
Chapter 9
The Simple Majority Rule in a Three-Valued
Logic Framework

Adrian Miroiu

9.1 Introduction

In the past decade a growing number of papers on different issues in social
choice theory appealed to formal techniques originating in various branches of
modern formal logic.1 First-order (Grandi and Endriss 2013) and higher-order logic
(Nipkow 2009), modal logic (Ågotnes et al. 2009; Pauly 2007), many-valued and
fuzzy logics (Barrett and Salles 2011) helped provide more rigorous formalizations
of social choice problems and, as a result, gain a deeper understanding of the field
(Endriss 2011).

The study of judgment aggregation, initiated by (List and Pettit 2002) is an
exemplar case. It focuses on the way in which the sets of judgments held by the
members of a group can be aggregated to form a collective set of judgments. A
judgment set is a subset of a given “agenda”. The agenda is a set of propositions
upon which a collective judgment is sought. An individual’s judgment set contains
exactly those propositions in the agenda that the individual believes to be true. The
large literature on judgment aggregation usually assumes that the evaluations of the
propositions allow for a proposition to be either true of false. However, an increasing

1Of course, logic had a much older role in modern social choice theory, going back to the early
1940s. In an interview published in Arrow et al. (2011). K.J. Arrow remembers an episode from
his student years. In his last term he took a course on logic with the Polish logician A. Tarski. A
testimony of the influence of Tarski on the young Arrow is to be found in the 1940 author preface
to the English edition of An Introduction to Logic (Tarski 1959), where Tarski thanks K. J. Arrow
for his help in reading proofs.
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number of papers focus on multi-valued evaluations: the truth values of a proposition
range over a larger set, allowing for intermediate degrees of truth in between true
and false. Dokow and Holzman (2010) work with non-binary aggregators that have
multi-valued judgment aggregation as one natural interpretation. Pauly and van Hees
(2006) and van Hees (2007) studied judgment aggregation in the framework of
many-valued logic, drawing in particular on Post’s many-valued systems. Duddy
and Piggins (2013) used a Łukasiewicz-type multi-valued logic.

In this paper I shall follow a different approach to the use of many-valued logic
in social choice. It was initiated nearly a half of century ago by Murakami (1966,
1968), who first considered logical mechanisms originating in many-valued logic in
his pioneering study of representative decision-making.2 On this approach, propo-
sitions do not describe issues, but attitudes of the individuals toward issues, like for
example how to choose between two alternatives; thus, the atomic proposition p1 is
taken to describe the attitude of the individual A1 with respect to the alternatives x
and y, and p2 to describe the attitude of the individual A2 with respect to the same
alternatives, etc. Attitudes can have two values: for example, A1 either prefers x to
y or prefers y to x; or can have multiple values, when intermediate cases are allowed
(for example A1 can be indifferent between x and y.)

The intuitive idea is that logical operators are similar to aggregation rules. An
aggregation rule gives a social preference for each distribution of preferences of
the members of a certain group. Similarly, logical operators like disjunction and
conjunction give an aggregate truth-value for each distribution of truth-values of the
propositions they connect. In general, if   is a binary logical operator, then  (pq)
gives the aggregate attitude of the group formed of the individuals A1 and A2 with
respect to the two alternatives x and y.

Naturally, the question that immediately comes into one’s mind is if logical
operators corresponding to well-known aggregation rules like for example the
simple majority rule or the absolute majority rule can be identified in a logical
framework. Following this path, I rely on a Łukasiewiczian three-valued logic to
define logical operators that can be easily compared with such aggregation rules
like for example the simple and the absolute majority rules, the Jury rule or the
extended Pareto rule.

On this account, compound propositions receive a quite different interpretation.
Consider for example the proposition  ( (p1p2) (p3p4)). Its meaning is this: by
appealing to the aggregation rule   a collective decision of the group formed of
the individuals A1 and A2 is reached. Similarly, a collective decision of the group
formed of the individuals A3 and A4 is reached. Then these decisions are aggregated
in a higher-order group formed of the two groups. It looks natural to try to interpret
iterated applications of the decision rules in terms of representative systems or
democracy. Murakami defined a representative system ‘as a hierarchy of voting
procedures, each of which may be called a council.Every individual casts a ballot

2Fine (1972) and Fishburn (1971) developed his approach.
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or ballots in one council or councils. A decision in each council is represented in a
higher council whose decision is, in turn, represented in a still higher council and so
on’ (Murakami 1966).

The paper is organized as follows. Section 9.2 presents the framework. The
standard operators (negation, implication, disjunction and conjunction) in a
Łukasiewicz-type three-valued logic are introduced. In Sect. 9.3 a new binary
operator � is also introduced; its intended meaning is that of the simple majority
rule. Majority rule is usually studied in the general case, when the group of people
who are to make a decision is large. The two-member groups are viewed as
degenerate cases that do not deserve a special attention. Here I take the reverse path:
I start with the binary rule and only then move to the general, n-ary case. The binary
majority operator �2 has a very clear interpretation as a binary logical operator,
just like the standard logical operators conjunction, disjunction and implication. In
analogy with May’s (1954) famous characterization of the majority rule, here �2 is
characterized in terms of four properties: commutativity, self-duality, monotonicity
and responsiveness. If the framework is slightly extended to allow for individual
attitudes toward three alternatives then we can easily obtain a toy counterpart
of Arrow’s impossibility theorem. It shows that no binary operator can be both
unanimous and transitive. The main argument in Sect. 9.4 is to prove that the binary
operator �2 can be extended to the n-ary case, in the sense that all applications of
the majority rule � to a sequence consisting in n members can be defined in terms
of the binary majority rule �2. Far from being a degenerate case, the binary majority
rule operator is able to account for all n-ary applications. It is argued, however, that
other binary operators corresponding to other voting rules cannot be so extended.
Examples include the absolute majority rule operator and the Jury rule operator.
Section 9.5 concludes.

