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8. Ocean Electromagnetics

John J. Holmes

Even though acoustic waves can travel long dis-
tances in the sea with little attenuation, ocean
electromagnetics has important applications in
the areas of geophysical surveys and searches of
the seafloor and sub-bottom, communications
across the sea–air boundary, and high data trans-
fer rate at short ranges. Unlike in-air propagation
of electromagnetic fields, the finite conductiv-
ity of seawater results in a frequency-dependent
phase velocity, attenuation, intrinsic impedance,
and reflection and transmission coefficients at
the ocean’s surface. After giving a short sum-
mary of the electric and magnetic properties of
the ocean, this chapter begins with Maxwell’s
equations and develops the mathematical de-
scriptions of electromagnetic fields and dipole
sources within a conductingmedia. The differences
between plane wave reflection and transmission
at the surface of fresh water and seawater are
used to highlight how electromagnetic propaga-
tion within the electrically conducting ocean is
so very different than the more familiar radio fre-
quency transmissions in air. In addition, equations
are presented that describe the fields from sub-

8.1 Electromagnetism
in an Ocean Environment ...................... 177

8.2 Electromagnetic Field Theory . ................ 178
8.3 Plane Wave Propagation. ....................... 180
8.4 Reflection and Transmission

of a Plane Wave at the Surface
of Fresh Water ...................................... 182

8.5 Plane Wave Incident on Seawater .......... 184
8.6 Magnetic and Electric Dipoles

in an Unbounded Ocean ........................ 186
8.7 Magnetic and Electric Dipoles

in a Bounded Ocean . ............................. 188
8.8 Electromagnetic Propagation

in the Ocean at Optical Wavelengths ...... 193
References ................................................... 195

merged electric and magnetic dipoles that are lo-
cated both far and near the sea surface. These
formulations are valid over the frequency range
from 0Hz to a few MHz. Finally, a brief discussion
of ocean electromagnetics at optical wavelengths
is given at the end of this chapter.

Even though acoustic waves can travel long distances
in the sea with little attenuation, ocean electromagnet-
ics has several important applications. For example;
electromagnetic surveys, searches, and communication
systems can operate effectively in acoustically noisy en-
vironments, they can cross the sea–air boundary and be
received by high speed airborne sensors, and they have

much higher data transfer rates at short ranges. In ad-
dition, electromagnetic surveys of seafloor gas hydrate
pockets can determine their methane content, a shortfall
of seismic techniques. Moreover, the short range limi-
tations of underwater electromagnetic field propagation
are actually beneficial when pinpointing submerged tar-
gets during naval operations.

8.1 Electromagnetism in an Ocean Environment

The oldest known application of electromagnetism in
an ocean environment is the magnetic compass used
for navigation. Today, electromagnetic sources and sen-
sors are useful tools found in many diverse areas of
oceanographic study such as physical oceanography,
seafloor geophysics, marine chemistry, and biology.

Advances in the understanding of electromagnetism
within the boundaries of these scientific disciplines
have found application to engineering systems for en-
ergy generation, oil and gas exploitation and recovery,
commercial fishing, weather prediction, Tsunami warn-
ing, archeology, and the military. This chapter will
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present a brief description of the science behind elec-
tromagnetic fields and their interaction with an ocean
environment.

Pure water is a very good dielectric. Its permittiv-
ity is given by " D "0"w, where "0 is the free-space
permittivity (� 8:8541878176�10�12 F=m), and "w is
the water’s dielectric constant equal to approximately
80:1 at 20 ıC. Due to the strong covalent bonds of
the hydrogen and oxygen atoms in the water molecule,
there are no electrons in the conduction band until
they are pumped up to that energy level by apply-
ing high amplitude electric fields. If the field reaches
a few megavolts=cm, pure water will undergo a dielec-
tric breakdown forming an electric arc in the process.
Although pure water is a very good insulator, seawater
is a good electric conductor.

