devise, in Fig. 2, a new DDH group with an easy DL subgroup in class

groups of imaginary quadratic fields, by assuming the difficulty of the DDH
problem. In the Gen algorithm, we first construct a fundamental discriminant
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ΔK = −pq such that the 2-Sylow subgroup of C(ΔK) is of order 2 (cf. Appendix
A). Then, using [HJPT98, Subsection 3.1]’s method, we construct an ideal of
OΔK

of norm r, where r is a prime satisfying
(

ΔK

r

)
= 1. We then assume, as

in the previous implementations of Elgamal (cf. Appendix A) that the class [ 2]
will be of order s, an integer of the same order of magnitude than the odd part,
h(ΔK)/2. Due to our choice of p and q, pq is 2λ-bit integer, and as s is close to√|ΔK | (cf. Appendix A), it will be a λ-bit integer.

If μ > 80, following the Cohen-Lenstra heuristics, the probability that p
divides h(ΔK) and s is negligible. Therefore, we can assume that gcd(p, h(ΔK)) =
1. We consider the non-maximal order OΔp

of discriminant p2ΔK as in Propo-
sition 1. The fact that λ � μ + 2 ensures that q > 4p. As a result, the subgroup
F generated by f gives an easy DL subgroup. The morphism ϕ̄p defined in
Appendix A plays the role of the surjection π between C(OΔp

) and C(OΔp
)/F �

C(OΔK
), which is computable in polynomial time, knowing p (cf. [HJPT98,

Algorithm3]). Moreover, still with the knowledge of p, it is possible to lift ele-
ments of C(OΔK

) in C(OΔp
), using [HPT99, Algorithm 2]. We can then apply

the injective morphism of Lemma 3 on [ 2] to get a class of C(Δp) with the same

order s and multiply this class by fk where k
$←− {1, p − 1}. As gcd(p, s) = 1 the

result, g is of order ps (this procedure to get an element of order ps was also used
in the proof of Theorem 2). Note that g is still a square of C(Δp): as the map
of Lemma 3 is a morphism, the lift of [ 2] gives a square of C(Δp). Moreover, F

is a subgroup of the squares: f = (f2−1 mod p)2 as p is odd. As a consequence,
g is a square as it is a product of two squares.

Eventually, we take B = �|ΔK |3/4�. The statistical distance of {gr, r
$←−

{0, . . . , Bp− 1}} to the uniform distribution can be shown to be upper bounded
by ps/(4pB) = s/(4�|ΔK |3/4�). By Eq. 1 in Appendix A, this is less than

log |ΔK |
4π�|ΔK |1/4� ∈ Õ(2−λ/2) which is a negligible function of λ. As a consequence, the

distribution {gr, r
$←− {0, . . . , Bp − 1}} is statistically indistinguishable from the

uniform distribution in G = 〈g〉. For performance issue, one can take a better
bound for B, for instance B = 280�log(|ΔK |)|ΔK |1/2/(4π)�, which makes the
statistical distance less than 2−80.

3.2 The New Protocol

The DDH group with an easy DL subgroup of Fig. 2 gives rise to a linearly
homomorphic encryption scheme in quadratic fields, using the generic construc-
tion of Fig. 1. Compared to previous solutions based on a similar construction
([BCP03]), this scheme is only based on the difficulty of the discrete logarithm
in G, and does not rely on the difficulty of factorization.

In practice, the best attack against the scheme consists in retrieving the pri-
vate key, i.e., in computing a discrete logarithm. As said in Appendix A, the
problems of computing discrete logarithm in C(OΔK

) and computing h(OΔK
)

have similar complexity. Given oracle for both problems, one can compute dis-
crete logarithm in C(OΔp

) and totally break the scheme. Indeed, if s = h(OΔK
),
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Gen(1λ, 1μ)

1. Pick p a random μ-bits prime and q a random (2λ − μ) prime such that pq ≡ −1
(mod 4) and (p/q) = −1.

2. ΔK ← −pq, Δp ← p2ΔK , B ← �|ΔK |3/4�, f ← [(p2, p)] in C(Δp) and F = 〈f〉
3. Let r be a small prime, with r �= p and

(
ΔK

r

)
= 1, set an ideal lying above r.

