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9. Digital Signal Processing

Nikolaos I. Xiros

In this chapter the concept of discrete-time signals
and sampled-data systems implemented ondigital
hardware versus those of continuous-time signals
driving analog systems and processes is introduced
early on. The processes of signal sampling and ana-
log signal reconstruction are then investigated,
and the Nyquist sampling rate to avoid aliasing
is explained by means of Fourier series analysis.
Then the Z-transform is introduced as the tool of
preference for analysis and synthesis of discrete-
time linear, time-invariant systems defined by
difference equations in the discrete time domain.
A detailed account of themost important and prac-
tical continuous-time system mapping techniques
to discrete-time ones is then presented. A brief ac-
count of digital filter structures and types is also
given along with a presentation of the fast Fourier
transform algorithm for the calculation of the dis-
crete Fourier transform of discrete-time signals
with finite duration admitting periodic expansion.
The notions of waveform statistics as encountered
in random signals and stochastic processes are
then given in order to conclude with the effect
on a random signal’s statistics due to its prop-
agation through a linear, time-invariant system.
Finally, concepts of optimal signal estimation and
the Wiener filter are presented, leading to matched
filter and zero-forcing equalizer parametric designs
in the discrete-time domain.
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9.1 Discrete-Time Systems

The progress in integrated circuit manufacturing (Very
Large Scale Integration (VLSI)) combined with the
need for high complexity and accuracy signal analysis
and processing algorithms without development cost or
time increase are the basic factors that contributed to
the continuously increasing use of digital systems in in-
dustry and technology [9.1, 2].

9.1.1 Discrete-Time Signals
and Digital Systems

A digital processing system is a system where the
basic mathematical operations and functions, includ-
ing signal transformations and data series analysis, are
implemented as an embedded program onboard real-
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time, computer hardware [9.1, 2]. Since the computer
hardware employed is digital, the signals that can be
processed or generated cannot be continuous time, i. e.,
defined for any instant in time. Instead, the computer
processes and generates tables (i. e., vectors) of values
for the input and output signal, respectively. Such tables
hold the values of the corresponding signals at discrete
time instants and are referred to as discrete-time sig-
nals. The time instants for which a discrete-time signal
is known or defined are in most practical cases equally
spaced; this scheme is known as uniform sampling and
the spacing interval between two successive samples of
the signal is mentioned as sampling interval or period.

The systems, e.g., real-time digital hardware, pro-
cessing discrete-time signals are known as discrete-time
systems. The main advantages in using computers in
marine vehicle or process instrumentation, telecommu-
nications, acoustics etc., instead of analog (continuous-
time) systems are [9.1, 3–5]:

1. (Re)use of general purpose hardware for imple-
menting a wide variety of algorithms instead of
custom-built, proprietary designs that may become
obsolete causing higher acquisition and develop-
ment cost.

2. Changes in the algorithm can be easily implemented
as changes in the software through reprogramming
without need to modify the hardware.

3. Easy implementation of adaptive or time-varying al-
gorithms due to programming.

4. Very small to zero sensitivity to environmental con-
ditions, e.g., ambient temperature, in contrast to,
e.g., analog electric circuitry.

5. Given, well-defined accuracy in computation deter-
mined by the computer’s word length.

6. User-friendly human–machine interface (HMI).
7. Network connectivity.

However, there are some disadvantages in using
discrete-time systems, the most important of which is
the need for converter or adapter circuits or interface
systems at their input and output in order to be able to
interact with the vast majority of the real-world physi-
cal or engineering systems or processes, which are most
often continuous-time. Such interfaces are the analog-
to-digital (A/D) and digital-to-analog (D/A) converters.

9.1.2 Signal Sampling

Modeling of Ideal Sampler
Consider a continuous-time signal x.t/, which is driven
through a sampling circuit (sampler) operating at a con-
stant sampling rate (frequency), fs D 1=Ts, as shown in
Fig. 9.1.

Ts

x (t) x (n)

Fig. 9.1 Analog signal sampler

The sampler’s output is a sequence of entries of the
sampled signal, x.nTs/, where n is an integer and Ts the
sampling period. Sequence x.n/ D x.nTs/ is a discrete-
time signal.

We will now represent the discrete-time signal as
well as the sampling process in a continuous-time
framework. Such a representation can be derived on the
basis of Fig. 9.2.

A pulsed continuous-time signal x�.t/, which cor-
responds to sequence x.nTs/, can be generated from
the original continuous-time signal x.t/ (dashed line), if
the latter is multiplied by the following sampling pulse
train P�.t/

P�.t/ D
C1X

nD�1

p�.t� nTs/ ; (9.1)

where

p�.t/ D
(
1=�; t 2 Œ0;��

0 t … Œ0;��
; 0<� � Ts : (9.2)

In effect

x�.t/ D x.t/ �P�.t/ : (9.3)

However, the following holds

lim
�!0

p�.t/ D •.t/ ) lim
�!0

P�.t/ D
C1X

nD�1

•.t� nTs/ :

(9.4)

Fig. 9.2 Sampling of continuous-time waveform at uni-
form rate
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In the above ideal case, the sampling pulse train is an
impulse train or Dirac comb. In effect, (9.4) becomes

x•.t/ D x.t/ �
C1X

nD�1

•.t� nTs/

D
C1X

nD�1

x.nTs/•.t� nTs/

D
C1X

nD�1

x.n/•.t� nTs/ : (9.5)

Above, the following fact for Dirac’s impulse
delta has been used: $.t/•.t/ D $.0/•.t/, which implies
the assumption that signal $.t/ assumes non-infinite
values.

Hence, the ideal sampler operation consists of mul-
tiplicatively applying the input signal by a Dirac comb
with Ts. Now we will determine the spectrum of sig-
nal x•.t/ at the output of the sampler by employing the
Fourier transform.

Fourier Series Expansion
and Fourier Transform

Any periodic signal x.t/ with period T can be expanded
to a complex Fourier series according to the following

x.t/ D
C1X
nD0

cn exp

�
in
2�

T
t

�
: (9.6)

Coefficients cn of the series are calculated according to

cn D 1

T

TZ
0

x.t/ exp

�
�in

2�

T
t

�
dt : (9.7)

The above can be extended to the case of aperiodic
(non-periodic) signals assuming that period T is infi-
nite. That is how the Fourier transform emerges

X.!/ D Ffx.t/g

D
C1Z

�1

x.t/ exp.�i!t/dt; ! D 2�

T
: (9.8)

The inverse Fourier transform is defined by

x.t/ D 1

2�

C1Z
�1

X.!/ exp.i!t/d! : (9.9)

To generalize formalism we refer to the Fourier trans-
form of any signal, periodic or not. In the case of peri-
odic signals, the Fourier transform is directly connected

to coefficients cn of its series expansion as follows

X.!/ D 2�
C1X
nD0

cn•

�
! � n

2�

T

�
: (9.10)

The above can be derived directly by plugging it into
(9.8) and generating (9.6). The Fourier transform, just
like the Laplace transform, from which the former can
be defined by setting s D i!, is a linear integral trans-
form. Its properties are identical to those of the Laplace
transform, and can be sought in the literature. An im-
portant property is that of multiplication-convolution
duality

x.t/ D x1.�/˝ x2.�/

,
C1Z

�1

x1.�/ � x2.t� �/ � d�

) X.!/ D X1.!/ �X2.!/

x.t/ D x1.t/ � x2.t/ ) X.!/

D X1.!/˝X2.!/

,
C1Z

�1

X1.�/ �X2.! � �/ � d� : (9.11)

Here, ˝ stands for the convolution operator. Note that
the above can be directly applied to the Dirac comb de-
scribing the function of an ideal sampler as well as its
periodicity.

Indeed, the Dirac comb in (9.4) is a periodic signal
with period Ts. Its Fourier series is given below

cn D 1

Ts

TsZ
0

•.t/ exp.�in!st/dt

D exp.�in!s0/

Ts

TsZ
0

•.t/dt D 1

Ts
; !s D 2�

Ts
:

(9.12)

Hence, based on (9.10) the spectrum (Fourier trans-
form) of the Dirac comb is given by

F
(

C1X
nD�1

•.t� nTs/

)
D 2�

C1X
nD0

1

Ts
•

�
! � n

2�

Ts

�

D !s

C1X
nD0

•.! � n!s/ :

(9.13)

Nyquist Sampling Rate – Aliasing
Combining the relationship above for the Dirac comb
spectrumwith (9.5), as well as the Fourier transform du-
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–ωmax +ωmax

|X (ω)|

Fig. 9.3 Typical spectrum of real low-pass signal

ality between multiplication and convolution, one can
determine the spectrum of signal x•.t/ at the output of
an ideal sampler

x•.t/ D x.t/ �
C1X

nD�1

•.t� nTs/ )

) X•.!/ D X.!/˝F
(

C1X
nD�1

•.t� nTs/

)

D !sX.!/˝
C1X
nD0

•.! � n!s/

) X•.!/ D !s

C1X
nD0

X.!/˝ •.! � n!s/

D !s

C1X
nD0

C1Z
�1

X.�/•.! � n!s � �/d� :

The following property of the Dirac impulse delta can
now be employed

$.r/˝ •.r� r0/

D
C1Z

�1

$.�/•.r� r0 � �/d� D $.r� r0/ :

(9.14)

Eventually one obtains

X•.!/ D F
(

C1X
nD�1

x.nTs/•.t� nTs/

)

D !s �
C1X
nD0

X.! � n!s/ : (9.15)

Using (9.15) one can assess the effect of sampling
on spectrum X.!/ of the analog, the continuous-time
signal at the input. Sampling introduces, therefore, an
infinite number of aliases of spectrum X.!/ of the ana-
log signal, centered at integer multiples of the sampling
circular frequency !s.

To visualize this, consider a real signal with all its
spectral content lying within the low frequency range

(low-pass or baseband signal); like, e.g., the signal with
spectrum as in Fig. 9.3. Note that the amplitude spec-
trum jX.!/j of the signal is an odd function of circular
frequency ! due to the fact is assumed to be purely real
in the time domain.

The amplitude spectrum of signal x•.t/ is shown in
the Fig. 9.4 as generated by sampling of low-pass signal
x.t/ above at three (9.3) different sampling rates: !s;0 D
2!max, !s;1 D 4!max, !s;2 D !max.

Using the plot, one can readily derive the follow-
ing sampling rate criterion attributed to Nyquist (or the
Shannon sampling theorem) for the low-pass signal like
the one in Fig. 9.4

!s 
 !s;0 D 2!max : (9.16)

If the condition above holds as seen in (9.15) (spec-
trum periodicity for the sampled signal), as well as
Fig. 9.5, an ideal (brick) low-pass filter with transfer
function as follows can be used to reconstruct the orig-
inal continuous-time signal

HLPF.!/ D
(
1; j!j 	 !s=2

0; j!j > !s=2
: (9.17)

The original spectrum is ideally reproduced without any
distortion since it holds that

HLPF.!/X•.!/ D !sX.!/ : (9.18)

This is made clearer next when reconstruction of
a continuous-time signal based on the values of a dis-
cretized version is discussed.