The disassociated salt ions in seawater cause it to be
a good electric conductor at all field levels. Although
electrons are the primary charge carriers in metal-
lic conductors, the positively charged salt ions, called
cations and negatively charged anions, are both charge
carriers in seawater. If a source of electric potential gra-
dient is introduced into the seawater, the cations will
migrate toward the source’s cathode (negative pole),
while the anions travel toward the anode (positive pole).
Electrochemical reactions occur at the anode, releasing
electrons in the process that then flow in the source’s
metallic conductor to the cathode where they recombine
with the cations.

The mobility of seawater ions is hampered by their
interaction with water molecules as they migrate, re-

sulting in loss of energy in the form of heat. At the
engineering level, seawater can be treated as a simple
conductor with an electric conductivity � ranging from
about 2:5 S=m in cold deep waters, and approaches
6 S=m in very warm waters. (A value of 4 S=m is
typically used for open ocean seawater.) This finite
conductivity attenuates electromagnetic energy as it
propagates through seawater, which is categorized as
a lossy medium.

Fortunately, seawater is nonmagnetic. Its magnetic
permeability is the same as free-space given by 
0 D
4�10�7 H=m. This means the only way that seawater
can be a source of a static magnetic field is by electric
current flowing through it.

This chapter will focus on the science of electro-
magnetic field propagation and attenuation in seawater,
and the reflection and transmission of the fields at the
sea’s surface. Emphasis will be placed on electromag-
netic field theory in the ultralow frequency (ULF) band
of �0 to 3Hz, and the extremely low frequency (ELF)
band from 3Hz to 3 kHz. Since the attenuation of elec-
tromagnetic waves increases rapidly with frequency,
radio frequency bands will not be covered here. Al-
though remote observations of the sea surface from
airborne and satellite-based microwave radiometers and
radars are important tools for oceanographic research,
they are beyond the scope of this discussion. (The inter-
ested reader should consult [8.1, pp. 405–510] on this
topic.) A brief cursory discussion of ocean electromag-
netics at optical wavelengths will be given at the end of
this chapter.

8.2 Electromagnetic Field Theory

It is not possible to give an in-depth description of gen-
eral electromagnetic field theory here. A comprehensive
treatment of engineering electromagnetics is presented
in [8.2]. In order to introduce some basic principles for
electromagnetic fields in a lossy media such as seawa-
ter, the formulations for magnetic and electric fields in
an unbounded ocean will be presented first.

All electromagnetic field theories are based on
Maxwell’s equations. In differential form, they are

r �E D �@B
@t

; (8.1)

r �H D JC @D
@t

; (8.2)

r �D D qe ; (8.3)

r �B D 0 ; (8.4)

where E (v=m) and H (A=m) are the electric and mag-
netic field intensity vectors, D (c=m2) and B (wb=m2

or T) are the electric and magnetic flux density vectors,
J (A=m2) is the electric current density, qe (c=m3) rep-
resents the electric charge density, and t stands for time
(seconds). Maxwell’s equations by themselves are suf-
ficient to solve any problem in electromagnetics.

Although magnetic charge and magnetic current
densities are not realizable, they can be included in
Maxwell’s equations through the generalized current
concept to aid mathematically in the solutions of cer-
tain problems. For example, a magnet can be repre-
sented mathematically as two opposite polarity mag-
netic charges at its ends. Adding the virtual magnetic
sources to Maxwell’s equations, and separating the
current density into its impressed and conduction com-
ponents, allows (8.1) through (8.4) to be written in
a more symmetrical form as

r �E D �Mi � @B
@t

; (8.5)
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r �H D Ji C Jc C @D
@t

; (8.6)

r �D D qe ; (8.7)

r �B D qm ; (8.8)

where Mi (v=m2) is the impressed magnetic current
density, Ji (A=m2) is the impressed electric current
density produced by an active source, Jc is the con-
duction current density flowing in the media, and the
equivalentmagnetic charge density is represented as qm
(wb=m3). The symmetric form of Maxwell’s equations,
(8.5) through (8.8), will be used here.

The electromagnetic properties of seawater are very
different than air or free space. As a result, the interac-
tion of electromagnetic fields with the ocean is unlike
that in air. The relationships between the field inten-
sities and flux densities are related by the constitutive
parameters of the media as given by

B D 
H ; (8.9)

D D "E ; (8.10)

J D �E ; (8.11)

where 
, ", and � for seawater have been defined pre-
viously. In air, 
 D 
0, " D �0, and � D 0.

