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In the last decade, we have witnessed the birth and spread of the so-called Semantic 
Web. From its initial proposal by Tim Berners-Lee (Berners-Lee et al. 2001; 
Shadbolt et al. 2006), to the latest trends and initiatives, such as Linked Data (Bizer 
et al. 2009a) and DBpedia (Bizer et al. 2009b; Mendes et al. 2012), the Semantic 
Web is progressively changing the landscape of the World Wide Web (WWW) 
through the use and adoption of the different semantic technologies that have come 
along with it. We can see how, although some of the goals of the Semantic Web have 
not been reached yet, several well-known and successful applications are already 
using semantic technologies, such as Google’s Knowledge Graph, Microsoft’s Sa-
tori, or Facebook’s Graph Search.

In this successful scenario, ontologies have played a crucial role. Defined by 
Tom Gruber as “an explicit specification of a conceptualization” (Gruber 1993, 
1995), ontologies allow to model and capture the semantics of different knowledge 
domains, providing a means to share definitions, and reach an implicit agreement 
on the meaning of the published information. Ontologies represent the vocabulary 
of some domain from a common perspective using a formal language, such as the 
current standard Web Ontology Language (OWL 2; Hitzler et al. 2012).

Being knowledge representation frameworks as they are, they might have an 
impact on many other different kinds of systems. In fact, they have already had; for 
example, ontologies have been successfully used in the integration of information 
and information systems (Mena and Illarramendi 2001; Wache et al. 2001). Thus, 
with their advance and the development of their associated technologies, we can 
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now explore deeper in the quest for smarter information systems which exploit the 
semantics of data.

Possible sources of enhancement for our applications could be the use of ontolo-
gies which are already shared and published, the possibility of modeling domains 
in detail, thanks to the expressivity of the different families of languages (mainly 
based on Description Logics (DLs; Baader et al. 2003)), or the exploitation of the 
huge amount of semantic data which have been already generated. In this chapter, 
we present different semantic-based applications and projects that we have devel-
oped in the Distributed Information Systems research group (SID, http://sid.cps.
unizar.es)  that currently benefit from these semantic technologies, and provide a 
good example of how the addition of semantics broadens the capabilities of an in-
formation system. In particular:

• In our approach to what could be considered as the most classical conception 
of the Semantic Web, we have applied the use of semantics to the field of key-
word-based search. Using disambiguation techniques which exploit the knowl-
edge stored in ontologies (Gracia and Mena 2008; Trillo et al. 2007a), we have 
developed two different approaches to keyword search over different informa-
tion systems: QueryGen (Bobed 2013) and Doctopush (Trillo et al. 2011). The 
former one is oriented to perform semantic keyword-based search over hetero-
geneous information systems, proposing a generalized semantic keyword in-
terpretation process, while the latter aims at performing semantic data retrieval 
over the WWW using the semantics of keywords to cluster relevant sources of 
information.

• We have also devised a framework to enhance semantically different tasks re-
garding information extraction (IE), such as automatic text classification, seman-
tic search, and summarization of text sources, among others. This framework, 
called GENIE (GENeric Information Extraction Framework), aims at supplying 
a set of libraries designed to assist developers in projects of this nature, adopting 
a semantic approach to all modules, thus taking advantage of the latest advances 
made in ontological engineering and semantics.

• Regarding the standard formalism used for ontologies, we have studied an ex-
tension of the semantics of DLs to embrace Fuzzy Logic. This has led to the 
implementation of the fuzzy ontology editor Fuzzy OWL 2 (Bobillo and Straccia 
2011), and the fuzzy DL reasoners DeLorean (Bobillo et al. 2012a) and fuzzyDL 
(Bobillo and Straccia 2008), combining the expressivity of classical DL lan-
guages (which use crisp logic) with the flexibility of fuzzy logics for imprecise 
knowledge representation.

• Finally, we have studied the relationship between locations and semantics. On 
the one hand, we have applied the know-how acquired using ontological formal-
isms to study how we can model locations using different granularities while 
keeping and exploiting their semantics. On the other hand, we are currently 
working on enhancing the use of Location-Based Services (LBSs) adding se-
mantics, which is crystallizing in  SHERLOCK (Yus et al. 2014a), a system that 
searches and shares up-to-date knowledge from nearby devices to provide users 
with interesting LBSs.

research group (SID, http://sid.cps.unizar.es) 
research group (SID, http://sid.cps.unizar.es) 
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In fact, all of these systems are not isolated, but help each other to perform different 
tasks. In Fig. 4.1, we can see how they could be coordinated. SHERLOCK uses our 
different semantic models of locations to give meaning to the locations of the users, 
and infer further information out from them. Also, SHERLOCK might provide a 
keyword interface and could use QueryGen to construct a formal specification of 
the requested service out from the user’s input keywords. Doctopush could be inte-
grated as well, and used as a particular service under the umbrella of SHERLOCK.

All of these systems use several reasoning and semantic services, which could 
be abstracted in a separated layer. On the one hand, this layer would expose the 
services provided by classical DL reasoners, as well as the reasoning services of our 
fuzzy extension for DLs represented in Fig. 4.1. On the other hand, we could find 
the services exposed by GENIE to enhance different semantic tasks that they have 
to perform.

For the sake of readability, we devote the next section to give a brief overview 
of the basics on DL-based ontologies and DL (Baader et al. 2003) reasoners, which 
are thoroughly used in the presented systems. Then, in the rest of this chapter, we 
elaborate on these four points, all of which share the use of semantics (at different 
levels) as their main value.

4.1  Background

Ontologies (Frank 2003; Haarslev et al. 1998) are one of the most popular ap-
proaches to represent the knowledge of a domain. Although they can be developed 
using different languages and formalisms (Gómez-Pérez et al. 2004), we focus on 

Fig. 4.1  Overview of our semantic-based systems 
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the basics of OWL, the language that is the current W3C standard for represent-
ing ontologies in the Semantic Web, which has Description Logics as the underly-
ing formalism. Thus, in DL-based ontologies, the basic ontological representation 
primitives (also called ontology elements) are individuals (or instances), concepts 
(or classes), properties (also called roles or relations), datatypes (or concrete do-
mains), and axioms:

• Individuals are objects of the world. For instance, John.
• Concepts are sets of individuals. For example, Human. We denote the set of all 

concept names of an ontology by NC.
• Properties define interactions between pairs of individuals of the domain, or be-

tween an individual and a datatype value. For example, isParentOf can be used 
to define that a human is the parent of another one, while hasAge can relate a 
human with her age.

• Datatypes represent concrete data values such as numbers (real, rational, integer, 
nonnegative, etc.), strings, booleans, dates, times, or XML literals, among many 
other possibilities.

• Axioms are formal conditions to be verified by the elements. An ontology can be 
seen as a finite set of axioms, usually divided in three parts: an assertional box 
( ABox), a terminological box ( TBox), and a role box ( RBox), with axioms about 
individuals, concepts, and roles, respectively. For example, an ABox can assert 
that John is a member of the concept Human, and a TBox can assert that Man is 
a subclass of Human, usually denoted Man ⊑ Human.

Apart from the explicitly represented knowledge, it is possible to perform several 
reasoning tasks to deduce implicit knowledge, that is, logical consequences of the 
knowledge in an ontology. This is possible because OWL, as mentioned before, has 
a formal semantics based on DLs (Baader et al. 2003).

DLs are a family of logics for representing structured knowledge. They are a 
well-known formalism providing a good trade-off between expressivity of the rep-
resentation and efficiency of the reasoning. Each DL is denoted by using a string 
of capital letters which identify its expressivity. For instance, the standard language 
for ontology representation OWL 2 is equivalent to the DL SROIQ (D). The ex-
pressivity of a DL translates into what kind of constructors can be used to form 
new concepts. For example, if letter C is in the expressivity of a DL, it means that 
it can use the constructor ¬ to express the contrary of a concept ( Woman ⊑ ¬Man, 
a woman cannot be a man). We summarize informally in Table 4.1 the most com-
mon constructors that lead to a DL with expressivity ALC, while other logics and 
their allowed constructors are presented in Table 4.2. For more formal details, see 
Baader et al. 2003.

The most typical reasoning services in ontologies are designed to check:

• Consistency: An ontology O is consistent iff it has a model, that is, there is an 
interpretation satisfying every axiom in O.

• Entailment: O entails an axiom τ iff every model of O satisfies τ.
• Concept satisfiability: A concept C is satisfiable w.r.t. O iff it is not interpreted as 

the empty set in some model of O.
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• Concept subsumption: A concept D subsumes a concept C w.r.t. O iff C is inter-
preted as a subset of D in every model of O.

• Classification: The classification of an ontology O consists of computing a hier-
archy of concepts based on their subsumption relation.

There are plenty of software applications (called reasoners) implementing ontology 
reasoning services. Some examples are JFact, HermiT (Glimm et al. 2014), or Pellet 
(Sirin et al. 2007).

Table 4.1  Constructors and their meanings for ALC DL
Constructor Meaning
┬ Any element
┴ No element, empty set
A Atomic concept
¬C Elements that are not in C
C ⊓ D Elements in C and D
C ⊔ D Elements in C or D
∀R.C Elements “a” such that if “a” is related with “b” by the property R, then “b” is in C
∃R.C Elements “a” that are related by property R with an element “b” in C

Table 4.2  Expressivity and complexity of reasoning in some important DLs
Logic Expressivity Complexity class

AL ⊤, ⊥, ¬A, ⊓, ∀, ∃R.⊤ PTime

ALC (= ALUE   ) ⊤, ⊥, ⊓, ⊔, ∀, ¬, ∃ exPTime

SHIF (D)
(OWL Lite)

(S  =) ALC   + transitive roles, role hierarchies (H), 
inverse roles (I ), functional roles (F   ), datatypes (D)

exPTime

SHOIN (D)
(OWL DL)

SHI, nominals (O ), nonqualified numerical restric-
tions (N   ), datatypes (D)

NexPTime

SROIQ (D)
(OWL 2)

SHOIQ (D), complex role inclusion (R ), self-
restriction, and additional role axioms

N2exPTime

EL  ++ (D)
(OWL 2 EL)

⊤, ⊥, ⊓, ∃, role hierarchies, nominals, concrete 
domains (use of constructors with syntactical 
restrictions)

PTime

DL-Lite
(OWL 2 QL)

⊤, ⊥, ⊓, ∃, ¬ (use of constructors with syntactical 
restrictions)

LOGSPACe

DLP
(OWL 2 RL)

⊤, ⊥, ⊓, ⊔, ∀, ¬, ∃, cardinality cardinality restric-
tion (0 .. 1) (use of constructors with syntactical 
restrictions)

PTime
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4.2  Semantics Behind Keywords

The usage of keyword search has spread in the past few years thanks to its simplic-
ity and its adoption by the main web search engines. Common users have found 
in it an easy way to express their information needs, defining their searches just 
by giving a plain set of keywords, and letting the system do all the work for them. 
However, the ease of use of keyword search comes from the simplicity of its query 
model, whose expressivity is low compared with other more complex query models 
(Kaufmann and Bernstein 2010).

Moreover, the use of keyword queries as starting point for information searches 
introduces a semantic gap between the user intention and the queries as, in fact, 
keyword queries are simplifications of the queries that really express the user’s 
information need. Thus, there might be a gap between the posed query and the 
information that the users would like to obtain, for example, when talking about 
web searches, users usually have to browse the returned web pages looking for the 
needed information.

In this context, we also have to bear in mind that polysemous words introduce 
ambiguity in such queries, which cannot be solved without the intervention of the 
user. For example, if a user inputs the keyword “apple” in Google, locating informa-
tion about the fruit with such a name will be difficult for her. (As of June 23, 2014, 
no hit about the fruit appears in the first 40 ranked positions provided as result, with 
the notorious exception of the page in Wikipedia, whose results are promoted.) An-
other different example of ambiguity could be the keywords “apache attack,” where 
a user might be looking for information about the Apache helicopter or about how 
to secure an Apache server. One could argue that the ambiguity in these examples is 
due to the lack of input keywords, but experience tells us that the average number 
of keywords used in keyword-based search engines “is somewhere between 2 and 
3” (Manning et al. 2008), which points out another problem of keyword search: 
Users tend to omit important keywords/information, as they consider them implicit 
in the query.

Being as useful as keyword-based searches have proved to be, we advocate for 
improving them by first establishing the proper meaning of each input keyword, 
which allows knowing exactly what the user is referring to with each of the key-
words in the input set. This implies discovering possible meanings for each of the 
keywords, and disambiguating them to obtain their most probable one separately 
and as a whole set (i.e., the meaning of a keyword affects to the rest of keywords 
in the input set). In the rest of this section, we explain how we have applied this 
approach in two different systems which exploit the semantics behind keywords. 
First, we present QueryGen (Bobed 2013), a system that performs semantic key-
word searches over heterogeneous information systems, interpreting keyword 
queries to access the underlying systems by taking into account the semantics of 
both the input keywords and the query languages involved. Then, we present Doc-
topush (Trillo et al. 2011), a pure Web-based search system, where the semantics of 
the keywords are used to categorize and group dynamically the results of a keyword 
query, providing more accurate and relevant information.
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 Semantic Keyword-Based Search: QueryGen

As we have seen before, using keywords as input language makes a system easier to 
use, but it implies that the queries that users can pose to the search system are limited 
by the lack of expressivity of this query model. Keyword queries are simplifications 
of the queries that really express the user’s information need. Moreover, experience 
tells us that users tend to omit important keywords, as they consider them implicit 
in the query (recall that the average number of keywords used in keyword-based 
search engines “is somewhere between 2 and 3” (Manning et al. 2008)). However, 
the use of expressive formal languages such as SQL (ISO/IEC 2011) or SPARQL 
(Harris et al. 2013) is far from being easy for common users. What is more, the user 
must know the underlying schema and data she is accessing to effectively query it.