–ωs,1

–ωs,0 +ωs,0

+ωs,1

ωs,1 = 4ωmax

ωs,0 = 2ωmax

0–2ωs,2

2ωmax

+2ωs,2

ωs,2 = ωmax

Fig. 9.4 Sampled signal spectrum at various sampling
rates
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t

x (t)

Fig. 9.5 Original continuous-time signal (continuous line)
and reconstructed version using a non-brick filter (dashed
line)

9.1.3 Analog Signal Reconstruction
Using a Discrete-Time Signal

The simplest process to generate a continuous-time sig-
nal, x.t/, from a discretized sequence (discrete-time
signal) x.n/ is to employ the zero-order hold (ZOH) net-
work. This system holds the output constant and equal
to the one applied to its input for an entire sampling pe-
riod Ts. In effect, the output of ZOH when driven by
a discretized signal is given in the Fig. 9.5.

The mathematical description of a ZOH system is
achieved through the following impulse response and
transfer function in the complex frequency domain of
variable s

hZOH.t/ D ustep.t/� ustep.t�Ts/

, HZOH.s/ D 1� e�sTs

s
: (9.19)

To better understand the action of the ZOH system, its
transfer function in the circular frequency domain !
(Fourier transform) is given below, as well

HZOH.!/ D 1� e�i!Ts

i!
D Tse

�i!Ts=2
sin.!Ts=2/

.!Ts=2/

D e�i� f=fs

fs
sinc.f =fs/ :

(9.20)

In the above sinc.$/ D sinc.�$/=�$. In Fig. 9.6 the
amplitude spectra of the transfer functions of the ZOH
system (normalized by setting fs D 1Hz) and the ideal
reconstruction low-pass filter which was introduced
with (9.17).

Indeed, in the circuit above if resistance R is small
(theoretically zero), then time constant 	 indicating the
time needed for charging the capacitor in the hold cir-
cuit is small when compared to sampling period Ts. The

0

ωs

–ωs +ωs

|H (ω)|

Fig. 9.6 Amplitude spectrum of transfer function
HZOH.!/ (continuous line) and HLPF.!/ (dashed line)

voltage across the terminals of the capacitor stays at
the value set in the previous sampling instant, when the
switch was momentarily switched on, until the next in-
stant the switch is on, etc. The differences of the analog
memory element, as the switched resistor and capacitor
(RC) circuit is known, and the model ZOH system are:

a) The ohm resistance value of the circuit is non-zero
and, therefore, the time to charge the capacitor is
finite and not zero.

b) The duration of the conduction phase of the switch
is finite and non-zero.

c) The ohm resistance applied to the terminals of the
capacitor when the switch is off is not infinite (open
circuit) but finite, eventually leading to discharge of
the capacitor.

The use of the RC hold circuit is widespread due
to its simplicity. However, if a more accurate recon-
struction with less distortion, without increasing the
sampling rate, then hold circuits of order higher than
zero (e.g., first-order hold, FOH) so that its transfer
function better approximates the ideal brick low-pass
filter in (9.17), as shown in Fig. 9.6.

9.1.4 The Z-Transform

The single-sided (unilateral) Z-transform is a linear
transform defined as follows for a discrete-time sig-
nal x.n/

X.z/ D Zfx.n/g D
C1X
nD0

x.n/ � z�n : (9.21)

The Z-transform is derived from the Laplace transform
of signal x•.t/, which is generated by the ideal sampler
shown in Fig. 9.7,

x•.t/ D
C1X

nD�1

x.n/•.t� nTs/ ) X•.s/

D L
(

C1X
nD�1

x.n/•.t� nTs/

)
D

C1X
nD0

x.n/e�n�sTs :

(9.22)
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Ts

C

R

+ +

– –

vi (t) vo (t)

Fig. 9.7 Switched RC circuit modeled by the ZOH system

In effect,

X.z/jz�1
Dexp.�sTs/ D X•.s/ : (9.23)

Variable z�1 is used for describing a signal, or system
as we will see later on. Its significance lies in the fact
that multiplying by z�1 in the transform domain trans-
lates to a time shift by one sampling period, Ts, in the
discrete-time domain n. Indeed,

y.n/ D x.n� 1/ , Y.z/ D z�1X.z/ : (9.24)

Furthermore, here are some more of the most important
properties of the Z-transform:

1. Linearity

X1.z/ D Zfx1.n/g
X2.z/ D Zfx2.n/g
k1; k2 2 R

9>=
>;

) k1 �X1.z/C k2 �X2.z/

D Zfk1 � x1.n/C k2 � x2.n/g : (9.25)

2. Delay or advance by N discrete-time units

Zfx.n/g D X.z/

)

8̂̂
<
ˆ̂:
Zfx.n�N/g D z�NX.z/

Zfx.nCN/g D zNX.z/�
N�1X
kD0

zN�kx.k/
:

(9.26)

3. Initial or final value theorems

Zfx.n/g D X.z/

)
8<
:
x.n D 0/ D lim

z!1

.X.z//

lim
n!1

.x.n// D lim
z!1

..1� z�1/X.z//
:

(9.27)

Note: the final value theorem .n ! 1/ holds only
if X.z/ is an analytic function of complex variable z.

4. Discrete convolution theorem

X1.z/ D Zfx1.n/g
X2.z/ D Zfx2.n/g

x.n/ D x1.k/˝ x2.k/ ,
C1X

kD�1

x1.k/ � x2.n� k/

9>>>>=
>>>>;

) X.z/ D Zfx.n/g D X1.z/ �X2.z/ :

(9.28)

Note: because x.n/ needs to be causal, i. e., can only
depend on values of signals x1 and x2 prior or up to
instant n, the bounds of the convolutional summa-
tion are set as follows,

.x1.k/˝ x2.k//.n/ D
nX

kD0

x1.k/ � x2.n� k/ :

It is also pointed out here that the commutative and
associative properties hold for the convolution op-
erator applied on two discrete-time signals.

Finally, it is pointed out that the change of variable,
z D exp.sTs/, on the basis of which the Z-transform is
obtained from the Laplace transform of signal x•.t/,
defines a single-valued mapping of complex frequency
s-plane to the plane of, also complex, delay operator
z. Remember that the stability region on the complex
plane s D aC i!, is the left-hand half-plane defined by
inequality ˛ 	 0. In effect, the stability region on the
delay operator z-plane is defined by inequality

jzj 	 1 : (9.29)

Since

z D esTs D eaTsei!Ts )
(

jzj D eaTs

arg.z/ D ei!Ts
: (9.30)

That is, the stability region is the unit disc. Similarly,
the origin of the s-plane is mapped to point z D AC j0
on the z-plane, while the imaginary axis of the s-plane is
wrapped around the unit circle on the z-plane. Finally,
the real s axis is mapped to the real z semi-axis. The
Z-transform of several elementary discrete-time signals
are shown in Table 9.1. In the interest of completeness
and allowing for comparisons a Laplace transform table
is provided in Table 9.2.

9.1.5 Discrete-Time LTI Systems

Difference Equations
A special class of dynamic systems, widely used in
systems and signal theory, is linear time invariant sys-
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tems (LTI) [9.1, 2, 4–6]. Such systems are described in
continuous time by linear differential equations with
constant coefficients. In discrete time, such a differ-
ential equation is converted to a difference equation
corresponding to a discrete-time system described by
a transfer function in variable z, or equivalently z�1.
The general form of a linear difference equation with
input u.n/ and output y.n/ is the following,

y.n/ D
MX

kD0

bku.n� k/�
NX

kD1

aky.n� k/ : (9.31)

To obtain the iterative process started in order to obtain
samples of discrete-time output signal y.n/ for n 
 0, N
initial conditions are needed: y.�k/, k D 1; : : : ;N. Us-
ing (9.31) we can conclude that the n-th sample of the
output is determined as a weighed sum of the current
plus M past input samples and N past output sam-
ples.

Table 9.1 Some Z-transform pairs

k-th term of the time sequence z-transform

1 at k, 0 elsewhere (Kronecker delta sequence) z�k

1 (unit step sequence)
z

z� 1

k (unit ramp sequence)
z

.z� 1/2

Ak (for complex numbers A)
z

z�A

kAk Az

.z�A/2

.kC 1/.K C 2/ � � � .K C n� 1/

.n� 1/Š
Ak zn

.z�A/n

Table 9.2 Laplace transform pairs

Time function Laplace transform
Unit impulse •.t/ 1

Unit step 1.t/
1

s

Unit ramp t
1

s2

Polynomial tn
nŠ

snC1

Exponential e�at 1

sC a

Sine wave sin!t
!

s2 C!2

Cosine wave cos!t
s

s2 C!2

Damped sine wave e�at sin!t
!

.sC a/2 C!2

Damped cosine wave e�at cos!t
sC a

.sC a/2 C!2

Linear Time-Invariant Discrete-Time Systems
The generic difference (9.31) in the discrete-time do-
main defines an LTI discrete-time system. In the Z-
transform domain the difference equation becomes the
transfer function as follows

H.z�1/ D Y.z/

U.z/

D b0 C b1z�1 C : : :C bMz�M

1C a1z�1 C : : : aN�1z�NC1 C aNz�N

m

H.z/ D b0zN C b1zN�1 C : : :C bMzN�M

zN C a1zN�1 C : : :C aN
;

M 	 N : (9.32)

A special, yet very important case of discrete-time
systems are finite impulse response (FIR) systems in
contrast to the generic IIR (infinite impulse response)
system defined in (9.31). For a FIR system it holds that
ak D 0, 8k > 0 in (9.31), hence

y.n/ D
MX

kD0

bku.n� k/ and

H.z�1/ D b0 C b1z
�1 C : : :C bMz

�M : (9.33)

In effect, the n-th output sample is exclusively deter-
mined as a weighed sum of the current plusM past input
samples. In effect, the difference equations seizes to be
recursive and that is why in the literature FIR systems
are also mentioned as MA (moving average) ones.

In contrast, discrete-time LTI systems that have ex-
clusively poles, i. e., bi D 0, for every i > 0 in (9.32), are
also known as AR (auto-regressive), while the generic
IIR system is mentioned also as auto-regressive moving
average (ARMA) in this framework.

9.1.6 Continuous-Time System Mapping

There are many ways (methods) to map a continuous-
time system to a discrete-time equivalent [9.1, 2, 4–6].
All of these methods are based on preserving some
characteristic of the continuous-time system during this
procedure; this is why there is more than one way.
However, stability (or instability) of a continuous-time
system is preserved by employing any of the methods
presented here.

