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Abstract The detection of so-called hot-spots in point datasets is important to
generalize the spatial structures and properties in geospatial datasets. This is all the
more important when spatial big data analytics is concerned. The K-function is
regarded as one of the most effective methods to detect departures from random-
ness, high concentrations of point events and to examine the scale properties of a
spatial point pattern. However, when applied to a pattern exhibiting local clusters, it
can hardly determine the true scales of an observed pattern. We use a variant of the
K-function that examines the number of events within a particular distance incre-
ment rather than the total number of events within a distance range. We compare
the Incremental K-function to the standard K-function in terms of its fundamental
properties and demonstrate the differences using several simulated point processes,
which allow us to explore the range of conditions under which differences are
obtained, as well as on a real-world geospatial dataset.
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1 Introduction

The analysis of spatial point patterns has a long tradition in various scientific
disciplines including geography, economics, demography, ecology, forestry,
criminology, epidemiology, planning, and business [1, 2]. By detecting and ana-
lyzing the spatial point patterns, something interesting and informative about the
underlying process that would have generated the events can be unveiled. For
example, studies of animal behavior suggest that agglomerative or clustering point
patterns are helpful to verify theories of territoriality and social organization; also, a
diffusion point process in both spatial and temporal dimensions can provide evi-
dence for various theories about information transmission or disease spreading [3].
A spatial concentration of cell phone users with certain attributes within a narrow
time window may present a business opportunity or a risk to public safety.

Spatial point pattern analysis has recently regained popularity in spatial sciences
and affiliated disciplines as an increasingly large volume of thematically diverse
geospatial data is available as point data, with their own x-y coordinates, often with
a time stamp. Developments in spatial technologies such as location-aware and
remote sensing, advancements in information and communication technologies,
along with data sharing inclination by public organizations and individuals in the
form of social networking services and other public participation initiatives have
created a data rich environment for social sciences that has no precedent in human
history. Volunteered Geographic Information (VGI) has become a legitimate
complement of existing data sets, which are still often published only at a spatially
aggregated level for confidentiality reasons. The importance of this so-called “big
data” defined with V criteria [4] has been well recognized by scientists across
disciplines. In this “data avalanche” revolution [5], spatial sciences have a unique
and vital role to play as most of the big data are georeferenced.

This paper is a contribution to the body of literature aimed at determining the
existence of patterns in geospatial point datasets, particularly clumping or clustering
structures. We propose a variant on the statistics based on the well-known
K-function that would avoid overstating the spatial scope of clusters that may be
detected in the empirical datasets. The so-called Incremental K-function is pre-
sented and evidence of its efficacy on real data and multiple simulated data sets are
presented.

The rest of this paper is organized as follows. In the second part, we summarize
the literature on spatial point pattern analysis. Next, we present the Incremental
K-function method and its important properties. Then we conduct the comparison
experiments with the conventional K-function on both real-world datasets and
simulated ones and analyze the results. In the final part, we conclude on the
characteristics and practical usefulness of the Incremental K-function.
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2 Spatial Point Pattern Analysis

As one of the most common spatial patterns due to the general tendency of spatial
phenomena (i.e. events) to co-occur spatially as encapsulated by Tobler’s First Law
of Geography [6], spatial clustering represents a general tendency of events
occurring closer to each other than one might expect and it always draws great
attentions in academics [7]. Clusters or clumps of events in the geographic space are
commonly called hot spots. The detection of hot spots in one-dimensional spatial
big data sets is of significance because it serves to generalize data and their spatial
properties, which is critical for inferential purposes. A significant body of research
has contributed to developing methodologies and tool sets for detecting spatial
clustering. In the context of point pattern analysis, this family of methods is named
second-order analysis of point processes [8, 9], or hot spots detection.