Continuity of electric charge is an important rela-
tionship that can be derived from Maxwell’s equations.
The continuity equation is given by

r � J D �@�

@t
: (8.12)

This expression relates how the charge in a volume
changes with the current density entering or leaving it.

The first two Maxwell’s equations, (8.5) and (8.6),
are a set of first-order differential equations that are cou-
pled. The first step in their solution is to uncouple them.
Using (8.9)–(8.11) to rewrite (8.5)–(8.8) gives

r �E D �Mi �

@H
@t

; (8.13)

r �H D Ji C �EC "
@E
@t

; (8.14)

r �E D qe
"
; (8.15)

r �H D qm



: (8.16)

Taking the curl of both sides of (8.13) and (8.14) pro-
duces

r � r �E D �r �Mi �

@

@t
.r �H/ ; (8.17)

r � r �H D r � Ji C �r �EC "
@

@t
.r �E/ :

(8.18)

Substituting (8.14) into the right-hand side of (8.17),
and using the vector identity r � r �A D r � .r �A/�
r2A on the left-hand side, gives

r.r�E/�r2E D �r�Mi�

@Ji
@t

�
�
@E
@t

�
"
@2E
@t2

:

(8.19)

Using (8.15), (8.19) can be rewritten as

r2E D r�MiC 1

"
rqeC


@Ji
@t

C
�
@E
@t

C
"
@2E
@t2

:

(8.20)

This is an uncoupled second-order differential equation
for E.

The same process can be applied to obtain an un-
coupled second-order differential equation for H. Sub-
stituting (8.13) into the right-hand side of (8.18) and
using the vector identity from the above on the left-hand
side results in

r.r �H/� r2H D r � Ji � �Mi � "
@Mi

@t

�
�
@H
@t

�
"
@2H

@t2
: (8.21)

Substituting (8.16) into (8.21) and reducing gives

r2H D �r � Ji C �Mi C 1



rqm C "

@Mi

@t

C
�
@H
@t

C
"
@2H
@t2

: (8.22)

Equations (8.20) and (8.22) are vector wave equations
for E and H.

Only time-harmonic electromagnetic fields will be
considered here. Time-harmonic fields can be repre-
sented by the real part of ei!t , where ! is the angular
frequency given by 2� f , f is the linear frequency of
the electromagnetic wave in hertz (Hz), and i D p�1.
Since it is understood that ei!t appears in each term of
Maxwell’s equations, in can be dropped from the nota-
tion, allowing (8.5) through (8.8) to be rewritten as

r �E D �Mi � i!
H ; (8.23)

r �H D Ji C Jc C i!"E ; (8.24)

r �E D qe
"

; (8.25)

r �H D qm



; (8.26)
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while the time-harmonic vector wave equations become

r2E D r �Mi C 1

"
rqe C i!
Ji

C i!
�E�!2
"E ; (8.27)

r2H D �r � Ji C �Mi C 1



rqm

C i!"Mi C i!
�H�!2
"H : (8.28)

Although Ji and qe can represent either real or virtual
sources, Mi and qm are only virtual. In a source free
region, Ji D qe D 0 and Mi D qm D 0, so that (8.27)
and (8.28) reduce to the homogenous form of the wave
equation

r2E� �2E D 0 ; (8.29)

r2H� �2H D 0 ; (8.30)

where

�2 D i!
� �!2
" : (8.31)

Equations (8.29) and (8.30) describe electromagnetic
waves traveling in a lossy medium with a propagation
constant given by � .

The last equations needed to completely define elec-
tromagnetic fields in the ocean are boundary conditions.
Boundary conditions describe how the fields respond

at an interface formed between two media of differ-
ent constitutive properties, such as at the sea surface
and seafloor. In this case, air is nonconducting with
a permittivity and permeability the same as free space,
while seawater is conductive with a high permittivity.
Although the seafloor is conductive, its effective con-
ductivity is one to four orders of magnitude less than
the ocean’s; depending on the depth the fields propa-
gate below the bottom.