The mapping methods considered here can be clas-
sified into the following categories:

1. Approximate differentiation or integration:� Backward difference� Forward difference� Trapezoidal integration (Tustin transformation).
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2. Time-domain response matching at sampling in-
stants:� Impulse response matching� Step response matching.

3. Dynamic matching, i. e., matching of all poles and
zeroes appearing in the transfer function.

Approximate Differentiation or Integration
Consider a continuous-time signal x.t/ being sampled
with sampling interval Ts and the discrete-time signal
x.n/ is obtained. Then, the following approximations
can be derived.

Approximate derivative with respect to time using
backward difference

Px.t/ ' x.n/� x.n� 1/

Ts
) s � 1� z�1

Ts
: (9.34)

Approximate derivative with respect to time using for-
ward difference

Px.t/ ' x.nC 1/� x.n/

Ts
) s � z� 1

Ts
D 1� z�1

Tsz�1
:

(9.35)

Approximate integral with respect to time using the
trapezoidal rule

x1.nTs/ D
nTsZ
0

x.�/d� D
.n�1/TsZ
0

x.�/d� C
nTsZ

.n�1/Ts

x.�/d�

, x1..n� 1/Ts/C�x1.n/ ;

�x1.n/ ' Ts � x.n/C x.n� 1/

2
: (9.36)

However,

X1.s/ D 1

s
X.s/ and

X1.z/ D z�1X1.z/CTs
1C z�1

2
X.z/ : (9.37)

The above in effect yields

1

s
� Ts

2
� 1C z�1

1� z�1
, s � 2

Ts
� 1� z�1

1C z�1
: (9.38)

Equations (9.34), (9.35), and (9.38) mean that when
presented with a transfer function H.s/ in the complex
frequency (s) domain, describing a continuous-time LTI
system, it is possible to derive a discrete-time transfer
function H.z/, or H.z�1/, defining a discrete-time LTI
system by substituting variable s with the approxima-
tion desired.

Impulse Response Matching
The methods presented previously were based on ap-
proximating the integration or differentiation operator
appearing in the differential (dynamic) equation of an
LTI system. However, an LTI system can, also, be de-
scribed in full by its response to an arbitrary input
signal. Common choices include using either Dirac’s
delta (impulse) or the unit step signal (Heaviside sig-
nal).

In effect, if the impulse or step response of
a continuous-time system is sampled, then a discrete-
time description can be derived as follows.

Invariance of impulse response: the impulse delta is
defined as follows in discrete time

•.n/D
(
0; n ¤ 0

1; n D 0
, �.z/ D 1 : (9.39)

Given the transfer function, H.z/ of a discrete-time LTI
system, it is easy to prove that, just like in the continu-
ous time case, H.z/ is the Z-transform of the system’s
impulse response.

Indeed, the output y.n/ of a discrete-time LTI sys-
tem is given by the following convolutional sum

y.n/ D u.k/˝ h.k/ ,
C1X

kD�1

u.k/ � h.n� k/ ) Y.z/

D H.z/ �U.z/ : (9.40)

In effect,

u.n/D •.n/ ) U.z/ D 1 ) Y.z/ D H.z/ :

Consider a continuous-time LTI system with impulse
response h.t/ D L�1fH.s/g, which is being sampled at
rate fs. This means that continuous-time signal h•.t/ DP

C1

nD�1
h.nTs/•.t� nTs/ corresponds to discrete-time

signal h•.n/ � h.nTs/, i. e., a sample set of h.t/.
The Z-transform of h•.n/,

H•.z
�1/ D

C1X
nD0

h•.n/z
�n ;

defines a discrete-time LTI system, the impulse re-
sponse of which, by definition, coincides with that of
continuous-time transfer function H.s/, at all sampling
instants.

Assume, now, that for every positive M there is
a positive integer " such that

C1X
nDMC1

h2•.n/ < " : (9.41)
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Given the above, one can proceed to impulse response
truncation with accuracy ". This procedure consists of
approximating the original IIR system with transfer
function H•.z�1/ DP

C1

nD0 h•.n/z�n by the following
FIR one with memoryM

OHFIR.z
�1/ D

MX
nD0

h•.n/z
�n D

MX
nD0

bnz
�n : (9.42)

Approximating a continuous-time system with a dis-
crete-time one, which on top might be FIR, comes with
a number of advantages, especially for real-time appli-
cations.

Invariance of step response: the unit step signal in
discrete time is defined as follows

ustep.n/ D
(
1; n 
 0

0; n< 0
,

Ustep.z/ D
C1X
nD0

z�n D 1

1� z�1
: (9.43)

The Z-transform of the unit step signal is derived by
applying the lemma for the infinite sum of a geometric
progression with a ratio that in magnitude is less than 1.

Consider now an LTI system with impulse response
as follows

ystep.t/ D L�1fH.s/Ustep.s/g D L�1

�
H.s/

s


:

(9.44)

Wewill now determine a discrete-time transfer function
H.z/ such that the latter’s unit step response coincides
with that of the continuous-time system above. Mathe-
matically, this is defined as follows

Z�1fH.z/Ustep.z/g D ystep.n/ D ystep.nTs/ : (9.45)

Then, by employing (9.43), one obtains that

H.z/ D .1� z�1/Zfystep.nTs/g : (9.46)

Since

z�1 D exp.�sTs/ and Ystep.s/ D H.s/

s
:

We can finally obtain that

H.z/ D ZfyZOH.nTs/g : (9.47)

In the above, it holds that

yZOH.t/ D hZOH.t/˝ h.t/ ,

YZOH.s/ D HZOH.s/H.s/D 1� e�sTs

s
H.s/ : (9.48)

Pole and Zero Matching
of a Transfer Function

This method derives from equation

z�1 D exp.�sTs/

connecting variable z with complex frequency s. Com-
bining the above with the following factorized form of
a continuous-time scalar transfer function

H.s/ D Ks
.sC z1/.sC z2/ : : : .sC zm/

.sC p1/.sC p2/ : : : .sC pn/
; m 	 n :

(9.49)

One can map every pole and every zero of the continu-
ous-time transfer function to a corresponding pole and
zero of an equivalent discrete-time transfer function

%i D � exp.�Tszi/; i D 1; : : : ;m ;

�i D � exp.�Tspi/; i D 1; : : : ; n : (9.50)

In effect, the following discrete-time transfer function
is derived in its factorized from

H.z/ D kz
.zC 1/n�m.zC %1/.zC %2/ : : : .zC %m/

.zC�1/.zC�2/ : : : .zC�n/
:

(9.51)

Factor .zC 1/n�m is introduced in the discrete-time
transfer function above in correspondence to factor
.	sC1/n�m with 	 ! ˙j0, which is hidden in the con-
tinuous-time transfer function (9.49). The intent is to
equate the numerator degree to that of the denominator.
This is achieved by introducing an extra zero at imag-
inary infinity .˙j1/ with multiplicity .n�m/ using
factor .	sC 1/n�m. In the discrete-time transfer func-
tion, factor .	sC 1/n�m is mapped to .zC 1/n�m, since
point ˙j1 on the s-plane is mapped to �1 on the z-
plane.

Finally, gain k in the discrete-time transfer func-
tion is determined by equating its value at a certain z
with that of the continuous-time transfer function at the
equivalent point s. For example, for z D 1, the corre-
sponding point is s D 0, and, therefore, k is calculated
as follows

H.z/jzD1 D H.s/jsD0

, kz
2n�m.1C %1/.1C %2/ : : : .1C %m/

.1C�1/.1C�2/ : : : .1C�n/
;

D Ks
z1z2 : : : zm
p1p2 : : : pn

: (9.52)
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9.2 Digital Filters

In the previous section we studied different ways of
describing discrete-time systems that are linear and
time invariant. It was verified that the Z-transform
greatly simplifies the analysis of discrete-time systems,
especially those initially described by difference equa-
tions.

In this section, we study in finer detail several struc-
tures used to realize a given transfer function associated
with a specific difference equation through the use of
the Z-transform. The transfer functions considered here
will be of the polynomial form (non-recursive filters,
FIR) and of the rational-polynomial form (recursive fil-
ters, IIR). In the non-recursive case we emphasize the
existence of the important subclass of linear-phase fil-
ters. Then we introduce some tools to calculate the
digital network transfer function, as well as to analyze
its internal behavior. We also discuss some properties of
generic digital filter structures associated with practical
discrete-time systems.

9.2.1 Important FIR Filter Structures

Non-recursive filters are characterized by a difference
equation in the form

y.n/ D
MX
lD0

blx.n� l/ ; (9.53)

where the bl coefficients are directly related to the sys-
tem impulse response; that is, bl D h.l/. Owing to the

X (z)

x (n) mj x (n)

a)

b)

z–1 X (z)
x (n–1)x (n )

z–1

mj

x1 (n)

x2 (n)

xj (n)

x1 (n) + x2 (n) + ... + xj (n)

c)

Fig. 9.8a–c Classic representation of basic elements of
digital filters: (a) delay; (b) multiplier; (c) adder

finite length of their impulse responses, non-recursive
filters are also referred to as finite-duration impulse re-
sponse (FIR) filters. We can rewrite (9.53) as follows

y.n/ D
MX
lD0

h.l/x.n� l/ : (9.54)

Applying the Z-transform to the equation above, we end
up with the following input–output relationship

H.z/ D Y.z/

X.z/
D

MX
lD0

h.l/z�l D
MX

lD0

blz
�l : (9.55)

In practical terms, (9.55) can be implemented in
several distinct forms, using as basic elements the de-
lay, the multiplier, and the adder blocks. These basic
elements of digital filters and their corresponding stan-
dard symbols are depicted in Fig. 9.8. An alternative
way of representing such elements is the so-called sig-
nal flow graph shown in Fig. 9.9.

These two sets of symbolisms representing the de-
lay, multiplier, and adder elements are used throughout
this text interchangeably.

Direct Form
The simplest realization of an FIR digital filter is de-
rived from (9.55). The resulting structure, which can be
seen in Fig. 9.10, is called the direct-form realization, as
the multiplier coefficients are obtained directly from the
filter transfer function. Such a structure is also referred
to as the canonic direct form, where we understand
canonic form to mean any structure that realizes a given
transfer function with the minimum number of delays,

x (n)

x (n) mj x (n)

a)

b)

x (n–1)
z–1

mj

x1 (n)

x2 (n)

xj (n)

x1 (n) + x2 (n) + ... + xj (n)

c)

Fig. 9.9a–c Signal-flow graph representation of basic el-
ements of digital filters: (a) delay; (b) multiplier; (c) adder
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z–1z–1 z–1z–1x (n)

y (n)

h (0) h (1) h (M–1) h (M )

Fig. 9.10 Direct form for FIR digital
filters

z–1z–1 z–1z–1

x (n)

y (n)

h (M–1) h (M–2) h (1) h (0)h (M )

Fig. 9.11 Alternative direct
form for FIR digital filters

z–1

z–1

γ01

γ11

γ21

z–1

z–1

γ0N

γ1N

γ2N

z–1

z–1

γ02

γ12

γ22

x (n) y (n) Fig. 9.12 Cascade form for FIR digital
filters

multipliers, and adders. More specifically, a structure
that utilizes the minimum number of delays is said to
be canonical with respect to the delay element, and so
on.