4. Let k
$←− {1, p − 1} and set g ← [ϕ−1

p ( 2)]pfk in C(Δp) and G ← 〈g〉
5. Return (B, ∅, p, ∅, g, f, G, F )

Solve(B, p, g, f, G, F, X)

1. Parse Red(X) as (p2, x̃p)
2. If fails Return ⊥ Else Return x̃−1 (mod p)

Fig. 2. A new DDH Group with an Easy DL Subgroup

given g and h = gx, we can compute ϕ̄p(g) and ϕ̄p(h) = ϕ̄p(g)x mod s. The oracle
for discrete logarithm in C(OΔK

) gives x mod s. As shown in Lemma 1, if s is
known the PDL problem is easy, so one can compute x mod p and we get x as
gcd(p, s) = 1 with the Chinese remainder theorem. Moreover, finding h(OΔK

) or
the multiplicative order of g can be sufficient: knowing s = h(OΔK

) breaks the
PDL problem (cf. Lemma 1) and the one wayness of the scheme by Theorem 3.

4 Extensions

Removing the Condition on the Relative Size of p and q. To have a
polynomial Solve algorithm, we impose q > 4p, so that the reduced elements of
〈f〉 are ideals of norm p2. For a large message space, e.g. with a 2048-bit p (as
in [Pai99] or [BCP03] with a 2048 bit RSA integer), |Δp| = p3q > 4p4 has more
than 8194 bits and |ΔK | = pq > 4p2 has more than 4098 bits. So we loose our
advantage over factoring based schemes, as we only need a discriminant ΔK of
1348 bits to have the same security than a 2048 bit RSA integer (cf. Appendix
A). Suppose that we work with ΔK = −p. In the order OΔp

of discriminant
Δp = p2ΔK = −p3, the ideals of norm p2 are no longer reduced. However, we
can still have a polynomial time algorithm to solve the discrete logarithm in
〈f〉 where f = [(p2, p)]. From the proof of Proposition 1, f still generate the
subgroup of order p, and for k ∈ {1, . . . , p − 1}, the class fk still contains a
non reduced ideal (p2, L(k)p) where L(k) is defined as in Proposition 1. We
can use the main result of [CL09] constructively to find this non reduced ideal
that will disclose the discrete logarithm k given the reduced element of the
class fk. The idea is to lift this reduced element in a class group of a suborder
where the ideals of norm p2 are reduced. Let Δp2 = p4ΔK . For p > 4, we have
p2 <

√|Δp2 |/2 so the ideals of norm p2 are reduced. We lift an element of OΔp

in OΔp2
by computing [ϕ−1

p (·)]p on a representative ideal prime to p (we can use
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[HJPT98, Algorithm1] to find an ideal prime to p in a given class). This map
is injective, so applied on f we get a class f� of order p in C(OΔp2

). Moreover,
this class is in the kernel of the map ϕ̄p2 from C(OΔp2

) to C(OΔK
), and an easy

generalization of Proposition 1 shows that the subgroup of C(OΔp2
) generated

by f� is also generated by [(p2, p)]. As a result, if h = fx in C(OΔp
), we have

h� = [ϕ−1
p ([h])]p = ([ϕ−1

p ([f ])]p)x = fx
� and x can be computed as x = y/z where

y is the discrete logarithm of h� in basis [(p2, p)] and y is the discrete logarithm of
f� in basis [(p2, p)]. Both logarithms can be computed as in C(OΔp

). This variant
also works with ΔK = −pq and q < 4p, so p can be chosen independently from
the security level, with the restriction that p must have at least 80 bits.

A Faster Variant. We can change the KeyGen algorithm as follows: g is now
in the class group of the maximal order (i. e., g is the class of 2) and we set
h = gx where x is the secret key and the computation is done in C(OΔK

). Let
us denote by ψ : C(OΔK

) → C(OΔp
) the injective morphism of Lemma 3, that

computes [ϕ−1
p (·)]p on a representative ideal prime to p.

To encrypt m ∈ Z/pZ, we compute c1 = gr and c2 = fmψ(hr) in C(OΔp
).

To decrypt, we first compute cx
1 and lift it, by computing c′

1 = ψ(cx
1) in C(OΔp

).
Then we retrieve fm = c2/c′

1. This variant can be viewed as a mix of an Elga-
mal cryptosystem in C(OΔK

) (lifted in C(OΔp
) by applying ψ) and of a cryp-

tosystem based on the subgroup decomposition problem using the direct prod-
uct between ψ(〈g〉) and 〈f〉. The advantage of this variant is that ciphertexts
are smaller (c1 is in C(OΔK

) instead of C(OΔp
)) and that computations are

faster: encryption performs two exponentiations in C(OΔK
) instead of C(OΔp

)
and one lift (which computational cost is essentially the exponentiation to the
power p). Decryption similarly involves one exponentiation in C(OΔK

) instead
of C(OΔp

) and a lift. However, the semantic security is now based on a non stan-
dard problem. Let g be a generator of a subgroup of C(OΔK

) of order s. After
having chosen m, the adversary is asked to distinguished the following distri-
butions: {(gx, gy, ψ(gxy)), x, y

$←− Z/sZ} and {(gx, gy, ψ(gxy)fm), x, y
$←− Z/sZ}.