The generalized boundary conditions are well
known. Their detailed derivation from Maxwell’s equa-
tions can be found in [8.2]. Let the unit normal at the
interface between two different media be given by On and
pointing into the second region. Let the fields in media
1 and 2 be given by E1, H1, D1, B1 and E2, H2, D2,
B2, respectively. Then the boundary conditions at the
interface between them are

�On� .E2 �E1/ D Ms ; (8.32)

On� .H2 �H1/ D Js ; (8.33)

On � .D2 �D1/ D qes ; (8.34)

On � .B2 �B1/ D qms ; (8.35)

where Ms and Js are the linear magnetic and electric
surface currents along the boundary, and qes and qms

are the linear surface charge densities on the bound-
ary. AlthoughMs and qms are virtual boundary sources,
they do arise in equivalent source representations of the
fields within a closed region.

8.3 Plane Wave Propagation

The homogenous wave (8.29) and (8.30) can be solved
in any of the separable coordinate systems. Their solu-
tion in rectangular coordinates will result in the expres-
sions for plane waves. Using the method of separation
of variables, the solution to (8.29) and (8.30) for a wave
traveling along the positive z-axis is

E D E0e
�	z ; (8.36)

H D H0e�	z ; (8.37)

where E0 and H0 are the amplitudes of the electric and
magnetic fields. The propagation constant � , defined by
(8.31), can be written as

� D
p
i!
.� C i!"/ ; (8.38a)

� D ˛ C iˇ ; (8.38b)

and ˛ is the attenuation constant in Np=m, and ˇ is the
phase constant in rad=m. If the waves were traveling
in the negative z direction, then z in (8.36) and (8.37)
would be replaced by �z. Solutions to the homogenous

wave equation in cylindrical and spherical coordinates
are derived in [8.2, pp. 12–18].

The electric and magnetic fields in (8.36) and (8.37)
are linked through Maxwell’s equations. For a source-
free region, (8.24) can be written as

E D 1

� C i!"
r �H : (8.39)

If the magnetic field vector H in (8.39) has only an x
component, given byHx, taking its curl and substituting
it in (8.36) gives

Ey D ��

� C i!"
Hx : (8.40)

Substituting (8.38a) into (8.40) and reducing gives

Ey D ��Hx ; (8.41)

where

� D
r

i!


� C i!"
: (8.42)
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The term � is called the intrinsic impedance of the
medium and has the units of �. For a plane wave, the
orthogonal electric and magnetic field components per-
pendicular to the propagation direction are related by
the media’s impedance.

In this section, only the ULF and ELF bands will
be considered. Using the seawater dielectric permittiv-
ity constant from above, !" at the high end of the ELF
band (3 kHz) is equal to � 1:337�10�5, which is much
less than the water conductivity of 2:5 to 6. There-
fore, the i!" term will be dropped for electromagnetic
frequencies up through the ELF band. In fact, displace-
ment currents in seawater do not become appreciable
until frequencies approach the high megahertz region.

At ELF frequencies and below, the seawater’s atten-
uation constant is equal to its phase constant. Eliminat-
ing the i!" in (8.38) gives

� D p
i!
� ; (8.43a)

� D
r

!
�

2
.1C i/ ; (8.43b)

˛ D ˇ D
r

!
�

2
: (8.43c)

The distance at which the wave attenuates to e�1 is
called the skin depth, and is denoted by the term ı. The
skin depth is the reciprocal of the attenuation constant,
ı D 1

˛
, which for seawater is

ı D
s

2

!
�
: (8.44)

The field’s wavelength 
 is related to the propagation
by 
 D 2�

ˇ
, and in this case can be written as


 D 2�

s
2

!
�
; (8.45)

while the speed of an electromagnetic wave v , is equal
to f
, and in seawater is given by

v D
s

2!


�
: (8.46)

Finally, the intrinsic impedance of seawater at ELF fre-
quencies and below is expressed as

� D
r

i!