An alternative canonical direct form for (9.76) can
be derived by expressing H.z/ as follows

.z/ D
MX
lD0

h.l/z�l D h.0/Cz�1

 
MX
lD1

h.l/z�l

!
: (9.56)

The implementation of this form is shown in Fig. 9.11.

Cascade Form
Equation (9.55) can be realized through a series of
equivalent structures. However, the coefficients of such

distinct realizations may not be explicitly the filter
impulse response or the corresponding transfer func-
tion. An important example of such a realization is the
so-called cascade form, which consists of a series of
second-order FIR filters connected in cascade, thus the
name of the resulting structure, as seen in Fig. 9.12. The
transfer function associated with such a realization is of
the form

H.z/ D
NY

kD1

.�0k C �1kz
�1 C �2kz

�2/ : (9.57)

In the above, if M is the filter order, then N D M=2
when M is even and N D .MC 1/=2 when M is odd.
In the latter case, one of the �2k vanishes.
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n

c) h (n)
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6 7 8 9 1011

n

d) h (n)

Fig. 9.13a–d Example of impulse
responses of linear-phase FIR digital
filters: (a) type I; (b) type II; (c) type
III; (d) type IV

Linear-Phase Form
An important subclass of FIR digital filters is the one
that includes linear-phase filters. Such filters are charac-
terized by a constant group delay 	 ; therefore, they must
present a frequency response of the following form

H.ei!/ D B.!/ exp.�i!	 C i'/ : (9.58)

In the above B.!/ is real and 	 and ' are constant.
We now proceed to show that linear-phase FIR fil-
ters present impulse responses of very particular forms.
Specifically, if h.n/ is to be causal and of finite duration,
for 0 	 n 	 M, we must necessarily have that

	 D M

2
: (9.59)

Therefore, one obtains that

h.n/ D e2i'h�.M � n/ : (9.60)

This is the general equation that the coefficients of
a linear-phase FIR filter must satisfy. In the common
case, where all the filter coefficients are real, one finally
obtains that the filter impulse response must be either
symmetric or antisymmetric. In effect, the frequency re-
sponse of linear-phase FIR filters with real coefficients
becomes as follows

H.ei!/ D B.!/ exp

�
�i!

�
M

2

�
C i

�
k�

2

��
: (9.61)

As a result, solely four distinct cases need be considered
that are described by the equations above. Their types
have been standardized and are referred to in literature
as follows [9.2]:

� Type I: k D 0 andM even� Type II: k D 0 and M odd� Type III: k D 1 andM even� Type IV: k D 1 and M odd.

Typical impulse responses of the four cases of
linear-phase FIR digital filters are depicted in Fig. 9.13.

9.2.2 Important IIR Filter Structures

Direct Form
Recursive filters have transfer functions of the follow-
ing form

H.z/ D N.z/

D.z/
D

PM
iD0 biz

�i

1CPN
iD1 aiz

�i
: (9.62)

Since, in most cases, such transfer functions give rise to
filters with impulse responses having infinite durations,
recursive filters are also referred to as infinite-duration
impulse response (IIR) filters.

We can consider that H.z/ as above results from the
cascading of two separate filters of transfer functions
N.z/ and 1=D.z/. The N.z/ polynomial can be realized
with the FIR direct form, as shown in the previous sec-
tion. The realization of 1=D.z/ can be performed as
depicted in Fig. 9.14, where the FIR filter shown will
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z–1

FIR
filter
D' (z)

x (n) y (n)

Fig. 9.14 Block diagram realization of 1=D.z/

x (n) y (n)

z–1

z–1

z–1

–a2

–a1

–aN

Fig. 9.15 Detailed realization of 1=D.z/

be an (N � 1)-th order filter with transfer function as
follows

D0.z/ D z.1�D.z// D �z
NX

iD1

aiz
�i : (9.63)

The direct form of realizing 1=D.z/ is shown in
Fig. 9.15.

The complete realization of H.z/, as a cascade of
N.z/ and 1=D.z/, is shown in Fig. 9.16. Such a structure
is not canonic with respect to the delays, since for an
.M;N/-th order filter this realization requires .N CM/
delays.

Clearly, in the general case we can change the or-
der in which we cascade the two separate filters; that is,
H.z/ can be realized as

N.z/� 1

D.z/
or

�
1

D.z/

�
�N.z/ :

In the second option, all delays employed start from the
same node, which allows us to eliminate the consequent
redundant delays. In that manner, the resulting struc-
ture, usually referred to as the Type 1 canonic direct

x (n) y (n)

z–1

z–1

z–1

z–1

z–1

z–1

–a2

–a1

–aN

b2

b1

b0

bM

Fig. 9.16 Non-canonic IIR direct form realization

x (n) y (n)

z–1

z–1

z–1

–a2

–a1

–aN

b2

b1

b0

bM

Fig. 9.17 Type 1 canonic direct form for IIR filters

form, is the one depicted in Fig. 9.17, for the special
case N D M.

An alternative structure, the so-called Type 2
canonic direct form, is shown in Fig. 9.18. Such a re-
alization is generated from the corresponding non-
recursive form.

The majority of IIR filter transfer functions used in
practice present a numerator degree M smaller than or
equal to the denominator degree N. In general, one can
consider, without much loss of generality, that M D N.
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x (n) y (n)
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–aN
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Fig. 9.18 Type 2 canonic direct form for IIR filters
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Fig. 9.19a,b Block diagrams of: (a) cascade form; (b) par-
allel form

In the case where M < N, we just make the coefficients
bMC1; bMC2; : : : ; bN in Figs. 9.17 and 9.18 equal to
zero.

Cascade Form
In the same way as their FIR counterparts, IIR digi-
tal filters present a large variety of possible alternative
realizations. An important one, referred to as cascade

x (n) y (n)

z–1

γ0

z–1

γ2 –m2

γ1 –m1

x (n)
a)

b)

y (n)

z–1

z–1

–m2

–m1

γ2

γ1

γ0

Fig. 9.20a,b Block diagrams of: (a) cascade form; (b) par-
allel form

realization, is depicted in Fig. 9.19a, where the basic
blocks represent simple transfer functions of orders 2
or 1. In fact, the cascade form, based on second-order
blocks, is associated with the following transfer func-
tion decomposition

H.z/ D
mY

kD1

�0k C �1kz�1 C �2kz�2

1Cm1kz�1 Cm2kz�2
;

D
mY

kD1

�0kz2 C �1kzC �2k

z2 Cm1kzCm2k
;

D H0

mY
kD1

z2 C � 0

1kzC � 0

2k

z2 Cm1kzCm2k
: (9.64)

Parallel Form
Another important realization for recursive digital fil-
ters is the parallel form represented in Fig. 9.19b. Using
second-order blocks, which are the most commonly



Digital Signal Processing 9.3 The Fast Fourier Transform (FFT) 211
Part

A
|9.3

used in practice, the parallel realization corresponds to
the following transfer function decomposition

H.z/ D
mY

kD1

�
p
0kz

2 C �
p
1kzC �

p
2k

z2 Cm1kzCm2k
;

D h0 C
mY

kD1

�
p0

1kzC �
p0

2k

z2 Cm1kzCm2k
;

D h0

0 C
mY

kD1

�
p00

0k z
2 C �

p00

1k z

z2 Cm1kzCm2k
: (9.65)

The above is also known as the partial-fraction de-
composition. This equation indicates three alternative

forms of the parallel realization, where the last two are
canonic with respect to the number of multiplier ele-
ments.

It should be mentioned that each second-order block
in the cascade and parallel forms can be realized by any
of the existing distinct structures, as, for instance, one
of the direct forms shown in Fig. 9.20.

All these digital filter realizations present different
properties when one considers practical finite-precision
implementations; that is, the quantization of the coeffi-
cients and the finite precision of the arithmetic opera-
tions, such as additions and multiplications. In fact, the
analysis of the finite-precision effects in the distinct re-
alizations is a fundamental step in the overall process of
designing any digital filter [9.2].

9.3 The Fast Fourier Transform (FFT)

The FFT (fast Fourier transform) algorithm is a faster
version of the discrete Fourier transform (DFT). FFT
utilizes some clever algorithms to do the same thing as
the DFT, but in much less time [9.2].

The DFT is extremely important in the area of fre-
quency (spectral) analysis because it takes a discrete
signal in the time domain and transforms that signal
into its discrete frequency domain representation. With-
out a discrete-time to discrete-frequency transform we
would not be able to compute the Fourier transform
with a microprocessor or DSP-based (DSP: Digital Sig-
nal Processor) system [9.1, 2, 4–6].

It is the speed and discrete nature of the FFT that
allows us to analyze a signal’s spectrum, as will soon
become evident.

9.3.1 Review of Integral Transforms

We first give a review of the integral transforms that
have been used in the text, possibly in their unilateral
(single-side) version.

The bilateral Laplace transform

X.s/ D Lfx.t/g D
C1Z

�1

x.t/e�st dt; x.t/
L

� X.s/ :

(9.66)

The continuous-time Fourier transform

X.i!/ D Ffx.t/g D
C1Z

�1

x.t/e�i!t dt; x.t/
F
� X.i!/ :

(9.67)

The bilateral Z-transform

X.z/ D Zfx.n/g

D
C1X

nD�1

x.n/z�n; x.n/
Z

� X.z/ : (9.68)

The Laplace transform is used to obtain a pole-zero rep-
resentation of a continuous-time signal or system, x.t/,
in the s-plane. Similarly, the Z-transform is used to find
a pole-zero representation of a discrete-time signal or
system, x.n/, in the z-plane.