Thus, the sweet spot would be to mix the expressivity of formal languages with 
the ease of use of keyword queries, while making the user unaware of the data 
sources being accessed to solve her information needs. To reach this sweet spot, 
we advocate for a semantic keyword-based search, a keyword-based search pro-
cess which takes into account the semantics of both keywords and query languages 
during the whole search process. Our objective is to discover and solve the user’s 
information need taking as starting point a set of input keywords. We divide this 
task into three sub-objectives:

•	 To	discover	the	exact	meaning	of	each	of	the	keywords	in	the	set	of	input	key-
words.

•	 To	give	them	an	interpretation	and	express	it	into	a	formal	language	to	capture	
the information need accurately.

•	 To	access	the	proper	information	system/s	transparently	to	the	user,	taking	into	
account the different characteristics that the accessed systems might exhibit.

The first objective, the discovery of each keyword’s meaning, allows us to work 
during the whole process with keywords with well-established semantics, which we 
call semantic keywords. The second one implies structuring a bag of keywords into 
a structured query, a process which is named keyword query interpretation (Fu and 
Anyanwu 2011). The achievement of the last objective is strongly helped by hav-
ing the information formally expressed, allowing our system to access semantically 
even non-semantically enhanced data sources. The semantics behind the input 
set of keywords, the semantics of the different query languages, and the different 
semantics of the access models are considered to provide a flexible and efficient 
way to perform a semantic keyword search on heterogeneous information systems. 
Figure 4.2 shows the three main steps of the process, presenting further details on 
the disambiguation step.

Discovery of Keyword Senses First of all, we have to introduce the exact meaning 
of sense in our system: A sense is the precise meaning of a keyword in a context, 
that is, the meaning of a keyword is determined by its surrounding keywords. In our 
system, a sense is represented by a tuple formed by the term itself, an ontological 
context composed by a list of possible synonyms (with their URIs) and ontological 
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information about the term, and a description in natural language. Each ontologi-
cal context is built by integrating information from different ontologies. Figure 4.3 
shows some possible senses for the user keyword star, retrieved from online 
ontologies.

So, our search starts by discovering and building these senses for the plain input 
keywords. Then, the discovery of the semantics behind each of the input keywords 
is done by taking into account their individual possible semantics as well as the 
possible semantics of their context (the rest of keywords), following the proposal 
in Trillo et al. (2007a). In particular, this process is divided into three substeps (see 
Fig. 4.2):

• Extraction of Keyword Senses: The system obtains the possible meanings of each 
keyword by consulting a dynamic pool of ontologies (in particular, it queries 

Fig. 4.3  Possible senses for keyword star
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Watson (d’Aquin et al. 2007), DBpedia (Mendes et al. 2012), WordNet (Miller 
1995), and other ontology repositories to find ontological terms that syntactically 
match the keywords, or one of their synonyms). For each matching, the system 
builds a sense, which is semantically enriched with the ontological terms of the 
corresponding synonyms by also searching in the ontology pool. As a result of 
this step, we obtain a list of candidate keyword senses for each user keyword. In 
Fig. 4.3, three possible senses (two as a class and one as a property) retrieved for 
the user keyword star are shown.

• Keyword Sense Enrichment and Removal of Redundancy: In the sense list ob-
tained in the previous step, there might be redundant meanings as the senses 
for each keyword are built with terms extracted from different ontologies. An 
incremental algorithm is used to align the different keyword senses and merge 
them when they are similar enough, and thus, to avoid redundancy. Our system 
calculates a synonymy probability that considers both linguistic and structural 
characteristics of the source ontologies: The linguistic similarity is calculated 
considering the different labels of each term as strings, and the structural simi-
larity is calculated recursively by exploiting the semantics of the ontological 
context of the keyword sense until a certain depth. Finally, both similarity values 
are combined to obtain the resultant synonymy measure. The formulae for the 
synonymy for each type of senses (concepts, roles, and instances) can be found 
in Trillo et al. (2007a). Senses are merged when the estimated synonymy prob-
ability between them exceeds a certain threshold.1 Thus, the result is a set of 
different possible senses for each user keyword entered.

• Disambiguation of Keyword Senses: A disambiguation process is carried out to 
select the most probable intended sense of each user keyword by considering the 
possible senses of the rest of keywords. The senses are compared by combining 
(Gracia and Mena 2009): (a) a Web-based relatedness measure that measures the 
co-occurrence of terms on the Web according to traditional search engines such 
as Google or Yahoo, (b) the overlap between the words that appear in the context, 
and the words that appear in the semantic definition of the sense (Banerjee and 
Pedersen 2003), and (c) the frequency of usage of senses (when available, as in 
WordNet annotated corpora). Our disambiguation process can be extended by 
including other different disambiguation algorithms such as the ones defined in 
Po (2009), as our approach does not depend on a specific disambiguation algo-
rithm. This way, the best sense for each keyword will be selected according to its 
context. Note that this selection might require the user’s feedback to select the 
most appropriate sense for each keyword in a semiautomatic way.

However, establishing the meaning of each keyword of the input is just the first 
step to obtain a proper interpretation, as several queries might be represented by a 
given set of keywords. For example, given the keywords fish and person meaning 
“a creature that lives and can breathe in water” and “a human being,” respectively, 

1 In Gracia et al. (2009), the authors proposed several strategies to obtain this threshold and 
validated them via thorough experimentation.
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the user might be asking for information about either biologists, fishermen, or even 
other possible interpretations based on those individual keyword meanings.

Semantic Query Generation The output of the previous step is a set of keywords 
which have their meaning properly attached, which we call semantic keywords. The 
ontological information that has been considered for obtaining the meaning of each 
keyword comes along with each of them. Our system automatically integrates this 
information, and then automatically builds a set of formal queries which, combining 
all the keywords, represents the possible semantics that could be intended by the 
user when she wrote the list of plain keywords. To do so, our system performs the 
following steps (see Fig. 4.4)

• Analysis Table Constructor: In order to capture formally the user’s informa-
tion need, the possible queries are expressed in the different query languages 
made available to our system, which are modeled using semantically annotated 
abstract grammars. These grammars lack syntax sugar and define: (1) how to 
combine the operators of a query language using typed gaps, that is, they specify 
which kind of queries can be built using concepts, roles, and instances in the 
corresponding query language (e.g., And concept concept), and (2) the semantics 
of the different operators giving their properties (e.g., associativity, symmetry, 
etc.) and DL expressions that will be checked with the help of a DL reasoner. 
The construction of the analysis tables (Aho et al. 2006) for the formal query 
languages is done off-line and just once for each language made available to our 
system.

Fig. 4.4  Multi-language query generation process 
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• Query Generator: With the analysis tables, our system builds the possible que-
ries for each query language according to its syntax. First, the Query Generator 
builds all the syntactically possible combinations according to the grammars of 
the available query languages. We call these combinations abstract queries be-
cause they have gaps that will be filled later with specific concepts, roles, or 
instances. These abstract queries are represented as trees, where the nodes are 
operators and the leaves are typed gaps (concept, role, or instance gaps). Then, 
for each abstract query tree generated, the gaps in the leaves are filled with the 
user keywords matching the corresponding gap type (i.e., keywords mapped to 
concepts are used to fill concept gaps in abstract queries, roles to fill role gaps, 
and so on). During this generation process, QueryGen takes into account the 
semantics of the different operators to avoid generating semantically equivalent 
queries.

• Semantic Processor: Then, once the set of syntactically possible queries is 
obtained, the Semantic Processor filters out the inconsistent ones with the help 
of a DL reasoner. This is done by using the DL expressions that specify each 
query language, which enables QueryGen to obtain an expression for the seman-
tic consistency of each of the queries. 

When no query satisfies the user, our system also performs a semantic enrichment 
of the input by adding virtual terms. They are generic typed gaps (to be replaced 
by concepts, roles, or instances) that represent the keywords that the user might 
have omitted, but without whom the intended query cannot be built. In a new query 
generation step, our system treats them as regular typed gaps but, instead of being 
replaced by input keywords, they are substituted by terms obtained from the ontolo-
gies which the input keywords were mapped to (during the previous discovery step). 
Thus, any query that the user could have in mind will be generated as a candidate 
interpretation as long as the available query languages used are expressive enough.
Note how this query generation process has both a syntactic and semantic dimen-
sion: It generates only syntactically correct queries according to the grammar of 
each of the query languages made available to the system, and it takes into account 
the semantics of the operators of each language and the semantics of the keywords 
to avoid generating either duplicated or incoherent queries. This process is per-
formed in parallel for each available query language, as their expressivity can differ 
from each other.

Access to Data Repositories Finally, once the user has validated the generated 
query that best fits her intended meaning, the system forwards it to the appropriate 
underlying structured data repositories (databases, Linked Data endpoints, etc.) that 
will retrieve data according to the semantics of such a query. This is not a trivial 
task, as our system must be able to adapt itself to their different query processing 
capabilities and access methods, and to their different data models and formats of 
the retrieved data. To provide QueryGen with enough flexibility to deal with this 
data heterogeneity, we advocate for the architecture shown in Fig. 4.5, whose main 
modules are the following ones:
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• Dispatcher: Once the user selects her intended query from those generated by 
QueryGen, the Dispatcher poses the query to the underlying data repositories 
that are capable of processing it. Every underlying system that is capable of 
processing the selected query is accessed in a parallel way as any of them could 
hold the desired answer. Finally, the Dispatcher correlates the data coming from 
the different systems and presents them to the user.

• Adapter: It wraps the access to the data stored in information systems with a 
certain data organization (e.g., there is an Adapter for relational databases, a dif-
ferent one for SPARQL endpoints, etc.). It registers itself in QueryGen providing 
information about the querying capabilities of the accessed information system, 
and making itself available to the Dispatcher. There is one instance of the appro-
priate kind of Adapter for each system accessed by QueryGen.

These Adapters are an evolution of the notion of wrappers used in OBSERVER 
(Mena and Illarramendi 2001), and encapsulate both the access methods and the ac-
tual syntax of the query languages and data formats, allowing QueryGen to abstract 
from them. Thus, we can add new information systems to feed QueryGen just by 
implementing and registering an appropriate Adapter in the system.

To sum up, QueryGen adopts an approach to the problem of keyword interpretation 
which provides a solution that, exploiting the semantics of all the elements that 
participate all along the search process, is flexible enough to deal with different data 
schemas (ontologies), different query languages, and different execution seman-
tics. Moreover, using QueryGen, users can turn their information needs into formal 
queries without having to master the formal languages they are written in. Having 
formal queries instead of information needs removes the ambiguity and enables 
the systems to focus on answering the specific query that users would have posed 
if they knew how to write it. For further details on each of the different aspects, we 
refer the interested reader to Bobed (2013).

Fig. 4.5  Our system can retrieve data from different channels and data models
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 Semantic Data Retrieval: Doctopush

As the WWW evolved and became more and more popular, search services to locate 
web sites and pages have become indispensable for users. Broadly speaking, these 
search tools could be categorized (at first) as web directories-based ones, and web 
search engines. Web directories became less relevant than search engines because 
they do not scale properly due to the manual process required to classify the web 
pages and sites. So, the main research efforts were focused on web search engines, 
especially on those with keyword-based interfaces because of their ease of use and 
success. However, as mentioned above, the use of keyword queries to start off in-
formation searches introduces semantic gaps between the user information needs 
and the queries.

With the advent of the so-called Web 2.0, this need for efficient search tools in-
creased, as users became content providers who often interact with other Web users, 
and thus the volume of content of the Web increased exponentially very quickly. 
To help users, keyword-based search engines specialized in different areas, such as 
job offers, books, etc., have been created in the last decade. They can be regarded 
as a hybridization of web directories and web search engines and are called verti-
cal search engines. Some popular examples of them are Google Scholar (http://
scholar.google.com, to search academic and research articles and papers), Tech-
norati (http://technorati.com, to search blogs), and InfoJobs in Spain (http://www.
infojobs.net, to search job offers). However, these search engines are developed ad 
hoc for each of the underlying domains, which can constitute a heavy barrier to the 
development of further ones.

Having into account the notion of web directories and vertical search engines, 
we propose to apply the disambiguation techniques previously described to group 
the hits retrieved by a traditional search engine into semantic categories. These cat-
egories are defined by the different meanings of the user’s keywords and are used 
to categorize the retrieved links according to them, thus avoiding mixed-up results. 
Our approach, called Doctopush (Trillo et al. 2011), discovers the possible mean-
ings of the keywords to create the categories dynamically in runtime by considering 
heterogeneous sources available on the Web. Differently from other proposals, such 
as clustering, the process of creation of categories is independent of the sources 
providing the results that must be shown to the users. Our approach considers two 
main steps: (1) discovering the semantics of the user keywords, and (2) semantics-
guided data retrieval (see Fig. 4.6).