�
: (8.47)

In the ocean, an electromagnetic wave’s skin depth and
wavelength is inversely proportional to the square root
of its frequency, while its speed and intrinsic impedance
is directly proportional to it.
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Fig. 8.1 Propagation characteristics of an electromagnetic wave in
seawater

The characteristics of a propagating electromagnetic
wave in the ocean are quite different than in air. In
free space, the propagation speed of an electromag-
netic field is always the same as that of light c (3�
108 m=s), regardless of its frequency. This is not the case
in the ocean. The skin depth, wavelength, and propaga-
tion speed given by (8.44) through (8.46) are plotted in
Fig. 8.1 over the frequency range from 1mHz to 10 kHz,
using a seawater conductivity of 4S=m.At 1Hz, the skin
depth is 252m, while the wavelength and propagation
speed are 1581m and 1581m=s. The propagation speed
of electromagnetic fields in seawater at 1Hz ismore than
5 orders of magnitude slower than in air, and is approx-
imately equal to the speed of sound in the ocean!

The intrinsic impedance of seawater is much
smaller than free space. In air, � can be computed
from (8.42) by setting � D 0. This results in a free
space impedance of 377�, and is independent of fre-
quency. Conversely, the intrinsic impedance of seawater
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Fig. 8.2 Magnitude of the intrinsic impedance of seawater as
a function of frequency
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is 1:405�10�3.1C i/� at 1Hz. The magnitude of
(8.47) has been plotted in Fig. 8.2 for the same param-
eters as above. As will be shown later, the difference in
impedances between air and the ocean will significantly
affect the reflection and transmission of electromag-
netic fields at the sea surface.

As the frequency of the electromagnetic wave in-
creases, so does its velocity. At the top end of the ELF
band, an electromagnetic field propagates more than
100 times faster than sound, but the skin depth de-
creases to less than 3m. For this reason, underwater
electromagnetic communication systems for short dis-
tance wireless data transfers are preferred over acoustic

modems. In addition, the rapid attenuation of electro-
magnetic fields in the ocean can be exploited to reduce
interference from nearby transmitters, and for covert
underwater communications systems that must avoid
long range detection.

Another advantage of ULF and ELF electromag-
netic fields is their ability to cross the air–ocean bound-
ary. The description of plane wave transmission from
air into conducting seawater is more complex than for
fresh water. Therefore, the formulation of the reflection
and transmission coefficients at the sea surface will be-
gin with that of a plane wave incident on fresh water,
such as a lake.

8.4 Reflection and Transmission of a Plane Wave at the Surface
of Fresh Water

The reflection and transmission coefficients of a plane
wave at the surface of fresh water depend on the polar-
ization of the incident field. If the electric field vector of
the incident uniform plane wave is perpendicular to the
plane of incidence as shown in Fig. 8.3, then the wave is
said to have a perpendicular polarization or horizontal
polarization. Using the coordinate system and geom-
etry of Fig. 8.3, the incident perpendicular polarized
electric Ei

?
and magnetic Hi

?
field of a uniform plane

wave can be written as

Ei
?

D OayE0e
�iˇa.x sin�iCz cos�i/ ; (8.48)

Hi
?

D .�Oax cos �i C Oaz sin �i/
E0

�a
e�iˇa.x sin�iCz cos�i/ ; (8.49)

where E0 is the amplitude of the incident electric field,
ˇa is the propagation constant for the incident wave in

x

y

z

Air ε0, μ0

Water εw, μ0

E i
 E r



E t


H i


H r


H t


θi θr

θt

βf

βa

βa

Fig. 8.3 Plane wave incident on the surface of fresh water,
perpendicular polarization

air, �a is the intrinsic impedance of air (377�), �i is
the incidence angle with respect to the vertical, and Oax,
Oay, Oaz are the unit vectors in their respective directions.
The relationship between the electric and magnetic field
components for a uniform plane wave given by (8.41)
was used to arrive at (8.49). Similarly, the reflected elec-
tric Er

?
and magnetic Hr

?
plane waves are given by

Er
?

D Oay�?E0e
�iˇa.x sin�r�z cos�r/ ; (8.50)

Hr
?

