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Preface

Who can conceive of an organization that does not involve information and systems? 
Information created and used in organizations reflects all the intellectual property, 
competitive intelligence, business transactions and records, and other strategic, tac-
tical, and operating data for businesses and people. Regardless of industry, people 
in organizations today need some understanding of how to utilize these technology 
and information resources. Nevertheless, information (or cognitive) overload has 
become such a problem as to become a cliché. This seems even more the case if 
people work in some form of “knowledge work,” a term coined by Peter Drucker 
referring to one who works primarily with information or one who develops and 
uses knowledge in their work.

According to the Gartner Group and Aberdeen Research, spending on informa-
tion systems technologies exceeded the $ 2.26 trillion mark per year worldwide in 
2012. Yet research has shown that as much as 25–30 % of information technology 
goes unused after purchase, and of those technologies used, only a fraction of the 
available features are utilized. Why is so much money wasted on technologies that 
are later shelved? Research has shown that the primary reasons for this disuse are 
that people frequently do too much work for the computer rather than the other way 
around—this is the so-called ease-of-use problem; and that once people are able to 
access their information, the information is often irrelevant or obsolete—the so-
called usefulness problem.

The wasteful spending on technologies is indicative also of other insidious con-
ditions: technologies are not helping people make better decisions, solve problems 
better, make better plans, or take better courses of action—leading to unbounded 
costs associated with lost productivity, lost strategic opportunities, tactical missteps, 
lost revenues, unnecessary expenses, and the myriad of other problems that result 
from this waste.

In recent years, there has been an explosion of disruptive technologies. Disrup-
tive technologies are those that radically change a computing paradigm. Without the 
proper understanding of how to design, implement, or even utilize them, these are 
likely to fall short of their promise. An area of particular interest for our purposes 
includes the recent developments in semantic systems and Web 3.0 applications that 
can respond to situations and environments and events. These technologies do not 
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merely serve up passive displays of information for human consumers to digest, but 
rather they are intelligent systems that are capable of assisting human beings with 
the creation of meaning and drawing inferences to improve human performance.

We hope you will enjoy this volume on semantic technologies!

Michael Workman, Ph.D.
Chief Research Scientist
Security Policy Institute
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Chapter 1
Introduction to This Book

Michael Workman

© Springer International Publishing Switzerland 2016
M. Workman (ed.), Semantic Web, DOI 10.1007/978-3-319-16658-2_1

M. Workman ()
Advanced Research and Development, Security Policy Institute, Melbourne, FL, USA
e-mail: workmanfit@yahoo.com

In this book, we hope to raise some provocative questions as much as we want 
to answer questions about semantic and Web 3.0 technologies. We will begin by 
introducing cognitive and sociological foundations for why semantic technologies 
are superior to their predecessors. We then present some contrasting views about 
specific techniques, followed by some specific examples. We conclude with a look 
at the state of the art in semantic systems and their implications for businesses and 
technologies.

We begin a primer on a few key semantic technologies to orient our concepts and 
vocabulary—i.e., what we mean by semantic systems. Let us start with the notion 
that semantic systems include dynamic, self-describing models (and a language 
for constructing these models), semantic resolution among disparate information 
sources (called ontologies), and the ability to discover these models (Skyttner 
1996). We will also broach the idea that semantic systems also subsume social and 
biologically inspired systems. With these features in place, the addition of semantic 
brokering and reasoning/inference capabilities may complete a solution for seman-
tic integration, which is a primary goal of many, if not most, of semantic and Web 
3.0 technologies.

1.1  Resource Description Framework

There is a trend in moving away from programmed logic to dynamically generated 
and interpreted logic within the World Wide Web Consortium (W3C) definitions for 
semantic technologies (Berners-Lee et al. 2001). For example, we are creating new 
forms of markup, including the Resource Description Framework (RDF; Lassila and 
Swick 1999), to enrich information and enable intelligent systems. This evolution 
came about because there is a need for a more advanced approach to information 
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and description logics than was possible with HTML or even XML. While RDF is 
an XML of sorts, that is to say, RDF is based on XML, it is an attempt to make bet-
ter use of metadata (data about data) by extending into relationships of the data. For 
example, when you are going to type up a research paper, you might first search the 
information related to the topic. You might use a search engine which sifts through 
metadata looking for keywords or combinations of keywords (without regard to 
the keyword relationships) that might match. RDF, on the other hand, establishes 
relationships that go beyond keywords and basic knowledge representations (Mill-
er 1998). RDF imposes structure that provides for the expression of relationships 
needed for the first step toward semantic systems (which is the ability to associate 
things with their functions or meanings). RDF consists of resources, properties, and 
statements. A resource is the metadata that defines the given RDF document and is 
contained at a specified Uniform Resource Identifier (URI). A property is an attri-
bute of the resource such as author or title. A statement consists of the combination 
of a resource, a property, and its attribute value. These form the “subject,” “predi-
cate,” and “object” of an RDF statement, such as in the RDF statement:

<rdf:Descr iption about=’http://www.my.com /RDF/home.html’>

       <Author>Mike Workman</Author> 

       <Home-Page rdf:resource =’http://www.my .com’ />

</rdf:Description>

In this example, we can see that a document contains a URI, which is very much 
like the URL we type into our browsers. It redirects the program reading it to that 
resource, which will likely be another document.

The assertion is that the document at URI: “http://www.my.com/RDF/home.
html” is authored by Mike Workman whose homepage is at URI: http://www.
my.com. We could tie more documents together via other URI to form networks 
of associations. Since a property is an attribute of a resource, any person or even a 
program can create them, and since RDF statements are essentially a form of XML, 
they can be dynamically produced (generated) and read (consumed). With RDF 
statements, we make assertions, such as:

1. Mike Workman is a software engineer.
2. Mike Workman teaches network multimedia.
3. Mike Workman has an office at the Library and Information Sciences (LIS) 

building.

The dynamic and associative aspects of RDF essentially come from four attributes 
(Bray 2003): (1) Resources can be defined independently, (2) RDF can be canon-
ized for exchange, (3) RDF enables persistent triples (subject–predicate–object), 
and (4) RDF enables heritable properties. We can see the flexibility this provides, 
and it is through this flexibility that the RDF enables universal linkages seen in 
Fig. 1.1.

http://www.my.com/RDF/home.html
http://www.my.com/RDF/home.html
http://www.my.com
http://www.my.com
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1.2  Ontology Markup

It is one thing to infer from relationships, but things fall into classes, and more 
specifically, objects. From this concept, we may get the sense that RDF can deal 
fairly well with some aspects of controlled vocabularies such as an antonym–syn-
onym problem, but it does not really help much with the disparate aggregated 
constituent problem, such as in the case where a “Customer” is not necessarily a 
“Customer,” or a “Teacher” is not a “Teacher” in a processing or even a schematic 
sense—because their attributes or constituents differ. For example, a set of highly 
normalized relational database tables that refer to “Teacher” may consist of teacher 
names, employee numbers, and the atomic pieces that define each teacher, whereas 
a software object that refers to “Teacher” may consist of not only names but also 
departments, subject matter taught, rank, and so forth. A reference to one is not 
necessarily a reference to the other. Equating, differentiating, and resolving these 
entities go beyond their relationships.

The DARPA Agent Markup Language (DAML) is a markup language that 
enables computers to draw conclusions based on their constituents because DAML 
organizes RDF into classes. Thus, in addition to the ability to dynamically specify 
relationships among entities, descriptive logics such as DAML enable systems to 
draw conclusions using RDF. If an application is given new information, it can 
provide additional information based on DAML statements. In other words, DAML 
statements enable applications to draw conclusions or inferences from other DAML 
statements.

The Ontology Inference Layer (OIL) is a syntactic encoding language for creat-
ing ontologies by allowing humans or software objects (referred to as agents) to 
markup RDF for knowledge representation and inference. It combines modeling 
primitives from programming languages with the formal semantics and reasoning 
services from description logics. Combined DAML + OIL provides the constructs 
needed to create ontologies (a body of related concepts) and mark up RDF in a 
machine-readable format, enabling a rich set of object-oriented capabilities (Fresse 
and Nexis 2002), such as the ability to define not only subclass–superclass relation-
ships but also rules about them such as whether they are disjoint, unions, disjunc-
tions, or have transitivity, along with the imposition of a range of restrictions on 
when specific relationships are applicable.

Fig. 1.1  RDF relational 
associations
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Collections of RDF/DAML + OIL can be assembled into even more complex 
relationships that enable disparate semantic resolution via agents’ exchange of on-
tologies (Fresse and Nexis 2002). This has two dimensions: (1) The unequivocal 
sharing of semantics so that when the ontology is deployed, it can be interpreted 
in a consistent manner and (2) when the ontology is viewed by an agent (person or 
software object) other than the author, it helps to ensure that the intent or meaning of 
the author is clear. Deriving from these technologies, the Web Ontology Language, 
or OWL, evolved. The OWL has extended beyond DAML + OIL, and provides a 
good example of how there is actually a family of web ontology markup languages 
in the marketplace to choose from.

1.3  Agent Frameworks

Whereas RDF and ontology markup languages and processors have advanced into 
practice in many systems utilized by businesses, agent frameworks have not yet 
matured at the same pace. Nevertheless, some of the more recent advances in these 
technologies have illustrated their potential and viability, particularly in synthetic 
systems, robotics, and mobile ad hoc networks (Workman et al. 2008). There have 
been discussions about the merits of agent versus agentless systems in conventional 
technologies, but in a semantic systems sense, the concept of an agent is much more 
robust than stationary collector entities that reside on devices, such as in the case of 
network or application monitors. Semantic agents form a social network and have 
varying degrees of “problem-solving” capabilities such as setting goals and moni-
toring progress toward goal completion.

There are many types of agents depending on the roles they may fulfill. For 
instance, middle agents may act like intermediaries or brokers among systems. 
They support the flow of information by assisting in locating and connecting the 
information providers with the information requesters. In other words, they assist 
in the discovery of ontology models and services based upon a given description. A 
number of different types of middle agents have shown usefulness in the develop-
ment of complex distributed multi-agent systems (Murry 1995). Agents may adver-
tise their capabilities with a middle agent, and the method used for discovering and 
interacting with a service provider may vary depending on the type of middle agent 
used (cf: Dean et al. 2005). One example is that there may be a middle agent who 
mediates between requesters and providers by querying services whose advertise-
ments match a requester’s service query. The resulting messages are then sent from 
the provider to the requester via the middle agent.

This contrasts with a matchmaker agent, in which matchmakers do not partici-
pate in the agent-to-agent communication process directly; but rather, they match 
service requests with advertisements, and return these matches to the requesters. 
In these systems, matchmakers, or sometimes called yellow page agents, process 
advertisements, and blackboard agents collect requests, and broker agents coor-
dinate both processes. The matchmaker is thus an information agent that helps 
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make connections between various agents that request services and the agents that 
provide services.

1.4  Looking Forward

We have only begun to introduce key concepts related to our topic, but we needed 
to introduce some definitions before we delve into more complicated concepts. As 
people increasingly interact virtually in greater variety and with an expanding set of 
modalities, we are seeing a concomitant mimicry among the systems people use in 
the form of socially and biologically inspired technologies, which we will explore 
further in this book. We are also seeing the emergence of the blending of actualized 
and virtualized worlds such as in the form of augmented reality. This futuristic 
journey began with the idea that systems may inherently contain “meaningful” 
constructs that may eventually be entirely understood by a synthetic system. To 
date, markup languages can be combined with object-oriented features, which can 
implement expert capabilities and help us migrate from our current closed-systems 
approach to computing into an organic, open-system mode. It will be some time 
yet before many of these capabilities make it into the marketplace and become 
widely adopted. But as we shall see in the chapters to follow, an inkling of some of 
these characteristics has already been deployed, and those remaining are following 
closely on.
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Chapter 2
Semantic Cognition and the Ontological  
to Epistemic Transformation: Using 
Technologies to Facilitate Understanding

Michael Workman and Daniel Riding

© Springer International Publishing Switzerland 2016
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M. Workman ()
Advanced Research and Development, Security Policy Institute, Melbourne, FL, USA
e-mail: workmanfit@yahoo.com

D. Riding
Eastern Florida State College, Melbourne, USA

2.1  Introduction

In this chapter, we present the term “semantic cognition” as a way of introducing 
semantic systems. Semantic cognition involves the study of top–down, global, and 
unifying theories that explain observed social cognitive phenomena consistent with 
known bottom–up neurobiological processes of perception, memory, and language. 
It forms a foundation for explaining why some technologies work well and others 
do not. For instance, the problem of information, or cognitive, overload has become 
all too familiar. For example, cognitive overload can create unneeded stress and 
hurdles to effective decision-making in the workplace, thus hindering productivity 
(Adams 2007). Technologies have become quite good in terms of gathering and 
providing information to human consumers, but they have tended to worsen the 
information overload problem depending on their construction and use.

The development of technologies informed by semantic cognition emphasizes 
manipulating form to fit the task and function in terms of the design, development, 
and implementation, and in the evaluation of technologies relative to goal-oriented 
outcomes. Form to fit has many implications for how systems will be developed and 
utilized in the near future to improve human performance.

  Structure, Structuration, and Agency

Agency in a structuration sense is anyone who acts within the formalized social 
structure of an organization. Thus, our use of the term “agency” represents indi-
vidual behaviors that operate within a broad network of socio-structural influences 
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(Chomsky 1996) that can be within or outside the formally defined organizational 
structures. Bandura et al. (1977) defined this triadic phenomenon as “agentic trans-
actions, where people are producers as well as products of social systems” (p. 1). 
Agency exists then on three levels: direct personal agency (an individual’s actions), 
proxy agency, which relies on others to act on one’s behalf to secure individually 
desired outcomes, and collective agency, which is exercised through socially co-
ordinative and interdependent effort (Bandura et al. 1977; Chomsky 1996). The 
notion of agency from this perspective contrasts with nondeterministic (chaotic) 
and nonrational “natural” processes that create the environments in which people 
operate either formally or informally (Table 2.1).

The reciprocal relationships between agentic action and social structures are 
referred to as the “duality of structure” by Giddens (1984). In these terms, structure 
is defined by the regularity of actions or patterns of behavior in collective social 
action, which become institutionalized. Agency is the human ability to make ratio-
nal choices, and to affect others with consequential actions based on those choices 
that may coincide with or run counter to institutionalized structures.

Structuration, on the other hand, is a dynamic activity that emerges from social 
interaction. Particularly, social action relies on social structures, and social struc-
tures are created by means of social action. The existence of each and the interde-
pendence of social action and social structures can thus be thought of as a constantly 
evolving dynamic. Thus, structures derive the rules and resources that enable form 
and substance in social life, but the structures themselves are neither form nor sub-
stance. Instead, they exist only in and through the activities of human agents. For 
example, people use language for communication with one another, and language is 
defined by the rules and protocols that objectify the concepts that people convey to 
each other (Chomsky 1996). The syntax structure of language is the arrangement of 
words in a sentence, and by their relationships of one to another (e.g., subject–predi-
cate noun–verb phrase). The sentence structure establishes a well-defined grammar 
that people use to communicate.

However, language is also generative and productive and an inherently novel 
activity, allowing people to create sentences using the syntax rather than to simply 
memorize and repeat them (Chomsky 1979). In similar fashion, institutionalized 

Table 2.1  Agentic attributes
Autonomy The ability to pursue an individual set of goals and make decisions by 

monitoring events and changes within one’s environment
Proactivity The ability to take action and make requests of other agents based on 

one’s own set of goals
Reactivity The ability to take requests from other agents and react to and evaluate 

external events and adapt one’s behavior and make reflexive decisions to 
carry out the tasks toward goal achievement

Social cooperation The ability to behave socially, to interact and communicate with other 
agents

Negotiation The ability to conduct organized conversations to achieve a degree of 
cooperation with other agents

Adaptation The ability to improve performance over time when interacting with the 
environment in which an agent is embedded
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structures regulate agentic behavior, but agents may also disrupt institutionalized 
structures. The defining features within structuration theory that explain how these 
processes work are: signification, legitimation, and domination. Signification con-
cerns how meaning is cocreated and interpreted by agents, legitimation encom-
passes the norms and rules for acceptable behavior, and domination refers to power, 
influence, and control over resources (Giddens 1984). Collectively, the significa-
tion, legitimation, and domination constitute the institutionalized structuration pro-
cesses. Agentic interaction with these processes creates the communicative struc-
ture, authoritative structure, and allocative structure, respectively.

It is important to note that agency behaviors can be modeled in adaptive in-
formation systems to act more like human beings so that they can be more com-
patible with how human beings work and solve problems. For example, modeling 
these sociobiological artifacts in software have led to the development of epigen-
etic systems (Bjorklund 1995) in which linear models have become supplanted by 
more dynamically organized computational models that perform multiple opera-
tions simultaneously and interactively with the environment in which it operates 
(Bandura et al. 1977). The software, or machine, is thus evolving and operating by 
learning from its environment in an open-ended fashion. Thus, epigenesis from a 
sociobiological perspective asserts that new structures and functions emerge during 
the course of developmental interaction between all levels of the agentic biological 
and environmental conditions (Bjorklund 1995). The notion of agency from this 
perspective contrasts with nondeterministic (chaotic) and nonrational “natural” pro-
cesses that create the environments where people are embedded (Beck et al. 1994).

 Agency and Agent Systems

Big data analytics draw from mining patterns out of data warehouses or distributed 
stores. This is a closed system, that is, information is pulled out of an environment 
and stored away in a large database where it is later examined for patterns by using 
various analytics. Much may have changed in the dynamic environment since the 
time the data were extrapolated into the closed system. The closed-system static 
model of pattern discovery is inherently limited. Moreover, with data warehousing 
analytics, the user must provide the problem context. By way of using the Web as 
an analogy, a user must “drive” the search for information with the assistance of a 
technology such as a crawler or bot. This has widely recognized limitations.

The Web is filled with a sea of electronic texts and images. When you look for 
something of interest, unless someone provides you with a URL link where you can 
find relevant material, you will then have to resort to a search engine that gathers up 
links to everything that it thinks is related to my topic. It is then necessary for you 
to begin an extensive hunt, sifting through the links looking for possibilities. When 
you find a page that sounds interesting and begin reading through the material, you 
will likely discover that it is not what you had in mind. Many of the pages in the 
Web are cluttered with a multiplicity of subjects, and they are littered with links 
tempting you to divert your limited attention to another realm, causing you to aban-
don the original quest in favor of a newly piqued interest (Palmer 2001). Because 
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of their agentic and social attributes, agent-based systems have the potential to help 
alleviate some of these problems by seeking goals and making evaluations. For 
example, you may be working in an office in Florida when your boss calls and asks 
you to attend a meeting with a customer in Dallas to present the company’s technical 
strategy. You then give instructions to an agent to gather intelligence on the custom-
er so that you can frame the presentation for the audience. You may instruct him/her 
to find published strategies with which to compare so that the customer will see that 
you have come prepared, and you may also instruct the agent to book the trip, find-
ing the best plane fares for the flights you would want to take, and a hotel near the 
customer site. To perform these functions, the agent cooperates with other agents 
(in multi-agent systems, or MAS) to exchange information, resources, and tasks.

The ecosystem in which agents operate is organic. The systems generate de-
scriptions of things and events in the system (called models) and the rules (also in 
the form of a model) for other agents to use when operating on these models. The 
systems are not only self-describing, but because the models are dynamically gen-
erated within the ecosystem, they are self-defining. Furthermore, models may be 
advertised and discovered by agents. An agent may even traverse the places where 
models are advertised and “look” for things and do things. Such a system would 
be self-renewing, because it can import and export resources. Self-defining, self-
renewing, and self-organizing characteristics define an organic system (Bertalanffy 
1968).

Goal-Directed Agents

Many systems such as found in many contemporary network and application 
monitoring use simple stationary agents. In a semantic sense, agents take on more 
complex behaviors including mobility (Usbeck and Beal 2011). From a semantic 
perspective, a software agent is an “independent software program with real-time 
decision-making abilities that acts intelligently and autonomously to deliver useful 
services” (Agentis Software 2008, p. 1). Goal-directed agents are a special case (cf. 
BBN Technologies 2004). These agent frameworks are able to adapt in dynamic 
environments by allowing them to deviate from predefined plans according to their 
situational awareness (Fig. 2.1).

Goal-directed agents perform a series of steps to carry out a plan, while the 
agent monitors its environment for substantive changes relative to achieving its 
defined goals. An agent may choose a different plan, set new goals, and update 
its “understanding” if it encounters impediments. This ability to “infer” based on 
changes in the ecosystem is what distinguishes goal-directed agents from their more 
static predecessors. With goal-directed agents, new plans may be added without 
affecting the existing plans because plans are independent of one another. More-
over, because agents assemble their execution contexts at run-time, execution paths 
and error recovery procedures are not required during their design and development 
(Agentis Software 2008).
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 The Problem of Meaning

Building semantic systems stems from human cognition and perception. Thus, a 
discussion is warranted here to explain what follows.

At the heart of semantic systems is the definition and derivation of meaning. 
Even with the promise of these more organic technologies, “meaning” is a human 
construction. If you say, tear, what does this word mean? To answer this question, 
we need to know the relationship of this word to other words. We need it in con-
text. The word means something different if you say: You have a tear in your shirt 
versus you have a tear in your eye. One word with two meanings is one level of the 
semantic problem.

We also have the inverse—many words with one meaning. The antonym and 
synonym issues are still only half the semantic picture. There are other problems 
we put in the category of transformational grammar  (Chomsky,1979). A door may 
be opened, or it may be open. We also have the issue of some words operating as 
verbs in one context and nouns in another—wave, for example—look at the wave 
versus wave at the crowd. To begin to address this problem, we need some way to 
describe an entity. The first part of the semantic problem deals with the antonym 
and synonym problem, and hence the relationships between things are important. 
However, it is not as simple as that, attributes that define objects can be different, 
such as with the following:

Teacher: Teacher Name, College, Discipline.
Teacher: Teacher ID, Teaching Philosophy, Degree

The two entities called Teacher consist of different attributes. Some of these 
attributes may be the same, such as Discipline and Philosophy, but maybe not. A 
real example is found at the Coca-Cola Corporation where they use independent 
distributors and bottlers worldwide. Not only do these entities use different lan-
guages but also each has different notions of entities as defined by their attributes. 

Fig. 2.1  Goal agent 
architecture
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A customer in Bulgaria is not the same as a customer in Montreal. They cannot be 
equated in business terms.

How might semantic and Web 3.0 technologies help? Most systems are not able 
to make associations among information because they do not have the structures 
needed to analyze the relationships among the data; they are only able to process 
information and perform the functions written into programmatic logic. However, 
with ontologies, the structures carry part of the semantic association inherent in 
the data structures themselves. That is, they provide relationships among data that 
enable systems to make associations from the information based on predetermined 
rules. The relationships are moved out of the program code and placed inside the 
documents that programs read and interpret, and reason over. According to Lassila 
and Swick (1999), “The World Wide Web was originally built for human consump-
tion, and although everything on it is machine-readable, this data is not machine-
understandable.” This is among the core of the issues being resolved. To understand 
how, we need to present an overview of human cognition.

2.2  Cognition Overview

There are (at least) two schools of thought on memory processing and cognition—
the Information Processing Approach, where an analogy between the mind and a 
digital computer is made, and the Ecological Perspective, where the focus is on 
the dynamics of the environment a person is in, including with machines and 
people. Informational Processing is conceptualized as where the mind is more 
“computational” using memory to access memory and form a representation 
with meaning to a stimulus, whereas the Ecological Perspective relies on a 
person’s perception of the environment around them and their actions form the 
basis of the conscious mind. The information processing perspective is based on 
mind–environment dualism, while the ecological perspective is based on mind–
environment duality (Cooke et al. 2004).

 Memory and Cognition

It is widely recognized that while the capacity of long-term memory is, in theory, 
virtually unbounded, attentional or working memory is severely limited (Halford 
et al. 2005). Nevertheless, human brains have the ability to process some kinds of 
information in simultaneous and nonlinear ways. For example, one may be deeply 
engrossed in a conversation with her friend and suddenly feel a spider crawling 
on her hand. Her sensory systems perceive the tiny legs of the spider on her skin 
and alert her attention; her hypothalamus releases neurochemicals that elicits a fear 
response to the potential spider bite, she sweeps the spider from her hand and con-
tinues her conversation. The person in this situation reacts unconsciously before her 
schematic knowledge structure stored in memory has processed the behavior (Gioia 
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and Poole 1984). This type of “multiprocessing” indicates that working memory 
acts as an event receiver, where stimuli compete for “time slices” of attention 
(Anderson 1983, 2000).

To highlight this point, Dennett (1997) presented the multiple drafts of 
consciousness theory in which he posited that our conceptions and perceptions 
of reality are formed in working memory by receiving “snapshots” of the activi-
ties processed in different parts of our brains. “Pasting” these snapshots together 
is somewhat analogous to how photo frames are strung together to make motion 
pictures (movies). Interestingly, these “realities” are not as contiguous as they might 
seem in a movie; instead, they are more akin to showing chunks of several different 
movies in an alternating fashion. However, this does not mean that our attention 
oscillates between different static frames of apprehension as I might have implied 
with the simple movie analogy—rather, our brains process information and stimuli 
with varying degrees of conscious attention in a very fluid and dynamic fashion 
(Anderson 2000; Bargh and Morsella 2008).

Examining these features reveals the notions of implicit and explicit cognition 
(Hutchins et al. 2013). Implicit cognition is defined as those processes which are 
automatic, effortless (in terms of working memory), unconscious, and involuntary, 
whereas explicit cognition is defined as the intentional use of working memory 
(Schacter 1995). Given these distinctions, we may also consider “thought” as a 
memory retrieval process, whereas “thinking” is a creative reconstruction from 
what has been learned or experienced, or as a process of imagination or concentra-
tion (Jensen et al. 1997).

While many functions are specifically performed in well-defined parts of the 
brain, such as speech and language (most often located in the left hemisphere called 
Wernicke’s and Broca’s areas), many portions of the brain are malleable insofar as 
they “rewire” neural connections, a property known as plasticity. It is intriguing to 
note that owing to neuroplasticity, the more one attends to a particular stimulus, 
generally the more readily one comes to recognize or focus on it (Bransford and 
Johnson 1972). One reason for this is because more frequently used neural pathways 
are more readily primed, along with their associated cognitive schema (Barnhardt 
2005). As Bargh and Morsella (2008) noted, “cognition research on priming and au-
tomaticity effects have shown the existence of sophisticated, flexible, and adaptive 
unconscious behavior guidance systems” (p. 78).

Priming effects and automaticity may be crudely thought of as water following 
the paths of least resistance—in other words, neural pathways that have been recent-
ly or intensively utilized are more easily charged or activated (Craik and Lockhart 
1972; Khemlani and Johnson-Laird 2013). Cognitive schema may be thought of as a 
network of concepts, rules, and protocols (McNally et al. 2001). To illustrate, a pro-
cedural schema for ordering food when primed with the word “restaurant” causes 
people to retrieve a specific set of expectations for their prototype of the restaurant 
concept. When a prime is modified, such as in the phrase “fast-food restaurant,” the 
schema is also modified (Schacter 1995).

Nevertheless, despite this cognitive flexibility (Shabata and Omura 2012), peo-
ple tend to lean either toward implicit or explicit cognitive dominance, especially 
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when under time pressure to solve complicated or subjective problems (Barnhardt 
2005; Gawronski and Bodenhausen 2006; Richardson-Klavehn et al. 2002). More-
over, since working memory is limited, people develop “habits” because they are 
cognitively economical (Halford et al. 2005). According to Biel and Dahlstrand 
(2005), habits derive from deeply embedded and richly encoded thoughts and be-
haviors built up over time, whereas explicit cognition (including the use of newly 
learned problem-solving strategies or principles used for making judgment calls) 
must be remembered and intentionally used.

Moving from the concepts of implicit and explicit cognition, we look at meta-
cognition, which is “knowing what you know.” In other words, metacognitive 
processes create awareness and help coordinate cognition involved in acquiring 
perceptual, conceptual, and thinking feedback, and monitoring progress toward 
task solutions (Sternberg 1977). Improving metacognition enables individu-
als to be better equipped to attend to and interpret relevant information, and use 
this information to decide how to act and perform effectively (Blume et al. 2013; 
Engonopoulos et al. 2013). The utilization of metacognitive strategy is also a key 
difference between expert and novice learners, where the expert learner plans cog-
nitive strategies, monitors them, and will revise strategies to meet goals (Goldstein 
and Ford 2002). This use of metacognitive strategizing can be useful when dealing 
with information overload.

Next, when people are inundated with information or when information becomes 
extremely complex, they experience cognitive information overload (Killmer and 
Koppel 2002; Watson and Tharp 2013). Since durable information is stored in the 
form of organized schemata in long-term memory, semantically enriched informa-
tion helps free up working memory resources and hence allows the limited capacity 
of working memory and explicit cognition to address anomalies or attend to the 
more novel features in the information conveyed, and permit cognitive processes to 
operate that otherwise would overburden working memory (Hutchins et al. 2013; 
Paas et al. 2003; Seitz 2013; Shabata and Omura 2012). There are emotional and 
physiological reactivity effects associated with subjective job overload of workers 
leading to burnout caused by demands made upon them in the work environment 
and the resources available to them (Shirom 2003).

 Information Structure and Semantics

Consider that the bulk of the information with which we are presented and utilize 
comes to us in a linear form, such as lines on a page that you are reading. One can 
imagine that this does not capitalize on the brain’s natural ability to process infor-
mation in simultaneous and nonlinear ways. As an example of this linearity, if we 
asked the question, “What does the word tear mean?” It is unlikely that someone 
would not be able to tell unless we stated that you have “a tear in your eye” versus 
you have “a tear in your shirt.” We rely on this dependable and relational informa-
tion structure so that we can “make sense.”
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In prose, our ability to gain and share knowledge in this way can be described 
as transformational grammar (Chomsky 1979). Vocabulary rules help to convey 
semantics because they determine the objective measures by which people draw 
conclusions and make inferences about ideas. Transformation grammar involves 
two levels—a deep structure and a surface structure. The deep structure is essential-
ly that of meaning (or intended meaning) encoded with the surface structure, which 
is that of syntax. To formulate a conception of meaning, or to draw conclusions and 
make inferences about an intended meaning, the rules and relationships among the 
words or concepts must be known (Shiffrin and Schneider 1977). Transformational 
grammar, therefore, is the system of rules and relationships that transform ideas 
from one structural level to another (Kozma 1991; Trafton and Trickett 2001).

Beyond sense making from information structure, another important aspect of 
semantic cognition is situational awareness. Endsley et al. (2003) described situ-
ational awareness as cognition on three levels: (1) comprehending or perceiving 
relevant elements in a situation, (2) understanding the meaning of the elements, and 
(3) the application of the understanding such as to be able to project future states 
and make inferences. Consequently, situational awareness is a type of “cognitive 
map” that people develop as they receive information.

While information may be received in many forms (e.g., sound or touch), the 
majority of information with which people presently work is visual (Card et al. 
1999). We have concentrated on visual information so far because this has been 
the dominant form of information representation in business to date, especially 
that of written texts. At this juncture, however, we note that visual information has 
other conveyances, such as with images and drawings. If we consider how these 
are perceived by our visual sensory systems, and our apprehension of meaning, we 
might take, for example, a painting we appreciate. The painting conveys informa-
tion to us in a holistic and simultaneous manner (Langer 1957), but it may leave 
us with a vague subjective impression of what the painter intended with his or her 
rendering and what we determined it to mean. The reason why we may not be able 
to objectively interpret the meaning of the painting is that it lacks transformational 
grammar. Although some experimentation has been done using graphical linguis-
tics, cuneiforms, symbols, and various forms of isotypes (cf. Lidwell et al. 2003), 
there has yet to be a consolidation in terms of principles that could enable general-
ized and objective interpretations.

Indeed, despite a large stream of cognitive and neuroscience theory and literature 
on visual perception, attention, memory, and linguistics, this is one area where hu-
man factors research has traditionally lagged behind the underlying work related 
to information storage and retrieval theory (Gavrilova and Voinov 2007). This is 
an interesting issue because underlying storage and retrieval research (cf. McBride 
2004) have been utilizing semantic and cognitive theory to drive the development 
of markup such as RDF and OWL for more than two decades.

The disparity between the semantically rich underlying description logics and 
the representation of the information models in visual displays of information begs 
for more theory-driven implementations based on semantic cognition. An interest-
ing feature of these description logics is that the typical linear or hierarchical data 
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structures, such as found in XML, are supplanted by richer embedded relational 
structures (as in the case of RDF) with some of the rule features of transformational 
grammar (as in the case of OWL). These are interesting features because the data 
structures more closely resemble cognitive schema, inherently.

2.3  Visual Perception

In the previous section, we presented an overview of cognition and introduced that 
the ways information can be structured may either aid or complicate the extraction of 
meaning from the available data or information. We discussed linear representations 
of information, and presented that the rules and relationships among components 
enable our understanding. The purpose of this section is to describe the processes of 
visual perception and visual perceptual memory in order to understand the human 
factors and visual communication issues involved in effective design, implementa-
tion, and utilization of semantic technologies that best facilitate visual apprehen-
sion of information rendered by them. We take a quick physiology tour of vision 
before we get into some practical points with implications for semantic information 
display especially of high-density data that are time sensitive.

 Vision and Visual Perception

Visual perception is the way in which we interpret the information gathered (and 
processed) by the eyes. We first sense the presence of a visual stimulus, and we 
perceive what it is. Light waves enter the eye where images are inverted by the 
lens. The light waves are then projected onto the reactive surface of the eye, called 
the retina. The retinal surface consists of three layers of neurons: rods and cones, 
bipolar cells, and ganglion cells. The rods and cones form the back layer of the eye, 
and these are the neurons that are first stimulated by the light. Only a fraction of the 
original light energy is registered on the retina, the rest is absorbed and scattered by 
the fluid and structures within the eye.

Patterns of neural firing from the rods and cones are forwarded to the bipolar 
cells, which collect the messages and pass them along to the ganglion cells. These 
have extended axons (stems) that converge at the rear of the eye in the optic nerve. 
The image that is captured in the eye has a blind spot (called a scotoma) which is 
“filled in” by other cognitive and perceptual processes. The optic nerve exits the 
eye and continues onto the visual cortex in the occipital lobe in the back of the 
brain, first crossing midbrain between the left and right hemispheres such that the 
left eye’s image is projected to the right side in the occipital lobe and vice versa. 
The image that is projected to the back of the brain is upside down, and must be set 
upright by our mental processes. By the time these processes transform, analyze, 
and summarize the visual input, the message that finally reaches the visual cortex 
represents preprocessed and compressed record of the original visual image.
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When we read, we get the sense that our eyes consume visual information in a 
continuous fashion. However, the eye actually sweeps from one point to another in 
movements called saccades, and then pauses or fixates, while the eye encodes the 
visual information. While this eye movement is fairly rapid (about 100 ms), it takes 
about twice that long to trigger the movement itself. During the saccade, there is 
suppression of the normal visual processes, and for the most part, the eye only takes 
in visual information during the fixation period, roughly 20 ms (Thomas and Irwin 
2006). This means that there is enough time for about three complete visual cycles 
of fixation-then-saccade per second. Each cycle of the process registers a distinct 
and separate visual image, although, generally speaking, the scenes are fairly simi-
lar and only a radical shift in gaze would make one input completely different from 
the previous one (Urakawa et al. 2010).

Studies (e.g., Haber 1983) show that there are differences in visual perception 
between viewing a natural environment versus a computer screen. For one thing, 
the focus of our field of vision is narrower when working with a computer screen 
than when we are attending to visual stimuli in our natural environment. Also, there 
are differences in what is called dimensionality.

No matter how an image may appear on a computer screen (even if rendered 
in three dimensional—3D), the screen can only display on a flat surface. Another 
important characteristic is that visual information is only briefly stored in memory. 
The duration of time that an image persists in memory beyond its physical duration 
depends on the complexity of the information that is absorbed during the encoding 
process.

 Visual Memory Processing

Just as we have the ability to remember a phone number, our visual sensory system 
has the ability to persist information. There are also individual differences in rela-
tion to three types of intelligence posited by Carroll (1993).  Visual spatial reasoning 
is a type of intelligence measure of one’s ability to see foreground, back, distance, 
and speed. In terms of computer image processing, Averbach and Sperling (1961) 
performed a series of interesting experiments that showed, on average, people have 
deterioration in visual recollection as the information complexity increases. For ex-
ample, when up to four items were presented in their studies, subjects’ recollection 
was nearly complete, but when up to 12 items were presented, recollection deterio-
rated to only a 37 % level of accuracy. Furthermore, they found that this poor level 
of accuracy remained essentially the same even for exposures of the visual stimuli 
lasting for a long time—in a visual sense, as long as 500 ms.

Consequently, in general, people have a span of visual apprehension consist-
ing of approximately four or five items presented simultaneously, although there is 
some variability relative to visual image persistence based on the contrast and back-
ground upon which images were rendered (Greene 2007; Irwin and Thomas 2008). 
When dark fields were presented before and after a visual stimulus (consisting of 
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18 letters), visual memory was enhanced (just as a lightning bolt is more visible in 
a nighttime storm than a daytime storm because of the contrast illumination). More 
specifically, Averbach and Sperling (1961) found that more than 50 % of the letters 
presented were recalled well after a 2-s delay when dark fields were used, but in 
contrast, accuracy dropped to 50 % after only a quarter of a second when light fields 
were used.

Research (e.g., Logan and Cowan 1984) has shown that a later visual stimulus 
can drastically affect the perception of an earlier one. This effect is called backward 
masking. The masking stimulus, if it occurs soon enough after the display of the 
original, interferes with the perception of the earlier stimulus presented at the same 
position. In some studies of backward masking (e.g., Becker et al. 2000), subjects 
literally claim that they see only the subsequent (masked) stimulus even though 
their other performance indicators (such as timings in recognitions of previously 
seen versus unseen items) suggest that the sensory system did indeed register the 
first stimulus (Irwin and Thomas 2008; Thomas and Irwin 2006). When the contents 
of visual sensory memory are degraded by subsequent visual stimuli, the loss of 
the original information is called erasure. Studies (Shabata and Omura 2012; also 
see the seminal work: Stroop 1935, and long lineage of confirmatory work, e.g., 
Sternberg 1977) have shown that the information stored in working memory of 
visual images may not simply erase or distract from information that was recently 
presented, but rather can facilitate the anticipation of information that might appear 
next, called proactive interference.

A final point for our purposes in this section is that visual information process-
ing involves feature detection. A feature is a simple pattern or fragment or com-
ponent that can appear in combination with other features across a wide range of 
stimulus patterns. Studies (Neisser 1967) of unelaborated features (those without 
surrounding context) suggest that we read printed text by first extracting individual 
features from the patterns, then combining the features into recognizable letters, 
and then combining the letters to identify the words. With surrounding context, we 
use the cognitive heuristic of “likeness” to infer correct from misspelled words if 
there is enough context from which to make the inference. As an example, most 
people are unable to see that a single word is misspelled such that “slevin” might 
be unintelligible, unless we write that “four score and slevin years ago.” The influ-
ences of surrounding information along with a person’s own previous knowledge 
are critically important to understanding visual information.

2.4  Memory and Attention

In the previous section, we spent some time on visual perception because this is an 
exciting new area of applied research and development that semantic technologies 
will soon leverage. Structuring visual data, especially high-density data, has been 
and will continue to be one of the major bottlenecks to comprehension of complex 
data and situational awareness. Many human factors experts (along with popular 
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bloggers, display design consultants, and other laypeople) have tried to show how 
to design cognitively economical data displays, but most have failed because they 
merely take one display media, such as a pie chart, and show it in a different form 
without any understanding of human vision or semantic cognition. Semantic tech-
nologies are poised to be a game changer in that regard. In this section, we devote 
some time to cognitive processes, and how working and long-term memory work, 
relative to attention.

It is interesting that we seem to be able to do so many things at once, but that we 
can only seem to concentrate on a single thing at a time, and still some of our behav-
iors are habitual and operate without any conscious attention at all (Halford et al. 
2005). We perceive our attention as a central controller of sorts (cf. Anderson 1983, 
2000), and that it directs all of our other cognitive activities, but this is an illusion 
(Brünken et al. 2002). Working memory and attention act more like event proces-
sors—they respond to stimuli that stream in from all of our perceptual–sensory and 
mental activities going on in various parts or our brains (Bargh and Morsella 2008; 
Barnhardt 2005; Hazeltine et al. 2006). In this section, we briefly cover some of 
the underpinning theories that explain our “attentional” cognition and draw some 
implications for the design and implementation of technologies as these relate to 
human performance.

 Working Memory

Colloquially (because the term was applied in early research), we often refer to 
our short-term memory. The term “short-term memory” is no longer used because 
we have come to understand that this cognitive activity is much more than a sim-
ple storage system (Baddeley and Hitch 1974). The term working memory has 
replaced short-term memory in the academic lexicon because the cognitive function 
it comprises involves information, concepts, percepts, and operations. Research-
ers originally thought that short-term memory consisted of only that which we are 
consciously aware. More modern research into metacognition (the term applied to 
knowing what we know) has indicated that some mental processes occur in working 
memory that are not revealed to consciousness—and, in fact, they are performed 
automatically (Brünken et al. 2002). People may be aware of the contents of their 
working memory, but they are not necessarily aware of the processes that occur to 
retrieve information and operate on them (Zaccaro et al. 2001).

The early work of Miller (1967) showed that people are able to store an aver-
age of seven items (plus or minus two) in working memory. Subsequent research 
(Cowan 2000; Halford et al. 2005) has shown that this greatly depends on the com-
plexity of the information and the number of operations that people perform at a 
given time—and that the number is somewhere below seven items. However, tech-
niques such as “chunking” information into groups (e.g., a phone number may be 
chunked as a single item), and creating associations between concepts (such as by 
using rhymes or peg words) can augment this limited faculty.
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Augmenting is often called recoding—because groups of concepts are used to 
form an associative network, which makes newly formed units more “meaningful” 
and hence, at least partially, automatic—akin to grabbing a link in a chain and pull-
ing on it brings other links with it. Thus, working memory as explained is different 
from long-term memory, and this has been observed physiologically (Bargh and 
Morsella 2008; Barnhardt 2005). Working memory involves anatomical compo-
nents deep in the central part of the brain, whereas long-term memories are stored in 
the outer cortex. The interesting aspect of this, however, is that cognitive functions 
“blur” because cognition is a symphony, but there is nothing analogous to a conduc-
tor except by way of the term attention.

One way to imagine this is via an interesting phenomenon called the serial 
position effect in which information that is first seen (primacy) or is most recently 
presented (recency) is most readily recalled. We see in the serial position effect the 
interactions among working memory, attention, and long-term memory. It is also 
interesting to realize that memories are handled differently by the brain depend-
ing on whether they are learned skills and procedures, or experienced, or derived 
as a cognitive process such as performing calculations, or processes such as doing 
mental image rotations.

 Types of Memory

Based on what we have covered thus far, we might consider that there are “types” 
of memory processes that we may label as procedural, episodic, semantic, and 
declarative memory. Procedural memory involves “how to do something” such as 
the processes invoked when we, for example, drive an automobile, or balance our 
checkbooks. Episodic memory is autobiographical, that is, a memory of personal 
experiences, and semantic memory, which refers to a recollection about meaningful 
events or our “world knowledge.” Declarative memory (representations of learned 
knowledge) includes both semantic and episodic memory components (Schacter 
et al. 2011; Tulving 1972).

As indicated earlier, our experiences are wrapped up with the tasks and skills 
that we learn and are stored away for future reference in a relational manner in what 
is called a cognitive script or schema. Thus, our memory system stores separate 
groups of information together to the extent that those separate groups are related 
to each other. To understand new experiences, we use what we already know in a 
conceptually driven fashion. We call these conceptual groupings schemata, or gen-
eral world knowledge. Those new experiences then become part of our elaborated 
knowledge structures, and continue to assist in later cognitive cycles of conceptu-
ally driven processing. These integrative memory tendencies have a feature known 
as encoding specificity, which refers to a phenomenon that when people learn a task 
or other information, they also encode (integrate and store) information about their 
surroundings. For example, students perform better on a test when they take the test 
in the same classroom in which they learned the materials rather than if they take 
the test in a different classroom.
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Information is more durably stored and more readily recalled from long-term 
memory when the information is semantically enriched compared to when those 
items were learned in a less meaningful way. Elaboration is a technique to semanti-
cally enrich information by adding context to concepts. For example, in a series of 
experiments, Morris et al. (1999) showed that the concept “bear” was recalled 86 % 
of the time when it was memorized in a sentence such as, “The bear ran through 
the woods,” compared to 63 % of the time when “bear” was memorized in a list of 
rhyming words such as “bear, hair, care,” and fell to only 33 % when “bear” was 
memorized merely as part of a random list of words. This shows that elaborative 
rehearsal occurs when people do not merely read text, but rather search for connec-
tions and relationships that make the text more memorable. In addition, retention of 
information persists longer when given certain features that make the words in a list 
more distinctive, such as underlined, in a different font, or a different color.

 Cognitive Processing

Conscious information processes are open to our awareness and occur only with 
our intention; that is, they are deliberately performed. Because of this, conscious 
processes require and consume some of our available resources in working memory. 
On the other hand, automaticity is the property that some cognitive functions have 
to operate automatically, and is central to how attention, pattern recognition, and 
memory work.

Three characteristics define an automatic process as indicated earlier: (1) the 
process occurs without a person’s intention, (2) the process is not revealed to con-
sciousness (attention), and (3) it does not consume working memory (“attentional”) 
resources (Schacter 1995). A clever mechanism to discover how all our cognitive 
processes function together in concert is through what is called a dual-task test. A 
dual-task test divides conscious from automatic processes by giving the research 
subject a primary (intentional) task to perform, and then measuring the time it takes 
for him or her to react to a secondary cue or task (an automatic response). In one 
form of this type of test, a subject is given a timed writing task to perform, while 
simultaneously listening to a narrative on headphones. Subjects are able to perform 
the writing task virtually as fast as if they had no auditory accompaniment—filter-
ing out the auditory narrative. However, when the subject’s name is said in the 
narrative, it interrupts his or her performance. This indicates that there are cognitive 
processes, operating below the level of consciousness, that are attending to sounds 
in one’s environment. This is a specific example of our ability to attend to informa-
tion and cues on levels below that of consciousness.

Illustrating this concept with visual information, Stroop’s (1935) seminal re-
search showed words to subjects such as “RED,” “GREEN,” “BLUE,” and 
“YELLOW” in colors other than the words (e.g., the word “RED” might be written 
in blue ink). Subjects were required to name the ink color rather than the printed 
words as quickly as possible. Stroop found significant timing delays (interference) 
when the color name and ink color were different. This indicates that accessing the 
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meaning of the written symbols, such as RED, is automatic—it happens whether 
subjects wanted it to or not. We refer to this effect as “priming”—a word automati-
cally activates a given meaning in memory, and as a consequence, primes or acti-
vates meanings closely associated with it. Priming makes related meanings easier 
and faster to retrieve because the information is cognitively networked together 
by association. Automatic processes, such as priming, do not consume working 
memory resources, so then why would priming interfere with conscious function-
ing relative to the Stroop test? Consciously naming ink colors is interrupted because 
while cognitive access to the meaning of the word is performed automatically, the 
interference occurs at a later stage in our cognitive processing.

The Stroop test shows that interference is created because of the incompatibil-
ity of responses that are competing simultaneously for working memory resources: 
saying the ink color word when the automatic reading process has primed a different 
color word. We find no such interference when different ink colors are used to print 
words such as “PEN,” “TABLE,” “CHAIR,” “COMPUTER,” and so on. The au-
tomatic and conscious processes interfere with each other only when they compete 
for the same cognitive response mechanism. Thus, we can see that relationships we 
form among concepts, even if processed in different parts of the brain, are crucially 
important to human performance because of the brain’s integrative tendencies.

As we mentioned before, thinking is a creative process, whereas having a thought 
is basically a memory retrieval process. Underpinning the theories of attention and 
cognitive processing is the idea of implicit and explicit cognition. Implicit cognition 
results from automatic cognitive processes, as we have stated. Recall that automatic 
cognitive processes are effortless, unconscious, and involuntary. It is rarely the case, 
however, for all three of these features to hold simultaneously, but it should be 
pointed out that ballisticity (Logan and Cowan 1984), a feature of a cognitive pro-
cess to run to completion once started without the need of conscious monitoring, is 
common to all implicit processes (Bargh and Morsella 2008).

Explicit cognition results from intentional processing that are effortful and con-
scious (Jacoby 1991). Conscious monitoring in this context refers to the intentional 
setting of the goals of processing and intentional evaluation of its outputs. Thus, 
according to this conceptualization of cognition, a process is implicit if it (due to 
genetic “wiring” or routinization by practice) has acquired the ability to run without 
conscious monitoring, whereas intentional cognition requires conscious monitoring 
and relies on working memory (Richardson-Klavehn et al. 2002). Taking this into 
account, Baddeley and Hitch (1974) proposed a model of working memory consist-
ing of a number of semi-independent memory subsystems that function implicitly, 
which are coordinated centrally by a limited capacity “executive” that functions 
explicitly. Their model suggests that there are separate stores for verbal and visual 
information; for example, a “visuospatial sketch pad” is responsible for temporary 
storage of visual–spatial information, with the central executive being responsible 
for coordinating and controlling this, and other peripheral subsystems (Barnhardt 
2005). Their model also highlights the effects of explicit cognitive processing of 
information encoded serially. Human cognition works in this fashion essentially as 
a linear scanning system (Halford et al. 2005).
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For instance, in an auditory channel, people use an “articulatory loop” to re-
hearse and elaborate on information they hear to form cognitive schema. In a vi-
sual channel, people make brief scans across the series of symbols and then fixate 
momentarily (saccades), while they encode the information into cognitive schema 
(Smith and Jonides 1995). These encoding processes consume working memory 
resources, and the effect on performance is a product of the available working mem-
ory resources. As information complexity increases, there is greater serialization of 
information increasing cognitive load, which drains cognitive resources, and task 
performance deteriorates (Hazeltine et al. 2006).

Next, Anderson’s (2000) model of human cognitive architecture asserts that only 
the information to which one attends and processes through adequate elaborative 
rehearsal is spread to the long-term memory. Long-term memory can store sche-
mata and subsequently retrieve them with varying degrees of automaticity (Reder 
and Schunn 1996). The capacity of long-term memory is, in theory, virtually un-
bounded, but people are not directly cognizant of their long-term memories until 
they retrieve the schema into their working memory, which is greatly limited—with 
seven concepts (plus or minus two) being the upper bound (Cowan 2000; Halford 
et al. 2005; Miller 1956).

Since durable information is stored in the form of organized schemata in long-
term memory, rendering information effectively to people can free up working 
memory resources and hence allow the limited capacity of explicit (“attentional”) 
cognition to address anomalies or attend to the more novel features in the infor-
mation conveyed, and as these schemata allow for enriched encoding and more 
efficient information transfer and retrieval from the long-term memory, they allow 
cognitive processes to operate that otherwise would overburden working memory. 
From research (e.g., Lord and Maher 2002) into our understanding and processing 
of concepts—the essence of semantics—we find that a distinguishing feature of se-
mantic memory is based on acquired knowledge about the relatedness of concepts. 
Episodic memory, in contrast, represents empirically acquired experience and later 
evaluated as we face new situations. This highlights the difference between remem-
bered versus constructed meaning.

When already-known information influences our memory for new events, we call 
it conceptually driven processing. In addition, there are alternative models which 
have been proposed to deal with a more individual-centered method of information 
processing consisting of rational, limited capacity, expert, and cybernetic models 
(Lord and Maher 1990). The rational model assumes that individuals process all 
relevant information for an outcome. The limited capacity model explains the use 
of cognitive simplification methods, such as satisficing and the use of heuristics, to 
reach a decision. The expert model is when a person uses existing knowledge struc-
tures that are highly organized and developed of a content domain to supplement 
simplified processing. Finally, the cybernetic model proposes that the processing of 
information and actions associated with it are dynamic over time, and uses simple 
heuristics procedures, just as the limited capacity model does, but is affected by 
feedback.
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 Semantic Relatedness and Cognition

In order for us to make plans and decisions, we need to collect information and draw 
inferences about causes and effects. This function relies on the semantic aspects 
of cognition. From the previous subsections, we have gotten a sense of how se-
mantic memory operates, and have gathered the importance of relationships among 
concepts in the construction, storage, and retrieval of meaning. From the earliest 
studies of memory, it has been shown that nonsense words are less memorable than 
meaningful words, and that contextual stories are more understandable than non-
contextual ones. It is the association among concepts that gives them their meaning.