The first step, Discovery of the Semantics of the User Keywords, adopts the dis-
ambiguation technique previously described in QueryGen. The Semantics-guided 
Data Retrieval step pursues to provide the user with only the hits, retrieved by 
a traditional search engine, which she is interested in and filter out the irrelevant 
results. Thus, the system classifies the hits retrieved into the categories defined by 
the meanings of the user keywords. Moreover, the categories are ranked according 
to the interests of the user. In other words, the system attempts to select the hits that 
have the same semantics as the intended meaning of the user keywords and discard 
the others. This process is performed in four phases in runtime:
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• Recollection of Hits: The system performs a search in a traditional web search 
engine considering the user keywords as input. This search returns a set of rel-
evant ranked hits, which represent the web pages where the keywords appear. 
The ranking of the hits depends on the specific techniques inner to the traditional 
search engine used (Google, Yahoo, Bing, etc.). Then, the hits returned are pro-
vided as input to the next phase (Cleaning and Lexical Annotation of Hits) incre-
mentally, in blocks of hits of a certain size. In this way, new hits can be retrieved 
while the first blocks are being processed.

• Cleaning and Lexical Annotation of Hits: Each hit obtained in the previous phase 
(composed of a title, a URL, and a snippet) is automatically annotated lexical-
ly. Thus, first, each hit ( Hj) goes through a cleansing process where stopwords 
are filtered out (creating the filtered hit Hj′). After that, the relevant words of 
the title and the snippet of each filtered hit Hj′ are considered to perform its lex-
ical annotation. A lexical annotation is a piece of information added to a term 
that refers to a semantic knowledge resource such as a dictionary, a thesaurus, 
or any other resource which represents a general or domain-specific ontology. 
So, for each filtered hit Hj′, this process obtains a list of annotations denoted as 
Hj′ → {( S1

x → scoreo,…, S1
y → scorep), …, ( Sn

z → scoreq,…)}. The list of annota-
tions represents the senses which the user keywords are likely used within that hit. 

Fig. 4.6  Overview of Doctopush: A semantic prototype to group hits of a traditional search engine 
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Moreover, the score associated to each annotation indicates its reliability. This is 
needed because, in some situations, selecting only one sense for a user keyword in 
a certain hit is a difficult task even for a human due to the inherent ambiguity and 
polysemy. For example, a keyword can appear in the same hit with different senses 
(e.g., in the case of a hit corresponding to a dictionary entry), or two different 
senses for a keyword may have some overlapping (e.g., for the keyword star, the 
meanings are an “actor who plays a principal role” and “a performer who receives 
prominent billing”). Therefore, a list of annotations must be considered. 
In our case, the annotation process is performed by considering each appearance 
of the user keywords in the filtered hit and its context (i.e., its relevant neighbor-
ing words), and by using the Web-based Word Sense Disambiguation (WSD) 
method and different configurations of the Probabilistic Word Sense Disambigu-
ation (PWSD) method presented in Po (2009) and Po et al. (2009). For this, first, 
each appearance of a user keyword ki in the title or the snippet of a filtered hit Hj′ 
is marked with its probable senses, that is, ki

t→{Si
x → scoreo,…, Si

y→ scorep}, 
where ki

t denotes the tth appearance of ki in Hj′. These annotations are used to 
perform the global annotation of the hit. Thus, when a user keyword sense Si

x 
appears only once in the annotations performed, the sense and its corresponding 
score ( Si

x → scoreo) are incorporated to the list of annotations of the hit. Nev-
ertheless, as a user keyword ki could appear several times in Hj′, the same user 
keyword sense Si

x could appear in several annotations of ki and have a different 
score in each of them; in this case, the maximum of these scores is considered for 
the global annotation of the hit.

• Categorization of Hits: The hits (already annotated as a result of the previous 
process) are grouped in categories by considering their lexical annotations. First, 
the system defines the categories that are going to be considered. Then, blocks 
of hits are classified. The potential categories are defined by considering all the 
possible combinations of candidate keyword senses of the input keywords, i.e., 
the Cartesian product of the candidate sense sets of the user keywords. For ex-
ample, if the user introduces two keywords ( k1 and k2) and, in the previous step, 
two senses are discovered for k1 ( S1

1 and S1
2) and one sense for k2 ( S2

1), then 
the following potential categories are considered: < S1

1, S2
1 > , < S1

2, S2
1 > , < U1, 

S2
1 > , < S1

1, U2 > , < S1
2, U2 > , and < U1, U2 > , where U1 and U2 represent the un-

known meanings considered for the keywords k1 and k2, respectively. Then, each 
hit is assigned to the categories defined by the meanings of the input keywords 
corresponding to the lexical annotation of that hit. So, depending on the scores of 
the meanings that are assigned to the user keywords in a hit, the hit could be clas-
sified in different categories at the same time, that is, the categories may overlap. 
Finally, the hits classified in a category are ranked according to their relevance 
for that category. That is, the system performs a score-based ranking. For this 
purpose, when a hit is assigned to a category, a score is also computed for the 
hit. This score is calculated by multiplying the scores associated to that hit for 
the different senses defining the category. Then, the hits within the category are 
ranked according to their scores (hits with the same score are ranked according 
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to the order returned by the web search engine), as the hits in top positions are 
considered more relevant for that category.

• Ranking of Categories and Presentation of Results: Finally, the results of the 
Categorization of Hits phase are presented to the user. The system shows, in dif-
ferent tabs or category links, the categories considered that contain hits (Potential 
categories with no hits represent combinations of senses of the input keywords 
that are not detected in the hits collected). The order of the tabs or category 
links depends on the probability that the corresponding category represents the 
semantics that the user had in mind when she wrote her query. So, to rank the 
categories, three elements are considered: (1) the scores obtained previously, (2) 
the percentage of hits classified in the category, and (3) the position of the first 
hit in that category in the ranking provided by the web search engine. Thus, the 
global score for a category Cx is defined in the following way:

 where α, β, and γ are the coefficients to tune the formula; scorehitSenses is ob-
tained by multiplying the scores (computed in previous phases) for the senses 
defining that category; score%hits is equal to the number of hits assigned to the 
category Cx divided by the number of hits retrieved from the web search engine; 
and scorepos1stHit is the inverse of the position of the first hit in Cx in the ranking 
provided by the traditional web search engine considered. Moreover, categories 
with unknown senses are considered less relevant, by assuming that the compo-
nent scorehitSenses is zero.

After developing the prototype, its performance under different contexts was evalu-
ated in order to evaluate the interest of our proposal; for further details, see Trillo 
et al. (2011). We have also analyzed several related works in the following areas: 
clustering and categorization methods of documents, search engines that perform 
clustering of web documents, semantic search engines with the same goal as our 
proposal, and works about query reformulation and refinement. The main differ-
ence of our proposal with respect to other methods is that it considers the knowl-
edge provided by ontologies available on the Web in order to dynamically define 
the possible categories for classifying the hits considered. Thus, it is independent of 
the sources providing the results that must be grouped.

4.3  Semantic Information Extraction: GENIE

The access to large amounts of information has become something regular in our 
daily life, and this has raised the need for more intelligent tools to collect, organize, 
analyze, and distribute all this information. These tools require capabilities that are 
not trivial and that can hardly be found in commercial products. To ease the de-
velopment of such tools, it would be very useful to have off-the-self software that 

% 1( )x hitSenses hits pos stHitscore C score score scoreα β γ= + +
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would comprise different elements to tackle these problems from different points 
of view under a common framework, providing solutions to many usual processes 
related to the extraction of information. This would help to increase productivity of 
organizations, and save resources needed to achieve their goals.

In this context, when it comes to handling information in nonstructured docu-
ments, many tasks are still open research problems. Among these tasks, we can find, 
for example, automatic text classification, summarization of text sources, extraction 
of data from raw text, or synthesis of knowledge out from natural language docu-
ments. The implementation of software to face these kinds of issues is not at all a 
trivial matter. Thus, in our research group, we have applied the know-how acquired 
developing different semantic information systems to develop a framework to help 
these tasks, called the GENIE project.

GENIE is the acronym for GENeric Information Extraction Framework. Accord-
ing to Russell and Norvig (Russell and Norvig 2003), Information Extraction (IE) 
means automatically retrieving certain type of information from natural language 
text. They say that IE is halfway between Information Retrieval (IR) systems and 
text understanding systems. GENIE is an architectural proposal that implements 
a set of components whose objective is to provide tools to make IE easier for the 
developers, integrating Semantic Web techniques with Machine Learning, Artificial 
Intelligence (AI) techniques, and Natural Language Processing (NLP) tools (Smea-
ton 1999). In particular, it supplies a set of libraries designed to assist developers 
in projects of this nature. An important feature that distinguishes this project from 
other similar works is the semantic approach given to all the modules, taking advan-
tage of the latest advances made in ontological engineering and semantic technolo-
gies. To sum up, these are the main goals of GENIE:

• To create a framework able to handle different languages, and to integrate a large 
number of processes related to IE.

• To integrate into this framework, modular, generic, and open tools that can be 
used in other external applications.

• To develop an open framework allowing future expansion.
• To facilitate experimentation and testing allowing the improvement of current 

methods, and the development of new tools that represent an innovation in the 
field of IE.

The architecture of the GENIE framework is composed of a set of modules that 
implement essential tasks to execute different semantic IE processes. GENIE con-
sists of a set of high-level units which can be orchestrated to form a semantic IE 
workflow by communicating with each other using XML. These units, if necessary, 
can be transformed into services, libraries, or web services, depending on the degree 
of decoupling and performance required. Specifically, GENIE is constituted by the 
following units:

• Multilingual natural language analysis unit: The aim of this unit is to provide 
basic information from raw texts. This information is similar to the information 
obtained by tools like morphological taggers or syntactic parsers.
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• Named Entities Detector: This unit provides a specific semantic analyzer fo-
cused on Named Entities (NE; Sekine and Ranchod 2009), as they are subject of 
intense research in the context of IE. The recognition of NE has been enhanced 
with NLP and semantic methods which improve the term disambiguation.

• Machine Learning unit: This unit is another important piece inside the GENIE 
architecture, as it provides several unsupervised learning methods. Apart from 
Support Vector Machines (SVM; Joachims 1998), which have provided us very 
good results, this unit can also manage other unsupervised learning methods like 
clustering and statistical models like Bayesian networks. We have paid special 
attention to enhance the interconnectivity of these techniques with the rest of the 
units to provide a unified development framework.

• Geographic information extractor: Geographical resources have a special treat-
ment due to their importance. Typically, when categorizing a text, about 30 % 
of the labels used by a documentation department are related to places. Thus, as 
detailed in Garrido et al. (2013b), we have incorporated the use of ontologies to 
enhance the geographical tagger service provided by this unit.

• Categorization unit: The goal of this unit is to automatically classify documents 
(Garrido et al. 2011, 2012). This unit uses most of the functions supplied by the 
aforementioned units.

• Semantic analyzer: This unit obtains information about the connotation of terms, 
that is, the real meaning of words in a context. Moreover, it searches relations 
of these words with others (e.g., synonyms, antonyms, hypernyms, hyponyms, 
etc.) using both NLP tools and ontologies to do this task. Finally, it is also used 
in order to disambiguate terms.

• Automatic query expansion unit: This unit provides an enhanced keyword-
based search by expanding automatically the input query taking into account the 
semantic contents of the keywords and their relationships. The approach of this 
GENIE’s unit consists of three steps: (1) obtain words with common lemmas, to 
extract those words that belong to the same family as the keywords entered as a 
query; (2) obtain words with similar meanings, to return records which contain 
words that are synonymous to the keywords introduced, using the previous units 
to analyze and to disambiguate the terms; and finally, (3) refine the queries with 
NE, by detecting and considering NEs as a whole. Further details are provided in 
Granados-Buey et al. (2014a, b).

• Aggregation unit: This unit provides personalized reports from raw text sources. 
These reports are elaborated from a set of predefined templates that define the 
presentation of the information of some types of results (e.g., people, compa-
nies, events, etc.). The sources can be documents, databases, triplestores, or even 
Linked Data. Some details of this unit can be found in Garrido et al. (2014a).

Our main contribution with GENIE is not only the effort of packing these differ-
ent work units but also the use of semantic techniques for tasks which are usually 
tackled using purely linguistic approaches or machine learning. The advantages of 
joining machine learning approaches with semantic tools have been widely studied 
in Garrido et al. (2014c). Finally, another useful feature of GENIE is that it can 
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incorporate new resources (databases, gazetteers, dictionaries, thesauri, RDF/OWL 
files, etc.) to enrich the service provided by work units. This incorporation may be 
progressive and is performed using standard formats for resources.

Regarding other existing projects with similar goals as GENIE’s, we have to 
mention GATE (Cunningham et al. 2002). GATE is a Java suite of tools developed 
at the University of Sheffield, which began in 1995 and is used nowadays by a large 
community of scientists, companies, teachers, and students for NLP tasks. GATE is 
inspired by previous projects such as ATLAS (Bird et al. 2000). GATE is, on the one 
hand, an integrated development environment, and, on the other hand, a framework 
including a set of software building blocks ready to be used. It is a mature tool, 
very powerful and complete, working very well with English, German, and French. 
However, this framework does not give the same kind of support for languages such 
as Spanish, Italian, or Portuguese. In any case, the main difference between GENIE 
and GATE is the level where each project works at. GENIE is not only a set of tools 
ready to be used individually but also a collection of units prepared to be connected 
to other systems and resources, with a level of encapsulation and coupling adaptable 
to the needs of each project. In fact, GENIE could integrate a suite like GATE as 
another working unit.