9.2 The Framework

As usual (Urquhart et al. 2001), we start with a countable (infinite) set of
propositions † D fp; q; r; : : : p1: : : : pn; : : : g, called a propositional signature.
‚ is a finite set of operator names, sometimes also called (propositional) functions.
A function ¡ attaches to each operator in ‚ a non-negative integer called its arity.
A propositional language is a pair L D .‚; ¡/. The set L† of formulas of the
language L given a signature† is defined inductively as follows:

(1) Members of † are L† formulas:
(2) If ™ © ‚, ¡ .™/ D m > 0 and  1, : : :  m are L† formulas, then ™( 1, : : :  m)

is also a L† formula.

Say negation to the unary operator �; binary operators are, e.g. well-known
logical operators like implication !, conjunction ^, disjunction _, equivalence �.
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For a given signature, a propositional letter can take one of the following three
values: 1, 0, �1. In Łukasiewicz’s three-valued logic,3 they refer to truth, possible,
and false. However, the interpretation I shall constantly have in mind is different.
Suppose that p1, : : : pn express the attitudes of n individuals A1, : : : An with respect
to two alternatives x and y. Value 1 means that the individual prefers alternative
x to y; value �1 means that the individual prefers alternative y to x, and value 0
carries the meaning that the individual is indifferent between the two alternatives.
A n-ary operator  n represents an aggregation of the attitudes of the n individuals.
A matrix M™ for an n-ary operator ™ © ‚ is function which attaches to each n-
tuple (a1, : : : an), where ai© f1; 0;�1g, a member of f1; 0;�1g. A matrix M‚ is the
collection of all M™, for ™ © ‚. Łukasiewicz’s three-valued logic is a pair L3 D (L,
M), where L is a propositional language and M is a matrix for ‚. For the most
important logical operators, M‚ is given by:

p p Fp Vp
1 �1 �1 1
0 0 �1 1

�1 1 �1 1

! 1 0 �1
1 1 0 �1
0 1 1 0

�1 1 1 1

^ 1 0 �1
1 1 0 �1
0 0 0 �1

�1 �1 �1 �1

_ 1 0 �1
1 1 1 1
0 1 0 0

�1 1 0 �1

With the above interpretation of the meanings of p and q in mind, the expression
p _ q expresses the attitude of the group formed of the individuals A and B relative
to the alternatives x and y. The group’s attitude follows the most favorable attitude
to x of its members: if A or at least B prefers x, then the group also prefers x; if the
most favorable attitude to x of the members of the group is indifference, then the
group is indifferent between x and y, but if both A and B prefer y, then the group
fA, Bg also prefers y. Analogously, in the case of the expression p^q the attitude of
the group fA, Bg follows the least favorable attitude of its members toward x.

3I write 1, 0 and �1 as usually done is social choice theory instead of the usual values: 1, ½ and 0
in order to emphasize that a social choice interpretation is here intended.
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Now let † D fp1; p2 : : : pn; : : : g be a signature. A value assignment is a
sequence a† D a1a2 : : : an�1an : : : , with ai© f1; 0;�1g. In what follows, I shall
also appeal to an initial segment a†n D a1a2 : : : an�1an of a value assignment and
call it the value assignment for the sequence p D p1p2 : : : pn�1pn of propositional
variables.

In this paper the following notation is used: when focusing on an n-ary operator
 n .n � 1/, I shall write  n .p1p2 : : : pn�1pn/ and appeal to parentheses to clearly
distinguish the expressions it applies to. When the arity n of an operator n is not the
main focus, I shall simply write   instead of  n. This convention applies to logical
operators too. But the usual notations will be also appealed to when the operators
^, _, !, and � will be used in the definitions of the properties of the operators.
The expression p ) q is short for: .p ! q/^ � .q ! p/.

9.3 The Binary Majority Rule

In this section I shall discuss one binary operator �2 called the (simple) majority
rule. It is defined as follows4: �2.pq/ D sgn .p C q/. The sgn function is given by:
(i) if n > 0, then sgn.n/ D 1; (ii) if n < 0, then sgn.n/ D �1; and (iii) if n D 0,
then sgn.n/ D 0.

�2 1 0 �1
1 1 1 0
0 1 0 �1

�1 0 �1 �1

The operator �2 has the following intuitive interpretation. Suppose again that p
and q express the attitudes of two voters A and B with respect to the two alternatives
x and y. So, intuitively �2 aggregates the preferences of the two voters as follows: if
both prefer an alternative, then they prefer it collectively; if both are indifferent, then
their joint preference is also indifference; if they have opposite preferences, then
they jointly do not prefer any alternative. Finally, if only one voter is indifferent,
then their common preference is the preference of the other voter.

Below I shall prove that �2 is the only binary operator that satisfies some
attractive properties. For the beginning, let me introduce a battery of such properties.

• A binary operator is independent if

.q � r/ ! . .pq/ �  .pr// I and
.p � r/ ! . .pq/ �  .rq//

4This is the restriction of the general definition of the simple majority rule to the two member
groups case; see the definition of � in the next section.
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Independence is built in the very definition of logical operators: when they aggregate
propositions only truth-value of the compound propositions is relevant. Therefore in
the remainder of this paper we shall take independence as satisfied by default.