Collins and Quillian (1972) developed a model of how information is mentally 
grouped together into meaningful units as part of a network of concepts. They de-
scribed the structure of semantic information as an “interrelated set of concepts, 
or related body of knowledge where each concept in the network is represented 
as a discrete element with associative pathways to other discrete elements.” For 
example, a bird might be semantically linked with “flying,” “feathers,” and “eggs.” 
We refer to the phenomenon spreading activation, which is the mental activity of 
assessing and retrieving information from this network. With spreading activation, 
retrieving one nodal concept leads to the activation of all the other interconnected 
nodes. The spreading of these nodes leads to almost simultaneous thinking of other 
mental representations (Fig. 2.2).

Research (Sternberg 1977) has shown that the network of semantic concepts 
also contain property and superordinate pathways, as well as ordering concepts in 
subject and predicate terms such that the less related the concepts (called semantic 
distance), the more difficult the retrieval of the information. For example, in experi-
ments, “a robin is a bird” is retrieved more readily than is “a robin is an animal.” 
Of course, these categorizations and their subsequent retrieval depend on learning, 
both as a process of being taught and from experience, such as “a bee stings.”

Fig. 2.2  Cognitive schema 
and semantic network
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What we perceive from our visual sensory system is based on detecting 
“features.” Earlier, we read that looking at information on a computer screen is 
different from seeing information in our natural environment. When we perceive a 
thing, we classify it, but we find that people perceive natural versus artificial cat-
egories differently. Artificial categorization tends to be more discrete, whereas natu-
ral categorization tends to be “fuzzier.” This is a property of “structure”—artificial 
categories (a circle is round) are generally given more structural features than natu-
ral, real-world categories (the Earth is round, sort of). People formulate perceptual 
categories based on structure, and also based on analogous structures experienced 
in nature. For example, in one set of studies (Rosch 1975), subjects were asked to 
rate a list of category membership based on their representativeness or typicality for 
a given class of objects, such as: “which is a better member of the ‘dog’ category, 
a Collie or Poodle?” It was found that categorization used to classify a member 
of a set (e.g., a Poodle is a dog) depends on the rated typicality from the subject’s 
own experience. This research shows that real-world category membership is not a 
collection of bundles of independent and objective features, nor are they classified 
into categories only because of the presence or absence of certain features (e.g., is 
it square? Is it shaded? Is it on the left?).

Instead, real-world categories indicate ill-defined and uncertain membership for 
a variety of instances: Is a “sled” a toy or a vehicle? Because concepts and cat-
egories that occur in the natural setting of our experience have a complex internal 
structure, “fitness” is important. That is, the category “dog” has an internal struc-
ture in which some members are better fits or are more representative than others. 
The fit comes from the frequency of association that people have, and hence differ 
depending on various factors such as geography and culture. For example, people 
in Mexico are more likely to associate Chihuahua with “dog” than Poodle, whereas 
in France, the opposite is true. We have a central meaning for each category and 
concept, and these can be represented, in a semantic distance sense, in terms of 
prototypical similarities and dissimilarities based on our experience.

 Semantic Priming

Any stimulus that is presented first such that it leads to anticipation and hence influ-
ences some later process is called a prime as we have learned. Priming is dependent 
upon connections between ideas/concepts and is for the most part an automatic 
process. The stimulus that follows the prime is called the target. Sometimes this 
influence is beneficial, as when a prime makes the target easier or faster to process. 
This kind of positive influence on processing is called facilitation. Occasionally, the 
influence is negative, as when a prime is misleading. When the prime slows down 
performance to the target, the negative influence on processing is called inhibition, 
backward masking, or suppression. Priming is an automatic cognitive process and 
fundamental to retrieving information from semantic memory, thus the key to fa-
cilitation versus inhibition is semantic relatedness, as we have learned. For instance, 
Loftus and Loftus (1975) found that human performance was significantly better 
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when a known concept was used as a prime (e.g., fruit—apple) than when that letter 
or adjective was used as the prime (D—mammal; red—fruit). The category name 
activates its semantic representation and then primes other members of the category.

When letters or adjective targets are presented in an experiment, priming from 
the category name makes it easier to access a memory of the category, because the 
memory had already been primed. Conversely, receiving a letter or adjective as a 
prime has little effect. No relevant activation of potential targets is available with 
such primes, so there is no facilitation of the word naming. It is not necessary for 
people to access the meanings of words in a lexical decision task; instead, they need 
only look up the words in a “mental dictionary” or lexicon, determining if the word 
has been retrieved from long-term memory—this is a fully automatic process. The 
network of interpretations reveals the relationship between our semantic concepts 
and the words we use to name them, that is, between the semantic and the lexical 
entries in memory. There are some complications in this process, however. Lexical 
feature complexity can affect the speed of processing (latency) in priming con-
cepts, and lexical ambiguity also leads to retrieval difficulties—they can interfere 
or inhibit. Spreading activation of semantically related information connects all the 
meanings of an ambiguous word.

The potency of spreading activation depends on at least two factors: the domi-
nance of a particular meaning for a given concept that has different meanings (e.g., 
wave), and the degree of surrounding context (“wave at the crowd”). With little or 
no context, meanings are activated to the level that depends on their associative 
dominance. With richer context, the meaning receives additional automaticity ef-
fects from activations, which has a strong influence on information retrieval speed 
from semantic memory.

 Content and Technical Accuracy

On the one hand, a negative effect of our integrative memory tendencies is that 
the separate bits of information we store away may not exactly match our existing 
knowledge, leading to certain kinds of distortions when we attempt to remember 
things. Later memory retrieval may be technically inaccurate because when we re-
create memories; they are a product of both integration and summarization, and not 
a verbatim recollection. When in a more thoughtful and controlled process, a person 
may actively suppress and reject information that they retrieve, believing it to be 
irrelevant. This can present a problem when people must re-create an experience 
(an episode) exactly, such as demanded in court cases using eyewitness testimonies.

On the other hand, an overwhelming positive aspect of this tendency is that it 
enhances content accuracy, that is, we can understand and remember the essence of 
complex meaningful events and episodes. Tasks involving episodic memory gener-
ally rely only on performance with the items presented as stimuli. This is a very 
data-driven process. Subjects involved in episodic task research, in which nothing 
like the connected meaningfulness of a paragraph is presented to them, recall what 
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they are shown. We call this technical accuracy—subjects must recall or recognize 
to some degree of accuracy, where accuracy is defined as recalling or reconstructing 
exactly what was experienced. In more semantic tasks, we find very little emphasis 
on what people remember exactly about what was presented, but instead focus on 
remembering the material in terms of its overall meaning.

2.5  Summary

We have now given a broad view of concepts of previous and current research into 
cognition, and how we have to think of harnessing this knowledge to create sys-
tems that work better with human use in the future. When we think of the human 
and how innovation should center on how the human mind and body works, better 
products with better efficiencies will be gained. The journeys ahead to alleviate hu-
man–computer interaction hurdles, such as cognitive overload, lies in an intimate 
understanding of who we are, what make us “tick,” and what are the best ways to 
compliment the user and not hinder their natural processing abilities. The human 
and the machine should act in as much a symbiotic state as possible. Who is to say 
where we will be in 20, 30, or even 200 years from now in regard to how we interact 
with technologies. The potential is only as far as we can dream, as we have seen 
with past conceptualizations in science fiction and other dreams of storytellers that 
have become a reality in our everyday lives.

The focus of the following chapters is on semantic cognition and what it means 
for development of computing technology. There will be much discussion and de-
bate, but one thing is clear: We can move forward, and by a basic understanding of 
human functioning on a cognitive scale, that progression is made easier.
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3.1  Introduction

Technologies such as Resource Description Framework (RDF), domain ontolo-
gies, NoSQL, sophisticated search techniques, reasoners, and analytics have greatly 
improved solutions to “big data” problems. However, research into information 
visualization has lagged far behind these other technologies. Although tremendous 
importance has been placed on visual displays with regard to physical layout and 
the encapsulation of what might be termed “world semantics” (Shneiderman 1992), 
they have neglected relational and contextual aspects that facilitate meaning making 
or what might be called display semantics (Bederson et al. 2002). This is particu-
larly true of high-density displays, such as those often found in health care.

Physicians must evaluate the complex relationships among indicators of illnesses, 
symptoms, laboratory information, and results of cases to diagnose acute patient 
conditions and decide on treatments. The consequences from misinterpretations or 
information overload from poorly rendered display media can be devastating as 
was noted when physicians removed the wrong kidney from a patient in a surgical 
operation (Dyer 2002).

Many, if not most, clinical displays of medical information in use today render 
linear forms of media, such as texts, line graphs, and charts, which are inefficient 
(Lohr 2003). Some previous research has explored replacing conventional linear 
renderings with more holistic information such as glyphs and graphical linguistics 
in the medical arena, but these have had mixed results (Workman 2008; Yost and 
North 2005). Thus, to help advance our understanding of how and why some display 
media work better than others in a medical setting, we conducted an exploratory 
study of an in-use medical display technology with a comparable symbol-based 
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technology at a hospital in central Florida (USA). Theory-grounded empirical 
research into medical displays should help move the current largely subjective and 
anecdotal body of literature toward a greater understanding of what constitutes 
more effective display designs (Loft et al. 2007; Bradshaw 2006).

Our study used a point-of-care application that displayed all relevant information 
at the patient’s bedside on a fixed display, and on caregiver’s mobile devices. The 
application included all of the functionality to automate the patient care process 
using the terminology the hospital had validated. Performance thresholds were set 
to drive care priorities based on the displays. The intent of the designs was to enable 
the caregiver to glance at all of the patients’ vital information simultaneously to gain 
situational awareness, and determine what the most important next activity should 
be. In the sections that follow, we briefly present our theoretical foundation along 
with design principles, then we describe our study in more detail, and finally we 
present our results and conclusions.

3.2  Theory Foundations and Design Principles

Visual perception occurs on several levels depending on one’s focus. For example, 
normal vision encompasses approximately 60° (with peripheral vision extending 
out about 20° on either side of the eye), but narrows to between 6 and 10° when 
focused on an object. Furthermore, since only a fraction of the original light energy 
from an environment is registered on the retina and the rest is absorbed and dif-
fused by the fluid and structures within the eye, once focused, the optic nerves are 
more sensitized to moving and changing (e.g., color) objects over stationary and 
static ones, which helps the perceptual processing in the visual cortex to distinguish 
the object from foreground, background and parallel objects, and the “meaning” it 
conveys or that is interpreted (e.g., predator or prey; Doneva and De Fockert 2014).

Known as feature detection, visual stimuli such as lines, edges, angles, and move-
ments are differentially perceived. A feature is a pattern or fragment or component 
that can appear in combination with other features across a wide range of stimulus 
patterns. Unelaborated features (those without surrounding context) are difficult 
to discern. This becomes clear when we consider that we read printed text by first 
extracting individual features from the patterns, then combining the features into 
recognizable letters, and finally combining the letters to identify the words. More-
over, words without additional context are often “meaningless.” With surrounding 
context, we use the cognitive heuristic of “likeness” to infer correct from misspelled 
words in our language if there is enough context from which to make an inference 
(Elliott et al. 2014).

As an example, most English speaking people are unable to see that a single 
word in isolation such as “slevin” is misspelled unless we write (in the USA) that 
“four score and slevin years ago” (a segment from the Gettysburg Address, Abraham 
Lincoln). Noteworthy is that even with this added context, nationalities other than 
in the USA may not understand. We might further highlight that “wave” may not 
make sense unless with the context that we should “wave to the crowd” versus “let’s 
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catch the next wave”—because this latter idiom is something easily misunderstood  
even in the USA unless living near an ocean where “surfing the wave” is a common 
cognitive script or schema to prime “wave” in experiential context. Therefore, in-
fluences of surrounding information along with a person’s own previous knowledge 
are critically important to understand visual information (Khemlania and Johnson-
Laird 2013).

Principles 1a–c: (a) A medium must present a visual stimulus in a small area and 
(b) under urgent conditions “change” to focus one’s attention on the area, and (c) 
must have sufficient situated context for an objective interpretation.

When we read linear information such as prose, we get the sense that our eyes con-
sume the visual information in a continuous fashion. However, the eye sweeps from 
one point to another in movements (saccades), then pauses or fixates while the eye 
encodes the visual information. Although this eye movement is fairly rapid (about 
100 ms), it takes about twice that long to trigger the movement itself. Next, during 
the saccade, there is suppression of the normal visual processes and, for the most 
part, the eye only takes in visual information during the fixation period (roughly 
20 ms; Elliot et al. 2014).

This means that there is enough time for about three complete visual cycles of 
fixation-then-saccade per second. Each cycle of the process registers a distinct and 
separate visual image, although, generally speaking, the scenes are fairly similar 
and only a radical shift in gaze would make one input completely different from 
the previous one. Another important characteristic is that visual information is only 
briefly stored in iconic memory. The duration of time that an image persists in 
memory beyond its physical duration depends on the complexity of the information 
that is absorbed during the encoding process (Doneva and De Fockert 2014).

Principles 2a–b: (a) Encoding and comprehension from linear information is cogni-
tively uneconomical and inappropriate for time-sensitive decision-making from 
complex data, and thus (b) when practical, complex or dense data should be 
presented in holistic forms.

Studies (e.g., Endsley et al. 2003) show that there are differences in visual percep-
tion between viewing a natural “world” environment versus a computer screen. For 
one thing, the focus of our field of vision is narrower when working with a com-
puter screen than attending to visual stimuli in a natural environment. Aside from 
that, part of what makes this feature interesting comes from the notion of encoding 
specificity, where people store not only the information they are taught but also the 
environment in which the information was learned.

For instance, studies (e.g., Tulving and Thomson 1973) have shown that students 
perform better on tests when they take the test in the same classroom where they 
learned the information compared to when they take the test in a different class-
room. Going further, relative to computer displays versus a natural environment, no 
matter how information may appear on a computer screen (even an image rendered 
in high-definition 3D), the screen can only display on a flat surface (at present). 
In sum, people tend to perceive natural stimuli more quickly and effectively than 
they do in artificial settings. Together, these characteristics are referred to as 
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environmental (or ecological) dimensionality, which suggests that display media 
should most reflect a natural ecology (Doneva and De Fockert 2014).

Principle 3: Displays should take into account (and incorporate from) the ecosystem 
in which the information is normally or frequently situated.

Averbach and Sperling (1961) performed a series of interesting experiments that 
showed, on average, people have deterioration in visual recollection as the informa-
tion complexity increases. For example, when up to four items were presented in 
their studies (a “chunk”), subjects’ recollection was nearly complete, but when up 
to 12 items were presented, recollection deteriorated to only a 37 % level of accu-
racy. Furthermore, they found that this poor level of accuracy remained essentially 
the same even for exposures of the visual stimuli lasting for a long time—in a vi-
sual sense (about 500 ms). Consequently, in general, people have a span of visual 
apprehension consisting of approximately five items presented simultaneously. 
Newer studies (cf. Cowan 2000; Halford et al. 2005) have found some variability 
relative to visual persistence based on complexity, and the contrast and background 
upon which images were rendered.

When dark fields were presented before and after a visual stimulus, visual mem-
ory was enhanced (just as a lightning bolt was more visible in a nighttime storm 
than a daytime storm because of the contrast illumination). Furthermore, these 
studies indicated that over 50 % of items presented were recalled well after a 2-s 
delay when dark fields were used but, in contrast, accuracy dropped to 50 % after 
only a quarter of a second when light fields were used. Finally, because of backward 
masking between stimuli, an “erasure” stimulus should be presented in order for the 
visuospatial sketch pad (VSSP) to rid iconic memory of the previously rendered 
image because a later visual stimulus can drastically affect the perception of an 
earlier one (Barnhardt 2005). Although in some cases this can be helpful, such as it 
can facilitate the priming of information that might appear next (proactive interfer-
ence), it often creates false perceptions and illusions.

Principles 4a–c: (a) Displays should limit the number of rendered concepts to a 
“chunk” at a time, (b) should use a light image on a dark background, and (c) 
before a new image rendering, display an erasure stimulus.

3.3  Method

 Participants and Preparations

We enlisted clinical caregivers from a regional hospital in central Florida (USA) to 
participate in our study. The hospital was being acquired by a large hospital chain 
and was tasked with evaluating new clinical systems. There were 42 clinicians who 
took part in the study.



3 Using Symbols for Semantic Representations 35

We developed an active symbol display from their currently used (“regular”) 
medical informatics system for patient clinical information. The regular system, 
provided by one of the top five commercial vendors in the USA, presented mainly 
linear data displays of information such as line graphs, charts, and text messag-
es. Messages, such as patient status would change color (e.g., from black text to 
red text) to indicate a condition such as an abnormal laboratory result. We created 
25 cases for rendering patient information in both the regular system and a new 
“symbolic” system. Participants were then given a short (1 h) training session on 
the symbolic system.

 Instrumentation

To address the first, second, and forth set of principles, the symbolic system utilized 
familiar glyphs along with color changes, augmentation such as illuminating a circle 
around a glyph when there was a change in status, and highlighting (see Fig. 3.1).

For example, a green icon for an empty surgical table indicated that a surgery 
was scheduled and a surgical room was ready. A yellow icon indicated in transit, 
for example, a yellow surgical table along with a directional arrow indicated that a 
patient was either in transit from surgery or to surgery depending on the direction of 
the arrow. A white surgical table with a patient on the table indicated that the patient 
was in surgery. Other symbols included pharmacy orders, laboratory tests, X-rays, 
and so forth. These had modifiers, for example, when a laboratory test was ordered, 
a microscope was displayed. When the test was completed, a circle was illuminated 
around the microscope. If the laboratory test was abnormal, it would change color 
to red, and optionally vibrate. Other indicators included patient at risk for a fall, 

Fig. 3.1  Symbolic display   
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aspiration risk, nonambulatory, etc. Finally, there were length-of-stay indicators for 
standard of care.

To address principle 3, the symbols were placed on a “mobile phone” metaphor 
such that the display appeared exactly the same whether on a mobile phone, a tab-
let, or large computer screen. The only difference among these was the number of 
phone metaphor displays that could be shown on a device. For example, 60 displays 
were possible on a 46-in. monitor. With the symbolic system, at a glance, a clini-
cian could ascertain situational awareness, for instance, that a patient was male, 
had pharmacy and laboratory work ordered, was at risk for a fall, was a third of 
the way through a treatment, and vitals appeared normal. For equivalent situational 
awareness using the regular (linear) system, a large amount of screen real estate was 
required, cognitive processing of a large number of data points and linear line graph 
data were factored.

 Procedures

For the study, a computer program was written to present cases in random order, but 
alternating between a regular display and a symbolic display. The program rendered 
each case for 10 s, after which a list of five descriptions was presented for the 
participant to select the case event (e.g., male patient at risk for fall has abnormal 
laboratory result returned, white blood cells (WBC) elevated). At the end of the 
session, participants answered an opinion questionnaire on a 7-point Likert scale 
comparing the regular and symbolic displays based on time to interpret, goal facili-
tation, effectiveness, quality, and potential to prevent interpretation errors.

3.4  Results

We tested the opinion data using nonparametric statistics and the accuracy results us-
ing dependent t test. The descriptive statistics for the display are shown in Table 3.1.

Compared to the regular display, participants felt that the symbolic system saved 
them time ( χ2 = 16.57, p < 0.01), better facilitated their goals ( χ2 = 17.43, p < 0.01), 

N Mean Standard deviation
Time 42 5.59 1.02
Goals 42 4.53 1.22
Effective 42 4.56 1.47
Quality 42 4.81 0.94
Errors 42 4.33 0.99

Table 3.1  Descriptive 
statistics
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was more effective in rendering information (  χ2 = 28.33, p < 0.001), was of higher 
quality (  χ2 = 37.76, p < 0.001), and had a great potential to reduce errors (  χ2 = 44.85, 
p < 0.001). The timed test for accuracy indicated that participants were better able 
to accurately determine the actual case condition ( t = − 4.79, p < 0.001, μ = − 3.69, 
σ = 5.00). The questionnaire allowed for comments, which we present in the “Dis-
cussion” section that follows.

3.5  Discussion

Although our pilot study was far from explanatory, it does lend empirical support 
for the theoretical foundation. Since much of the human factors literature on infor-
mation displays has been qualitative and anecdotal, more theory-grounded research, 
especially drawing from cognitive and visual physiology, is needed to inform prac-
tice. This has been particularly the case in medical informatics, where the sophis-
tication of display media has lagged far behind other technologies such as medical 
ontologies, semantic integration, and reasoning and inferential systems.

Participants in our study indicated that the display features in the symbolic sys-
tem may save up to 2 h per shift per clinician by reducing time required to examine 
the textual and linear data and search multiple displays for relevant information. 
They felt also that the use of shapes and color was more effective in highlighting 
the conditions over the stationary and static line graphs and pie charts utilized by the 
regular system. In addition, they felt that they were able to distinguish the features 
much more readily than the simple color changes in the text in the regular system. 
Beyond these attributes, respondents commented that the symbolic display would 
enable better communications across disparate groups resulting in process improve-
ments; an example given was that particular metrics such as discharge time would 
improve because team members from disparate groups who would influence the 
results would be able to view the same data.

Symbolic systems are not new; however, what has only been fairly recently ap-
preciated is that symbols can convey semantics when augmented with contexts and 
even attributes that resemble vocabularies. One advantage of symbolic systems 
is that more information can be conveyed in a reduced area compared to linear 
and textual information. Another advantage is that they may help reduce cognitive 
information overload because they present information more holistically and are 
more cognitively economical. Continued research is needed into developing ways 
of rendering symbols that can be objectively interpreted, since in many if not most 
instances the glyphs lack a well-defined, universal, or standard grammar—i.e., they 
cannot be juxtaposed in relational or subject–predicate forms that can be related 
across broad areas. Combining the display layer with underlying medical lower 
domain ontology may help resolve the issue, but this remains unfinished business 
with many opportunities for the future in semantic visualization.
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In the last decade, we have witnessed the birth and spread of the so-called Semantic 
Web. From its initial proposal by Tim Berners-Lee (Berners-Lee et al. 2001; 
Shadbolt et al. 2006), to the latest trends and initiatives, such as Linked Data (Bizer 
et al. 2009a) and DBpedia (Bizer et al. 2009b; Mendes et al. 2012), the Semantic 
Web is progressively changing the landscape of the World Wide Web (WWW) 
through the use and adoption of the different semantic technologies that have come 
along with it. We can see how, although some of the goals of the Semantic Web have 
not been reached yet, several well-known and successful applications are already 
using semantic technologies, such as Google’s Knowledge Graph, Microsoft’s Sa-
tori, or Facebook’s Graph Search.

In this successful scenario, ontologies have played a crucial role. Defined by 
Tom Gruber as “an explicit specification of a conceptualization” (Gruber 1993, 
1995), ontologies allow to model and capture the semantics of different knowledge 
domains, providing a means to share definitions, and reach an implicit agreement 
on the meaning of the published information. Ontologies represent the vocabulary 
of some domain from a common perspective using a formal language, such as the 
current standard Web Ontology Language (OWL 2; Hitzler et al. 2012).

Being knowledge representation frameworks as they are, they might have an 
impact on many other different kinds of systems. In fact, they have already had; for 
example, ontologies have been successfully used in the integration of information 
and information systems (Mena and Illarramendi 2001; Wache et al. 2001). Thus, 
with their advance and the development of their associated technologies, we can 



C. Bobed et al.40

now explore deeper in the quest for smarter information systems which exploit the 
semantics of data.

Possible sources of enhancement for our applications could be the use of ontolo-
gies which are already shared and published, the possibility of modeling domains 
in detail, thanks to the expressivity of the different families of languages (mainly 
based on Description Logics (DLs; Baader et al. 2003)), or the exploitation of the 
huge amount of semantic data which have been already generated. In this chapter, 
we present different semantic-based applications and projects that we have devel-
oped in the Distributed Information Systems research group (SID, http://sid.cps.
unizar.es)  that currently benefit from these semantic technologies, and provide a 
good example of how the addition of semantics broadens the capabilities of an in-
formation system. In particular:

• In our approach to what could be considered as the most classical conception 
of the Semantic Web, we have applied the use of semantics to the field of key-
word-based search. Using disambiguation techniques which exploit the knowl-
edge stored in ontologies (Gracia and Mena 2008; Trillo et al. 2007a), we have 
developed two different approaches to keyword search over different informa-
tion systems: QueryGen (Bobed 2013) and Doctopush (Trillo et al. 2011). The 
former one is oriented to perform semantic keyword-based search over hetero-
geneous information systems, proposing a generalized semantic keyword in-
terpretation process, while the latter aims at performing semantic data retrieval 
over the WWW using the semantics of keywords to cluster relevant sources of 
information.

• We have also devised a framework to enhance semantically different tasks re-
garding information extraction (IE), such as automatic text classification, seman-
tic search, and summarization of text sources, among others. This framework, 
called GENIE (GENeric Information Extraction Framework), aims at supplying 
a set of libraries designed to assist developers in projects of this nature, adopting 
a semantic approach to all modules, thus taking advantage of the latest advances 
made in ontological engineering and semantics.

• Regarding the standard formalism used for ontologies, we have studied an ex-
tension of the semantics of DLs to embrace Fuzzy Logic. This has led to the 
implementation of the fuzzy ontology editor Fuzzy OWL 2 (Bobillo and Straccia 
2011), and the fuzzy DL reasoners DeLorean (Bobillo et al. 2012a) and fuzzyDL 
(Bobillo and Straccia 2008), combining the expressivity of classical DL lan-
guages (which use crisp logic) with the flexibility of fuzzy logics for imprecise 
knowledge representation.

• Finally, we have studied the relationship between locations and semantics. On 
the one hand, we have applied the know-how acquired using ontological formal-
isms to study how we can model locations using different granularities while 
keeping and exploiting their semantics. On the other hand, we are currently 
working on enhancing the use of Location-Based Services (LBSs) adding se-
mantics, which is crystallizing in  SHERLOCK (Yus et al. 2014a), a system that 
searches and shares up-to-date knowledge from nearby devices to provide users 
with interesting LBSs.

research group (SID, http://sid.cps.unizar.es) 
research group (SID, http://sid.cps.unizar.es) 
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In fact, all of these systems are not isolated, but help each other to perform different 
tasks. In Fig. 4.1, we can see how they could be coordinated. SHERLOCK uses our 
different semantic models of locations to give meaning to the locations of the users, 
and infer further information out from them. Also, SHERLOCK might provide a 
keyword interface and could use QueryGen to construct a formal specification of 
the requested service out from the user’s input keywords. Doctopush could be inte-
grated as well, and used as a particular service under the umbrella of SHERLOCK.

All of these systems use several reasoning and semantic services, which could 
be abstracted in a separated layer. On the one hand, this layer would expose the 
services provided by classical DL reasoners, as well as the reasoning services of our 
fuzzy extension for DLs represented in Fig. 4.1. On the other hand, we could find 
the services exposed by GENIE to enhance different semantic tasks that they have 
to perform.

For the sake of readability, we devote the next section to give a brief overview 
of the basics on DL-based ontologies and DL (Baader et al. 2003) reasoners, which 
are thoroughly used in the presented systems. Then, in the rest of this chapter, we 
elaborate on these four points, all of which share the use of semantics (at different 
levels) as their main value.

4.1  Background

Ontologies (Frank 2003; Haarslev et al. 1998) are one of the most popular ap-
proaches to represent the knowledge of a domain. Although they can be developed 
using different languages and formalisms (Gómez-Pérez et al. 2004), we focus on 

Fig. 4.1  Overview of our semantic-based systems 
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the basics of OWL, the language that is the current W3C standard for represent-
ing ontologies in the Semantic Web, which has Description Logics as the underly-
ing formalism. Thus, in DL-based ontologies, the basic ontological representation 
primitives (also called ontology elements) are individuals (or instances), concepts 
(or classes), properties (also called roles or relations), datatypes (or concrete do-
mains), and axioms:

• Individuals are objects of the world. For instance, John.
• Concepts are sets of individuals. For example, Human. We denote the set of all 

concept names of an ontology by NC.
• Properties define interactions between pairs of individuals of the domain, or be-

tween an individual and a datatype value. For example, isParentOf can be used 
to define that a human is the parent of another one, while hasAge can relate a 
human with her age.

• Datatypes represent concrete data values such as numbers (real, rational, integer, 
nonnegative, etc.), strings, booleans, dates, times, or XML literals, among many 
other possibilities.

• Axioms are formal conditions to be verified by the elements. An ontology can be 
seen as a finite set of axioms, usually divided in three parts: an assertional box 
( ABox), a terminological box ( TBox), and a role box ( RBox), with axioms about 
individuals, concepts, and roles, respectively. For example, an ABox can assert 
that John is a member of the concept Human, and a TBox can assert that Man is 
a subclass of Human, usually denoted Man ⊑ Human.

Apart from the explicitly represented knowledge, it is possible to perform several 
reasoning tasks to deduce implicit knowledge, that is, logical consequences of the 
knowledge in an ontology. This is possible because OWL, as mentioned before, has 
a formal semantics based on DLs (Baader et al. 2003).

DLs are a family of logics for representing structured knowledge. They are a 
well-known formalism providing a good trade-off between expressivity of the rep-
resentation and efficiency of the reasoning. Each DL is denoted by using a string 
of capital letters which identify its expressivity. For instance, the standard language 
for ontology representation OWL 2 is equivalent to the DL SROIQ (D). The ex-
pressivity of a DL translates into what kind of constructors can be used to form 
new concepts. For example, if letter C is in the expressivity of a DL, it means that 
it can use the constructor ¬ to express the contrary of a concept ( Woman ⊑ ¬Man, 
a woman cannot be a man). We summarize informally in Table 4.1 the most com-
mon constructors that lead to a DL with expressivity ALC, while other logics and 
their allowed constructors are presented in Table 4.2. For more formal details, see 
Baader et al. 2003.

The most typical reasoning services in ontologies are designed to check:

• Consistency: An ontology O is consistent iff it has a model, that is, there is an 
interpretation satisfying every axiom in O.

• Entailment: O entails an axiom τ iff every model of O satisfies τ.
• Concept satisfiability: A concept C is satisfiable w.r.t. O iff it is not interpreted as 

the empty set in some model of O.
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• Concept subsumption: A concept D subsumes a concept C w.r.t. O iff C is inter-
preted as a subset of D in every model of O.

• Classification: The classification of an ontology O consists of computing a hier-
archy of concepts based on their subsumption relation.

There are plenty of software applications (called reasoners) implementing ontology 
reasoning services. Some examples are JFact, HermiT (Glimm et al. 2014), or Pellet 
(Sirin et al. 2007).

Table 4.1  Constructors and their meanings for ALC DL
Constructor Meaning
┬ Any element
┴ No element, empty set
A Atomic concept
¬C Elements that are not in C
C ⊓ D Elements in C and D
C ⊔ D Elements in C or D
∀R.C Elements “a” such that if “a” is related with “b” by the property R, then “b” is in C
∃R.C Elements “a” that are related by property R with an element “b” in C

Table 4.2  Expressivity and complexity of reasoning in some important DLs
Logic Expressivity Complexity class

AL ⊤, ⊥, ¬A, ⊓, ∀, ∃R.⊤ PTime

ALC (= ALUE   ) ⊤, ⊥, ⊓, ⊔, ∀, ¬, ∃ exPTime

SHIF (D)
(OWL Lite)

(S  =) ALC   + transitive roles, role hierarchies (H), 
inverse roles (I ), functional roles (F   ), datatypes (D)

exPTime

SHOIN (D)
(OWL DL)

SHI, nominals (O ), nonqualified numerical restric-
tions (N   ), datatypes (D)

NexPTime

SROIQ (D)
(OWL 2)

SHOIQ (D), complex role inclusion (R ), self-
restriction, and additional role axioms

N2exPTime

EL  ++ (D)
(OWL 2 EL)

⊤, ⊥, ⊓, ∃, role hierarchies, nominals, concrete 
domains (use of constructors with syntactical 
restrictions)

PTime

DL-Lite
(OWL 2 QL)

⊤, ⊥, ⊓, ∃, ¬ (use of constructors with syntactical 
restrictions)

LOGSPACe

DLP
(OWL 2 RL)

⊤, ⊥, ⊓, ⊔, ∀, ¬, ∃, cardinality cardinality restric-
tion (0 .. 1) (use of constructors with syntactical 
restrictions)

PTime
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4.2  Semantics Behind Keywords

The usage of keyword search has spread in the past few years thanks to its simplic-
ity and its adoption by the main web search engines. Common users have found 
in it an easy way to express their information needs, defining their searches just 
by giving a plain set of keywords, and letting the system do all the work for them. 
However, the ease of use of keyword search comes from the simplicity of its query 
model, whose expressivity is low compared with other more complex query models 
(Kaufmann and Bernstein 2010).

Moreover, the use of keyword queries as starting point for information searches 
introduces a semantic gap between the user intention and the queries as, in fact, 
keyword queries are simplifications of the queries that really express the user’s 
information need. Thus, there might be a gap between the posed query and the 
information that the users would like to obtain, for example, when talking about 
web searches, users usually have to browse the returned web pages looking for the 
needed information.

In this context, we also have to bear in mind that polysemous words introduce 
ambiguity in such queries, which cannot be solved without the intervention of the 
user. For example, if a user inputs the keyword “apple” in Google, locating informa-
tion about the fruit with such a name will be difficult for her. (As of June 23, 2014, 
no hit about the fruit appears in the first 40 ranked positions provided as result, with 
the notorious exception of the page in Wikipedia, whose results are promoted.) An-
other different example of ambiguity could be the keywords “apache attack,” where 
a user might be looking for information about the Apache helicopter or about how 
to secure an Apache server. One could argue that the ambiguity in these examples is 
due to the lack of input keywords, but experience tells us that the average number 
of keywords used in keyword-based search engines “is somewhere between 2 and 
3” (Manning et al. 2008), which points out another problem of keyword search: 
Users tend to omit important keywords/information, as they consider them implicit 
in the query.

Being as useful as keyword-based searches have proved to be, we advocate for 
improving them by first establishing the proper meaning of each input keyword, 
which allows knowing exactly what the user is referring to with each of the key-
words in the input set. This implies discovering possible meanings for each of the 
keywords, and disambiguating them to obtain their most probable one separately 
and as a whole set (i.e., the meaning of a keyword affects to the rest of keywords 
in the input set). In the rest of this section, we explain how we have applied this 
approach in two different systems which exploit the semantics behind keywords. 
First, we present QueryGen (Bobed 2013), a system that performs semantic key-
word searches over heterogeneous information systems, interpreting keyword 
queries to access the underlying systems by taking into account the semantics of 
both the input keywords and the query languages involved. Then, we present Doc-
topush (Trillo et al. 2011), a pure Web-based search system, where the semantics of 
the keywords are used to categorize and group dynamically the results of a keyword 
query, providing more accurate and relevant information.
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 Semantic Keyword-Based Search: QueryGen

As we have seen before, using keywords as input language makes a system easier to 
use, but it implies that the queries that users can pose to the search system are limited 
by the lack of expressivity of this query model. Keyword queries are simplifications 
of the queries that really express the user’s information need. Moreover, experience 
tells us that users tend to omit important keywords, as they consider them implicit 
in the query (recall that the average number of keywords used in keyword-based 
search engines “is somewhere between 2 and 3” (Manning et al. 2008)). However, 
the use of expressive formal languages such as SQL (ISO/IEC 2011) or SPARQL 
(Harris et al. 2013) is far from being easy for common users. What is more, the user 
must know the underlying schema and data she is accessing to effectively query it.

Thus, the sweet spot would be to mix the expressivity of formal languages with 
the ease of use of keyword queries, while making the user unaware of the data 
sources being accessed to solve her information needs. To reach this sweet spot, 
we advocate for a semantic keyword-based search, a keyword-based search pro-
cess which takes into account the semantics of both keywords and query languages 
during the whole search process. Our objective is to discover and solve the user’s 
information need taking as starting point a set of input keywords. We divide this 
task into three sub-objectives:

•	 To	discover	the	exact	meaning	of	each	of	the	keywords	in	the	set	of	input	key-
words.

•	 To	give	them	an	interpretation	and	express	it	into	a	formal	language	to	capture	
the information need accurately.

•	 To	access	the	proper	information	system/s	transparently	to	the	user,	taking	into	
account the different characteristics that the accessed systems might exhibit.

The first objective, the discovery of each keyword’s meaning, allows us to work 
during the whole process with keywords with well-established semantics, which we 
call semantic keywords. The second one implies structuring a bag of keywords into 
a structured query, a process which is named keyword query interpretation (Fu and 
Anyanwu 2011). The achievement of the last objective is strongly helped by hav-
ing the information formally expressed, allowing our system to access semantically 
even non-semantically enhanced data sources. The semantics behind the input 
set of keywords, the semantics of the different query languages, and the different 
semantics of the access models are considered to provide a flexible and efficient 
way to perform a semantic keyword search on heterogeneous information systems. 
Figure 4.2 shows the three main steps of the process, presenting further details on 
the disambiguation step.

Discovery of Keyword Senses First of all, we have to introduce the exact meaning 
of sense in our system: A sense is the precise meaning of a keyword in a context, 
that is, the meaning of a keyword is determined by its surrounding keywords. In our 
system, a sense is represented by a tuple formed by the term itself, an ontological 
context composed by a list of possible synonyms (with their URIs) and ontological 
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information about the term, and a description in natural language. Each ontologi-
cal context is built by integrating information from different ontologies. Figure 4.3 
shows some possible senses for the user keyword star, retrieved from online 
ontologies.

So, our search starts by discovering and building these senses for the plain input 
keywords. Then, the discovery of the semantics behind each of the input keywords 
is done by taking into account their individual possible semantics as well as the 
possible semantics of their context (the rest of keywords), following the proposal 
in Trillo et al. (2007a). In particular, this process is divided into three substeps (see 
Fig. 4.2):

• Extraction of Keyword Senses: The system obtains the possible meanings of each 
keyword by consulting a dynamic pool of ontologies (in particular, it queries 

Fig. 4.3  Possible senses for keyword star
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Watson (d’Aquin et al. 2007), DBpedia (Mendes et al. 2012), WordNet (Miller 
1995), and other ontology repositories to find ontological terms that syntactically 
match the keywords, or one of their synonyms). For each matching, the system 
builds a sense, which is semantically enriched with the ontological terms of the 
corresponding synonyms by also searching in the ontology pool. As a result of 
this step, we obtain a list of candidate keyword senses for each user keyword. In 
Fig. 4.3, three possible senses (two as a class and one as a property) retrieved for 
the user keyword star are shown.

• Keyword Sense Enrichment and Removal of Redundancy: In the sense list ob-
tained in the previous step, there might be redundant meanings as the senses 
for each keyword are built with terms extracted from different ontologies. An 
incremental algorithm is used to align the different keyword senses and merge 
them when they are similar enough, and thus, to avoid redundancy. Our system 
calculates a synonymy probability that considers both linguistic and structural 
characteristics of the source ontologies: The linguistic similarity is calculated 
considering the different labels of each term as strings, and the structural simi-
larity is calculated recursively by exploiting the semantics of the ontological 
context of the keyword sense until a certain depth. Finally, both similarity values 
are combined to obtain the resultant synonymy measure. The formulae for the 
synonymy for each type of senses (concepts, roles, and instances) can be found 
in Trillo et al. (2007a). Senses are merged when the estimated synonymy prob-
ability between them exceeds a certain threshold.1 Thus, the result is a set of 
different possible senses for each user keyword entered.

• Disambiguation of Keyword Senses: A disambiguation process is carried out to 
select the most probable intended sense of each user keyword by considering the 
possible senses of the rest of keywords. The senses are compared by combining 
(Gracia and Mena 2009): (a) a Web-based relatedness measure that measures the 
co-occurrence of terms on the Web according to traditional search engines such 
as Google or Yahoo, (b) the overlap between the words that appear in the context, 
and the words that appear in the semantic definition of the sense (Banerjee and 
Pedersen 2003), and (c) the frequency of usage of senses (when available, as in 
WordNet annotated corpora). Our disambiguation process can be extended by 
including other different disambiguation algorithms such as the ones defined in 
Po (2009), as our approach does not depend on a specific disambiguation algo-
rithm. This way, the best sense for each keyword will be selected according to its 
context. Note that this selection might require the user’s feedback to select the 
most appropriate sense for each keyword in a semiautomatic way.

However, establishing the meaning of each keyword of the input is just the first 
step to obtain a proper interpretation, as several queries might be represented by a 
given set of keywords. For example, given the keywords fish and person meaning 
“a creature that lives and can breathe in water” and “a human being,” respectively, 

1 In Gracia et al. (2009), the authors proposed several strategies to obtain this threshold and 
validated them via thorough experimentation.
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the user might be asking for information about either biologists, fishermen, or even 
other possible interpretations based on those individual keyword meanings.

Semantic Query Generation The output of the previous step is a set of keywords 
which have their meaning properly attached, which we call semantic keywords. The 
ontological information that has been considered for obtaining the meaning of each 
keyword comes along with each of them. Our system automatically integrates this 
information, and then automatically builds a set of formal queries which, combining 
all the keywords, represents the possible semantics that could be intended by the 
user when she wrote the list of plain keywords. To do so, our system performs the 
following steps (see Fig. 4.4)

• Analysis Table Constructor: In order to capture formally the user’s informa-
tion need, the possible queries are expressed in the different query languages 
made available to our system, which are modeled using semantically annotated 
abstract grammars. These grammars lack syntax sugar and define: (1) how to 
combine the operators of a query language using typed gaps, that is, they specify 
which kind of queries can be built using concepts, roles, and instances in the 
corresponding query language (e.g., And concept concept), and (2) the semantics 
of the different operators giving their properties (e.g., associativity, symmetry, 
etc.) and DL expressions that will be checked with the help of a DL reasoner. 
The construction of the analysis tables (Aho et al. 2006) for the formal query 
languages is done off-line and just once for each language made available to our 
system.

Fig. 4.4  Multi-language query generation process 
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• Query Generator: With the analysis tables, our system builds the possible que-
ries for each query language according to its syntax. First, the Query Generator 
builds all the syntactically possible combinations according to the grammars of 
the available query languages. We call these combinations abstract queries be-
cause they have gaps that will be filled later with specific concepts, roles, or 
instances. These abstract queries are represented as trees, where the nodes are 
operators and the leaves are typed gaps (concept, role, or instance gaps). Then, 
for each abstract query tree generated, the gaps in the leaves are filled with the 
user keywords matching the corresponding gap type (i.e., keywords mapped to 
concepts are used to fill concept gaps in abstract queries, roles to fill role gaps, 
and so on). During this generation process, QueryGen takes into account the 
semantics of the different operators to avoid generating semantically equivalent 
queries.

• Semantic Processor: Then, once the set of syntactically possible queries is 
obtained, the Semantic Processor filters out the inconsistent ones with the help 
of a DL reasoner. This is done by using the DL expressions that specify each 
query language, which enables QueryGen to obtain an expression for the seman-
tic consistency of each of the queries. 

When no query satisfies the user, our system also performs a semantic enrichment 
of the input by adding virtual terms. They are generic typed gaps (to be replaced 
by concepts, roles, or instances) that represent the keywords that the user might 
have omitted, but without whom the intended query cannot be built. In a new query 
generation step, our system treats them as regular typed gaps but, instead of being 
replaced by input keywords, they are substituted by terms obtained from the ontolo-
gies which the input keywords were mapped to (during the previous discovery step). 
Thus, any query that the user could have in mind will be generated as a candidate 
interpretation as long as the available query languages used are expressive enough.
Note how this query generation process has both a syntactic and semantic dimen-
sion: It generates only syntactically correct queries according to the grammar of 
each of the query languages made available to the system, and it takes into account 
the semantics of the operators of each language and the semantics of the keywords 
to avoid generating either duplicated or incoherent queries. This process is per-
formed in parallel for each available query language, as their expressivity can differ 
from each other.

Access to Data Repositories Finally, once the user has validated the generated 
query that best fits her intended meaning, the system forwards it to the appropriate 
underlying structured data repositories (databases, Linked Data endpoints, etc.) that 
will retrieve data according to the semantics of such a query. This is not a trivial 
task, as our system must be able to adapt itself to their different query processing 
capabilities and access methods, and to their different data models and formats of 
the retrieved data. To provide QueryGen with enough flexibility to deal with this 
data heterogeneity, we advocate for the architecture shown in Fig. 4.5, whose main 
modules are the following ones:
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• Dispatcher: Once the user selects her intended query from those generated by 
QueryGen, the Dispatcher poses the query to the underlying data repositories 
that are capable of processing it. Every underlying system that is capable of 
processing the selected query is accessed in a parallel way as any of them could 
hold the desired answer. Finally, the Dispatcher correlates the data coming from 
the different systems and presents them to the user.

• Adapter: It wraps the access to the data stored in information systems with a 
certain data organization (e.g., there is an Adapter for relational databases, a dif-
ferent one for SPARQL endpoints, etc.). It registers itself in QueryGen providing 
information about the querying capabilities of the accessed information system, 
and making itself available to the Dispatcher. There is one instance of the appro-
priate kind of Adapter for each system accessed by QueryGen.

These Adapters are an evolution of the notion of wrappers used in OBSERVER 
(Mena and Illarramendi 2001), and encapsulate both the access methods and the ac-
tual syntax of the query languages and data formats, allowing QueryGen to abstract 
from them. Thus, we can add new information systems to feed QueryGen just by 
implementing and registering an appropriate Adapter in the system.

To sum up, QueryGen adopts an approach to the problem of keyword interpretation 
which provides a solution that, exploiting the semantics of all the elements that 
participate all along the search process, is flexible enough to deal with different data 
schemas (ontologies), different query languages, and different execution seman-
tics. Moreover, using QueryGen, users can turn their information needs into formal 
queries without having to master the formal languages they are written in. Having 
formal queries instead of information needs removes the ambiguity and enables 
the systems to focus on answering the specific query that users would have posed 
if they knew how to write it. For further details on each of the different aspects, we 
refer the interested reader to Bobed (2013).

Fig. 4.5  Our system can retrieve data from different channels and data models
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 Semantic Data Retrieval: Doctopush

As the WWW evolved and became more and more popular, search services to locate 
web sites and pages have become indispensable for users. Broadly speaking, these 
search tools could be categorized (at first) as web directories-based ones, and web 
search engines. Web directories became less relevant than search engines because 
they do not scale properly due to the manual process required to classify the web 
pages and sites. So, the main research efforts were focused on web search engines, 
especially on those with keyword-based interfaces because of their ease of use and 
success. However, as mentioned above, the use of keyword queries to start off in-
formation searches introduces semantic gaps between the user information needs 
and the queries.

With the advent of the so-called Web 2.0, this need for efficient search tools in-
creased, as users became content providers who often interact with other Web users, 
and thus the volume of content of the Web increased exponentially very quickly. 
To help users, keyword-based search engines specialized in different areas, such as 
job offers, books, etc., have been created in the last decade. They can be regarded 
as a hybridization of web directories and web search engines and are called verti-
cal search engines. Some popular examples of them are Google Scholar (http://
scholar.google.com, to search academic and research articles and papers), Tech-
norati (http://technorati.com, to search blogs), and InfoJobs in Spain (http://www.
infojobs.net, to search job offers). However, these search engines are developed ad 
hoc for each of the underlying domains, which can constitute a heavy barrier to the 
development of further ones.

Having into account the notion of web directories and vertical search engines, 
we propose to apply the disambiguation techniques previously described to group 
the hits retrieved by a traditional search engine into semantic categories. These cat-
egories are defined by the different meanings of the user’s keywords and are used 
to categorize the retrieved links according to them, thus avoiding mixed-up results. 
Our approach, called Doctopush (Trillo et al. 2011), discovers the possible mean-
ings of the keywords to create the categories dynamically in runtime by considering 
heterogeneous sources available on the Web. Differently from other proposals, such 
as clustering, the process of creation of categories is independent of the sources 
providing the results that must be shown to the users. Our approach considers two 
main steps: (1) discovering the semantics of the user keywords, and (2) semantics-
guided data retrieval (see Fig. 4.6).

The first step, Discovery of the Semantics of the User Keywords, adopts the dis-
ambiguation technique previously described in QueryGen. The Semantics-guided 
Data Retrieval step pursues to provide the user with only the hits, retrieved by 
a traditional search engine, which she is interested in and filter out the irrelevant 
results. Thus, the system classifies the hits retrieved into the categories defined by 
the meanings of the user keywords. Moreover, the categories are ranked according 
to the interests of the user. In other words, the system attempts to select the hits that 
have the same semantics as the intended meaning of the user keywords and discard 
the others. This process is performed in four phases in runtime:
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• Recollection of Hits: The system performs a search in a traditional web search 
engine considering the user keywords as input. This search returns a set of rel-
evant ranked hits, which represent the web pages where the keywords appear. 
The ranking of the hits depends on the specific techniques inner to the traditional 
search engine used (Google, Yahoo, Bing, etc.). Then, the hits returned are pro-
vided as input to the next phase (Cleaning and Lexical Annotation of Hits) incre-
mentally, in blocks of hits of a certain size. In this way, new hits can be retrieved 
while the first blocks are being processed.

• Cleaning and Lexical Annotation of Hits: Each hit obtained in the previous phase 
(composed of a title, a URL, and a snippet) is automatically annotated lexical-
ly. Thus, first, each hit ( Hj) goes through a cleansing process where stopwords 
are filtered out (creating the filtered hit Hj′). After that, the relevant words of 
the title and the snippet of each filtered hit Hj′ are considered to perform its lex-
ical annotation. A lexical annotation is a piece of information added to a term 
that refers to a semantic knowledge resource such as a dictionary, a thesaurus, 
or any other resource which represents a general or domain-specific ontology. 
So, for each filtered hit Hj′, this process obtains a list of annotations denoted as 
Hj′ → {( S1

x → scoreo,…, S1
y → scorep), …, ( Sn

z → scoreq,…)}. The list of annota-
tions represents the senses which the user keywords are likely used within that hit. 

Fig. 4.6  Overview of Doctopush: A semantic prototype to group hits of a traditional search engine 
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Moreover, the score associated to each annotation indicates its reliability. This is 
needed because, in some situations, selecting only one sense for a user keyword in 
a certain hit is a difficult task even for a human due to the inherent ambiguity and 
polysemy. For example, a keyword can appear in the same hit with different senses 
(e.g., in the case of a hit corresponding to a dictionary entry), or two different 
senses for a keyword may have some overlapping (e.g., for the keyword star, the 
meanings are an “actor who plays a principal role” and “a performer who receives 
prominent billing”). Therefore, a list of annotations must be considered. 
In our case, the annotation process is performed by considering each appearance 
of the user keywords in the filtered hit and its context (i.e., its relevant neighbor-
ing words), and by using the Web-based Word Sense Disambiguation (WSD) 
method and different configurations of the Probabilistic Word Sense Disambigu-
ation (PWSD) method presented in Po (2009) and Po et al. (2009). For this, first, 
each appearance of a user keyword ki in the title or the snippet of a filtered hit Hj′ 
is marked with its probable senses, that is, ki

t→{Si
x → scoreo,…, Si

y→ scorep}, 
where ki

t denotes the tth appearance of ki in Hj′. These annotations are used to 
perform the global annotation of the hit. Thus, when a user keyword sense Si

x 
appears only once in the annotations performed, the sense and its corresponding 
score ( Si

x → scoreo) are incorporated to the list of annotations of the hit. Nev-
ertheless, as a user keyword ki could appear several times in Hj′, the same user 
keyword sense Si

x could appear in several annotations of ki and have a different 
score in each of them; in this case, the maximum of these scores is considered for 
the global annotation of the hit.

• Categorization of Hits: The hits (already annotated as a result of the previous 
process) are grouped in categories by considering their lexical annotations. First, 
the system defines the categories that are going to be considered. Then, blocks 
of hits are classified. The potential categories are defined by considering all the 
possible combinations of candidate keyword senses of the input keywords, i.e., 
the Cartesian product of the candidate sense sets of the user keywords. For ex-
ample, if the user introduces two keywords ( k1 and k2) and, in the previous step, 
two senses are discovered for k1 ( S1

1 and S1
2) and one sense for k2 ( S2

1), then 
the following potential categories are considered: < S1

1, S2
1 > , < S1

2, S2
1 > , < U1, 

S2
1 > , < S1

1, U2 > , < S1
2, U2 > , and < U1, U2 > , where U1 and U2 represent the un-

known meanings considered for the keywords k1 and k2, respectively. Then, each 
hit is assigned to the categories defined by the meanings of the input keywords 
corresponding to the lexical annotation of that hit. So, depending on the scores of 
the meanings that are assigned to the user keywords in a hit, the hit could be clas-
sified in different categories at the same time, that is, the categories may overlap. 
Finally, the hits classified in a category are ranked according to their relevance 
for that category. That is, the system performs a score-based ranking. For this 
purpose, when a hit is assigned to a category, a score is also computed for the 
hit. This score is calculated by multiplying the scores associated to that hit for 
the different senses defining the category. Then, the hits within the category are 
ranked according to their scores (hits with the same score are ranked according 
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to the order returned by the web search engine), as the hits in top positions are 
considered more relevant for that category.