Practical Applications. In addition In addition to its high interest as a research 
platform, this software has a lot of practical applications:

• Search engines: We have increased the performance of a standard index of a 
term-based search engine, making its behavior closer to a semantic search one. 
This allows to get results in spite of the fact that gender (male or female), number 
(singular or plural), or verb forms are different from the keywords used in the 
query. It also considers synonyms and related words when retrieving data, which 
greatly enhances the user experience. Further details can be found in Granados-
Buey et al. (2014b).

• Documentary collections: GENIE can help to improve the productivity of, for 
example, administration staff or a documentation department, by automating 
tedious tasks of labeling. It has tools capable of categorizing documents using 
semantic tags with a high-precision level. Moreover, through a suitable interface, 
it could also update item details in the document database when necessary. A 
GENIE module has been linked to geographical databases, making it capable 
of taking into account tagged text locations and disambiguating it when needed. 
Finally, GENIE is also able to produce summaries of text with a defined length, 
something very useful in many areas. Hypatia (Garrido et al. 2014a) is an ongo-
ing project that brings together all of these functionalities.

• Information management: With the ability of “understanding” a text, GENIE can 
extract information from a document and transform it to measurable values. This 
is very interesting as it can be applied to the analysis of reports, to obtain brand 
reputation, or to implement filters, among others. This extracted information can 
be captured and represented as a knowledge model. In particular, GENIE has 
been used to develop tools like (Garrido et al. 2013), a system able to generate 
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Topic Maps (Pepper and Moore 2001), a simple form of knowledge representa-
tion, out from plain texts.

• Recommendation systems: Today, it is quite common for e-commerce and book-
marking web sites to include some type of recommendation module that is able 
to identify and present items appealing to their users. Many techniques related 
to areas such as machine learning, IR, or NLP, among others, have been adopted 
to develop systems that recommend items like books, songs, or movies, for ex-
ample. Even though recommendation systems have been developed for the past 
two decades, existing recommenders are still inadequate to achieve their objec-
tives and must be enhanced to generate appealing personalized recommenda-
tions effectively. In this context, we have already proposed two approaches to 
recommender systems, SOLE-R (Garrido et al. 2014b) and TMR (Garrido and 
Ilarri 2014), which exploit the semantic services provided by GENIE.

The outcomes obtained by this system on real environments are very promising, 
and, in fact, this framework is already being used in real production environments, 
providing very good results; thanks to the use of semantic techniques.

4.4  Technologies for Fuzzy Knowledge

Despite the advantages of ontologies, it has been widely pointed out that they are 
not appropriate to deal with imprecise and vague information, which is inherent 
to several real-world domains. Let us discuss now some examples. The domain of 
medicine contains a lot of imprecise terms, and classical ontologies are not suitable 
to express that a patient is slightly unconscious or that anaphylaxis is quite similar 
to sepsis. Location-based applications are based on potentially imprecise sensor 
data: For instance, GPS sensors provide an approximate location. The domain of 
accommodations includes vague terms to categorize different lodging types (such 
as Guesthouse). For example, it is usually assumed that a Guesthouse is a “cheap, 
small, and more hospitable hotel”, but the notions of cheap, small, and hospitable 
are clearly not well defined, having unsharp boundaries. Hence, the nature of the 
concepts in this domain makes crisp definitions unsuitable. For more applications 
of fuzzy ontologies, see Bobillo (2008).

Fuzzy set theory and fuzzy logic have proved to be suitable formalisms to handle 
this imprecise and vague knowledge (Zadeh 1965). In fuzzy logic, the usual con-
vention prescribing that a statement is either true or false is changed. Every state-
ment holds with a degree of truth measured on an ordered scale that is no longer {0, 
1} but (usually) [0, 1]. The main concept in fuzzy logic is that of fuzzy set. Essen-
tially, the elements of a fuzzy set have degrees of membership valued in [0, 1]. For 
example, Fig. 4.7 shows a fuzzy set representing young people.

Fuzzy logics provide compositional calculi of degrees of truth. The conjunction, 
disjunction, complement, and implication operations are performed in the fuzzy 
case by a t-norm function ⊗, a t-conorm function ⊕, a negation function ⊖, and 
an implication function ⇒, respectively. A quadruple composed by a t-norm, a t-
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conorm, an implication function, and a negation function determines a fuzzy logic. 
Table 4.3 shows the definition of some popular fuzzy logics, where α,β ∈ [0,1] are 
two degrees.

Fuzzy Ontologies Given the success and popularity of fuzzy logic, it should come 
as no surprise that several fuzzy extensions of ontologies can be found in the litera-
ture. The elements of a fuzzy ontology are extended as follows:

• Fuzzy concepts are interpreted as fuzzy sets of individuals, so the membership 
of an instance to a concept is a matter of degree. For example, YoungHuman can 
contain the fuzzy set of young people.

• Similarly, fuzzy properties between two individuals are interpreted as fuzzy rela-
tions, so pairs of elements are related to some degree. For instance, the property 
isFriendOf makes it possible to represent the degree of friendship between pairs 
of individuals.

• Now, it makes sense to consider fuzzy axioms, since statements are not either true 
or false but hold to some degree. For example, we can state that john belongs to 
the concept of YoungHuman with at least degree 0.9, meaning that he is rather 
young. Classical axioms τ are generalized as (τ,α).

• Finally, it makes sense to consider fuzzy datatypes generalizing crisp values by 
using a fuzzy membership function. For example, instead of considering the 
crisp value 18, now it is possible to consider about18. The former datatype is 
incompatible with the value 17.99, whereas the latter one is not.

Table 4.3  Truth combination functions of various fuzzy logics
Operator Lukasiewicz logic Gödel logic Product logic Zadeh logic
α ⊗ β max( α + β – 1, 0) min( α, β) α · β min( α, β)
α ⊕ β min( α + β, 1) max( α, β) α + β − α · β max( α, β)
α ⇒ β min(1 – α + β, 1) 1 if

otherwise
α β

β
≤




min(1, β/α) max(1 − α, β)

⊖ α 1 − α 1 if 0
0 otherwise

α =



1 if 0
0 otherwise

α =



1 − α

Fig. 4.7  Fuzzy set repre-
senting young people
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The reasoning services in fuzzy ontologies include the same tasks for classical on-
tologies (see Section 4.1) together with some new ones. The most typical tasks are:

• Consistency: An ontology O is consistent iff it has a model, i.e., there is a fuzzy 
interpretation satisfying every axiom in O.

• Entailment: O entails an axiom τ iff every model of O satisfies τ.
• Concept satisfiability: A concept C is satisfiable to at least degree α (or 

α-satisfiable) w.r.t. O iff there is a model of O satisfying (C(x),α), for a new 
individual x ∉ O.

• Concept subsumption: A concept D subsumes a concept C to at least degree α (or 
α-subsumes) w.r.t. O iff every model of O satisfies the axiom (C ⊑ D,α).

• Best entailment degree ( BED): The BED of a crisp axiom τ w.r.t. O is defined 
as the supremum of the degrees α such that O entails the axiom (τ,α), where  
sup ∅ = 0.

Fuzzy ontologies require the development of new languages, reasoning algorithms, 
and tools. Unfortunately, they have not achieved yet the maturity of crisp ontolo-
gies, and additional research on this topic is still being carried out. However, there 
exist several approaches in the literature and implementations worth to mention. 
This section summarizes the main achievements developed by members of our re-
search group in collaboration with international experts.

There is no standard language to represent fuzzy ontologies, and the different pro-
posals have differences in the elements that are being fuzzified. For example, not all 
the approaches consider the definition of fuzzy sets using trapezoidal membership 
functions. To assist users in the process of fuzzy ontology building, there is a Pro-
tégé plug-in called Fuzzy OWL 2 (http://webdiis.unizar.es/~fbobillo/fuzzyOWL2) 
that can be used to create and edit fuzzy ontologies (Bobillo and Straccia 2011). The 
plug-in uses a relatively abstract fuzzy ontology representation that can be exported 
into the particular syntax of different ontology languages.

Among the many existing implementations of fuzzy ontology reasoners, we will 
highlight two: fuzzyDL (http://webdiis.unizar.es/~fbobillo/fuzzyDL; Bobillo and 
Straccia 2008) and DeLorean (http://webdiis.unizar.es/~fbobillo/delorean; Bobillo 
et al. 2012). The former system implements a fuzzy extension of a classical tab-
leaux algorithm. The latter follows an alternative approach and transforms a fuzzy 
ontology into an equivalent non-fuzzy ontology, preserving the semantics of the 
knowledge in such a way that it is possible to reuse the existing ontology reasoners. 
All the existing fuzzy ontology reasoners are complementary, because up to now, 
they support different fuzzy ontology elements, and hence cannot be easily ranked.

The rest of this section is dedicated to a deeper overview of these three applications: 
Fuzzy OWL 2, fuzzyDL, and DeLorean.
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 Modeling Fuzzy Ontologies with Fuzzy OWL 2

Fuzzy OWL 2 is a Protégé plug-in that makes it possible to develop fuzzy ontolo-
gies. Once the plug-in is installed, a new tab in Protégé, named Fuzzy OWL, en-
ables to use it.

The plug-in is based on a methodology for fuzzy ontology representation using 
OWL 2 (Bobillo and Straccia 2011). The key idea of this representation is to use an 
OWL 2 ontology, and extend its elements with annotations representing the features 
of the fuzzy ontology that OWL 2 cannot directly encode. To separate the annota-
tions including fuzzy information from other annotations, a new annotation proper-
ty called fuzzyLabel is used, and every annotation is identified by the tag fuzzyOwl2. 
Since typing such annotations is a tedious and error-prone task, the plug-in makes 
the syntax of the annotations transparent to the users.

Figure 4.8 shows the available options of the plug-in: fuzzy queries, fuzzy ontol-
ogies, fuzzy modifiers, fuzzy concepts (fuzzy nominals, fuzzy-modified concepts, 

Fig. 4.8  Fuzzy OWL 2: 
Menu options
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weighted single concepts, weighted complex concepts, aggregation and integral 
concepts, quantifier-guided OWA concepts), fuzzy properties (fuzzy-modified 
roles), fuzzy datatypes (including fuzzy-modified datatypes), and fuzzy axioms. A 
description of all the elements of a fuzzy ontology is out of the scope of this chapter; 
for more details, we refer the reader to Bobillo and Straccia (2011, 2013).

The non-fuzzy part of the ontology can be created by using Protégé as usual. Af-
ter that, the user can define the fuzzy elements of the ontology by using the plug-in, 
namely fuzzy axioms, fuzzy datatypes, fuzzy modifiers, fuzzy-modified concepts, 
and fuzzy nominals.

Figure 4.9 illustrates the plug-in use by showing how to create a new fuzzy 
datatype. The user specifies the name of the datatype and the type of the member-
ship function. Then, the plug-in asks for the necessary parameters according to the 
type. A picture is displayed to help the user recall the meaning of the parameters. 
After some error checks, the new datatype is created and can be used in the ontology.

Fuzzy ontologies developed with the plug-in use an independent syntax that does 
not align with any particular reasoner. Once the fuzzy ontology has been created, 
it has to be translated into the language supported by a specific fuzzy DL reasoner. 
For this purpose, the plug-in includes a general parser that can be customized to 
any reasoner by adapting a template code. The parser browses the contents of the 
ontology with OWL API 3 (Horridge and Bechhofer 2011), which allows iterating 
over the elements of the ontology in a transparent way and prints an informative 

Fig. 4.9  Fuzzy OWL  2: Creation of a fuzzy datatype
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message. The template code has been adapted to build two parsers, one for fuzzyDL 
and one for DeLorean. Furthermore, similar parsers for other fuzzy DL reasoners 
can be easily obtained. To do so, one can just replace the default messages by well-
formed axioms, according to the desired fuzzy ontology syntax.

 Reasoning with Fuzzy Ontologies Using fuzzyDL

From a historical point of view, fuzzyDL can be considered as the first fuzzy DL 
reasoner. It is very popular and has been used in several applications. The supported 
language is thus a fuzzy extension of SHIF (D). It is also possible to use linguistic 
labels as degrees of truth, such as high, instead of forcing fuzzy ontology develop-
ers to use numbers in [0, 1]. This makes it possible to deal with unknown degrees 
of truth.

Apart from extending the elements of crisp ontologies to the fuzzy case, fuzzy-
DL introduces new elements specific from the fuzzy case, such as concept modifiers 
(using linear hedges and triangular functions), explicit definitions of fuzzy concepts 
(by means of triangular, trapezoidal, left-shoulder and right-shoulder functions), or 
some concept constructors (fuzzy rough concepts (Bobillo and Straccia 2012), ag-
gregation operators, modified concepts, and threshold concepts). It is also possible 
to express linear inequations involving degrees of truth. The semantics is given by 
Zadeh and Lukasiewicz fuzzy logics, and some operators of Gödel fuzzy logic are 
also supported. Connectives of different fuzzy logics can be combined.

fuzzyDL supports standard reasoning tasks namely, consistency, concept sat-
isfiability, maximum degree of satisfiability of a concept, entailment, concept 
subsumption, BED of an axiom, maximum degree of satisfiability of an axiom, and 
instance retrieval. Furthermore, it also supports some nonstandard tasks, such as 
variable optimization and different types of defuzzification of fuzzy sets.