D .Oax cos �r C Oaz sin �r/
� �?E0

�a
e�iˇa.x sin�r�z cos�r/ ; (8.51)

where �? is the reflection coefficient for a perpendic-
ular polarized wave, and �r is the angle of the reflected
wave with respect to the vertical. Finally, the transmit-
ted electricEt

?
and magneticHt

?
field can be expressed

as

Et
?

D OayT?E0e
�iˇf.x sin�tCz cos�t/ ; (8.52)

Ht
?

D .�Oax cos �t C Oaz sin �t/
� T?E0

�f
e�iˇf.x sin�tCz cos�t/ ; (8.53)

where T? is the transmission coefficient for a per-
pendicular polarized wave, and �t is the angle of the
transmitted wave or refraction angle with respect to the
vertical, and ˇf and �f are the propagation constant and
intrinsic impedance of freshwater, respectively.

Equations (8.48)–(8.53) can be related through the
boundary conditions of the continuity of the horizon-
tal components of the electric and magnetic fields at
the surface of the water. Since there are no sources at
the air–water interface, Ms and Js in (8.32) and (8.33)
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are set to zero. Applying these boundary conditions to
(8.48)–(8.53) at z D 0 gives

e�iˇax sin�i C�?e�iˇax sin�r D T?e�iˇfx sin�t ; (8.54)

1

�a

�
� cos �ie

�iˇax sin�i C cos �r�?e�iˇax sin�r

	

D �T?

�f
cos �te

�iˇfx sin�t : (8.55)

Equations (8.54) and (8.55) are sufficient to solve for
�r, �t, �?, and T?.

Breaking (8.54) and (8.55) into their real and imag-
inary parts will produce four equations with which to
solve for the four unknowns. Following this procedure
results in the relationships between the incident, re-
flected, and transmission angles given by

�r D �i ; (8.56a)

ˇa sin �i D ˇf sin �t : (8.56b)

Equations (8.56a) and (8.56b) are called Snell’s laws of
reflection and refraction, respectively. Placing (8.56a)
and (8.56b) into (8.54) and (8.55) and solving for the
reflection and transmission coefficients produces the
expressions

�? D Er
?

Ei
?

D �f cos �i � �a cos �t
�f cos �i C �a cos �t

; (8.57)

T? D Et
?

E

i

?

D 2�f cos �i
�f cos �i C �a cos �t

: (8.58)

Because air and water are both nonmagnetic (8.57) and
(8.58) can be reduced to

�? D cos �i � p
"wcos�t

cos �i C p
"w cos �t

; (8.59)

T? D 2 cos �i
cos �i C p

"w cos �t
; (8.60)

where "w is the dielectric constant of water defined pre-
viously as 80.1.

A similar procedure is used to obtain the reflection
and transmission coefficients for a uniform plane wave
that has a parallel polarization incident on the surface
of fresh water. A wave of this type also referred to as
having a vertical polarization has an electric field that
is parallel to the plane of incidence as shown in Fig. 8.4.
Using the coordinate system and geometry of Fig. 8.4,
the incident parallel polarized electric Ei

k
and magnetic

Hi
k
field of a uniform plane wave can be written as

Ei
k

D .Oax cos �i � Oaz sin �i/E0e
�iˇa.x sin�iCz cos�i/ ;

(8.61)
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Fig. 8.4 Plane wave incident on the surface of fresh water,
parallel polarization

Hi
k

D OayE0

�a
e�iˇa.x sin�iCz cos�i/ : (8.62)

Similarly, the reflected electric Er
k
and magnetic Hr

k

plane waves are given by

Er
k

D .Oax cos �r C Oaz sin �r/�k
E0e

�iˇa.x sin�r�z cos�r/ ;

(8.63)

Hr
k

D �Oay�k
E0

�a
e�iˇa.x sin�r�z cos�r/ ; (8.64)

and the transmitted electric Et
k
and magnetic Ht

k
plane

waves are

Et
k

D .Oax cos �t � Oaz sin �t/Tk
E0e

�iˇf.x sin�tCz cos�t/ ;

(8.65)

Ht
k

D Oay Tk
E0

�f
e�iˇf.x sin�tCz cos�t/ ; (8.66)

where �
k
and T

k
represent the reflection and transmis-

sion coefficients for a parallel polarized incident wave,
respectively. All other parameters have been defined
previously.