• Ranking of Categories and Presentation of Results: Finally, the results of the 
Categorization of Hits phase are presented to the user. The system shows, in dif-
ferent tabs or category links, the categories considered that contain hits (Potential 
categories with no hits represent combinations of senses of the input keywords 
that are not detected in the hits collected). The order of the tabs or category 
links depends on the probability that the corresponding category represents the 
semantics that the user had in mind when she wrote her query. So, to rank the 
categories, three elements are considered: (1) the scores obtained previously, (2) 
the percentage of hits classified in the category, and (3) the position of the first 
hit in that category in the ranking provided by the web search engine. Thus, the 
global score for a category Cx is defined in the following way:

 where α, β, and γ are the coefficients to tune the formula; scorehitSenses is ob-
tained by multiplying the scores (computed in previous phases) for the senses 
defining that category; score%hits is equal to the number of hits assigned to the 
category Cx divided by the number of hits retrieved from the web search engine; 
and scorepos1stHit is the inverse of the position of the first hit in Cx in the ranking 
provided by the traditional web search engine considered. Moreover, categories 
with unknown senses are considered less relevant, by assuming that the compo-
nent scorehitSenses is zero.

After developing the prototype, its performance under different contexts was evalu-
ated in order to evaluate the interest of our proposal; for further details, see Trillo 
et al. (2011). We have also analyzed several related works in the following areas: 
clustering and categorization methods of documents, search engines that perform 
clustering of web documents, semantic search engines with the same goal as our 
proposal, and works about query reformulation and refinement. The main differ-
ence of our proposal with respect to other methods is that it considers the knowl-
edge provided by ontologies available on the Web in order to dynamically define 
the possible categories for classifying the hits considered. Thus, it is independent of 
the sources providing the results that must be grouped.

4.3  Semantic Information Extraction: GENIE

The access to large amounts of information has become something regular in our 
daily life, and this has raised the need for more intelligent tools to collect, organize, 
analyze, and distribute all this information. These tools require capabilities that are 
not trivial and that can hardly be found in commercial products. To ease the de-
velopment of such tools, it would be very useful to have off-the-self software that 

% 1( )x hitSenses hits pos stHitscore C score score scoreα β γ= + +
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would comprise different elements to tackle these problems from different points 
of view under a common framework, providing solutions to many usual processes 
related to the extraction of information. This would help to increase productivity of 
organizations, and save resources needed to achieve their goals.

In this context, when it comes to handling information in nonstructured docu-
ments, many tasks are still open research problems. Among these tasks, we can find, 
for example, automatic text classification, summarization of text sources, extraction 
of data from raw text, or synthesis of knowledge out from natural language docu-
ments. The implementation of software to face these kinds of issues is not at all a 
trivial matter. Thus, in our research group, we have applied the know-how acquired 
developing different semantic information systems to develop a framework to help 
these tasks, called the GENIE project.

GENIE is the acronym for GENeric Information Extraction Framework. Accord-
ing to Russell and Norvig (Russell and Norvig 2003), Information Extraction (IE) 
means automatically retrieving certain type of information from natural language 
text. They say that IE is halfway between Information Retrieval (IR) systems and 
text understanding systems. GENIE is an architectural proposal that implements 
a set of components whose objective is to provide tools to make IE easier for the 
developers, integrating Semantic Web techniques with Machine Learning, Artificial 
Intelligence (AI) techniques, and Natural Language Processing (NLP) tools (Smea-
ton 1999). In particular, it supplies a set of libraries designed to assist developers 
in projects of this nature. An important feature that distinguishes this project from 
other similar works is the semantic approach given to all the modules, taking advan-
tage of the latest advances made in ontological engineering and semantic technolo-
gies. To sum up, these are the main goals of GENIE:

• To create a framework able to handle different languages, and to integrate a large 
number of processes related to IE.

• To integrate into this framework, modular, generic, and open tools that can be 
used in other external applications.

• To develop an open framework allowing future expansion.
• To facilitate experimentation and testing allowing the improvement of current 

methods, and the development of new tools that represent an innovation in the 
field of IE.

The architecture of the GENIE framework is composed of a set of modules that 
implement essential tasks to execute different semantic IE processes. GENIE con-
sists of a set of high-level units which can be orchestrated to form a semantic IE 
workflow by communicating with each other using XML. These units, if necessary, 
can be transformed into services, libraries, or web services, depending on the degree 
of decoupling and performance required. Specifically, GENIE is constituted by the 
following units:

• Multilingual natural language analysis unit: The aim of this unit is to provide 
basic information from raw texts. This information is similar to the information 
obtained by tools like morphological taggers or syntactic parsers.
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• Named Entities Detector: This unit provides a specific semantic analyzer fo-
cused on Named Entities (NE; Sekine and Ranchod 2009), as they are subject of 
intense research in the context of IE. The recognition of NE has been enhanced 
with NLP and semantic methods which improve the term disambiguation.

• Machine Learning unit: This unit is another important piece inside the GENIE 
architecture, as it provides several unsupervised learning methods. Apart from 
Support Vector Machines (SVM; Joachims 1998), which have provided us very 
good results, this unit can also manage other unsupervised learning methods like 
clustering and statistical models like Bayesian networks. We have paid special 
attention to enhance the interconnectivity of these techniques with the rest of the 
units to provide a unified development framework.

• Geographic information extractor: Geographical resources have a special treat-
ment due to their importance. Typically, when categorizing a text, about 30 % 
of the labels used by a documentation department are related to places. Thus, as 
detailed in Garrido et al. (2013b), we have incorporated the use of ontologies to 
enhance the geographical tagger service provided by this unit.

• Categorization unit: The goal of this unit is to automatically classify documents 
(Garrido et al. 2011, 2012). This unit uses most of the functions supplied by the 
aforementioned units.

• Semantic analyzer: This unit obtains information about the connotation of terms, 
that is, the real meaning of words in a context. Moreover, it searches relations 
of these words with others (e.g., synonyms, antonyms, hypernyms, hyponyms, 
etc.) using both NLP tools and ontologies to do this task. Finally, it is also used 
in order to disambiguate terms.

• Automatic query expansion unit: This unit provides an enhanced keyword-
based search by expanding automatically the input query taking into account the 
semantic contents of the keywords and their relationships. The approach of this 
GENIE’s unit consists of three steps: (1) obtain words with common lemmas, to 
extract those words that belong to the same family as the keywords entered as a 
query; (2) obtain words with similar meanings, to return records which contain 
words that are synonymous to the keywords introduced, using the previous units 
to analyze and to disambiguate the terms; and finally, (3) refine the queries with 
NE, by detecting and considering NEs as a whole. Further details are provided in 
Granados-Buey et al. (2014a, b).

• Aggregation unit: This unit provides personalized reports from raw text sources. 
These reports are elaborated from a set of predefined templates that define the 
presentation of the information of some types of results (e.g., people, compa-
nies, events, etc.). The sources can be documents, databases, triplestores, or even 
Linked Data. Some details of this unit can be found in Garrido et al. (2014a).

Our main contribution with GENIE is not only the effort of packing these differ-
ent work units but also the use of semantic techniques for tasks which are usually 
tackled using purely linguistic approaches or machine learning. The advantages of 
joining machine learning approaches with semantic tools have been widely studied 
in Garrido et al. (2014c). Finally, another useful feature of GENIE is that it can 
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incorporate new resources (databases, gazetteers, dictionaries, thesauri, RDF/OWL 
files, etc.) to enrich the service provided by work units. This incorporation may be 
progressive and is performed using standard formats for resources.

Regarding other existing projects with similar goals as GENIE’s, we have to 
mention GATE (Cunningham et al. 2002). GATE is a Java suite of tools developed 
at the University of Sheffield, which began in 1995 and is used nowadays by a large 
community of scientists, companies, teachers, and students for NLP tasks. GATE is 
inspired by previous projects such as ATLAS (Bird et al. 2000). GATE is, on the one 
hand, an integrated development environment, and, on the other hand, a framework 
including a set of software building blocks ready to be used. It is a mature tool, 
very powerful and complete, working very well with English, German, and French. 
However, this framework does not give the same kind of support for languages such 
as Spanish, Italian, or Portuguese. In any case, the main difference between GENIE 
and GATE is the level where each project works at. GENIE is not only a set of tools 
ready to be used individually but also a collection of units prepared to be connected 
to other systems and resources, with a level of encapsulation and coupling adaptable 
to the needs of each project. In fact, GENIE could integrate a suite like GATE as 
another working unit.

Practical Applications. In addition In addition to its high interest as a research 
platform, this software has a lot of practical applications:

• Search engines: We have increased the performance of a standard index of a 
term-based search engine, making its behavior closer to a semantic search one. 
This allows to get results in spite of the fact that gender (male or female), number 
(singular or plural), or verb forms are different from the keywords used in the 
query. It also considers synonyms and related words when retrieving data, which 
greatly enhances the user experience. Further details can be found in Granados-
Buey et al. (2014b).

• Documentary collections: GENIE can help to improve the productivity of, for 
example, administration staff or a documentation department, by automating 
tedious tasks of labeling. It has tools capable of categorizing documents using 
semantic tags with a high-precision level. Moreover, through a suitable interface, 
it could also update item details in the document database when necessary. A 
GENIE module has been linked to geographical databases, making it capable 
of taking into account tagged text locations and disambiguating it when needed. 
Finally, GENIE is also able to produce summaries of text with a defined length, 
something very useful in many areas. Hypatia (Garrido et al. 2014a) is an ongo-
ing project that brings together all of these functionalities.

• Information management: With the ability of “understanding” a text, GENIE can 
extract information from a document and transform it to measurable values. This 
is very interesting as it can be applied to the analysis of reports, to obtain brand 
reputation, or to implement filters, among others. This extracted information can 
be captured and represented as a knowledge model. In particular, GENIE has 
been used to develop tools like (Garrido et al. 2013), a system able to generate 



C. Bobed et al.58

Topic Maps (Pepper and Moore 2001), a simple form of knowledge representa-
tion, out from plain texts.

• Recommendation systems: Today, it is quite common for e-commerce and book-
marking web sites to include some type of recommendation module that is able 
to identify and present items appealing to their users. Many techniques related 
to areas such as machine learning, IR, or NLP, among others, have been adopted 
to develop systems that recommend items like books, songs, or movies, for ex-
ample. Even though recommendation systems have been developed for the past 
two decades, existing recommenders are still inadequate to achieve their objec-
tives and must be enhanced to generate appealing personalized recommenda-
tions effectively. In this context, we have already proposed two approaches to 
recommender systems, SOLE-R (Garrido et al. 2014b) and TMR (Garrido and 
Ilarri 2014), which exploit the semantic services provided by GENIE.

The outcomes obtained by this system on real environments are very promising, 
and, in fact, this framework is already being used in real production environments, 
providing very good results; thanks to the use of semantic techniques.

4.4  Technologies for Fuzzy Knowledge

Despite the advantages of ontologies, it has been widely pointed out that they are 
not appropriate to deal with imprecise and vague information, which is inherent 
to several real-world domains. Let us discuss now some examples. The domain of 
medicine contains a lot of imprecise terms, and classical ontologies are not suitable 
to express that a patient is slightly unconscious or that anaphylaxis is quite similar 
to sepsis. Location-based applications are based on potentially imprecise sensor 
data: For instance, GPS sensors provide an approximate location. The domain of 
accommodations includes vague terms to categorize different lodging types (such 
as Guesthouse). For example, it is usually assumed that a Guesthouse is a “cheap, 
small, and more hospitable hotel”, but the notions of cheap, small, and hospitable 
are clearly not well defined, having unsharp boundaries. Hence, the nature of the 
concepts in this domain makes crisp definitions unsuitable. For more applications 
of fuzzy ontologies, see Bobillo (2008).

Fuzzy set theory and fuzzy logic have proved to be suitable formalisms to handle 
this imprecise and vague knowledge (Zadeh 1965). In fuzzy logic, the usual con-
vention prescribing that a statement is either true or false is changed. Every state-
ment holds with a degree of truth measured on an ordered scale that is no longer {0, 
1} but (usually) [0, 1]. The main concept in fuzzy logic is that of fuzzy set. Essen-
tially, the elements of a fuzzy set have degrees of membership valued in [0, 1]. For 
example, Fig. 4.7 shows a fuzzy set representing young people.

Fuzzy logics provide compositional calculi of degrees of truth. The conjunction, 
disjunction, complement, and implication operations are performed in the fuzzy 
case by a t-norm function ⊗, a t-conorm function ⊕, a negation function ⊖, and 
an implication function ⇒, respectively. A quadruple composed by a t-norm, a t-
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conorm, an implication function, and a negation function determines a fuzzy logic. 
Table 4.3 shows the definition of some popular fuzzy logics, where α,β ∈ [0,1] are 
two degrees.

Fuzzy Ontologies Given the success and popularity of fuzzy logic, it should come 
as no surprise that several fuzzy extensions of ontologies can be found in the litera-
ture. The elements of a fuzzy ontology are extended as follows:

• Fuzzy concepts are interpreted as fuzzy sets of individuals, so the membership 
of an instance to a concept is a matter of degree. For example, YoungHuman can 
contain the fuzzy set of young people.

• Similarly, fuzzy properties between two individuals are interpreted as fuzzy rela-
tions, so pairs of elements are related to some degree. For instance, the property 
isFriendOf makes it possible to represent the degree of friendship between pairs 
of individuals.

• Now, it makes sense to consider fuzzy axioms, since statements are not either true 
or false but hold to some degree. For example, we can state that john belongs to 
the concept of YoungHuman with at least degree 0.9, meaning that he is rather 
young. Classical axioms τ are generalized as (τ,α).

• Finally, it makes sense to consider fuzzy datatypes generalizing crisp values by 
using a fuzzy membership function. For example, instead of considering the 
crisp value 18, now it is possible to consider about18. The former datatype is 
incompatible with the value 17.99, whereas the latter one is not.

Table 4.3  Truth combination functions of various fuzzy logics
Operator Lukasiewicz logic Gödel logic Product logic Zadeh logic
α ⊗ β max( α + β – 1, 0) min( α, β) α · β min( α, β)
α ⊕ β min( α + β, 1) max( α, β) α + β − α · β max( α, β)
α ⇒ β min(1 – α + β, 1) 1 if

otherwise
α β

β
≤




min(1, β/α) max(1 − α, β)

⊖ α 1 − α 1 if 0
0 otherwise

α =



1 if 0
0 otherwise

α =



1 − α

Fig. 4.7  Fuzzy set repre-
senting young people
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The reasoning services in fuzzy ontologies include the same tasks for classical on-
tologies (see Section 4.1) together with some new ones. The most typical tasks are:

• Consistency: An ontology O is consistent iff it has a model, i.e., there is a fuzzy 
interpretation satisfying every axiom in O.

• Entailment: O entails an axiom τ iff every model of O satisfies τ.
• Concept satisfiability: A concept C is satisfiable to at least degree α (or 

α-satisfiable) w.r.t. O iff there is a model of O satisfying (C(x),α), for a new 
individual x ∉ O.

• Concept subsumption: A concept D subsumes a concept C to at least degree α (or 
α-subsumes) w.r.t. O iff every model of O satisfies the axiom (C ⊑ D,α).

• Best entailment degree ( BED): The BED of a crisp axiom τ w.r.t. O is defined 
as the supremum of the degrees α such that O entails the axiom (τ,α), where  
sup ∅ = 0.

Fuzzy ontologies require the development of new languages, reasoning algorithms, 
and tools. Unfortunately, they have not achieved yet the maturity of crisp ontolo-
gies, and additional research on this topic is still being carried out. However, there 
exist several approaches in the literature and implementations worth to mention. 
This section summarizes the main achievements developed by members of our re-
search group in collaboration with international experts.

There is no standard language to represent fuzzy ontologies, and the different pro-
posals have differences in the elements that are being fuzzified. For example, not all 
the approaches consider the definition of fuzzy sets using trapezoidal membership 
functions. To assist users in the process of fuzzy ontology building, there is a Pro-
tégé plug-in called Fuzzy OWL 2 (http://webdiis.unizar.es/~fbobillo/fuzzyOWL2) 
that can be used to create and edit fuzzy ontologies (Bobillo and Straccia 2011). The 
plug-in uses a relatively abstract fuzzy ontology representation that can be exported 
into the particular syntax of different ontology languages.

Among the many existing implementations of fuzzy ontology reasoners, we will 
highlight two: fuzzyDL (http://webdiis.unizar.es/~fbobillo/fuzzyDL; Bobillo and 
Straccia 2008) and DeLorean (http://webdiis.unizar.es/~fbobillo/delorean; Bobillo 
et al. 2012). The former system implements a fuzzy extension of a classical tab-
leaux algorithm. The latter follows an alternative approach and transforms a fuzzy 
ontology into an equivalent non-fuzzy ontology, preserving the semantics of the 
knowledge in such a way that it is possible to reuse the existing ontology reasoners. 
All the existing fuzzy ontology reasoners are complementary, because up to now, 
they support different fuzzy ontology elements, and hence cannot be easily ranked.

The rest of this section is dedicated to a deeper overview of these three applications: 
Fuzzy OWL 2, fuzzyDL, and DeLorean.
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 Modeling Fuzzy Ontologies with Fuzzy OWL 2

Fuzzy OWL 2 is a Protégé plug-in that makes it possible to develop fuzzy ontolo-
gies. Once the plug-in is installed, a new tab in Protégé, named Fuzzy OWL, en-
ables to use it.

The plug-in is based on a methodology for fuzzy ontology representation using 
OWL 2 (Bobillo and Straccia 2011). The key idea of this representation is to use an 
OWL 2 ontology, and extend its elements with annotations representing the features 
of the fuzzy ontology that OWL 2 cannot directly encode. To separate the annota-
tions including fuzzy information from other annotations, a new annotation proper-
ty called fuzzyLabel is used, and every annotation is identified by the tag fuzzyOwl2. 
Since typing such annotations is a tedious and error-prone task, the plug-in makes 
the syntax of the annotations transparent to the users.

Figure 4.8 shows the available options of the plug-in: fuzzy queries, fuzzy ontol-
ogies, fuzzy modifiers, fuzzy concepts (fuzzy nominals, fuzzy-modified concepts, 

Fig. 4.8  Fuzzy OWL 2: 
Menu options
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weighted single concepts, weighted complex concepts, aggregation and integral 
concepts, quantifier-guided OWA concepts), fuzzy properties (fuzzy-modified 
roles), fuzzy datatypes (including fuzzy-modified datatypes), and fuzzy axioms. A 
description of all the elements of a fuzzy ontology is out of the scope of this chapter; 
for more details, we refer the reader to Bobillo and Straccia (2011, 2013).

The non-fuzzy part of the ontology can be created by using Protégé as usual. Af-
ter that, the user can define the fuzzy elements of the ontology by using the plug-in, 
namely fuzzy axioms, fuzzy datatypes, fuzzy modifiers, fuzzy-modified concepts, 
and fuzzy nominals.

Figure 4.9 illustrates the plug-in use by showing how to create a new fuzzy 
datatype. The user specifies the name of the datatype and the type of the member-
ship function. Then, the plug-in asks for the necessary parameters according to the 
type. A picture is displayed to help the user recall the meaning of the parameters. 
After some error checks, the new datatype is created and can be used in the ontology.

Fuzzy ontologies developed with the plug-in use an independent syntax that does 
not align with any particular reasoner. Once the fuzzy ontology has been created, 
it has to be translated into the language supported by a specific fuzzy DL reasoner. 
For this purpose, the plug-in includes a general parser that can be customized to 
any reasoner by adapting a template code. The parser browses the contents of the 
ontology with OWL API 3 (Horridge and Bechhofer 2011), which allows iterating 
over the elements of the ontology in a transparent way and prints an informative 

Fig. 4.9  Fuzzy OWL  2: Creation of a fuzzy datatype
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message. The template code has been adapted to build two parsers, one for fuzzyDL 
and one for DeLorean. Furthermore, similar parsers for other fuzzy DL reasoners 
can be easily obtained. To do so, one can just replace the default messages by well-
formed axioms, according to the desired fuzzy ontology syntax.

 Reasoning with Fuzzy Ontologies Using fuzzyDL

From a historical point of view, fuzzyDL can be considered as the first fuzzy DL 
reasoner. It is very popular and has been used in several applications. The supported 
language is thus a fuzzy extension of SHIF (D). It is also possible to use linguistic 
labels as degrees of truth, such as high, instead of forcing fuzzy ontology develop-
ers to use numbers in [0, 1]. This makes it possible to deal with unknown degrees 
of truth.

Apart from extending the elements of crisp ontologies to the fuzzy case, fuzzy-
DL introduces new elements specific from the fuzzy case, such as concept modifiers 
(using linear hedges and triangular functions), explicit definitions of fuzzy concepts 
(by means of triangular, trapezoidal, left-shoulder and right-shoulder functions), or 
some concept constructors (fuzzy rough concepts (Bobillo and Straccia 2012), ag-
gregation operators, modified concepts, and threshold concepts). It is also possible 
to express linear inequations involving degrees of truth. The semantics is given by 
Zadeh and Lukasiewicz fuzzy logics, and some operators of Gödel fuzzy logic are 
also supported. Connectives of different fuzzy logics can be combined.

fuzzyDL supports standard reasoning tasks namely, consistency, concept sat-
isfiability, maximum degree of satisfiability of a concept, entailment, concept 
subsumption, BED of an axiom, maximum degree of satisfiability of an axiom, and 
instance retrieval. Furthermore, it also supports some nonstandard tasks, such as 
variable optimization and different types of defuzzification of fuzzy sets.

The reasoning algorithm is based on a mixture of tableau rules and an optimiza-
tion problem. All the reasoning tasks are reduced to the BED of a concept assertion. 
Then, it applies some satisfiability preserving tableau rules that not only decompose 
complex concept expressions into simpler ones but also generate a system of ine-
quation constraints. These inequations have to hold in order to respect the semantics 
of the fuzzy DL constructors. After all the rules have been applied, an optimization 
problem must be solved before obtaining the final solution. 

fuzzyDL implements several optimization techniques, such as general concept 
inclusion (GCI) absorption, concept simplification, lexical normalization, opti-
mized use of n-ary conjunction and disjunction, advanced blocking techniques, 
normalization of degrees of truth, encoding of string names using integers, etc.

Although fuzzyDL can be freely downloaded, the user needs a Gurobi solver 
license because it is required to calculate the solutions of mixed integer linear pro-
gramming (MILP) problems. fuzzyDL can be used as a stand-alone application, ac-
cessed by other applications by means of a Java API, or queried through the Fuzzy 
OWL 2 plug-in.
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 Reasoning with Fuzzy Ontologies Using DeLorean

DeLorean (DEscription LOgic REasoner with vAgueNess) is a fuzzy ontology rea-
soner that supports fuzzy extensions of the languages OWL and OWL 2. Nowadays, 
DeLorean is the only reasoner that currently supports fuzzy OWL 2, although it 
does not support several elements supported by other fuzzy DL reasoners.

The reasoning algorithm is based on a reduction to reasoning in crisp ontologies 
detailed in Bobillo et al. (2012b). A consequence of the reduction is the possibility 
to reuse classical resources: editors, tools, reasoners, etc. In a strict sense, DeLorean 
is not a reasoner but a translator from a fuzzy rough ontology language into a clas-
sical ontology language (the standard language OWL or OWL 2, depending on the 
expressivity of the original ontology). Then, a classical DL reasoner is employed to 
reason with the resulting ontology. Nevertheless, due to this ability of combining 
the reduction procedure with the classical DL reasoning, we refer to DeLorean as 
a reasoner.

The supported language is thus a fuzzy rough extension of SROIQ (D). It is 
also possible to use linguistic labels as degrees of truth. The semantics is given by 
Zadeh and Gödel fuzzy logics, and connectives of both logics can be combined. 
The following reasoning tasks are supported: Computation of an equivalent crisp 
representation of the fuzzy ontology, consistency, concept satisfiability, maximum 
degree of satisfiability of a concept, entailment, concept subsumption, and BED of 
an axiom. There are some optimizations of the reduction to crisp SROIQ (D), but 
the only existing optimizations for reasoning in crisp SROIQ (D) are those imple-
mented by the reused classical reasoner.

DeLorean can be used as a stand-alone application. In addition, DeLorean 
reasoning services can also be used from other programs by means of a Java API. 
In this section, we focus on the use of the reasoner through its graphical interface, 
which as illustrated in Fig. 4.10, is structured in four sections:

• Input. Here, the user can specify the input fuzzy ontology and the DL reasoner 
that will be used in the reasoning. The possible choices are HermiT (Motik et al. 
2009), Pellet (Sirin et al. 2007), and any OWLlink-complaint reasoner. Once a 
fuzzy ontology is loaded, the reasoner will check that every degree of truth that 
appears in it belongs to the set specified in the section on the right.

• Degrees of truth. The user can specify here the set of degrees of truth that will 
be considered. 0 (false) and 1 (true) are mandatory. Other degrees can be added, 
ordered (by moving them up or down), and removed. For the user’s convenience, 
it is possible to directly specify a number of degrees of truth, and they will be 
automatically generated.

• Output. Here, output messages are displayed. Some information about the 
reasoning is shown here, such as the time taken, or the result of the reasoning.

• Reasoning. This part is used to perform the different reasoning tasks that 
DeLorean supports. The panel is divided into five tabs, each of them dedicated 
to a specific reasoning task.



4 Emerging Semantic-Based Applications 65

These three technologies show how the expressivity of crisp DL ontologies can be 
extended using a complementary formalism. In our case, we focused on fuzzy logic, 
as it provided us with mechanisms to model the uncertainty that is inherent in many 
of our working scenarios.

4.5  Applying Semantic Web Technologies to Mobile 
Computing

Advances in mobile computing, with the popularity and widespread and pervasive 
use of mobile devices and wireless communication technologies, have emphasized 
the interest in providing mobile users with access to useful information, anywhere 
and anytime. Besides, in this type of scenarios, it is particularly important to cus-
tomize the information provided according to the context of the user, to show her 
only truly relevant data and avoid overloading the user with unneeded information. 
One of the most important context parameters is the location of the user, which has 
given rise to the development of a wide variety of LBSs (Ilarri et al. 2010; Schiller 
and Voisard 2004), such as vehicle tracking applications, friend-finder applications, 
location-based emergency services, location-based advertisements, and location-
based games, among others.

A fundamental building block to define appropriate LBSs for a variety of sce-
narios is the so-called location-dependent queries, which are queries whose answer 
depends on the location of certain objects/entities (notably, not only the location 

Fig. 4.10  User interface of DeLorean reasoner
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of the mobile user that submits the query but also other objects that are relevant 
for the query). These queries thus include location-dependent constraints, such as 
inside (that filters the objects that are within a certain area), nearest (that retrieves 
the nearest object or the k-nearest objects of a certain type to a given object), etc. 
For an in-depth study of location-dependent queries, we refer the interested reader 
to Ilarri et al. (2010).

As the locations of moving objects (e.g., people, vehicles, etc.) may change at 
any time, the answer to a location-dependent query may become obsolete in a short 
time. Therefore, as opposed to traditional queries ( one-shot queries or snapshot 
queries), location-dependent queries are usually processed as continuous queries, 
that is, as queries whose answer must be updated by the system all the time, until 
they are explicitly canceled by the user. This implies the need of an efficient ap-
proach to keep the answer up-to-date, without the need to reevaluate the whole 
query from scratch every time that the answer needs to be refreshed. Besides, the 
answer to a query is usually refreshed periodically: Triggering a query whenever 
the answer changes is usually not possible, as even if the answer set (i.e., the set of 
objects that are an answer to the query) does not change, the locations of the objects 
in the answer set may change all the time and the user is usually interested in their 
current locations, that therefore will need to be refreshed continually.

It is important to highlight that sometimes a GPS location granularity for lo-
cation-dependent queries may be unnecessary or even inconvenient. So, the user 
should be allowed to express locations and location constraints in terms of the loca-
tion terminology that she requires (the locations could be not only GPS locations 
but also cities, rooms, buildings, provinces, countries, etc.), which are called loca-
tion granules in Ilarri et al. (2011a). Its use may have an impact on the semantics 
of the query, on the performance of the query processing, and also on the way 
the query results are shown to the user. Moreover, location granules should not be 
considered just a set of geographic locations, as they may also have other features 
and additional meaning attached; for this reason, we have later proposed the con-
cept of semantic location granule (to be described in the next section).

Location-dependent queries would benefit from the semantic management of in-
formation about moving objects and scenarios. Acquiring the required knowledge 
about the existing types of objects and their features, the application scenarios, etc., 
should not be the responsibility of the user. This has motivated our ongoing work on 
the SHERLOCK system (to be described later), where we also try to go beyond sim-
ple location-dependent queries to more generic location-dependent requests, which 
may be traditional location-dependent queries but also commands requesting objects 
to perform specific actions (e.g., using their sensors to measure certain values).

 Semantic Location Granules

As we have mentioned in the previous section, location-dependent queries are one 
of the most active matters of study in LBSs. For example, if we are visiting New 
York and take with us a smartphone, we could query “what are the museums in 1 
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kilometer?” In the literature, most of the works (Ding et al. 2008; Gedik and Liu 
2006; Ilarri et al. 2010; Mokbel et al. 2005; Sistla et al. 1997) consider that the 
answer to this query is a set of GPS points (that could be located on a map). But 
in many cases, we do not need the precise GPS location. Instead, we need to use a 
more abstract notion of location, area name, since the geographic coordinates are 
probably meaningless to us. For instance, if a user wants to go by subway to the 
MoMA museum in New York, she will not be interested in the precise coordinates 
of the area where she has to leave the subway, but she may want to know the name 
of the station near the MoMA museum to leave the subway. It makes no sense to 
show her a map with a point to leave the subway. She needs the name of the sta-
tion. To take these situations into account, the concept of location granule arises as 
a set of physical locations (Bernad et al. 2013; Bobed et al. 2011; Ilarri et al. 2007, 
2009, 2011). This concept is similar to the concept of place in Hightower (2003) 
and Hoareau and Satoh (2007, 2009) or spatial granule in Belussi et al. (2009). 
Furthermore, we can group a set of location granules under a name to obtain what 
it is known as a location granules map. For example, Madrid could be a location 
granule of the location granules map of the provinces of Spain.

Although location granules enhance the expressivity of location-dependent que-
ries and this is an important step forward, they are basically a set of GPS points with 
a name. When we group a set of locations and give them a name, we are implicitly 
giving them also a meaning. For example, the set of locations that compose Madrid, 
that is, the location granule with the name Madrid, becomes a city, the capital of 
Spain. Thus, the location granule Madrid can be seen as a more abstract concept 
that represents a city or a capital of a country. Implicitly, a location granule has a 
semantics (it is a city, a country, etc.). To model the semantics of location granules, 
the concept of semantic location granule is introduced in Bernad et al. (2013) and 
Bobed et al. (2010).

In addition, it is also interesting to consider not only the semantics of the loca-
tion granules (Madrid is a city, Hyde Park is a park, Spain is a country) but also 
the semantics of the topological relations between them: For instance, Madrid is 
contained in Spain, or Oxford Street is adjacent to Hyde Park. And what is more 
important is that, if we introduce semantics in location granules and in its topo-
logical relations, we can infer implicit knowledge automatically. For instance, if a 
user is in the city of Zaragoza, it could be inferred that she is also close to France, 
a country with famous red wines. The interest of linking LBSs and semantics has 
been emphasized in Ilarri et al. (2011b).

Several works in the field of geographic information systems (GIS; Rigaux et al. 
2002; Shekhar and Chawla 2002) have used the relational data model to repre-
sent topological relations (e.g., the region connection calculus, RCC; Randell et al. 
1992). However, to support reasoning with geographic elements, several previous 
works have studied the introduction of ontologies in the area of GIS (Couclelis 
2010; Lutz and Klien 2006), and the introduction of different types of topologi-
cal relations in DLs (Haarslev et al. 1998; Lutz and Möller 1997). Despite these 
efforts, more research is needed in this area to effectively enhance the processing of 
location-dependent queries with inference capabilities over location granules. For 
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example, isContained is a key topological relationship (it allows representing the 
geographic hierarchy of areas), but the existing proposals to represent such a rela-
tionship have important disadvantages (depending on the specific proposal, wrong 
conclusions may be obtained or a manual assertion of many of the isContained 
relations may be required).

Summing up, the three main goals that are pursued with semantic location 
granules are:

• To represent the semantics of a set of locations, i.e., to represent the semantics 
behind location granules.

• To represent the semantics of topological relations between location granules.
• To be able to infer implicit knowledge automatically.

We have proposed two complementary models for semantic location granules 
(Bobed et al. 2010; Bernad et al. 2013). The former one considers the location 
granules as instances of a concept Granule, and it is oriented to exploit the ABox 
extending the query model using logical rules; for further details, see Bobed et al. 
(2010). In this chapter, we will focus on the latter one, which considers that the 
granules themselves are concepts, as they subsume a set of locations (which now 
become the instances). As we will see, this latter model allows the DL reasoner to 
make intensive use of the TBox to infer the containment relationships (Bernad et al. 
2013). In the following, we will say granule instead of location granule, for the sake 
of simplicity.

Modeling Semantic Location Granules as Concepts Let us now discuss model-
ing semantic location granules as concepts. In this approach, we will consider that 
a semantic location granule is a concept in a TBox T of a knowledge representation 
K = (T, A). For example, we will consider that Madrid and Spain are concepts in T. 
The most straightforward way to express that Madrid is contained in Spain is to add 
an axiom in T, Madrid �  Spain, but it fails as we will see in the following. Recall 
that one of the objectives to introduce semantic location granules is the possibility 
to express that Madrid is a city or Spain is a country. Again, the most natural way to 
express these situations is to consider the concepts City and Country, and add in T 
the axioms Madrid �  City and Spain �  Country. But if we want to say that a city 
cannot be a country, that is, City ¬�  Country, then the T  Box T becomes inconsis-
tent: It is inferred that Madrid is a city and a country, Madrid �  Spain �  Country, 
which is a contradiction. With this simple example, we can see that it is not so trivial 
to express the content topological relationship using a DL. The main problem is that 
the subsumption operator ( )�  is used to express that Madrid is an area inside the 
area of Spain, and to express that Madrid is a city, that is, the subsumption operator 
is used to express the content relationship between areas as well as the is a relation-
ship between concepts.

To avoid the above problem, in the formalization of semantic gran-
ules and semantic granule maps with DLs, we use a transitive role, named  
isContained, and roles 

1
, , .

nX Xloc loc…  Intuitively, the role isContained is used to 
express that a granule is geographically contained in another one by subsumption 
and participation in the relationship isContained (e.g., NewYork  ∃� isContained.
EEUU); and 

1
, ,

nX Xloc loc…  are the coordinates of a point. These concrete features 
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allow us to define areas; for example, loc loc loc locx x y y≥ ≤ ≥ ≤10 20 10 30    
represents a rectangle.

Definition 1 An area concept 
1

( , , )
nX Xf loc loc…  is a concept built with the con-

structors   and ,  and the roles 
1
, , .

nX Xloc loc…  An area concept name A is a 
concept name such that 

1
( , , ),

nX XA f loc loc≡ …  where f is an area concept. The 
set of names of area concepts is denoted by NA.

For example, 10 20 10 30x x y yloc loc loc loc∃ ≥ ∃ ≤ ∃ ≥ ∃ ≤    is an area con-
cept, while 10 20 10 30x x y yloc loc loc loc City∃ ≥ ∃ ≤ ∃ ≥ ∃ ≤     is not. 

Now, we formalize the definition of semantic location granule and semantic 
granules map.

Definition 2 Given K = ( T, A) a knowledge representation and a granule map 
1{ , , }nM G G= …  with Gi  granules, a semantic granule map is a tuple ( M, K, area, 

semGranule) where area and semGranule are functions from the set of granules of 
M  to the concept names of T; that is, area, semGranule ,G CM N→  such that the 
following must be satisfied for all .GG M∈

1. semGranule ( )G �  area ( )G
2. area ( ) ∃G �  isContained.semGranule( G)

The concept names semGranules G( )  are called semantic granules. 

Let us show an example to explain the definition. Let M  be a granule map with lo-
cation granules M = {ZaragozaGr, AragonGr, MadridGr, SpainGr}, and T the TBox 
of a knowledge representation K defined in Table 4.4 (to keep explanations easier 
to follow, we represent geographic areas in the TBox by simple rectangles instead 
of the real geographic limits).

We define a semantic granule map ( M, K, area, semGranule), where area and 
semGranule are functions area ( SpainGr) = SpainArea, etc., and semGranule 
( SpainGr) = Spain, etc. We can ensure that this is a semantic granule map since it 
holds the conditions (1) and (2) of Definition 2 from axioms (5)–(8), and (9)–(12), 
respectively. Figure 4.11 shows the map corresponding to the modeled area.

Intuitively, the condition (1) of Definition 2 says that a semantic granule is not 
only its geographic area but it could also have more attributes. For example, Zara-
goza is an area and a City, and Spain is an area and a Country. The condition (2) 
allows to establish qualitative relations between granules such as “Zaragoza is a 
city in Spain,” i.e., Zaragoza ∃�  isContained.Spain, or to express the concept 
“Aragon’s wines,” AragonWine ≡ Wine ∃�  isContained.Aragon. Note that we 
do not express the concept Aragon’s wine as Wine   Aragon, since Aragon is a 
Region and wines are not regions; and similarly, Aragon’s wines are not defined 
as Wine   AragonArea, as wines could not have location information. We have 
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divided the containment relationship in two parts: One to make calculations about 
areas (quantitative reasoning) using the subsumption relationship, and another one 
to establish relationships with other concepts (qualitative reasoning) using the is-
Contained relationship.

From this model, a DL reasoner can deduce a number of facts, as we explain in the 
following:

Table 4.4  TBox axioms involving semantic granules
Axiom Definition
(1) ZaragozaArea 25 30 23 30x x y yloc loc loc loc≡ ∃ ≤ ∃ ≤ ∃ ≥ ∃ ≤  
(2) AragonArea 25 30 20 32x x y yloc loc loc loc≡ ∃ ≥ ∃ ≤ ∃ ≥ ∃ ≤  
(3) MadridArea 15 20 17 23x x y yloc loc loc loc≡ ≥ ∃ ≤ ∃ ≥ ∃ ≤  
(4) SpainArea 5 35 0 35x x y yloc loc loc loc≡ ∃ ≥ ∃ ≤ ∃ ≥ ∃ ≤  
(5) Zaragoza ≡ ZaragozaArea  City
(6) Aragon ≡ AragonArea  Region
(7) Madrid ≡ MadridArea  City
(8) Spain ≡ SpainArea  Country
(9) ZaragozaArea ∃�  isContained.Zaragoza
(10) AragonArea ∃�  isContained.Aragon
(11) MadridArea ∃�  isContained.Madrid
(12) SpainArea ∃�  isContained.Spain
(13) Region, Country, City are mutually disjoint
(14) RedWine � Wine
(15) AragonWine ≡ Wine  ∃ isContained.Aragon

Fig. 4.11  Sample granule 
map
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Proposition 1 A reasoner under conditions of Definition 2 can infer that:

1. A granule G is contained in a granule G′, i.e., it can be deduced that
semGranule( G) ∃�  isContained.semGranule( G′)

2. A granule G intersects a granule G′

In the example above, it can be inferred that Zaragoza is contained in Spain, 
Zaragoza �  ZaragozaArea �  SpainArea ∃�  isContained.Spain. The second 
statement is obvious since it is equivalent to asking if the area concept area ( )G   
area ( )G′  is satisfiable.

Another interesting remark is that the content of a granule only depends on its area. 
What does this mean? For example, let us suppose that we define two different 
semantic granules with the same area, VaticanCity and VaticanCountry, defined as 
VaticanArea   City and VaticanArea   Country, respectively. We would like the 
content of Vatican as a city (∃  isContained. VaticanCity) to be equal to the content 
of the Vatican as a country (∃  isContained. VaticanCountry), even when a country 
is not a city. Due to the conditions (1) and (2) of Definition 2 and the transitivity 
of the role isContained, we can conclude that in our model ∃ isContained.Vatican-
City ≡ ∃ isContained.VaticanCountry as it is shown in the following proposition.

Proposition 2 Let G be a granule under conditions of Definition 2. Then it holds 
that:
∃  isContained.semGranule ( )G ≡ ∃  isContained.area( G)

and therefore, if G1  and G2  are granules such that area 1( )G ≡  area ( ),G2  then
∃ isContained.semGranule 1( )G ≡ ∃  isContained.semGranule ( )G2

For further details on the model and the proofs of the different propositions, we 
refer the interested reader to Bernad et al. (2013).

Semantic Management of LBSs: SHERLOCK

The astonishing penetration of mobile computing in our daily lives, thanks to de-
vices such as smartphones and tablets, leads us to a scenario where mobile users 
have access to huge amounts of information anytime and anywhere. Thousands of 
applications (also known as apps) for their smart devices are available to offer them 
information about transportation, entertainment, culture, etc. The Web has also 
been growing steadily in the last few years with tons of potentially useful informa-
tion. Therefore, users are starting to be overwhelmed with the amount of data they 
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receive from different sources, as it is sometimes difficult for people to distinguish 
which information is valuable.

For example, imagine a researcher attending a conference who arrives on an 
evening flight and needs to reach her city hotel. At first, she would be interested in 
transport information and she might need to know the different options (e.g., bus-
es, metros, taxis, or car rental options), traffic conditions, and perhaps even where 
available parking spaces are located. This information could be obtained by visiting 
a tourist office, searching a local transportation web site, or even downloading a 
mobile app. After checking in, she could be interested in finding other nearby con-
ference attendees to talk to them or even to go sightseeing (again, she should browse 
the Web to find information about interesting places to visit). Thus, it is the user 
herself who is in charge of knowing/finding the interesting and updated information 
sources and gathering and correlating all this information; even worse, she will have 
to know/find all these updated information about each city she visits.

Semantic Web techniques become particularly useful in these scenarios. First, 
they can be used to understand the information needs of users controlling the ambi-
guities of natural language (as already explained in this chapter). Also, these tech-
niques can help to find the most appropriate information from a range of different 
sources by inferring useful information providers. Finally, information extracted 
from heterogeneous sources can be presented in an integrated way by using com-
mon representation models such as ontologies.

Overview We present SHERLOCK (System for Heterogeneous mobilE Requests 
by Leveraging Ontological and Contextual Knowledge) (Yus et al. 2014a), a sys-
tem to provide mobile users with interesting LBSs. SHERLOCK (http://sid.cps.
unizar.es/SHERLOCK) relieves users from the need to obtain up-to-date informa-
tion about the services they need. Using ontologies to model the knowledge related 
to these services, SHERLOCK devices exchange information among themselves, 
for example, about LBSs in the area. Also, with the help of a semantic reasoner, 
our system is able to determine which information could be interesting for a user 
regarding her context, and to obtain this information from objects nearby by lever-
aging the collaboration among devices. For that purpose, SHERLOCK deploys a 
network or mobile agents (Lange and Oshima 1999; Spyrou et al. 2004; Trillo et al. 
2007b) which move from one device to another autonomously to be near the needed 
information source and collect data (see Fig. 4.12).

Obtaining Knowledge from Devices Around SHERLOCK is based on knowl-
edge sharing among devices. Each participating device starts with a basic OWL 
local ontology containing the basic terms to define LBSs, with concepts such as 
“Service,” “Provider,” “Parameter” (see Fig. 4.13 where the basic terms are in 
bold font). SHERLOCK devices learn from the interaction with others: When two 
devices meet, they share part of their local ontologies. A SHERLOCK device that 
receives new knowledge integrates it with its local ontology, and thus it can use this 
new knowledge to provide the user with more interesting information. For example, 
the device of a user that lives in Zaragoza (Spain) knows transportation concepts 
such as “Taxi” or “"Bus”; if the user travels to Thrissur (India) and her device starts 
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communicating with others, it can learn that “Tuk-Tuk” (a vehicle defined in the 
ontology as a private transport that carries people to a certain destination) is similar 
to a taxi, and thus, it can be interesting for a user that needs transport.

In SHERLOCK, there is an (static) agent in charge of managing the local ontol-
ogy of the device. This agent, called Ontology Manager (OM), has two main tasks: 
(1) sharing knowledge with OMs in other devices, and (2) integrating the knowl-
edge received. OMs are continuously asking for knowledge related to the context of 
the user to new devices discovered. Also, if the user shows her interest in a specific 
location (e.g., downtown) or concept (e.g., hotel), OMs broadcast a message ask-
ing for knowledge related to it. An OM that receives a knowledge petition applies 
ontology modularization techniques (Stuckenschmidt et al. 2009) to extract relevant 
knowledge from its local ontology. When the new knowledge is received, OMs 

Fig. 4.12  Agent network deployed to process a request

 

Fig. 4.13  Subset of an ontology that defines an LBS: “Transportation Service”

 



C. Bobed et al.74

apply ontology matching techniques (Euzenat and Shvaiko 2007) to integrate the 
new knowledge into its local ontology. In this way, an OM will discover semantic 
relationships among terms such as synonymy (e.g., the terms “Taxi” and “Cab” are 
synonyms) or hypernymy (e.g., the term “Car” is a hypernym of the term “Taxi”).

Generating an Information Request When the user shows her interest in a cer-
tain location, SHERLOCK on her device uses the knowledge in its local ontology 
to help her generate an information request. The goal of this step is to generate a 
request that SHERLOCK will later process to find the information that the user 
needs.

There are three (static) agents involved in this process: ADUS, Alfred, and User 
Request Manager (URM). ADUS is in charge of generating graphical interfaces 
appropriate to show information to the user and get her input. Alfred is in charge of 
storing information about the user and her device (e.g., user preferences, previous 
requests, and technical capabilities of the device). This information is especially 
relevant to infer interesting information from previous user requests when generat-
ing a new request. For example, Alfred can infer that the user usually selects taxis 
and shuttles when looking for transportation, and thus, she seems more interested 
in private transportation than in public transportation. Finally, URMs interact with 
the user to generate the final information request. Using the location that the user 
selected, the URM infers which LBSs are related to it. This is done by finding all 
the LBSs defined in the ontology that are related (e.g., through a property) to the 
type of location selected. For example, if the user selects a hotel, the URM will infer 
that services to book a room or to find a transport to go there can be interesting. The 
context of the user is also used to filter out some of these services (e.g., if the user 
is already in a taxi, the service to find transportation would probably not be inter-
esting for her). Then, the URM presents the possible services to the user and when 
she selects one of them, the URM presents its parameters (if any) to find the most 
appropriate service provider for the selected service. Some of these parameters will 
be filled in by the URM using the information stored by Alfred.

Processing an Information Request Once SHERLOCK has generated an infor-
mation request to find the most appropriate service providers for the user, the next 
step is processing it. Following the approach presented in LOQOMOTION (Ilarri 
et al. 2006b) to process location-dependent queries, SHERLOCK creates a network 
of mobile agents to find these service providers. These mobile agents, used as a way 
to balance the computing load and minimize the network latency, consider every 
device in the scenario as a potential processing node. Mobile agents continuously 
evaluate the appropriateness of the current device where they are executing for the 
task they are performing. As a result, these agents can stay in the same device, move 
to another one where the performance is expected to be better, or even create new 
helper mobile agents if they cannot solve the situation alone.

There are three types of mobile agents involved in the processing of an informa-
tion request: User Request Processor (URP), Trackers, and Updaters. URPs are 
created to continuously process the user information request and return the results 
to their URMs (that will present these results to the user). URPs have to define the 
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geographic area that would be interesting to obtain information related to the user 
request. Finally, a URP creates Tracker agents to monitor the selected area(s). A 
Tracker is in charge of monitoring an area to find relevant objects that can provide 
the service that the user needs. To achieve this goal, Trackers create a network of 
Updater agents and correlate their results. The Tracker is responsible for maintain-
ing the network of Updaters trying to cover the area completely and with an ad-
equate frequency (due to communication delays). Finally, Updaters are in charge 
of communicating with objects asking for the ontological context that describes 
them. Updaters are provided by their Trackers with the ontological description of 
the service providers interesting for the user. So, if an object’s profile fulfills this 
description, then its information (especially its location) will be returned to the 
Tracker. Note that Updaters can use the reasoner on the device they are executing to 
check if an unknown object could be classified as an instance of the target provider 
it is looking for.

Prototype We have developed a prototype of the SHERLOCK (Yus et al. 2013b) 
as an Android app (see Figs. 4.14–4.16 for some screenshots of the prototype). 
The prototype uses the OWL API (Horridge and Bechhofer 2011), an ontology 
API to manage OWL 2 ontologies in Java applications, the JFact reasoner, and the 
SPRINGS mobile agent platform (Ilarri et al. 2006a). Using Semantic Web technol-
ogies (ontology APIs and DL reasoners) on current mobile devices are feasible, as 
we studied in Yus et al. (2013a) and Bobed et al. (2014). In addition, in Bobed et al. 
(2014), we evaluated the performance of semantic reasoners on smart devices and 
our results show that current smartphones can handle reasoning on small/medium 
ontologies.

First, the SHERLOCK prototype asks the user for some information such as her 
name and “profile” (e.g., person, researcher, taxi, or bus). Then, the prototype cre-
ates P2P networks using WiFi to communicate with other devices and to exchange 
OWL ontologies. Finally, the prototype helps users to create their information re-

Fig. 4.14  The user fills in 
parameters to select the most 
appropriate service provider 
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quests and to find other SHERLOCK devices around whose “profile” matches with 
the kind of appropriate service providers for the user (Fig. 4.15).

4.6  Discussion

Throughout this chapter, we have presented several examples of how the use of 
semantic techniques leads to the development of smarter information systems. Mak-
ing the computer aware of the semantics of the data will require still a long road of 

Fig. 4.15  Real-time loca-
tion of service providers are 
shown on a map

 

Fig. 4.16  Different infor-
mation requests can be 
processed for a user
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research in many fields. However, as we have shown, Semantic Web technologies 
in their current state make it possible to improve existing approaches, and to devise 
new and more intelligent applications.

In the SID research group, we are following this line of thought and research, 
attempting always to go a step further into exploiting semantics to improve the 
capabilities of our systems. We have seen how the use of semantic techniques has 
allowed us to improve Web searches, to perform semantic keyword-based searches 
on heterogeneous information systems, or to develop a platform to provide smarter 
LBSs, for example. However, our lines of research, which are directly implemented 
in our prototypes, are still open. Among others, some of the issues we are currently 
working on are:

• There is plenty of work to be done yet in the field of obtaining the semantics out 
from plain keywords and plain text. We are studying how to combine ontologies 
with NLP techniques to enhance this process, and solve many of the linguis-
tic problems that exist (e.g., ambiguity and multilingualism). Moreover, with 
the know-how acquired during the development of QueryGen, Doctopush, and 
GENIE, we also want to study the open problem of Question Answering, which 
has recently attracted new attention (Lopez et al. 2011, 2013) due to the possi-
bilities that ontologies provide to interpret the meaning of the posed queries.

• Regarding semantic searches and semantic LBSs, we want to study the inclusion 
of context information. User preferences could be introduced in our systems to 
provide better results in terms of more intelligent services providing more rel-
evant results. For example, in some cases, some data could be provided to the 
user even in the absence of explicit queries, such as in mobile recommendations 
(Rodríguez-Hernández and Ilarri 2014). As another example, if we allow que-
ries such as “retrieve hotels that are near,” the notion of near is imprecise, and 
depends on the context (e.g., is the user walking or driving?) and the user prefer-
ences.

• In the context of location modeling, we also want to explore further the model-
ing capabilities of DLs to capture different spatial relationships and enhance our 
semantic location model. We will analyze how to introduce RCC relations other 
than isContained (e.g., inner and outer tangential relations), and how to model 
the dependency between all the RCC relationships. Our objective is to model 
RCC in a DL in such a way that, if the topology is possible, then the TBox with 
the axioms describing the topology is consistent and all topology relationships 
that we can derive from the TBox are realizable.

• Finally, we plan to study the semantic management of multimedia data in the 
context of SHERLOCK. Current mobile devices generate large amounts of pho-
tos and videos that SHERLOCK could take into account when offering the user 
with interesting information. We will explore the integration of our previous 
experience on multimedia information management (Yus et al. 2014b) with the 
semantic management of data of SHERLOCK.
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The Semantic Web and its associated technologies are here to stay and are no longer 
restricted to web environments. Of course, there are still open issues and a long road 
to research in this field. For example, there is still no general purpose search engine 
that, given a query, returns the exact answer the user is looking for. For instance, a 
user that inputs the query “what is the meaning of life the universe and everything?” 
would expect the result to be just “42” and not thousands of web sites talking about 
The Hitchhiker’s Guide to the Galaxy. Although some important knowledge bases 
have been generated in the last few years that might contain this information, we 
are still far from a scenario where computers understand the meanings behind any 
type of data and data repository. Nevertheless, in parallel with the enhancement of 
the current semantic techniques and Semantic Web technologies, we have shown 
that we can embrace and integrate them to change the way we devise applications.
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5.1  Introduction

Today, we see several new trends regarding data management and use. First, data 
is being produced by many more people and things. Governments and consumers 
have entered the business of producing data alongside industry. The data.gov ini-
tiative is a perfect example of how governments are enabling and promoting data 
sharing and reuse in many interesting ways. The data.gov initiative was created in 
2009 by the US government with the goal of making data more available to the 
public in a format that both people and machines could read: XML (data.gov 2014). 
Activities from the consumer side can be seen in initiatives around the quantified 
self and web of things (Gustafson and Sheth 2014). Data looks different than it used 
to: from tweets to health-care records, and from activity monitors to multimodal 
and multidimensional flight data, we see data coming in new and different formats 
that need to be analyzed alongside each other. However, the most often talked about 
attribute of today’s data is that it is produced at volumes of increasing size, i.e., the 
era of big data.