The reasoning algorithm is based on a mixture of tableau rules and an optimiza-
tion problem. All the reasoning tasks are reduced to the BED of a concept assertion. 
Then, it applies some satisfiability preserving tableau rules that not only decompose 
complex concept expressions into simpler ones but also generate a system of ine-
quation constraints. These inequations have to hold in order to respect the semantics 
of the fuzzy DL constructors. After all the rules have been applied, an optimization 
problem must be solved before obtaining the final solution. 

fuzzyDL implements several optimization techniques, such as general concept 
inclusion (GCI) absorption, concept simplification, lexical normalization, opti-
mized use of n-ary conjunction and disjunction, advanced blocking techniques, 
normalization of degrees of truth, encoding of string names using integers, etc.

Although fuzzyDL can be freely downloaded, the user needs a Gurobi solver 
license because it is required to calculate the solutions of mixed integer linear pro-
gramming (MILP) problems. fuzzyDL can be used as a stand-alone application, ac-
cessed by other applications by means of a Java API, or queried through the Fuzzy 
OWL 2 plug-in.
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 Reasoning with Fuzzy Ontologies Using DeLorean

DeLorean (DEscription LOgic REasoner with vAgueNess) is a fuzzy ontology rea-
soner that supports fuzzy extensions of the languages OWL and OWL 2. Nowadays, 
DeLorean is the only reasoner that currently supports fuzzy OWL 2, although it 
does not support several elements supported by other fuzzy DL reasoners.

The reasoning algorithm is based on a reduction to reasoning in crisp ontologies 
detailed in Bobillo et al. (2012b). A consequence of the reduction is the possibility 
to reuse classical resources: editors, tools, reasoners, etc. In a strict sense, DeLorean 
is not a reasoner but a translator from a fuzzy rough ontology language into a clas-
sical ontology language (the standard language OWL or OWL 2, depending on the 
expressivity of the original ontology). Then, a classical DL reasoner is employed to 
reason with the resulting ontology. Nevertheless, due to this ability of combining 
the reduction procedure with the classical DL reasoning, we refer to DeLorean as 
a reasoner.

The supported language is thus a fuzzy rough extension of SROIQ (D). It is 
also possible to use linguistic labels as degrees of truth. The semantics is given by 
Zadeh and Gödel fuzzy logics, and connectives of both logics can be combined. 
The following reasoning tasks are supported: Computation of an equivalent crisp 
representation of the fuzzy ontology, consistency, concept satisfiability, maximum 
degree of satisfiability of a concept, entailment, concept subsumption, and BED of 
an axiom. There are some optimizations of the reduction to crisp SROIQ (D), but 
the only existing optimizations for reasoning in crisp SROIQ (D) are those imple-
mented by the reused classical reasoner.

DeLorean can be used as a stand-alone application. In addition, DeLorean 
reasoning services can also be used from other programs by means of a Java API. 
In this section, we focus on the use of the reasoner through its graphical interface, 
which as illustrated in Fig. 4.10, is structured in four sections:

• Input. Here, the user can specify the input fuzzy ontology and the DL reasoner 
that will be used in the reasoning. The possible choices are HermiT (Motik et al. 
2009), Pellet (Sirin et al. 2007), and any OWLlink-complaint reasoner. Once a 
fuzzy ontology is loaded, the reasoner will check that every degree of truth that 
appears in it belongs to the set specified in the section on the right.

• Degrees of truth. The user can specify here the set of degrees of truth that will 
be considered. 0 (false) and 1 (true) are mandatory. Other degrees can be added, 
ordered (by moving them up or down), and removed. For the user’s convenience, 
it is possible to directly specify a number of degrees of truth, and they will be 
automatically generated.

• Output. Here, output messages are displayed. Some information about the 
reasoning is shown here, such as the time taken, or the result of the reasoning.

• Reasoning. This part is used to perform the different reasoning tasks that 
DeLorean supports. The panel is divided into five tabs, each of them dedicated 
to a specific reasoning task.



4 Emerging Semantic-Based Applications 65

These three technologies show how the expressivity of crisp DL ontologies can be 
extended using a complementary formalism. In our case, we focused on fuzzy logic, 
as it provided us with mechanisms to model the uncertainty that is inherent in many 
of our working scenarios.

4.5  Applying Semantic Web Technologies to Mobile 
Computing

Advances in mobile computing, with the popularity and widespread and pervasive 
use of mobile devices and wireless communication technologies, have emphasized 
the interest in providing mobile users with access to useful information, anywhere 
and anytime. Besides, in this type of scenarios, it is particularly important to cus-
tomize the information provided according to the context of the user, to show her 
only truly relevant data and avoid overloading the user with unneeded information. 
One of the most important context parameters is the location of the user, which has 
given rise to the development of a wide variety of LBSs (Ilarri et al. 2010; Schiller 
and Voisard 2004), such as vehicle tracking applications, friend-finder applications, 
location-based emergency services, location-based advertisements, and location-
based games, among others.

A fundamental building block to define appropriate LBSs for a variety of sce-
narios is the so-called location-dependent queries, which are queries whose answer 
depends on the location of certain objects/entities (notably, not only the location 

Fig. 4.10  User interface of DeLorean reasoner
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of the mobile user that submits the query but also other objects that are relevant 
for the query). These queries thus include location-dependent constraints, such as 
inside (that filters the objects that are within a certain area), nearest (that retrieves 
the nearest object or the k-nearest objects of a certain type to a given object), etc. 
For an in-depth study of location-dependent queries, we refer the interested reader 
to Ilarri et al. (2010).

As the locations of moving objects (e.g., people, vehicles, etc.) may change at 
any time, the answer to a location-dependent query may become obsolete in a short 
time. Therefore, as opposed to traditional queries ( one-shot queries or snapshot 
queries), location-dependent queries are usually processed as continuous queries, 
that is, as queries whose answer must be updated by the system all the time, until 
they are explicitly canceled by the user. This implies the need of an efficient ap-
proach to keep the answer up-to-date, without the need to reevaluate the whole 
query from scratch every time that the answer needs to be refreshed. Besides, the 
answer to a query is usually refreshed periodically: Triggering a query whenever 
the answer changes is usually not possible, as even if the answer set (i.e., the set of 
objects that are an answer to the query) does not change, the locations of the objects 
in the answer set may change all the time and the user is usually interested in their 
current locations, that therefore will need to be refreshed continually.

It is important to highlight that sometimes a GPS location granularity for lo-
cation-dependent queries may be unnecessary or even inconvenient. So, the user 
should be allowed to express locations and location constraints in terms of the loca-
tion terminology that she requires (the locations could be not only GPS locations 
but also cities, rooms, buildings, provinces, countries, etc.), which are called loca-
tion granules in Ilarri et al. (2011a). Its use may have an impact on the semantics 
of the query, on the performance of the query processing, and also on the way 
the query results are shown to the user. Moreover, location granules should not be 
considered just a set of geographic locations, as they may also have other features 
and additional meaning attached; for this reason, we have later proposed the con-
cept of semantic location granule (to be described in the next section).

Location-dependent queries would benefit from the semantic management of in-
formation about moving objects and scenarios. Acquiring the required knowledge 
about the existing types of objects and their features, the application scenarios, etc., 
should not be the responsibility of the user. This has motivated our ongoing work on 
the SHERLOCK system (to be described later), where we also try to go beyond sim-
ple location-dependent queries to more generic location-dependent requests, which 
may be traditional location-dependent queries but also commands requesting objects 
to perform specific actions (e.g., using their sensors to measure certain values).

 Semantic Location Granules

As we have mentioned in the previous section, location-dependent queries are one 
of the most active matters of study in LBSs. For example, if we are visiting New 
York and take with us a smartphone, we could query “what are the museums in 1 
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kilometer?” In the literature, most of the works (Ding et al. 2008; Gedik and Liu 
2006; Ilarri et al. 2010; Mokbel et al. 2005; Sistla et al. 1997) consider that the 
answer to this query is a set of GPS points (that could be located on a map). But 
in many cases, we do not need the precise GPS location. Instead, we need to use a 
more abstract notion of location, area name, since the geographic coordinates are 
probably meaningless to us. For instance, if a user wants to go by subway to the 
MoMA museum in New York, she will not be interested in the precise coordinates 
of the area where she has to leave the subway, but she may want to know the name 
of the station near the MoMA museum to leave the subway. It makes no sense to 
show her a map with a point to leave the subway. She needs the name of the sta-
tion. To take these situations into account, the concept of location granule arises as 
a set of physical locations (Bernad et al. 2013; Bobed et al. 2011; Ilarri et al. 2007, 
2009, 2011). This concept is similar to the concept of place in Hightower (2003) 
and Hoareau and Satoh (2007, 2009) or spatial granule in Belussi et al. (2009). 
Furthermore, we can group a set of location granules under a name to obtain what 
it is known as a location granules map. For example, Madrid could be a location 
granule of the location granules map of the provinces of Spain.

Although location granules enhance the expressivity of location-dependent que-
ries and this is an important step forward, they are basically a set of GPS points with 
a name. When we group a set of locations and give them a name, we are implicitly 
giving them also a meaning. For example, the set of locations that compose Madrid, 
that is, the location granule with the name Madrid, becomes a city, the capital of 
Spain. Thus, the location granule Madrid can be seen as a more abstract concept 
that represents a city or a capital of a country. Implicitly, a location granule has a 
semantics (it is a city, a country, etc.). To model the semantics of location granules, 
the concept of semantic location granule is introduced in Bernad et al. (2013) and 
Bobed et al. (2010).

In addition, it is also interesting to consider not only the semantics of the loca-
tion granules (Madrid is a city, Hyde Park is a park, Spain is a country) but also 
the semantics of the topological relations between them: For instance, Madrid is 
contained in Spain, or Oxford Street is adjacent to Hyde Park. And what is more 
important is that, if we introduce semantics in location granules and in its topo-
logical relations, we can infer implicit knowledge automatically. For instance, if a 
user is in the city of Zaragoza, it could be inferred that she is also close to France, 
a country with famous red wines. The interest of linking LBSs and semantics has 
been emphasized in Ilarri et al. (2011b).

Several works in the field of geographic information systems (GIS; Rigaux et al. 
2002; Shekhar and Chawla 2002) have used the relational data model to repre-
sent topological relations (e.g., the region connection calculus, RCC; Randell et al. 
1992). However, to support reasoning with geographic elements, several previous 
works have studied the introduction of ontologies in the area of GIS (Couclelis 
2010; Lutz and Klien 2006), and the introduction of different types of topologi-
cal relations in DLs (Haarslev et al. 1998; Lutz and Möller 1997). Despite these 
efforts, more research is needed in this area to effectively enhance the processing of 
location-dependent queries with inference capabilities over location granules. For 
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example, isContained is a key topological relationship (it allows representing the 
geographic hierarchy of areas), but the existing proposals to represent such a rela-
tionship have important disadvantages (depending on the specific proposal, wrong 
conclusions may be obtained or a manual assertion of many of the isContained 
relations may be required).

Summing up, the three main goals that are pursued with semantic location 
granules are:

• To represent the semantics of a set of locations, i.e., to represent the semantics 
behind location granules.

• To represent the semantics of topological relations between location granules.
• To be able to infer implicit knowledge automatically.

We have proposed two complementary models for semantic location granules 
(Bobed et al. 2010; Bernad et al. 2013). The former one considers the location 
granules as instances of a concept Granule, and it is oriented to exploit the ABox 
extending the query model using logical rules; for further details, see Bobed et al. 
(2010). In this chapter, we will focus on the latter one, which considers that the 
granules themselves are concepts, as they subsume a set of locations (which now 
become the instances). As we will see, this latter model allows the DL reasoner to 
make intensive use of the TBox to infer the containment relationships (Bernad et al. 
2013). In the following, we will say granule instead of location granule, for the sake 
of simplicity.

Modeling Semantic Location Granules as Concepts Let us now discuss model-
ing semantic location granules as concepts. In this approach, we will consider that 
a semantic location granule is a concept in a TBox T of a knowledge representation 
K = (T, A). For example, we will consider that Madrid and Spain are concepts in T. 
The most straightforward way to express that Madrid is contained in Spain is to add 
an axiom in T, Madrid �  Spain, but it fails as we will see in the following. Recall 
that one of the objectives to introduce semantic location granules is the possibility 
to express that Madrid is a city or Spain is a country. Again, the most natural way to 
express these situations is to consider the concepts City and Country, and add in T 
the axioms Madrid �  City and Spain �  Country. But if we want to say that a city 
cannot be a country, that is, City ¬�  Country, then the T  Box T becomes inconsis-
tent: It is inferred that Madrid is a city and a country, Madrid �  Spain �  Country, 
which is a contradiction. With this simple example, we can see that it is not so trivial 
to express the content topological relationship using a DL. The main problem is that 
the subsumption operator ( )�  is used to express that Madrid is an area inside the 
area of Spain, and to express that Madrid is a city, that is, the subsumption operator 
is used to express the content relationship between areas as well as the is a relation-
ship between concepts.

To avoid the above problem, in the formalization of semantic gran-
ules and semantic granule maps with DLs, we use a transitive role, named  
isContained, and roles 

1
, , .

nX Xloc loc…  Intuitively, the role isContained is used to 
express that a granule is geographically contained in another one by subsumption 
and participation in the relationship isContained (e.g., NewYork  ∃� isContained.
EEUU); and 

1
, ,

nX Xloc loc…  are the coordinates of a point. These concrete features 
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allow us to define areas; for example, loc loc loc locx x y y≥ ≤ ≥ ≤10 20 10 30    
represents a rectangle.