The continuous-time Fourier transform can be
found by evaluating the Laplace transform form at s D
i!. The picture can be extended by introducing the
discrete-time Fourier transform (DTFT). The DTFT can
be found by evaluating the Z-transform at z D exp.i˝/,
as follows

X.ei˝ / D
C1X

nD�1

x.n/e�i˝n; x.n/
DTFT
� X.ei˝ / :

(9.69)

One needs to point out here that the frequency vari-
able ˝ is in normalized units of radians per sample
rather than absolute units of rad=s, which apply to !
appearing in the standard Fourier transform. This can
be justified by recollecting that sequences x.n/ are gen-
erated by sampling a continuous-time signal x.t/ at
a certain sampling rate fs. In this respect, the DTFT can
be viewed as a discrete approximation of the Fourier
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Fig. 9.21 Plot showing the symmetry of DFT

transform as explained below

Ffx.t/g D
C1Z

�1

x.t/e�i!t dt

' Ts

C1X
nD�1

x.nTs/ exp.�i!nTs/

+
Ffx.t/g ' Ts �X.ei˝ /;˝ D !Ts D 2�

f

fs
: (9.70)

9.3.2 The Discrete Fourier Transform (DFT)

First of all, the discrete Fourier transform (DFT) is not
the same as the DTFT. Both start with a discrete-time
signal, but DFT produces a discrete frequency domain
representation while DTFT is continuous in the fre-
quency domain. These two transforms have much in
common, however. It is, therefore, helpful to have a ba-
sic understanding of the properties of the DTFT.

Periodicity
DTFT is periodic because of the fact that the signal is a
discrete-time one. Indeed,

X.ei.˝C2�k// D
C1X

nD�1

x.n/e�i.˝C2�k/n

D
C1X

nD�1

x.n/e�i˝ne�i2�kn D X.ei˝/ :

(9.71)

One fundamental period is, therefore, 2� , i. e., extends
from f D 0 to fs, where fs is the sampling frequency.
Taking advantage of this redundancy, the DFT is only
defined in the region between 0 and fs, in terms of f , or,
0 and 2� , in terms of˝.

Symmetry
When the region between 0 and fs is examined, it can
be seen that there is even symmetry around the center
point, i. e., point fs=2 (half the sampling rate). Indeed,

˝1;2 D � ˙ "; 0< " < � W
X.ei˝2/

D
C1X

nD�1

x.n/e�i.�C"/n D
C1X

nD�1

x.n/e�i"ne�i�n

D
C1X

nD�1

x.n/e�i"neCi�n D
C1X

nD�1

x.n/e�i.��"/n

D X.ei˝1/ : (9.72)

This symmetry adds redundant information. Fig-
ure 9.21 shows the DFT (implemented with Matlab’s
FFT function) of a cosine with a frequency one tenth
of the sampling frequency. Note that the data between
0.5fs and fs is a mirror image of the data between 0 and
0.5fs.

Therefore, the discrete Fourier transform (DFT) can
be introduced as follows

Xk D
N�1X
nD0

xn exp

�
� i2�nk

N

�
;

k D 0; 1; 2; : : : ; .N � 1/ : (9.73)

Note that the above is actually a transformation between
a finite-length real or complex sequence xn, correspond-
ing to a sampled, at rate fs D 1=Ts, segment of a real
or complex signal with actual duration NTs, to a gen-
erally complex sequence (discrete spectrum) of equal
finite length N corresponding to frequency values in the
range between 0 and .N � 1/fs=N with a step equal to
fs=N; note that the corresponding range in terms of ˝
is 0 to .N � 1/2�=N and the step 2�=N.

Fast Fourier Transform (FFT)
FFT is simply an algorithm to speed up the DFT calcu-
lation by reducing the number of multiplications and
additions required. It was popularized by J.W. Coo-
ley and J.W. Tukey in the 1960s and, was actually
a rediscovery of an idea of Runge (1903) and Daniel-
son and Lanczos (1942), first occurring prior to the
availability of computers and calculators – when nu-
merical calculation could take many man hours. In ad-
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Table 9.3 8-point DFT (N D 8)

X.k/ D 1

N

N�1X
nD0

x.n/e
�i2�nk

N D 1

N

N�1X
nD0

x.n/WN
nk WN D e

�i2�
N

X.0/ D x.0/W0
8 C x.1/W0

8 C x.2/W0
8 C x.3/W0

8 C x.4/W0
8 C x.5/W0

8 C x.6/W0
8 C x.7/W0

8

X.1/ D x.0/W0
8 C x.1/W1

8 C x.2/W2
8 C x.3/W3

8 C x.4/W4
8 C x.5/W5

8 C x.6/W6
8 C x.7/W7

8

X.2/ D x.0/W0
8 C x.1/W2

8 C x.2/W4
8 C x.3/W6

8 C x.4/W8
8 C x.5/W10

8 C x.6/W12
8 C x.7/W14

8

X.3/ D x.0/W0
8 C x.1/W3

8 C x.2/W6
8 C x.3/W9

8 C x.4/W12
8 C x.5/W15

8 C x.6/W18
8 C x.7/W21

8

X.4/ D x.0/W0
8 C x.1/W4

8 C x.2/W8
8 C x.3/W12

8 C x.4/W16
8 C x.5/W20

8 C x.6/W24
8 C x.7/W28

8

X.5/ D x.0/W0
8 C x.1/W5

8 C x.2/W10
8 C x.3/W15

8 C x.4/W20
8 C x.5/W25

8 C x.6/W30
8 C x.7/W35

8

X.6/ D x.0/W0
8 C x.1/W6

8 C x.2/W12
8 C x.3/W18

8 C x.4/W24
8 C x.5/W30

8 C x.6/W36
8 C x.7/W42

8

X.7/ D x.0/W0
8 C x.1/W7

8 C x.2/W14
8 C x.3/W21

8 C x.4/W28
8 C x.5/W35

8 C x.6/W42
8 C x.7/W49

8

N2 Complex multiplications

1

N
Scaling factor omitted

Table 9.4 8-point DFT. Applying the properties of sym-
metry and periodicity to Wr

N for N D 8

W4
8 D W0C4

8 D �W0
8 D �1

W5
8 D W1C4

8 D �W1
8

W6
8 D W2C4

8 D �W2
8

N D 8 W7
8 D W3C4

8 D �W3
8

W8
8 D W0C8

8 D CW0
8 D C1

W9
8 D W1C8

8 D CW1
8

W10
8 D W2C8

8 D CW2
8

W11
8 D W3C4

8 D CW3
8

� � �
� � �
� � �

Symmetry: WrCN=2
N D �Wr

N , Periodicity: W
rCN
N D Wr

N

dition, the German mathematician Carl Friedrich Gauss
(1777–1855) had used the method more than a century
earlier.

In order to understand the basic concepts of FFT
and its derivation, note that the DFT expansion shown
in Table 9.3 can be greatly simplified by taking advan-
tage of the symmetry and periodicity of the twiddle
factors as shown in Table 9.4. If the equations are re-
arranged and factored, the result is the fast Fourier
transform (FFT), which requires only .N=2/ log2.N/
complex multiplications. The computational efficiency
of FFT versus DFT becomes highly significant when
the FFT point size increases to several thousand, as
shown in Table 9.5. However, notice that FFT com-

Table 9.5 FFT versus DFT. FFT is simply an algorithm
for efficiently calculating DFT. Computational efficiency
of an N-point FFT: 1) DFT: N2 Complex multiplications;
2) FFT: .N=2/ log2.N/ Complex multiplications

N DFT
multiplications

FFT
multiplications

FFT
efficiency

256 65 536 1024 64 W 1
512 262 144 2304 114 W 1
1024 1 048 576 5120 205 W 1
2048 4 194 304 11 264 372 W 1
4096 16 777 216 24 576 683 W 1

a A = a + bWN
r+

+

+

Σ

b B = a – bWN
r

–

–1

Σ

WN
r

a
Simplyfied representation

A = a + bWN
r

b B = a – bWN
r

WN
r

Fig. 9.22 The basic butterfly computation in the DIT-FFT
algorithm

putes all the output frequency components (either all or
none!). If only a few spectral points need to be calcu-
lated, DFT may actually be more efficient. Calculation
of a single spectral output using the DFT requires only
N complex multiplications.



Part
A
|9.3

214 Part A Fundamentals

x (0) X (0)

x (4) X (1)

2-point
DFT

2-point
DFT

2-point
DFT

2-point
DFT

Combine
4-point
DFTs

Combine
2-point
DFTs

Combine
2-point
DFTsx (2) X (2)

x (6) X (3)

x (1) X (4)

x (5) X (5)

x (3) X (6)

x (7) X (7)

Fig. 9.23 Computation of eight-point
FFT in three stages using DIT
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Fig. 9.24 Eight-point DIT-
FFT algorithm
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Fig. 9.25 Computation of eight-point
FFT in three stages using DIF
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Stage 3Stage 2 Fig. 9.26 Eight-point DIF-
FFT algorithm

The radix-2 FFT algorithm breaks the entire DFT
calculation down into a number of two-point DFTs.
Each two-point DFT consists of a multiply-and-ac-
cumulate operation called a butterfly, as shown in
Fig. 9.22. Two representations of the butterfly are
shown in the diagram: the top diagram is the actual
functional representation of the butterfly showing the
digital multipliers and adders. In the simplified bottom
diagram, the multiplications are indicated by placing
the multiplier over an arrow, and addition is indicated
whenever two arrows converge at a dot.

The eight-point decimation-in-time (DIT) FFT al-
gorithm computes the final output in three stages as
shown in Fig. 9.23. The eight input time samples are
first divided (or decimated) into four groups of two-
point DFTs. The four two-point DFTs are then com-
bined into two four-point DFTs. The two four-point

a A = a + b+

+

+

Σ

b B = (a + b)WN
r

–

–1

Σ

WN
r

a
Simplified representation

A = a + b

b B = (a + b)WN
r

WN
r

Fig. 9.27 The basic butterfly computation in the DIF-FFT
algorithm

DFTs are then combined to produce the final output
X.k/. The detailed process is shown in Fig. 9.24, where
all the multiplications and additions are shown. Note
that the basic two-point DFT butterfly operation forms
the basis for all computations. The computation is done
in three stages. After the first stage computation is
complete, there is no need to store any previous re-
sults. The first stage outputs can be stored in the same
registers that originally held the time samples x.n/.
Similarly, when the second stage computation is com-
pleted, the results of the first stage computation can be
deleted.

In this way, in-place computation proceeds to the
final stage. Note that in order for the algorithm to work
properly, the order of the input time samples, x.n/, must
be properly re-ordered using a bit reversal algorithm.

The bit reversal algorithm used to perform this re-
ordering is shown in Table 9.6. The decimal index, n,
is converted to its binary equivalent. The binary bits
are then placed in reverse order, and converted back
to a decimal number. Bit reversing is often performed
in DSP hardware in the data address generator (.*),
thereby simplifying the software, reducing overhead,
and speeding up the computations.

Table 9.6 Bit reversal example for N D 8

Decimal
number:

0 1 2 3 4 5 6 7

Binary
equivalent:

000 001 010 011 100 101 110 111

Bit-reversed
binary:

000 100 010 110 001 101 011 111

Decimal
equivalent:

0 4 2 6 1 5 3 7
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The computation of FFT using decimation-in-fre-
quency (DIF) is shown in Figs. 9.25 and 9.26. This
method requires that the bit reversal algorithm be ap-
plied to the output X.k/. Note that the butterfly for the
DIF algorithm differs slightly from the decimation-in-
time butterfly, as shown in Fig. 9.27.