Early studies were primarily concerned with the overall pattern embedded in the
spatial events. Therefore, a number of single-index spatial statistics, sometimes
labeled as “global” statistics, were designed to depict the nature of events within the
entire study area. Well-known examples include Moran’s I, Geary’s C, Quadrat
Analysis, Nearest Neighbor Index, G statistic, and Ripley’s K-function. Later on,
scholars found that one of the fundamental assumptions of the global statistics,
namely the spatial stationarity, is difficult to be held in many real situations. In
addition, with only a single statistic to describe the entire study area, it is inadequate
to further investigate more detailed aspects such as how the distribution of one
variable would affect another in a localized fashion, or where departures from a
random spatial distribution can be found [10]. To address these issues, along with the
fast development of GIS in the 1990s, the study trend shifted to developing local
statistics of detecting spatial clusters, i.e. ‘hot spots’. Noticeable approaches include
the geographical analysis machine (GAM) [11] and its derivative methods [1, 12],
the local version of Ripley’s K-function [9], local indicators of spatial association
(LISA) especially the local Moran’s I statistic, local Geary’s C [13], and local
G statistic [14, 15]. In contrast with their global counterparts, the local techniques are
aimed at finding anomalies and interesting collections of spatial events within the
study area that appear to be inconsistent with the background conceptual model of
how events arise or at pinpointing the specific locations that serve as foci for clus-
tering that repeats itself over the study area [7, 12]. Sometimes local methods with
predetermined locations are given a special name “focused tests” to differentiate
them with the ones based on randomly-chosen event locations [12]. More recently,
related studies are aimed at handling emerging large point datasets with accurate
locational information, sometimes with a time stamp. Techniques of Exploratory
Spatial Data Analysis (ESDA), GeoComputation, and GeoVisualization are fre-
quently incorporated for this purpose [16—18].

Among various methods of point pattern analysis, Ripley’s K-function is regarded
as one of the most effective methods at detecting whether a spatial process signifi-
cantly departs from randomness, or whether it is more dispersed or more concentrated
than random. The K-function is routinely used as a technique for hot spots detection,
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that is for the discovery of high concentrations of point events. It has been enhanced
through the decades since it was originally proposed by Ripley in 1976 [8, 19]. The
fundamental idea of the K-function is to count the number of events within a certain
distance to randomly selected event locations. The number is then used to calculate
K-function value by dividing the density of events. To obtain statistical conclusions,
the K-function value is compared with the expected value according to the null
hypothesis, for example Complete Spatial Randomness (CSR). If the observed value
is higher than expected, the study events have the tendency of clustering; or dis-
persed, if it is lower than expected. Monte Carlo simulation is frequently applied to
assess the statistical significance of the results [11]. Several meaningful extensions
and applications of the K-function have been conducted through the years. Of note is
work by Getis and Franklin [9], where spatially local clusters are detected within the
range of K-function, which is subsequently known as local K-function analysis.
Boots and Okabe [20] discussed applying the Cross K-function as a focused test to
identify clusters of events around specific locations for example crime cases sur-
rounding rail stations. Yamada and Thill [2] adjusted both the global and local
K-function to network-constrained space to study transportation-related cases. Tang
et al. [18] incorporated Graphics Processing Units (GPU) technique to accelerate the
computing process of Ripley’s K Function for massive spatial point datasets.

Compared with other hot spot detection techniques, the K-function holds a unique
advantage that spatial dependence is examined over a range of distances and spatial
scales. For instance to analyze the spatial pattern of crime events within the city, with
the K-function we can set the detecting radius from 0.1 to 10 miles so that clusters of
the size within this range can all be discovered. This advantage enables the
K-function to compare point patterns across scales and easily pick the most inter-
esting ones without the painful process of choosing appropriate spatial weight matrix
for LISA or deciding proper size and shape for quadrats. This is the reason the
K-function is also called ‘Multi-Distance Spatial Cluster Analysis’ in the literature.