Second, the users of data are becoming more diverse and complex. The most 
recognizable trend here is the democratization of data analysis via the new tools, 
new training and curriculum, and the recognized role of the data scientist within 
organizations. Third, data is being stored in newer and more diverse infrastructures 
due to the confluence of increased volume and diverse users. Cloud services, like 
Amazon Web Services, are proliferating to bring down cost while driving up flex-
ibility and reliability. Fourth, and finally, we are entering a new era of applications 
that feed off data to create even more valuable data, namely artificial intelligence 
and the automation of a variety of human tasks. In these areas, like driverless cars, 
superhuman robots (DARPA Grand Challenges), and intelligent personal assistants 
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(e.g., Siri) and information retrieval (e.g., IBM’s Watson), data provides not only 
the critical knowledge bases on which to reason and act but also the surrogate to 
perception via video, radar, and other sensors. Given these four very real trends, we 
believe that the Semantic Web, or more recently named Linked Data (Bizer et al. 
2009), developed and promoted over the past decade and a half, is poised to become 
a critical, enabling technology from knowledge capture to knowledge generation, 
and from data interoperability to data integration.

Recently, we were invited to a meeting in which a team of relational database de-
sign experts were being familiarized with a “data problem.” Real-time data flowed 
from people and machines in a manufacturing facility into data repositories. The 
problem was how to enable quality engineers to retrieve the right data on which to 
perform analytics in an effort to identify possible causes of manufacturing defects. 
We described to the group the basic ideas of semantic technology as envisioned by 
the Semantic Web and Linked Open Data. The lead expert listened politely and fi-
nally said, with some exasperation, “How is this different? I can do all of the things 
you’re describing with relational technology.” It was not the first time that we felt 
that we had somehow failed to make the case. Was there a real difference? Or was 
semantic technology just another way of doing the same thing?

This experience, alongside the aforementioned trends and others like them, has 
provided the motivation for selecting the topic for this chapter. Our objective is to 
identify the foundation and capabilities of semantic technologies in a broad sense, 
as well as the more specific sense of Semantic Web technologies, and compare and 
contrast them with relational database technology, with XML, with object-oriented 
programming languages, with Unified Modeling Language (UML), and with the 
broader spectrum of logic and logic programming. This chapter is not an unbiased 
weighing of all the technologies. Rather it tries to answer the question of the chapter 
title while identifying strengths and weaknesses of these modeling approaches. And 
we are evangelists of semantic technology, so we will be trying to make the case 
that semantic technology is better in important ways. The chapter ends with ex-
amples of how semantic technology has helped us in our work to further strengthen 
our argument. This argument is predicated on the notion that we need to return to 
“meaning” in our data management and use technologies, that over time we have 
moved away from the “meaning,” and that by making this shift we will be in the 
best position to address the trends of increased data production, use, and infrastruc-
ture. By capturing the “meaning” of data in flexible models that enable rich infer-
ence and implication, we will allow minds and machines to grasp both the meaning 
and the implications of the data. In other words, we need to merge data management 
and knowledge management into a synergistic whole.

The Data World Today: Relational Plus

A phrase that was used to promote big data technology is particularly insightful when 
considering the state of the art of data management and use: Big data technologies 
put the data first. What is being communicated by the phrase is the idea that data 
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management and infrastructure do not necessarily put the data “first,” or as the most 
important thing, in today’s applications and use of data. We believe that the evolution 
of the modern IT department and its separation from the business applications and 
data users evolved from the optimization of two different criteria. The latter, the busi-
ness applications, desire to create the most insightful and value-driving use of data. 
However, the former, the IT departments, optimize for lowering the cost of owner-
ship and support for data use. Consequently, standard technologies in IT are usually 
adopted, and there is a widening divide between the users of data and the teams 
tasked with maintaining the data. Big data stressed both the cost of ownership of 
data by challenging the disk space, compute and networking, as well as the ability to 
leverage data in a value-adding way since big data allows more people to use the data 
in more complex ways. In essence, big data technologies attempted to solve the cost 
of ownership problem by enabling inexpensive commodity hardware to be cheaply 
and robustly networked, and by forming a very simple model of the data (key–value 
pairs) that most data-savvy users and applications could easily understand. We argue 
that while big data technologies succeeded in their first objective, the second objec-
tive of a simple data model (key–value pairs) was short of today’s needs.

Relational database technology has been a foundation of information systems 
for decades. Its conceptual roots go back to the work of Edgar F. Codd in 1969. It 
addressed the critical need to store data in a manner which would allow use by mul-
tiple applications, including applications not yet envisioned. It was well founded 
in relational theory, and this allowed for the development of powerful query (e.g., 
Structured Query Language, SQL) and manipulation (e.g, Procedural Language, 
PL/SQL) languages. It also matched the computational capability, given the size of 
datasets available at the time. The result was a rich array of software and hardware 
that provides rapid and reliable data management.

Over time the quantity and complexity of data expanded significantly and began 
to push the limits of relational technology. Solutions included creating data marts—
specialized data warehouses for reporting or other purposes—and creating tempo-
rary “views” of the data. Both approaches essentially provide a pre-computation 
and retrieval of results to reduce computational demands at query time for better 
response times. However, as data sizes increased, and the need to provide certain 
database functionality like ACID compliance decreased in certain applications, 
traditional relational databases began to look over-expensive, over-featurized, and 
too slow1. Google paved the way for the future of Hadoop with its Big Table and 
Map Reduce. Apache took up the open source Hadoop project from Yahoo, which 
led to a whole new ecosystem of big data technologies. However, as the demand 
for and use of these low-cost technologies based on commodity systems grew, or-
ganizations and applications began to require more traditional database features 
to leverage existing database skillsets and provide guarantees around performance 

1 ACID is an acronym for atomicity, consistency, isolation, and durability, a set of properties that 
guarantee that database transactions are processed reliably. Some of the challengers to relational 
technology have emerged from applications such as social media where performance and scalabil-
ity have at least initially seemed more important than transactional integrity.
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and transactional consistencies, and to expect data models that allow applications 
to more easily tap into and integrate data in big data infrastructures. Big data tech-
nologies put “data first” by not requiring a lot of up-front data models and schemas, 
but as applications on big data technologies matured, the need to find “meaning” 
in all the data became more evident. For the first time in decades, the supremacy of 
relational is being challenged on multiple fronts.

 What Would be Better? And by what Criteria?

As noted by David Marr, every representation brings some aspects of the informa-
tion to the forefront, making it more easily perceived, at the cost of pushing other 
information into the background, making it less easily perceived (Marr 1982). It 
follows that the objective selection of an information/knowledge representation will 
depend upon what information one desires to make more easily perceived. Argu-
ably, this applies rather specifically to visual representations, but one cannot repre-
sent visually what is not present in the underlying data/knowledge. In the work that 
we do, some of which is described briefly at the end of this chapter, our priority is to 
make the domain-related aspects of the data easily perceivable and understandable 
by a subject matter expert (SME) or someone with reasonable domain knowledge, 
and to make the data “speak for itself” in the language of the domain. And we aspire 
to have the data speak to machines as well as minds2.

Evaluation Criteria To that end, the following criteria are adopted for technology 
evaluation in this chapter. These criteria are not independent but each emphasizes 
a different aspect of what we consider to be important attributes of an information/
knowledge representation and storage capability. We focus on the representation 
much more than the storage, believing that many storage schemes can be envisioned 
for a given representation, and that the representation is more crucial for expressive 
power and human/machine understanding while the storage can be tailored to the 
scale and performance requirements of the application.

1. How well does the representation capture a domain’s data and knowledge in a 
form compatible with the mental models of, and therefore more easily under-
stood by, SMEs and those with basic domain knowledge?

2. How easily can information be retrieved by the same users?
3. How expressive is the representation for enabling computation of new informa-

tion from existing information; that is, enabling reasoning and inference?
4. How well does the representation support interoperability between disparate 

information systems?
5. Can data expressed in the representation “speak” to minds and machines with a 

meaning shared by both?

2 Minds and Machines is the name of a journal associated with the Society for Machines and 
Mentality. It is the name of an MIT OpenCourseware offering. It is also the name of an annual 
GE-sponsored event (see https://www.gemindsandmachines.com/).

https://www.gemindsandmachines.com/
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We use the above criteria as a framework to assess how well various representa-
tions/technologies are suited to the needs of today’s data world. Those needs in-
clude that of making the meaning of data clear, which enables greater value to 
be derived from the data. We demonstrate, both theoretically and practically, that 
semantic technology is, as the name suggests, better at capturing data in ways that 
preserve, and even enable addition derivation of, meaning.

What We Mean by Semantic Technology?

First, let us reduce ambiguity by explaining what we mean by semantic technology. 
In the broadest sense, semantic technology is any representational paradigm that 
enables us to capture data and information in a way that enables computers as well 
as people to “understand” the meaning and not just work at a syntactic level. For 
example, XML is a technology that enables data to be represented in a standardized, 
domain-independent syntax. If I use my computer to express my data in standards-
compliant XML, your computer will be able to parse the data. XML achieves syn-
tactic interoperability.

But what does the data mean? And how would we enable a machine to 
“understand” the data? If we could provide answers to these questions, we would 
have achieved semantic interoperability. Consider the snippets of XML shown in 
Table 5.1.

Asked what the data in the first column of Table 5.1 is about, you might respond 
that it is the name and email address of one of the chapter authors. How did you 
arrive at that meaning? While it is not our intent to go deeply into semiotics, we will 
argue that the meaning you gave for the data was derived almost entirely from the 
fact that the tags used in the example, as well as the data itself, are words or sym-
bols with which you are familiar and which coincide with concepts in your mental 
models. To illustrate, consider a second XML snippet with an identical structure 
shown in the second column of Table 5.1.

Note how different is your constructed interpretation. The meaning is not in the 
structure, as both snippets have the same structure. The tags ( name, cart,…) and 
symbols ( @, $) do not directly provide any meaning, but rather meaning comes 
from information about the tags and symbols that the reader supplies but is entirely 
missing from the representation. Nor does XML schema lend much assistance in 

Table 5.1  Two XML snippets with parallel structure
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capturing the meaning of the structure. XML schema provides a specification of the 
required syntax. In the Table 5.1 examples, the XML schema might indicate that the 
cart can contain many item/price pairs while it might prohibit that a name “contain” 
more than one given name/surname pair. Such syntactic constraints may devolve 
from the domain but they are not, of themselves, sufficient to enable interpretation 
of the meaning of the data.

So what do you have in your head that allows you to give meaning to the 
<name>, <cart>, and other tags and symbols and thereby give an interpretation 
to the data structures in these examples? And could we construct something that 
would do the same thing for a machine? One theory is that as we learn a language 
we create, in our minds, a directed graph relating different concepts, with associ-
ated words and/or phrases, in a variety of ways. The construction of this conceptual 
map is observable in young children as they add words to their vocabulary and 
gradually refine their meaning and usage—usage being about language syntax as 
well as subtle shades of meaning (Pan and Gleason 1997).

This process can be likened to the structuring of the tags used in an XML docu-
ment. In the first example, such structuring might include relationships such as: (a) 
given name and surname are subclasses of name; (b) in certain cultures, a name 
often consists of at least two parts, a given name and a surname; and (c) name and 
email (address) are pieces of information about a person; hence, it might be inferred 
that <person> is the parent tag of both although such a tag is not shown in the 
snippet. These relationships can be captured in a computational model called an 
ontology. In fact, one definition of ontology is structured metadata. For XML, this 
might be the defining of the tags and the relating of the tags to one another. Mean-
ing, it can be argued, is an emergent property of such structuring. Capturing this 
structuring in a computational model would in a significant sense allow a computer 
to “understand” what the data means.

There are numerous ways to structure metadata and thereby capture meaning. 
How flexibly and expressively a particular language or representation captures such 
structuring is a key determinant in how good it is as a semantic language or rep-
resentation. The capturing of semantics is very closely akin to knowledge capture, 
and semantic technologies draw from predecessors in the knowledge representation 
domain. Most semantic representations are, at a minimum, fragments of a first-
order predicate logic. This is discussed in greater detail in a subsequent section 
of the chapter. Predicates with arity 2, meaning that they can take two arguments, 
e.g., child(Hillary, Chelsea), can be seen as one segment of a directed graph, where 
a segment consists of a node, a directed edge, and a node, the three together being 
called a triple and consisting of a subject, a property or predicate, and an object. For 
example, the previous predicate and arguments are equivalent to the triple Hillary 
→ child → Chelsea. Binary predicates can be domain dependent, e.g., “child,” but 
they can also indicate domain-independent types of relationships between domain 
concepts or even a relationship to a concept of the language itself: child → type 
→ property, Hillary → type → Woman, Chelsea → type → Woman, Woman → 
subclass-of → Person, Person → type → class. We refer to a language with predi-
cate arity limited to no more than two as a graph-based language because any set 
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of statements in the language constitutes a mathematical directed graph (and can be 
perceived as a graph as well).

 Foundational Concepts in Modeling

In the preceding paragraphs, we have made passing reference to several ideas that 
need to be further clarified in order to establish a foundation for technology evalua-
tion and comparison. These range from the question of how we synthesize meaning 
in our minds to rather casual references to “model” and the “relationships” between 
“concepts.” In an effort to give more depth to a shared understanding of these and 
related ideas, we take a small tour into the realm of modeling.

We will not try to give an entirely formal definition to the term “model” because 
there are so many kinds of models. By model, we mean something which is similar, 
presumably in some useful or interesting way, to something else. Usually, a model is 
simpler than the thing being modeled, and it derives its usefulness, in part, from this 
simplification. Often a model represents something in the real world, and allows 
us to explain what happens or to predict what is expected to happen in that world. 
The “real world” can be stretched to include constructs such as financial markets or 
social media, expanding the domains in which we build and use models.

One may suppose that the first models constructed by human kind were those 
constructed in the mind—mental models. There is not a universally accepted theory 
of mental models, but one theory that has demonstrated explanatory and predictive 
merit, and which is useful for our present purposes, is the mental model theory de-
veloped by Johnson-Laird and his students at Princeton (Johnson-Laird 1983, 1988, 
1993). What is intuitively attractive about this theory is its apparent consistency 
with the observable learning pattern of children, and the approach that people seem 
to naturally take to making sense of their observations.

Presented with a barrage of sensory input, we appear to identify patterns in that 
input and store the patterns in preference to storing all of the input. That certainly 
makes sense when thought of from a data management perspective3. This pattern 
identification, sometimes called abstraction or generalization, can conveniently be 
thought of as being of two types. The first is the grouping of similar “things” into 
named concepts, e.g., plant, animal, tree, rock, person, etc. This kind of group-
ing finds formalization in set theory. The second kind of pattern identification is 
in the relationships perceived between things. We give these relationship patterns 
names as well: the book is on the shelf, the man caught the fish, the woman loves 
the child. The second kind of grouping finds formalization in the predicates of 
predicate logic with arity greater than or equal to 2. Such a predicate captures a 
relationship between two or more things. However, both grouping patterns and 

3 But beware, we are not the first scientific epoch to view the working of the human mind as an 
extension of current technology. In a time when fluid dynamics was the newest thing, there were 
elaborate theories of how the brain worked based on fluid flows (Wade and Swanston 1991).
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relationship patterns are constructs of the mind—they do not exist, per se, in the 
“real world.”

Another way of describing our use of the term “model” is to say that a model 
consists of a specific set of patterns of these two types relevant to some domain of 
interest. We extend our conceptualization of a model to include actual occurrences 
of these patterns: Data and observations consisting of either individual instances 
belonging to a group or multiple instances recognized to be in a relationship. We 
strongly prefer that an “instance data model” always include or make unambiguous 
reference to the definition of the relevant patterns or abstractions, and identify 
to which patterns any particular occurrence conforms. For example, if a model 
has the information, “John is a man who owns a black dog,” it should include or 
have an unambiguous reference to where we find the meaning of “man,” “owns,” 
“black,” and “dog” as well as the associations between the data and the meaning, 
e.g., between “John” and “man.” Such associations make the data self-describing. 
Thought of another way, the context of the data is preserved with the data by main-
taining associations between the data and the meta-model.

To make this a little less abstract, consider the simple model partially illustrated 
in Fig. 5.1. The starting point is the specification of the class Person and the prop-
erty child with domain Person and range Person. Introducing the concept of the 
property gender with domain Person and range Gender, a class defined extension-
ally as either Male or Female, one can now define two subclasses of Person, Man 

Fig. 5.1  A simple model of people and family relationships
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and Woman. These class definitions are intensional (distinguished by their proper-
ties) and given by the following axioms:

 A Person is a Man if and only if gender is Male.
 A Person is a Woman if and only if gender is Female.

We might further clarify these classes by saying that Man and Woman are dis-
joint. We can then define the son and daughter properties as sub-properties of child, 
with ranges Man and Woman, respectively. This means that the values of the proper-
ties son and daughter are each subsets of the values of the child property, which is 
consistent with the definitions of Man and Woman as subclasses of Person.

Additional concepts can be added to the model. For example, parent is the in-
verse property of child, meaning:

 for all x and for all y, if child ( x, y), then parent ( y, x).

A useful extension of this concept is that of the transitive property ancestor with 
partial definition:

 for all x, for all y, and for all z, if parent ( x, y) and parent ( y, z), then ancestor  
( x, z).

To say that a property p is transitive means that:

 for all x, for all y, and for all z, if p( x, y) and p( y, z), then p( x, z).

Our model might include role classes, meaning that the class is defined as the set 
of individuals that are values of a particular property. For example, the role class 
Child contains all individuals which are objects of the child property. We might also 
define Parent with a cardinality restriction on the child property:

 A Person is a Parent if and only if child has at least one value.

Similar role definitions could be given for the classes Son, Daughter, Ancestor, etc. 
Role classes are shown in parenthesis in Fig. 5.1. The distinction between a role 
class and an intensional class definition can be illustrated by two meanings that we 
might give to a class Child. We might mean the role class, i.e., any individual (of 
type Person) who is the value of a child property. However, we could also define 
Child intensionally as a Person with age less than 14. Natural language does not 
distinguish these two meanings with different words but leaves the meaning to be 
gleaned from context.

We could go on to give logical axiomatic definitions of properties such as aunt, 
uncle, cousin, first cousin, first cousin once removed, etc., and classes Minor (a Per-
son with age  < 18), Aunt, Uncle, Cousin, etc. We might define father and mother 
properties and say that they are inverse functional, meaning that a Person can have 
only one Father and one Mother. We could define the property sibling and say 
that it is symmetric. The result would be a meta-model with increasing complex-
ity of structure and associated richness of meaning. Given a dataset that identified 
some class members, e.g., Man(Adam), Man(Abel), etc., and relationships, e.g., 
child(Adam, Abel), etc., the computer would be able to infer many other class mem-
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berships and relationships, answer questions, and detect inconsistencies. We argue 
that such a model would allow a machine to have an understanding of data that is 
shared with human minds.

 Importance of Similarity

While a model’s simplicity over the thing modeled can be important, the type and 
degree of similarity between the model and that which is modeled is essential to the 
model’s usefulness. The identification of sets and relationships as the key abstrac-
tions of a model provide us with a means of measuring this degree of similarity. 
When every set (class or type) in the model has one and only one corresponding 
set in the modeled world, and every relationship in the model has one and only 
one corresponding relationship in the modeled world, the mapping between model 
and modeled is isomorphic. Such a model has perfect similarity. That such perfect 
similarity is not usually achieved is reflected in the adage, “All models are wrong; 
some are useful.” While work has been done to formalize the quantification of simi-
larity (Gurr 1997), we use the term with less formality in this chapter. Figure 5.2 
illustrates the comparison of the modeled world and the model in terms of their 
similarity.

 Importance of Model Theory

Besides simplicity and similarity, a third highly desirable characteristic of a model 
is shown in Fig. 5.2 —the ability to determine whether any given statement in the 
model is true or false. If the modeling language has a model theory, it is said to 
have model-theoretic semantics. A model with a sound model theory is sometimes 
referred to as a formal model. For such a model, the theory, along with the associ-

Fig. 5.2  The world, a model, and a theory. (Sowa 2014)
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ated proof theory, provides a mechanizable means of not only evaluating the truth 
of any statement in the model but also doing truth-preserving transformations that 
produce new model content—content that was implicit in the model but can be 
made explicit via inference, also known as logical entailment. As noted above, set 
theory and predicate logic formalize what people naturally and informally do when 
they identify patterns in their observations and draw inferences from those patterns. 
Set theory and logic provide a means of evaluating statement truth in a model rep-
resentation that uses them as a foundation.

For models lacking a model-theoretic semantics, the evaluation of the truth of 
model statements (content) and the accomplishment of truth-preserving transforma-
tions become a question of writing model-specific code. Such code abounds in the 
form of C++, Java, PL/SQL, etc. Most of this code is procedural, meaning that it is 
a set of instructions to be followed by the machine, but of the code’s “meaning” the 
machine has no “understanding.”

Logic and Logic Programming as Reference

Before evaluating various representations, let us briefly review logic and logic 
programming as a reference point. Logic, the science of valid inference, has fasci-
nated mankind since ancient Greece, China, and India. A summary of logic can be 
done more neatly than the development actually occurred. Propositional logic deals 
with the truth of statements given the truth of other statements. It develops criti-
cal machinery for deriving new statements, or inferences, from existing statements 
asserted or previously inferred to be true or false. In propositional logic, a statement 
is atomic—there is not decomposition of a statement into its parts nor is there a way 
to determine the truth or falsehood of a statement from any internal considerations. 
Propositional logic consists of just four basic operations: conjunction (or), disjunc-
tion (and), negation (not), and implication (implies).

Predicate logic adds the essential capability to express the internal structure of a 
statement, and in the process a mechanism for evaluating the truth of the statement 
from its internals. It adds predicates, functions, and quantification—universal (for 
all…) and existential (there exists some…). A quantifier expresses that some vari-
able ranges over some set of things, e.g., “for all x where x is a Person” means that 
whatever follows is true for every member of the Person class. In first-order logic, 
quantifiers are not allowed to range over predicates, which is equivalent to saying 
that sets of sets are not allowed. Second-order and higher-order logics relax this 
constraint.

In addition to higher-order logics, extensive work has been done in modal log-
ic, which qualifies statements with modal operators such as belief, possibility, or 
temporal state. Each of these logics has a model and proof theory, although these 
become increasingly complex as expressiveness is added. Again, added complexity 
means more complex model and proof theories.
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Even first-order logic is not decidable, meaning that applying the proof theory 
to a statement may not determine if it is true or false in finite time. For the past sev-
eral decades, logicians have been hard at work identifying a system for classifying 
various flavors of logic and determining the computational characteristics of each 
(Baader et al. 2003). This work is leveraged by the Web Ontology Language (OWL) 
with different dialects implementing various fragments of first-order logic with dif-
fering computational requirements (Motik et al. 2012).

A number of languages implement logic in various ways. Prolog is a primarily 
declarative logic programming language rooted in first-order logic. Common logic 
(CL) is a relatively recent standard which shows great promise and unifies previous 
work in the Knowledge Interchange Format (KIF) and conceptual graphs (Infor-
mation technology—Common Logic Standard (CL): a framework for a family of 
logic-based languages 2007). CycL is a language with elements from higher-order 
logic that has been developed by Cycorp since 1984. Its implementers have tried to 
create a system capable of showing some level of “common sense” and able to learn 
from reading natural language texts (Cyc 2014). This has remained an elusive goal.

We will not try to evaluate the various families of logic against our criteria. 
Arguably, each criterion might find an optimized logic, and there would surely be 
one that generally met the criterion better than the current generation of Semantic 
Web languages. However, wide adoption and the availability of affordable tools and 
open systems are of inestimable value, hence the focus of this book. The general 
capabilities of logic languages will be useful to us as a reference point in the fol-
lowing sections.

 RDF, RDFS, and OWL as Semantic Languages

While many languages would qualify as semantic languages, by the description 
of semantics above, those used in the Semantic Web deserve special consideration 
given the topic of this book. Let us briefly review Resource Description Framework 
(RDF), RDF schema (RDFS), and OWL and relate them to the topics we have so 
far discussed.

RDF “is a standard model for data interchange on the Web” (Resource Description 
Framework (RDF) 2014). An RDF dataset consists of a default graph, which is un-
named and may be empty, and zero or more named graphs. Each graph is made up 
of a set of statements, each consisting of a subject, a predicate, and an object and 
called a triple. The elements of a triple can be an internationalized resource identi-
fier (IRI), a blank (unnamed) node, or a literal. Literals may be typed. Each of these 
elements bring into focus important aspects of Semantic Web-style modeling.

•	 IRI—IRI	 is	 a	 generalization	of	 uniform	 resource	 identifier	 (URI).	As	 the	 last	
word suggests, these are used for identity in the Semantic Web. An IRI can be 
thought of as consisting of two parts, a namespace and a local name or frag-
ment, sometimes separated from the namespace by the “#” symbol. For example,  
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“http://www.w3.org/1999/02/22-rdf-syntax-ns#type” is the URI of the RDF 
property used to relate a resource to a set (class, group) to which it belongs. The 
local fragment is “type” and the namespace is “http://www.w3.org/1999/02/22-
rdf-syntax-ns.” To make RDF data more readable by people, the namespace is 
sometimes replaced with an associated prefix, which is then separated from the 
local fragment by a colon, e.g., “rdf:type.” The predicate of an RDF statement 
is an IRI.

• Blank node—many (perhaps most) things in the word do not have unique identi-
fiers, and to create such for them can be quite laborious and subject to pitfalls. 
These unnamed things are naturally referenced by their relationship with other 
things, e.g., “John’s pen.” Even those things which do have identifiers are often 
referenced by their relationships. “Let’s take Sally’s car” as opposed to “Let’s 
take VIN-WPOZZZ99ZTS392124.” RDF allows an unidentified resource to re-
main unidentified except by its relationships. The subject of an RDF statement 
can be an IRI or a blank node.

• Typed literal—many programming languages differentiate between those things 
which have identity, explicitly or by relationship, and “data values” for which 
one might argue that identity does not make sense. For example, if I have 12 
eggs and your son is age 12, is that the same 12 or a different 12? XML schema 
defines a number of data types: string, boolean, decimal, date, time, duration, 
etc. In addition, applications can create user-defined data types. A typed literal is 
a value and its data type. The data type includes the value space, which specifies 
what values are valid for that type. The object of an RDF statement can be an IRI, 
a blank node, or a literal.

RDF by itself is a relatively weak modeling language. RDFS extends RDF in im-
portant ways, and it provides the basic elements for constructing an ontology—a 
model of what exists or can exist in a domain. RDFS adds the concept of a class 
(rdfs:Class), thereby explicitly adding the foundational concept of sets. The RDFS 
properties subClassOf and subPropertyOf allow classes and properties to be par-
tially ordered into hierarchies, thereby enabling the concepts of subsets and super 
sets from set theory to be applied. Properties can be given a domain and range, 
thereby specifying the possible subjects and objects of an RDF statement using that 
property as predicate. Taken together, RDF and RDFS vocabularies allow a model-
theoretic semantics for RDF graphs. This is the “theory” part of Fig. 5.2. It allows 
truth preserving transformations, also known as entailments or inferences, to occur, 
resulting in the derivation of new RDF statements from existing RDF statements.

OWL is a family of knowledge representation or ontology languages. OWL fur-
ther extends the expressiveness of RDF and RDFS. OWL Full is the most expres-
sive OWL dialect, and is not, in general, decidable with respect to truth-preserving 
transformations. Other flavors of OWL are decidable fragments of first-order logic 
based on description logics (DL). These flavors have different semantics and there-
fore support different truth-preserving transformations. In general, the additional 
expressiveness of OWL includes the following:

http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.w3.org/1999/02/22-rdf-syntax-ns
http://www.w3.org/1999/02/22-rdf-syntax-ns
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1. Universal quantification (see the previous section on logic) expressed by the 
owl:allValuesFrom class axiom

2. Existential quantification (see the previous section on logic) expressed by the 
owl:someValuesFrom class axiom

3. The restriction of a property of a class to a particular value with the owl:hasValue 
class axiom

4. Cardinality restrictions on a property of a class, including cardinality, minimum 
cardinality, and maximum cardinality

5. Qualified cardinality restrictions, which specify, for a given class, the number 
of property values coming from a particular range class—exact, minimum, or 
maximum

6. Equivalence classes expressing necessary and sufficient conditions for class 
membership

7. Union and intersection of classes
8. Disjointedness of classes
9. Two instances with different IRIs are known to actually be the same individuals 

or are known to not be the same.

These additional language constructs expand significantly what can be said in the 
language about a particular domain. They also expand the number of well-founded 
logical transformations that a particular model-theoretic semantics provides for a 
model, thereby extending the opportunity for inference of useful conclusions.

The Semantic Web technology stack defined by the World Wide Web Consor-
tium (W3C) illustrates a rule language in relation to RDF and OWL. A rule lan-
guage enables the capture of knowledge which may not be easily represented in 
logical axioms. As an example, consider the age property in our semantic model 
example. A Person’s age changes, so putting it into a model as an assertion would 
mean that the model would need to be updated regularly. However, birth dates do 
not change, so one might define a property dateOfBirth with domain Person and 
range xsd:date. Then one could add a rule stating that “if x is a Person and x has 
dateOfBirth y then x has age minus( now(), y)” where minus and now are rule built-
ins. Many rule languages support the concept of small snippets of procedural code, 
called built-ins, that perform calculations, e.g., now and minus (get the current date–
time; take the difference between two dates). There are a number of rule languages 
available, some of which have well-behaved and decidable semantics. For example, 
the Semantic Web Rule Language (SWRL) has model-theoretic semantics that are 
a straightforward extension of OWL semantics (SWRL: A Semantic Web Rule Lan-
guage Combining OWL and RuleML 2004). The axioms of the model are extended 
to include the rules, and the rules become specifications of additional truth-preserv-
ing transformations.

Both the RDF and OWL languages have various syntactic representations rang-
ing from XML-based to a functional syntax. The Manchester syntax is one of the 
more human-readable syntaxes (OWL 2 Web Ontology Language Manchester Syn-
tax (Second Edition) 2012). The Semantic Application Design Language (SADL) 
is a controlled English representation of both OWL models and rules (Crapo A. 
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W., Semantic Application Design Language (SADL) 2014) (Crapo & Moitra, To-
wards a Unified English-Like Representaton of Semantic Models, Data, and Graph 
Patterns for Subject Matter Experts 2013). JavaScript Object Notation (JSON) has 
become a popular data serialization, and RDF data can be represented in a format 
called JSON-LD, the LD referring to linked data (A JSON-based Serialization for 
Linked Data 2014).

 Evaluation of Semantic Web Languages Against Criteria

Taking Semantic Web languages as our base case, let us consider how well they 
meet our evaluation criteria:

1. How well does the representation capture a domain’s data and knowledge in a 
form compatible with the mental models of, and therefore more easily understood 
by, SMEs and those with basic domain knowledge? An ontology language allows 
the concepts of a domain to be defined in terms of the criteria for class member-
ship, expressed as class axioms, and the kinds of properties and relationships that 
members of a class can/must have. This model in essence creates a domain-spe-
cific language (DSL) that can align arbitrarily well with the shared mental mod-
els of domain experts. The model can also be instructive to those with enough 
foundational knowledge of the domain to be able to learn from the model.

2. How easily can information be retrieved by the same users? Since an RDF or 
OWL model is a directed graph and the data is self-describing in terms of the 
concepts defined in the model, queries used for data retrieval can be expressed 
quite easily in the DSL of the model. The Simple Protocol and RDF Query Lan-
guage (SPARQL) graph query language is a powerful language for retrieving 
data. However, SPARQL does not allow easy retrieval of information from the 
logical axioms of an OWL model. The graph structures capturing these axioms 
are quite complex (although not necessarily so when expressed in predicate 
logic), and a great deal of knowledge of these structures is required to compose a 
query. There is a significant need for a query language that makes “meta-model” 
querying simple and intuitive. Several have been proposed including SPARQL-
DL (SPARQL-DL API 2014).

3. How expressive is the representation for enabling computation of new informa-
tion from existing information, that is, enabling reasoning and inference? The 
expressiveness of Semantic Web languages range from the simplicity of RDF 
to the complexity of OWL Full. Different dialects of OWL have different model 
theories, and hence are able to create different entailments. OWL dialects that 
limit their expressiveness to a subset of first-order logic, and so are not as expres-
sive as some knowledge representations that allow fragments of higher-order 
and/or modal logic, are decidable. More expressive dialects may be well behaved 
for particular problem domains. OWL is not well suited for temporal modeling 
and reasoning.
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4. How well does the representation support interoperability between disparate 
information systems? Several capabilities of Semantic Web languages cause it to 
excel in this category. This is not surprising since the purpose of the languages 
is to support sharing and leveraging information in the wilds of the World Wide 
Web. The use of XML namespaces and IRIs to establish identity is significant in 
achieving interoperability. Other approaches to identity are plagued with issues 
of global uniqueness on the one hand and issues of connecting identity between 
local information stores with different identifiers on the other. The inevitabil-
ity of different knowledge bases creating different IRIs for the same thing is 
addressed by the OWL sameAs and differentFrom properties for relating IRIs. 
An example of the kind of interoperability enabled by Semantic Web technolo-
gies is the semantic data framework used to allow amateur astronomers world-
wide to share their observations (Fox et al. 2009).

5. Can data expressed in the representation “speak” to minds and machines with a 
meaning shared by both? Meaning is emergent from structure. To the degree that 
an ontology language allows classes, properties, and individuals to be defined by 
the creation of structures that are aligned with the mental models of SMEs, the 
self-describing data expressed in terms of the ontology will speak to minds. We 
find OWL to be better than other mainstream representations for allowing the 
data to speak to the SMEs and not just to the programmers and database adminis-
trators. As far as speaking to machines is concerned, for representations without 
a model-theoretic semantics all “meaning” is generated only in the application 
code. Data using a model-theoretic representation speaks to machines implicitly 
in the sense that logical entailments are realized without any specialized applica-
tion development.

5.2  How Are Semantic Web Languages Different?

 Comparison with and Evaluation of XML

We used XML as an illustrative representation in the description of semantic 
technology above because it is well suited to highlighting the difference between 
syntax and semantics. XML is an acronym for eXtensible Markup Language. XML 
is significant in the evolution of data representation because it achieves syntac-
tic interoperability. All compliant XML documents can be consumed by a generic 
(domain-independent) processor, also commonly called an XML parser. This is 
because XML specifies the syntax (format) of the document or data.

The syntax of XML is similar to that of other markup languages such as HTML. 
The basic unit is an “element” which is everything from a start “tag” to its cor-
responding end tag, inclusive, e.g.,  < name > James Bond < /name >. Between the 
start and end tags, an element may contain (1) other elements, (2) text, and/or (3) 
attributes. Because an element can contain other elements, an XML document can 
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always be viewed as a tree structure whose nodes are elements. Attributes are in-
cluded in the start tag. Unlike HTML, XML tags must always be closed. An element 
which only contains attributes can be written as an empty element tag, e.g., < prod-
uct prodid = ”12345”/ >.

XML is eXtensible because one may define new tags at will. In fact, there are no 
predefined tags. Once the XML is parsed, an application may do as it wishes with 
the data. XML says nothing about how applications interpret that data. Thus, all of 
the semantics or meaning attributed to the data is provided by the application. Even 
so, data represented in XML may be thought of as self-describing in that the tags 
ostensibly describe the data to some application, and the tags are stored with the 
data. This self-description, along with syntactic interoperability, is a major contribu-
tion of XML.

XML schema languages allow one to exert greater control over the content of 
a document. Two such languages are document type definition (DTD) and XML 
schema. XML schema languages can be used to constrain the set of elements that 
may be used in a document, the attributes that can be applied to them, the values 
those attributes can have, the order in which they may appear, and the sub-elements 
which an element in the document may/must contain.

While the constraints that can be expressed in an XML schema language have 
some overlap with the axioms of a logic-based language such as OWL, e.g., one 
might think of constraining the number of sub-elements as being a cardinality re-
striction; by and large these constraints are more about constraining the syntax of 
the data than they are about creating the rich semantic structure from which mean-
ing can emerge. To illustrate this difference, RDF and OWL can be expressed in 
conformant XML and one might capture the structural requirements of valid RDF/
XML in a schema language. However, such a schema description would tell us the 
syntactic requirements of the representation (RDF/XML), and would tell us nothing 
about the concepts and relationships of any domain model, which is the semantics 
of interest to this discussion. It would be quite laborious to express the logical axi-
oms of a complex intensional class definition in an XML schema language.

To finish our discussion of XML, we relate it to our evaluation criteria:

1. How well does the representation capture a domain’s data and knowledge in a 
form compatible with the mental models of, and therefore more easily understood 
by, SMEs and those with basic domain knowledge? As the illustrative example 
in the previous section demonstrated, to the degree that the tags of an XML 
document are drawn from the vocabulary of the human reader, XML can be 
reasonably easy to read once the person is familiar with XML syntax. For those 
not intimately familiar with the concepts of the domain, which presumably have 
been used as tags, learning from the model is restricted to examining documents 
and associated XML schema to try to deduce the meaning of the terms.

2. How easily can information be retrieved by the same users? Information retrieval 
from XML documents requires a high level of knowledge of the schema of the 
document—of where particular pieces of information of interest are found in 
the document element tree. This is somewhat alleviated by wild cards in query 
languages such as Xpath which essentially allow the questioner to say “go down 



A. W. Crapo and S. Gustafson102

any number of levels until you find this tag or attribute.” However, the queries 
will always be more closely related to the syntax of XML than to the conceptu-
alization of the domain.

3. How expressive is the representation for enabling computation of new informa-
tion from existing information, that is, enabling reasoning and inference? The 
most that can be done with domain-independent processing of an XML docu-
ment is to verify that (a) it is conformant XML and (b) it is valid according to 
some XML schema. Beyond that, any computation of derived information must 
be done in application code, eXtensible Style Sheet Language Transformations 
(XSLT) being an example of domain-dependent transformation. Thus, all seman-
tic comprehension exists outside of the domain-independent XML-related code.

4. How well does the representation support interoperability between disparate 
information systems? If multiple systems have been programmed to use XML 
data conforming to a particular schema, then data will be interoperable between 
the systems. However, for the data to be interoperable with an additional system, 
that system must either borrow from and reuse code from an existing compatible 
system or have its own newly created code base that captures the meaning of the 
data.

5. Can data expressed in the representation “speak” to minds and machines with 
a meaning shared by both? XML data can speak to the mind of an XML and 
domain-savvy human, but since it cannot speak to a machine other than within 
the application code, the degree of shared understanding will basically depend 
on whether the person understands the application code. Understanding someone 
else’s application code depends upon knowledge of the coding language and the 
clarity of architecting, programming, and commenting exercised by the coder.

 Comparison and Evaluation of Object-Oriented Languages

In many ways, object-oriented (O-O) languages align quite well with the founda-
tional concepts of modeling espoused in this chapter. The concept of class aligns 
with sets in mathematics and with the less formal but intuitive groupings that people 
naturally employ. Most O-O languages support some form of inheritance, which 
is aligned with class–subclass hierarchies. Instances of a class are instantiated in 
computer memory, and may have external representation through object serializa-
tion. Interclass relationships and class properties can be represented in the fields of 
a class.

Perhaps the real strength of O-O is its ability to capture behavior in class meth-
ods and encapsulate that behavior within the class. Behaviors can be inherited and 
overridden in subclasses. All of this helps to make O-O code more modular and 
maintainable. When exposed in a visualization other than the code, e.g., UML class 
diagrams, class hierarchies and interclass relationships can be quite understandable 
to a nonprogrammer domain expert because the classes and relationships tend to be 
expressed in domain terms.
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One of the clear differences between most object-oriented languages and an on-
tology language such as OWL has to do with relationships. In a language such as 
Java, relationships can never be defined except within a class—they are not first-
class citizens with classes. While the type of a field expresses the range of the 
property, the domain of the property is implicitly the class containing the field and, 
of course, its subclasses. If another class has a field by the same name, is it the 
same property or a different property? The answer is arguably a different property, 
as it can have a different range and can only be the “same” in the coder’s mind. For 
example, people and businesses can have tax identification numbers, but to make a 
shared tax ID property, one must place the property in a superclass of both person 
and business. If tax ID is added to an existing model, the amount of change required 
to add it as a single property in both classes can be extensive. What is missing is any 
clear way to identify properties beyond the scope of the class.

It is well known that O-O languages are good at organizing code into class 
methods. This is fortuitous since a lot of code will often be required. While efforts 
have been made to define a model-theoretic semantics for particular O-O languages 
(Gunter and Mitchell 1994), it has proven difficult to do so. Therefore, the seman-
tic interpretation of the data is left to the programmer to embed in the code. There 
are no logical entailments beyond the inheritance of meta-model (i.e., fields, field 
types, and methods) by subclasses and inheritance of class constants by instances of 
a class. This achieves code reuse by subclasses but the semantics remains embodied 
in the code.

Here is our assessment of O-O languages against our criteria:

1. How well does the representation capture a domain’s data and knowledge in a 
form compatible with the mental models of, and therefore more easily under-
stood by, SMEs and those with basic domain knowledge? The class structure of 
O-O languages can align quite well with the mental models of domain experts. 
The difficulty, rather, is in making O-O models available to nonprogrammers 
for their inspection and review. Looking at code is not a viable alternative for 
most SMEs unless they are also programmers in that language. For program-
mers, integrated development environments often provide a rich set of tools for 
viewing class hierarchies, for jumping from one class definition to a related one, 
etc. If UML models were created in the beginning, and the code was generated 
from the UML, and the UML and the code have remained synchronized, UML 
diagrams can be an effective way to expose the model to a broader audience. It is 
also possible to generate at least some UML models, e.g., class diagrams, from 
existing code in some languages.

2. How easily can information be retrieved by the same users? Retrieving infor-
mation from an actual O-O instance model, in-memory or serialized, is not a 
common practice nor is there any standard query language for doing so. Pro-
gramming environments will normally support searching over the meta-model 
(class definitions) to find classes or properties, but these tools generally do not 
expose an instance data view and are only accessible to programmers. This diffi-
culty has often been addressed through a combination of O-O programming and 
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relational database storage, allowing data to be queried in the relational store but 
computed over in the O-O methods.

3. How expressive is the representation for enabling computation of new informa-
tion from existing information, that is, enabling reasoning and inference? The 
computation of new information from existing information is almost entirely up 
to the class methods. The question of the well foundedness of such computations 
is one of creating validation tests, and then verifying that the code passes those 
tests. There is not, in general, any formal way of verifying that the tests them-
selves are correct, consistent, complete, etc.

4. How well does the representation support interoperability between disparate 
information systems? The hope at the outset of the object-oriented age was that 
classes would be reused at a scale that would enable interoperability because dif-
ferent systems and applications would be using the same underlying O-O code 
base. For whatever reason, this vision was largely unrealized. One might say that 
it has partially come to pass in that the code to parse syntactic representations, 
e.g., XML parsers, and syntactic transformations has been created using O-O 
languages, and these classes are often used and reused as building blocks for 
higher-level semantic languages like OWL.

5. Can data expressed in the representation “speak” to minds and machines with 
a meaning shared by both? Like XML, data captured in O-O class instances has 
meaning within the applications that use the data, but it is difficult to tell whether 
that meaning is shared by domain experts because portions of the model, espe-
cially the code in the methods, can be quite opaque to SMEs.

 Relational Revisited: Comparison and Evaluation

This section continues the discussion of relational technology started in the earlier 
chapter section The Data World Today. Relational technology is founded on first-
order predicate logic. An n-ary relation, commonly called a table, is a set of tuples 
( d1, d2,…, dk) where each element of a tuple is a member of a corresponding data 
domain, commonly called a data type. The combination of an element’s name and 
its domain is commonly called an attribute or column. Under the closed-world as-
sumption, which essentially means that what is not known to be true is assumed to 
be false, the n-ary relation is the extension of an n-ary predicate. In other words, the 
tuples are those sets of values which make the predicate true. Database constraints, 
such as referential integrity, can be expressed in first-order formulas. Similarly, a re-
lational query language is possible which consists of statements in first-order logic. 
Relational technology has in theory, although implementations may deviate, a well-
founded logical model.

So, one might ask, what does relational technology lack? One of the key issues 
of relational technology is the lack of a good “object model” applying set theory 
to create partial ordering of classes into class hierarchies and thus enabling inheri-
tance. There have been various attempts to bring an object model into the relational 
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world but there has not been consensus on how to do so. Some feel that many 
current relational implementations have deviated unforgivably from their logic 
foundations (Date and Darwen 2006). A fundamental question to be answered in 
incorporating an object model is what, in the relational model, corresponds to a set 
or class? In fact, one might even ask of a relation’s primary key (the combination of 
tuple elements which guarantee a unique matching tuple), what does the key iden-
tify, other than the tuple? Interestingly, OWL 2 introduces the concept of a key on a 
class definition, but here it is clear that the combination of key properties is a unique 
identifier of an instance of the class, differentiating that instance from all others. 
Keys in the OWL sense are particularly useful to establish identity in the case of 
blank nodes. This is distinctly different from the system-generated key column in 
some relational implementations, as this surrogate key does not identify a set of 
characteristics of an instance which are sufficient to uniquely identify the instance.

While solidly built on first-order predicate logic, this lack of alignment of the re-
lational model with set theory, even an informal set theory, creates a certain amount 
of dissonance between the model constituted by the relational schema and the men-
tal models of SMEs. Put another way, relational schemas seem sometimes to be 
more about the structure of the database than about the concepts of the domain. 
A domain expert looking at a relational database will recognize domain concepts 
in the names of tables, views, and columns, but the interpretation of the semantics 
of the data will depend largely upon the viewer’s mental model. Like XML, the 
semantics is provided by the human viewer of the data or by the application code 
using the data; there is not enough domain structure to enable meaning to emerge 
from the model itself.

To illustrate this point, consider two examples: the often-used supplier parts da-
tabase and a continuation of the family model theme used in the section What We 
Mean by Semantics. First, consider the supplier parts database. This example is 
used, in various flavors, to provide an introduction to relational technology. We 
examine some difficulties in deriving a consistent meaning from the simple schema 
to illustrate how and why relational models often do not reflect a semantics shared 
with people. Of the supplier part database instantiations available, we choose one 
with the following table definitions, where S is the supplier table, P is the parts 
table, and SP is the shipment table, a junction table capturing the relationship be-
tween suppliers and parts. The example can be expressed in Tutorial Dee syntax 
(Cunningham and Cunningham, Inc. 2014).

We assume referential integrity constraints enforcing that for every tuple in SP, S# 
shall be found in S and P# shall be found in P.
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A number of issues arise in determining the semantics implied by this simple 
relational model. Consider the supplier table S. Since S# is the primary key, it must 
be unique to each supplier, and there should be only one tuple in this table with this 
key. The database schema therefore restricts each supplier to a single SNAME and 
a single CITY. To accommodate the possibility that a supplier might be known by 
other names, e.g., GE and General Electric, we would need to either expand the 
number of columns (SNAME1, SNAME2,…) or create a new table, Supplier Name, 
with composite primary key {S#, SNAME}. The first solution has the obvious dis-
advantage that the number of possible names is fixed by the number of columns de-
voted to names, and any supplier with fewer names would have one or more NULL 
values in the sname columns. The second solution creates a more complex schema 
structure that must be understood by a user in order to query for a supplier’s name. 
Since a supplier may have presence in more than one CITY, the same solutions pres-
ent themselves, and if a separate Supplier City table is created, only S# and STATUS 
are left in the original S table. The solution of adding columns is illustrative of 
one of the significant differences between a graph model and the relational model. 
In a graph model, when a subject does not have a property value (e.g., a second 
SNAME), it is simply absent from the graph. In the relational model, a NULL must 
be placed in the table—a value indicating that there is no value.

Now let us consider the Parts table P. What does the primary key, P#, uniquely 
identify? Initially, one might think that it is the unique identifier of a part. However, 
the fact that there is a quantity QTY in the SP table whose value presumably can be 
greater than one tells us that this cannot be the case. (The unique identifier of indi-
vidual parts is usually called a serial number.) After consideration, one might con-
clude that since different suppliers can provide parts with the same P#, P# identifies 
the set of all parts which are interchangeable in their application and are possibly 
not identifiable individually other than by physical possession, e.g., two nuts of the 
same size, material, and thread. Parts whose value does not warrant the effort of 
tracking them individually are sometimes called fungible. But this conclusion has a 
problem: the CITY column. Different suppliers can provide parts with the same P#, 
and different suppliers can be in different cities but there can only be one tuple in P 
for a given P# and so a given P# can only have one associated CITY value. So how 
can all parts with the same P# be in the same CITY? Perhaps, what is meant by a 
tuple in P is not all of the parts with the same P#, but rather the subset of parts with 
a given P# which were shipped in a particular shipment identified by a tuple in SP. 
And, since the primary key of SP is {S#,P#}, a given supplier could only ship parts 
with a given P# once.

The point we are making is that although one can surely create a valid relational 
model for this domain, the relational model leads us to think about the data schema 
and not about the domain being modeled. The resulting models are not likely to be 
very well aligned with the way SMEs think about their domain. Nor are users of the 
data empowered to explore and query the data using domain terms. They will only 
be able to retrieve data if they have a clear understanding of the relational structure 
or, which is more often the case, they have a database expert in the IT department 
create a query for them. The lack of a set-theoretic foundation leads to schema-
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centric models and is, in our opinion, a significant disadvantage. By contrast, relax-
ing a restriction in a semantic model, such as removing a functional or cardinality 
restriction so that more names or locations are allowed, would have essentially no 
consequence to the model. All of the existing data would still be valid. If the change 
was in the direction of greater restriction, e.g., to allow only one name or location 
for a particular domain class, the axiom would be added, no data would be lost, and 
a logical check of the model would reveal which data was no longer consistent with 
the model. For these kinds of reasons, we sometimes refer to semantic models as 
flexible data models.

Now, let us look at the family model used above to illustrate the elements of a se-
mantic model, and ask how this model might be represented in a relational database. 
One might begin with a person table P and a child table C.

Referential integrity would require that each PID and each CPID in C correspond 
to a PID in P. How would we capture the class equivalence between the Man class, 
a subclass of Person, and the set of all instances of Person with gender Male? How 
would we capture that the child relationship with domain Person and range Person 
has a sub-property son with range Man? How could we define role classes such as 
Mother, Son, Uncle, and Ancestor? And if we did define them what would be the 
mechanism for inferring these class memberships and relationships such as father 
(for all x, for all y, if child (x, y) and gender (x, Male) then father (x, y))?

For most relational implementations, these questions can have only two answers. 
Either construct queries in a first-order language, SQL being a proxy for such, or 
write scripts in a first-order language, PL/SQL being a proxy for such. The first ap-
proach has the disadvantage that each user of the database must either re-implement 
the query or recognize it in a repository of queries as the one that will draw the 
appropriate inferences. Either of these choices requires that the user have a deep 
knowledge of the relational schema of the database. The second approach of writing 
scripts can certainly create and populate tables or views that identify the inferred 
“types” and relationships. The skillset and mental processes required to write such 
scripts would certainly be different from the creation of appropriate logical axioms. 
Using the inferred tables or views would bring us back to our primary complaint. 
To retrieve the inferences, one would need to have a deep understanding of the rela-
tional schema generated by the scripts, much of which would not be expert knowl-
edge of the domain but specific knowledge about this particular schema.

In terms of our criteria of success, here is how we evaluate relational technology:

1. How well does the representation capture a domain’s data and knowledge in a 
form compatible with the mental models of, and therefore more easily under-
stood by, SMEs and those with basic domain knowledge? The relational model is 
lacking an “object model.” Informal set theory seems to play a very significant 
role in the way humans perceive and make sense of the world. The lack of a 
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partial ordering of sets in a class hierarchy, with inheritance, makes it difficult to 
create relational models that seem to be about the domain and not about the rela-
tional schema. Users are forced to create mental mappings to their own mental 
models and to do so without the confirming feedback that a good semantic model 
might provide.

2. How easily can information be retrieved by the same users? Since the queries are 
expressed in terms of table and column names, as well as relational operations 
between tables, e.g., join, and these names are not well aligned with class and 
property definitions, querying becomes more about understanding the database 
schema than about understanding the concepts of the domain.