The total break is equivalent to the DL problem in C(OΔK
).

Other improvements than those we presented are possible: we can gain effi-
ciency using the Chinese Remainder Theorem using discriminant of the form
ΔK = −(

∏n
i=1 pi)q, and generalizing à la Damg̊ard and Jurik (cf. [DJ01]), with

discriminants of the form Δpt = p2tΔK , with ΔK = −pq and t � 1 to enlarge the
message space to Z/ptZ without losing the homomorphic property. A non-trivial
adaptation may also be possible with real quadratic fields.

5 Performances and Comparisons

We now compare the efficiency of our cryptosystem with some other linearly
homomorphic encryptions schemes, namely the system of Paillier and the one
from [BCP03]. The security of the Paillier cryptosystem is based on the factoriza-
tion problem of RSA integers, while [BCP03] is based on both the factorization
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and the DL problems. For our scheme, the best attack consists in computing DL
in C(OΔK

) or in computing h(OΔK
) and both problems have similar complexity.

In [BJS10], the DL problem with a discriminant ΔK of 1348 (resp. 1828 bits)
is estimated as hard as factoring a 2048 (resp. 3072 bits) RSA integer n. In Fig. 1,
we give the timings in ms of the time to perform an encryption and decryption
for the three schemes. Concerning Paillier, for encryption and decryption, the
main operation is an exponentiation of the form xk mod n2 where k has the
same bit length as n. Concerning [BCP03], which has an Elgamal structure,
two exponentiations of the form xk mod n2 with k an integer of the same bit
length as n2 are used for encryption and one for decryption. Our scheme has also
this structure with two exponentiations for encryption and one for decryption.
Decryption also involves an inversion modulo p. The exponentiations are made
in C(OΔp

) with Δp = p2ΔK . The size of the exponent is bounded by Bp where
we have seen that B can be chosen roughly of the bit size of

√
ΔK plus 80 bits.

For a same security level, our scheme is thus more efficient for a small p.
The timings where performed with Sage 6.3 on a standard laptop with

a straightforward implementation. The exponentiation in class group uses a
PARI/GP function (qfbnupow). We must stress that this function is far less
optimized than the exponentiation in Z/nZ, so there is a huge bias in favor of
BCP and Paillier. A more optimized implementation would give much better
results for our system. Nevertheless, we see that for a 2048 bits modulus, our
cryptosystem is already faster than the protocol from [BCP03]. Moreover, for
stronger securities, our system will be faster, as asymptotically, the factorization
algorithms have complexity L(1/3, ·) whereas the algorithms for class groups
of quadratic fields have complexity L(1/2, ·). Moreover the multiplication mod-
ulo n and the composition of quadratic forms have both quasi linear complexity
[Sch91]. As shown in Table 1, already with a 3072 bits modulus our cryptosystem
is competitive: faster than Paillier for decryption. For a very high security level
(7680 bits modulus), our system would be twice as fast as Paillier for encryption,
for messages of 512 bits. We also give timings of our faster variant of Subsection
4. For a same security level, this variant becomes more interesting when the
message space grows. In Table 1, we see that even with a naive implementation,
our system is competitive for message space up to 256 bits (resp. 912 bits) for
2048 bits security (resp. for 3072 bits security).

Note that a medium size message space can be sufficient for applications.
For example, our system may be used as in [CGS97] to design a voting scheme.
For a yes/no pool, a voter encrypts 0 (resp. 1) to vote no (resp. to vote yes).
By combining all the ciphertexts, the election manager would get an encryption
of the sum of the vote modulo p. Decryption allows to decide the result if the
number of voters � satisfies � < p. So a 80-bit p is largely sufficient as 280 ≈ 1024.
With Elgamal, in [CGS97], the discrete logarithm in decryption involves a baby-
step giant-step computation of time O(

√
�) (so a very low number of voters can

be handled) whereas a single inversion modulo p is needed for our scheme. For
a multi-candidate election system with m candidates and � voters, one votes for
the ith candidate by encrypting �i. The tally is decrypted with a decomposition
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in base �, so we must have �m < p. With a 256-bit integer, we can have 216 voters
and 16 candidates, which is the good order of magnitude for real life elections,
for which there are around a thousand registered voters by polling stations.