The use of decimation-in-time versus decimation-
in-frequency algorithms is largely a matter of pref-
erence, as either yields the same result. System con-
straints may make one of the two a more optimal
solution. It should be noted that the algorithms required
to compute the inverse FFT are nearly identical to
those required to compute the FFT, assuming complex
FFTs are used. In fact, a useful method for verify-
ing a complex FFT algorithm consists of first taking

the FFT of the x.n/ time samples and then taking
the inverse FFT of the X.k/. At the end of this pro-
cess, the original time samples, Re.x.n//, should be
obtained and the imaginary part, Im.x.n//, should be
zero (within the limits of the mathematical round off
errors).

The FFTs discussed up to this point are radix-2
FFTs, i. e., the computations are based on two-point
butterflies. This implies that the number of points in
the FFT algorithms must be a power of 2. However,
non-radix-2 FFT algorithms have been developed and
are available in modern computational software pack-
ages like Matlab, Mathematica, Maple, etc., to be used
in a variety of applications in ocean engineering as well
as beyond [9.1, 2, 4–6].

9.4 Waveform Analysis

A waveform is one recording of a deterministic sig-
nal or that of an instance of a random signal (also
referred to in the literature as a stochastic process).
Actually, in practice we can make a recording of fi-
nite duration, which means that a waveform is the
set of signal recordings over possibly non-contiguous
time intervals. Typical examples of (lumped) wave-
forms in ocean engineering are significant wave height
at a point or average, oceanic temperature or salinity,
acoustic recordings of marine life, sonar or radar sig-
nals, etc. [9.3].

9.4.1 Definitions for Waveforms
and Random Signals

The time mean (or average) of a waveform is defined as
follows in the continuous time domain


x , lim
T!1

8<
:

1

2T

CTZ
�T

x.t/dt

9=
; : (9.74)

The time-wise cross-correlation of two waveforms is
defined as follows

Ry;x.	/ , lim
T!1

8<
:

1

2T

CTZ
�T

y.t/x.tC 	/dt

9=
; ;

D Œy˝ x�.t/�.	/ : (9.75)

In the above, ˝ stands for the convolution operation ap-
plied in the square brackets between signal y and signal
x.�t/, which is the mirrored version of signal x about

origin of time (t D 0), with time shift 	 , i. e.,

x�.t/.t/ D x.�t/ :

Also, note that cross-correlation as defined above can be
used to introduce (time-wise) autocorrelation of a single
waveform if we set y � x.

The limiting process to infinity for time variable T
introduced in the equations above is required in the case
when the waveform has infinite duration so that the defi-
nitions make sense and do not give rise to indeterminate
or infinite sums.

On the other hand, if the waveform (or at least one
of them in the cross-correlation case) is finite in dura-
tion, then the time interval (2T) needs to be set equal to
the full finite, and not infinite, duration of the signal. In
this case, the definitions need to look like the following
to avoid any issues


x , 1

2T

C1Z
�1

x.t/dt ; (9.76)

Ry;x.	/ , 1

2T

C1Z
�1

y.t/x.tC 	/dt : (9.77)

The above equations are well defined in the case of
deterministic signals and waveforms that occur as in-
stances of random signals. Specifically, a random sig-
nal, denoted with a capital letter, e.g., X.t/, in contrast to
lowercase latters used for deterministic signals, is asso-
ciated with a probability density function (PDF), fX.x/
quantifying the probability of the signal value at any
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time instant t to lie within an arbitrary real interval [a; b]
as follows

PrŒa 	 X.t/ 	 b� D
bZ

a

fX.x/dx : (9.78)

As well established by probability theory, the prob-
ability density function is, in turn, associated with
a cumulative distribution function (CDF) for random
signal X.t/ as follows

FX.x/ D PrŒX.t/ 	 x� D
xZ

�1

fX.x#/dx# : (9.79)

One can easily verify by combining (9.78) with (9.79)
that

PrŒa 	 X.t/ 	 b� D FX.b/�FX.a/ (9.80)

holds. Finally and assuming certain smoothness condi-
tions hold, the PDF can be calculated as the derivative
of the CDF for the same random variable, i. e.,

fX.x/ D d

dx
FX.x/ : (9.81)

For a random signal one can, in effect, define a proba-
bilistic mean value as follows

hX.t/i D 
X.t/ ,
C1Z

�1

xfX.t/.x/dx : (9.82)

Along the same lines a probabilistic correlation (cross
and/or autocorrelation) can be introduced

hX.t1/;Y.t2/i D RX;Y .t1; t2/ ;

,
C1Z

�1

C1Z
�1

xyfX.t1/;Y.t2/.x; y/dydx :

(9.83)

To properly define it, though, the joint probability den-
sity function needs to be introduced; as can be seen
below, it quantifies the probability of random signal X
assuming a value in an infinitesimal vicinity of x at in-
stant t1 and, jointly, random signal Y assuming a value
in an infinitesimal vicinity of y at instant t2

fX.t1/;Y.t2/.x; y/dxdy

D PrŒ.x 	 X.t1/ 	 xC dx/ and

.y 	 Y.t2/ 	 yC dy/� : (9.84)

In effect, the probability on the right-hand side in the
above is that of the joint event to find the values of
signals X and Y at certain time instants within an
arbitrary infinitesimal rectangle on the XY plane. Ap-
plying Bayes’ theorem on the joint probability of the
right-hand side of (9.84) one can derive the following
equations involving conditional probabilities

PrŒx 	 X.t1/ 	 xC dxjy 	 Y.t2/ 	 yC dy�

� PrŒy 	 Y.t2/ 	 yC dy�

D fX.t1/;Y.t2/.x; y/dxdy

D PrŒy 	 Y.t2/ 	 yC dyjx 	 X.t1/ 	 xC dx�

� PrŒx 	 X.t1/ 	 xC dx� : (9.85)

In the case that random variables X and Y are inde-
pendent (not to be confused with mutually exclusive
variables or events), then using (9.85) for the condi-
tional probabilities one can see that the following holds

fX.t1/;Y.t2/.x; y/ D fX.t1/.x/ � fY.t2/.y/ (9.86)

A very important category of random signals is that
of wide sense stationary (WSS). A WSS signal is one
that has: (a) constant, i. e., time invariant, probabilistic
mean, and, (b) autocorrelation solely depending on the
time shift (delay) 	 D t2 � t1 and not on the individual
time instants. In effect, for a random signal to be WSS
it must hold that

hX.t/i D hXi D 
X ; (9.87)

hX.t/;X.tC 	/i D RX;X.	/ : (9.88)

In part, WSS signals are important because both the
probabilistic mean value and autocorrelation can be ob-
tained as the time-wise mean and autocorrelation of
anyone of its instances, x.t/, introduced for waveforms
earlier. For this to be possible though, the random sig-
nal (stochastic process) X needs to be ergodic on top of
WSS. Indeed, for an ergodic process statistical (proba-
bilistic) properties (such as its mean, correlation, and
variance) can be deduced from a single, sufficiently
long instance (sample realization) of the process. There-
fore, for an ergodic WSS process, the following hold

hX.t/i D 
x ; (9.89)

hX.t/;X.tC 	/i D Rx;x.	/ : (9.90)

It should be noted, however, that for the above equa-
tions to hold exactly the integrals over time in (9.74)
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and (9.75) need to span the entire real line from minus
to plus infinity. If not, then (9.89) and (9.90) pro-
vide only an estimate of the mean and autocorrelation
values of the random signal; the accuracy of the es-
timate (probabilistically) increases as time parameter
T in the time-wise integrals of (9.74) and (9.75) grow
larger.

A final note is made regarding strictly or strongly
stationary processes versus WSS ones. A strictly sta-
tionary process is a stochastic process whose joint
probability distribution does not change when shifted
in time. This requirement is much stronger than just
mean and autocorrelation and, therefore, much harder
to meet or assume in practical situations; that is why in
the remaining text we will only employ WSS as well as
ergodicity.

9.4.2 Signal Power
and Power Spectral Density

For a waveform x.t/, i. e., a deterministic signal or an
instance of a random one, the following definitions are
given:

1. The time mean is the direct current (DC) offset
(component) of the waveform and j
xj2 is the DC
power of it.

2. Consider

Rx;x.0/ D lim
T!1

8<
:

1

2T

CTZ
�T

x2.t/dt

9=
; 
 0 : (9.91)

This is the (total averaged) power of the waveform.
3. Then consider

cov.x/ D Rx;x.0/� j
xj2 
 0 : (9.92)

This is the covariance or alternating current (AC)
power of the waveform. Also, Œcov.x/�1=2 is the
standard deviation or RMS (root-mean-square)
value of the waveform.

The use of term power here stands for electric
power, i. e., that the waveform is considered as voltage
across or electric current through a reference resistance
equal to 1 ohm.

Finally, the following notation for cross-correlation
(for two waveforms) or autocorrelation (for a single
waveform)

hy; xi D Ry;x.0/ , lim
T!1

8<
:

1

2T

CTZ
�T

y.t/x.t/dt

9=
; :

(9.93)

In the case of two distinct waveforms hy; xi is also
identified as their dot product. In the case of a single
waveform hx; xi is its power.

In the frequency domain and using the two-sided
Fourier transform as introduced in (9.8), the (cross)
power spectral density (PSD) can be defined for a cou-
ple of waveforms as follows

Sy;x.!/ , FfRy;x.	/g D Y.!/X�.!/ : (9.94)

Note that for a real waveform it holds that

X.!/ D Ffx.t/g D
C1Z

�1

x.t/ exp.�i!t/dt

m

X�.!/ D
0
@

C1Z
�1

x.t/ exp.�i!t/dt

1
A

�

D
C1Z

�1

x�.t/ exp.Ci!t/dt D X.�!/ :

Furthermore

Ffx.�t/g D
C1Z

�1

x.�t/ exp.�i!.�t//d.�t/

D
C1Z

�1

x.t/ exp.i!t/dt D X.�!/ :

Therefore, for a real waveform it holds that

X�.!/ D Ffx.�t/g D X.�!/ : (9.95)

Then, using (9.94) one can directly derive the following

Sx;y.!/ D Sy;x.�!/ D S�

y;x.!/

, Rx;y.	/ D Ry;x.�	/ : (9.96)

Moreover, in the case of autocorrelation PSD obtains
the following form

Sx;x.!/ , FfRx;x.	/g D jX.!/j2 
 0 and

Sx;x.!/ D Sx;x.�!/ : (9.97)
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In effect, the PSD of a single signal is an even, non-
negative complex function of frequency. Also, for the
autocorrelation it holds that it is an even function of
time 	 , i. e., Rx;x.	/ D Rx;x.�	/.