However, determining the exact scale of an observed pattern from the multiple
scales examined by K-function remains problematic. In fact, most of the existing
application studies simply choose an “optimal” scale to show the results without
further explanation. Moreover, when applied to a pattern exhibiting local clusters,
the observed K-function tends to exceed the upper significance envelope even at
scales beyond the process’s true scale [2]. As a result, the point patterns detected by
K-function would be untrue at certain scales and further inferential conclusions built
on this would be misleading as well. In order to remedy this issue, we use a variant of
the K-function namely the Incremental K-function in this paper. Instead of counting
the total number of events within a distance range, the Incremental K-function
examines the number of events within a particular increment of distance. We will
further discuss the fundamental properties of the Incremental K-function in the next
section, compare them to those of the standard K-function and demonstrate the
differences on several real-world geospatial datasets as well as simulated point
processes. The purpose is to explore the capability of the Incremental K-function that
complements the K-function methodology family for detecting point patterns at the
spatial process’s true scale.
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3 Incremental K-Function

The Incremental K-function is a variant of the standard K-function. To differentiate
with their local versions, the standard K-function and the Incremental K-function is
also referred to as the global K-function and the global Incremental K-function in
this paper. Let us consider a point process including n events P = {py, ps, ..., pn} in
a study region, the global K-function is defined as

1
K(r) = —E(number of event in P within distance r of an arbitrary event of P)
0
()

here p is the density of events within the study region. It can be further written as:

K(r)= ﬁz’i: i: L;; (2)

=1 j=1 A

where r is the detection window radius or scale; A represents the total area of the
study region; n is the total number of events in the study region; /;; equals to one if
the distance between event i and event j is less than r, and zero otherwise.

By decomposing the global K-function down to an individual event location i we
can obtain the local K-function [9] as:

LocK;(r) = E(number of events in P within distance r of event i) (3)

Or it can be formulized as:
n

LOCK,'(}") = le‘ (4)

i=1

In contrast, the Incremental K-function counts the number of events within a
particular increment of distance, i.e. the “donut” area from the smaller scale r,—; to
the current scale r,. The only exception is when r, is the smallest scale r; the
Incremental K-function is then the same as the K-function. The formula of the
global Incremental K-function is defined as:

IncK(r,) = (5)

K(r)) —K(r—1), t=2,3,...,
K(r,), t=1

And the local version of the Incremental K-function is defined by the same logic:

LocK;(r;) — LocK;(r;—y), t=2,3, ...,

LocIncKi(r:) =
oclnc z(rl‘) {LoCKi(rl)7 !
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Fig. 1 Example of
(incremental) K-function

Taking the example shown in Fig. 1, and assuming a unit density of events, the
local K-function value for event location i equals 3 at the scale of r; 7 at the scale
of r,; and 12 at the scale of r3, while the local Incremental K-function value equals
to 3, 4, and 5 at scale of r, r,, and r3 respectively. The global K-function and the
global Incremental K-function will also result differently as they are comprised of
their local counterparts. As illustrated by Yamada and Thill [2], a false positive
error may be associated with the observed K-function of a pattern exhibiting a local
clustering tendency at certain scales where the Incremental K-function will truth-
fully fail to detect such tendency. Because the K-function averages densities over
the entire distance range, it may overshoot the true cluster size.

4 Comparison Experiments

In this section we implement a series of comparison experiments with both data
simulated to represent known spatial processes and real-world geospatial data. The
global and local K-function as well as the global and local Incremental K-function
values are calculated according to the equations given in the previous section.
Statistical inference is determined by 1,000-time Monte-Carlo simulation based on
the assumption of Complete Spatial Randomness (CSR) of the point process. We
adopt the significance level of 5 % for global results and 0.1 % for local results to
account for test simultaneity. Edge effects are corrected through shrinking the size
of the analysis area by a distance equal to the largest distance band to be used in the
analysis. Only the points within the shrunk area are used to calculate K-function
and Incremental K-function values, while the background point process and the
simulated points remain within the original area. The implementation program is
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coded in C/C++ and computed with a 64 bit PC with 4 CPUs and 16 GB RAM. The
parallel computing technique OpenMP is applied to accelerate the computation
process, which is particularly beneficial for the Monte Carlo simulation task.