Table 1. Efficiency Comparison of Linearly Homomorphic Encryption Schemes

Cryptosystem Parameter Message Space Encrypt (ms) Decrypt (ms)
Paillier 2048 bits modulus 2048 bits 28 28
BCP03 2048 bits modulus 2048 bits 107 54

New Proposal 1348 bits ΔK 80 bits 93 49
Variant Subsec. 4 1348 bits ΔK 80 bits 82 45
Variant Subsec. 4 1348 bits ΔK 256 bits 105 68

Paillier 3072 bits modulus 3072 bits 109 109
BCP03 3072 bits modulus 3072 bits 427 214

New Proposal 1828 bits ΔK 80 bits 179 91
Variant Subsec. 4 1828 bits ΔK 80 bits 145 78
Variant Subsec. 4 1828 bits ΔK 512 bits 226 159
Variant Subsec. 4 1828 bits ΔK 912 bits 340 271
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A Background on Imaginary Quadratic Fields

Let D < 0 be a squarefree integer and consider the quadratic imaginary field
K = Q(

√
D). The fundamental discriminant ΔK of K is defined as ΔK = D if

D ≡ 1 (mod 4) and ΔK = 4D otherwise. The ring OΔK
of algebraic integers in

K is the maximal order of K. If OΔf
is a sub-ring of OΔK

, it is characterized
by its finite index in OΔK

, called its conductor. Its discriminant Δf = f2ΔK .

Every (primitive) ideal of OΔ can be written as =
(
aZ + −b+

√
Δ

2 Z
)

with

a ∈ N and b ∈ Z such that b2 ≡ Δ (mod 4a), and denoted by (a, b) for short.
The ideal class group of OΔ is C(OΔ) = I(OΔ)/P (OΔ), where I(OΔ) is the
group of invertible fractional ideals of OΔ and P (OΔ) the subgroup consisting
of principal ideals. Its cardinality is the class number of OΔ denoted by h(OΔ).
A canonical representative of the class of the ideal is denoted by Red( ). There
exists a computable surjection ϕ̄f : C(OΔf

) � C(OΔK
), when f is known.

Additional material can be found in [CL15, AppendixB] and [Cox99].
In 2000, Jacobson has described an index-calculus method to solve the DL

problem in class group of imaginary quadratic field of discriminant ΔK [Jac00].
Various improvements have been proposed to this algorithm: In [BJS10], it is
conjecture that a state of the art implementation has conjectured complexity
L|ΔK |[1/2, o(1)] . Moreover, the best known algorithm to compute class numbers
of fundamental discriminant are again index-calculus method with the same
complexity. In [HM00], Hamdy and Möller discuss the selection of a discriminant
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ΔK such that the DL problem in C(OΔK
) is as hard as in finite fields: It is

advised to construct a fundamental discriminant ΔK and to minimize to 2-
Sylow subgroup of the class group. In our case, by construction ΔK will be the
product of two odd primes. If we take ΔK = −pq with p and q such that p ≡ −q
(mod 4) then ΔK is a fundamental discriminant. Moreover the 2-Sylow subgroup
will be isomorphic to Z/2Z if we choose p and q such that (p/q) = (q/p) = −1
(cf. [Kap78, p.598]). In that case, we will work with the odd part, which is
the group of squares of C(OΔK

). Following the Cohen-Lenstra heuristics, cf.
[Coh00, Chapter 5.10.1], the probability that the odd part of the class group
is cyclic is 97.757% and the probability that an odd prime r divides h(OΔK

) is
approximately 1/r+1/r2. As a result, we can not guarantee that the order of the
odd part is not divisible by small primes. Nevertheless, as indicated in [HM00],
this does not lead to a weakness on the DL problem, as there is no efficient
algorithm to compute h(OΔK

) or odd multiples or factors of h(OΔK
), hence an

adaptation of the Pohlig-Hellman Algorithm is not possible. On average, h(OΔK
)

is in the order of
√|ΔK |, see [Coh00, Theorem 4.9.15 (Brauer-Siegel)]. Moreover

(cf. [Coh00, p.295]),

h(ΔK) <
1
π

log |ΔK |
√

|ΔK |. (1)

Since index-calculus algorithms for solving the DL problem are asymptotically
much slower than index-calculus algorithms to solve the integer factorization
problem, the discriminant can be taken smaller than RSA modulus. In [BJS10],
the DL problem with a discriminant of 1348 bits (resp. 1828 bits) is estimated
as hard as factoring a 2048 bits (resp. 3072 bits) RSA integer.