Definition 1 An area concept 
1

( , , )
nX Xf loc loc…  is a concept built with the con-

structors   and ,  and the roles 
1
, , .

nX Xloc loc…  An area concept name A is a 
concept name such that 

1
( , , ),

nX XA f loc loc≡ …  where f is an area concept. The 
set of names of area concepts is denoted by NA.

For example, 10 20 10 30x x y yloc loc loc loc∃ ≥ ∃ ≤ ∃ ≥ ∃ ≤    is an area con-
cept, while 10 20 10 30x x y yloc loc loc loc City∃ ≥ ∃ ≤ ∃ ≥ ∃ ≤     is not. 

Now, we formalize the definition of semantic location granule and semantic 
granules map.

Definition 2 Given K = ( T, A) a knowledge representation and a granule map 
1{ , , }nM G G= …  with Gi  granules, a semantic granule map is a tuple ( M, K, area, 

semGranule) where area and semGranule are functions from the set of granules of 
M  to the concept names of T; that is, area, semGranule ,G CM N→  such that the 
following must be satisfied for all .GG M∈

1. semGranule ( )G �  area ( )G
2. area ( ) ∃G �  isContained.semGranule( G)

The concept names semGranules G( )  are called semantic granules. 

Let us show an example to explain the definition. Let M  be a granule map with lo-
cation granules M = {ZaragozaGr, AragonGr, MadridGr, SpainGr}, and T the TBox 
of a knowledge representation K defined in Table 4.4 (to keep explanations easier 
to follow, we represent geographic areas in the TBox by simple rectangles instead 
of the real geographic limits).

We define a semantic granule map ( M, K, area, semGranule), where area and 
semGranule are functions area ( SpainGr) = SpainArea, etc., and semGranule 
( SpainGr) = Spain, etc. We can ensure that this is a semantic granule map since it 
holds the conditions (1) and (2) of Definition 2 from axioms (5)–(8), and (9)–(12), 
respectively. Figure 4.11 shows the map corresponding to the modeled area.

Intuitively, the condition (1) of Definition 2 says that a semantic granule is not 
only its geographic area but it could also have more attributes. For example, Zara-
goza is an area and a City, and Spain is an area and a Country. The condition (2) 
allows to establish qualitative relations between granules such as “Zaragoza is a 
city in Spain,” i.e., Zaragoza ∃�  isContained.Spain, or to express the concept 
“Aragon’s wines,” AragonWine ≡ Wine ∃�  isContained.Aragon. Note that we 
do not express the concept Aragon’s wine as Wine   Aragon, since Aragon is a 
Region and wines are not regions; and similarly, Aragon’s wines are not defined 
as Wine   AragonArea, as wines could not have location information. We have 
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divided the containment relationship in two parts: One to make calculations about 
areas (quantitative reasoning) using the subsumption relationship, and another one 
to establish relationships with other concepts (qualitative reasoning) using the is-
Contained relationship.

From this model, a DL reasoner can deduce a number of facts, as we explain in the 
following:

Table 4.4  TBox axioms involving semantic granules
Axiom Definition
(1) ZaragozaArea 25 30 23 30x x y yloc loc loc loc≡ ∃ ≤ ∃ ≤ ∃ ≥ ∃ ≤  
(2) AragonArea 25 30 20 32x x y yloc loc loc loc≡ ∃ ≥ ∃ ≤ ∃ ≥ ∃ ≤  
(3) MadridArea 15 20 17 23x x y yloc loc loc loc≡ ≥ ∃ ≤ ∃ ≥ ∃ ≤  
(4) SpainArea 5 35 0 35x x y yloc loc loc loc≡ ∃ ≥ ∃ ≤ ∃ ≥ ∃ ≤  
(5) Zaragoza ≡ ZaragozaArea  City
(6) Aragon ≡ AragonArea  Region
(7) Madrid ≡ MadridArea  City
(8) Spain ≡ SpainArea  Country
(9) ZaragozaArea ∃�  isContained.Zaragoza
(10) AragonArea ∃�  isContained.Aragon
(11) MadridArea ∃�  isContained.Madrid
(12) SpainArea ∃�  isContained.Spain
(13) Region, Country, City are mutually disjoint
(14) RedWine � Wine
(15) AragonWine ≡ Wine  ∃ isContained.Aragon

Fig. 4.11  Sample granule 
map
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Proposition 1 A reasoner under conditions of Definition 2 can infer that:

1. A granule G is contained in a granule G′, i.e., it can be deduced that
semGranule( G) ∃�  isContained.semGranule( G′)

2. A granule G intersects a granule G′

In the example above, it can be inferred that Zaragoza is contained in Spain, 
Zaragoza �  ZaragozaArea �  SpainArea ∃�  isContained.Spain. The second 
statement is obvious since it is equivalent to asking if the area concept area ( )G   
area ( )G′  is satisfiable.

Another interesting remark is that the content of a granule only depends on its area. 
What does this mean? For example, let us suppose that we define two different 
semantic granules with the same area, VaticanCity and VaticanCountry, defined as 
VaticanArea   City and VaticanArea   Country, respectively. We would like the 
content of Vatican as a city (∃  isContained. VaticanCity) to be equal to the content 
of the Vatican as a country (∃  isContained. VaticanCountry), even when a country 
is not a city. Due to the conditions (1) and (2) of Definition 2 and the transitivity 
of the role isContained, we can conclude that in our model ∃ isContained.Vatican-
City ≡ ∃ isContained.VaticanCountry as it is shown in the following proposition.

Proposition 2 Let G be a granule under conditions of Definition 2. Then it holds 
that:
∃  isContained.semGranule ( )G ≡ ∃  isContained.area( G)

and therefore, if G1  and G2  are granules such that area 1( )G ≡  area ( ),G2  then
∃ isContained.semGranule 1( )G ≡ ∃  isContained.semGranule ( )G2

For further details on the model and the proofs of the different propositions, we 
refer the interested reader to Bernad et al. (2013).

Semantic Management of LBSs: SHERLOCK

The astonishing penetration of mobile computing in our daily lives, thanks to de-
vices such as smartphones and tablets, leads us to a scenario where mobile users 
have access to huge amounts of information anytime and anywhere. Thousands of 
applications (also known as apps) for their smart devices are available to offer them 
information about transportation, entertainment, culture, etc. The Web has also 
been growing steadily in the last few years with tons of potentially useful informa-
tion. Therefore, users are starting to be overwhelmed with the amount of data they 
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receive from different sources, as it is sometimes difficult for people to distinguish 
which information is valuable.

For example, imagine a researcher attending a conference who arrives on an 
evening flight and needs to reach her city hotel. At first, she would be interested in 
transport information and she might need to know the different options (e.g., bus-
es, metros, taxis, or car rental options), traffic conditions, and perhaps even where 
available parking spaces are located. This information could be obtained by visiting 
a tourist office, searching a local transportation web site, or even downloading a 
mobile app. After checking in, she could be interested in finding other nearby con-
ference attendees to talk to them or even to go sightseeing (again, she should browse 
the Web to find information about interesting places to visit). Thus, it is the user 
herself who is in charge of knowing/finding the interesting and updated information 
sources and gathering and correlating all this information; even worse, she will have 
to know/find all these updated information about each city she visits.

Semantic Web techniques become particularly useful in these scenarios. First, 
they can be used to understand the information needs of users controlling the ambi-
guities of natural language (as already explained in this chapter). Also, these tech-
niques can help to find the most appropriate information from a range of different 
sources by inferring useful information providers. Finally, information extracted 
from heterogeneous sources can be presented in an integrated way by using com-
mon representation models such as ontologies.

Overview We present SHERLOCK (System for Heterogeneous mobilE Requests 
by Leveraging Ontological and Contextual Knowledge) (Yus et al. 2014a), a sys-
tem to provide mobile users with interesting LBSs. SHERLOCK (http://sid.cps.
unizar.es/SHERLOCK) relieves users from the need to obtain up-to-date informa-
tion about the services they need. Using ontologies to model the knowledge related 
to these services, SHERLOCK devices exchange information among themselves, 
for example, about LBSs in the area. Also, with the help of a semantic reasoner, 
our system is able to determine which information could be interesting for a user 
regarding her context, and to obtain this information from objects nearby by lever-
aging the collaboration among devices. For that purpose, SHERLOCK deploys a 
network or mobile agents (Lange and Oshima 1999; Spyrou et al. 2004; Trillo et al. 
2007b) which move from one device to another autonomously to be near the needed 
information source and collect data (see Fig. 4.12).

Obtaining Knowledge from Devices Around SHERLOCK is based on knowl-
edge sharing among devices. Each participating device starts with a basic OWL 
local ontology containing the basic terms to define LBSs, with concepts such as 
“Service,” “Provider,” “Parameter” (see Fig. 4.13 where the basic terms are in 
bold font). SHERLOCK devices learn from the interaction with others: When two 
devices meet, they share part of their local ontologies. A SHERLOCK device that 
receives new knowledge integrates it with its local ontology, and thus it can use this 
new knowledge to provide the user with more interesting information. For example, 
the device of a user that lives in Zaragoza (Spain) knows transportation concepts 
such as “Taxi” or “"Bus”; if the user travels to Thrissur (India) and her device starts 
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communicating with others, it can learn that “Tuk-Tuk” (a vehicle defined in the 
ontology as a private transport that carries people to a certain destination) is similar 
to a taxi, and thus, it can be interesting for a user that needs transport.

In SHERLOCK, there is an (static) agent in charge of managing the local ontol-
ogy of the device. This agent, called Ontology Manager (OM), has two main tasks: 
(1) sharing knowledge with OMs in other devices, and (2) integrating the knowl-
edge received. OMs are continuously asking for knowledge related to the context of 
the user to new devices discovered. Also, if the user shows her interest in a specific 
location (e.g., downtown) or concept (e.g., hotel), OMs broadcast a message ask-
ing for knowledge related to it. An OM that receives a knowledge petition applies 
ontology modularization techniques (Stuckenschmidt et al. 2009) to extract relevant 
knowledge from its local ontology. When the new knowledge is received, OMs 

Fig. 4.12  Agent network deployed to process a request

 

Fig. 4.13  Subset of an ontology that defines an LBS: “Transportation Service”
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apply ontology matching techniques (Euzenat and Shvaiko 2007) to integrate the 
new knowledge into its local ontology. In this way, an OM will discover semantic 
relationships among terms such as synonymy (e.g., the terms “Taxi” and “Cab” are 
synonyms) or hypernymy (e.g., the term “Car” is a hypernym of the term “Taxi”).

Generating an Information Request When the user shows her interest in a cer-
tain location, SHERLOCK on her device uses the knowledge in its local ontology 
to help her generate an information request. The goal of this step is to generate a 
request that SHERLOCK will later process to find the information that the user 
needs.

There are three (static) agents involved in this process: ADUS, Alfred, and User 
Request Manager (URM). ADUS is in charge of generating graphical interfaces 
appropriate to show information to the user and get her input. Alfred is in charge of 
storing information about the user and her device (e.g., user preferences, previous 
requests, and technical capabilities of the device). This information is especially 
relevant to infer interesting information from previous user requests when generat-
ing a new request. For example, Alfred can infer that the user usually selects taxis 
and shuttles when looking for transportation, and thus, she seems more interested 
in private transportation than in public transportation. Finally, URMs interact with 
the user to generate the final information request. Using the location that the user 
selected, the URM infers which LBSs are related to it. This is done by finding all 
the LBSs defined in the ontology that are related (e.g., through a property) to the 
type of location selected. For example, if the user selects a hotel, the URM will infer 
that services to book a room or to find a transport to go there can be interesting. The 
context of the user is also used to filter out some of these services (e.g., if the user 
is already in a taxi, the service to find transportation would probably not be inter-
esting for her). Then, the URM presents the possible services to the user and when 
she selects one of them, the URM presents its parameters (if any) to find the most 
appropriate service provider for the selected service. Some of these parameters will 
be filled in by the URM using the information stored by Alfred.

Processing an Information Request Once SHERLOCK has generated an infor-
mation request to find the most appropriate service providers for the user, the next 
step is processing it. Following the approach presented in LOQOMOTION (Ilarri 
et al. 2006b) to process location-dependent queries, SHERLOCK creates a network 
of mobile agents to find these service providers. These mobile agents, used as a way 
to balance the computing load and minimize the network latency, consider every 
device in the scenario as a potential processing node. Mobile agents continuously 
evaluate the appropriateness of the current device where they are executing for the 
task they are performing. As a result, these agents can stay in the same device, move 
to another one where the performance is expected to be better, or even create new 
helper mobile agents if they cannot solve the situation alone.

There are three types of mobile agents involved in the processing of an informa-
tion request: User Request Processor (URP), Trackers, and Updaters. URPs are 
created to continuously process the user information request and return the results 
to their URMs (that will present these results to the user). URPs have to define the 
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geographic area that would be interesting to obtain information related to the user 
request. Finally, a URP creates Tracker agents to monitor the selected area(s). A 
Tracker is in charge of monitoring an area to find relevant objects that can provide 
the service that the user needs. To achieve this goal, Trackers create a network of 
Updater agents and correlate their results. The Tracker is responsible for maintain-
ing the network of Updaters trying to cover the area completely and with an ad-
equate frequency (due to communication delays). Finally, Updaters are in charge 
of communicating with objects asking for the ontological context that describes 
them. Updaters are provided by their Trackers with the ontological description of 
the service providers interesting for the user. So, if an object’s profile fulfills this 
description, then its information (especially its location) will be returned to the 
Tracker. Note that Updaters can use the reasoner on the device they are executing to 
check if an unknown object could be classified as an instance of the target provider 
it is looking for.