• A binary operator  2 is commutative if  2.pq/ �  2.qp/.

The operators ^, _, � are commutative; e.g., .p � q/ � .q � p/ states that
� is commutative. Commutativity requires that the individuals A and B who hold
attitudes toward the two alternatives x and y must be equally treated: it does not
matter if we first consider A’s attitude as expressed by p and then B’s attitude as
expressed by q, or the other way round.5

• A binary operator is self-dual if  2.pq/ ��  2 .� p � q/.

Self-duality entails that the alternatives x and y must be equally treated.6

Dictatorial and anti-dictatorial operators are self-dual. A dictatorial operator always
gives the value of one of its arguments; and anti-dictatorial operator always gives
the opposite value of one of its arguments. Example of a dictatorial binary operator:
 2.pq/ � p; example of an anti-dictatorial binary operator:  2.pq/ �� p.
Operators ^ and _ are not self-dual.

Some binary operators are both commutative and self-dual, such as:

’2 1 0 �1
1 1 0 0
0 0 0 0

�1 0 0 �1

The operator ’2 is the binary absolute majority rule. We have ’2.pq/ D 1 if both
p D 1 and q D 1; ’.pq/ D �1 if both p D �1 and q D �1, and ’2.pq/ D 0 in all
the other cases. I shall return to the absolute majority operator in the next section.

• A binary operator is monotonic if:

.p ! r/ ! �
 2.pq/ !  2.rq/

� I and
.q ! r/ ! �

 2.pq/ !  2.pr/
�

Examples: ’2 is monotonic; ^ and _ are also monotonic; but ! is not monotonic.

• A binary operator is responsive if
��
 2.pq/ ��  2.pq/

� ^ .p ) r/
� !

 2.rq/

By responsiveness, if  2 gives indifference, and one of its arguments is
replaced with another argument having a higher value (0 or 1 instead of �1,
or 1 instead of 0), then the value of  2 moves to 1. The operators �2 and

5A commutative logical operator corresponds then to an anonymous rule.
6Clearly, a self-dual logical operator corresponds to a neutral rule.
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˜2 D max .p C q � 1; �1/ are responsive; conjunction ^, disjunction _
and implication ! are not responsive. The matrix for ˜2 is given below7:

˜2 1 0 �1
1 1 0 �1
0 0 �1 �1

�1 �1 �1 �1

Note: if  2 is self-dual and monotonic, then responsiveness entails:

��
 2.pq/ ��  2.pq/

� ^ .r ) p/
� !�  2.rq/

(and similarly for q). So, by responsiveness if  2.pq/ D 0 and one of its arguments
is replaced by a proposition with a higher value, then the value of the aggregate
 2(pq) moves to 1 (while if an argument is replaced by a proposition with a lower
value then the value of  2(pq) goes down to �1).

Another important property is unanimity. Suppose that both arguments p and q
of  2 have the same value a; then  2(pq) has the same value a:

• A binary operator is unanimous if .p � q/ ! �
 2.pq/ � p

�

Conjunction ^, disjunction _, ’2 and �2 are examples of unanimous operators.
Implication and ˜2 are not unanimous.

The first result to be presented is Theorem 1. It states that the binary operator
�2 can be characterized in terms of the properties of commutativity, self-duality,
monotonicity and responsiveness: �2 satisfies each of them, and no other logical
operator satisfies them all.

Theorem 1  2 is a commutative, self-dual, monotonic and responsive binary
operator if and only if  2 D �2.

Proof One direction of the proof is straightforward:�2 satisfies the four properties.
For the converse direction, suppose that the binary operator 2 is commutative, self-
dual, monotonic and responsive. We want to prove that  2.pq/ D sgn .p C q/. We
have nine cases: (11), (10), (1�1), (01), (00), (0�1), (�11), (�10), and (�1�1).
Since  2 is commutative, cases (10) and (01); (1�1) and (–11); (0�1) and (�10)
are similar. Since  2 is self-dual, cases (10) and (�10); (01) and (0�1); and (11)
and (�1�1) are also similar. So we need to analyze only cases (11), (10), (1�1),
and (00).

Case 1: (00). Since  2 is self-dual, we have  2.00/ ��  2 .� 0 � 0/ ��  2.00/.
But  2.00/ ��  2.00/ only if  2.00/ D 0 D sgn .0C 0/.

Case 2: (10). We have  2.00/ D 0; responsiveness entails that  2.10/ D 1 D
sgn .1C 0/.

7Duddy and Piggins (2013) call ˜2 the Łukasiewicz triangular norm TL and appeal to it to
characterize the deductively closed and free from veto power collective judgments. An important
property of ˜n is that it is associative.
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Case 3: (11). As shown in case 2,  2.10/ D 1. We also have that 0 ! 1, and so by
the monotonicity of  2 we get  2.11/ D 1 D sgn .1C 1/.

Case 4: (1�1). By self-duality, we have 2 .1 � 1/ D�  2 .�11/. By commutativity
 2 .�11/ D  2 .1 � 1/ and so  2 .1 � 1/ D�  2 .1 � 1/, which can only hold
when  2 .1 � 1/ D 0 D sgn .1C .�1//.
Theorem 1 is the counterpart in this formalism of the well-known axiomatization

of the simple majority rule given in (May 1954). I appealed to a weaker version
of his responsiveness axiom, which required the addition of a special monotonicity
axiom.

One may attempt to characterize other logical operators in an analogous way.
Here are two examples: conjunction ^2 and disjunction _2. I first introduce two
new properties, top and bottom group preferences:

Top Group preference (TGP). If p ) q, then  2.pq/ � q.
Bottom Group Preference (BGP). If p ) q, then  2.pq/ � p.