A final note has to do with the extension of the
PSD concept to random signals (stochastic processes in
mathematical terminology). Assuming ergodicity and
WSS, the Wiener–Khinchin theorem can be employed
to introduce a PSD for a random signal X or at least
a power spectral distribution function FX.f / as follows

hX.t/;X.tC 	/i D RX;X.	/

D
C1Z

�1

ei!� dFX.f /; ! D 2� f :

(9.98)

For the above to hold, the autocorrelation of X needs to
exist and be finite for any value of time shift variable 	 ,
but its Fourier transform may not be well defined. In-
deed, the Fourier transform of a random signal may not
exist in general, because stationary stochastic processes
may not generally be square or absolutely integrable.
Nor does their autocorrelation need to be absolutely in-
tegrable, so it need not have a Fourier transform, either.
However, in most practical applications the autocorre-
lation is integrable and even satisfies the conditions to
obtain a Fourier transform. In this case, the PSD can be
introduced through the Fourier transform as follows

SX;X.!/ D
C1Z

�1

RX;X.	/e
�i!� d	 , RX;X.	/

D
C1Z

�1

SX;X.f /e
i!� df ; ! D 2� f : (9.99)

Finally, in this case the PSD is the averaged derivative
of the power spectral distribution function introduced
previously. This is why the latter is also referred to as
the integrated spectrum of the stochastic process.

9.4.3 Waveform Propagation Through
a Linear, Time-Invariant System

Consider a linear, time-invariant (LTI) system with
a single input and a single output (SISO), as shown in
Fig. 9.28, driven by input waveform x.t/ and generating
as response output waveform y.t/.

The system is assumed to be in continuous time, as
well as the waveforms at its input and its output. Then,
the output can be determined as the convolution .˝/ of

H (s)
y (t)x (t)

Fig. 9.28 LTI-SISO system with waveforms at its input
and its output

the LTI system’s scalar impulse response with the input
waveform

y.t/ D h.t/˝ x.t/ D
C1Z

�1

h.t#/x.t� t#/dt#

, Y.!/ D H.!/ �X.!/ : (9.100)

In the above, h.t/ stands for the system’s impulse
response that can be determined on the basis of the sys-
tem’s transfer function H.s/ in the complex frequency
(Laplace transform) domain

h.t/ D L�1fH.s/g : (9.101)

It is noted here that for a causal system, the convolu-
tional integral must be finitely bounded as follows

y.t/ D h.t/˝ x.t/ D
tZ

0

h.t#/x.t� t#/dt#

and h.t/ D 0;8t < 0 : (9.102)

For the means of the input and output waveforms the
following can be derived


y , lim
T!1

8<
:

1

2T

CTZ
�T

y.t/dt

9=
;

D 
x �
C1Z

�1

h.t/dt D H.0/ �
x : (9.103)

For the various correlations, as well as the PSD of the
input and output, the following hold

Ry;y.t/ D Rh;h ˝Rx;x

, Sy;y.!/ D jH.!/j2 � Sx;x.!/ ; (9.104)

Ry;x.t/ D h˝Rx;x

, Sy;x.!/ D H.!/ � Sx;x.!/ ; (9.105)
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Rx;y.t/ D h�.t/ ˝Rx;x

, Sx;y.!/ D H�.!/ � Sx;x.!/ : (9.106)

All of the above can be derived on the basis of the def-
initions and properties given previously, as well as the
commutativity and associativity of scalar convolution.
For example, in the case of (9.104)

Ry;y.t/ D y˝ y�(t)

D Œh˝ x�˝ Œh�.t/ ˝ x�.t/�

D Rh;h ˝Rx;x : (9.107)

It is noted here that:

1.

Sh;h.!/ D H.!/H�.!/ D jH.!/j2 ;

2.

Rh;h.	/ D
C1Z

�1

Sh;h.f /e
i!� df

D
C1Z

�1

jH.!/j2ei!� df ; ! D 2� f ;

and
3.

0
@x�(t)

y�(t)

h�(t)

1
A .t/ D

0
@xy
h

1
A .�t/;8t 2 R , F

8<
:
x�(t)

y�(t)

h�(t)

.t/

9=
;

D
0
@X�

Y�

H�

1
A .! or f / :

9.5 Optimal Signal Estimation

9.5.1 System Identification

One of the most fundamental problems in science and
engineering is the determination of a system’s dynam-
ics, preferably in the form of a mathematical model,
when presented with the system response(s) to given
deterministic or random driving inputs. This is the fun-
damental system identification problem [9.7, 8].

In the case of an LTI system, especially in the
case of discrete-time or sampled-data systems, sys-
tem identification is essentially equivalent to a problem
of minimum square error approximation. Consider the
problem statement as shown in Fig. 9.29.

A fundamental prerequisite for the system identifi-
cation problem to have a solution in its basic form is
that the additive measurement noise superimposed to
the system output is of zero mean and uncorrelated to
the driving forcing signal applied as input to the system.
Therefore, the following two conditions must hold


v , lim
T!1

8<
:

1

2T

CTZ
�T

v.t/dt

9=
;D 0 ; (9.108)

Rvx.	/ D Rxv .	/ D 0;8	
, Svx.!/ D Sxv .!/ D 0;8! : (9.109)

At this point it is important to emphasize the impor-
tance of the definition of the appropriate time window T

in (9.75). Indeed, it is possible that for some (commonly
small) value of T condition (9.109) may not be satis-
fied with sufficient accuracy. However, assuming that
condition (9.109) is satisfied for an infinite time win-
dow as well as appropriate stationarity and ergodicity
assumptions, it is possible to determine a finite value
for T such that condition (9.109) is met at arbitrarily
small (epsilon) accuracy.

Given the property in (9.109) and by use of the lin-
earity property of both cross-correlation and PSD, as
well as (9.105), one can derive the following

Syx.!/ D Sux.!/CSvx.!/ D H.!/�Sxx.!/ : (9.110)

H (s)

Unknown LTI-SISO
system undergoing

identification Response from
unknown system

u (t)

Recorded signal
y (t)

Excitation
to unknown

system
x (t)

Additive
measurement

noise
v  (t)

Fig. 9.29 LTI-SISO system identification problem
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The above holds since y.t/ D u.t/C v.t/ and u.t/ D
h.t/˝ x.t/ , U.!/ D H.!/X.!/. In effect, the un-
known transfer functions of the intermitted LTI system

H.!/ D Syx.!/

Sxx.!/
: (9.111)

In the time domain the equivalent equation to (9.111) is

Ryx.t/ D h.t/˝Rxx.t/ D
C1Z

�1

h.t#/Rxx.t� t#/dt# :

(9.112)

In the above equation, the unknown signal (function) is
the impulse, h.t/. The integral equation is known as the
Wiener–Hopf equation with infinite time horizon [9.1,
2, 4–6].

What is most important in both (9.111) and (9.112)
is that system identification using them can be imple-
mented with either deterministic or random signals. In
effect, signals, x.t/, v.t/ and y.t/ may be known only
probabilistically (statistically); this means that the indi-
vidual instances (realizations) of the signals do not need
to be known as long as their statistics are, e.g., means,
correlations, or covariance coefficients.

Typically in practice, statistical characterization of
signals can be effectively, yet approximately, performed
by taking advantage of ergodicity and stationarity, if
they apply. Assuming that these hold, then a sufficiently
long, yet finite, recording of a single realization of a ran-
dom signal allows for its statistical characterization in
terms of its autocorrelation and cross-correlation with
other signals. Such a recording, e.g., for v.t/ or x.t/ in
the case of our system identification framework, can be
performed once and be used along with measurements
for y.t/ to identify the system; all due to ergodicity and
stationarity.

9.5.2 Discrete-Time Wiener–Hopf Equation
over a Finite-Duration Window

Integral (9.112), despite its immense theoretical value,
does not really indicate how it can be applied in prac-
tice for system identification. In this passage, we will
introduce a methodology allowing identification of an
LTI-SISO system when presented only with sampled-
data recordings of x.t/ and y.t/, with a sampling rate
meeting the Nyquist requirement for both. Furthermore,
it will be assumed that the observation window (time
horizon) of the recordings of the forcing and the noisy
response is finite in duration instead of infinite.

The outcome of the processing will be the deter-
mination of a given finite number of impulse response

samples for the unknown system undergoing identifica-
tion. In effect, it is possible to define a discrete-system
FIR (finite impulse response) system in either the time
domain, by its very impulse response, or as a transfer
function in the Z-transform domain without any poles.
In effect, the FIR system will approximate the behavior
of the unknown LTI system undergoing identification in
the sense of (truncated) impulse response matching.

We start from the integral equation for y.t/ given
previously

y.t/ D h.t/˝ x.t/C v.t/

D
C1Z

�1

h.t#/x.t� t#/dt# C v.t/ : (9.113)

However, to satisfy causality for the unknown system
the following needs to be introduced

y.t/ D
tZ

0

h.t#/x.t� t#/dt#

Cv.t/ D
tZ

0

h.t� t#/x.t#/dt# C v.t/ : (9.114)

Converting the above to discrete time by sampling in-
terval Ts, compliant to the Nyquist rate criterion, one
can derive the following

y.nTs/ D Ts

nX
kD0

h.kTs/x..n� k/Ts/C v.nTs/ :

(9.115)

Without loss of generality we can assume that Ts D 1,
since any other sampling interval value can be absorbed
multiplicatively in the impulse response sample values.

y.n/ D
nX

kD0

h.k/x.n� k/C v.n/ : (9.116)

An important prerequisite for our identification method
to be successful is that the unknown LTI system is sta-
ble. If this holds, then for an arbitrarily small " one can
find a positive integerM, such that

C1X
nDMC1

h2.n/ < " : (9.117)

In effect, with epsilon accuracy it is possible to trun-
cate the impulse response of the unknown system. We
note here that impulse response truncation is an approx-
imation of the system undergoing identification by the
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following FIR one with memoryM

OHFIR.z
�1/ D

MX
nD0

h.n/z�n : (9.118)

Using the approximation above, (9.116) yields

y.n/ D
MX

kD0

h.k/x.n� k/C v.n/ : (9.119)

Furthermore, assuming that the recording for waveform
y.t/ spans a finite interval Œ0; T�, the identification prob-
lem can be reduced to determining the (MC1) samples
of the impulse response, h.n/, 0 	 n 	 M, of the un-
known system so that the following (LC 1) equations
are satisfied

y.n/ D
MX

kD0

h.k/x.n� k/C v.n/; 0 	 n 	 L

and L D T

Ts
: (9.120)

It is noted here that containing the recording of sig-
nal y.t/ within interval Œ0; T� allows limiting the need
to record signal x.t/ also in the finite interval Œ�MTs;
CLTs�.