Prototype We have developed a prototype of the SHERLOCK (Yus et al. 2013b) 
as an Android app (see Figs. 4.14–4.16 for some screenshots of the prototype). 
The prototype uses the OWL API (Horridge and Bechhofer 2011), an ontology 
API to manage OWL 2 ontologies in Java applications, the JFact reasoner, and the 
SPRINGS mobile agent platform (Ilarri et al. 2006a). Using Semantic Web technol-
ogies (ontology APIs and DL reasoners) on current mobile devices are feasible, as 
we studied in Yus et al. (2013a) and Bobed et al. (2014). In addition, in Bobed et al. 
(2014), we evaluated the performance of semantic reasoners on smart devices and 
our results show that current smartphones can handle reasoning on small/medium 
ontologies.

First, the SHERLOCK prototype asks the user for some information such as her 
name and “profile” (e.g., person, researcher, taxi, or bus). Then, the prototype cre-
ates P2P networks using WiFi to communicate with other devices and to exchange 
OWL ontologies. Finally, the prototype helps users to create their information re-

Fig. 4.14  The user fills in 
parameters to select the most 
appropriate service provider 
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quests and to find other SHERLOCK devices around whose “profile” matches with 
the kind of appropriate service providers for the user (Fig. 4.15).

4.6  Discussion

Throughout this chapter, we have presented several examples of how the use of 
semantic techniques leads to the development of smarter information systems. Mak-
ing the computer aware of the semantics of the data will require still a long road of 

Fig. 4.15  Real-time loca-
tion of service providers are 
shown on a map

 

Fig. 4.16  Different infor-
mation requests can be 
processed for a user
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research in many fields. However, as we have shown, Semantic Web technologies 
in their current state make it possible to improve existing approaches, and to devise 
new and more intelligent applications.

In the SID research group, we are following this line of thought and research, 
attempting always to go a step further into exploiting semantics to improve the 
capabilities of our systems. We have seen how the use of semantic techniques has 
allowed us to improve Web searches, to perform semantic keyword-based searches 
on heterogeneous information systems, or to develop a platform to provide smarter 
LBSs, for example. However, our lines of research, which are directly implemented 
in our prototypes, are still open. Among others, some of the issues we are currently 
working on are:

• There is plenty of work to be done yet in the field of obtaining the semantics out 
from plain keywords and plain text. We are studying how to combine ontologies 
with NLP techniques to enhance this process, and solve many of the linguis-
tic problems that exist (e.g., ambiguity and multilingualism). Moreover, with 
the know-how acquired during the development of QueryGen, Doctopush, and 
GENIE, we also want to study the open problem of Question Answering, which 
has recently attracted new attention (Lopez et al. 2011, 2013) due to the possi-
bilities that ontologies provide to interpret the meaning of the posed queries.

• Regarding semantic searches and semantic LBSs, we want to study the inclusion 
of context information. User preferences could be introduced in our systems to 
provide better results in terms of more intelligent services providing more rel-
evant results. For example, in some cases, some data could be provided to the 
user even in the absence of explicit queries, such as in mobile recommendations 
(Rodríguez-Hernández and Ilarri 2014). As another example, if we allow que-
ries such as “retrieve hotels that are near,” the notion of near is imprecise, and 
depends on the context (e.g., is the user walking or driving?) and the user prefer-
ences.

• In the context of location modeling, we also want to explore further the model-
ing capabilities of DLs to capture different spatial relationships and enhance our 
semantic location model. We will analyze how to introduce RCC relations other 
than isContained (e.g., inner and outer tangential relations), and how to model 
the dependency between all the RCC relationships. Our objective is to model 
RCC in a DL in such a way that, if the topology is possible, then the TBox with 
the axioms describing the topology is consistent and all topology relationships 
that we can derive from the TBox are realizable.

• Finally, we plan to study the semantic management of multimedia data in the 
context of SHERLOCK. Current mobile devices generate large amounts of pho-
tos and videos that SHERLOCK could take into account when offering the user 
with interesting information. We will explore the integration of our previous 
experience on multimedia information management (Yus et al. 2014b) with the 
semantic management of data of SHERLOCK.
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The Semantic Web and its associated technologies are here to stay and are no longer 
restricted to web environments. Of course, there are still open issues and a long road 
to research in this field. For example, there is still no general purpose search engine 
that, given a query, returns the exact answer the user is looking for. For instance, a 
user that inputs the query “what is the meaning of life the universe and everything?” 
would expect the result to be just “42” and not thousands of web sites talking about 
The Hitchhiker’s Guide to the Galaxy. Although some important knowledge bases 
have been generated in the last few years that might contain this information, we 
are still far from a scenario where computers understand the meanings behind any 
type of data and data repository. Nevertheless, in parallel with the enhancement of 
the current semantic techniques and Semantic Web technologies, we have shown 
that we can embrace and integrate them to change the way we devise applications.

Acknowledgment This work has been supported by the CICYT projects TIN2010-21387-C02-02 
and TIN2013-46238-C4-4-R, and DGA-FSE.

References

Aho, A., Sethi, R., & Ullman, J. (2006). Compilers: Principles, techniques, and tools. New York: 
Addison-Wesley.

Baader, F., Calvanese, D., McGuinness, D., Nardi, D., & Patel-Scheneider, P. (2003). The de-
scription logic handbook: Theory, implementation and applications. New York: Cambridge 
University Press.

Banerjee, S., & Pedersen, T. (2003). Extended gloss overlaps as a measure of semantic related-
ness. In Proceedings of the 18th International Joint Conference on Artificial Intelligence (IJ-
CAI’03) (pp. 805–810). Acapulco, Mexico: Morgan Kaufmann.

Belussi, A., Combi, C., & Pozzani, G. (2009). Formal and conceptual modeling of Spatio-tempo-
ral granularities. In Proceedings of the 13th International Database Engineering & Applica-
tions Symposium (IDEAS’09) (pp. 275–283). Calabria, Italy: ACM.

Bernad, J., Bobed, C., Mena, E., & Ilarri, S. (2013). A formalization for semantic location gran-
ules. International Journal of Geographical Information Science, 27(6), 1090–1108.

Berners-Lee, T., Hendler, J., & Lassila, O. (2001). The semantic web. Scientific American, 284(5), 
34–43.

Bird, S., Day, D., Garofolo, J. S., Henderson, J., Laprun, C., & Liberman, M. (2000). ATLAS: A 
flexible and extensible architecture for linguistic annotation. In Proceedings of the 2nd In-
ternational Conference on Language Resources and Evaluation (LREC’00) (pp. 1699–1706).

Bizer, C., Heath, T., & Berners-Lee, T. (2009a). Linked Data—the story so far. International Jour-
nal on Semantic Web and Information Systems, 5(3), 1–22.

Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R., & Hellmann, S. (2009b). 
DBpedia—a crystallization point for the web of data. Web Semantics: Science, Services and 
Agents on the World Wide Web, 7(3), 154–165.

Bobed, C. (2013). Semantic keyword-based search on heterogeneous information systems. PhD in 
Computer Science, University of Zaragoza, Spain.

Bobed, C., Ilarri, S., & Mena, E. (2010). Exploiting the semantics of location granules in location-
dependent queries. In Proceedings of the 14th East-European Conference on Advances in Da-
tabases and Information Systems (ADBIS’10) (Vol. 6295, pp. 79–93). Berlin: Springer.

Bobed, C., Bobillo, F., Yus, R., Esteban, G., & Mena, E. (2014). Android went semantic: Time for 
evaluation. In Proceedings of the 3rd International Workshop on OWL Reasoner Evaluation 
(ORE’14) (pp. 23–29). CEURWS.



4 Emerging Semantic-Based Applications 79

Bobillo, F. (2008). Managing vagueness in ontologies. PhD in Computer Science, University of 
Granada, Spain.

Bobillo, F., & Straccia, U. (2008). fuzzyDL: An expressive fuzzy description logic reasoner. In 
Proceedings of the 17th IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2008) 
(pp. 923–930). IEEE Computer Society.

Bobillo, F., & Straccia, U. (2011). Fuzzy ontology representation using OWL 2. International 
Journal of Approximate Reasoning, 52(7), 1073–1094.

Bobillo, F., & Straccia, U. (2012). Generalized fuzzy rough description logics. Information Sci-
ences, 189(1), 43–62.

Bobillo, F., & Straccia, U. (2013). Aggregation operators for fuzzy ontologies. Applied Soft Com-
puting, 13(9), 3816–3830.

Bobillo, F., Delgado, M., & Gómez-Romero, J. (2012a). DeLorean: A reasoner for fuzzy OWL 2. 
Expert Systems with Applications, 39(1), 258–272.

Bobillo, F., Delgado, M., Gómez-Romero, J., & Straccia, U. (2012b). Joining Gödel and Zadeh 
fuzzy logics in fuzzy description logics. International Journal of Uncertainty, Fuzziness and 
Knowledge-Based Systems, 20(4), 475–508.

Couclelis, H. (2010). Ontologies of geographic information. International Journal of Geographi-
cal Information Science, 24(12), 1785–1809.

Cunningham, H., Maynard, D., Bontcheva, K., & Tablan, V. (2002). A framework and graphical 
development environment for robust NLP tools and applications. In Proceedings of the 40th 
Annual Meeting of the Association for Computational Linguistics (ACL’02) (pp. 168–175). 
Philadelphia: ACL.

d’Aquin, M., Baldassarre, C., Gridinoc, L., Angeletou, S., Sabou, M., & Motta, E. (2007). Char-
acterizing knowledge on the semantic web with Watson. In Proceedings of the 5th Interna-
tional Workshop on Evaluation of Ontologies and Ontology-Based Tools (EON’07) (Vol. 329, 
pp. 1–10). Busan: CEUR–WS.

Ding, H., Trajcevski, G., & Scheuermann, P. (2008). Efficient maintenance of continuous queries 
for trajectories. Geoinformatica, 12(3), 255–288.

Euzenat, J., & Shvaiko, P. (2007). Ontology matching (Vol. 18). Berlin: Springer.
Frank, A. (2003). Chapter 2: Spatio-temporal databases. Berlin: Springer Verlag.
Fu, H., & Anyanwu, K. (2011). Effectively interpreting keyword queries on RDF databases with 

a rear view. In Proceedings of the 10th International Semantic Web Conference (ISWC’11) 
(Vol. 7031, pp. 193–208). Springer.

Garrido, A. L., & Ilarri, S. (2014). TMR: A semantic recommender system using topic maps on 
the items descriptions. In The Semantic Web: ESWC 2014 Satellite Events (Vol. 8798, pp. 
213–217). Springer.

Garrido, A. L., Gómez, O., Ilarri, S., & Mena, E. (2011). NASS: News annotation semantic system. 
In Proceedings of the 23rd IEEE International Conference on Tools With Artificial Intelligence 
(ICTAI’11) (pp. 904–905). IEEE Computer Society.

Garrido, A. L., Gómez, O., Ilarri, S., & Mena, E. (2012). An experience developing a semantic an-
notation system in a media group. In Proceedings of the 17th International Conference on Ap-
plications of Natural Language Processing to Information Systems (NLDB’12) (pp. 333–338). 
Springer.

Garrido, A. L., Granados-Buey, M., Ilarri, S., & Mena, E. (2013a). GEO-NASS: A semantic tag-
ging experience from geographical data on the media. In Proceedings of the 17th East-Europe-
an Conference on Advances in Databases and Information Systems (ADBIS’13) (pp. 56–69). 
Springer.

Garrido, A. L., Granados-Buey, M., Escudero, S., Ilarri, S., Mena, E., & Silveira, S. (2013b). 
TM-Gen: A topic map generator from text documents. In Proceedings of the 25th IEEE In-
ternational Conference on Tools With Artificial Intelligence (ICTAI’13) (pp. 735–740). IEEE 
Computer Society.

Garrido, A. L., Peiro, A., & Ilarri, S. (2014a). Hypatia: An expert system proposal for documenta-
tion departments. In Proceedings of the 12th IEEE International Symposium on Intelligent 
Systems and Informatics (SISY’14) (pp. 315–320). IEEE Computer Society.



C. Bobed et al.80

Garrido, A. L., Pera, M. S., & Ilarri, S. (2014b). SOLER, a semantic and linguistic approach 
for book recommendations. In Proceedings of the 14th IEEE International Conference on Ad-
vanced Learning Technologies (ICALT’14) (pp. 524–528). IEEE Computer Society.

Garrido, A. L., Granados-Buey, M., Escudero, S., Peiro, A., Ilarri, S., & Mena, E. (2014c). The GE-
NIE project—a semantic pipeline for automatic document categorisation. In Proceedings of the 
10th International Conference on Web Information Systems and Technologies (WEBIST’14) 
(pp. 161–171). SCITEPRESS.

Gedik, B., & Liu, L. (2006). MobiEyes: A distributed location monitoring service using moving 
location queries. IEEE Transactions on Mobile Computing, 5(10), 1384–1402.

Glimm, B., Horrocks, I., Motik, B., Stoilos, G., & Wang, Z. (2014). HermiT: An OWL 2 reasoner. 
Journal of Automated Reasoning, 40(2–3), 89–116.

Gómez-Pérez, A., Fernández-López, M., & Corcho, Ó. (2004). Ontological engineering. London: 
Springer.