By TGP the group always prefers the option most favorable to the alternative x,
while by BGP the group always prefers the option most favorable to the alternative
y.

Notice that no operator can be commutative, self-dual and also satisfy one of the
axioms BGP and TGP. To see this, take for example BGP and consider the case
(01). We have 0 ) 1 and so  2.01/ D 0 by BGP. Now self-duality requires that �
 2 .0� 1/ D 0 and so  2 .0 � 1/ D 0. But if   is commutative then  2 .�10/ D 0.
Since �1 ) 0 by applying again BGP we get that  2 .0� 1/ D �1 – contradiction.
As observed above, self-duality entails that the alternatives x and y must be treated
equally; but both TGP and BGP entail that one of the two alternatives enjoys a
special status.

The following theorem characterizes the two logical binary operators conjunction
and disjunction:

Theorem 2

(a)  2 is commutative, unanimous and satisfies BGP if and only if  2 D ^2.
(b)  2 is commutative, unanimous and satisfies TGP if and only if �2 D _2.

Proof I give the proof of part (a); the proof for part (b) is similar. Clearly ^2 satisfies
the three properties. For the converse direction of the proof let us assume that  2

has the three properties. We consider all possible cases:

Cases (11), (00) and (�1�1): since  2 is unanimous, we have  2.aa/ D a D
^2.aa/.

Cases (0�1) and (�10): since �1 ) 0, by BGP we get that  2 .�10/ D �1 D
^2 .�10/; by commutativity we have  2 .�10/ D  2 .�10/ D �1 D ^2 .�10/.

Cases (01) and (10): 0 ) 1 entails by BGP that  2.01/ D 0 D ^2.10/.
Commutativity gives again  2.10/ D  2.01/ D 0 D ^2.10/.
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Cases (1�1) and (�11): in the same way as above we have  2 .�11/ D 1 D
^2 .�11/ because �1 ) 1. Since  2 is commutative it follows that  2 .1 � 1/ D
 2 .�11/ D 1 D ^2 .1 � 1/.
As mentioned above, in the present framework the analysis is restricted to only

two alternatives x and y. But let for a moment try to broaden it. Suppose that p1,
q1 etc. express the attitudes of the individuals A, B etc. on the relation between the
alternatives x and y; p2, q2 etc. express the attitudes of the individuals A, B etc. on
the relation between the alternatives y and z; and p3, q3 etc. express the attitudes of
the individuals A, B etc. on the relation between the alternatives x and z. I assume
that all the individuals A, B etc. have consistent attitudes, and so the following must
hold:

��
p1 ! p2

� ^ �p2 ! p3
�� ! �

p1 ! p3
�

(9.1)

��
q1 ! q2

� ^ �q2 ! q3
�� ! �

q1 ! q3
�

(9.2)

Say that a binary operator   is transitive if:

�
 
�
p1q1

� ^  
�
p2q2

�� !  
�
p3q3

�

The following result is the counterpart of Arrow’s theorem in this framework:

Theorem 3 If   is unanimous and transitive, then it is dictatorial.

Proof Assume that p1 D 1, p2 D 0, and also q1 D 0, q2 D 0. Then by unanimity
we get  

�
p1q1

� D  .11/ D 1 and also  
�
p2q2

� D  .00/ D 1. (Here the fact
that   satisfies Independence was assumed.) By the transitivity of   if follows that
 
�
p3q3

� D 1. Since   is unanimous,  
�
p3q3

� D 1 must hold whenever p3 � q3.
We have three cases. First, if p3 D 1 and q3 D 1, then  .11/ D 1. Secondly, if
p3 D 0 and q3 D 0, then  .00/ D 1. Observe that in both cases the expressions
(9.1) and (9.2) have value 1: the individuals A and B have consistent preferences.
Third, put p3 D �1 and q3 D �1. We get   .�1 � 1/ D 1. But in this case we face
a contradiction, because as we can easily check the expressions (9.1) and (9.2) do
not hold: both have the value 0, i.e. both individuals A and B fail to hold transitive
attitudes toward the three alternatives x, y and z. However, the possibility to construct
the case when p1 D 1, p2 D 0, p3 D �1 and q1 D 1, q2 D 0, q3 D �1 and so
to produce a contradiction is ruled out if   is dictatorial. For if   is dictatorial, we
must have for example  

�
p1q1

� D p1,  
�
p2q2

� D p2 and  
�
p3q3

� D p3. Given
(9.1), this does not allow for  

�
p1q1

� D 1,  
�
p2q2

� D 0 and  
�
p3q3

� D �1; and
similarly if   takes always the value of q.
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9.4 n-ary Operators

In this section I introduce some n-ary operators originating in social choice theory
and study their relation to the corresponding binary operators: the simple majority
rule �n, the absolute majority rule ’n, the extended Pareto rule ©n and the jury
rule œn. Their definitions are as follows. Let p D p1p2 : : : pn�1pn be a sequence
of propositional variables (the propositional letters in the sequence need not be
different). As suggested above, intuitively pi expresses the attitude of some voter
i with respect to two alternatives x and y, with value pi D 1 meaning that i
prefers alternative x to y, pi D �1 meaning that i prefers alternative y to x, and
pi D 0 carrying the meaning that i is indifferent between the two alternatives. Then
�n .p/ D 1 if more members of the society prefer x to y; �n .p/ D �1 if more
voters prefer y to x; and �n .p/ D 0 if the votes are equally distributed between x
and y. By the absolute majority rule ’n, an alternative is preferred by the society
if it is preferred by more than half of the total number of members of the society;
and the society is indifferent between two alternatives if none is preferred by more
than half of the total members of the society.8 By the extended Pareto rule ©n an
alternative is preferred by a society if all its members prefer it, and is indifferent in
all the other cases. By the jury rule œn an alternative is preferred by a society if none
of its members opposes it and at least some person prefers it, and is indifferent in all
the other cases.