The analysis proceeds in the same manner as used
for the perpendicular polarized waves. Applying the
continuity boundary conditions for the tangential com-
ponents of the electric and magnetic fields at the air–
water interface (z D 0) give the equations

cos �ie
�iˇax sin�i C cos �r� k

e�iˇax sin�r

D cos �tTk
e�iˇfx sin�t ; (8.67)

1

�a

�
e�iˇax sin�i ��

k
e�iˇax sin�r

	
D T

k

�f
e�iˇfx sin�t :

(8.68)
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Fig. 8.5 Reflection coefficients for a perpendicular and
parallel polarized uniform plane wave incident on the sur-
face of fresh water

Once again, equating the real and imaginary parts
of (8.67) and (8.68) will yield Snell’s laws of reflec-
tion and refraction (8.56a) and (8.56b), along with the
reflection and transmission coefficients for parallel po-
larization written as

�
k

D Er
k

Ei
k

D ��a cos �i C �f cos �t
�a cos �i C �f cos �t

; (8.69)

T
k

D Et
k

Ei
k

D 2�f cos �i
�a cos �i C �f cos �t

: (8.70)

For the interface between air and fresh water, (8.69) and
(8.70) reduce to

�
k

D �p
�w cos �i C cos �tp
�w cos �i C cos �t

; (8.71)

T
k

D 2 cos �ip
�w cos �i C cos �t

: (8.72)
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Fig. 8.6 Transmission coefficients for a perpendicular and
parallel polarized uniform plane wave incident on the sur-
face of fresh water

Although (8.59) and (8.60) are similar in form to
(8.71) and (8.72), a simple example will highlight the
differences.

The reflection and transmission coefficients for per-
pendicular and parallel polarizations were evaluated for
a plane wave incident on the surface of fresh water with
a dielectric constant of 80.1. Using Snell’s law of refrac-
tion (8.56) at the air–water interface, the cos �t term in
(8.59), (8.60), (8.71), and (8.72) can be computed from

cos �t D
s
1� 1

"w
sin2�i : (8.73)

The magnitudes of �? and �
k
are plotted in Fig. 8.5 for

all incidence angles from 0 to 90ı, while T?, and T
k

are similarly plotted in Fig. 8.6. Interestingly, �
k
goes

through zero at an angle of 83:63ı. This angle is called
the Brewster angle for which there is no reflection from
the water’s surface. The Brewster angle only exists for
incident plane waves that have parallel polarization.

8.5 Plane Wave Incident on Seawater

The general forms of the reflection and transmission co-
efficients computed for fresh water are also valid when
the wave is incident on the surface of the electrically
conducting ocean. In this case, the intrinsic impedance
of fresh water �f used in (8.57), (8.58), (8.69), and
(8.70) is replaced with that of seawater �s given by
(8.47). Since �s is a complex impedance with both real
and imaginary parts, �?, T?, �

k
, and T

k
will all be

complex. This means that both the amplitude and phase
of the reflected and transmitted fields will be modified
by the ocean’s surface.

The most dramatic effect of the sea surface on a uni-
form plane wave is its impact on the transmitted field’s
propagation characteristics. Rewriting Snell’s law of re-
fraction (8.56b) for seawater gives

iˇa sin �i D � sin �t ; (8.74)

where � has both a real and imaginary part given by
(8.43c). In this case, the sin �t term in (8.74) can be ex-
pressed as

sin �t D iˇa

˛ C iˇ
sin �i : (8.75)
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Using (8.75) and the identity cos �t D
p
1� sin2 �t, the

term cos �t becomes

cos �t D
s
1�

�
iˇa

˛ C iˇ

�2

sin2 �i ; (8.76)

which can be reduced to a general form of

cos �t D sei� : (8.77)

It is clear that the wave transmitted into the sea will be
at an angle that is complex. The idea of a real and imag-
inary transmission angle needs further explanation.