3. How expressive is the representation for enabling computation of new informa-
tion from existing information, that is, enabling reasoning and inference? The 
relational model is well-founded in logic, theoretically if not in some implemen-
tations. However, many well-founded entailments that one might expect come 
from the semantics of set theory and axiomatic class definitions, which are miss-
ing from the relational model. Hence, computation is largely the task of scripts 
(i.e., PL/SQL), queries (i.e., SQL), or applications using the data. Each of these 
requires a deep understanding of the schema as well as how it maps to the con-
cepts of the domain.

4. How well does the representation support interoperability between disparate 
information systems? Because the relational models are logically well founded, 
it is possible to create mappings between compatible relational schemas. Exactly 
what compatible means may be difficult to say. Since the schema tends to not 
align with a SME’s domain model, determining if two schemas are compatible 
involves understanding the domain and how each schema maps to that domain.

5. Can data expressed in the representation “speak” to minds and machines with a 
meaning shared by both? Buying into a relational schema is, in some sense, com-
parable to adopting an ontology. However, the relational schema does not have 
the implicit benefit of making the data self-describing, and thereby meaningful 
to any man or machine with a compatible mental model or ontology. The ability 
to speak is hampered by the impossibility of creating a schema isomorphic with 
the mind’s mental model.

Comparison and Evaluation of UML with Notes on MOF, eMOF, 
ODM, and SMOF

Considering the prevalence of UML as a modeling language, it seems appropriate to 
describe briefly how it compares with other semantic languages. UML was born of 
a desire to do model-driven code generation in O-O languages. Since its inception, 
UML’s foundation and the foundation of modeling, in general, have evolved signifi-
cantly. The Object Management Group (OMG) has done ground-breaking work in 
creating a modeling framework, resulting in the creation of the meta-object facility 
(MOF) and essential MOF (eMOF) (Object Management Group 2014). As interest 
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in ontology languages has increased, OMG has sought to understand how MOF 
and eMOF are similar to and different from ontology language newcomers like 
OWL and CL. One outcome is the OMG standard Ontology Definition Metamodel 
(ODM) for “Model-Driven Architecture (MDA)-based software engineering” (Ob-
ject Management Group 2007). ODM claims among its benefits “Options in the lev-
el of expressivity, complexity, and form available for designing and implementing 
conceptual models, ranging from familiar UML and ER methodologies to formal 
ontologies represented in description logics or first order logic” and “Grounding in 
formal logic, through standards-based, model-theoretic semantics for the knowl-
edge representation languages supported, sufficient to enable reasoning engines 
to understand, validate, and apply ontologies developed using the ODM”(Ibid). It 
also promised to be “The basis for a family of specifications that marry MDA and 
Semantic Web technologies to support semantic web services, ontology and policy-
based communications and interoperability, and declarative, policy-based applica-
tions,” thereby “mov[ing] UML from a model of an O-O language toward a well-
founded modeling framework” (Ibid). This promise is at least partially fulfilled in 
the more recent semantic MOF (SMOF), which recognizes that MOF “suffers from 
the same structural rigidity as many object-oriented programming systems, lacking 
the ability to classify objects by multiple metaclasses, the inability to dynamically 
reclassify objects without interrupting the object lifecycle or altering the object’s 
identity, and a too constrained view on generalization and properties” (Object Mod-
eling Group 2013). In other words, there is a convergence of the O-O modeling and 
ontology communities with potential benefits for both. UML is becoming more well 
founded and ontology development is benefiting from new tools and methodologies 
and from the ability to move knowledge into and out of ontology languages.

UML is mainly about the meta-model, and is not generally used to model in-
stance data. Some efforts have been made to create “computable UML” (Milicev 
2009), which would of necessity include instance data if the computation envi-
sioned was scenario specific, not just entailments over the meta-model. However, 
for the present, UML does not rise to the level of a logically well-founded language.

Here’s how we see UML stacking up against the criteria:

1. How well does the representation capture a domain’s data and knowledge in a 
form compatible with the mental models of, and therefore more easily under-
stood by, SMEs and those with basic domain knowledge? UML does a very good 
job of capturing meta-models that are understandable by SMEs. This is one of 
the reasons it was developed. What it does not enable is looking at models of 
scenario or instance data and making this model transparent to domain experts.

2. How easily can information be retrieved by the same users? We are unaware of 
a query language for UML. Most UML modeling environments will have search 
capabilities that will help developers find elements of a UML meta-model. Since 
UML does not generally capture instance data, query and search are mainly 
restricted to the meta-model.

3. How expressive is the representation for enabling computation of new infor-
mation from existing information, that is, enabling reasoning and inference? 
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UML does not, generally, support inferencing of well-founded entailments over 
instance data. A certain level of inferencing over the meta-model may be imple-
mented by a particular UML development environment but, lacking a complete 
model theory and proof theory, computational results are not uniform or prov-
ably truth preserving.

4. How well does the representation support interoperability between disparate 
information systems? If two systems shared the same UML model of the domain, 
and the generated O-O code were primarily data containing and not augmented 
with incompatible methods, significant interoperability could be achieved. How-
ever, the UML model would be of limited use in achieving interoperability with 
another existing system. Most UML-modeled applications depend upon a repos-
itory, e.g., relational database, to provide data across multiple applications.

5. Can data expressed in the representation “speak” to minds and machines with 
a meaning shared by both? To the degree that the UML model is sensible to 
domain experts, and the model is also used to generate O-O code, there is a shar-
ing of at least the basic class structure between man and machine. However, the 
semantic interpretation of the model from a truth-preserving transformation or 
statement denotation perspective would be entirely the obligation of the method 
code, which usually is not entirely derived from the UML model.

 Summary of Representations

Table 5.2 contains a comparative summary of our evaluation of representations/lan-
guages discussed in this chapter. In place of a descriptive analysis of each, a letter 
grade is provided with “A” being complete fulfillment of the criteria and “F” being 
complete failure to meet the objective.

Our intent has not been an exhaustive comparison with all possible representa-
tions but rather a discussion of a cross section of popular modeling paradigms. We 

Table 5.2  Comparison and evaluation of selected representation technologies

1. Compatibility with SMEs
mental models
2. Easy retrieval in domain
terms
3. Well-founded reasoning and
inference
4. Interoperability
5. “Speaks” to minds and 
machines with shared meaning

Criteria/Technology XML O-O Relational UML Semantic
C B C B A

DDD
D

DD

DD

F
FF

F

F

B

B

C

C

C

A
A

This table only shows an overall grade for each considered technology for each evaluation criterion. 
For a more detailed discussion, see the evaluation/comparison by criterion of each technology in 
the section discussing that technology
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close this part of the chapter by sharing briefly some observations about gaps that 
are not addressed by current ontology languages and some opinions about how to 
best apply what does exist. First, there are many fine computational mechanisms 
that seem way beyond the capability of semantics to efficiently capture and imple-
ment at this time, e.g., regression analysis of large datasets. It is not feasible at 
present to move these computations “into” a semantic model. What we think se-
mantics adds is the ability to model what the analytic does, what kind of data it 
requires as input, and the meaning of the output. In other words, semantic models 
can be used at the higher level, and analytic programs can return their results to that 
higher level for interpretation, sharing, and use by humans and other computational 
mechanisms, model theoretic, or otherwise.

Our second observation is that the mainstream ontology languages of today are 
not well suited to temporal modeling, either of large quantities of time series data 
or of the time domain in general. For example, modeling of a real-time operating 
system in OWL is a stretch. As noted in a prior section, temporal modeling can be 
done using modal logic. Clearly, ontology languages like OWL are not the solution 
to every modeling problem. However, they are good at capturing certain kinds of 
information about the domain and making it available to models that do handle 
temporal constraints more gracefully. Our vision is a semantic model foundation on 
which lots of other models and algorithms can build. This has the advantage of pro-
viding a cross-enterprise, possibly cross-industry, shared domain model for under-
standing and interoperability while allowing many contributors to add valuable data 
and insights as they are able. The semantic foundation will make these contributions 
understandable and valuable to both minds and machines.

5.3  Semantics in Real-World Solutions

In this section, we describe five real-world applications using the semantic ap-
proaches we described earlier. Each application will serve to highlight one of our 
five evaluation criteria, which we abbreviate as common understanding, informa-
tion availability, inference, interoperability, and data speaks, respectively. In all the 
examples, we have deployed a common stack of semantic technologies, favoring 
open source solutions where possible, and always preferring standards, like OWL, 
over proprietary representations.

 Model-Driven Equipment Overhaul: Common Understanding

One of the early motivations for using semantics within our team was to enable in-
formation scientists to more easily deliver technology solutions to our maintenance 
engineers. Within the industrial maintenance practice, engineers develop propri-
etary guidelines and rules, as well as business preferences, describing how to over-
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haul a piece of equipment. Expert systems are particularly applicable in this domain 
as they allow multiple competing objectives to be reasoned about to provide a set of 
best possible solutions. However, the knowledge representations useful to capture 
domain knowledge are not always the same representations that best allow non logi-
cians or non information scientists to work collaboratively with the software. This is 
particularly important when one considers the maintenance of the knowledge bases 
themselves—if the domain experts do not easily understand the data and knowledge 
representation, it is very likely that mistakes will be made or the system will not be 
kept current, both of which deficiencies lead to a loss of value that the knowledge-
based system can deliver.

To overcome these challenges, we developed a solution that describes the equip-
ment and maintenance practices in OWL plus rules. We found the available tools 
to be more suitable for ontologists and computer scientists than engineers, so we 
began to experiment with a more English-like DSL for expressing the semantic 
models. The result was our aforementioned SADL technology which currently 
has OWL 1 expressivity, plus qualified cardinality, and incorporates semantic high-
lighting, hyperlinking, etc. A valid SADL model is translated to and saved as OWL 
whenever the SADL model is saved. The rules are translated to the target rule lan-
guage, e.g., Jena Rules. The SADL development environment also supports a com-
patible query language, tests and test suites, warnings about constructs likely to 
have unintended entailments, and rule debugging aids. We also created a template 
that essentially creates a few-column representation of overhaul knowledge that is 
easy for engineers to add to and maintain and which is translated into rules in the 
SADL language, from which they are automatically translated to the target rule 
language.

As we developed the SADL language, we used engineers in a GE business as a 
litmus test. We would construct a model of some portion of their domain in SADL 
and then show them the model in a collaborative teleconference/desktop sharing 
session. If they asked us what the model meant, we had failed. If they immediately 
began to tell us what was wrong with or missing from the model, we counted it as 
a success. We wanted the modeling language to be transparent to them so that they 
could focus on the model. We were astonished at the degree to which SADL was 
a success in this respect. We felt that we were indeed achieving a Common Un-
derstanding between mind and machine. Over time, we have added various other 
technologies to enable knowledge delivery and application integration. The engi-
neers across the maintenance organization have been able to create new equipment 
models, create new overhaul rules and guidelines, and maintain both.

 Data Provenance: Information Availability

In joint work with Lockheed Martin, we have developed models of data flow, data 
provenance (DP), and information assurance properties of data in multilevel se-
cure environments (Moitra et al. 2010) (Dill et al. 2012). DP includes information 
sources, ownership, processing details, and other attributes. Information assurance 
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attributes include confidentiality, authenticity, integrity, and non-repudiation. At 
each point in information flow or storage there is opportunity for the data to be 
compromised in ways reflected by these assurance attributes. When information 
flows across a security-level boundary, information redaction may be necessary. 
For example, the source of the data may be “secret,” and so when passing to a “non-
secret” security level, the source as well as part of the data itself may need to be 
removed. Our objective was to model the workflow for transmission of simple mes-
sages and complex messages (those having attachments) in such a way that at each 
point the information assurance attributes of the message could be summarized in a 
figure of merit (FoM) and displayed to the user with drilldown capability. The FoM 
allowed recipients of messages in security levels lower than their origination to 
have an indication of the messages’ information assurance attributes in the absence 
of complete provenance.

Each time a message is moved between agents, systems, or processes, a DP re-
cord is created with two parts, one from the sender and one from the receiver. The 
provenance information may be stored and/or sent in parallel with the message. 
Subjective logic, which distributes unity between belief, disbelief, and unknown 
(Josang 2013), is used as the algebra for combining assurance attributes from mul-
tiple DP records. The semantic model captures the conceptualization of the problem 
of information assurance in terms familiar to those working in the field. Retrieval 
of high-level information, e.g., FoM, and drilldown to the details of how the sum-
marized information is computed is relatively easy and can be accomplished in 
domain terms. The flow of messages with the provenance at each point can easily 
be viewed graphically. A key feature of the work is the relative ease with which the 
information can be retrieved after analysis of a message flow scenario.

Early Manufacturability: Inference

Traditional manufacturing separates the function of product design from the actual 
manufacturing itself. This separation can lead to long-cycle iterations and increased 
cost as a completed design passed on to manufacturing is discovered to be difficult 
or impossible to manufacture and is returned to engineering for redesign. A solution 
to this problem is to provide feedback on manufacturability to design engineers 
during the design process. We have developed semantic models of solid models 
and design and manufacturing processes that serve as a foundation for manufactur-
ability rules and enable manufacturability analysis of the design to be fed back to 
the designer in the computer-aided design (CAD) platform (Rangarajan et al. 2013).

Inference occurs on multiple levels to provide relevant and timely feedback to de-
sign engineers. The models have a rich class hierarchy of features, surfaces, tools, and 
processes, which, along with their properties, characterize the solid models of the parts 
under design and characterize how they might be produced. Manufacturability rules 
can be expressed over classes at various levels in this hierarchy, with the implications 
of rules at higher levels being inherited by subclasses at lower levels. This allows 
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parsimony of expression, which is essential to the simplicity and maintainability of 
the knowledge base. Where more convenient or more efficient, low-level calculation 
of geometric characteristics of features, e.g., dimensions, angles, etc., are performed 
in the procedural code that links the knowledge base and reasoner to the CAD system. 
The results of these computations are inserted into the semantic model. This illustrates 
the utility of the semantic model as the recipient of information computed outside 
of the model, and as the source of the new information integrated with the old, now 
available for additional reasoning and/or for easy access by other systems and users.

 Smart Grid: Interoperability

Traditional energy generation, transmission, and distribution techniques and sys-
tems are increasingly inadequate to meet the challenges of a world with increasing 
renewable energy sources, such as wind and solar, and increasing incentives to use 
energy more efficiently. The term “smart grid” has been coined as the name of a 
new generation of technologies that use digital communication systems and more 
flexible electricity generation and delivery systems to meet these demands. One of 
the challenges of smart grid is the level of interoperability required between system 
components, both traditional grid components, and elements of the new communi-
cation and control infrastructure. It is our belief that semantic technology will play 
a significant role in achieving the required model transparency and data interoper-
ability (Crapo et al. 2009).

The International Electrotechnical Commission (IEC) Standard 61970: Common 
Information Model (CIM)/Energy Management and related standards have been 
essential to the evolution and stability of the electric utility industry. The CIM, 
which has been in the making for years, is a semantic model captured in UML 
as well as a textual standard. Only recently has Semantic Web technology offered 
an alternative for modeling the domain. In our work, applying OWL models and 
rules to electric utility data, we found that utility companies already exchange de-
scriptions of distribution system networks as RDF using translations of the CIM 
into RDF and OWL as the metadata. An obvious reason for their apparently early 
adoption of RDF is that the UML models of the CIM, while very useful in defining 
classes and relationships in the meta-model and making these available via visual-
izations, are not well suited to marking up actual data about physical systems so that 
it is self-describing, easily queried, and easily exchanged with other information 
systems. While we found the current OWL translations of the CIM to be lacking 
in important respects (Crapo et al. 2010), we found such models to be extensible, 
executable, useful for data validation, and valuable as a foundation for additional 
logic captured in rules. We identified several ways in which the CIM can benefit 
from a transition to a set of compatible ontologies. And we see the future smart grid 
as just one instantiation of the Internet of Things, or the Industrial Internet, where 
minds and machines are connected and data is interoperable because it is expressed 
in semantic representations (Crapo, Piasecki, & Wang, The Smart Grid as a Seman-
tically Enabled Internet of Things 2011).
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 Data Science: Data Speaks

As an increasing number of sensors are placed within today’s industrial processes, 
the volume and variety of data produced are dramatically increasing. To handle the 
volume of data, it is typical to use time series “historians” and “event-driven” data 
models to enable very fast write throughput of the data coming from the industrial 
SCADA systems into databases. Whereas Complex Event Processing (CEP) en-
gines address application of rules and data mining on the high-throughput stream 
of data in real time, data scientists, or data analysts, must query historical data for 
post-analysis and identification of new insights for improving processes.

Recently, such a data science challenge was presented to us. GE’s “brilliant fac-
tory” initiative envisions a new generation of manufacturing plants where a single 
digital thread extends from design and engineering through production, distribu-
tion, and service over the life of the product, and reaches back into the supply chain 
(GE 2014). Feedback from every stage in the product lifecycle, including design, 
engineering, production and field service, will improve the product over time. GE 
Energy Storage’s US$ 100 million Durathon battery manufacturing facility in Sche-
nectady, NY, is a test bed for the factory of the future (GE Energy Storage n.d.). 
This facility can also serve to illustrate the application of semantic technology to a 
real-world data science problem.

Real-time data collection on the factory floor is a challenging task, and the 
demands of making sure the data is reliably captured can drive the data reposi-
tory schema to be more capture oriented than domain oriented. This can present a 
significant challenge for SMEs and data analysts who understand the factory but 
not necessarily the data schema. The result is that a quality engineer, for example, 
may need the help of a team of database experts in order to obtain data to analyze 
a quality issue. Getting the queries to get the data can take a considerable amount 
of time and slow down the process of improvement, resulting in lost opportunity.

Starting with a general semantic model of process, material, substance, con-
sumption, production, etc., we then extended this model to the particulars of the bat-
tery manufacturing facility. This domain-specific “meta-model” was then available 
for query, exploration, etc. The next step was to map the existing data stores to the 
semantic model. In theory, this mapping can be used to import the data into a triple 
store or to map semantic queries to queries against the existing data repositories. In 
practice, the former approach is more doable with current technology and allows 
for better data retrieval performance. Once the data was transformed to the semantic 
domain, it could be retrieved in terms of domain concepts. The semantic model is 
a graph in which all nodes are domain concepts (processes or materials) as are all 
edges (relationships such as consumes or produces), and therefore one can “walk 
the graph” from any node “upstream” or “downstream” in domain terms, making 
data retrieval sensible to data consumers. For example, one might ask for the pres-
sure and temperature of some process step, identified by type, in the manufacture 
of a particular cell, or the average of these values for all of the cells of a particular 
battery, or of all of the cells produced from a particular upstream material lot. The 
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semantic data model allows genealogy queries like these to be completely devoid of 
any reference to the underlying data schema.

We expect our modeling effort for the Durathon battery plant to be applicable to 
other kinds of manufacturing facilities. For example, one can generate a schematic 
view of all of the material flows and processes involved in creating a Durathon bat-
tery with a query that contains only generic terms such as process, produces, etc. In 
fact, we used these schematic diagrams created directly and automatically from the 
battery plant models to allow plant engineers to understand and iteratively correct 
our models with little time and effort on their part. The factory-specific extensions 
of the generic manufacturing model must, of course, be constructed for the new 
facility. If the factory already exists, the mappings from the existing data stores to 
this semantic model must also be customized to the specific factory schema and the 
domain-specific model. If the factory is new, it may be possible to generate more 
domain-related data capture schemas. As we repeat this process for subsequent fac-
tories, we expect to learn how to streamline the customization process and better 
generalize reusable model and data-mapping components. In this way, data col-
lected in brilliant factories will speak to those who operate them.

 5.4 Conclusion

In this chapter, we have explored the foundational concepts underpinning sever-
al popular information and knowledge representation technologies and languag-
es and compared them with Semantic Web languages. We have identified areas 
where we believe Semantic Web languages are superior, but we have also identified 
opportunities for improvement. We have argued that representations are most useful 
when they align with SMEs’ mental models of the domain and support truth-pre-
serving transformations leading to well-founded inference. The combination moves 
us in the direction of our vision for the Industrial Internet—an environment where 
data speaks to minds and machines alike, enabling a new level of mind–machine 
collaboration to better solve tomorrow’s more complex problems.
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6.1  Introduction

In recent years, significant work has been performed on using ontologies as a basis 
for extracting knowledge from text and representing it as ontology knowledge struc-
tures, typically using Web Ontology Language (OWL; Bechhofer et al. 2004) or a 
Resource Description Framework (RDF) (RDF—Semantic Web Standards 2004) 
triple store. There are many good reasons for doing so, such as to capture specific 
knowledge from text that is needed for a domain analysis problem, to structure and 
normalize semantics for machine interpretation, to improve semantic search, or to 
share information via the Semantic Web, to name only a few.

Significant challenges arise, however, when ontology designers attempt to mod-
el the richness of natural language (NL) semantics using constrained ontology se-
mantics (Bimson 2009), a process that leads to what we call unnatural language 
processing, or attempting to model the richness of NL semantics using constrained 
ontology semantics. Unnatural language processing is a consequence of the fact that 
the semantics natural to languages is not so easily or naturally represented within 
standard ontology representation languages, at least not without significant effort. 
As a result, much of the semantic content in NL text is lost in translation to RDF 
or OWL. Semantic extensions added to OWL 2 (OWL 2 Web Ontology Language 
2012), including richer data types and data ranges, qualified cardinality restrictions, 
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asymmetric, reflexive, and disjoint properties and enhanced annotation capabilities, 
increase expressivity but require additional practitioner investment.

The purpose of this chapter is to characterize some of the significant gaps be-
tween NL and ontology semantics, and to articulate some of the challenges that 
these gaps present to the representation of knowledge extracted from text sources. 
It should be noted that we are not talking about how well we can or cannot do “text 
analysis,” rather how well we can represent NL meaning as RDF or OWL knowl-
edge representations.

The motivation for clearly defining these gaps is based on hard lessons learned 
in delivering semantic solutions to customers. These semantic gaps often represent 
major obstacles to meeting customer and user expectations, because the gaps are 
poorly understood, poorly communicated, or improperly addressed. If we can clar-
ify these semantic challenges, we have a greater probability of agreeing on project 
requirements, functional expectations, and the next generation of research required 
to fill the gaps. A few customer-related problems are summarized here to provide a 
context for the more technical discussion below.

Challenge 1: Unrealistic Expectations
Customers, in our experience, do not understand how much “meaning” can be ex-
tracted from text sources using standard, ontology-based text processing, and on-
tology representation techniques. This can lead to disappointment, confusion, and, 
potentially, project failure.

Challenge 2: Confusing Terminology
The meaning of the term “semantics” is very different in NL (linguistics) and in 
ontologies (knowledge representation). Our customers—as well as the modelers 
themselves—have a difficult time distinguishing between the two definitions, a 
confusion that also leads to unrealistic expectations. We recommend specializing 
the term “semantics” into “NL (or linguistic) semantics” and “ontology semantics.” 
The arguments for this differentiation are the subject of this chapter. As semantic 
technology professionals, we should be careful about defining these terms more 
meaningfully for customers, users, and ourselves.

Challenge 3: Semantic Modeling, Mapping, and Knowledge Extraction  
Shortfalls
The semantic expressiveness of ontologies simply is not sufficient to represent the 
semantic complexity of NL, at least not without building significant “representa-
tional scaffolding” to support it, leading to severe language-to-ontology mapping 
and modeling challenges. These challenges lead, in turn, to problems in extracting 
knowledge from text sources and representing it as ontology constructs.

To borrow an analogy from the film industry, editing NL semantics enough to 
fit into standard ontology structures requires us to leave a significant amount of 
valuable knowledge on the editing room floor. Understanding the semantic trade-
offs that must be made is critical for customers, information architects, and users, 
because meaning will be lost in the process of transforming NL semantics into on-
tology semantics, meaning that is often important to stakeholders. The remainder 
of this chapter outlines some of the major differences between “NL semantics” and 
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“ontology semantics.” A good starting point for this comparative analysis is defin-
ing the different levels of semantic representation in an NL.

6.2  Levels of NL Semantics

In order to compare NL semantics to ontology semantics, it is important to define 
the primary linguistic structures that carry meaning. More specifically, we define 
NL semantics as the meaning expressed within NL at the morphological, lexical, 
syntactic, and discourse levels. We begin with a simple definition of “NL seman-
tics,” although a full definition, explanation, and defense of this definition is not 
possible within the scope of this overview. Following is a brief summary of the first 
three levels at which meaning is expressed in NL:

• Morphological level: morphology refers to the internal structure of words in an 
NL, consisting of their component “morphemes,” the smallest meaning-bearing 
units in language. For example, the word “vehicles” consists of two morphemes: 
the root morpheme “vehicle” and the plural suffix “s.”

• Lexical level: a language’s vocabulary, including words and, perhaps, fixed ex-
pressions. Words have one or more morpheme, such as the two-morpheme word 
“vehicles.”

• Syntactic level: rules for constructing meaningful, well-formed phrases, clauses, 
and sentences in a language, including permissible word order, such as “large air 
transport vehicles.”

Meaning is expressed at all of these (and other) linguistic levels, sometimes con-
jointly, and in ways that are often quite difficult for ontologies to represent, at least 
in an ontology’s standard form. Semantic translation problems at each level are 
summarized below.

6.3  Morphological Level

Definitions and Backgrounds

The two major classes of NL morphology are inflectional and derivational mor-
phology. Inflectional morphemes change a word’s grammatical category without 
changing its grammatical class. Examples from English include noun plurals (truck 
> trucks), verb tense (work > worked), and verb aspect (go > going). In each case, 
if the uninflected form is a noun (e.g., cat), the inflected form remains one as well 
(e.g., cats); if it is a verb, it remains a verb in the inflected form, and so on.

By contrast, derivational morphemes change the grammatical class of a root 
word, say from a noun to a verb. Examples from English include changing from 
a verb to a noun (derive > derivation), from a noun to an adjective (derivation 
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> derivational), or from an adjective to an adverb (derivational > derivationally). 
English has a highly productive morphology, which allows speakers to easily create 
new words and meanings simply by using morphological rules of composition. The 
meaning represented in NL morphology poses many challenges in translation to 
ontology representations, discussed next.

 Ontology Challenges: Morphology

The reason that morphological semantics causes semantic challenges for ontologies 
is that ontologies do not have morphologies. The myriad meanings represented via 
morphology in NL, therefore, are quite difficult to represent using standard ontol-
ogy constructs. For example, a class (such as vehicle) is neither singular nor plural 
in an ontology, and a relation (such as drives) cannot be inflected for tense or as-
pect, as in drove or driving. The result is that these morphological meanings in NL 
(i.e., number, tense, aspect, etc.) are not easily translated into ontology constructs, 
unless extra work is done to extend standard ontology constructs to do so. A rela-
tion, such as: manufactures in the RDF triple::person:manufactures:equipment, is 
neither present, past nor future tense. Nor does it represent a completed, ongoing, 
or habitual activity. There is simply no natural way to “inflect” the relation for tense 
and aspect, as we do for NL verbs.

The point is that representing the meaning inherent in NL morphology is unnatu-
ral for an ontology at best, and therefore it is not normally represented at all. The 
inability to represent an NL’s many inflected meanings in an ontology results in a 
many-to-one semantic mapping challenge in translating from an NL to an ontology, 
as shown in Fig. 6.1.

One might argue that the sentence patterns in Fig. 6.1 differ also by auxiliary 
verbs, such as will, have, and be. Two points counter this objection: (1) ontologies 
do not naturally handle auxiliary verbs, either, and (2) many languages express 
these meanings via inflectional morphemes, even if English does not. In either case, 
the point is the same: Multiple specific NL meanings get compressed into one ge-
neric canonical form in the ontology.

Fig. 6.1  Many inflectionally 
related NL words and mean-
ings get compressed into one 
ontology construct and mean-
ing, eliminating variations 
in meaning expressed by NL 
inflections, a process we call 
“morphological conflation.” 
NL natural language
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The point of this section is that significant meaning is expressed in NL quite 
naturally through its morphology, or closely related auxiliary verbs. Through mor-
phemes, we can describe an activity as past, ongoing, habitually repeated, or a fu-
ture improbability. We can identify subjects or objects that are individuals, couples, 
or groups. We can articulate whether an action is completed, ongoing, or not started 
at the time referenced. By adding modal verbs (such as must or may) and adverbs, 
we can discuss possibility, probability, certainty, or impossibility. And we can very 
flexibly combine these meanings (via morpho-syntactic rules) to express complex 
meanings like “The driver most probably will have been operating equipment by 
tomorrow morning.” Without significant work, each of these NL grammatical pat-
terns and meanings, when extracted from text, will be reduced to one canonical 
form, or assertion, in the knowledge base, such as ::person:operates:equipment—
leaving representation of the other morphological meanings (or senses) on the cut-
ting room floor. For some applications, this may be quite acceptable, such as simply 
finding text sources that seem to be “about something” in general. In others, such 
as a global disease spread application, it would be advantageous to differentiate 
projected future state from reported past state, or the conditions under which the 
disease spread may be expected to increase or decrease.

A more extensive set of “lost meaning” examples is presented in Fig. 6.2, which 
illustrates the semantic downsizing required to map the semantics of NL morphol-

Fig. 6.2  Many NL morphological variations are conflated to a single structure and meaning in an 
ontology. NL natural language, SVO subject–verb–object
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ogy into simpler ontology constructs. Although this example set is clearly incom-
plete, it illustrates the many meanings in NL morphology that must be compressed 
into the simple semantics of an ontology, some of which are briefly discussed below. 
In addition, this corpus illustrates the many different word forms that are downsized 
to one canonical form in the translation from NL to an ontology.

We call this downsizing process “conflation,” which has a dictionary definition 
of “a merging of diverse, distinct, or separate elements into a unified whole” (Dic-
tionary.com 2014). In these examples, the various senses represented by morpho-
logical variations are conflated to one “ontological sense,” and the word structures 
expressed by these morphological (and auxiliary verb) variants are conflated into 
one “ontological form.” In other words, an ontology modeler will usually represent 
“go, goes, gone, going, went, will be going, will have gone, will have been going” 
as a single form with a single sense, such as “goes.” To differentiate between sense 
and form conflation in discussing their impacts on ontology modeling, we use the 
phrases “semantic conflation” and “structure conflation.” However, both are the 
result of the same root cause: The fact that an ontology has no morphology.

As we shall see, conflation at the morphological level has a cascading effect into 
the lexical and syntactic levels, since these linguistic levels are related in sophisticated 
ways. The end result is “cascading conflation” into the lexical and syntactic levels of 
ontology representation (Fig. 6.3), which we explore in the following sections. But, 
first, we discuss a few more semantic modeling challenges at the morphological level.

 Related Word Challenge

Words related by morphological rules in NL must be represented as separate, un-
related constructs in an ontology, if they are represented at all. There is no princi-
pled way to “derive” a new concept by adding a meaningful morpheme, such as by 
adding an [-er] suffix to the verb manufacture to derive the noun manufacturer. If 
these two concepts are represented in ontology, they are represented as independent, 

Fig. 6.3  Cascading conflation is produced by the effects of morphological conflation on the lexi-
con, and the effects of morphological and lexical conflation on the syntax of an ontology
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unrelated terms, in the morphological sense. The ontology simply does not know 
that these terms share a common root meaning.

At best, their relationship could be expressed in that the class manufacturer 
might be modeled as the domain for the relation manufactures, as in::manufactures 
rdfs:domain:manufacturer, but this assertion states that manufacturer can be the 
“subject” of the relation manufactures, not that these two words share a com-
mon meaning. The shared “sense” between the two is simply lost in the ontol-
ogy. In order to simplify presentation in the remainder of this chapter, we use a 
pseudo-code shorthand notation for expressing RDF triples, as in: manufacturer 
manufactures product, rather than using the standard RDF syntax::manufactures 
rdfs:domain:manufacturer and:manufactures rdfs:range:product.

 Tense and Aspect Challenges

While we may make existential statements in an ontology, such as: person operates 
equipment, we are severely limited in representing whether this assertion is past, 
present, or future tense, as in “Rich operated the forklift” (past) or “Rich is operat-
ing the forklift” (present progressive). The meaning associated with such inflections 
is hard to represent in typical ontologies. In order to do so, temporal semantics 
must be added to the ontology (Hobbs and Pan 2006), along with the logic needed 
for inferencing about time, based on time–date property values. Although we can 
time-stamp a fact in RDF, such as: event occurs-on date, we must apply axioms to 
determine whether that event is a historical or future fact relative to any other asser-
tion in the knowledge base. Tense is not carried in the relation itself, as it is in the 
NL (English) verb.

Ontology Modeling Challenges

Modelers must select class and property names from among the many possible in-
flected forms in naming ontology literal constructs. The following two triples are 
typical examples:

• Ontology 1: Person operates equipment
• Ontology 2: People operate equipment

In both cases, modelers intend to represent person and equipment classes and an op-
erate relation that semantically connects them. Therefore, from a conceptual view-
point, these two statements are semantically equivalent, a fact that is evident only to 
morphologically competent humans. In an ontology, assertions must be made—or 
algorithms must be developed—to identify this semantic equivalence; the semantic 
mapping is unnatural to the native ontology representation. For example, one might 
use the equivalentClass relation to indicate person and people are “synonyms,” as 
in: Person equivalentClass People. However, this in no way represents the meaning 
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inherent to the NL plural morpheme; in an NL, these are not equivalent words, as 
they become in the ontology, another example of morphological conflation. Ontolo-
gies simply do not have a natural way to represent morphological meaning varia-
tions of this kind.

 Morphology Challenge Summary

Morphological conflation results in a significant meaning loss between an NL and 
ontology. In addition, it has a cascading effect at the lexical and syntactic levels, 
which we shall discuss momentarily. This meaning loss has significant ramifica-
tions for customer expectations. Whether in financial market analysis or military 
intelligence analysis, there is a significant difference between a fact in the past, 
present, or future tense. Knowing a stock merger will happen, or that an attack 
may occur, are very different than stating that they already happened, or that they 
probably will not occur. Yet, to represent these important meaning differences in an 
ontology requires a significant amount of additional “representational scaffolding,” 
such as temporal extensions to ontology standards (Hobbs and Pan 2006), assertion 
of additional facts, or the addition of logic to handle comparative inferences among 
assertions, and so forth.

We discuss the approaches we are taking to extend an ontology to model mor-
phological semantics in  Chap. 7.

6.4  Lexical Level

 Background and Definitions

There are significant semantic gaps between an NL and ontology at the lexical (or 
word) level as well. The morphological gaps between an NL and ontology play 
a significant role in that difference, as mentioned earlier, since people use mor-
phological rules to create related words. These are therefore interrelated conflation 
challenges. An NL’s lexicon, or vocabulary, can be roughly categorized into two 
primary types of words: content words and function words. Content words are those 
with lexical meaning (such as car, cake, or careful) while function words are those 
that relate one grammatical structure or meaning to another in some way (such as 
and, then, will, therefore, he or of). Although function words have no content, they 
do provide contextual meaning, expressing notions like conjunction, exception, di-
rection, definiteness, or previous reference.

The set of function words is a “closed set,” in that there are a set number of pro-
nouns, prepositions, or articles in an NL. Whereas content words contain most of 
the domain meaning in an NL at the lexical level, function words are critical to how 
people understand the complex, meaningful relationships among content words, 
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phrases, and clauses. Function words allow NL speakers to create increasingly com-
plex, but meaningful, phrase and sentence structures, much as morphology does 
within words.

The problem is that an ontology has no function words, just as it has no morphol-
ogy. It has no conjunctions to join two words, phrases, or clauses together to form 
conjoined subjects and objects or compound sentences, at least at the instance level 
of ontology representation. In addition, an ontology has no pronouns to support 
anaphora, or previous reference. It has no prepositions to turn nouns into modifiers 
of location, direction, or time. And it has no helping verbs to vary the tense, aspect, 
or modality of a verb phrase, as previously discussed. In summary, the lack of func-
tion words in an ontology makes it unnatural to represent these kinds of connective, 
directional, and referential semantics natural to languages, as exemplified by the 
italicized words in the following sentence: Tom and Alice drove to town and then 
they walked to the mall to buy clothes and see a movie before returning home to eat 
dinner, after which they went for a walk.

In this one example sentence, there are over ten kinds of “connective semantics” 
represented by function words like and, to, then, they, which, and before, as well 
as the phrases that these function words introduce, any one of which is difficult for 
RDF/OWL representations, especially in the A-Box (e.g., at the instance level).

The lexicon of an ontology is quite different from that of an NL in another way. 
Whereas NL words are meaningful to people, ontology words are not really mean-
ingful to a computer, not in any linguistic sense (Manola et al. 2014). Ontology 
words consist of the strings that make up their class, property, and instance names. 
The fact that these strings “look” like NL words or phrases to people results from 
the fact that modelers usually choose to use strings based on NL words and phrases 
to help other people understand what sense they mean to express with a specific 
string. Within the ontology, however, a class named “equipment” could just as well 
be represented as the string “X” as far as the computer, RDF, or OWL are con-
cerned, as long as it is unique within its own namespace (Manola et al. 2014). This 
leads to widely varying string names within different, but related, ontologies. Mod-
elers are free to name a class or property whatever they like, as long as it is unique.

A third difference between a NL and ontology lexicon is that an ontology’s 
words are not related by morphological rule, as NL words are in word sets such 
as begin, beginner, and beginning. Here we see how the lack of morphology has a 
significant representational impact on an ontology’s lexicon. Each ontology “word” 
is semantically independent from all other words. This stands to reason: since an 
ontology has no morphology, there is no natural way to “create” new, related words 
via morphological rule, nor to represent the meaningful relationships among these 
inflected and derived word forms in the lexicon, as is done in an NL dictionary. 
Morphologically related words with a common core meaning—like create, creator, 
creative, and creation—have no more meaning in common in an ontology’s diction-
ary than do words like disease, justice, drink, and sunrise, at least morphologically 
speaking. While one could imagine expressing morphologically related ontology 
constructs with RDF (pseudo-code) statements, such as:
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• Creation noun-derived-from create
• Created past-tense-of create
• Creator creates creation

not only are these awkward and unnatural assertions but they also create other 
knowledge representation problems. For example, the first of these assertions uses 
the property create as the object of a statement, treating it as an individual and 
therefore pushing the overall OWL ontology into the OWL Full language, hindering 
description logics (DL) reasoning (Bechhofer et al. 2004). In addition, since there 
are no morphological rules of word composition, every morphological variation 
among words would need to be expressed as an individual fact, such as:

• Wanted past-tense-of want
• Created past-tense-of create
• Creating progressive-aspect-of create

This leads to an exploding knowledge base, if nothing else. As a final remark, it 
is hard to imagine how creating would then be used within the ontology, since the 
modeler wants to treat it as a present progressive verb form (a relation in the ontol-
ogy), yet it has just been rendered a class within the ontology, which functions more 
as a noun form. This is a difficult challenge to address within the natural constructs 
of an ontology.

A final difference between NL and ontology lexicons is that an ontology’s 
“words” often consist of what would be an entire phrase in an NL, such as the class 
name major-launch-processing-operation or the object property (relation) name is-
the-subject-of. This string concatenation results from the fact that an ontology limits 
each class or property name to a single string, or literal, rather than a sequence of 
words making up a phrase. This “word concatenation” phenomenon represents the 
next level of cascading conflation—lexical conflation—which is discussed further 
in the challenges below.

 Synonym Challenge

The three example assertions just presented point out another related semantic chal-
lenge for ontologies at the lexical level: Synonym identification and representation. 
Synonyms are two words with (roughly) the same meaning, at least within a spe-
cific communication context. Synonymy, natural to languages, is quite unnatural in 
an ontology. In this example, NL speakers may interpret manufacturer, company, 
and organization as roughly synonymous nouns and develops, manufactures, and 
produces as roughly synonymous verbs, given the context. Ontologies, however, 
do not naturally account for synonymy without an explicit assertion, such as (in 
pseudo-code): Manufacturer same-as company.

This representation is at best an inelegant and inefficient way to represent syn-
onymy, but at least it is available within the representation standard. However, the 
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challenge is greater for ontology class/property names that are based on concatenat-
ing words from NL phrases. Examples abound, such as the class name Action-Tem-
poral-Association and the relation name is-acted-upon-as-specified-by, both from 
the US Department of Defense’s JC3IEDM standard data model (Morris 2012). 
These are examples of lexical conflation, in which multiple NL word forms with 
multiple related senses are conflated to a single ontology form and sense. Since 
ontology constructs like these are not composed of individual, meaningful words, 
it is very difficult to map their meaning to NL paraphrases in text (such as the para-
phrase: Event relationship to time). To do so would require a word-by-word, sense-
by-sense comparison at the lexical level. To put it another way, ontology names 
are not “lexically based” but rather “string based.” This example class name is not 
a combination of the three NL words action, temporal, and association, each with 
its own entry and meaning in the lexicon, and each belonging to a specific gram-
matical category (e.g., noun, adjective). Rather, the NL words were simply used by 
human modelers to form a string name, or literal, that looks as if it is formed from 
these words.

Lexical conflation, again, is caused by an ontology’s lack of grammar, which is 
a set of rules that humans use to creatively construct phrases and sentences from 
individual words. Whereas in an NL, any number of words can work together as the 
subject of a sentence, for example, an ontology is limited to “one string,” equiva-
lent to one word in the ontology’s lexicon. This limitation makes it very difficult 
to use conflated ontology concept names as a basis for finding NL paraphrases 
in text. The “one string–one meaning” restriction does not map well to “multiple 
words–multiple meanings” of an NL, at least without additional data structures and 
algorithms to support the analysis. Clearly, lexical conflation is a challenge that 
spans the lexical–syntactic boundary, and is discussed further in the section “Ontol-
ogy Challenges: Syntax.”

The implication of the synonym and paraphrase “gaps” between an NL and an 
ontology is that it is very difficult, using ontology semantics only, to identify, cap-
ture, and address synonymy and paraphrase in NL text. These gaps present major 
problems in extracting knowledge from text and transforming it into an ontology-
based representation. Some of the knowledge extraction and representation prob-
lems that arise from this gap include:

• Difficulty in identifying and representing different words (from NL sources) 
with the same meanings (synonymy).

• Difficulty in identifying and representing different phrases with the same mean-
ings (paraphrase) as lexically conflated ontology names.

• Difficulty in preventing redundant information extracted from NL text from be-
ing asserted to the knowledge base, since the redundancy is expressed by differ-
ent words that mean the same thing in text.

• Difficulty in semantically integrating, or fusing, semantically related textual in-
formation, where the NL semantics cannot be naturally represented in the ontol-
ogy.
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 Function Word Challenge in the Lexicon

The absence of function words in an ontology, such as articles (an, the), pronouns 
(he, she), or prepositions (of, from), makes it difficult to connect classes, proper-
ties, and triples in meaningful ways, particularly at the instance, or A-Box, level. 
It is difficult to express conjoined events and objects (and), conditionals (if this, 
then that), directionality (to the store), previous reference (the, he), or concurrency 
(while, during, when).

The fact that ontologies lack function words adds to the cascading conflation 
problem, contributing to some odd naming conventions in ontology modeling. Sin-
gle NL phrases introduced by function words, such as prepositional phrases (PP), 
must often be split into two parts, with half of the phrase used in one construct’s 
string name (e.g., a relation name) and half used in another’s string name (e.g., a 
class name). Consider the following examples taken from the JC3IEDM standard 
(Morris 2012):

• Action is-the-subject-of Action-Functional-Association
• Action is-acted-upon-as-specified-by Organization-Action-Association
• Action is-geometrically-defined-through Action-Location

In the first example, the NL PP version of the relation (of action functional associa-
tion) serves an adjectival role, modifying the predicate nominative subject. Howev-
er, ontologies have no modifiers, such as adjectives, adverbs, or phrases that serve 
those roles. Within the ontology, the preposition “of” is therefore modeled as part 
of the relation name ( is-the-subject-of), whereas the object of the preposition in the 
NL phrase is used to model the class name (action-functional-association). The NL 
PP has been split into two parts in the ontology, with one part used in the conflated 
relation name, and the other part used in the conflated class name.

Clearly, this “NL phrase splitting” is only part of the cascading conflation ef-
fect, since the predicate nominative (e.g., “the subject”) is also conflated into the 
relation string name. This approach to naming ontology constructs results from the 
constraints placed on modelers at the ontology’s syntactic level, a problem that is 
discussed further in the “Syntax-Level Challenges” section.

Lexical Challenge Summary

The lexicon of an NL and that of an ontology are significantly different in both form 
and meaning. One could claim that ontologies do not really express lexical mean-
ing at all, at least not in any NL sense of the term. Even if we accept that they do, 
the depth and breadth of lexical meaning are highly restricted relative to NL for the 
reasons discussed. We present potential approaches to dealing with semantic gaps 
at the lexical level in Chap. 7.
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6.5  Syntax-Level

 Background and Definitions

An NL typically has a sophisticated syntax used to sequence words, phrases, and 
clauses to produce meaningful sentences. Syntax is governed by grammatical rules 
that define well-formed phrases and sentences for the language, allowing speakers 
to build words from morphemes; phrases and clauses from words; and sentences 
from phrases and clauses. Multiple words can be combined into a single grammati-
cal construct, which can serve as a subject, predicate, or direct object of a sentence.

A subject in an NL is frequently a phrase with many words combined dynami-
cally to express complex meaning; a subject in an ontology is always “one string.” 
Humans understand that a combination of words in NL can be used together as a 
single subject or object (single referent), but that each of the constituent words has 
its own meaning in the lexicon as well, used within the phrase to specialize the 
meaning of the referent. That is, humans can parse these phrases into their meaning-
ful words, and the words into their meaningful morphemes, based on shared rules 
of grammar. By so doing, they are also able to compare the meaning within these 
phrases to components of other phrases for similarities and differences. In that man-
ner, people can easily determine that “minor launch processing operation” is similar 
to “major launch processing operation,” perhaps different only in complexity or 
duration, based on the semantic difference between the words “major” and “minor.”

Ontologies are quite different in this respect, as we have discussed. First, they 
have a very limited syntax. Second, they have no grammatical rules with which to 
construct phrases and clauses from individual words, just as they have no morpho-
logical rules for constructing new words from morphemes. These limitations have 
a significant impact on ontology modeling, as well as on mapping NL phrases and 
sentences to ontology constructs. Each is discussed in turn.

An ontology’s syntax is typically limited to simple subject–verb–object (SVO) 
sentences (devoid of morphology), as in: Mechanic repairs equipment. These are 
called “triples” because they are assertions of exactly three ontology “words,” each 
word a string, that are used to represent domain knowledge. Roughly, these are 
equivalent to simple active and passive voice sentences in an NL, with some sig-
nificant limitations, however. We return in a moment to the challenges presented by 
this limited syntax.

Equally limiting is the fact that ontologies have no grammatical rules for dy-
namically creating new “multi-word” constructs, such as new class and property 
phrases, as discussed above. Therefore, ontologies cannot build phrases out of a 
sequence of words, and their associated meanings. For example, NL users can com-
bine the words lacrosse, sports, and equipment into lacrosse sports equipment, and 
other speakers will immediately understand the phrase as composed of the constitu-
ent words and their individual meanings. In an ontology, lacrosse-sports-equipment 
is not composed of three words with three constituent meanings; it is one conflated 
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string with one conflated meaning. Another class, say sports, is quite unrelated to it. 
The constituent word meanings are lost on the ontology, which has no grammatical 
rules to parse this string into constituent word structures and senses. Each string, 
to an ontology, is a “single canonical form” rather than a multi-word phrase, where 
each constituent word has a contributory meaning.

These two syntactic limitations result in syntactic conflation, in which myriad 
NL phrase and sentence structures must be transformed into simple SVO structures, 
with each S, V, and O represented by one (and only one) “ontology word.” This is 
a serious restriction if our objective is to represent NL meaning within ontology 
semantic structures. A few of the impacts that these syntactic/semantic constraints 
have on ontology modeling include the following:

• Complex NL syntax must be transformed into a set of simple SVO sentences, or 
triples.

• Each construct in an SVO triple consists of one and only one named element, 
rather than an unlimited sequence of meaningful words combined into a phrase.

• Each construct in a triple is devoid of morphology, meaning that the S, V, and O 
do not vary in meaning, such as tense changes for verbs (relations) or singular/
plural for subject and objects (classes).

• The lack of function words likewise makes it difficult to meaningfully connect 
one SVO triple to another to make compound sentences or to construct a dis-
course sequence, as in: Kent and Mark ate food. Then they played golf before 
they went to the movies.

In linguistic terms, this is like limiting NL sentences to noun–verb–noun structures, 
where the nouns and verbs can be at most one word in length and have no inter-
nal morphology to vary meaning. These combined limitations severely restrict the 
meaning that can be expressed naturally with traditional ontology syntax. The net 
result of cascading conflation at all of these linguistic levels is that modelers must 
fit some very large square pegs (NL semantics) into some very small round holes 
(ontology semantics), leading to significant meaning loss in the translation, as well 
as some rather bizarre modeling constructs.

 Ontology Challenges: Syntax

Significant semantic content expressed by NL phrases and sentences will be lost 
in transforming them into an ontology’s simple SVO syntactic structure, with mor-
phological and lexical limitations adding significantly to the cascading conflation 
effects, as previously discussed. However, modelers use ontology conflations be-
cause they are attempting to meet two important but incompatible requirements: 
(1) to make an ontology name a single string representing a single class/property 
concept (a data structure modeling requirement) and (2) to make the string look like 
a normal, syntactically correct sequence of NL words that expresses the true mean-
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ing of the string, so that people can understand the concept (a human understanding 
requirement). The resulting syntactic conflation, however, creates a serious confu-
sion for those who do not understand that the ontology string names are not actually 
composed of individual NL words, as they appear to be.

Figure 6.4 illustrates syntactic conflation across all elements of a SVO triple, 
based on the first JC3IEDM example presented above, as it relates to the syntactic 
structure of the equivalent NL sentence. In effect, the NL syntax tree is flattened into 
three ontology strings, representing its SVO (or Class Relation Class) structure. The 
original NL sentence loses its internal constituent phrase structure. This results in the 
“phrase splitting” phenomenon discussed above, in which prepositions and predi-
cate nominatives, for example, are conflated into the relation name, while the object 
of the preposition is conflated into the class name. The entire sentential structure has 
been conflated to three ontology “words” within this simple SVO triple.

6.6 Summary and Value Proposition

In summary, it is important to understand the significant differences between NL se-
mantics and ontology semantics in order to level-set expectations for customers, us-
ers, modelers, and other stakeholders. Standard ontology constructs are too restric-
tive in structure and semantics to naturally represent the range of meaning that can 

Fig. 6.4  Complex NL phrase and sentence structures. (Note: Complex NL phrase and sentence 
structures are conflated into three strings in an ontology, representing a simple SVO structure, with 
each element consisting of a single “ontology word.”) NL natural language
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be expressed in a NL, leading to cascading conflation problems in translating NL 
morphological, lexical, and syntactic meanings into ontology semantics. We have 
illustrated some of the types of “semantic gaps” that exist between an NL and on-
tology, and summarized some of the typical conflations resulting from those gaps. 
Given the complexity of mapping NL semantics into ontology semantics, readers 
may ask a legitimate question: Why extract ontology-based knowledge from text at 
all? Where is the value proposition?

A thorough answer to this question is beyond the scope of this short overview, 
and is not the main purpose of this chapter, but the benefits are significant and worth 
a summary comment. Here are only a few of the ways in which NL-to-ontology 
semantic translation can be scoped and extended to be highly useful:

• Extract only highly relevant essential elements of information (EEIs) from text. 
This might include specific event types, individuals, or locations, for example. 
This can be accomplished effectively for focused analysis needs by extend-
ing ontologies’ domain-specific vocabularies and grammars, often available as 
open-source tools (Cunningham 2014).

• Relate extracted EEI’s to each other based on the ontology. These connection 
graphs provide a way to semantically link, or fuse, EEIs extracted from hetero-
geneous sources based on shared concepts and relations.

• Extract and classify data based on a taxonomy, which provides more generalized 
search over text and data.

• Build rules for deductive reasoning over RDF knowledge bases, providing a way 
to infer new facts based on known facts.

• Use ontologies to publish the meaning of information for discovery by Semantic 
Web services.

In our follow-up chapter, we address some of the challenges that have been dis-
cussed in this chapter. In each case, our research objective is to bridge the gap 
between NL and ontology semantics, creating a more “natural” ontology represen-
tation of NL semantics.
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Chapter 7
The Lexical Bridge: A Methodology for Bridging 
the Semantic Gaps between a Natural Language 
and an Ontology

Kent D. Bimson, Richard D. Hull and Daniel Nieten 

7.1  Introduction

Recently, a significant amount of research has been focused on extracting knowl-
edge from natural language (NL) text and transforming it into an ontology-based 
semantic representation (Bimson 2012). The purpose of this research is to find ways 
to translate meaningful information in NL sources into a standardized, structured 
knowledge representation for the purposes of semantic normalization, integration, 
analysis, and reasoning.