More formally, we have:

• The n-ary simple majority rule �n is defined by: �n .p/ D sgn

 
nX

iD1
pi

!

.

• The n-ary absolute majority ’n is given by: ’n .p1p2 : : : pn�1pn/ D 1 if more
than n/2 of the pi’s have value 1; ’n .p1p2 : : : pn�1pn/ D �1 if more than n/2 of
the pi’s have value �1; and ’n .p1p2 : : : pn�1pn/ D 0 in all the other cases.

• The n-ary extended Pareto rule ©n is defined by: ©n .p/ D 1 if pi D 1 for all i;
©n .p/ D �1 if pi D �1 for all i and ©n .p/ D 0 in all the other cases.

• The n-ary jury rule œn is defined by: œn .p/ D 1 if pi � 0 for all i, and pi D 1 for
some i; œn .p/ D �1 if pi � 0 for all i and pi D �1 for some i; and œn .p/ D 0

in all the other cases.

The binary operators are special cases of the n-ary ones. Specifically, note that
�2 D œ2 and ’2 D ©2. However, it is interesting to study the converse relation: is it
possible to extend binary operators to the n-ary case? For some binary operators this
operation can be done in a quite straightforward manner by appealing to the property
of associativity. For example, it is usual to extend conjunction ^ and disjunction _
to n arguments as follows:

8The binary case is awkward: since for a society formed of exactly two members more than half
equals two, by ’2 an alternative is collectively preferred if it is preferred by both individuals, while
indifference occurs in all the other cases.
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^ .p1p2 : : : pn�1pn/ D min .p1; p2 : : : pn�1; pn/
�

D ^ .p1 ^ .p2 : : : pn�1pn// I
_ .p1p2 : : : pn�1pn/ D max .p1; p2 : : : pn�1; pn/

�
D _ .p1 _ .p2 : : : pn�1pn// :

When n D 3, we have in the case of conjunction: ^ .p1p2p3/ D .p1 ^ .p2 ^ p3//.
Other operators also have this property. One example is the operator ˜ introduced
in the above section; the social choice operator © (the extended Pareto rule) can also
be extended in the same way:

© .p1p2 : : : pn�1pn/ D © .p1© .p2 : : : pn�1pn//

But operators like the simple majority rule � are not associative. Consider three
propositions, p1, p2 and p3, taken to express the attitudes of three persons A, B and C
concerning the alternatives x and y. Suppose that the individual A votes for y while
B and C vote for x. Then p1 D �1, p2 D p3 D 1. By definition, � .p1p2p3/ D
sgn .p1 C p2 C p3/. Then we must get � .p1p2p3/ D sgn .�1C 1C 1/ D 1.
However, � .p1� .p2p3// D � .�1�.11// D � .�11/ D 0, which shows that the
attempt to extend the binary majority rule operator to the ternary case fails if we
want to appeal to the standard method based on the property of associativity.

In this section I describe an alternative method to extend � to the n-ary case.
Then I prove that ’2 and œ2 behave quite differently: they resist all attempts to
be extended. This means that, e.g. in the case of the absolute majority rule ’2 we
cannot construct any logical expression ¢’ with the property that it contains only
occurrences of the binary operator ’2 and ’n .p1p2 : : : pn�1pn/ � ¢’ is true for all
value-assignments.

Let p D p1p2 : : : pn�1pn be a sequence of propositional variables. By definition

we must have �n .p/ D �n .p1p2 : : : pn�1pn/ D sgn

 
nX

iD1
pi

!

. I shall denote by

p�i the sequence resulting from p by deleting pi from it. We need to construct a
logical expression ¢� with the property that contains only occurrences of the binary
operator �2 and �n .p1p2 : : : pn�1pn/ � ¢� is true for all value-assignments. I first
give two helpful lemmas.

Lemma 1

(a) If �n .p/ D 1 and pi < 1 for some i D 1; : : : n then �n�1 �p�i � D 1.
(b) If �n .p/ D 1, then �n�1 �p�i � � 1 for each i D 1; : : : n and �n�1 �p�i � D 1

for some i.

Proof For (a), the proof is immediate once we appeal to the definition of �n.

Observe that � .p/ D 1 entails that
n�1X

iD1
pi � 1 � pn. Then clearly

n�1X

iD1
pi � 1

if pn < 1 and so sgn

 
n�1X

iD1
pi

!

D 1 D � .p�n/. For (b) suppose, without loss of
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generality, that i D n. By definition, �n .p/ D sgn

 
n�1X

iD1
pi C pn

!

. If �n .p/ D 1, it

follows that
n�1X

iD1
piCpn � 1. Now we can only have� .p�n/ < 0 if sgn

 
n�1X

iD1
pi

!

D

�1, and thus

 
n�1X

iD1
pi

!

< 0; but in this case
n�1X

iD1
pi C pn < 1 for each value of pn –

contradiction. But we cannot have�n�1 �pik
� D 0 for each i. Consider the following

cases.

Case 1: pi D 1 for all i. Then by unanimity �n�1 �p�i � D 1 for each i.
Case 2: there is some i such that pi < 1. But then by (a) we have �n�1 �p�i � D 1.