We first conduct tests with simulated datasets. In a square region of 10,000 by
10,000 units, we simulate a series of point patterns generated according to different
known processes. The total number of points is 2,500 for every point pattern. We set
our detection scale from 100 units to as many as 2,500 units in order to scan the full
extent of point patterns. In order to verify our approach, we start by simulating a
random point pattern based on the null hypothesis namely Complete Spatial
Randomness, which is used as a benchmark (as shown in Fig. 2). On the right-hand
side of Fig. 2, we show the global K-function results on top and the global
Incremental K-function results at the bottom. The blue line represents the value of
either K-function or Incremental K-function, while the red and green lines stand for
statistical significance envelopes numerically simulated through Monte Carlo pro-
cess. Not surprisingly, in both charts of Fig. 2 the three lines closely overlap with
each other. It indicates that neither the K-function nor the Incremental K-function of
this random point pattern has escaped the expected range generated by CSR. In other
words the two functions both have successfully verified the random point pattern.

We are more interested in the capabilities of these two functions to deal with
clustered point patterns. Figure 3 shows a simulated clustered point patterns in
which 25 independent point clusters are generated. Each of the point clusters
consists of 100 points distributed according to a Bivariate Normal Distribution with
standard deviation of 100, while the centers of these clusters are located on a square
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Fig. 3 Clustered point pattern (standard deviation = 100)

grid within the square study area with a distance of 2,000 units. This means that
there is a 68 % probability that a point is within 100 units of its local cluster center;
this probability becomes 95, 99, and 100 % for distances of 200, 300, and 400 units
respectively. The results of the K-function and the Incremental K-function are quite
different this time. As we can see from the two charts in Fig. 3, the observed global
K-function is above the upper envelope, and thus detects a significant clustering
pattern, at most scales. On the contrary, the global Incremental K-function detects a
significant clustering pattern only at the first four scales and a significantly regular
(or dispersed) pattern at all larger scales. The global incremental K-function has
captured the properties of the point process accurately. In the bottom chart of Fig. 3,
the two largest increments of ‘IncK-value’ are at the zero to 100 scale and the
100-200 scale, which correspond to the probability increasing from O to 68 % and
then to 95 %. Beyond the 200-unit scale, the increment of the function value starts
dropping as there only remains less than 5 % probability to include more points into
a local cluster. Beyond the 400-unit scale, the probability drops down to zero.
Correspondingly, we observe the ‘IncK-value’ in the figure drops below the lower
significance envelope. In short, the incremental K-function varies consistently with
the underlying point process. At the small scales the ‘IncK-value’ stays beyond the
upper significance envelope indicating the local clusters dominate the global point
pattern of the whole study area. With the scale increasing beyond a threshold
between 400 and 500 units, the local clusters become more like single points and
their grid-like centers have swayed the global point pattern to a regular one.
Evidence can also be found in the results of the Incremental K-function at larger
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scales. Overall, the K-function has failed to detect this changing point process. The
clustered point pattern at almost all the scales indicated by the K-function is defi-
nitely inconsistent with our simulated point process. We also conduct a similar test
in which only the size of local clusters has changed (to a standard deviation of 300).
Figure 4 illustrates this point pattern and its two comparison results. Again the
Incremental K-function has captured the nature of the point process across scales. It
indicates a clustered pattern at small scales and a regular one at larger scales. The
only difference with the results in Fig. 3 is the peak is shifted toward larger scales,
which corresponds well to the enlarged local clusters. In contrast, the K-function
result shows a clustered pattern across all scales, which would clearly be misleading
at large scales.