Elgamal Cryptosystem Adaptations in Class Group. Buchmann and
Williams ([BW88]) have proposed an adaptation of the Diffie-Hellman key
exchange in imaginary quadratic fields and briefly described an adaptation of
the Elgamal cryptosystem in the same setting. Efficient implementations of these
cryptosystems are discussed in [BDW90,SP05,BH01] and [BV07]. At a high level,
the key generation process of these adaptations of Elgamal can be sketched as fol-
lows. First, generate ΔK a fundamental negative discriminant, such that |ΔK |
is large enough to thwart the computation of discrete logarithm (cf. previous
subsection). Then choose g a class of C(OΔK

) of even order (from the discus-
sion of the previous subsection, the order of g will be close to h(ΔK) ≈ √|ΔK |
with high probability). Finally, the private key is x

$←− {0, . . . , �√|ΔK |�} and
the public key is (g, h), where h = gx. To implement Elgamal, it remains the
problem of the embedding of a message. In [BW88], an integer m is encrypted as
(gr,m + N(hr)) where N(hr) denotes the norm of the reduced ideal of the class
hr. As a result, the scheme is not based on the traditional DDH assumption.
Another solution is given in [SP05, Section2]. An integer message m ≤ √|Δ|/2
is mapped to the class M of an ideal above p where p is the first prime with
p > m such that Δ is a quadratic residue modulo p. If d = m − p, the message
m is encrypted as (gr,Mhr, d): The distance d seems to be public, in order to
recover m from M . This can be a problem for semantic security: the first stage
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adversary can choose two messages m0,m1 such that d0 
= d1 and easily win
the indistinguishability game with probability one by recognizing the message
thanks to the distance. In [BH01], a “hashed” version is used, a bit-string m
is encrypted as (gr,m ⊕ H(hr)) where H is a cryptographic hash function. In
[BV07], an adaptation of DHIES is described. An variant of the Elgamal cryp-
tosystem in a non maximal order of discriminant Δq = q2ΔK is presented in
[HJPT98]. A traditional setup of Elgamal is done in C(OΔq

), h = gx. A cipher-
text is (gr,mhr) in C(OΔq

) where m is an ideal of norm smaller than
√

ΔK/2.
To decrypt, the ciphertext is moved in the maximal order with the trapdoor
q where a traditional decryption is made to recover the message in C(OΔK

).
Eventually, the message is lifted back in C(OΔq

). This variant can be seen as
an Elgamal with a CRT decryption procedure: its advantage is that most of the
decryption computation is done in C(OΔK

) and ΔK can be chosen relatively
small (big enough such the factorization of Δq is intractable, the discrete loga-
rithm problem can be easy in C(OΔK

)). The problem of the embedding of the
plaintext in an ideal is not addressed in this paper. A chosen-ciphertext attack
against this cryptosystem has been proposed in [JJ00]. In [KM03], an adaptation
of the Diffie-Hellman key exchange and of the Elgamal cryptosystem are given
using class semigroup of an imaginary non-maximal quadratic order. Unfortu-
nately a cryptanalysis of this proposal has been presented in [Jac04]. A final
important remark on the adaptation of the Elgamal cryptosystem is that it is
necessary to work in the group of squares, i. e., the principal genus. We didn’t
find this remark in previous works: in the whole class group, the DDH problem
is easy. Indeed, it is well known that in (Z/pZ)×, one can compute Legendre
symbols and defeats the DDH assumption. As a consequence, it is necessary to
work in the group of squares. In a class group, for example if the discriminant
Δ = −∏k

i=1 pi is odd and the pi are distinct primes numbers, we can associate
to a class the value of the generic characters, the Legendre symbols (r, pi) for i
from 1 to k where r is an integer represented by the class (see [Cox99] for details
on genus theory). It is easy to see that the previous attack in (Z/pZ)× can be
adapted in class groups with the computation of the generic characters. As a
result, it is necessary to work in the group of squares, which is the principal
genus (cf. [Cox99, Theorem3.15]), i. e., the set of classes such that the generic
characters all equal 1.
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