The following dual propositions can be proved in a similar way:

(a) if � .p/ D �1 and pi > �1 for some i D 1; : : : n, then �n�1 �p�i � D �1.
(b) if � .p/ D �1, then �

�
p�i � � 0 for each i D 1; : : : n and �

�
p�i � D �1 for

some i.

Lemma 2 �n .p/ D �n
�
�n�1 �p�1� ; : : : � .p�n/

�

Proof The proof of the lemma is by induction on the number of members of
the sequence p. First, let n D 2, and so p D .p1p2/. But �2 .p1p2/ D
�2
�
�
�
p�1��2

�
p�2��. Since as noted above the operator � satisfies the property

of unanimity we get �
�
p�1� D � .p2/ D p2 and �

�
p�2� D � .p1/ D p1 and so

�2 .p1p2/ D �2 .p2p1/, which is true by commutativity.

Now let n > 2. Suppose that s of the members of p have value 1, z of its
members have value 0, and m of its members have value �1, and n D s C z C m.
Since � is commutative, we can write p as follows: p1, : : : ps, psC1 : : : psCz,
psCzC1 : : : psCzCm D pn. We have three cases.

Case 1: �n .p/ D 1. Then by Lemma 1 all p�i’s are such that �n�1 �p�i � D 1 or
�n�1 �p�i � D 0, and there is some i such that �n�1 �p�i � D 1. Then clearly

�n
�
�
n�1 �

p�1� ; : : : �n�1 .p�n/
�

D 1 because
nX

iD1
p�i � 1.

Case 2: �n .p/ D �1. The proof is just like in case 1.
Case 3: �n .p/ D 0. We have two subcases:

Subcase 3a: s D m D 0, and so z D n. Observe also that �n .p/ D
�n�1 �p�i � .i D 1; : : : n/, because deleting a pi with value 0 does not change
the value of �. Therefore by unanimity the result is proved. Subcase 3b: s D
m ¤ 0. We have in z cases �n�1 �p�i � D 0, in s cases �n�1 �p�i � D �1
and in m cases �n�1 �p�i � D 1. Since s D m, we get sgn

 
nX

iD1
p�i

!

D
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sgn

 
sX

iD1
p�i C

sCzX

iDsC1
p�i C

sCzCmDnX

iDsCzC1
p�i

!

D sgn .s �mC 0/ D 0 and so

�n
�
�
n�1 �

p�1� ; : : : �n�1 .p�n/
�

D sgn.0/ D 0.

Theorem 4 below states that all applications of the majority rule � to a sequence
consisting in n members can be defined in terms of iteratively applying � to
sequences containing only two members, i.e. in terms of the binary majority rule
�2.

Theorem 4 Let p D p1 : : : pn. Then �(p) is equivalent with an expression ¢�
which contains only the binary majority rule.

The proof is by induction on the number n of members of sequence p.
First, let n D 3. Then p D p1p2p3. All sequences p�i have exactly two
members. We can easily check that �3 .p/ � �2

�
�2
�
�2
�
�2
�
p�1��2

�
p�2��

�2
�
�2
�
p�1��2

�
p�3����2

�
�2
�
p�2��2

�
p�3���. The expression in the right part

of the equivalence states that we first apply �2 to each of the three subsets
fp2, p3g, fp1, p3g and fp1, p2g of fp1, p2, p3g: �2(p2p3); �2(p1p3); �2(p1p2). Then
we apply �2 to each pair of these expressions and get: �2(�2(p2p3)�2(p1p3));
�2(�2(p2p3)�2(p1p2)); �2(�2(p1p3)�2(p1p2)). Third, apply �2 to the first two ex-
pression thus obtained: �2(�2(�2(p2p3)�2(p1p3)) �2(�2(p2p3)�2(p1p2))). Finally,
apply �2 to this expression and the remaining �2(�2(p1p3)�2(p1p2)).

Now let n > 3. By induction the proposition holds for all the sequences with at
most n�1members. Since each of the sequences p�i has n�1 members,�n�1 �p�i �

is equivalent by induction with an expression containing only �2. Write ¢
�
p�i �

for each of these n expressions. Now form all n sets of n�1 such expressions.
For example,

˚
¢
�
p�1� ; : : : ¢

�
p�.n�1/�� contains all but ¢ .p�n/. By induction,

�n�1 �¢
�
p�1� : : : ¢

�
p�.n�1/�� is an expression equivalent with some expression

containing only �2. I write †.p/�n for it. Next, define �n�1
�
†.p/�2 : : : †.p/n

�
;

again by induction, it is equivalent with an expression containing only �2. Finally,

put ¢� D �2
�
�n�1 �†.p/�2 : : : †.p/n

�
; †.p/�1

� �
. I prove that �n .p/ � ¢�.9

Case 1: �n .p/ D 1. By Lemma 2 we also have �n
�
�
n�1 �

p�1� ; : : : �n�1 .p�n/
�

D
1 and so �n

�
¢
�
p�1� ; : : : ¢ .p�n/

� D 1. But by Lemma 1 all ¢(p�i)’s are such
that ¢

�
p�i � D 1 or ¢

�
p�i � D 0, and there is some ¢

�
p�i � such that ¢

�
p�i � D 1.

Therefore for each†.p/�i we have that†.p/�i � 0 and†.p/�i D 1 for some i.

So for ¢� D �2
�
�n�1 �†.p/�2 : : : †.p/n

�
, †.p/�1)) we have two possibilities:

a) †.p/�1 D 0. Then we must have †.p/�i D 1 for some i � 2, which entails

that�n�1 �†.p/�2 : : : †.p/n
�

D 1 and thus ¢� D �2 .1; 0/ D 1; b)†.p/�1 D 1.