However, a major obstacle to successfully translating NL meaning into ontol-
ogy representations is that languages are semantically much more expressive than 
ontologies, resulting in significant meaning loss when translating NL semantics into 
ontology semantics. In Chapter 6 of this book, we characterize the kinds of meaning 
that get lost in the translation of NL semantics into ontology semantic structures, the 
reasons for that loss, and the impacts that these “semantic gaps” have on an ontol-
ogy’s representation of NL semantics.

The purpose of this chapter is to present a methodology that serves as a first step 
in spanning those semantic gaps, which we call “building a lexical bridge” (LB) 
between the NL and ontology representations of meaning. The goal of building 
the LB is to capture more of the meaning expressed in NL within an ontology. Our 
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objective is to “lexicalize the ontology” by parsing ontology literals (i.e., class and 
property string names) into lexical items that can be used to generate an ontology 
lexicon (OL). The OL is used by our semantic equivalency algorithm (SEA) to 
compare the lexical meaning embedded in ontology literals to NL sources, in order 
to find synonymous and paraphrastic expressions in text. Together, the OL and SEA 
can be used for a number of high-value purposes, such as:

• Enriching the semantics of the ontology
• Improving semantic search of text sources based on the ontology
• Improving the results of ontology-based text extraction algorithms
• Enhancing our ability to compare the semantics of one ontology to that of an-

other, and
• Identifying and eliminating redundant knowledge, such as synonymous Re-

source Description Framework (RDF) assertions

Each of these benefits is discussed in more detail in the Potential Applications sec-
tion below.

7.2  Technical Approach: The LB

In this chapter, we present a method for lexicalizing an ontology, by which we mean 
building a LB between an NL and an ontology. The purpose of building a LB is to 
enhance the ability of ontologies to represent the lexical meaning hidden in class 
and property literals (or string names). By doing so, we prepare ontology constructs 
for word and phrase-based comparison with NLs.

 Lexicalized Ontology Example

A simple example of “lexicalizing ontology constructs,” would be translating the 
ontology property name:1

into its component NL lexical item stem forms:

and then marking them with their individual meanings, parts of speech and synonyms:

A table-type representation of these constructs is illustrated in Fig. 7.1.

1 Example from the approved Joint Command, Control and Consultation Information Exchange 
Data Model (JC3IEDM) triple [Action records-observed-results-of Action-Effect].
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In order to build a LB, we need a way to transform ontology class and prop-
erty literals (strings) into the NL words that modelers used to define these literals. 
Although NL-sounding string names are not needed to form unique Web Ontology 
Language (OWL) or RDF literals2, the fact is that NL words and phrases are usually 
used by human modelers as the basis for these strings in order to make ontology 
class and property names more understandable to humans. This modeling approach 
can be exploited to our advantage in bridging the semantic gaps between an ontol-
ogy and a NL.

Once the ontology string is lexicalized, each word extracted from the string can 
then be mapped to its sense (or meaning) and to its synonyms, using a thesaurus-
style application—such as WordNet or FrameNet—each of which provides a data-
base of English words and their synonym sets (also called synsets).

LB Components

A number of components are needed in developing the LB. These components, il-
lustrated in Fig. 7.2, include:

1. An ontology string parser: The algorithms needed to parse ontology literals, or 
string names, into NL words in order to populate the OL.3

2. A NL parser: The algorithms needed to parse NL text into words, parts of speech, 
and senses (meanings).

2 Literals can be any string in RDF and OWL, so records-observed-results-of could be represented 
as the string “x,” as long as it is unique, though this is relatively useless for humans.
3 As will be discussed later, this is not as straightforward as simply applying a NL parser to ontol-
ogy strings, since the strings are often formatted differently (hyphenation in our example) and 
are often ungrammatical, in a NL sense, which leads to unsuccessful parsing results when using 
standard NL parsers.

Fig. 7.1  The first step building a semantic bridge between the meaning expressed in a NL and an 
ontology is to lexicalize the ontology, parsing its class and property strings into constituent NL 
words, and then mapping the ontology lexicon to text. NL natural language
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3. An ontology lexicon: A lexicon of the NL words used to construct ontology liter-
als, along with their intended parts of speech and ontology senses.

4. A NL lexicon: An online NL dictionary and thesaurus, providing access to syn-
onyms for the OL.

5. An ontology-to-NL mapping algorithm: The algorithm for comparing words (and 
meanings) in ontology strings to NL words and phrases with similar meanings.

Once NL words (and their meanings, or “senses”) have been extracted from ontol-
ogy strings—and archived in the OL—they can be used as a basis for mapping the 
semantics of the ontology to the semantics of NL on a word-for-word basis. Our 
approach to this process is discussed below.

 Building the LB

The first target application for our LB is to translate RDF triple class and prop-
erty literals into NL words and senses. This application was developed on a proj-
ect sponsored by the US Navy SPAWAR—called the RDF Find, Filter and Format 
(RDF-F3) project—under the Navy’s Small Business Innovation Research (SBIR) 
Program.

The goal of RDF-F3 is to prevent redundant RDF triples—when extracted from 
text—from being asserted to the knowledge base. In order to do so, we must be able 

Fig. 7.2  The LB provides a semantic crosswalk from NL semantics to ontology semantics based 
on parsing ontology literals into NL words and creating an ontology lexicon. LB Lexical Bridge, 
NL natural language
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to map the meaning of RDF literals in the knowledge base to the meaning in text 
from which new assertions will be extracted. The LB will accomplish this goal by 
translating RDF triple literals into NL words and phrases, allowing the meaning of 
the words embedded in RDF literals to be semantically compared to words from NL 
text. The technical objectives of the project were to:

1. Define RDF redundancy in a formal, semantic way
2. Develop the LB methodology
3. Design the LB architecture
4. Develop an LB prototype

Our accomplishments in each of these areas are discussed in the following sections.

Potential Applications of the LB

A lexicalized ontology provides a technical basis for significant improvements in 
ontology-based knowledge extraction from text sources. These improvements in-
clude, but are not limited to, the following potential applications, each of which 
contributes significant benefits to deployed semantic solutions.

1. RDF redundancy identification and prevention. The assertion of redundant RDF 
triples to a knowledge base creates excessive knowledge growth as well as dis-
connected graphs. The LB technology can be used to compare the meaning of 
RDF triple strings to NL words and phrases, identifying potentially redundant 
knowledge in text before it is asserted to the knowledge base. This use case is 
the primary objective of the RDF-F3 project and is discussed further below as 
the initial application of the LB.

2. Improving semantic search in text. The LB’s NL words representation of RDF 
constructs can be used to find synonyms and paraphrases in text sources that are 
beyond the scope of current ontology-driven search engines.

3. Learning new classes and properties. By lexicalizing class and property names, 
we will be able to significantly improve the identification of semantically simi-
lar, but nevertheless different, phrases in text. These can be recommended as 
a “new ontology relation” or as a “new class” (as mentioned above). In other 
words, our architecture provides a solid foundation for “learning” new ontol-
ogy constructs. This can be done much more effectively using the LB than with 
native RDF constructs, since it does word-based analysis and comparison.

4. Bridging the semantic gap between ontology semantics and NL semantics. Our 
research (Chapter 6) has shown that significant meaning is lost in transforming 
NL semantics into ontology structures. By adding a “lexicon,” “thesaurus,” and 
“paraphrase” data structures to ontologies, we provide a significant LB between 
the rich semantics of an NL and the simple semantics of an ontology.

5. Improving service-based semantics. By providing service-based access to an 
ontology’s lexicalized structures, we expose the meaning within class and prop-
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erty string names for exploitation by other applications and analysis algorithms, 
improving an external application’s “understanding” of what the ontology really 
means.

6. Semantic comparative analysis of ontologies. It is often quite difficult to auto-
matically compare the semantic content of one ontology to that of another ontol-
ogy. This is because modelers use different words and phrases to create ontology 
class and property string names. By lexicalizing ontologies, we translate these 
string names into their component NL words and phrases, thereby improving 
inter-ontology comparative analysis based on NL semantics.

In the remainder of this chapter, we focus on applying our LB methodology and 
algorithms to RDF redundancy prevention as a first target application.

RDF Redundancy Definition

One of the keys to growing robust, lean, nonredundant knowledge bases is identify-
ing text that is semantically equivalent with knowledge already in the triple store, 
as well as identifying new, ontology-relevant knowledge that should be asserted to 
the knowledge base. In other words, we must find ways to differentiate between 
redundant and nonredundant knowledge, using the ontology as a reference semantic 
data structure. The major challenge of this task is comparing the meaning of text 
words (TW) and phrases to the meaning of words embedded in ontology literals, 
the purpose for which the LB is being designed. For this reason, we are applying 
the LB methodology and technology to RDF redundancy prevention as a first target 
application.

The first step in addressing this challenge was to formally define RDF redun-
dancy and to use that formal definition as a basis for developing the LB use cases, 
architecture, and prototype. For purposes of brevity, we only summarize the defini-
tion of RDF redundancy in this chapter. RDF redundancy must be defined along 
two axes: (1) graph equivalence, and (2) semantic equivalence. Standards, such as 
RDF Primer (2004) and RDF Semantic Web Standards (2004), focus on the former, 
wherein equivalent “meaning” is based on equivalent RDF graphs. Graph equiva-
lence, however, does not fully address semantic equivalence, which is based on 
linguistic synonymy and paraphrase rather than intersecting nodes and edges. In 
lexicalizing the ontology, we provide a lexical basis for comparing the “intended 
lexical meaning” of ontology class and property names by parsing them into their 
constituent NL words. These words can then be compared for similar meaning, ei-
ther within the same triple store (RDF to RDF), across different triple stores (RDF 
to RDF′) or between a triple store and an NL corpus (RDF to NL text). The mean-
ings could be identical (same words) or equivalent (synonyms) or different. In the 
former case, the RDF is redundant. In the second case, the RDF may be redundant 
or it may add valuable information, as discussed above. In the last case, the seman-
tics of each triple is different, representing new knowledge.
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We define semantic redundancy in RDF triples on both a class and an instance 
level, as follows:

These definitions add a NL  (semantics-based) equivalence definition to World 
Wide Web Consortium’s (W3C’s) RDF (graph-based) definition, providing a lexical 
basis for identifying identical, equivalent, and (potentially) redundant RDF asser-
tions in the knowledge base, as well as semantically equivalent NL statements. This 
semantic definition will improve our ability to identify and filter out NL equivalents 
before assertion of the RDF to the knowledge base. It also provides us with the for-
mal foundation needed to develop the LB methodology, use cases and architecture.

LB Methodology Applied to RDF Redundancy Evaluation

Our methodology focuses on using the LB to prevent the assertion of redundant 
RDF triples to the knowledge base, particularly when RDF triples are extracted 
from NL text sources. The concept is to parse RDF ontology class and property 
names into NL lexical items, using the latter as a basis for comparing the meaning 
of the embedded words in RDF strings to words and phrases in text sources, iden-
tifying potential synonyms and paraphrases. A lexicalized RDF triple that means 
the same thing as an NL statement identifies that NL text as identical (redundant) 
or equivalent (potentially redundant) relative to the existing knowledge in the RDF 
triple store.

Our methodology, illustrated in Fig. 7.3, is a step-by-step process that the ana-
lyst will use for redundancy prevention. The methodology is based on both the 
graph-based and semantics-based definitions of RDF redundancy. In this process, 
we use the LB Parser to parse ontology literals, lexicalize them, and apply our 
lexico-semantic analysis to the parsed set of terms to determine lexical equivalency 
for the RDF triples. This information can then be used to determine redundancy 
with respect to the individual RDF and associated graphs.
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The steps in our RDF redundancy analysis and prevention process are as follows.

Step 1 First, we apply the most straightforward criteria for determining RDF equiv-
alency based on graph comparison, which involves leveraging OWL and RDFS 
constructs such as owl:sameAs and owl:equivalentClass.

Step 2 Second, we determine the lexical equivalence for class and property string 
names in one or more ontologies, beginning with the subject and object (classes) 
and ending with the verb (object property).

Step 3 Third, we determine the class or property literal equivalence, based on the 
W3C graph-based rules of equivalence.

Step 4 We then lexicalize literals and apply our rules of semantics-based equiva-
lence as expressed in our lexical definition of RDF redundancy and our RDF equiv-
alency algorithm, discussed below.

Methodology Data Products New phrase structure parse trees and rules are created 
during steps 2–4 and persisted, as are the subset of triples and associated graphs 
that have satisfied the equivalence criteria. At this point there are two artifacts of 

Fig. 7.3  LB methodology for lexicalizing RDF strings as a basis for semantic comparison with 
text sources with the goal of preventing the assertion of redundant RDF statements extracted from 
text. LB Lexical Bridge, RDF Resource Description Framework
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interest. The first is the filtered data set resulting from the removal of identical 
RDF (provably redundant) and the second is the collection of RDF and associ-
ated graphs that have been identified as equivalent RDF (potentially redundant), 
based on both graph-based and semantic-based algorithms. These artifacts provide 
additional data sets for analysis and potential human vetting to confirm or reject 
an RDF triple and its associated graph as redundant. The vetted and/or non-vetted 
data sets can be published back to the knowledge base for use by any other RDF 
analysis tools.

 LB Architecture

The LB’s conceptual architecture, illustrated in Fig. 7.4, leverages a number of 
components from a portfolio of text parsing, extraction, transformation, and analy-
sis technologies used to develop ontology-driven NL solutions. Components la-
beled 2, 3 and 4 represent mature components.  Those labeled 1 represent prototype 
components added to complete our LB and RDF-F3 prototype. This framework 
provides a mechanism for connecting processing resources across a message bus 
construct. The processing components are connected to the message bus, where 
each subscribes to one or more input topics and can publish processed results on one 
or more output topics. The processing components are focused on part-of-speech 
(POS) tagging for RDF literals, identifying the lexico-semantic information for 
each word and phrase in the literal.

Message BusMessage Bus
SEA/OP Development

Client Extension

Middleware

Third Party

Fig. 7.4  RDF-F3 architecture lexicalized RDF triple literals for word-by-word comparison with 
text. RDF Resource Description Framework
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LB Prototype and Results

Our initial prototype was designed to demonstrate three fundamental components of 
LB processing within the RDF-F3 application:

1. Ontology parser: Automated parsing of an RDF literal into its component lexical 
items

2. NL parser: Parsing semantically equivalent NL text into its component lexical 
items

3. Semantic mapping algorithm: Comparison of RDF lexical components to NL 
text lexical components to determine semantic equivalency.

As previously discussed, RDF class and property string names are not composed of 
words in the lexical sense. It is therefore difficult to compare a relation literal, such 
as JC3IEDM’s relation records-observed-results-of (Multilateral 
Interoperability Programme (2009)), with words and phrases extracted from text, 
on a word-for-word basis, as illustrated in Table 7.1.

To do so, the literals must be parsed into individual words. In addition, candidate 
NL phrases must also be parsed into their individual words, as illustrated in the 
same table. The words from each must then be compared for equivalent meanings, 
or “senses.”

Step 1: Parse Ontology Literal The first step in our prototype was to parse the 
string representing an RDF class or property literal, determining the constituent 
words and their parts of speech. Initial parsing of literals into words is illustrated 
in Table 7.2, rows 2–5 for the literal records-observed-results-of. We 
used an extended version of the Brill tagger (1992) to perform the parsing and the 
POS tagging, though we experimented with others as well.

Each word, together with its POS tag, was then processed to identify its potential 
meaning, which in WordNet means identifying the synonym sets (synset) to which 
it could belong. In this example, we show both the noun and verb synsets for the 
word records, as provided by WordNet.

It is important to note that none of the POS taggers performed correctly on this 
literal string. All identified records as a noun rather than a verb, very likely due 
to the fact that there were no other “subject nouns” in this literal, which parsers will 
treat as a grammatically well-formed sentence. However, this literal is an ungram-
matical structure, linguistically speaking, at least in its ontology form. We therefore 
propose to tailor the Brill parser to account for “ontology literals” differently from 
“text sentences” to account for the linguistically ungrammatical structure of ontol-
ogy literals.

Table 7.1  JC3IEDM object property string name and semantically equivalent NL used in the 
lexical bridge prototype
Ontology object property Natural language paraphrases
records-observed-results-of Wrote results about

Will report observation concerning
Are archiving observed evidence of
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Although not yet prototyped, our next objective for this lexicalization step to is 
to lexicalize an entire ontology in this manner, building a core Ontology Vocabulary 
by parsing class and property literals into NL words, together with their senses (or 

Table 7.2  Results of applying text parsing to ontology literals (records-observed-results-of) and 
to text (e.g., wrote results about). The text parser erroneously identifies “records” as the noun 
rather than the verb
Sentence/
ontology 
concept

Word # Word POS tag POS Root/lemma

Records 
observed 
results of

1 records NNS Noun, plural 
common

record

2 observed VBN Verb, past 
participle

observe

3 results NNS Noun, plural 
common

result

4 of IN Preposition or 
subordinating 
conjunction

of

Wrote results 
about

1 wrote VBD Verb, past 
tense

write

2 results NNS Noun, plural 
common

result

3 about IN Preposition or 
subordinating 
conjunction

about

Will report 
observation 
concerning

1 will MD Modal verb will

2 report VB Verb, base 
form

report

3 observation NN Noun, singu-
lar common

observation

4 concerning VBG Verb, present 
participle

concern

Are archiving 
observed 
evidence of

l are VBP Verb, present 
tense, not 
3rd person 
singular

be

2 archiving VBG Verb, present 
participle

archive

3 observed VBN Verb, past 
participle

observe

4 evidence NN Noun, singu-
lar common

evidence

5 of IN Preposition or 
subordinating 
conjunction

of
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meanings). We will then add synonyms for each of the ontology’s lexical items, cre-
ating an Ontology Thesaurus. The vocabulary and thesaurus, taken together, form 
the OL, as defined in our RDF redundancy definition.

Step 2: Parse Text Paraphrases The second step in our prototyping effort was to 
parse NL paraphrases for their lexical content, as illustrated for three paraphrases in 
Table 7.2, rows 5 to the end. Each of these words, together with its POS, was then 
used to identify potential senses, or synsets, in WordNet, as illustrated in Fig. 7.5 for 
both the noun and verb senses of “records.”

Step 3: Compare Lexical Semantics in Ontology Literal to Lexical Semantics 
in Text The next step in our algorithm is to process the individual words in the 
ontology literal parse trees, comparing each ontology word (OW) to text words 
(TWs) in the text parse trees. Specifically, this involves comparing each OW’s POS 
and synset to a candidate TW’s POS and synset (Table 7.2 and Fig. 7.6). We call this 
the SEA. For this specific application, it is an RDF SEA.

Although we have developed the logical algorithm for RDF semantic equiva-
lency analysis (discussed in the next section), it has not been prototyped because 
we have not yet developed a robust OL, which it needs to do the word-to-word 
comparative analysis.

Steps 2 and 3 beg the question of how paraphrase candidates are identified in text 
sources in the first place, since this needs to be an automated process. Our algorithm 
uses the OL as a filter to identify candidate synonymous/paraphrastic NL expres-
sions after POS tagging and sense disambiguation have been performed. In other 

Fig. 7.5  A good lexicon, like WordNet, provides all senses for a word based on its part of speech
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words, a TW from a text source is either in the OL or not, based on a look-up. This 
means that the TW is semantically equivalent to an OW in the lexicon. If the TW 
is not in the OL, then it is eliminated from consideration as a possible synonym. If 
the TW is in the OL, then it is retained for consideration as part of a synonymous 

Fig. 7.6  RDF equivalency algorithm uses the lexical bridge method to parse ontology literals into 
NL words and senses for comparison with text words and senses in order to identify potentially 
redundant triples in text sources. RDF Resource Description Framework, NL natural language
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(or paraphrastic) text expression. Once all candidate words are identified in the text 
source, N-grams will be used to determine whether individual words (like “wrote” 
in Table 7.2) occur in a paraphrastic or synonymous context with other OW’s (such 
as “results” in Table 7.2), a process explained more fully in the next section about 
our SEA. This analysis involves iterative comparison of word senses among OW’s 
and TW’s. In this way, the OL will be used to filter out TW’s with no meanings in 
common with OL words and to identify sequences of words from text that are syn-
onymous with word sequences representing ontology literals (Fig. 7.5).

Semantic Equivalency Algorithm Our algorithm uses synset chains, or graphs 
of sense relationships, to compare the lexical semantics of ontology literals to the 
lexical semantics of text paraphrases. Since these chains are graphs, we can apply 
standard graph algorithms, such as Dijkstras (1959) and Hart (1968), to our seman-
tic equivalency analysis (SEA). The SEA  is responsible for assembling the synset 
chain for each noun, verb, adjective, and adverb contained in a literal (from the 
ontology), sentence or phrase (from text). The algorithm then searches the knowl-
edge base to determine if the synset chain is already asserted. If the chain does not 
exist then the algorithm will assert the new chain and the associated RDF triple 
reference. If the synset chain does exist for one word in a given phrase, then the 
algorithm searches for each subsequent word’s synset chain as well. An equivalent 
phrase will have the same synset chains. A version of the SEA tailored for RDF 
analysis, called the RDF-Equivalency Algorithm, is presented in  Fig. 7.6.

7.3  Conclusion and Next Steps

In Chapter 6, we summarized the mismatches between natural language and ontol-
ogy semantics.   As a result of these mismatches, many kinds of NL meanings will 
be lost when attempting to represent them in standard ontology representations, se-
verely limiting the effectiveness of ontology-based semantic search, knowledge ex-
traction, knowledge representation, knowledge discovery and ontology-to-ontology 
comparative analysis.

In Chapter 7, we have proposed that the first step in overcoming these limitations 
is to build a Lexical Bridge between a NL and an ontology. The Lexical Bridge is 
composed of the lexical and phrasal data structures and algorithms needed to com-
pare the words and phrases in NL text to those embedded in ontology literals. We 
demonstrated the use of the Lexical Bridge in determining semantic redundancy 
in an RDF triple store, with the goal of ensuring that ontology-based knowledge 
extracted from text was represented only once within the knowledge base, thereby 
limiting knowledge growth to uniquely different pieces of information.

Our early prototype demonstrated that this approach has promise. Though the 
Lexical Bridge has its limitations, such as its inherent complexity, it is an important 
step in providing a more structured ontology-based representation of NL meaning, 
which is an important goal in most aspects of semantic processing.  
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In summary, we propose that NL words and phrases, together with their basic 
meanings, be used to provide the basic building blocks for a semantic bridge 
between a NL and an ontology.
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8.1  Structure of Researched Data

Most people are familiar with three uses of survey techniques: the measurement of 
public opinion for newspaper and magazine articles, the measurement of political 
perceptions and opinions to help political candidates in elections, and market 
research designed to understand consumer preferences and interests (Fowler 1988). 
Survey modeling methods allow researchers to gather information and make 
informed decisions. A deeper qualitative analysis presents several other decision 
criteria used to formulate the question, including how the survey delivery methods 
impact the responder, and how the surveyor guides the survey. Inconsistency can 
exist with the target audience, the number of sensitive questions in the survey, 
survey length, and decision criteria.

Designing a good survey involves selecting the questions needed to meet and 
design research objectives (Fowler 1988). Qualitative, quantitative, and mixed 
methods are applied in generating and analyzing surveys. Quantitative methods 
provide the best evidence of statistical significance of decisions made through 
probability sampling, standardized measurements, and targeted surveys for 
special purposes (Fowler 1988). Qualitative methods are exploratory and offer an 
introspective view into how decisions are made through open questioning when 
the outcomes are not predictable (Mack et al. 2005). Focus groups and feedback 
surveys anticipating open comments are qualitative in nature, and reveal the 
behavioral aspects social survey researchers are seeking. Applying both methods 
is considered mixed survey modeling, and how the respondent chooses responds is 
the unknown variable.

At the most basic level, a survey consists of a series of questions and associated 
responses. The end goal is data collection by asking people questions and producing 
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statistics, representing the features of the study population (Fowler 1988). Survey 
data are categorized by response and nonresponse data, where the nonresponses 
can be indicative of poor wording, perceived misunderstanding, or perceived sen-
sitivity. Social surveys offer researchers the ability to measure perceptions to un-
derstand how things are in a population. Special-purpose social surveys like health 
assessment surveys combine multiple variables like a target audience and sensitive 
questions to collect population statistics impacting social welfare. These surveys 
contain a greater opportunity to ask personal and private questions. Questions about 
income, unlawful behavior, sexual habits, substance abuse, and child rearing, for 
instance, are examples of sensitive questions. These questions may be perceived 
as sensitive questions leading to poor response rates due to the social stigmas as-
sociated with these behaviors. The following questions are considered perceived 
sensitive questions:

• What is your total annual household income?
• Has there ever been an investigation by child protective services (CPS) related to 

this child?
• Do you think this child has ever been physically abused?
• Do you think this child has ever been psychologically abused or mistreated?

The unknown variable in a social survey design is called a social desirability bias 
and records under and over-reporting in responses based on the survey adminis-
tration technique. Scholarly research reveals individuals are more likely to falsely 
represent themselves in self-administered questionnaires, where perceived sensitive 
questions exist; however, findings show that people tend to be more accurate about 
revealing socially undesirable behavior in web forms, such as computer and voice-
assisted surveys versus questionnaires. Socially undesirable behavior is partly a 
function of perceived question sensitivity, but question sensitivity depends on the 
respondent’s actual status regarding the variable in question (Kreuter et al. 2008). 
The Community-Wide Children’s Health Assessment and Planning Survey (CC-
HAPS) presented in this chapter builds on this research by analyzing the format of 
sensitive questions in a self-administered paper questionnaire.

The greater goal behind survey design in the nonprofit sector is collective im-
pact. Collective impact requires large-scale organizations working together around 
a common agenda to solve complex social problems (Kramer 2011). This means 
working collectively to mutually reinforce activities rather than focusing on inde-
pendent action as the primary vehicle for social change (Kramer 2011). Nonprofits 
are the voice of the people, where accessibility to improve social welfare is typi-
cally the primary objective. Surveying methods allow nonprofits to both participate 
and present concerns and issues in the community by obtaining statistically repre-
sentative data from specific social groups.

The CCHAPS assessment team surveyed community leaders, parents of chil-
dren aged 0–14 years, and focus groups with both parents and children to better 
understand the issues and concerns surrounding children’s health. They split the 
survey into two versions to reduce the stress on the respondents to complete it in a 
reasonable time frame. Surveys were administered by mail, phone, and the Internet. 
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Only two surveys have been administered by the assessment team since 2008, and 
a third is due to be administered between August 2014 and April 2015 blending 
highly answered as well as unanswered questions. Several questions are selected 
from the national, Texas, and CCHAPS question bank. Although these versions 
contain question more redundancy than variability, the CCHAPS team expressed 
maintaining a majority of the same questions across three surveys reveals more 
patterns about the survey population versus two. In this chapter, we review the 
weight of the question format in relation to the responses to predict business rules. 
The variance between surveys is valuable only if additional questions were added 
to derive better responses.

We review the questions in greater detail to establish the business rules affect-
ing all three surveys. The model depends on a baseline decision framework vali-
dating the current response data. Once the decision criteria and business rules are 
defined, we can begin to look for patterns in the content to shape future questions. 
Figure 8.1 illustrates the questions from 2008 explaining how children’s health 
stacks up against the national and state levels. The question regarding hearing loss 
was modified in the CCHAPS survey from the national question: Does child have 
hearing problem? We see in all three surveys, there is zero variability in the re-
sponse results although the question was modified. Therefore, we can conclude 
that this question is asked correctly and requires no change to initiate a stronger re-
sponse. Equally, a marked difference between results requires further analysis to de-
termine whether the results were based on true population statistics, poor wording, 

CCHAPS National and State Comparisons 
of Children's Health

CCHAPS 
Results

National 
Results

Texas 
Results

In general, how would you describe your child's health?
Excellent/very good 85% 84% 78%
Good 12% 12% 16%
Fair/poor 3% 4% 6%
Has a doctor or health professional ever told that your child has asthma?
Yes, child has had condition at some point 18% 14% 11%
No, child has never had condition 82% 86% 89%
Has a doctor or health professional ever told that your child has bone, joint 
or muscle problems?
Yes, child has had condition at some point 4% 3% 2%
No, child has never had condition 96% 97% 98%
Has a doctor or health professional ever told that your child has hearing 
loss?
Yes, child has had condition at some point 3% 3% 3%
No, child has never had condition 97% 97% 97%
Has a doctor or health professional ever told that your child has blindness 
or other vision problems?
Yes, child has had condition at some point 2% 2% 2%
No, child has never had condition 98% 98% 98%

Has a doctor or health professional ever told that your child has diabetes?

Yes, child has had condition at some point 1% 1% Not available
No, child has never had condition 99% 99% Not available
How many days of school has this child missed during the past year 
because of health problems?
None 36% 24% 30%
1-5 days 48% 58% 55%
6-10 days 8% 12% 10%
11+ days 8% 6% 5%

Fig. 8.1  Community-Wide Children’s Health Assessment and Planning Survey (CCHAPS) 
national and state comparisons in 2008 (Power 2003).
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 perceived misunderstanding, or perceived sensitivity. The research team indicated 
their goal is to obtain a response rate of at least 33 % or 6600 completed surveys 
across the 6 county (Denton, Hood, Johnson, Parking, Tarrant, and Wise counties) 
service region in Texas.

In 2008, 7439 parents completed the survey (response rate 37 %) (Cook Chil-
dren’s 2009). The CCHAPS response data model (https://www.centerforchildren-
shealth.org/en-us/Pages/default.aspx) created in 2010 can be analyzed from mul-
tiple angles, offering researchers a statistical data representation of decision criteria 
from these surveys. Since past surveys dictate the structure of the 2015 survey, the 
recorded statistics from the 2008 and 2012 data are used in defining the business 
rules for the proposed decision model.

8.2  Applying Semantic Technologies to a Survey Decision 
Support System

This chapter reviews the dataset for the CCHAPS and the value of creating a se-
mantic decision support system (Cook Children’s 2014). Community health survey 
questionnaires are targeted towards specific health issues. National- and organiza-
tion-specific question banks are combined to create a comprehensive questionnaire.

There are 160 questions covering 11 major categories, also known as secondary 
data factors. Although the response data may not generate immediate changes in 
the environment, there is a great deal of interest in the data shared with academic 
institutions to supplement studies in specific pediatric health-care areas like abuse, 
asthma, dental health, mental health, obesity, safety, and prevention. Every few 
years, the system planning team studies and dissects the questions to assess their 
relevance in terms of issues of both national and local interest.

The goal of these researchers is to develop better social surveys to adapt to the 
changing demographics and the clinical service offerings to the target population. 
This chapter asks whether the inspection of questions and response criteria can pro-
vide insights into whether the correct questions are included in the survey. Prepar-
ing business rules for decision analysis is similar to preparing data for data mining. 
It is the point where this study suggests using semantic methods to supplement data 
evaluation. The following sections walk through the methods to design a semantic 
decision support system for the CCHAPS survey.

 Analysis of Questions and Responses

The survey team wants to know whether we can rank the response values accord-
ing to the question category to determine the relevancy of the question. If there 
is a question about asthma, there are potentially several responses with more im-
portance in comparison to other responses. The goal is to derive semantic patterns 
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from the question sets. For instance, we know the CCHAPS survey follows a par-
ent–child questions model, where parent questions are required and child questions 
are treated as sub-questions.

There is no action on the responses to the child questions at this point in time 
and there is no method to draw conclusions from these sub-questions. Since sub-
questions are not considered, we can classify any child question as a low priority. 
Risks based on cumulative or additive questions are also identified using the scale. 
Business rules can be created for cumulative questions, where a positive response 
indicates risk. For instance, if a parent indicates their child has learning disabilities, 
has problems with alcohol abuse, and is bullied, then these questions are considered 
cumulative and the child is measured as an at-risk child.

In the CCHAPS interview, the team-revealed rules were important from a data 
analysis perspective, but were not well documented. Many rules uncovered were 
substantiated from national and organizational research initiatives or slicing the 
data in a different way. It is important to understand why they considered looking at 
different combinations of data, and if documenting these relationships as business 
rules could reveal other patterns further down the road. The team also expressed 
difficulty in designing a targeted survey with the right amount of questions. People 
give up on the survey when questions are so specific; however, the team is unable 
to trim the survey for fear of losing responses. Some questions are based purely on 
curiosity and have no definitive drivers leading to highly probabilistic responses. 
Each of the 2008 and 2012 surveys reveals a gap between questions affecting actual 
health-care outcomes and those used for research. Documenting the business rules 
supporting these questions provides additional information when response data are 
variable as illustrated by questions 1, 2, and 5.

1. How familiar are you with the types of health-care services available in your 
area?

2. How familiar are you with where you can get information about health issues 
that affect your child?

3. How familiar are you with the types of mental health services that are available 
in your community?

4. How familiar are you with the types of dental services available in your 
community?

5. How familiar are you with the types of injury prevention services available in 
your community?

The questions about the availability of services do not reveal any risk, but the side-
by-side comparison is useful in visualizing the responses to similar questions. At a 
minimum, we can suggest combining questions to reduce the repetition in the sur-
vey. All questions are, however, part of secondary data categories (demographics, 
physical health, oral health, emotional and mental health, safety, family activities, 
health insurance, and access to care), are deterministic, and provide documented 
business rules based on national and local statistics. Demographic secondary data, 
for instance, contain several indicators (birth rates, death rates, income, and house-
hold composition) can be recorded as business rules in the decision model. This 
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information provides key variables and source details associated with specific ques-
tion layouts. These variables are used to derive potential patterns independent of 
data mining methods. In order to understand whether the team is asking the right 
questions, we have to understand all the facts in the survey such as the length of 
the survey, the number of sensitive questions, and the responses to sensitive ques-
tions. The goal is to provide a way for the team to determine whether to remove 
the question, keep it, or change the wording. As part of this analysis, we wanted to 
determine how clearly a question is stated and flagged those questions according to 
ambiguity and according to the following criteria:

1. Unambiguous—yes or no response; check all that apply; distinct options
2. Slightly unambiguous—response to question with a dependency to other ques-

tions; in general type question, have a do not know response type
3. Slightly ambiguous—uses special terms, abbreviations—blank response
4. Ambiguous—response type includes the other choice or a written section
5. Strongly ambiguous—sensitive questions and answer not provided.

Although the labeling is subjective, it reveals patterns in question pairings between 
parent/child questions that are commonly avoided. The derived value is described 
by the percentage of favorable responses versus negative responses. The following 
categories are typically analyzed together to reveal patterns:

• Physical health and access-to-care categories are evaluated together.
• Dental, safety, and mental health categories are also evaluated together.
• Breaks in income and the Special Supplemental Nutrition Program for women, 

infants, and children (WIC), food stamp programs look at the federal standards 
for poverty limits.

• The CCHAPS survey does not address family composition questions which re-
veal the number of people in the household and the true family composition. 
These details are useful when identifying needs for reduced lunch programs in 
these counties.

 Analysis of Secondary Data and Business Rules

The Center for Community Health Development, Texas A&M Health Science Cen-
ter School of Rural Public Health, put together a secondary data report from 60 data 
sources covering national, state, county, and city organizations agencies (Sackett 
et al. 2008). They developed a set of secondary data indicators for children in the 
six-county service region of Cook Children’s to illustrate the health of children in 
seven broad data categories including demographics, physical health, dental health, 
emotional and mental health, safety, family health and activities, and health-care 
access (Sackett et al. 2008).

As there are numerous factors impacting the way people respond to the survey, 
there are also many ways to analyze these data. A semantic model improves the 
documentation of business rules in an easily manageable format. A semantic model 
should be both measurable and testable, emphasizing both the level of the service 
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provided by the web applications and on the end-user level (Deshpande et al. 2002). 
The CCHAPS team relies on the secondary data to guide the development of the 
survey and as their business rules. The secondary data report models the rules sche-
ma for data validation. Creating a standalone rules schema outside of a traditional 
database structure enables better data sharing. Survey responses do not reveal the 
reality of the community demographics or health history for health program deci-
sion analysis. Identifying insights into the survey questions of the most value at 
the community level helps to determine whether the questions will collect accurate 
responses. There exists a general lack of information on the developmental, mental, 
and physical health needs of children since the landscape of health care and health 
needs vary based on environmental, geographic, cultural, and social pressures. The 
question to ask is whether improving overall survey questions will present a better 
picture of this landscape, and provide more insight into asking the right questions.

 Requirements and Data Analysis Techniques

How data are used really depends on the individuals using the data and the data col-
lected have different value to different people. This section focuses on the CCHAPS 
committee who create surveys to capture strategic socioeconomic, demographic, 
and health-related data for child populations. There is a need to document business 
rules to document the decision criteria for the CCHAPS survey. Before we can un-
derstand the context of a survey in terms of business rules, we must understand the 
role of semantic quality and the options available to study a broad spectrum data 
model. The CCHAPS team developed a multidimensional data model to present the 
population statistics for the survey results. Each year is represented in the model 
against a secondary data category and question set. Several filters allow the user to 
drill down and compare decision variables between the six counties.

It is often through development and testing of web systems (including databases, 
services, and interfaces) that errors and gaps in requirements are discovered. For in-
stance, the assessment team noticed that many participants skipped groups of ques-
tions related to perceived sensitivity. Their responses were blank, “don’t know,” 
or “prefer not to provide.” This raises the question whether these questions were 
omitted purely because of their sensitive nature or whether the question wording 
is vague. Through traditional data mining methods, researchers can observe cor-
relations between variables, but they cannot infer whether the survey format and 
questions could be analyzed and improved. The design of semantic models enables 
the discovery and derivation of patterns within requirements and business rules to 
inference a dataset for a deeper analysis.

The problem is to identify the quality of questions in terms of response choices 
and response data, where business rules are undocumented or do not exist. The 
proposed enhancement is to develop a decision process tool that allows decision 
makers to review business needs in order to elicit better requirements. Therefore, 
the need exists to determine whether a semantic solution can be justified within the 
scope of all other interacting systems. Although the solution is straightforward to 
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implement, the greater value lies in the insights that a semantic model provides. The 
following sections describe several methods of analyzing data.

 Decision Support Systems

Decision support systems applications development in business and management 
started to expand in the 1980s. Thereafter, natural language processing became pop-
ular in the 1990s. The literature since this time has examined manipulating quan-
titative models and analyzing large datasets in support of group decision making 
(Power 2003). Decision support systems encompass knowledge management and 
data mining. Both areas appear to share similar goals with semantic data manage-
ment in terms of defining data and deriving patterns. In this chapter, we propose a 
questionnaire as decision support system. Semantic decisions derive business rules 
and patterns from the survey questionnaire. As data mining traditionally approaches 
the quantitative variables of a survey, a semantic design focuses on the qualitative 
variables like the actual question verbiage.

Semiautomated data mining techniques and semantic analysis produce another 
layer of processing to filter out variables for decision criteria. Weka and the Stan-
ford Parser are used in parallel with the existing CCHAPS data model to analyze 
question syntax and derive grammatical patterns. Weka is a collection of machine 
learning algorithms for data mining tasks, which we leverage for question analysis. 
The Stanford Parser is a natural language parser that works out the grammatical 
structure of sentences, for instance, which groups of words go together (as “phras-
es”) and which words are the subject or object of a verb. It is a probabilistic parser 
and uses knowledge of language gained from hand-parsed sentences to try to pro-
duce the most likely analysis of new sentences. Both tools do not guarantee com-
plete accuracy, but provide metrics to help validate decision criteria, and perhaps 
predict business rules against grammatical patterns.

The Weka decision tree and Naïve Bayes learning algorithms were applied to 
sensitive questions. Weka identifies 10 of 19 questions accurately indicating a large 
number of sensitive questions in the dataset. In other words, the ranking rationales 
will need to be expressed as business rules to derive a more thorough estimate of 
the impact of sensitive questions in the survey model. Although the scales cover 
estimated sensitivity, ambiguity, and risks, the decision tree and Naïve Bayes al-
gorithms only demonstrate an overall accuracy of 68 and 69 % which is not high. 
The reason for this variation is the standalone questions are very unique and do not 
provide an opportunity for the algorithm to learn a pattern for individual questions 
or for groups of questions in the same category. A detailed error analysis is required 
since the results are not promising from the analysis of the raw questions. Improve-
ments in data processing can be achieved by embedding the ranking rationales into 
the learning algorithm.

Natural language processing techniques like dependency analysis can help to ex-
tract some semantic information, and then encode them as features for learning. The 
Stanford Parser uses a tagging schema to parse a sentence into typed dependencies. 
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Figure 8.2 is the output from the Stanford Parser. These dependencies represent the 
hierarchy of the text in the sentence, for instance, of the statement. To rank the value 
of responses, we can analyze the similarity between a question and its responses. 
This means if a response has higher similarity, like a question about asthma, then it 
would be assigned a higher importance. This approach does not need human anno-
tations, and is easier to parse using a data mining tool or semantic definition.

Machine learning is not required for the analysis of risks based on responses 
to cumulative questions; however, if business rules can be identified as values for 
these questions, they may also be inserted into the overall processing. It is ultimate-
ly the role of the decision maker to analyze whether the combination of questions 
may lead to potential risks and the role of the tool to present the options. Thus, the 
most important thing is to define the rules to insert them in a semiautomated tool to 
determine derivatives.

 Requirements Engineering

It is important to determine how to validate requirements as much as it is to capture 
them for the development. Requirements engineering is defined as the process of 
discovering the purpose the software is intended by identifying and document-
ing them in a format designed to analyze, communicate, and implement solutions 
(Al-Salem et al. 2007). Requirements engineering is an evolving process of eliciting 
process dimensions, rapid prototyping, and maintaining lightweight requirements 
for the life of the project. Identification and analysis are the primary goals of the 

Fig. 8.2  Parsing
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requirements engineering methodology. Mandates for documentation, traceability, 
and change control are also an emphasis.

Requirements engineering represents the decision classification technique to de-
rive and clean the data for analysis. This approach supports requirements quality 
and data exchange between processes. Requirements quality is supported by defin-
ing clearer requirements with the ability to model requirements, create relationships 
between business rules, and derive rules to classify requirements as semantic re-
quirements. This begins with requirements discovery, business rules analysis, data 
mapping, validation, and finally process design.

In terms of analytics, there is a distinction between data and information. For 
instance, as a power user, you may share information via one system, but do you 
know if there is information cohesion between all the data points you interact with? 
In other words, do you have to update multiple sources to convey this information 
to your personal and organizational information network? Users are interested in 
collecting data, excited when data entry can be automated, and nervous about shar-
ing their system with others. This results in data redundancies and gaps as different 
service areas collect similar data about the same patient and store it in different 
systems.

In the development life cycle, it is common to cradle software design, balancing 
needs versus wants during requirements analysis. Business rules (the constraints 
and conditions) are often not articulated well and may be difficult to express. If not 
directly associated with an application feature, rules can be overlooked. It is evident 
in many systems that there are a number of business rules driving the design of busi-
ness models and technology. However, as in any industry, rules may be represented 
by the features of a tool, but seldom validated to verify whether they are consistent 
with current strategic goals. Technology is a means to an end, and should never be 
used to enforce business rules.

The first step in the requirements process is business rules discovery. This is the 
part of the process, where it is up to the stakeholder to state the facts and describe 
the systems of truth for their activities. Hold the assumption that requirements en-
gineering should be perceived from an information perspective instead of a for-
mal standards perspective. This means, in an ideal situation, the stakeholders all 
do things the same way and share the same knowledge base. However, in reality, a 
host of other variables including environmental, organizational, and political factors 
drives how the data are used and its overall quality. Therefore, involve stakeholders 
and review all assumptions prior to specifying business rules. In these discussions, 
the inflows and outflows of all the users involved in every step of the process can 
be documented. Tools like notation 3 (N3) or even a simplistic XML file offer a way 
to document these definitions, and can be used in programming later. This is the 
business rules context model or map that can be referenced again and again. Next, 
identify areas that are automated and would benefit from automation. Identify what 
works, what is ineffective, and what is still needed. Map it out.

Define the business rule data map. Ask stakeholders:

• What rules define the context of the process?
• Who is involved in the data flow?
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• What rules are managed in every step of the process?
• What data are produced or moved through each step of the process?
• How are data moved through the process and why?

Step 2 involves prioritizing the map. With a map of rules in hand, determine the 
context of the questions typically answered by the user group and determine if a 
commercial product exists or if a customized product meets their needs. Even in the 
most complex environments, most end users would like to use systems that make 
their jobs easier. This is the step where the constraints and meaningful relationships 
are identified to justify the facts.

Determine the context. Ask stakeholders:

• What are the data sources?
• How do teams use the data?
• What information do individuals deliver?
• Are there redundancies?
• How are the must-haves, needs, and wants prioritized?
• Is the plan to build or buy a product?

Solutions should also be reusable in other departments with virtually the same data 
collection scenarios and workflows. Encourage cross-department collaboration and 
identify solutions reaching a broader audience. Design solutions for reuse. If strong 
solutions are designed or purchased, the word will spread and other groups will 
want to leverage the same tools where it makes sense.

Design for the majority. Ask stakeholders:

• How many applications rely on these sources?
• What teams rely on these sources?
• What security protocols are required?
• Other industry-specific questions?

Whether tools are built or purchased, the interest is for users to rely on tools adher-
ing to standards and allow them to make decisions. The CCHAPS team recreates 
surveys using statistics from state and national studies, but wants to understand 
whether they are asking the right questions. Response data have not been substantial 
enough to tailor the survey and they are not comfortable acting on the findings apart 
from studying the data. A business rule decision support system offers a way to 
validate, document, and justify the pros and cons of updating survey questions. The 
identification of business rules is about your users and their process development 
workflow, where both the subject matter experts and developers are active influenc-
ers of the end design. Asking questions is a reliable requirements analysis technique 
to better understand requirements and define business rules for a decision model.

 Visual Data Analysis

Another method to derive and understand business rules is to define a mind 
map, which is similar to an investigator stringing different scenarios together to 
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understand patterns in the story. This style of brainstorming offers a very simple, 
visual, and tangible method of analysis. Online tools or the traditional sticky note 
format of writing your ideas down and putting them up on the wall allows you to 
move things around to determine how things group together or identify gaps. Once 
all the functional areas of your project area are outlined, you can begin writing 
down the business rules applying in each area and how they relate to each other. 
The only rule is writing everything down so it can generate more ideas as you stare 
at the pieces.

Kim (2005) demonstrates using storyboards for requirements derivation and de-
scribes that in prototyping virtual systems, requirements may be fully defined be-
fore moving to the storyboard process. This style is common in agile requirements 
engineering. Kim (2005) does not go into the detail of the steps to categorize or 
organize requirements, but lists them as points to ponder in requirements modeling. 
Gerard touches on a concept called abstract formalization lending well to semantic 
documentation or visually modeling a system (Kim 2005). Similarly, use Unified 
Modeling Language (UML) or Systems Modeling Language (SYSML) to model 
large and complex systems (Ober et al. 2011), and provide semantic optimization. 
Supplementing requirements and user scenarios with semantics does not translate 
requirements into semantic requirements; however, defining an ontology model can 
provide a semantic context for large systems.

Wire framing is another visual analysis tool to identify business rules and 
requirements for a development effort. The benefits lie in how well you define the 
details through annotations and descriptions. For instance, a simple web form wire-
frame can be detailed in terms of each item on the page using numbered markers. 
The logic for the form can also be translated into a semantic fact and rule table for 
decision modeling, creating a pseudo-prototype with clickable shapes to demon-
strate the expected functionality. Consider the many options to manage require-
ments and business rules and the methods used to trace these items throughout a 
project. The goal is to create a semantic syntax for the domain model. This design 
works best if every element on the wireframe is labeled and described in detail. This 
method of analysis presents a visual platform to review with the customer, raises 
process questions, and allows analysts to document the rules directly to the context 
they are applied.

SysML, syntax of UML, was designed by systems engineers to model sys-
tems of systems with an emphasis specification, analysis, design, verification, and 
validation. The OMG SysML group created a Visio template that contains several 
shapes that define the requirements and semantic syntax for a system description. 
In addition to requirements diagrams, traditional UML and alternative parametric 
and package diagrams are available for detailed systems design. SysML provides 
system-level notation to qualify relationships in the architecture. Annotating re-
quirements in a model can be handled by the semantic query notation defined by 
(Corby et al. 2006), or applying a general modeling language like Systems Model-
ing Language (SysML) (Holt 2006; Wrycza 2011). SysML is an extension of UML 
that is tailored to represent the various views of a system and provide a behavioral 
model for requirements design. It is a standard for designing a system model, but 
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should not be considered a new modeling language that is only meant for model-
ing software systems. SysML leverages the UML definitions. From a requirements 
standpoint, SysML provides the standard language elements lending itself to vali-
dation, verification, and testing which a systems engineer would have to ascertain 
and potentially create using the UML modeling methods (Holt 2006; Wrycza 2011).

 Business Rules Analysis

The importance of data collection lies in analytics. How data will be analyzed drives 
the data that are collected. A pure transactional system offers storage, access, and 
retrieval of data, but requires extensive manipulation to provide cross-functional 
metrics across systems. Most of the database systems encountered are used for data 
collection, and rely on web services to provide data visualizations or results-based 
reporting. The data warehouse technology is there to extend analysis if it adds value 
to your organization’s data strategy. Use both formal and informal business rules to 
identify the data you are collecting. Formal rules exist as data drivers. Formal rules 
appear in applications, systems, and processes that have been put in place to col-
lect this specific information. Formal rules also appear as master data, the people, 
places, things, and concepts that drive an organization’s decisions. Every patient 
interaction with an organization such as face-to-face visit, social media, phone call, 
and website interaction is master data. The CCHAPS survey relies on these interac-
tions to identify the target audience for its survey. If the data collected are not used 
to communicate further information regarding the patient or health-care delivery, its 
value decreases and becomes stale over a period of time.

Informal rules exist in the data itself, and this is the data people manage via per-
sonal productivity tools like knowledge managers, spreadsheets, surveys, and other 
forms external to master data collection. Informal rules may represent hidden rules 
or data that have grown so much it warrants transition into a structured process. 
Review data patterns and derive rules about the data where rules do not exist or 
no longer fit the context of the data domain. Determine who, what, and why these 
data are collected and how they are collected. It often turns out that these informal 
processes were created to fill a gap where fields did not exist to capture the data in 
the primary system.

As time passes, both the data and the value of the data grow. As departments 
begin using these formal and informal systems more and more, they create a new 
business justification for support and come across scenarios where other teams can 
also benefit from using this custom solution. Healthcare systems are unable to keep 
up with the advancements in technology which becomes difficult to manage as data 
grows. This is a side effect from the rate which technology changes and health-care 
systems can adopt new technologies. Often replacing the custom solution with an 
updated or alternative system is viable and immediately addresses the data collec-
tion process across multiple groups. Still, in other cases, a more intense redesign 
may be required to merge the data with a primary system or bring it up-to-date.
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 Semantic Analysis

Resource description framework (RDF) is a standard model to organize require-
ments semantically into term-sets called triples for data interchange on the Web 
(Muoz et al. 2005). It is basically a data format based on graphs to decribe resources 
on the Web. This traditional web data model can be applied to a non-web con-
text using web Uniform Resource Identifiers (URIs) to name relationships between 
things known as triples. Whether web URIs are available or not, the format of the 
data model allows business users to classify the context of their data domain in a 
succinct format outside of a relational database. Triples take the form of semantic 
statements ordered by subject, predicate, and object. Essentially, the definition of 
triples allows anything to become definable, by specifying a semantic framework 
for that thing. A file of triples for a specific thing may standalone as a query-able 
database or may be linked with other triple files to build complex relational descrip-
tions about many things.

The process of defining a requirements model semantically generates meaning-
ful patterns, rule-sets, or logic to build value into the data. In the triple (ab:craig 
ab:email ?craigEmail), the subject stands as the resource identifier for the statement 
and must be qualified with a property description or predicate. The predicate may 
include a property value, but is not mandatory to define the statement, although 
it adds semantic quality to the syntax described. The subject and predicate must 
belong to the same namespace to prevent confusion between similar terms. This 
statement returns any e-mails associated with the name craig; however, if there are 
(Muoz et al. 2005) multiple unique individuals with the name craig (e.g., craig 1 
and craig 2) all e-mails associated with all craig’s are returned. A file created with 
rules about this individual offers a view about everything related to this individual 
that can be queried. Semantic query languages like SPARQL (DuCharme 2011), 
a query language for RDF (Muoz et al. 2005), and SPIN (Fürber et al. 2010), a 
syntax for SPARQL, are the semantic inferencing tools utilized in specifying and 
solving problems arising in big datasets and simpler scenarios. SPARQL is a graph-
matching query language (Lawrynowicz 2014). These rules are implemented using 
SPARQL CONSTRUCT, or SPARQL UPDATE requests, and constraints are speci-
fied using SPARQL ASK and SPARQL CONSTRUCT queries or corresponding 
SPIN templates (Knublauch 2014).