To fully unveil the capability and characteristics of the Incremental K-function,
we also experiment on more complex datasets. Figure 5 shows a group test on a
two-stage clustered point dataset. The basic features of this data remain the same as
the one in Fig. 4 in terms of the number of clusters as well as the size of each cluster
(standard deviation of bi-normal distribution is still 300). However the center of
several clusters is relocated so as to have four larger clusters in the four corners,
each one being former of smaller clusters (there is still a total of 25 small clusters).
Comparing the results of the two global functions, we find extreme differences
again. The K-function once again results in clustered patterns regardless of the scale
that is varied from 100 to 2,500 units, from which we can hardly extract any more
useful information. By contrast, the results of Incremental K-function coincide with
the underlying two-stage clustered point process. It indicates two and only two
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separate peaks of significant clustering. The first peak shows up at the same scale
(500 units) as Fig. 4 because the size of local clusters remains the same. The second
peak manifests itself at the scale of 2000 and demonstrates that the Incremental
K-function is capable to detect those larger clusters formed of local clusters.
Therefore it does neither overestimate nor underestimate the point patterns. The
conclusion from this group of experiments is that the Incremental K-function can
not only detect out at which scale it shows clustering, but is also able to capture the
variation of cluster size across scales.

Furthermore, we carry out experiments on even more complex datasets with
various sizes of clusters at random locations. The geospatial dataset depicted in
Fig. 6 includes 25 local clusters, of which 10, 8, and 7 clusters are generated based
on a bi-normal distribution with standard deviation of 100, 300, and 500, respec-
tively. The results are consistent with the previous experiment. On the one hand, the
K-function detects significant clustering at all scales ranging from 100 to 2000, thus
committing patent false positive error. On the other hand, three separate peaks of
clustering pattern corresponding to the three scales used to generate the point
distributions are picked out by the Incremental K-function in spite of the random
location of cluster centers. It provides further evidence of the Incremental
K-function’s sensitivity and accuracy with respect to point patterns across scales.

As a matter of fact, real-world situations are usually more complex than simulated
ones. Therefore we have also implemented comparison studies with real-world
geospatial data to backup and supplement the conclusions obtained from simulated
data. The data we use in this study are the records of vehicle theft and recovery
locations in Charlotte, North Carolina. Given the extremely heterogeneous
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distribution of these records, the study area is narrowed down to an eight-mile by
eight-mile square region surrounding the city center. According to the crime report
database maintained by the Charlotte-Mecklenburg Police Department (CMPD),
there were 1,832 vehicles stolen within this region from January Ist, 2012 to
December 31st, 2013, of which 995 have been recovered somewhere else in the city.
Recovery locations show a more varied point pattern across scales than the theft
locations. Therefore we use these 995 vehicle recovery locations to illustrate the
properties of the Incremental K-function and explore its practical usefulness as well.

Figure 7 shows the study region and the auto recovery locations for the stated
period of analysis. The right-hand side panels present the global K-function and the
global Incremental K-function charts. The smallest detection scale is set at 0.05 mile,
i.e. 80 m, and 20 times that much as the largest possible scale. The K-function shows
significant clustering over the entire range of scales as the ‘K-value’ stays well above
the upper significance envelope and smoothly departs from it to indicate an even
more significantly clustered pattern for larger scales. On the other hand, the ‘IncK-
value’ in the bottom chart is quite uneven across scales, although it stays above the
upper envelope at all scales. Its several up-and-down periods are believed to reflect
the heterogeneous nature of this real-world dataset. A first peak shows up at the
smallest possible scale and also exhibits the greatest departure from the significance
envelopes. From this, we can conclude that there exist a number of auto recovery
location clusters across the study region and that these clusters have very compact
sizes as their radii are 80 m or less. Through further investigation we found these
small clusters match specific geographical features such as car dismantlers or
deserted parking lots where cars would be abandoned. Besides the global maximum
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at the 0.05 scale, other local maxima in the Incremental K-function are found at 0.35
and 0.8 mile, as well as several less prominent ones. These could be explained as
thieves’ favorite car dumping areas, for example unsupervised neighborhoods or the
vicinity of the airport.