9Note that for n D 3, ¢� is exactly the expression used in the first step of this proof.
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Then �n�1 �†.p/�2 : : : †.p/n
�

D a � 0, which gives again ¢� D �2 .a; 1/ D
1.

Case 2: �n .p/ D �1. The proof is just like in case 1.
Case 3: �n .p/ D 0. Then by Lemma 2 we have �n

�
¢
�
p�1� ; : : : ¢ .p�n/

� D 0.
The definition of �n entails that the number of ¢

�
p�i �’s with the property

that ¢
�
p�i � D 1 is equal with the number of ¢

�
p�i �’s with the property that

¢
�
p�i � D �1. A similar argument entails that the number of †.p/�i ’s with the

property that†.p/�i D 1 is equal with the number of†.p/�i ’s with the property
that †.p/�i D �1. We have three subcases:

(a) †.p/�i D 1. Then in the sequence †.p/�2; : : : †.p/n formed
of n � 1 members the number of †.p/�i ’s such that †.p/�i D
�1 is larger than the number of †.p/�i ’s such that †.p/�i D
1 and so �n�1

�
†.p/�2 : : : †.p/n

�
D �1. Then clearly ¢� D

�2
�
�n�1

�
†.p/�2 : : : †.p/n

�
, †.p/�1 // D �2 .�1; 1/ D 0 D �n .p/.

(b) †.p/�1 D �1. By an analogous argument we conclude that ¢� D
�2 .1;�1/ D 0 D �n .p/.

(c) †.p/�1 D 0. Then in the sequence †.p/�2; : : : †.p/n formed of
n � 1 members the number of †.p/�i ’s such that †.p/�i D �1 is
equal with the number of †.p/�i ’s such that †.p/�i D 1 and so

�n�1
�
†.p/�2 : : : †.p/n

�
D 0. Then ¢� D �2

�
�n�1

�
†.p/�2 : : : †.p/n

�
,

†.p/�1 // D �2 .0; 0/ D 0.

Remark We can easily see that if p consists in just one member p, we can put
� .p/ D �.pp/, and by unanimity we get � .p/ � p. Therefore the unary case is
also covered.

Theorem 5 œ2 cannot be extended to the n-ary case.

Proof The proof consists in showing that there is no expression ¢œ which contains
only the binary function œ2 and œn .p/ D ¢œ .p/ for all p D p1 : : : pn. We only
need to consider the simplest case when we have three propositional variables p1,
p2 and p3 and show that œ3(p1p2p3) is not definable in terms of œ2. This means
that there is no expression ¢œ with the property that œ3 .p1p2p3/ D ¢œ .p1p2p3/

for all propositional variables p1, p2 and p3 and �œ contains only occurrences of
œ2. Since œ2 and �2 are identical, we can replace in �œ all occurrences of œ2 with
occurrences of �2. The proof has three steps. In the first step I show that ¢œ satisfies
self-duality; in the second step I show that it satisfies monotonicity. Finally, I prove
that if œ3 .p1p2p3/ D ¢œ .p1p2p3/ for all propositional variables p1, p2 and p3 then
we get a contradiction.

First, I show by induction on the complexity of ¢œ that self-duality is satisfied.
Suppose first that ¢œ D �3 .p1p2p3/. Then clearly self-duality is preserved,

for �3 is self-dual. Let ¢œ D �3
�
¢1œ .p1p2p3/, ¢

2
œ(p1p2p3), ¢3œ .p1p2p3/

�
.
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By induction ¢iœ .� p1 � p2 � p3/ D� ¢iœ .p1p2p3/ .i D 1; 2; 3/. Then

� ¢œ .� p1 � p2 � p3/ D� �3
�
¢1œ .� p1 � p2 � p3/, ¢2œ .� p1 � p2 � p3/,

¢3œ .� p1 � p2 � p3/
�D� �3

� � ¢1œ .p1p2p3/, � ¢2œ .p1p2p3/

, � ¢3œ .p1p2p3/
�D �3

�
¢1œ .p1p2p3/, ¢

2
œ(p1p2p3), ¢3œ .p1p2p3/ D �œ. In the second

step we can proceed in a similar way to show that monotonicity is also holds.
Now let us move to the final step of the proof.10 First, notice the following

property of œ3.
Let p11 D 1, p12 D 1 and p13 D �1. By definition, œ3 D �

p11p
1
2p

1
3

� D 0. Let
p22 D �1. Then œ3

�
p11p

2
2p

1
3

� D 0. Similarly, if p33 D 1, then œ3
�
p11p

2
2p

3
3

� D 0; and
if p41 D �1, then œ3

�
p41p

2
2p

3
3

� D 0. But suppose that œ3 is the result of extending œ2

to the ternary case, i.e. there is some ¢œ such that œ3 .p1p2p3/ D ¢œ .p1p2p3/ for
all propositional variables p1, p2 and p3. Then œ3 must be monotonic and self-dual.
Moreover, note that p11 D� p41 , p12 D� p22 , and p13 D� p33 ; so œ3

�
p11p

1
2p

1
3

� D�
œ3
�� p41 � p22 � p33

�
by self-duality. I shall prove that if ¢œ

�
p11p

1
2p

1
3

� D 0, then
¢œ
�
p11p

2
2p

1
3

� ¤ 0 or ¢œ
�
p11p

2
2p

3
3

� ¤ 0 or ¢œ
�
p41p

2
2p

3
3

� ¤ 0. The proof is on
induction on the complexity of ¢œ.