8.3  Pattern Analysis and Validation Techniques

Pattern discovery is a data mining construct, and SPARQL queries are the defined 
patterns governing the dataset. As the contribution of semantic work and datas-
ets increases, the research into the possible learning algorithms, data patterns, and 
predicitive modeling is increasing. Given a dataset, the space of patterns is searched 
systematically from most general patterns to more specific ones (Lawrynowicz 
2013). The triple pattern is the foremost dependency pattern in SPARQL. Within 
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the triple pattern is best to avoid the query analysis against definitions of vocabulary 
terms which offer little instance data (Hartig 2012; Smirnov et al. 2004). This rule 
is important to consider as we define statements from the Stanford Parser analysis 
since there is the opportunity for repetition from these statements that would add 
processing time to the evaluation.

The RDF dataset organizes the business rules for the CCHAPS survey into spe-
cific data collections according to the secondary data categories and into named 
graphs according to the survey versions. The RDF triplicate form is a series of 
statements producing a graphical representation of the relationships between re-
sources known as a triple store. When one or more triples are grouped and orga-
nized together via an additional identifier, this is known as a named graph or quad 
store (Cambridge Semantics 2014). Associating triples into a named graph enables 
working with a dataset as a whole rather than as individual statements and expanded 
querying in SPARQL. In the CCHAPS example, we can describe secondary data 
categories in terms of their busines rules, or update and delete the whole group 
(Cambridge Semantics 2014). There are several named graph patterns to handle 
data management in RDF according to the structure of the dataset. For the CCHAPS 
survey versions, each version can be interpretted as a graph or the secondary data 
categories according to their question sensitivity, and can be graphed individually. 
The patterns will vary based on the scope of the data in each graph (Cambridge Se-
mantics 2014). The data model is designed to fulfill the following core requirements 
according to named graphs definitions provided by research (Carroll et al. 2005):

• Representation of meta-information—The model should allow a more efficient 
representation of meta-information than the RDF reification mechanism.

• Unique identification of RDF data—The model should provide a mechanism for 
globally unique identification of RDF data, so that different information provid-
ers can express meta-information about the same RDF data.

• Backward compatibility—In order to provide as much backward compatibility 
with existing RDF data and deployed applications as possible, the design should 
keep close to the RDF recommendations.

• Exchange of meta-information—The model should be accomapanied with syn-
taxes for publishing and exchanging information together with meta-informa-
tion.

Tracking the Source of Triples in a Dataset Graphing the source of a dataset is the 
most query-able pattern in SPARQL. It allows the verification of validation of the 
original source and the appended sources or rules that comprise the dataset. The key 
is creating relationships against well-understood rules that define the content of a 
dataset. This is the best pattern to use when provenance data are important (Carroll 
et al. 2005).

Organizing the Business Rules for a Specific Data Category To manage the sec-
ondary data for individual surveys, consider the option to graph per resource. The 
benefit of graphing per resource is that information about both the secondary data 
and the source qualifier/business rules can be stored in the same data store.
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Adding Notes or Derived Data to a Collection of Triples Annotating a graph is use-
ful to capture the description of a graph. It can include whatever information may be 
useful in defining a graph. Like organizing the data per resource, annotation treats 
the data collections as a whole instead of as individual statements.

8.4  Architecture of a Semantic Decision Domain

Semantic ontologies are working models of requirements. Defining the business 
rules for a domain in a working ontology allows requirements to be validated and 
tested. The domain context also provides traceability since the framework defines 
the relationships between the rules and the implementation that would otherwise 
be difficult to infer. It is promising to investigate the representation of requirement 
knowledge and information in process reengineering. Exploring inference rules for 
requirements modeling, analyzing, and reasoning are also interesting. (Yanwu et al. 
2008) suggest exploring semantic mapping between different ontology representa-
tions, and agree that consistent representation of requirement knowledge and in-
formation could combine advantages from different techniques, support different 
kinds of development processes, and, to a large degree, contribute to reuse and 
traceability.

The example discussed in this chapter focuses on the design of a decision sup-
port system. Models provide decision makers a litmus test to verify and weigh the 
pros and cons of a choice. For the CCHAPS survey model, this focus is on the 
questions in the survey, and whether they advance the understanding of the pedi-
atric health-care environment in north Texas. Secondary data categories represent 
the majority of the validation criteria represented in the survey, but the proposed 
data model also considers question sensitivity uncovered by newer research. The 
subsequent sections demonstrate the new decision process to evaluate questions ac-
cording to natural language formatting, the organization of questions in the survey, 
and the perceived sensitivity of the subject matter.

Conceptualizing the domain ontology for the CCHAPS survey creates a snap-
shot of all the instances a question or secondary data are used across the survey. A 
key issue with the survey today is its length and question redundancy. The domain 
ontology as a decision tool enhances the analysis methods and provides a working 
knowledge base to specify the rules that guide the maintenance of future surveys. 
Researchers can query facts and references regarding the survey to supplement their 
decisions. The tool itself does not generate a survey or provide new questions, but 
reveals patterns in the natural language and decision criteria that are not apparent by 
processing the response data alone. A clearly described requirements model is easy 
to interpret and traceable to a business rule. A strongly defined model is an essential 
component for the requirements definition and lends itself to building clear business 
cases from business rules. (Corby et al. 2006). support the idea that ontologies are 
the foundations of the semantic web and the keystone of the web-automated tasks: 
searching, merging, sharing, maintaining, customizing, and monitoring. These 
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ideas are the cornerstone of a semantic decision support system as well. (Corby 
et al. 2006). present a simple semantic notation for a query that can be built into 
the semantic model defined within the scope of business rules. The semantic query 
is essentially built from a resource requirement. A web resource requirement is re-
quired to formulate a query. Similarly, a series of statements describing the survey 
are considered requirements for the survey resource.

The decision model, Fig. 8.3, is presented as a business rules knowledge base 
consisting of a data layer, rules processing layer, and decision processing layer. It 
requires the subject matter experts and decision makers to understand the survey and 
the secondary data context for the CCHAPS domain. It requires the input of new 
decision criteria/requirements, business rules and facts into a sentential structure. 
Semiautomated tools are used to preprocess and classify the requirements. Then, we 
utilize the triple format (subject, predicate, and object) to define the survey domain 
ontology and specify the business rule associations. The survey question equals the 
subject, the ranking rationale equals the predicate, and the business rules represent 
the object for each statement. SPIN, also known as SPARQL rules, can be used to 
calculate the value of properties based on other properties and isolate a set of rules 
to be executed under certain conditions (Fürber et al. 2010).

These variables are stated in terms of compound semantic statements for the 
survey domain. Both simple and compound semantic statements provide implicit 
declarations. For instance, the rules for the question, “How often do you talk to 
this child about drugs and alcohol?” can be defined as both a simple and compound 
triple statements depending on the number of response choices and the number of  

Fig. 8.3  Business rules
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secondary topics the question is related to. Therefore, a question about drugs and 
alcohol can be related to questions about healthy behaviors, mental health, family 
activities, and parent profiles. We can look at the number of questions presented 
in each area for these topics and review overlaps in content and wording in addi-
tion to the varibility in the responses received. Each predicate and object variation 
illustrates the compound relationship to the subject considered relatable by the busi-
ness rules context. In the named graph structure, these compound statements enable 
recursive query expressions relating similar statements together. It is important to 
note that the use of such recursive functionality can add cost to performance time. 
The use of from requires a union between graphs, whereas the use of graph in 
queries limits lookups to one graph at a time.

8.5  Conclusion

As health-care organizations have made the leap into the digital age, they are data 
centric, capturing all kinds of data using many customized tools. Questions exist 
about data relevancy and whether these data gathering methods are encroaching on 
privacy, but are health-care providers really data aware? In other words, the focus 
needs to shift from data collection towards data quality and understanding the value 
of data. Semantic quality is the value attached to the meaning of a requirement. For 
instance, a business rule conducive to the operation or function of a system can 
be assigned a priority or dependency. Stating priority or dependency identifies the 
value of this rule in terms of the overall operation of the system.

Decision criteria are the requirements for the semantic decision support system, 
and the requirements identification process can be likened to the evolution of the 
Web which has inched from a documentation focus to an application focus, and is 
now migrating to an information focus. Survey researchers and statisticians are in-
terested in deriving relationships from the data collected. In terms of analytics, there 
is a distinction between data and information. This distinction can be expressed in 
terms of the explicit decision criteria, the requirements for the survey, but they can 
also be implicitly expressed in terms of business rules. Business rules (the con-
straints and conditions) are often not articulated well if not directly associated with 
a program feature and can be overlooked. Rules may be represented by the decision 
criteria, but are seldom validated to verify whether they are consistent with current 
strategic goals. Therefore, the first step in the requirements process is business rules 
discovery. Requirements engineering when perceived from an information perspec-
tive instead of a formal standards perspective offer users a broader view of data 
relationships. There are three immediate benefits to developing semantic models 
including capturing the outline of interactions between platforms in a system to 
prevent solution development in data silos, the identification of requirements gaps 
to reduce semantic debt, and the derivation of business rules datasets.

Creating semantic models in requirements engineering explores whether the 
design of a semantic decision support system can provide validation support, 
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identify requirements, and reduce requirements overhead contributing to semantic 
debt. The model acts as a decision support system to allow analysts to view inter-
actions between systems allowing them to justify the need for new development 
and pinpoint issues appearing in legacy systems. Since dependence on these legacy 
tools is defined to be critical according to their role in the workflow, replacing or 
changing these systems must be carefully considered. The discovery of business 
rules or data quality issues using the decision support system can help analysts plan 
projects if the design works as intended. The analysis of semantic techniques is 
still in a growth phase, and novel approaches in applying these techniques for web 
development and data transformation are valuable areas to research since they are 
not yet generally understood by mainstream data analysts. Using semantic models 
in requirements engineering and development offers an opportunity to test the value 
of these techniques in development today.
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9.1  Introduction

Nowadays, the web has shifted into another dimension: the semantics. The language 
of the web, HTML, has embraced semantics with version 5. Almost all of the fields 
have their own ontology. Since I have been an academic for over two decades, I have 
learned that there are few serious developments in terms of university ontologies, 
which led me to build one.

Several tools and methods have been developed to build ontologies. Rather than 
focusing all the attention on information, we also focus on the core concepts in us-
ing the ontology and its relationships. The most well-known and widespread tool 
for editing and developing ontologies is Protégé. Its graphical user interface (GUI) 
lets the developers concentrate on the concept rather than thinking about the syntax 
of the output language. Protégé has a pliable data design and extendible plug-ins. 
In this chapter, the definition of the university concept is clarified through a univer-
sity ontology. Creating a university ontology with Protégé is the objective of this 
chapter.

Ahlia University is taken as a case study for the development of the ontology, 
and several phases are outlined, e.g., superclass, hierarchy of subclasses, creating 
subclasses instances, retrieving queries, graphs, and visualization views. The case 
study is limited to few departments and courses, as an example. This implies that 
since the model works for one university, it will work for other universities, with 
minor changes.

This chapter is organized as follows: In the next section, I discuss the steps 
required for building the university ontology. The following section presents my 
case study: “Ahlia University.” Next, some queries are applied and exposed on the 
Ahlia University ontology. Finally, I conclude this chapter with a discussion.
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9.2  University Ontology

There are many data shared between organizations and organization divisions, 
which can be used in building up the university structure. Yet there did not seem 
to be a suitable shared terminology for presenting such information in linked data. 
Based on the need of a clear structure for any organization, I have developed univer-
sity ontology as the basic structure model to share between all organizations who do 
not like to start from scratch. In fact, a lightweight, highly reusable ontology, which 
did not try to model particular organizational structures, is required.

 Building the Ontology

To increase the ontology efficiency, I need to ensure that ontology is defined as 
a formal specification, explicit and consensual conceptualization of a domain 
(Guarino 1998). Definitely, the development and design of ontology helps people to 
recognize and answer the questions about domains (Ghorbel et al. 2008). It compris-
es a group of concepts related together in an organizational method. In this chapter,  
I focus on specialized ontologies, that is, domain ontology and task ontology. These 
are reusable ontologies within a given domain, but not from one domain to another, 
while all tasks performed in a given domain are within the ontology (Guarino 
1998). According to Mizoguchi et al. (1995), the ontology task is to describe a cur-
tain vocabulary related to a task. The reuse of ontology is critical. I have to build the 
ontology from scratch by following a known methodology.

 Ontology Development Methodology

To ensure the consistency of ontology structure and to increase its efficiency during 
development, I have followed the guidelines from many sources. First, I have stud-
ied how to build ontology by using a guideline from Noy and McGuinness (2001) 
and Zhao et al. (2004). The guide was built using Protégé ontology editor, which 
is the same tool that I have used for the university ontology development. I have 
studied a few ontology development methodologies, and finally I have decided to 
follow a recently defined methodology from Gruninger and Fox (1995), incorporat-
ing with the guide from Mizoguchi et al. (1995). This ontology development covers 
the steps from the initiation phase to the data retrieval phase of ontology. Specifica-
tion and conceptualization (Gruber 1993) are the two main steps available in this 
methodology. Obtaining knowledge about the domain is the objective of the first 
step. Moreover, organizing, i.e., structuring the information using exterior demon-
strations independently from the environment and implementation language is the 
second objective.
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Specification

The scope puts boundaries around the ontology; requiring defining what has to be 
involved. This step was suggested for an advance stage in the ontology develop-
ment: A guide to create the first ontology (Guarino 1998) is included at this stage 
to minimize the process of analyzing concepts and data, particularly for the range 
and difficulty of the university model ontology. During the iterations for following 
the verification, the process will be adjusted when needed. I have considered the 
needs for elaborating the university structure project with theories related to higher 
education organizations. It is the first prototype, and the considered concepts are not 
related to all divisions in an organization. Therefore, it includes general concepts for 
the university abstract model.

Previous domain analysis was necessary to be done as the first step. In this work, 
the presentation for framing the university structure and the relevant documents 
were collected from a number of organization charts of different universities. Fur-
thermore, advice from management leaders of universities and faculty were taken 
into consideration. The Gruninger and Fox methodology point of view was taken 
into account. Problems arise when people need information but the systems do not 
provide it. The motivation scenarios are followed. In addition, templates have been 
used in order to define motivation scenarios and link them to the people involved. 
A set of solutions to all problems is made available whenever the semantic features 
can be resolved.

 Conceptualization

In this step, the terms used in representing the most important entities in the univer-
sity structure are enumerated as classes shown in Table 9.1. Definitions of the main 
classes are listed after the table. All the concepts appearing in the figure mostly 
focus on the main departments in any University, e.g., AcademicAffairs, Adminis-
trativeAffairs, President, Deans, Chairs, Faculty, Student, Courses, Library, Gym, 
WebSite, BookStore, etc.

Class Subclass
Courses Graduate courses

Under graduate courses
Programs Bachelor program

Master program
PhD program

Person Employee
Students

Table 9.1  Key item list as class 
and subclass
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• The class “Courses” is defined as the basic two categories of the courses avail-
able at most universities, “GraduateCourses” and “UnderGraduateCourses.”

• The class “Programs,” defined as the possible offered programs by universities 
at their start or at later stages of their program. And the three subclasses are, 
“BachelorProgram,” “MasterProgram,” and “PhDProgram.”

• The class “Person” divides the people at the university to two types: Employees 
(staff and faculty) and Students.

• The main relations, attributes, and properties have been created as shown in 
Table 9.2. Figure 9.1 contains the object properties according to the relationship, 
which I want to add between the classes “Professor” “advises”, and the courses 
“areOfferedBy.”

Table 9.3 illustrates the relationship between individual to data literal, for example, 
the Course has “CRN,” “coursename,” “creditHours.”

In a general usage, a restriction can be a general form of instructions that sets 
a limited border defined for a function or a type of process. These relations were 
captured in a semantic diagram to represent the relations between components.

 Property and Relationship

Since having only classes cannot answer all the enquiries, defining links inside 
or between the classes is needed (such as properties). In the example, I have used 
property, which shows a relationship between individual and individual, a relation-
ship between Individuals at university ontology, such as property, and a faculty as 
an advisor of student. I have also defined Object Properties, Domain, and Ranges, 
for example:

In the top layer of the university ontology there is: “Person,” “course,” “commit-
tee,” “AcademicAfairs,” “Admission,” “University,” etc. In the middle layer of 
the university ontology there is: “AdminStaff,” “Student,” “articles,” “books” and 

Class name Relation Class name Inverse relation
Department Has head Chair Is head of
Students Take Courses Are taken by
Faculty Publishes Articles Is published by
Classes Attended by Students Attends

Table 9.2  Relation between 
the university model classes
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“subject,” “library,” “colleges” and “departments,” etc. And the bottom layer in-
cludes: “Chair (Professor),” “Teaching Assistant,” “Dean,” “Director,” “Visiting 
Professor” and “Professor Types,” etc., for example:

Fig. 9.1  University Ontology Classes Hierarchy

 

Class Property
Faculty Email address

Mobile
Course CRN

Course name
Credit hours

Table 9.3  University ontology 
object property
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The object Property—TeacherOf; its domain is in Faculty and range in Course. It 
means that TeacherOf Property value will be only just opposite to the isFaculty 
property because has Property is always inverse to is Property. The relation of Inclu-
sion (rdfs: subPropetryof), equivalent (owl: equivalentPropetry), and Inverse (owl: 
inverseOf), and the limitation of function (owl: FunctionalPropetry) and inverse 
function (owl: InverseFunctionalProperty).

Since the conceptual model of the ontology has been created, the next step is to 
define related instances. For each instance, I have described: a name, the name of 
concept it belongs to, and its attribute values. The instance (individual) is described 
first, then the right class was selected, and finally its instances for the class are cre-
ated. Use rdf: type to state its class, and one instance can belong to many classes or 
many class belongs to same instances, for example:

Here it defines an individual or instance AdvancedDatabaseSystems, which belongs 
to the class “course” and “student.” In which rdf: Type has appeared twice, it shows 
that this instance belongs to two classes at the same time.

 Implementation

I have chosen Protégé 4.1 (Protégé 2013) in order to implement the ontology, 
due to its extensibility, quick prototyping, and application development. Protégé 
ontologies are easily exported into different formats including Resource Descrip-
tion Framework (RDF) schema, Web Ontology Language (OWL), and Top Braid 
Composer (2013), which I have used at later stages in querying. Particularly, I have 
implemented the university ontology in OWL. Structured relations are transformed 
into bidirectional relations while modeling in OWL. Moreover, only relations that 
are necessary in answering competence questions were modeled in ontology.

 Verification

Consistency validation and classification are verified by using the Reasoner. 
During the process of charging classes and attributes, I have used incremental and 
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continuous verification to avoid future propagation errors. In the Reasoner, any class 
which is unsatisfiable is shown in red color indicating that error exists. At this point, 
it is very important to see how classes are defined (disjoint, isSubclassOf, Partial 
Class, Defined Class, etc.) and how are their restrictions (unionOf, allValuesFrom, 
etc.). Classification process is either for the whole ontology or for selected subtrees 
only. When the test is completed, the whole ontology, errors were listed, moving 
from bottom- to upper-level class. To compare the ontology execution with its con-
ceptualization, graphs were generated using OWLViz (Graphviz 2013) and OntoViz 
plug-ins (OWL Web Ontology Language Overview 2013).

9.3  Case: Ahlia University Ontology

Ahlia University ontology defines elements to describe Ahlia University and its ac-
tivities, which can occur between Departments, Faculty, and Students. I have built 
the ontology based on the organization chart available on the university website, 
and all data used for testing my work were also taken from the catalogue available. 
Since my base of the ontology was the university ontology, I only had to make 
some changes on the classes following the organization chart. Concepts (classes) 
such as: Departments, Degrees, Deans, Chairs, Faculty, Student, Courses, Library, 
CareerCenter, WebSite, ICTCenter, Labs…etc., More relations (rules) were added 
between the classes to show how they are related and linked to each other. The Ahlia 
University Ontology also includes relationships between classes. For instance, the 
relationship “teaches/isTaughtBy” is between Faculty class and Courses class. Other 
relationships are added, such as: hasHead/ isHeadOf, hadMember/isMemberOf, etc.

As shown in figure 9.2, some of Ahlia University-related classes and subclasses 
are listed. All the concepts appearing in the figure are mostly focused on the stu-
dents, faculty, and course based:

•	 The	class	“AhliaUniversity”	is	the	highest-level	class	in	this	domain.
•	 The	class	“Assistant”	defined	as	the	basic	two	categories	of	the	position	of	an	

Assistant available at most universities, ResearchAssistant and TeachingAssis-
tant.

•	 The	class	“Professor,”	defined	as	the	rank	type	of	the	faculty	at	the	universities.	
I have listed its subclasses (AssistantProfessor, AssociateProfessor, FullProf and 
VisitingProf) (Fig. 9.2).

Query Retrieval

A very powerful feature tab is available in Protégé, which is the description log-
ics (DL) query. Considered as one of the basic plugins in Protégé 4, and is either 
available as a tab or a widget. It is based on the Manchester OWL syntax, which is 
a query language supported by the plugin, and a user-friendly syntax for OWL DL.  
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A frame which is fundamentally based on the information is collected about a spe-
cific class, individual, or a property, into a single construct (Noy and McGuinness 
2001). Here again, the query retrieval process has gone along the steps depicted in 
previous sections, and illustrated in Figs. 9.3 and 9.4.

DL Query 1

• Which courses does Dr Karim teach?
• Courses_Offered and CourseFaculty value Dr_Al-Hadjar_Karim

 DL Query 2

• The list of available faculty on Saturday
• Course_Faculty and available value Saturday

Fig. 9.2  Ahlia University Ontology Class Hierarchy
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Below, I have listed example of the data retrieved from the ontology using Special 
Protocol and RDF Query Language (SPARQL) query editor, available in TopBraid 
Composer.

Fig. 9.3  Snapshot of the description logics (DL) query 1

 

Fig. 9.4  Snapshot of the description logics (DL) query 2
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Query 

Aside the features of Students class and hierarchy of Faculty class, most classes and 
properties used in this query can characterize it.

 Conclusion

This chapter presents my contribution relative to creating a university ontology. All 
the work done on Ahlia University ontology was a reuse of the university ontol-
ogy that I have developed previously. Ahlia University ontology describes all the 
departments under the university structure and the relationships that exist between 
them. For this chapter, I have shown my modified OWL version of the university 
ontology and added more classes and restrictions based on the university organiza-
tion chart of Ahlia University to get the final OWL of the ontology. The ontology 
was expressed in OWL starting from creating classes and subclasses to properties, 
restrictions, and instances, and then the OWL file of the ontology was imported 
into TopBraid Composer for more powerful data retrieval software, to get the data 
needed from the ontology easily with short SPARQL queries. DL query in Protégé 
is also used for querying.

With ontologies, the focus is on relationships between concepts and not informa-
tion itself. This work demonstrates the relations of university modules in the form 
of university ontology.

All the attention was given to the core concepts of using ontology and its rela-
tionships rather than information. As a future work in the domain of ontology in 
higher education, one can consider the following topics. The list may include but is 
not limited to:

• E-learning applications ontology
• Ontology sharing and reuse
• Graphs ontology
• Enterprise ontology
• Ontology matching and alignment
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10.1  Introduction

Complex event processing (CEP; Luckham 2001) is an enabling technology used 
to achieve actionable, situational knowledge from huge amounts of events in real 
time or almost close to real time. Detection, prediction, and mastery of complex 
events from event streams and event clouds are crucial to the competitiveness of 
networked businesses, the efficiency of the Internet of Services, and dynamic dis-
tributed infrastructures in manifold domains such as finance, logistics, automotive, 
telecommunication, and life sciences. The detection of complex events in organiza-
tions is used, for example, for optimized management of business processes and 
real-time decisions. One of the fundamental requirements of CEP systems is the 
time-critical processing of events. The efficient processing of events can be seen 
as fundamental quality-of-service (QoS) requirements of event processing systems 
(Chakravarthy and Jiang 2009). This real-time CEP behavior is considered as one 
of the main prerequisites for many highly relevant technology trends such as predic-
tive business, real-time adaptive enterprise, or autonomic systems. CEP is now one 
of the fastest growing segments in (distributed) enterprise middleware software, 
with products provided by major software vendors and many start-up companies 
around the world. CEP has many use cases such as business activity monitoring 
(BAM), healthcare, fraud detection, smart offices/cities, logistics and cargo, infor-
mation dissemination, event-driven adaptive systems, and supply chain manage-
ment (Etzion and Niblett 2010).

Work performed while Kia Teymourian was affiliated with Freie Universität Berlin.
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Often complex events stem from complex factors and cannot be simply detected 
in the business activity workflows by using low-level syntactic definitions of event 
detection patterns. The permanent streams of low-level events in different business 
sectors need real-time semantic CEP (SCEP) that can profit from the large amounts 
of knowledge stored in the enterprise knowledge bases (KBs). The promises of the 
combination of event processing and semantic technologies are that these SCEP en-
gines can use semantic background knowledge for defining more expressive event 
detection patterns, for understanding what is happening in terms of events and situ-
ations, and for knowing what rule-based actions they can invoke. The challenge 
lies in the combination of distributed real-time (big) data processing and semantic 
reasoning with background KBs.

This chapter first gives an overview on syntactic event processing techniques 
and then addresses the extension with semantic background knowledge, which 
leads to SCEP. It addresses the problem of optimized semantic querying, fusion and 
enrichment of real-time event streams with background knowledge, and the expres-
sive reasoning with such enriched events in the higher layers of rule-based event 
processing and reaction functions.

10.2  Overview on Event Processing

Different event processing methods are developed to detect complex events, speci-
fied by different complex event expressions, from raw and primitive simple events. 
Different approaches are developed for event detection. A survey and requirements 
analysis about event processing methods are provided in Schmidt et al. (2008). 
A standardized reference architecture and typical event patterns are presented in 
Paschke et al. (2012a). A reference model and an overview on standards in CEP are 
given in Paschke et al. (2011).

Before we start with the description of different event processing approaches, it 
is important to have a better understanding of the main event processing concepts. 
The Event Processing Technical Society (EPTS) provided a reference architecture 
(Paschke et al. 2012a), reference model (Paschke et al. 2011), and glossary (Luck-
ham and Schulte 2011) that defines the main concepts of event processing. “Event 
is anything that happens, or is contemplated as happening.” Event or event object 
(aka event message, event tuple) is an object that represents, encodes, or records 
an event, generally for the purpose of computer processing. A complex event is an 
event that summarizes, represents, or denotes a set of other events. Event pattern is 
a template containing event templates, relational operators, and variables. An event 
pattern can match sets of related events by replacing variables with values.

Existing methods for event processing can be categorized into two main cat-
egories: rule-based approaches (Paschke and Boley 2009; Paschke and Kozlenkov 
2009) and non-rule-based approaches (aka logic-based or non-logic-based ap-
proaches). Some of the non-rule-based event processing approaches are based on 
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formalizations, such as finite-state automata (Gehani et al. 1992a, b), event graph 
(Chakravarthy and Mishra 1994; Paton and Diaz 1999), and Petri nets (Gatziu and 
Dittrich 1994). Various research prototypes and commercial products exist, which 
implement these event processing methods. In the following section, we briefly 
review the core event processing methods and some of the related implementations.

 Finite-State Machine

Finite-state machine (FSM; aka finite-state automata) provides a simple compu-
tational model. A state machine can be in one of the finite number of states, and 
at a specific time point it is in only one of these states. In event processing, state 
machines can be used for event detection because the raw event stream can be con-
sidered as input sequence and the output of complex events can be considered as the 
writing of symbols. State machines are used in event processing in approaches com-
ing from active databases such as Ordinary Differential Equation (ODE; Gehani 
et al. 1992a, b), COMPOSE (Gehani et al. 1993), Swiss Active Mechanism-Based 
Object-Oriented Database System (SAMOS; Gatziu and Dittrich 1992), and Active 
Directory Application Mode (ADAM; Diaz et al. 1991). In the following paragraph, 
we briefly describe recent event processing approaches (or CEP systems) that use 
finite-state machines.

Other event processing systems are SASE (Gyllstrom et al. 2006) and SASE+ 
(Diao et al. 2007) that are on nondeterministic finite automaton (NFA). SASE+ 
provides some of the typical event processing operators such as SEQUENCE, NE-
GATION, and sliding window operators. The event processing language of SASE+ 
provides Kleene closure (aka Kleene star or Kleene operator) over event streams 
that find multiple applications in radio frequency identification (RFID) data streams.

One further automaton-based system is Cayuga (Brenna et al. 2007) which is a 
research project at Cornell University Cayuga (http://www.cs.cornell.edu/bigred-
data/cayuga) that provides a query language for the expression of complex event 
patterns called Cayuga Algebra. It also supports some special performance optimi-
zation such as indexing and garbage collector.

Esper (http://www.espertech.com/products) is an event processing engine that 
uses finite-state automata for event detection. Esper provides an event query lan-
guage which has operators similar to Continuous Query Language (CQL), SELECT, 
FROM, and WHERE, and supports correlations and Structured Query Language 
(SQL)-like queries over event streams (Esper event processing language is a script-
ing language and supports some operators from CQL).

Esper also provides operators for the specification of event detection patterns 
and special operators to define the event stream consumption policy like EVERY 
operators that specify precisely how the event stream should be matched to the pat-
tern. Event detection conditions can be specified over sliding time windows and can 
be used to trigger a reaction based on them. These actions are implemented in the 
Java programming language as Esper itself is written in Java.
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 Graph-Based Approaches

Chakravarthy et al. (1994) propose the use of the event detection graph (EDG) for 
the detection of composite events. In this approach, the event detection expression 
(complex event query) is built up as a graph pattern like a tree structure, so that dif-
ferent event types are defined as the leaves of a tree and nodes are the event opera-
tion algebras such as AND, OR, SEQ, and NOT. The events are then streamed into 
this structure, and in each node one of the rules are executed on the event stream. 
Gatziu and Dittrich (1994) propose the use of colored Petri nets (Jensen 1996) in the 
SAMOS system for the detection of composite events.

 Rule-Based Approaches

A general introduction on rules and logic programming on the Web is given in 
Paschke (2009). Rule-based event processing is addressed in Paschke and Boley 
(2009) and Paschke and Kozlenkov (2009). Several industrial event processing 
products use rule engines for event processing without permanent storage of events 
(the storage of historical event data is only optional for other purposes). Rule-based 
event processing engines can process events in real time while keeping the com-
plete rule set (including facts) in the main processing memory. However, without 
any further optimization of their semantic reasoning capabilities, these approaches 
cannot achieve high scalability and high performance, when they have to process 
huge amounts of semantic background knowledge (similar to static reference data) 
for semantic event detection. The main problem here is that they have to keep the 
whole KB in the main processing memory. This will be infeasible when the back-
ground knowledge is very large, for example, all the background knowledge about 
companies traded on the stock exchange market worldwide.

One of the rule-based approaches is introduced in Paschke (2007) which pro-
poses a homogeneous reaction rule language for CEP. It is an approach combining 
event and action processing, formalization of reaction rules in combination with 
other rule types such as derivation rules, integrity constraints, and transactional 
knowledge.

In addition, several event processing languages have been proposed such as 
Snoop (Agrawal et al. 2008), Cayuga Event Language (Brenna et al. 2007; Demers 
et al. 2006), SASE (Gyllstrom et al. 2006), and XChangeEQ (Bry and Eckert 2007). 
Some of the commercial CEP products are TIBCO BusinessEvents (http://www.
tibco.com/products/event-processing), Microsoft StreamInsight (http://blogs.msdn.
com/b/streaminsight/), and Sybase CEP (http://www.sybase.com/products/). Reac-
tion RuleML (Paschke and Boley 2009; Paschke et al. 2012b; Paschke 2014) is a plat-
form-independent rule interchange standard for reaction rules and rule-based CEP.

Some of these CEP systems can integrate and access external static or refer-
ence data sources. But these systems do not provide any (semantic) inferences on 
external KBs and do not consider reasoning on relationships of events to other non-
event concepts.

http://www.tibco.com/products/event-processing
http://www.tibco.com/products/event-processing
http://blogs.msdn.com/b/streaminsight/
http://blogs.msdn.com/b/streaminsight/
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Prova (Prolog + Java http://www.prova.ws/) (Kozlenkov et al. 2006) is a rule lan-
guage and a rule engine. Prova provides an open-source rule language whose design 
is based on reactive messaging, and a combination of imperative, declarative, and 
functional programming in serial Horn rules. One of the important design principles 
in Prova is reactive messaging that allows the organization of several Prova rule 
processing engines into a network of communicating agents. A Prova agent is a rule 
base that is able to send messages to other Prova agents by using primitive message-
passing primitives. The reactive messaging functionality in Prova makes it possible 
to build workflows based on communicating distributed Prova agents. In both send-
ing and receiving message primitives, five different parameters are sent between 
the agents. The parameters are: a conversation ID of the message (XID); name of 
the message-passing protocol (Protocol); Destination (on sending) or Sender (on 
receiving); the message type broadly characterizing the meaning of the message 
(Performative); and the message itself, a list containing the actual content of the 
message (Payload). The event processing functionality in Prova uses reactive mes-
saging and rule-based workflows. An event processing graph can be mapped to a 
reactive message-passing workflow into Prova. Prova uses metadata attributes like 
(AND, OR) to build the workflows and thus event algebra operations.

One of the recent rule-based systems is Event-Driven Transaction Logic Infer-
ence System (ETALIS; Anicic et al. 2011a). ETALIS is a rule-based stream reason-
ing and CEP. ETALIS is implemented in Prolog, and it uses the underlying Prolog-
inference engine for event processing. A major distinction between ETALIS and 
Prova is that ETALIS is a meta-program implemented on top of a Prolog system 
with only one global KB in which every piece of knowledge, such as incoming 
events, is globally applied. Prova instead allows for local modularization of the KB 
and scoped event processing states within complex event computations and event 
message-based conversations. This leads to a branching logic with local state tran-
sitions as it is common, for example, in workflow systems and distributed parallel 
processing.

 RETE Algorithm in Event Processing

The RETE algorithm provided by Forgy (1979) is a logical matching algorithm for 
matching data tuples (or facts) to the rules in a pattern-matching system. The RETE 
algorithm is based on the forward chaining inference with facts and rules (Paschke 
and Boley 2009).

The RETE algorithm builds directed acyclic graphs as a high-level representa-
tion of the given rule sets, which are generated in run-time and includes objects 
such as nodes of the network. All of the operations on data tuples such as relational 
query processor, performing projections, selections, and joins are executed on the 
network of objects.

In RETE, facts are loaded into the memory, and the rule engine creates work-
ing memory elements (WMEs) for each of the facts. Each WME includes a set 
of n-tuples. The RETE network is divided into two subnetworks: Alpha and Beta 
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networks. The left side of the network is called Alpha network and includes the 
network part that is responsible for selecting individual WMEs based on condi-
tional matching to WME attributes. Conditional matching may include several tests 
within the network for the testing of several attributes. The right side of the network 
is called Beta network and performs the join operations on WMEs. The join opera-
tions are down on the interim results from two other nodes, and the join result is 
stored in a beta memory node. The results from the join nodes are processed in the 
final stages by terminal nodes, so that they produce the final agenda of the rule set 
given to the rule engine.

The RETE algorithm has been used as an event processing engine, for example, 
Walzer et al. (2007) because the inserted facts can be considered as event messages 
that arrive into the system as data stream, and the event detection pattern is the giv-
en rule set. RETE has also been used in commercial event processing products such 
as TIBCO Business Events (http://www.tibco.com/products/event-processing/) and 
Drools Fusion (http://www.drools.org/).

Miranker (1987) describes the advantages and disadvantages of the RETE algo-
rithm. The main advantage of RETE is that the large amount of interim results and 
states stored in the memory nodes minimizes the number of comparisons of two 
WMEs, and the stored similar results are reused and shared with other WME tests. 
By sharing the structural similarity in rules, RETE can speed up the rule-matching 
process.

The drawbacks of the RETE algorithm are twofold: the primary disadvantage 
of RETE are WME updates, for example, removal of one of the WMEs causes a 
restart of the whole calculation and repetition of the entire sequence process upon 
its addition to the network. The second disadvantage is the storage of states in mem-
ory nodes which is highly memory intensive and may be combinatorial expensive. 
Thus, sharing the network structure might not be realizable in a parallel environ-
ment due to the communication costs. The performance of the original RETE algo-
rithm is improved by further optimization approaches such as RETE II (http://www.
pst.com/reteII.html).

 Storage-Based Event Processing

The basic and more naive approach might be storing incoming event data in a da-
tabase and steadily querying and pulling the database. The main disadvantage of 
this approach is that processing is possible only after storage and that the database 
is pulled with each new incoming event. This approach can work for use cases 
which do not have high event throughput and huge amount of background knowl-
edge to process. The advantage of this approach is that a complete reasoning on the 
whole knowledge inventory is possible. Scalability and real-time processing are the 
problems of this approach which makes it impossible to use it for time-sensitive 
use cases such as algorithmic trading or fraud-detection systems. The usage of dis-
tributed databases can improve scalability, but it can negatively affect real-time 
processing latency.
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Glombiewski et al. (2013) showed that a standard database can be used for event 
processing by using data access technologies such as Java database connectivity 
(JDBC; http://www.oracle.com/technetwork/java/javase/jdbc/index.html; JDBC is a 
Java-based data access technology). Their experiments showed that such event pro-
cessing systems can handle small- and medium-sized event processing workloads.

In recent years, emerging technologies in computer hardware technology make 
it possible for main memory hardware to be cheaper than ever before (Stonebraker 
et al. 2007). Schapranow and Plattner (2013) describe blade servers as providing 
roughly 500 Gb of main memory.

The idea behind in-memory databases is to keep the complete database in the 
main memory so that database management systems (DBMS) can gain better per-
formance than conventional disk-based database techniques (Willhalm et al. 2009). 
Many in-memory database prototypes or commercial systems have been developed, 
such as Hyper (Kemper et al. 2012), MonetDB (Manegold et al. 2009), H-Store 
(Stonebraker et al. 2007), and HANA (Willhalm et al. 2009).

Also, several data stream processing systems have been proposed so far such as 
Telegraph (Chandrasekaran et al. 2003) and Stream (Group 2003). Data stream pro-
cessing systems aim at handling continuous database queries over high-throughput 
data streams. These systems are similar to event processing systems and have simi-
lar properties (Chakravarthy and Jiang 2009).

 Data Stream Processing Systems

In the following, we review some of the most relevant data stream processing sys-
tem. STREAM, the Stanford Stream Data Manager (Group 2003), is a data stream 
management system (DSMS) that uses a declarative rule language called CQL. It 
is an extension of SQL for querying streams over sliding windows which are either 
time- or tuple-based data windows.

The semantics of CQL is composed of three main parts:

• A relational query language that includes relation-to-relation operators
• A window specification language that can specify data windows using stream-to-

relation operators
• A set of relation-to-stream operators for the specification of interactions from the 

relations to the stream

Kraemer and Seeger (2004) propose an infrastructure called Public Infrastructure 
for Processing and Exploring Streams ( PIPES) for providing flexible and extensible 
DSMS building blocks. PIPES covers the operational semantics and functionality of 
the CQL. The language provides options for query optimization which is based on 
approaches adopted from the temporal database community. Query optimizations 
enable applications of temporal transformation rules within the context of streams.

Chandrasekaran et al. (2003) propose another DSMS called TelegraphCQ which 
uses a continuous query language based on stream-only approach. TelegraphCQ 
includes entities named Eddies that are used for routing tuples through a network of 
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query modules. Continuous queries can be specified over sliding time-based win-
dows. Telegraph is implemented based on the PostgreSQL (http://www.postgresql.
org/) database system and modifies it for the processing of streaming data.

Gigascope is another DBMS provided by Cranor et al. (2003). Gigascope is 
specially developed for network applications such as traffic analysis, intrusion 
detection, router configuration analysis, network research, and network monitor-
ing. Gigascope uses a query language called geographic structured query language 
(GSQL) which is a pure stream query language following the SQL syntax, and it 
supports join, selection, aggregation, and an additional stream merge operator.

Another, DBMS is Aurora (Abadi et al. 2003) whose aim is to process streams 
of data coming from various sources. Aurora provides a stream query algebra called 
SQuAl that includes seven primitive operations, for example, to select, filter, and 
aggregate.

10.3  Semantic Complex Event Processing

Semantic models of events can improve event processing quality by using event 
metadata in combination with linked data, ontologies, and rules (semantic KBs). 
In recent years, huge amounts of public background knowledge became available 
on the Web as Linked Open Data (LOD; http://linkeddata.org) and ontology and 
rule repositories. (The term “semantic complex event processing” can be confus-
ing. It can be confused with the formal semantics of event detection rules. With the 
term “semantic,” we refer to the usage of ontological background knowledge about 
events and other resources in the application area.) Organizations can access these 
background data, filter, enrich, and integrate them with the organization’s internal 
knowledge to build high-quality and trustworthy background knowledge about their 
specific business application domain.

The combination of event processing and semantic knowledge representations 
can lead to novel semantic-rich event processing engines. These intelligent event 
processing engines can understand what happens in terms of events, can (process) 
state and know what reactions and processes they can invoke, and furthermore, 
what new actions/events it can signal. The identification of critical events and situ-
ations requires processing vast amounts of data and metadata within and outside 
the systems.

One of the promising areas of application is SCEP (or synonym knowledge-
based CEP; Teymourian and Paschke 2009a, b, 2014; Teymourian et al. 2012), 
which is the main subject of this chapter. Complex events are events which are not 
explicitly defined before event processing, but a system user can describe them in a 
high level and abstract event pattern language based on background knowledge of 
the target application domain.

In most of the CEP use cases, the usage of background knowledge can improve 
the quality of event processing. The CEP system can profit from using semantics 
of events in combination with existing knowledge about the target application do-
main. The benefits of the fusion of ontological background knowledge with event 
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processing are the same as using metadata in data-driven applications, such as ex-
tracting more relevant and useful complex events and flexibility that enables in-
teroperability and extensibility.

Complex events, patterns, and reactions can be precisely expressed and can be 
directly translated into business operations. New business changes can be integrated 
into CEP systems in a fraction of the time, while complex event patterns are inde-
pendent of actual business and are defined based on abstract business strategies.

Some of the motivating examples for SCEP use cases are presented below to 
illustrate the benefits of using background knowledge in the domain of CEP. One 
example of complex events can be found in eHealth. A patient in a critical, life-
threatening situation can be seen as one such complex event. Patient can be moni-
tored at hospitals (Wienhofen and Toussaint 2010) or at home using different body-
sensing devices, so-called RFID readers. These technologies make it possible to 
capture huge amount of streaming data about the vitality signs of patients. The 
exact diagnosis whether a patient is in a critical situation can only be done by the 
medical staff. However, the medical staff can be informed about potential critical 
situations, so that they can react faster. A system can support these decisions and 
detect complex events based on the event stream of sensor data which are emitted 
from different body sensors and other tracking devices.

A classic example in the area of event processing and data stream processing 
is the real-time analysis of stock market events generated by the stock market ex-
change. The decision to buy or sell company shares depends on real-time informa-
tion and background knowledge about different companies. Stock brokers develop 
their negotiation strategies based on chunks of information that they gather from 
their resources. Their strategy may depend not only on stock market prices and 
the volumes handled but also more on a combination of the companies’ attributes 
and relationships (e.g., to other organizations or to their customers) in a specific 
temporal context. A buy or sell decision can be based on market status, company 
products, company staff, and all of the situational attributes of companies. Most 
of today’s monitoring and automated handling systems work on the basis of the 
syntactic processing of price/volume event stream, but not based on background 
knowledge about the companies. For example, a stock market broker might be 
interested in the shares of companies which have production facilities in Europe, 
produce products from iron, have more than 10,000 employees, are at the moment 
in restructuring phase, and their price/volume has been increasing continuously in 
the past 5 min.

They can only deal with it in the case of increasing/decreasing of prices/volume 
around predefined levels. The brokers might be able to describe it in a higher level and 
more abstract language, which can be processed by intelligent processing systems.

 Issues and Challenges

The processing approach of current event processing engines often relies on the pro-
cessing of simple event signals, and events are merely implementation issues. The 
existing approaches provide only inadequate expressiveness to describe background 
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knowledge about events and other resources in background knowledge which are 
related to event processing. They do not provide adequate description methods for 
complex decisions, behavioral logics including expressive situations, pre- and post-
conditions, complex transactional (re-) actions, and work-flow-like executions.

All of these are needed to declaratively represent real-world domain problems on 
a higher level of abstraction. The identification of critical complex events requires 
processing vast amounts of data and metadata within and outside the event pro-
cessing systems. For some of application scenarios, an intelligent event processing 
engine is required which can understand, what happens in terms of events and can 
(process) state and know what reactions and processes it can invoke, and which new 
events it can signal.

The fusion of event processing approaches and knowledge representation meth-
ods can lead to more knowledgeable event processing systems. However, the exist-
ing knowledge representations and inference techniques are not directly suitable 
for event processing applications because of the different requirements of event 
processing applications such as real-time processing of events.

Knowledge representation for events goes beyond defining event types and their 
hierarchies. The relationships of events to other nonevent concepts in the appli-
cation domain are part of specifying complex events. Background knowledge for 
event processing can be integrated from the domain- and application-specific on-
tologies for events, processes, states, actions, and other concepts. Specific domain, 
task, and application ontologies need to be dynamically connected and integrated 
into the respective event processing applications, which also leads to a modular in-
tegration approach for these ontologies. Capturing domain-specific complex events 
and generating complex reactions based on them are fundamental challenges.

The main problem is the utilization of background knowledge about events and 
other nonevent concepts and objects for a SCEP. This integration enhances the ex-
pressiveness of event processing semantics and makes the event processing systems 
more flexible. More precisely, we consider one or more event streams which in-
clude highly frequent events of different types and one or more KBs, which include 
background knowledge about the events and other related resources, in the target 
application domain. Because background knowledge can be huge, we consider that 
the metadata has to be stored in external KBs and cannot be handled completely in 
the main memory of a single event processing engine.

Lack of Knowledge Representation Methods Event processing needs a knowledge 
representation formalism. The current event processing systems do not provide any 
semantic knowledge representation methods for events, and there is no precise logi-
cal semantics about other related concepts and objects in the target domain.

A formal specification builds a stable foundation which is needed for descrip-
tion and reasoning. A formal specification also avoids semantic ambiguity. Event 
processing needs as its basis a formalization and specification which can describe 
simple events, complex event patterns, situations, pre- and post-conditions, (re-)
actions, and other related concepts. Definition of events by logic is not addressed 
in state-of-the-art syntactic event processing solutions. Events have special char-
acteristics and attributes which differentiate them from other objects. Events can 
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happen. They can be considered as entities which unfold over time and exist only 
over a specific time window. The questions related to this problem are as follows:
How should raw events and complex events (event patterns) be represented based 
on relations of resources in background knowledge? How should knowledge about 
events and event patterns be represented?
Which extensions are required, so that a query language for detecting the com-
plex events based on knowledge graph patterns and event operation algebra can be 
specified?
How should ontologies about events, actions, states, situations, and other related 
concepts be created and managed from the ontology engineering perspective, when 
we have to take into account the restrictions of event processing?

We specify complex event patterns based on the relations existing in background 
knowledge to improve the expressiveness and flexibility (generalization) of the 
CEP patterns.

Limitation of Processing Methods for Fusion of Events and Background Knowl-
edge The existing event processing methods can only detect and process events 
based on their syntax and incoming (temporal) sequence. The expressiveness of 
event processing decreases when the system uses ontological knowledge about the 
events and their environment and combines it with detection and reaction rules.

One of the obvious questions raised in the course of working on event process-
ing systems is the complexity to which event processing engines can detect and 
process complex events. This question is difficult to answer because the capability 
of processing complex events when compared to each other depends on various 
parameters. These parameters can only be defined for specific use cases on a case-
by-case basis. Because of this, the existing evaluations of event processing engines 
have not been able to answer this question properly. The expressiveness of event 
processing increases when the system uses ontological knowledge about the events 
and their environment and combines it with reaction rules.

Event processing approaches should be extended, so that they can include onto-
logical semantics of events, processes, states, actions, and other concepts into event 
processing without affecting the scalability and real-time processing. The research 
questions regarding this topic are:
Is the use of additional semantic background knowledge in event detection queries a 
limitation for real-time event processing or scalability of the event processing system?
To what extent can we optimize the trade-off between the complexity of reason-
ing with expressive background knowledge (e.g., description logics reasoning) and 
real-time event processing? To what extent is the fusion of background knowledge 
with the event data stream a bottleneck for real-time event processing? Is it possible 
to avoid this bottleneck by using query optimization approaches and distribution on 
networks of processing nodes?
What are the assets and drawbacks of event enrichment approaches when they 
should handle huge amounts of background data and run computational intensive 
reasoning on external KBs?
Is it possible to preprocess detection queries to optimize their event detection query 
plans and select the most optimal one based on execution costs?
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 Applications of Knowledge-Based Event Processing

CEP has many different use cases which profit from the real-time event detec-
tion and reactions to detected complex events. Some of these use cases are BAM, 
fraud detection, smart offices/cities, logistics and cargo, information dissemination, 
event-driven adaptive systems, supply chain management, and intelligent systems 
in health care.

The extension of CEP to knowledge-based event processing enables CEP sys-
tems to profit from domain background knowledge and enables a more knowledge-
intensive event processing. In all of the use cases mentioned, knowledge-based CEP 
can improve the quality of event processing and profit from using event semantics 
in combination with existing knowledge about other concepts in the target applica-
tion domain. The benefits of adding ontological background knowledge to the area 
of event processing is the same as data processing.

The use cases of knowledge-based/semantic CEP have different requirements 
for the processing of events and integration of knowledge from external KBs. We 
categorize these requirements in the following points:

Real-Time Processing of Events Different use cases might be different with respect 
to meeting detection deadlines. Some of them might have absolute hard deadlines 
for the detection of events, while some others can tolerate the missing of deadlines, 
or only a predictable number of deadlines.

Scalability of CEP System The ability to process high-throughput event streams in 
addition to the ability to fuse large-size external KBs.

Reasoning on Background Knowledge The level of required reasoning on back-
ground knowledge can be different from use case to use cases.

Expressiveness of Event Detection Queries The complexity of event detection rules 
can be different.

Elasticity of SCEP System The requirement to process data with highly variable 
sizes/dimensions on demand and be able to optimize processing costs.

Requirement for Guarantee Detection In some of the use cases, it is required that 
the system detects all complex events and provides a granite for the detection of 
complex events that have happened. In some other use cases, it is accepted if the 
system provides an approximation of the complex events and does not detect all of 
them, that is, detect some of the complex events, but be able to detect these events 
in real time.

 Example Use Case: High-Level Market Monitoring

In today’s economy, companies are highly interconnected and dependent on each 
other. For example, companies require raw material, suppliers, and financial credit. 
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Businesses are also dependent on laws legislated by politicians. We can see some 
kind of domino effects among companies which impact on their businesses and the 
price of their stock market shares. In the case that the business of one of the compa-
nies changes, the business of the other companies might be affected as well.

The question in this use case is if it is possible to detect complex events accord-
ing to companies’ relations, so that decision-makers can react to them in a timely 
manner. The target is not to predict the start of the domino effect, but to notify as 
soon as the first stones fall.

A complex event detection pattern is shown in Fig. 10.1 which is defined based 
on the background knowledge about companies and company dependencies. It 
shows stock market events and insight into the related background knowledge about 
the companies. We can see that companies have some business dependencies on 
each other, company Y1 produces raw material M1, the business of another com-
pany Y2 depends on this raw material for its production and might have big trouble 
if they cannot supply the material. A third company X3 finances company Y2 and 
might have some financial problems if company Y2 gets material shortage trouble. 
A stock market broker might be interested in this dependency chain and can define 
a complex event detection pattern for this particular complex event without even 
knowing what these companies are. He might be interested to know when the stock 
prices of these three companies start falling. The aim of this event detection is not 
to predict stock market prices, but to be informed when the prices of these three 
companies fall.

Fig. 10.1  Example of relations on stock market events and companies background knowledge
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Suppose Mr. Smith is a stock broker and has access to a stock exchange event 
stream, like those listed in the above example. He is interested in particular kinds of 
stocks and would like to be informed when there are some interesting stocks avail-
able for sale. His particular interest or his particular stock handling strategy can be 
described in a high-level language which describes the interest using background 
knowledge about companies.

Mr. Smith would like to detect complex events using the abstract query listed in 
the following:

As we can see, the above query cannot be processed without having background 
knowledge to define the concepts in this query. Mr. Smith needs an intelligent sys-
tem which can use background knowledge about companies like those listed in the 
following listing. This background knowledge should be integrated and processed 
together with the event data stream in a real-time manner, so that interesting com-
plex events can be timely detected.
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We can also assume that Mr. Smith works for a company and may need to share this 
KB with other brokers. Each of these brokers may be able to gather new informa-
tion about companies and update this KB, for example, the Opel Company is not in 
restructuring phase, or a company has a new chief executive officer.