Beside the analysis of the global spatial pattern in the car recovery locations, we
also apply the local version of two K-functions to investigate clusters locally. We
implement the local functions following the same process as the global ones, but
change the significance level to 0.1 %. While the local analysis can be conducted at
any and all discrete location in the study region, for the sake of the illustration we
pick out one specific record located to the Northeast of the city center. Figure 8
includes a map of this localized area and the plots of two local K-functions. This
time the local Incremental K-function returns two significant peaks with one at the
0.05 mile scale and the other at 0.75 mile. On the map at left-hand side, the scales of
0.05, 0.1, 0.7, and 0.75 mile are highlighted using red circles. The smallest circle
encompasses 17 events, while the second one includes no additional one.
Comparing the results of two local K-functions, the ‘Local IncK-value’ has cap-
tured this situation rather crisply as it indicates clustering only at the first scale.
Conversely, the ‘Local K-value’ shows clustering at both of the first two scales and
even beyond (although at a decreasingly level of significance), which is a clear case
of false positive error and gives a misleading message that the local cluster keeps
enlarging. The ring-like area between 0.7 and 0.75 mile scale includes 13 neigh-
boring events and it results in another significant peak in the ‘local IncK-value’.
Examination of the map of events around the selected focal point suggests that no
clustering tendency is detectable between these two scales; this is corroborated by



Detecting Clustering Scales with the Incremental ... 105

™ = 4 o
+ | . Vd % —t Lot Kovalie
I F - e a 75 - == LUpper

= Lower

=s={Local LncK-value

=@=Upper

e Lower

Fig. 8 Local results of Charlotte auto-recovery data

the local Incremental K-function, while the local K-function overdetects a clus-
tering tendency. By looking at the global and local results side by side, it is clear
that local point patterns have contribution to the global pattern. Both the global and
local Incremental K-functions are capable to reflect the heterogeneous point process
and their results can certainly give more meaningful guidance than the original
K-functions.

5 Conclusions

The K-function is regarded as one of the most effective methods to detect non-
random tendencies in a geospatial distribution of points and particularly high
concentrations of point events. Although it is designed as a ‘Multi-Distance Spatial
Cluster Analysis’, we argue that it cannot reflect the cross-scale changes of point
pattern very well. Instead, we bring up again one of its variant, namely the
Incremental K-function, as a solution to this problem. In this paper, we presented
the results of a series of comparison studies on both simulated datasets and a real-
world dataset. The results from simulated datasets indicate that the Incremental
K-function can pick out the scales at which it shows most significantly clustering
patterns without the false positive errors that can be so pervasive with the
K-function. These peak scales coincide with the true scales designed in our data
simulation processes. In addition, the Incremental K-function is also capable to deal
with more complex situations such as two-stage clusters and random located
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clusters of various scales. Meaningful information about how the point pattern
varying across scales can be extracted. In contrast, the standard K-function can only
offer us a coarse clustering pattern from scale to scale. Given the controlled con-
ditions of the experiments done on simulated point patterns with known properties,
it has been demonstrated that the K-function is afflicted by false positive error flaws
and incapable of capturing the true scale of point processes.

Moreover, the results from the Charlotte vehicle recovery dataset provide real-
world evidence that the Incremental K-function can accurately reflect the under-
lying heterogeneous point process, and that it does so more reliably that the
K-function. Practical usefulness can also be obtained. For instance, the very
compact cluster size (80 m) directs that there exist some individual facilities or
locations hat concentrate a significant number of stolen vehicles. The local
Incremental K-function can serve to pinpoint these locations on the city map for
further investigation. To conclude, we hope this work can bring the Incremental
K-function to scholars’ attention as an effective hot-spot detection method espe-
cially dealing with complex spatial point processes.
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