Gracia, J., & Mena, E. (2008, Sept). Web-based measure of semantic relatedness. In Proceed-
ings of the 9th International Conference on Web Information Systems Engineering (WISE’08) 
(Vol. 5175, pp. 136–150). Springer.

Gracia, J., & Mena, E. (2009). Multiontology semantic disambiguation in unstructured web con-
texts. In Proceedings of Workshop on Collective Knowledge Capturing And Representation 
(CKCaR’09).

Gracia, J., d’Aquin, M., & Mena, E. (2009). Large scale integration of senses for the seman-
tic web. In Proceedings of the 18th International World Wide Web Conference (WWW’09) 
(pp. 611–620). ACM.

Granados-Buey, M., Garrido, A. L., Escudero, S., Trillo, R., Ilarri, S., & Mena, E. (2014a). SQX-
Lib: Developing a semantic query expansion system in a media group. In Proceedings of the 
36th European Conference on IR Research (ECIR’14) (Vol. 8416, pp. 780–783). Springer.

Granados-Buey, M., Garrido, A. L., & Ilarri, S. (2014b). An approach for automatic query expan-
sion based on NLP and semantics. In Proceedings of the 25th International Conference on 
Database and Expert Systems Applications (DEXA’14) (pp. 349–356). Springer.

Gruber, T. R. (1993). A translation approach to portable ontology specifications. Knowledge Ac-
quisition, 5(2), 199–220.

Gruber, T. R. (1995). Toward principles for the design of ontologies used for knowledge sharing. 
International Journal of Human-Computer Studies, 43(5–6), 907–928.

Haarslev, V., Lutz, C., & Möller, R. (1998). Foundations of spatioterminological reasoning with 
description logics. In Proceedings of the 6th international conference on principles of knowl-
edge representation and reasoning (KR’98) (pp. 112–123). Morgan Kaufmann.

Harris, S., Seaborne, A., & Prud’hommeaux, E. (2013). SPARQL 1.1 Query Language. (http://
www.w3.org/TR/sparql11-query). Accessed 20 April 2015.

Hightower, J. (2003). From position to place. In Proceedings of the 2003 workshop on location-
aware computing (pp. 10–12). Springer.

Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider, P. F., & Rudolph, S. (2012). OWL 2 web 
ontology language primer (Second Edition). (http://www.w3.org/TR/owl-primer). Accessed 20 
April 2015.

Hoareau, C., & Satoh, I. (2007). A model checking-based approach for location query processing 
in pervasive computing environments. In Proceedings of the 2nd International Workshop on 
Pervasive Systems 2007(PerSys’07) (Vol. 4806, pp. 866–875). Springer.

Hoareau, C., & Satoh, I. (2009). From model checking to data management in pervasive comput-
ing: A location-based query-processing framework. In Proceedings of the ACM International 
Conference on Pervasive Services (ICPS’09) (pp. 41–48). ACM.

Horridge, M., & Bechhofer, S. (2011). The OWL API: A java API for OWL ontologies. Semantic 
Web, 2(1), 11–21.

Ilarri, S., Trillo, R., & Mena, E. (2006a). SPRINGS: A scalable platform for highly mobile agents 
in distributed computing environments. In Proceedings of the 4th International WoWMoM 
2006 Workshop on Mobile Distributed Computing (MDC’06) (pp. 633–637). IEEE Computer 
Society.



4 Emerging Semantic-Based Applications 81

Ilarri, S., Mena, E., & Illarramendi, A. (2006b). Location-dependent queries in mobile contexts: 
Distributed processing using mobile agents. IEEE Transactions on Mobile Computing, 5(8), 
1029–1043.

Ilarri, S., Mena, E., & Bobed, C. (2007). Processing location-dependent queries with location 
granules. In Proceedings of the 2nd International Workshop on Pervasive Systems 2007(Per-
Sys’07) (Vol. 4806, pp. 856–866). Springer.

Ilarri, S., Corral, A., Bobed, C., & Mena, E. (2009). Probabilistic granule-based inside and nearest 
neighbor queries. In Proceedings of the 13th East-European Conference on Advances in Data-
bases And Information Systems (ADBIS’09) (Vol. 5739, pp. 103–117). Springer.

Ilarri, S., Mena, E., & Illarramendi, A. (2010). Location-dependent query processing: Where we 
are and where we are heading. ACM Computing Surveys, 42(3), 1–73.

Ilarri, S., Bobed, C., & Mena, E. (2011a). An approach to process continuous location-dependent 
queries on moving objects with support for location granules. Journal of Systems and Software, 
84(8), 1327–1350.

Ilarri, S., lllarramendi, A., Mena, E., & Sheth, A. (2011b). Semantics in location-based services—
guest editors' introduction for special issue. IEEE Internet Computing, 15(6), 10–14.

ISO/IEC. (2011). ISO/IEC 9075:2011 Standard, Information Technology—Database Languag-
es—SQL.

Joachims, T. (1998). Text categorization with support vector machines: Learning with many rel-
evant features. In Proceedings of the 10th European conference on machine learning (ECML 
1998) (Vol. 1398, pp. 137–142). Springer.

Kaufmann, E., & Bernstein, A. (2010). Evaluating the usability of natural language query lan-
guages and interfaces to semantic web knowledge bases. Web Semantics: Science, Services and 
Agents on the World Wide Web, 8(4), 377–393.

Lange, D. B., & Oshima, M. (1999). Seven good reasons for mobile agents. Communications of 
the ACM, 42(3), 88–89.

Lopez, V., Uren, V. S., Sabou, M., & Motta, E. (2011). Is question answering fit for the semantic 
web? a survey. Semantic Web -Interoperability, Usability. Applicability, 2(2), 125–155.

Lopez, V., Unger, C., Cimiano, P., & Motta, E. (2013). Evaluating question answering over linked 
data. Web Semantics: Science, Services and Agents on the World Wide Web, 21(0), 3–13. (Spe-
cial Issue on Evaluation of Semantic Technologies).

Lutz, M., & Klien, E. (2006). Ontology-based retrieval of geographic information. International 
Journal of Geographical Information Science, 20(3), 233–260.

Lutz, C., & Möller, R. (1997). Defined topological relations in description logics. In Proceed-
ings of the 1997 international workshop on description logics (DL’97) (pp. 27–29). Morgan 
Kaufmann Publishers Inc.

Manning, C. D., Raghavan, P., & Schütze, H. (2008). Introduction to information retrieval. New 
York: Cambridge University Press.

Mena, E., & Illarramendi, A. (2001). Ontology-based query processing for global information 
systems. Boston: Kluwer.

Mendes, P., Jakob, M., & Bizer, C. (2012). DBpedia: A multilingual cross-domain knowledge 
base. In Proceedings of the 8th International Conference on Language Resources and Evalua-
tion (LREC’12) (pp. 1813–1817). European language resources association (ELRA).

Miller, G. A. (1995). WordNet: A lexical database for English. Communications of the ACM, 
38(11), 39–41.

Mokbel, M. F., Xiong, X., Hammad, M. A., & Aref, W. G. (2005). Continuous query processing of 
spatio-temporal data streams in PLACE. Geoinformatica, 9(4), 343–365.

Motik, B., Shearer, R., & Horrocks, I. (2009). Hypertableau reasoning for description logics. Jour-
nal of Artificial Intelligence Research, 36(1), 165–228.

Pepper, S., & Moore, G. (2001). XML Topic Maps (XTM) 1.0-TopicMaps.org Specification. 
(http://www.topicmaps.org/xtm). Accessed 20 April 2015.

Po, L. (2009). Automatic lexical annotation: An effective technique for dynamic data integration. 
PhD in Computer Science, Doctorate School of Information and Communication Technolo-
gies, University of Modena e Reggio Emilia, Italy.



C. Bobed et al.82

Po, L., Sorrentino, S., Bergamaschi, S., & Beneventano, D. (2009). Lexical knowledge extraction: 
An effective approach to schema and ontology matching. In Proceedings of the 10th European 
Conference on Knowledge Management (ECKM’09) (pp. 617–626). Academic Publishing 
Limited.

Randell, D. A., Cui, Z., & Cohn, A. G. (1992). A spatial logic based on regions and connection. In 
Proceedings of the 3rd International Conference on Principles Of Knowledge Representation 
and Reasoning (KR’92) (pp. 165–176). Morgan Kaufmann.

Rigaux, P., Scholl, M., & Voisard, A. (2002). Spatial databases with application to GIS. San Fran-
cisco: Morgan Kaufmann.

Rodríguez-Hernández, M. C., & Ilarri, S. (2014). Towards a context-aware mobile recommenda-
tion architecture. In Proceedings of the 11th International Conference on Mobile Web Informa-
tion Systems (MobiWIS’14) (pp. 56–70). Springer.

Russell, S., & Norvig, P. (2003). Artificial intelligence: A modern approach. Englewood Cliffs: 
Prentice-Hall.

Schiller, J., & Voisard, A. (2004). Location-based services. San Francisco: Morgan Kaufmann.
Sekine, S., & Ranchod, E. (Eds.). (2009). Named entities: Recognition, classification and use. 

Amsterdam: John Benjamins.
Shadbolt, N., Hall, W., & Berners-Lee, T. (2006). The semantic web revisited. IEEE Intelligent 

Systems, 21(3), 96–101.
Shekhar, S., & Chawla, S. (2002). Spatial databases: A tour. Upper Saddle River: Prentice Hall.
Sirin, E., Parsia, B., Grau, B. C., Kalyanpur, A., & Katz, Y. (2007). Pellet: A practical OWL-DL 

reasoner. Web Semantics: Science, Services and Agents on the World Wide Web, 5(2), 51–53.
Sistla, A. P., Wolfson, O., Chamberlain, S., & Dao, S. (1997). Modeling and querying moving 

objects. In Proceedings of the 13th International Conference on Data Engineering (ICDE’97) 
(pp. 422–432). IEEE Computer Society.

Smeaton, A. F. (1999). Using NLP or NLP resources for information retrieval tasks. In T. Str-
zalkowski (Ed.), Natural language information retrieval (Vol. 7, pp. 99–111). Dordrecht: 
Springer.

Spyrou, C., Samaras, G., Pitoura, E., & Evripidou, P. (2004). Mobile agents for wireless com-
puting: The convergence of wireless computational models with mobile-agent technologies. 
Mobile Networks and Applications, 9(5), 517–528.

Stuckenschmidt, H., Parent, C., & Spaccapietra, S. (2009). Modular ontologies: Concepts, theo-
ries and techniques for knowledge modularization (Vol. 5445). New York: Springer.

Trillo, R., Gracia, J., Espinoza, M., & Mena, E. (2007a). Discovering the semantics of user 
keywords. Journal on Universal Computer Science, 13(12), 1908–1935.

Trillo, R., Ilarri, S., & Mena, E. (2007b). Comparison and performance evaluation of mobile agent 
platforms. In Proceedings of the 3rd International Conference on Autonomic and Autonomous 
Systems (ICAS’07) (pp. 41–46). IEEE Computer Society.

Trillo, R., Po, L., Ilarri, S., Bergamaschi, S., & Mena, E. (2011). Using semantic techniques to 
access web data. Information Systems, 36(2), 117–133. (Special Issue: Semantic Integration of 
Data, Multimedia, and Services).

Wache, H., Voegele, T., Visser, U., Stuckenschmidt, H., Schuster, G., Neumann, H., & Hübner, 
S. (2001). Ontology-based integration of information—a survey of existing approaches. In 
Proceedings of the IJCAI Workshop: Ontologies and Information Sharing (pp. 108–117). 
CEUR–WS.

Yus, R., Bobed, C., Esteban, G., Bobillo, F., & Mena, E. (2013a). Android goes Semantic: DL rea-
soners on smartphones. In Proceedings of the 2nd International Workshop on OWL Reasoner 
Evaluation (ORE’13) (pp. 46–52). CEUR–WS.

Yus, R., Mena, E., Ilarri, S., & Illarramendi, A. (2013b). SHERLOCK: A system for location-based 
services in wireless environments using semantics. In Proceedings of the 22nd International 
World Wide Web Conference (WWW’13) (pp. 301–304). International World Wide Web Con-
ferences Steering Committee.



4 Emerging Semantic-Based Applications 83

Yus, R., Mena, E., Ilarri, S., & Illarramendi, A. (2014a). SHERLOCK: Semantic management 
of location-based services in wireless environments. Pervasive and Mobile Computing, 15, 
87–99.

Yus, R., Mena, E., Ilarri, S., Illarramendi, A., & Bernad, J. (2014b). Multi-CAMBA: A system for 
selecting camera views in live broadcasting of sport events using a dynamic 3D model. Multi-
media Tools and Applications, 32 pages. Published online: 15 December 2013.

Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353.


	Chapter-4
	Emerging Semantic-Based Applications
	4.1 Background
	4.2 Semantics Behind Keywords
	Semantic Keyword-Based Search: QueryGen
	Semantic Data Retrieval: Doctopush

	4.3 Semantic Information Extraction: GENIE
	4.4 Technologies for Fuzzy Knowledge
	Modeling Fuzzy Ontologies with Fuzzy OWL 2
	Reasoning with Fuzzy Ontologies Using fuzzyDL
	Reasoning with Fuzzy Ontologies Using DeLorean

	4.5 Applying Semantic Web Technologies to Mobile Computing
	Semantic Location Granules
	Semantic Management of LBSs: SHERLOCK

	4.6 Discussion
	References