Raw Event Source Live stream of stock market rates from different stock markets.

Background Knowledge Resource Background data about stock market compa-
nies, e.g., extracted from LOD KBs and integrated into the corporation’s internal 
knowledge.

Complex Event Type Events are defined based on company relations and the rela-
tions of other resources to other companies.

Derived Knowledge Extraction of further company relations.

Real-Time Factor In the case that some of the detection deadlines have been missed, 
financial disadvantages are expected. This can be considered as a soft real-time sys-
tem in which the number of times that the system misses the deadline is predictable.

 Approaches for Knowledge-Based Event Processing

The area of (semantic) CEP is an emerging research area and has been increasingly 
gaining attention in the past years. Some of the recent efforts in the area of event 
processing are focused on the usage of ontological background knowledge to im-
prove event processing expressiveness.

In the following section, we briefly describe these approaches including ap-
proaches for semantic event processing and stream reasoning. We discuss the 
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 differences between these approaches and an approach for multistep event enrich-
ment and detection.

One of the initial efforts on semantic event processing is Semantic Toronto Pub-
lish/Subscribe System ( SToPSS) presented by Petrovic et al. (2003). It extends the 
conventional event processing in publish/subscribe system with some semantic ca-
pabilities. Taxonomies are created that provide a conceptualization of hierarchical 
relationships between the concepts and the synonyms of the concepts. These taxon-
omies are then used in the matching processes of events to user-specified event pat-
terns. By using the taxonomies, the event patterns are expanded to further matches 
of streaming events. The fundamentals of the semantic enrichment of event streams 
are proposed, which have been further extended by using external KBs to include 
complex ontologies with different level of expressiveness.

Zhou et al. (2012) provide another system called SCEPter which can enrich 
event object with additional knowledge extracted by inferences from ontologies. 
Annotations are used to filter or group different event objects by using their event 
types. SCEPter is able to extract single event instances based on their background 
knowledge. The approach provided does not target the detection of groups of events 
based on their relation chain in background knowledge.

 Stream Reasoning and Resource Description Framework 
Processing Systems

Valle et al. (2009) proposed stream reasoning, a novel approach for the integra-
tion of data stream processing, the Semantic Web, and logical reasoning systems. 
Stream reasoning technologies should provide foundations, methods, and tools for 
the integration of streaming world with the more static web of data.

Sequeda and Corcho (2009) propose the concepts and visions of Linked Stream 
Data (LSD) which applies the Linked Data (LOD, http://linkeddata.org) principles 
to streaming data. LSD should allow publication of data stream in combination with 
Linked Data Web.

Several stream reasoning systems and approaches have been developed, such 
as CQELS (Le-Phuoc et al. 2011), streaming SPARQL (Simple Protocol And RDF 
Query Language (SPARQL) is a W3C recommendation and a query language for 
RDF) (Bolles et al. 2008), and SPARQLStream (Calbimonte et al. 2010). In most 
existing stream reasoning approaches, the streaming data are in the Resource De-
scription Framework (RDF) data format, and the stream reasoner has the task of 
providing reasoning on a sliding window of RDF data.

Some stream reasoning languages and processing approaches have also been 
proposed. Barbieri et al. (2010) propose continuous SPARQL (C-SPARQL) and 
event processing SPARQL (EP-SPARQL) (Anicic et al. 2011a) as a language for 
continuous query processing and stream reasoning.

ETALIS provides two event processing languages: ETALIS Language for 
Events (ELE) and EP-SPARQL. ELE provides features such as classic event op-
erators and count-based sliding windows. EP-SPARQL (Anicic et al. 2011b) is a 
language for complex events and stream reasoning. The formal semantics of EP-
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SPARQL is along the same lines as SPARQL (RDF Query Language SPARQL 
http://www.w3.org/TR/rdf-sparql-query/). EP-SPARQL can be used in ETALIS for 
reasoning on RDF triple stream (event stream can be mapped to RDF stream). EP-
SPARQL provides additional operators such as SEQ, EQUALS, OPTIONALSEQ, 
and EQUALSOPTIONAL which can be used to define complex pattern to detect 
complex events in the stream of RDF data. EP-SPARQL can be used with the ETA-
LIS event processing engine.

Le-Phuoc et al. (2011) present Continuous Query Evaluation over Linked 
Streams (CQELS), a native and adaptive query processor for unified query process-
ing over RDF stream and linked RDF data. CQELS processing engine can optimize 
query processing by continuously reordering of operators according to some heuris-
tics about the streaming data. Furthermore, the external disk access is improved by 
data encoding and caching of intermediate query results.

The CQEL query language (https://code.google.com/p/cqels/wiki/CQELS_lan-
guage) provides window operators that allow specification of sliding window over 
RDF Streams.

Linked Stream Benchmark (LSBench) (Le-Phuoc et al. 2011) benchmarks 
CQELS against C-SPARQL and JTALIS (the Java wrapper for ETALIS). SRBench 
(Zhang et al. 2012) is a general purpose benchmark for streaming RDF engines. The 
benchmark uses weather sensor data, since they are inherently stream based and 
time bound, to model a realistic use case.

Although some of the existing approaches either directly work on RDF streams 
or allow querying external data sources, they do not address the detection of seman-
tic enriched events on the basis of huge amounts of existing background knowledge. 
Most of the systems are designed for main memory event processing with pure syn-
tactic event pattern matching or simple RDF pattern matching, without any further 
expressive semantic support.

It is possible to address the SCEP, the problem as a hybrid approach—expres-
sive reasoning on background knowledge to be used in high-performance, real-
time event processing. None of the existing systems is optimized for such hybrid 
event processing over huge amounts of semantic background knowledge (low fre-
quently changing) and high-throughput event streams. In the following, we discuss 
the trade-off between high expressiveness of used background knowledge and high 
levels of computational complexity, which has a direct effect on the efficiency and 
scalability needed in real-time event processing.

10.4  Fusion of Event Stream and Knowledge

For the realization of SCEP, the required knowledge can be considered as an exter-
nal KB which can manage background knowledge (e.g., conceptual and assertional, 
TBox, and ABox of an ontology) about events and other nonevent resources. The 
use of an external KB in event processing allows detecting events based on reason-
ing on a type hierarchy, temporal/spatial relations, or relations to other concepts/
objects in the application domain.
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An example for the connections of events to relevant concepts in background 
knowledge can be the relationship of a stock market event (e.g., a significant price 
change) to the products or services of that company (in a stock market monitoring 
use case).

A complex event query can be defined based on the terminology of ontologies 
and schema of event data streams. This allows users to define queries on a more 
abstract level, based on relationships in the background knowledge, and not only 
based on syntactic matching of the data values of events. A specified event query 
should be continuously evaluated against data coming from both sides, the event 
stream and the external KB.

As described before, most existing approaches for event processing use rule 
engines or finite-state automaton for the processing of events without permanent 
storage or indexing of event data. The event stream can flow through the system 
without any necessary storage. The storage of historical event data is only optional 
for purposes other than event detection.

Rule-based event processing engines can process events in real time, because 
they can handle whole facts and rules in the main processing memory. However, 
these approaches cannot achieve high scalability or high performance, when they 
have to process huge amounts of domain background knowledge for event detec-
tion. The challenging problem is that rule engines have to keep the whole KB in the 
main processing memory space. However, for very large KBs it is impossible to 
keep the completely inferred background knowledge for event processing in mem-
ory, for example, using background knowledge about the companies traded on the 
stock exchange markets worldwide.

To integrate and aggregate domain background knowledge with incoming event 
stream and to timely process of integrated knowledge, a high-scalable and high-
performance processing approach is required. Particularly, inferencing on huge 
amounts of background knowledge can be a time and computation-intensive pro-
cess. An implementation of SCEP needs to provide acceptable quality-of-service 
metrics such as low latency, high throughput, and high scalability. On the other 
hand, it also needs to provide expressive reasoning on background knowledge and 
derive events based on the inference on background knowledge. We can see that 
there is a trade-off between all of these metrics which should be optimized for 
the target use case. The abstract view of the proposed SCEP approach is shown in 
Fig. 10.2.

It illustrates the usage of an external KB which includes ontologies and rules, 
and an incoming event stream which comes from event producers, for example, 
sensors or event adapters. The SCEP engine should process the event stream based 
on semantic relations of event stored in the external KB. The KB includes a TBox 
(assertions on concepts) and the primitive event objects as ABox (assertions on in-
dividuals) which are used for semantic reasoning on events. As mentioned, in SCEP 
a part of the knowledge about events might be the relatively static knowledge about 
pre-defined event classes, that is, the event types in an event ontology, while the 
other part are real-time data streams. The system has to combine these knowledge 
references and infer new knowledge. The results of CEP are the detected complex 
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events that are notified to the users. The CEP engine can also identify critical com-
plex actions which might be triggered after these events happen and are detected.

A straightforward approach for SCEP might be a storage-based approach, for 
example, one can store all of the background knowledge on an external KB and start 
polling the KB on every incoming single event. The results from the KB can then 
be processed with an event data stream. This approach typically suffers from scal-
ability and performance problems when the throughput of the event stream is high 
or the size of the background knowledge is huge, or even when expressive reasoning 
should be done on the KB. The main disadvantage of this approach is that process-
ing is only possible after storing/indexing the data and the databases are polled with 
each new incoming event. This implementation might be applicable for use cases 
which do not have high event throughput or huge amount of background knowledge 
to process. The advantage of this approach is that a complete reasoning on the whole 
KB inventory is possible. Scalability and real-time processing are the problems of 
this approach which makes it impossible to use for time-sensitive use cases.

One of the approaches for the fusion of events and background knowledge is the 
enrichment of the event stream prior to event processing so that event processing 
agents can process events based on background knowledge relations. This chapter 
provides a description of concepts for the semantic enrichment of event streams. 
We describe the different components of the event enrichment process and illustrate 
possible architectures to achieve the required scalability and throughput. We ana-
lyze the different costs of event enrichment and describe the most important impact 
factors.

For improvement of scalability and throughput performance of knowledge-
based event processing, we propose the Semantic Enrichment of Event Streams 
(SEES; Teymourian and Paschke 2014) approach, which is an approach for the 
enrichment of events with ontological background knowledge prior to a syntactic 
event processing step. The event stream is enriched with newly derived events or 
newly added attribute/values to each event instance. The events derived are gener-
ated from raw events and are only generated for internal usage.

Fig. 10.2  Abstract overview of the semantic event processing using external KB. EMA event 
mapping agents, EPA event processing agents
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The SEES approach extends existing approaches for event enrichment with 
further concepts for the detection of events based on their complex background 
knowledge and with providing concepts for planning event enrichment process. The 
planning of event enrichment and detection steps can be used to optimize the costs 
of event enrichment.

 Semantic Enrichment

SEES is about the enrichment of events with background knowledge prior to com-
plex event detection with new derived event attributes. In an event processing 
network (EPN), several event mapping agents (EMA) have the task of generating 
derived events by querying external KB and executing reasoning on existing knowl-
edge. Mapping agents can be replicated to achieve better scalability. In the follow-
ing processing step, the enriched event stream can be monitored by multiple event 
processing agents. EMAs can be replicated and deployed in parallel to achieve ef-
ficient scalability with respect to throughput.

An EMA is a software system that has the task of receiving events and generat-
ing newly derived events by querying external KB and mapping incoming events to 
new events. Derived events are completely new events or are received raw events 
with updated attributes (adding new fields or removing old ones).

In order to enrich the event stream, new events can be derived from raw event 
instances. Such derived events can contain attributes that are inferred from external 
KBs. Figure 10.3 illustrates the process of semantic enrichment of an event stream. 
As discussed before, the raw event stream is enriched by one or many EMA result-
ing in an enriched outbound event stream processed by a set of event processing 
agents (EPAs) in order to detect complex events.

A parallel setup of event enrichment in an EPN is possible. The main event 
stream is split into several sub-streams. The task of event enrichment can be dis-
tributed and shuffled into several EMAs. Each EMA uses a shared or dedicated KB. 
Task scheduling can be realized by using, for example, simple round-robin schedul-
ing or load distribution heuristics on the processing capacity and load of each EMA. 
The parallel setup of the event enrichment approach is similar to the concept of map 
reduce (Dean and Ghemawat 2008), incoming events are mapped to new events, 
and then a CEP engine reduces the events to detected complex events.

Figure 10.4 shows an example of the SEES approach for multistep knowledge 
acquisition and event detection. Each SCEP node includes an EMA and EPA engine, 
so that it can enrich and detect events. At the initial processing step (the starting 

Fig. 10.3  Semantic enrichment of event streams. EMA event mapping agents, CEP complex event 
processing
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point of event processing), the raw event stream flows through the system. In the 
first step, an EMA node enriches the event stream with knowledge acquired by 
using a subgraph of the query graph pattern, and the EPA can filter out a subset of 
event instances depending on the knowledge used. We observed that a partial en-
richment of events can be used to filter out some of the events to avoid unnecessary 
enrichment of all raw events.

Figure 10.3 illustrates a sequential setting of multistep event enrichment and 
detection. In each step, the input event stream is enriched, and the event detection 
process is executed on the enriched event stream. The stepwise processing of events 
is useful for avoiding the full enrichment of the complete event stream; in each step, 
a module of background knowledge can be enriched to event stream and used for 
event detection. In this way, the system can optimize the cost for event enrichment. 
A combination of both parallel and serial approaches is also possible, so that in 
each parallel enrichment process a sequential enrichment process is organized to 
optimize enrichment costs.

 Plan-Based Semantic Enrichment

The process of semantic enrichment can be optimized to reduce the cost of event 
enrichment and increase throughput of event processing by reducing the amount 
of raw event enrichment tasks. We propose an approach for the optimization of 
knowledge-based event detection by using a technique for multistep and greedy 
knowledge acquisition and event detection. In the SEES approach, we use sequen-
tial setting and several steps for event stream enrichment and detection of complex 

Fig. 10.4  Sequential setting of multistep greedy knowledge acquisition for SCEP
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events from the enriched stream. In each step, a part of the knowledge is used to 
enrich the events. The event detection engine then can filter out some of the raw 
events based on enriched knowledge, so that only relevant raw events are forwarded 
to the next step. By using this approach, we can avoid the unnecessary full enrich-
ment of all raw event instances.

The trade-off between knowledge acquisition costs (computation load on exter-
nal KB and result transmission) and event processing latency is an important factor 
for planning the execution of event enrichment and detection. The aim is to discover 
a low-cost event detection plan while meeting user-specified latency expectations, 
so that we can reduce the polling load on the external KB. One of the important 
constrains for generating plans is user-specified latency expectation. We search for 
a plan which can meet this expectation and generate an acceptable load on the KB 
side. In the final step, we have to match the whole user query on the event stream; 
we look only for good filters to pre-filter the event stream so that we can reduce 
costs.

Figure 10.5 shows an example of knowledge-based event detection pattern. Such 
kind of user event detection pattern (user query) can be preprocessed and separated 

Fig. 10.5  An example of a knowledge-based event detection pattern
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into several subqueries. In the SEES approach, we generate a plan for stepwise pro-
cessing of the generated subqueries, so that we can pre-filter the raw event stream 
to reduce the cost of event enrichment. In each step, we check only a part of the user 
query. If any of the subqueries cannot be matched, the whole query is not matched, 
and the EPA sends the event to the event sink.

The givens for the optimization problem are a user query, the raw event stream 
(including event types) and heuristics about the external KB. We require for an op-
timized execution plan a user query with acceptable latency and costs (computation, 
materialization, and network transmission costs).

We can assume that the events can be kept in the same order as they arrived at 
the base point of the system; the time distances between event instances and the 
background knowledge are not significantly changed while an event instance goes 
through the multiple processing steps. Multistep event enrichment and detection 
can be planned to optimize the processing costs.

 Planning Multistep Event Enrichment and Detection

Multistep event enrichment and detection approach (shown in Fig. 10.3) consists 
of several steps of event enrichment followed by event detection steps. In each 
of these steps, a part of the event enrichment is executed, so that event detection 
can be realized based on the added knowledge of the enrichment step. The two 
main tasks for multistep processing are to be defined for each processing step: a 
knowledge query that can extract the required knowledge from the external KB for 
event detection without missing any of the event components, and an event detec-
tion pattern based on the enriched knowledge for detection. For the optimization of 
the processing steps, we need to set up subgraphs at the initial steps which are less 
likely to be matched, so that the downstream discharge of the processing steps can 
be minimized and costs for the event enrichment optimized.

10.5  Summary and Discussion

In this chapter, we have described the main concepts of SCEP. We described the 
different existing approaches for semantic event processing and presented the ap-
proach for semantic enrichment of event streams advantages and disadvantages of 
event enrichment. Furthermore, we provided a planning approach for the optimi-
zation of enrichment costs, so that the system can detect complex events within 
user-defined latency expectations and, on the other side, optimized event enrich-
ment costs. In order to generate different enrichment plans, the given user query is 
preprocessed, and several subgraphs enrichment of events are generated.

The application of SEES in event processing use cases can be realized consider-
ing the advantages and also disadvantages of this approach.
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Advantages of SEES:

Distribution of Processing Task (Higher Scalability) The main advantage of SEES 
is the capability of distributing the task of event enrichment to multiple EMA, which 
allows better scalability and overall performance of the SCEP system.

Possibility for Knowledge Modularization One further benefit of task distribution 
is it allows for modularization of domain background knowledge to multiple knowl-
edge modules. Each EMA can use some of the KB modules.

Including Update Knowledge As described, the external KB might have some 
knowledge updates (ABox updates) with clearly lower update frequency than the 
main event stream. One advantage of semantic enrichment, compared to other 
approaches, is extracted knowledge from the KB, which is the latest version of 
the available knowledge, so that the latest updates can be used for the enrichment 
of events. In the case that the knowledge changes the event processing engine can 
include these updates in the event detection process.

Disadvantages and Problems of SEES:

Large Number of Derived Events The main disadvantage of the semantic enrich-
ment of events can be the management of huge amounts of generated new events 
which are produced by EMA. These events should be processed by the final CEP 
engine to match the complex query. From a single event, instances of several new 
events are generated, or several new attribute fields are added to the event attributes 
(fat event enrichment). Only a part of these derived events are used at the end to 
match the complex events and the rest are moved to the event sink (because they are 
only generated for internal usage, that is, unnecessarily derived events are deleted 
without any usage). The SEES approach can scale while lots of derived events are 
unnecessarily produced. According to planning approach, an optimal plan for event 
enrichment and detection reduces the costs of event processing.

Enrichment Latency The enrichment of the event stream prior to the event detec-
tion process increases the latency of the CEP system, because in the first step the 
system has a latency for the enrichment of events, the results of which are transmit-
ted to the second step for event detection.

Considering all the assets and drawbacks of the SEES approach, we can con-
clude that this approach is applicable for use cases of knowledge-based event pro-
cessing where the scalability of event processing is an important factor; latency 
expectations allow a prior processing step for the enrichment of events, thereby 
reducing enrichment costs.
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11.1  Placing the Web in Context

As the Semantic Web is a technology, discussions on Semantic Web and business 
have focused on the technology challenges associated with information systems and 
the ways semantic technologies can resolve those challenges. By focusing on the 
technological challenges and ways that semantic technologies can help to resolve 
those challenges, more significant business opportunities have been missed. Across 
the blogosphere, there are wild adherents to the possibilities of the Semantic Web, but 
there are a larger number of skeptics. As one blogger opined, “I’ve been a semantic 
web skeptic for years. SemWeb is a narrowly purposed replica of a subset of the 
World Wide Web…the SemWeb offers a vanishingly small benefit to the vast major-
ity of businesses. The vision persists but is unachievable; the business reality of Sem-
Web is going pretty much nowhere.” (Grimes 2014) The skeptic’s criticism points 
to the absence of a clear growth path forward for businesses in adopting these tech-
nologies. For adherents, their rebuttal falls into several, frequently rehashed, buckets.

Rebuttal 1: It is a communications problem. The adherents of a disruptive vision 
for the Semantic Web have not done a good job in explaining the Semantic Web 
to business so businesses simply do not understand. Technologists in business, the 
typical recipient of the Semantic Web pitch, struggle to understand the total cost of 
ownership or projected return on investment for adapting these approaches.

Rebuttal 2: It is a recognition problem. The Semantic Web is alive but no one 
knows it. Here, adherents cite incremental moves that indicate that Semantic Web 
standards are being adopted in variation by the likes of Google or Facebook. And, 
as the argument goes, once others recognize what has been happening under the 
radar, the Semantic Web will explode. Critics downplay these examples and point 
to these examples as isolated examples of a small group of adherents attempting to 



214 E. Hillerbrand

spin a groundswell when those in the broader technical community are oblivious to 
these changes. In none of the well-known cases are these incremental shifts truly 
industrial-strength deployments.

Rebuttal 3: It is a naming problem. Here, adherents lay claim to a broader set 
of shifts in thinking and cite victory for the Semantic Web. References to “linked 
data” or “graph-based data structures” such as Facebook’s social graph are claims 
of Semantic Web growth. The question becomes whether those major uptakes of 
Semantic Web-like technologies are connected in any way to the Semantic Web or 
whether these are evolutions occurring from simple business requirements.

These wild debates occur primarily within the technical community. The result 
is an echo-chamber debate that bears little connection to the nontechnical problems 
faced by businesses, especially consumer-facing businesses. A solid understanding of 
the business challenges, not technical challenges, reveals exciting opportunities for 
semantic technologies that will be far more constructive and beneficial to business. 
The real pains for businesses today are the challenges of a dynamic business environ-
ment, a proliferation of channels to interact with consumers, and desire to be more 
relevant in more and more contexts, communicating in more and more personal ways.

Business marketers have traditionally focused on “segmented” thinking. A seg-
ment is a group of consumers that share one or more characteristics of interest to 
the marketer. Segment-based thinking grew out of the historical limits of marketing 
channels. Television, as a primary marketing channel, was a broadcast medium. As 
a result, marketers were forced to think about marketing communication to groups 
of viewers. With the rise of digital technologies, there is now the ability to no longer 
think about segments as large groups of consumers. Instead, marketers can think 
about segments of single consumers and even fashion means to communicate to 
each of these “segments of one” in highly personal ways. Mobile technologies have 
pushed this “segments of one” thinking to consideration of individual consumers in 
context. Context in this instance is considered real-time consumer behavior defining 
preference, motivation, intention, and reaction. Location data, captured by mobile 
phones, provides even a richer source of contextual data. 

Marketing to consumers as individuals in a specific context, selecting the right 
message and right channel, is the marketing challenge facing today’s consumer-
facing businesses. For today’s always-online consumers, there is an expectation that 
marketing is always available and always relevant. To be always relevant, marketers 
need to not only send relevant messages but also receive feedback from consumers. 
In other words, today’s marketing is a conversation; an exchange between business 
and consumer in which each is trying to understand the other, building a stronger 
and stronger relationship of value and trust. Here lies the opportunity for semantic 
technologies: enabling a highly complex conversation that relies on more and more 
difficult-to-understand vocabularies expressed across diverse channels of commu-
nication. All with trillions of dollars at stake.
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A Review of Traditional Semantic Technology Application 
to Business

A review of the literature on the Semantic Web and business reveals a surprising 
disconnect between the capabilities of the Semantic Web and business. In perhaps 
the first offering on the role of the Semantic Web and business, David McComb, 
in Semantics in Business Systems (2004), highlights the inherent difficulty with 
business semantics, and its impact on business systems. For McComb, semantic 
definition of relevant data or business processes using ontologies resolves many of 
the costly challenges in integration of business systems. Business systems reflect 
considerable semantic complexity and that complexity is evident whenever busi-
ness systems are integrated. Thus, semantic approaches ease business systems in-
tegration by enabling a more flexible and scalable binding of information systems.

David Siegel, in Pull: The Power of the Semantic Web to Transform Your Busi-
ness (2009), adopts a different vision for the role of semantics in business. For 
Siegel, the power of semantic approaches rests with a shift from a paradigm of 
search to a paradigm of information “pull.” Siegel sees this shifting information 
access as enabling new types of engagement between consumers and business. 
“When we pull information, we automatically get what we need when we need 
it” (p. 11). The pull world is a world of connected data with linkages defined 
through a semantic markup. Siegel’s specific focus is on the notion of a future for 
consumers of an online digital data locker that contains bits of the Semantic Web: 
tags, words, and numbers in standardized semantic formats. The forcing function 
for the rise of the Semantic Web and the adoption of business of Semantic Web 
technologies is tied to new consumer applications that integrate, from across the 
Internet, the multiple, fragmented, and redundant data silos of personal informa-
tion. Siegel contends that “power tagging” a process of marking up real-time 
information—facts or events from the real world—is where opportunities lie for 
Semantic Web technologies.

The academic world has increased its own sophistication in applying the Seman-
tic Web to business. Analyses have been conducted on the applicability of the Se-
mantic Web to business process management and business intelligence (BI). Hepp 
et al. (2008) argued the business case for a unified view of business processes. The 
absence of a formalized representation of business processes is a major obstacle 
in the mechanization of business process management. They further argued that 
differing semantics are the key challenge to creating a unified view, and the use 
of semantic technologies provides representation techniques that can address these 
challenges; thus, they proposed a markup language and architecture to support busi-
ness process definition and integration.

Berlanga et al. (2012) analyzed the convergence of BI and the Semantic Web. BI 
derives important business-critical knowledge from data. The absence of a shared 
semantics across internal and external data sets inhibits the ability of BI applications 
to easily integrate data for analysis. Semantic technologies enable a shared seman-
tics to be used to integrate data. They concluded that semantic technologies have 
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been infrequently used in the data warehouse community partly because analysis 
is conducted under well-controlled and structured scenarios. The eruption of XML 
and other richer semi-structured and unstructured data formats is forcing, accord-
ing to Berlanga, the data warehousing and BI communities to confront much more 
heterogeneous and open scenarios than that of traditional BI applications. The result 
is a strong interest to bringing semantics to the analytical process. As BI operations 
require integration of more and more disparate information sources, semantic tech-
nologies will take on a more important role according to Berlanga.

Others such as Lytras and Garcia (2008) have analyzed the factors that have lim-
ited the massive commercialization of Semantic Web technologies for business. Ly-
tras asserted that Semantic Web R&D projects have resulted in a myopic view of the 
Semantic Web as a panacea for all the “data” and “knowledge” management-related 
inefficiencies. Lytras and colleagues proposed a stage model of critical steps for a 
“Semantic Web Engineering Approach”; according to Lytras, to deliver “business” 
value. They cite the critical knowledge gap in methodologies and practices for the 
adoption of Semantic Web technologies in a real business context. For Lytras, the 
failure to map knowledge-oriented performance to business processes has resulted 
in a failure to appreciate the role of semantic technologies. The Semantic Web can, 
according to Lytras: (1) support the overall performance of internal business pro-
cesses and enterprise application integration, tying these processes to knowledge 
related activities, and (2) enhance organizational networking and business synergies 
with other business partners or potential market, and various individuals or business 
“stakeholders.”

Lytras identifies a number of key issues faced by businesses that creates in turn 
opportunity for the development and commercialization of semantic technologies; 
enabling businesses to design and implement real-world Semantic Web applications 
and not prototypes of limited functionalities. These include:

1. The Data Layer: Given technology investments in applications that “represent” 
data in the form of database schemas for relational databases and object-oriented 
or multidimensional databases, a “killer transformation application” is required 
to annotate data to Semantic Web “standards.” From a business point of view, 
it is incumbent on semantic technology vendors to communicate the value of 
Semantic Web to the “core data and knowledge” of the business, and introduce 
ways to measure the return on investment of Semantic Web technologies.

2. The Semantic Web and Ontological Engineering Level: Standards, tools, prod-
ucts, methodologies, and best practices are absent for providing a unified engi-
neering approach to Semantic Web programing and applications development. 
There is a critical gap on training and teaching on Semantic Web technologies.

3. The Semantic Web-based Information Systems Layer: Information manage-
ment tools built for managing the semantic aspects of enterprise applications 
are required. These technologies include “Semantic Web-enabled” databases, 
Semantic Web-oriented interfaces, and agents or intelligent systems.

4. The Business Logic/Intelligence Layer: Finally, applications are necessary to 
manage the semantics of business functions that enable the core business includ-
ing the business logic, the business services, and all the supporting mechanisms 
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that define the “business” in all levels ranging from the daily functional and 
routing levels to the strategic planning level to the business logic. Lytras frames 
these layers of application development against an evaluation matrix that pro-
pose evaluating semantic technologies based on strategic and business impact 
(Fig. 11.1).

Lytras’ concludes that it is critical to standardize and evolve the tools for the rep-
resenting of data, managing semantic information such as ontologies, supporting 
semantic engineering best practices, and extracting and modeling business logic.

 Historical Understanding of Business Applications Tied 
to the Semantic Web

These views of the Semantic Web and business, whether McComb’s view that 
for liberating the pain of business system’s integration, Siegel’s way of helping 

Fig. 11.1  Semantic Web applications: a framework for business and industry exploitation. (Lytras 
et al. 2008)
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businesses reinvent themselves as information brokers, or Lytras’ model for devel-
oping Semantic Web tools based on their strategic value to the business, reflect a 
roughly similar understanding of the role that semantic technologies play with the 
internal side of the enterprise (e.g., functional divisions, partners, and suppliers) 
and the external side of an enterprise (e.g., customers), which may be either humans 
(employees or customers) or automated services (e.g., in business processes and 
enterprise service networks). Semantic enhancement of information delivered to 
end users and semantic applications can play a role in business to:

• Integrate information from mixed sources through data annotation
• Resolve ambiguities in corporate terminology enabling data integration
• Improve information retrieval, thereby reducing information overload through 

enhanced search
• Identify relevant information with respect to a given domain through social me-

dia analysis and knowledge management
• Provide decision-making support and business intelligence

Several of these functions are reviewed here: (1) annotation of enterprise data, (2) 
search, (3) social media analysis, (4) knowledge management, and (5) data integra-
tion.

 Data Annotation

In a business context, annotation enables businesses to find data they need and link 
data together based on a business need. Semantic technologies aid in data annota-
tion, discovery, and integration. Annotation describes the transformation of syntac-
tically structured data into knowledge structures that represent the meaning of un-
derlying information and allowing the data to be linked together. Annotation defines 
contextual information that conceptualizes relationships between the data and the 
real world. Domain conceptualizations, ontologies, or world models provide agreed 
upon and unambiguous structures for capturing and defining data to which applica-
tions, developers, data providers, and consumers can refer. A favorite illustration 
occurred when working on a Department of Defense development program and 
asking about whether there was agreement across functional units on the definition 
of “dead.” The answer, after a long pause, was no. “Dead” meant different things 
to different functional areas in the military, whether supply chain, intelligence, or 
command operations.

Annotation is an expensive process in terms of human resources. The process 
also tightly binds the markup to the data in a way that does not support a view 
that there could be multiple perspectives of a data source especially in different 
contexts. Annotation of data places a burden on managing multiple ontologies to 
accommodate the different meanings and needs of different users.
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Search

Data discovery, especially as more and more data within the business enterprise is 
unstructured, places a tremendous burden on search functions. Today, businesses 
spend considerable time and resources on discovering information. Semantic search 
engine technology enables searching across multiple data sets including databases, 
file systems, mail servers, and, in narrow instances, content sources residing outside 
the enterprise firewalls.

Various data formats such as office documents, pictures, and tables from across 
every area of the business lead to complexity and, at worst, to information loss. 
With 80–85 % of enterprise data being unstructured, information cannot be easily 
browsed with a normal keyword-based search engine. In the case of consumer-
facing commerce or content websites, consumers face a similar reliance on search 
and are equally burdened by its inherent limitations. A semantic search or query 
system expands the search requests of employees and consumers delivering the 
exact expected and required results.

 Social Media Analysis

The rise of social media, through blogs and social networks, has fueled interest in 
sentiment analysis. Sentiment analysis has become more significant as businesses 
try and understand the sentiments expressed by consumers on social media channels, 
product reviews, or in blog posts. With the proliferation of reviews, ratings, recom-
mendations, and other forms of online expression, online opinion has turned into 
a kind of virtual currency for businesses looking to market their products, identify 
new opportunities, and manage their reputations. Looking for a way to understand 
and measure consumer engagement, sentiment analysis measures the attitude of a 
consumer towards a brand. For many marketers, the number of Facebook likes and 
Twitter followers they attract demonstrates their social standing. However, these 
counts do little to illustrate how consumers are engaging. Through analysis of posts, 
comments, and suggestions, sentiment analysis provides an understanding of the 
meaning of what is posted in a format that enables business understanding beyond 
simple counts. Sentiment analysis uses factors such as context, tone, and emotion 
and recognition of the subtleties of language, such as sarcasm, or text-speak lan-
guage such as “OMG” or “LOL.” Sentiment analysis provides businesses with an 
automated way of filtering out the noise, understanding the conversations, identify-
ing the relevant content, and actioning it appropriately.

 Knowledge Management

The business world has become so concerned about knowledge management that 
according to one report, over 40 % of the Fortune 1000 now have a chief knowledge 
officer, a senior-level executive responsible for creating an infrastructure, and cul-



220 E. Hillerbrand

tural environment for knowledge sharing. Knowledge management is the process 
of capturing, developing, sharing, and effectively using organizational knowledge. 
Knowledge management is a multidisciplined approach to achieving organizational 
objectives by making the best use of knowledge in order to improve performance, 
competitive advantage, innovation, the sharing of lessons learned, and the contin-
uous improvement of the organization. In order to effectively manage enterprise 
knowledge, systems are required to classify and categorize knowledge based on a 
predefined ontological representation. Since much of the knowledge within an en-
terprise is unstructured or semi-structured, semantic technologies are necessary to 
effectively organize knowledge for accessibility and reusability.

 Data Integration

Data integration using semantics is the process of interrelating information from di-
verse sources, especially unstructured data such as calendars and to-do lists, e-mail 
archives, presence information (physical, psychological, and social), documents, 
contacts (including social graphs), search results, and the advertising and market-
ing relevance derived from them. Semantic approaches enable the organization of 
information to correspond to the business objective, and the business requirements 
for how the information is to be used and accessed. Increasingly, the understanding 
of data is recognized to be influenced by factors such as context and value.

In the integration of disparate data sources, semantic approaches facilitate and 
automate communication between computer systems. Even more important, in 
the face of increasing dynamic business environments, semantic data integration 
allows greater flexibility in accommodating changes in data, adding new data 
sources, and changing the mapping between sources as a result of changing busi-
ness requirements. Semantic technologies use ontologies for creating meta-mod-
els of data and business processes. Technologies include tools for ontology man-
agement, ontology fusion and mapping, and techniques for ontology refinement 
through measurement of semantic distance, semantic similarity, and management 
of mapping rules.

Eventually it is envisioned that semantic-based interfaces to data sources or com-
puter systems can be composed together to enable new and meaningful capabilities. 
These service compositions would be defined at design or run-time through declara-
tive specifications that are executed at run-time. Although the exact specifications 
for such systems are largely yet to be defined, the primary methods and means are 
fairly well understood.

Semantic Web Technologies are Not Keeping Up

While there may be clearer and clearer agreement within the Semantic Web com-
munity as to the value that semantic technologies can deliver, that community and 
evolving semantic technologies confront a nearly universally acknowledged reality: 
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The World Wide Web was becoming more and more chaotic with the growth in un-
structured data. Whether online, through social media, or within enterprise big data 
conclaves, data chaos prevails. The Semantic Web cannot keep up nor is it likely to 
ever harness this chaotic universe by bringing order to chaos. Certainly this will not 
be the case through neatly marked up data based on prescribed World Wide Web 
Consortium (W3C) standards.

Opportunities may exist in this chaotic future for data brokers to link data sources 
from across the web into problem-specific webs of interconnected resources that are 
marked up or stored in some queryable format, selectively findable and accessible 
via problem-specific tool sets. This is the Mashable.com story: enable integration 
of data through open application program interfaces (APIs), and for Semantic Web 
hopefuls, along the way data, is semantically marked up.

The argument that the Semantic Web will tame this burgeoning chaos turns 
based on conflicting interpretations of the approaches. Is this vision of linked data 
driven by semantic technologies, or other technologies that bear resemblance to but 
are not claimed by the Semantic Web community. Is this tamed future a result of 
semantic markup and auto-extraction of ontological representations of linked data 
or the use of machine learning and natural language-based systems that beat the Se-
mantic Web to the punch by understanding the meaning of these data linkages. The 
development of private knowledge repositories, graphically organized with predic-
tive search or semantic query systems are growing: consider, Facebook, Google, 
or Wolfram Research. Niche providers are developing solutions for businesses that 
build linked knowledge repositories that tie enterprise, online, and social data to-
gether. These developments are more likely the result of the latter techniques than 
the former. Machine learning, and soft and granular computing techniques, enable 
the agility required in today’s chaotic Internet.

Interestingly, in the face of this trend, Siegel concluded, “My goal was to be the 
bridge between business decision-makers and SemTech. There’s still a huge gap 
there…. Management seems to be lurching toward [semantic technology in] ways 
like via social and mobile and Google integration but not via the semantic web].... 
I got a TON of interest, but no paying clients, so I’m moving on.” His focus is now 
on business agility consulting helping businesses respond to the velocity and variety 
of the data chaos. “Agile” describes what the Semantic Web is not (Grimes 2014).

 Trends that Could Tip the Scale

There are a number of trends occurring within business that are important because 
of their potential connection to Semantic Web technologies. The opportunities 
rest with what is happening to businesses and how they relate to their consumers. 
These opportunities are not driven by Siegel’s “pull” transformation but rather the 
business requirement to drive sales, the more and more complicated understand-
ing of the consumer, and larger and larger amounts of available data. Rather than 
the “killer app” for semantic technologies, present marketing trends create highly 



222 E. Hillerbrand

complicated semantic problems that have clear business implications and tangible 
return on investment.

For marketers, there are four trends that could help tip the scale: First, a focus 
on building larger and larger shopper profiles containing data from outside the en-
terprise; second, a focus on omni-channel, integrated marketing; third, a focus on 
real-time interactions; and fourth, a focus on increasingly personalized communica-
tion with shoppers. These four trends all have semantic dimensions as outlined in 
Table 11.1.

The opportunities presented by these trends focus on building and maintaining 
ontologies that can integrate heterogeneous data that are dynamic, reformulating 
those ontologies based on real-time inputs, and executing reasoning based on real-
time events and personal shopper characteristics.

Larger and Larger Shopper Profiles

As marketers seek greater understanding of their customers, there is increas-
ing interest in the value of non-transactional data to drive that understanding. 
Transactional data typically consists of identified shopper purchase histories. For 
high-involvement retail categories such as grocery, these shopper purchase histories 
are particularly robust. With an average grocery shopper, shopping trips occur with 
a frequency of over twice a week. For less frequent purchase categories, data is 
sparse. Marketers are faced with augmenting these purchases with non-transaction-
al data or data from third parties. Third-party data from data brokers such as Axium, 
Experian, or Datalogix are highly abstracted data sets consisting, typically, of mod-
eled segment scores. While these are successful businesses, this highly abstracted 
data delivers little value compared to the power of semantic approaches. This type 
of data does little to assist marketers in making relevant connections across the di-
versity of available data. For marketers, there is interest in integrating location data 
captured from mobile devices, shopper preferences, social network profiles such 
as “likes” and social interactions that can be easily captured from online behavior. 

Table 11.1  Trends that can drive the “tipping point”
Trend Semantic implication Technology requirement
Shopper profiles contain-
ing data from outside the 
enterprise

Integration of data with varying 
semantics

Semantic data integration 
technologies capable of fusing 
transaction data with external 
digital data

Omni-channel, integrated 
marketing

Highly diverse channel integra-
tions and data requirements

Cross channel ontologies with 
real-time fusion

Real-time interactions Highly dynamic, contextual 
interactions

Contextual ontologies and real-
time ontology fusion

Personalized communica-
tion with shoppers

Individual representations of 
“segments of one”

Personal ontology devel-
opment, extraction, and 
management
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Additionally, web browsing, search strings, and other captured digital behavior are 
increasingly available. The result is highly heterogeneous sets of data that reflect 
not only different semantics at the data source level but also within a source. For 
example, web page tags that are produced typically by Web developers are not typi-
cally managed with a defined ontological point of view. The results are web tags 
that are wildly divergent in their underlying explanatory power within a single en-
terprise. These new data sources, regardless of type, are largely unstructured or 
semi-structured content. So, the marketer faces a tremendously complex semantic 
integration task with a lack of understanding of the inherent semantic complexities 
of these data sources.

Omni-Channel Marketing

As shopper profiles are increasing in semantic complexity, the marketer seeks to 
communicate across more and more marketing channels. Marketer’s channels of 
communication once limited to print advertisements and coupons, and radio and 
television advertising, have grown dramatically and cross-channel differences are 
becoming more nuanced. For example, it is  now clear that there are often dra-
matic differences in how consumers are using their smartphones, their mini-tab-
lets, and their tablet computers. Understanding how shoppers engage with a brand 
across these channels as it leads to a purchase has become incredibly complex. 
The simple marketing funnel that started with a broadcast message delivered by 
radio and television to a broad segment of consumers and ending with an in-store 
purchase is out of date. Today’s consumer is bombarded by narrowcast messages 
delivered digitally and through a mobile device. During the predominance of the 
traditional marketing funnel, the focus was on a single “moment of truth” or influ-
ence, today’s environment contains multiple overlapping and nonlinear engage-
ments with multiple moments of truth. A consumer may start with a web search, 
browse to review sites, return to web search, and respond to a banner advertise-
ment leading to a return to a search engine, all the while interacting with friends 
through social media.

With a larger number of communication channels and a less controlled mar-
keting process, the costs of maintaining consumer “top of mind” has become a 
challenge. According to a Bain & Company survey (Customer Retention 2012), an 
average company loses 20–40 % of customers every year. Reducing shopper attri-
tion by 5 % can improve bottom-line profits by 25–85 %. The stakes are incredibly 
high. Yet, today’s marketing environment may have reached a level of complexity 
that individual channel management, silos within a broader marketing strategy, will 
result in failure. Further, the marketing organization may not be able to strategize 
and manage in such an environment. The marketer may be incapable of reasoning 
across channels and individual shoppers, responding to real-time events in order 
to identify “moments of influence.” New technologies are critical to aiding in the 
management of these communications.
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Personalization

Personalization is today’s marketer’s hot button. Forrester Researcher, in a survey 
of marketing executives in 2013, concluded that marketers believed that personal-
ization was strategically important to their business. Marketers viewed personaliza-
tion as having the potential to increase traffic, conversion, and average order value. 
But according to a survey by Monetate (2013), marketers (94 %) know the value of 
personalization but when data is collected in real-time based on shopper behavior 
and input, marketers (95 %) reported that they were not able to use the data to de-
liver in-the-moment personalization.

Most current personalization capabilities use only transaction history. Only 17 % 
of marketing leaders go beyond basic transaction data to deliver personalized cus-
tomer experiences. Location-based data, for example, is used by only a small per-
centage of those surveyed.

Personalization is delivered through a communication channel. Few marketers 
deliver personalization consistently across channels. Over three quarters of market-
ers surveyed indicated that they were unable to deliver content or offers to the con-
sumer’s chosen channel in real time. Consumers may browse merchandise online 
and on mobile devices and click to e-mail offers at home, in the office, and on the 
move. Is there a single in-the-moment personalized communication? Not today.

Loyalty programs are similarly posed for a shift. According to Deloitte consult-
ing, companies that track their customer loyalty are up to 60 % more profitable than 
those that do not. But consumers are frustrated with the value of the loyalty program 
to them. The majority of consumers (62 %) join retail loyalty programs so they can 
get discounts on the things they buy most. Nevertheless, only about one third of 
American consumers (36 %) receive rewards or promotions that make them come 
back to the store, and one in four (27 %) of consumers complain they have received 
reward or promotion for something they would never buy. Eighty-five percent of 
members report that they have not heard a single word from a loyalty program since 
the day they signed up. Loyalty programs are leaving consumers feeling underap-
preciated.

The future of real personalization hinges on technologies that can understand 
shoppers in the moment, the shopper’s location and motivation, and respond ac-
cordingly. Only a small percentage of marketers can currently use consumers’ real-
time location behavior, and intention to drive interactions. Technology constraints 
inhibit interactions based on what is hot or trending or going on in the moment for 
that consumer. Semantic technologies that can create a comprehensive, contextually 
sensitive consumer representations in order to interpret all of the available data in 
real time are both the challenge and the opportunity.

Real-Time and Contextual Communication

Marketers recognize the value of real-time data in personalization. Marketers are 
challenged by how to use real-time data to deliver the right content to the right 
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visitor in the right channel at the right time. In the future, marketers will use social 
sentiment, contextual behaviors, and inferred emotional states in addition to time 
of day/week and location information. Today, few marketers are able to use infer-
ences about the consumer’s emotional state. Similarly, marketers are unable to use 
individual consumer sentiment to personalize interactions. In addition, few capital-
ize on the consumer’s current context, what the consumer is doing, and the charac-
teristics of the environment that they are doing it in. Environmental characteristics 
include the presence of competitors, season, day of week, the presence of price and 
promotion messages, and the presence of friends, experts, or other shoppers that 
share social affinities. Today, the data that they use to personalize in real time is 
limited to customer-specified preference data.

Personalization efforts today fail to fully capitalize on—or even ignore—prox-
imity, motivation, intention, and current customer sentiment. Without that under-
standing, marketers face challenges in delivering real-time, contextually aware, 
personalized experiences. The technology gap is clear. Marketers lack real-time 
data analysis and an inability to deliver relevancy to a shopper’s preferred channels 
and in preferred ways.

Success in omni-channel personalized marketing is precipitating a rethinking 
of customer engagement. Digital technology, and the ability to capture in real-time 
shopper behavior and input, means that engagement is no longer one way as it 
was in the broadcast era. Instead, it is possible to engage in the semblance of a 
conversation. Engagement means message delivery and interpretation of consumer 
response. A one-way monologue from retailer to customer is no longer sufficient; 
only a two-way dialogue will enable retailers to understand the shopper and obtain 
the knowledge of what really matters to them.

Technologies that interpret shopper response and facilitate a true communication 
in real time between business and consumer is required. In a digital environment in 
which consumers are always on and expect their social relationships to be similarly 
available, a business must be capable of not only carrying on a conversation but 
also must begin to act with the same speed, relevance, and value as an online social 
network. In the future, the dividing line between shopper’s friends and brands that 
a shopper cares about will become increasingly blurred. The challenge to business 
is the ability to do this at scale.

The Future of Semantic Technologies and Today’s Marketing Challenge

With the focus of today’s marketers’ consumer-facing business on a new set of mar-
keting challenges, what is the future for semantic technologies? Three opportunities 
are evident and with those opportunities come new challenges to existing semantic 
technologies. Marketer’s interest in personalizing relationships between brands and 
consumers in a “segment of one” that is dynamic and contextual will drive these 
opportunities.
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 Ontology Extraction

In order to communicate in a personal way with consumers, technologies will be 
required to reason and predict likely response, and understand consumer response 
when it occurs since this response will likely be unstructured. Technologies for on-
tology creation or extraction from a corpus of consumer data will be necessary. As 
consumers navigate multiple digital profiles of preference, social activity and on-
line behavior marketers will build ontologies that can integrate shopper’s profiles. 
These ontologies will not only integrate actual data but also tie profile attributes to 
constructs that matter to marketers: behavior on a path to engagement or purchase, 
motivation, need, interest and preference, and loyalty. Technologies that can extract 
ontological representations of these “sentiments” and tie these sentiments to profile 
attributes will be critical.

Personal Ontology Development

These ontological representations will be at the individual level, not at the segment 
level. That means building an ontology that reflects how a single consumer organiz-
es the world with consumer and the brand in the center of this representation. Con-
sumer segments, this grouping of consumers based on shared attitude or behavior, 
are presumed to have different definable attributes that affect how and when the 
consumers in that segment engage with the brand. It is reasonable to assume that 
these attributes could and should be modeled in an ontology. The presumption is 
that these ontologies would, in fact, be different across segments. With the focus on 
“segments of one,” the ontologies will move from group-focused representations to 
individual representations. In other words, systems that manage ontologies for each 
individual consumer will be required.

 Personal Ontology Fusion

As previously discussed, context will become incredibly important to marketers. 
Context will influence intention and likelihood of engagement. Environmental fac-
tors such as location, alternative brands that provide equivalent products or servic-
es, alternative brands that provide similar but not equivalent products or services, 
characteristics of engagement whether communication with the brand or purchase, 
and channel will interact with individual consumer attributes and in-the-moment 
factors such as intention, motivation, and behavior. All of these factors, whether 
environment or in-the-moment shopper behavior and textual input, will be acces-
sible in the form of rich structured and unstructured data that will need to be fused 
together. The ability to merge together ontological representations and reason suc-
cessfully about an individual consumer with a specific intention at that moment in a 
specific location that has certain competitive factors will be required.
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 Reasoning and Simulation for Consumer

For consumers, the future shifts from a product-focused to need- or experience-
focused engagement with brands. Brands that matter will need to be solution fo-
cused rather than product focused. The promise of big data to business, and its 
corresponding hype, has neglected the value to the individual shopper. Here the 
construct of “small data” has relevance. Small data is the data that individual con-
sumers provide about themselves. Small data in combination with big data is where 
value can be delivered to individual shoppers. The ability for an individual shopper 
to benefit from gross and global trends and insights in the context of their individual 
interests and needs is paramount. Use of massive compute power to help individu-
als be smarter is a huge promise but it also allows businesses to rethink their value 
proposition. In the future, businesses may provide not only a product and service 
to support that product but also data and analysis to help the individual shopper 
make sense of when to purchase, how to purchase, and then how to use the acquired 
product.

Sophisticated models of products and individual consumers will enable reason-
ing and intelligence to benefit not only the consumer but also the business. Simu-
lation or proscriptive analysis will improve the relevance of marketing and have 
considerable impact on creating an emotional loyalty (not behavioral loyalty as 
presently exists) between business and consumer.

Agent-Based Frameworks

Retail started in a marketplace in which a known proprietor acted on behalf of the 
consumer by selecting the right goods. This process of “retailer acting, as agent” 
continued well into the twentieth century and only changed with the emergence 
of the grocery store and full-line department store. Retail changed from a focus 
on agency to a focus on utility and efficiency. Shoppers assumed the role of stock 
picker and were put into the position of having to serve themselves. Retailers pre-
sumed, and the market confirmed, that shoppers appreciated severing the ties to a 
human resource intensive model. Once endorsed by shoppers, retailers were able to 
achieve significant savings in staffing.

The focus on increased personalization extends beyond marketing to actual ser-
vice, and there is increased recognition that the role of retailers (especially physical 
or offline retailers) needs to change. Retailers will need to return to the model of 
acting as shopper agents whether in finding the right product, at the right time, at 
the right price, and the right relevance for the individual shopper. This will need 
to be done at scale: for millions of shoppers. The shopping process online, already 
difficult, will become worse as choices proliferate and globalization expands pur-
chase options. While smaller in scale, physical retailers struggling to be relevant 
and trying to reinvent themselves will make in-store experiences more engaging 
and personal; all at scale.
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Agent-based software frameworks will allow retailers to scale their newfound 
position as shopper agent. These frameworks will use knowledge of individual 
shopper historical behavior and preference combined with in-the-moment shopper 
intention and motivation to navigate product discovery, personal pricing, promo-
tion, purchase, and service. Agent reasoners can project future service and prod-
uct requirements, and assist customers with optimizing their purchase with upsell/
cross-sell or social commerce engagement.

11.2  Conclusions

The Semantic Web lays out a utopian vision. Semantic technologies have continued 
to evolve. Business applications of semantic technologies, and adoption of the Se-
mantic Web, continues to falter. This is due in part to the background of Semantic 
Web proponents: technologists or academics. These backgrounds have a limited vi-
sion for semantic technologies to primarily technical problems or to highly fantasti-
cal visions of futures. In both cases, the return on investment and value to business 
today is highly suspect.

From the business side, businesses face very real challenges as they continue to 
respond to the digital age and the age’s impact on consumers. All of these challeng-
es have a semantic component. Unlike advocating semantic technologies to resolve 
data integration challenges, a point of view that forces semantic technologies into 
a standoff with traditional non-semantic technology approaches and competition 
with major technology businesses that sell non-semantic-based technologies, these 
newer challenges to business are ripe for semantic-based solution.

The challenges are related to how to improve consumer understanding, how to 
understand shopper behavior in the moment, and how to respond in highly personal-
ized ways. The chaos of today’s digital environments requires strong approaches for 
understanding data that is unstructured and events that are contextual, personal, and 
are complicated to understand.

The opportunities for semantic technologies reside not with the technology side 
of the organization but with the marketing and merchandising sides of the organiza-
tion. Here is the lifeblood of the business and the disruption in loyalty, marketing, 
and product development caused by the Internet, creates a perfect opportunity to 
deploy new technologies that have immediate return on investment and can speed 
up the adoption of semantic technologies.
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