Case 1. �œ .p1p2p3/ D �3 .p1p2p3/. Since ¢œ
�
p11p

1
2p

1
3

� D 0, we have
�3
�
p11p

1
2p

1
3

� D 0. But �3 is responsive, and we have
�
p22 ! p12

�^ ��
p12 ! p22

�
; so �3

�
p11p

2
2p

1
3

� D �1, which gives ¢œ
�
p11p

2
2p

1
3

� ¤ 0.
Case 2. �œ .p1p2p3/ D �3

�
¢1œ .p1p2p3/ ; ¢

2
œ .p1p2p3/ ; ¢

3
œ .p1p2p3/

�
. By induc-

tion, the property holds for all ¢iœ .i D 1; 2; 3/. Since all � i
œ are monotonic, given

the values of pk
j ’s we have:

(1) ¢iœ
�
p11p

2
2p

1
3

� ! ¢iœ
�
p11p

1
2p

1
3

�

(2) ¢iœ
�
p11p

1
2p

1
3

� ! ¢iœ
�
p11p

2
2p

3
3

�

(3) ¢iœ
�
p41p

2
2p

3
3

� ! ¢iœ
�
p11p

2
2p

3
3

�

But by the definition of œ3,

(4) �3
�
¢1œ
�
p11p

1
2p

1
3

�
; ¢2œ

�
p11p

1
2p

1
3

�
; ¢3œ

�
p11p

1
2p

1
3

��

D �3
�
¢1œ
�
p11p

2
2p

1
3

�
; ¢2œ

�
p11p

2
2p

1
3

�
; ¢3œ

�
p11p

2
2p

1
3

��
;

and similarly for the other two cases. So

(5) ¢iœ
�
p11p

2
2p

1
3

� D ¢iœ
�
p11p

1
2p

1
3

�
;

because otherwise�3’s being responsive would contradict the above equivalence.
A similar argument applies for the other two cases. However, by the inductive
hypothesis we must have

(6) ¢iœ
�
p11p

1
2p

1
3

� ¤ 0 or ¢iœ
�
p11p

2
2p

1
3

� ¤ 0 or ¢iœ
�
p11p

2
2p

3
3

� ¤ 0 or ¢iœ
�
p41p

2
2p

3
3

� ¤
0.

10It is inspired by the necessity part of Fine’s proof of his Theorem 3 in (Fine 1972); I appeal to a
very simplified version of his property of zigzaggedness.
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From (5) and (6) we get:

(7) ¢iœ
�
p11p

2
2p

1
3

� D ¢iœ
�
p41p

2
2p

3
3

� ¤ 0

But notice that p11 D� p41 , p12 D� p22 , and p13 D� p33 ; so we must also
have ¢iœ

�
p11p

1
2p

1
3

� D� ¢iœ
�� p41 � p22 � p33

�
by the self-duality of ¢ i

œ – which
contradicts (7).

Theorem 6 ’2 cannot be extended to the n-ary case.

Proof Again, it suffices to show that ’2 cannot be extended to ’3. Suppose that
there is some expression ¢’ which contains only the binary absolute majority rule
’2 and ’n .p/ D ¢’ .p/ for all p D p1p2p3. Suppose that at the profile p we have
p1 D 0, p2 D p3 D 1. If ¢’ contains at least one occurrence of p1, then ’2 gives value
0, and the definition of ’2 entails that all other subsequent applications must result in
the same value, so ¢’ .p/ D 0. But clearly we must have ’3 .p/ D 1 – contradiction.
Therefore, we must construct ¢’ such that it contains no occurrence of p1. If on the
other hand we take into account a value assignment p0 such that p2 D 0, p1 D p3 D
1 (in this case we also have ’3 .p0/ D 1) we must conclude that ¢’ is such that it
contains no occurrence of p2; a similar argument shows that ¢’ does not satisfy the
required property if it includes an occurrence of p3. Therefore no ¢’ satisfies the
property that ¢’ .p/ D ’ .p/ for all assignments p.

9.5 Conclusion

Supposing that the language we use consists in propositions that express the
attitudes of individuals on an issue (how to choose between the alternatives x and y),
a Łukasiewiczian three-valued logic framework can be shown to be rich enough to
allow for the reconstruction of many aggregation rules, the simple and the absolute
majority rules among them. I argued that, on this account, in its primary use simple
majority rule applies to groups of people consisting in only two members and so it
can be modeled as a binary logical operator. I characterized it by means of some
simple properties, in analogy with the famous result presented by May (1954) and
also showed that an impossibility theorem can be obtained in this framework.

One of the missing steps in the appeal to simple majority rule, as applied to
groups of people formed of an arbitrary number n (n> 2) of members, is its relation
to the binary rule. I proved that the n-ary logical operator corresponding to simple
majority rule can be obtained by extending the binary operator.11

11The three-valued logic is functionally complete in the following sense (Słupecki 1972): let F be
a set of logical operators that contains all the unary operators and at least one essential operator. A
binary operator is essential if it takes on all the values from f1; 0;�1g. Then each binary operator
is definable in terms of the logical operators in F. In fact, we need not consider all the unary
operators as given. Słupecki (Słupecki 1967) showed that all the binary logical operators can be
defined by adding to the classical ! (implication) and (negation) operators a new unary operator
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The paper relies on a logical framework in which the propositions of the language
used are interpreted as expressing the attitudes of the individuals toward certain
issues. The aggregation of attitudes is then expressed by means of logical operators.
Compound propositions are taken to express the attitudes of complex groups: some
are formed of individuals, while others are higher-order and have also groups as
their members. The aggregation of attitudes is an attempt to describe such complex
situations of group decisions.
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