In effect, the (.LC 1/� .M C 1/) set of alge-
braic (9.120) can be put in the following matrix form

y D RX �hCv : (9.121)

In the above, vectors y and v are defined as follows

y D Œy.0/ y.1/ � � � y.L/�T

v D Œv.0/ v.1/ � � � v.L/�T : (9.122)

Vector h is defined as follows

h D Œh.0/ h.1/ � � � h.M/�T : (9.123)

G (s) H (s)

Instrument
dynamics
(known)

Noisy
instrument
response

w (t)

Clean
instrument
response

u (t)

Unknown
waveform
estimate

y (t)

Unknown
waveform

x (t)

Additive
measurement

noise
v  (t)

Fig. 9.30 Signal estimation framework

Matrix X, known as observation matrix, is defined by
the following

X D

2
6664
x.0/ x.�1/ � � � x.�M/

x.1/ x.0/ � � � x.�M C 1/
:::

:::
: : :

:::

x.L/ x.L� 1/ � � � x.�M C L/

3
7775 :

(9.124)

The equation set in (9.121) is not square; therefore, an
algebraically exact solution is not feasible. In effect,
only a solution minimizing the following mean square
error (MSE) vector spanning the observation window

kek2 D ky�X � hk2 : (9.125)

If the aboveMSE vector is minimized, then the effect of
the noise vector v, i. e., signal v.t/, is removed from the
measurement vector y, i. e., signal y.t/. The Euclidean
norm of vector e is defined as follows

kek2 D eT � e D
LX

iD0

e2i : (9.126)

The solution achieving minimization of kek2 can be
proven to be that of the following square (.M C 1/�
.M C 1/) set of algebraic canonical equations

.XT �X/ � h D XT � y ) h D .XTX/�1XTy : (9.127)

It is interesting to observe the equivalence between
the time-domain (9.127) and (9.112); the equiva-
lence can be straightforwardly derived if one observes
that (9.112) needs to hold for any time instant t. This
means that if it were converted to discrete time a (count-
able infinite in number) set of algebraic equations
would be derived like in (9.121). Furthermore, the solu-
tion of canonical (9.127) is fully equivalent to (9.111),
since there exists an one-to-one correspondence be-
tween: (a) square matrix .XTX/ and autocorrelation
Rxx.t/, and thereof PSD Sxx.!/; (b) vector (XTy) and
cross-correlation Ryx.t/, and thereof PSD Syx.!/.

On a technical note, it is pointed out that for (9.127)
to hold, matrix .XTX/ has to be invertible. In the case
of zero initial conditions for x, i. e., x.n/ D 0,�M 	 n<
0, it must hold that x.0/ ¤ 0 so that .XTX/ is, indeed,
invertible.

9.5.3 Signal Estimation
and the Wiener Filter

We will now look into a closely related problem: that of
the estimation of a signal or waveform which is outlined
in the block diagram of Fig. 9.30.
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As can be seen a known, in this case, the LTI-SISO
system is driven by an unknown (to be estimated) x.t/.
or the known LTI system, the transfer function G.s/,
in the complex frequency (Laplace) domain, or G.!/,
in the Fourier (frequency) domain, or equivalently its
impulse response g.t/ in the time domain is assumed
known. Such an LTI system may model a measurement
instrument, or sensor, or transducer, or telecommunica-
tions receiver.

Then, a linear filter with transfer function H.s/ is
sought that will receive as input the noisy instrument
response w .t/ and output waveform y.t/, which is ex-
pected to be the optimum, in the mean square sense,
estimate of the unknown waveform x.t/.

The objective is to determine transfer functionH.s/,
or equivalently H.!/, of the estimation filter that mini-
mizes the following objective cost function

he; ei , Ree.0/ D
C1Z

�1

e2.t/dt : (9.128)

In the above, the instantaneous error signal is defined as
follows

e.t/ D x.t/� y.t/ : (9.129)

For waveform y.t/ it holds that

y.t/ D h.t/˝w .t/ D
C1Z

�1

h.�/w .t� �/d�

� Ts

C1X
kD�1

h.kTs/w .t� kTs/ : (9.130)

In the above, the convolutional integral has been ap-
proximated by the convolutional sum, assuming that
sampling interval, Ts, satisfies the Nyquist criterion.
Consequently, (9.128) becomes

he; ei D
C1Z

�1

(
x.t/� Ts

C1X
kD�1

h.kTs/w .t� kTs/

)2
dt :

(9.131)

In effect, the impulse response of the least-squares esti-
mator has to fulfill the following condition, so that cost
he; ei becomes minimum

@

@Œh.nTs/�
he; ei D 0;8n 2 Z : (9.132)

However,

@

@Œh.nTs/�
he; ei

D �2

C1Z
�1

(
x.t/�Ts

C1X
kD�1

h.kTs/w .t� kTs/

)

�w .t� nTs/dt : (9.133)

Therefore, condition (9.132) finally yields

C1Z
�1

e.t/w .t� nTs/dt D 0;8n 2 Z : (9.134)

Setting 	 D nTs in the above and gradually dimin-
ishing Ts, we end up back in the continuous time
domain, and (9.134) yields the following orthogonality
condition

C1Z
�1

e.t/w .t� 	/dt D 0;8	 2 R

, Rwe.	/ D 0;8	 2 R :
(9.135)

Using the above orthogonality condition

Rwe.	/ D 0 , Swe.!/ D 0 , Sxw .!/ D Syw .!/ :

(9.136)

Furthermore, since Syw.!/ D H.!/Sww.!/, the fol-
lowing equation can be derived for the transfer function
of the estimation filter

H.!/ D Sxw .!/

Sww .!/
: (9.137)

The above expression for the estimator is commonly
known as the Wiener filter and of is of widespread use
in many science and engineering application fields.

The signal power of the minimum square error,
achieved by the Wiener filter in (9.137), can be deter-
mined as follows

See.!/ D Sxe.!/� Sye.!/„ƒ‚…
0

D Sxx.!/� Sxy.!/

D Sxx.!/�

0
B@Syy.!/C Sey.!/„ƒ‚…

0

1
CA

+
See.!/ D Sxx.!/� Syy.!/ :

(9.138)
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For the derivation of the above it is reminded that

e D x� y :

Also, using the orthogonality condition (9.135), the fol-
lowing important result can be derived

Sye.!/ D H.!/Swe.!/
SweD0) Sye.!/ D 0 D Sey.!/ :

It is noted here that

Ree.	/ D F�1fSee.!/g D
C1Z

�1

See.!/e
i!� d! ) he; ei

D Ree.0/ D
C1Z

�1

See.!/d! :

An alternative expression for the minimum error PSD
can be derived on the basis of the following

Syy.!/ D jH.!/j2Sww .!/ D jSxw.!/j2
S2ww .!/

Sww .!/

D jSxw .!/j2
Sww .!/

:

Then

See.!/ D Sxx.!/� Syy.!/

D Sxx.!/Sww.!/� jSxw .!/j2
Sww .!/

: (9.139)

Further treatment of (9.137) is possible since the addi-
tive measurement noise is uncorrelated to the unknown
signal x.t/ at the instrument input. In this case,

Sxw .!/ D Sxu.!/C Sxv .!/

D G�.!/Sxx.!/ because Sxv .!/ D 0 :
(9.140)

Also

Sww .!/ D Suu.!/C Svv .!/

D jG.!/j2Sxx.!/C Svv .!/

since u D v Cw : (9.141)

Therefore, the Wiener filter in (9.137) becomes as fol-
lows

H.!/ D G�.!/Sxx.!/

jG.!/j2Sxx.!/C Svv .!/
: (9.142)

The above allows us to obtain an estimate of wave-
form x.t/ appearing at the instrument input port. As
can be seen, to achieve this the signal’s (waveform)
statistics need to be known in advance, i. e., the sig-
nal PSD Sxx.!/ or autocorrelation Rxx.	/, as well as
the dynamics of the measurement instrument, i. e., its
transfer function G.!/ or its impulse response g.t/;
last, but not least, prior information of the additive
noise’s statistics, ie, its PSD Svv .!/ or autocorrela-
tion Rvv .	/.

Two important specific subcases of (9.137) are
given below:

1. Zero-forcing equalization [9.1, 5]:
If Svv .!/ � Sxx.!/

H.!/ D 1

G.!/
: (9.143)

Evidently, in this subcase the statistics of either the
unknown input signal or the additive noise need to
be known in advance. Furthermore, one can easily
verify that, if the inverse of the instrument’s trans-
fer functionG.!/ does not introduce unstable poles,
estimation error e vanishes.

2. Matched filter [9.1, 5]:
If jG.!/j2Sxx.!/ � Svv .!/

H.!/ D G�.!/
Sxx.!/

Svv.!/
: (9.144)

In this subcase the major impairment toward obtain-
ing an estimate of x.t/ is the additive noise rather
than the instrument distortion, as was the case pre-
viously. Moreover note that if Sxx.!/ < Svv .!/, the
instrument’s output w .t/ will be noise-like, and yet
by use of the Wiener filter it is possible to extract
the unknown information signal x.t/.

Matched filter estimator design is widely used in
communications engineering. At least as a first approx-
imation, transfer function G.!/ models the telecom-
munication channel that introduces attenuation mono-
tonically increasing with distance from the transmitter
source. In a typical system, both the information signal
x.t/, as well as disturbance noise v.t/ can be consid-
ered as white noise, i. e., signals with the following
property

Snn.!/ D N0;8! , Rnn.	/ D N0•.	/;8	 : (9.145)

As can be seen, the case of a white noise signal demon-
strates practically no predictability, since the value of
the signal at any time instant is entirely uncorrelated
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with its value at any other time instant in the past or in
the future. Therefore, if both the information signal and
the additive noise are modeled as white noise, (9.144)
becomes

H.!/ D X0

V0
G�.!/ : (9.146)

The ratio .X0=V0/ with the PSD of the information sig-
nal x.t/ in the numerator and that of the additive noise
in the denominator is known as signal-to-noise ratio
(SNR) and is a very important parameter to character-
ize a system’s sensitivity to external noise, as well as
exogenous disturbance and crosstalk interference [9.1,
5].

9.6 Concluding Remarks
In this chapter, an account of digital signal processing
concepts, methods and techniques employed in ocean
engineering is given. After looking into the funda-
mental processes of continuous signal sampling and
reconstruction, the Z-transform is introduced as the tool
of convenience to analyze difference equations just like

the Laplace transform is suited to analyze differential
equations. Digital filters are presented then as well as
the Fast Fourier Transform algorithm. Fundamentals of
waveform analysis and stochastic processes are pre-
sented last as employed for system identification and
signal estimation.
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