The electric field for a perpendicular or parallel po-
larized field transmitted into seawater, (8.52) or (8.65),
can be written in a general form given by

Et D Et
0e

�	.x sin�tCz cos�t/ ; (8.78)

that can be expanded to

Et D Et
0 expŒ�.˛ C iˇ/.x sin �t C z cos �t/� : (8.79)

All the terms in front of the exponential in either (8.52)
or (8.65) have been lumped into Et

0. Placing (8.75) and
(8.77) into (8.79) gives

Et D Et
0 exp

�
�.˛ C iˇ/

�
x

iˇa

˛ C iˇ
sin �i

C zs.cos � C i sin �/

��
; (8.80)

and can be reduced to

Et D Et
0e

�zp expŒ�i.xˇa sin �i C zq/� ; (8.81)

where

p D s.˛ cos � �ˇ sin �/ ; (8.82)

q D s.˛ sin � Cˇ cos �/ : (8.83)

The expression given by (8.81) describes a nonuniform
wave.

A plane wave refracted into conducting seawater
has planes of constant amplitude and phase that are
not coincident. Equation (8.81) shows that the planes
of constant amplitude (z D constant) are parallel to the
ocean’s surface as drawn in Fig. 8.7. The attenuation
vector of the refracted wave is Ǫs D Oazp, where p is
the attenuation constant. To find the direction of prop-
agation of the refracted wave, the phase term given in
(8.81) is rewritten as

xˇa sin �i C zq D ˇs.x sin� C z cos�/ ; (8.84)
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Fig. 8.7 Plane wave refracted into seawater

where

ˇs D
p
u2 C q2 ; (8.85)

sin� D up
u2 C q2

; (8.86)

cos� D qp
u2 C q2

; (8.87)

u D ˇa sin �i : (8.88)

The phase propagation direction for the refracted wave
is Ǒ

s D Oax sin� C Oaz cos� , and produces planes of con-
stant phase perpendicular to Ǒ

s as drawn in Fig. 8.7.
The angle of refraction for the direction of propagation
is determined from

� D tan�1

�
u

q

�
: (8.89)

The phase velocity of the refracted wave is given by

vr D !

ˇs
: (8.90)

The refracted wave’s attenuation, direction of propa-
gation and velocity are all dependent on the incident
angle; but to what extent? Another example is in order.

In this example, a 1Hz plane wave is incident on
the surface of the open ocean at an oblique angle �i.
Using the intrinsic parameters for air � D 0, 
0, and "0
in (8.38) and (8.42), the free space propagation constant
ˇa is equal to !

c (c is the speed of light in a vacuum is
3�108 m=s), and the intrinsic impedance of air is 377�
that is independent of frequency. For a seawater con-
ductivity of 4 S=m, (8.76) can be written as

cos �t �
q
1� .�i2:2�10�11/ sin2 �i � 1
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for all angles of incidence. This produces the values
s D 1, � D 0, and q D ˇ from (8.77) and (8.83). The
electromagnetic wave’s angle of refraction in the ocean,
given by (8.89), reduces to

� D tan�1

�
!

cˇ
sin �i

�
: (8.91)

At 1Hz, !
cˇ D 5:27�10�6, and the maximum angle

of refraction is �max 	 tan�1.5:27� 10�6/ or �max 	
3�10�4ı (� 1 s of an arc). Even at 3 kHz the refracted
angle is computed to be less than 0:02ı. Therefore, for

frequencies up through the ELF band, a plane wave
incident on the surface of the ocean at any angle will re-
fract, propagate, and attenuate toward the bottom along
a path that is nearly vertical.

The analysis presented above for a single inter-
face can be extended to include any number of layers
with different intrinsic parameters. The derivation of
the iterative equation can be found in [8.2, pp. 110–
120]. Plane wave reflection and transmission for multi-
layered ocean environments would arise when model-
ing depth variations of uniformly stratified seawater or
seafloor conductivities.

8.6 Magnetic and Electric Dipoles in an Unbounded Ocean

Strictly speaking, plane waves do not exist in nature.
They can be used to approximate an electromagnetic
field that is far from its source (transmitter), or in the
case where a uniform distribution of sources extend
to very large distances in comparison to the receiver’s
range to it. An example of the latter case would be
the geomagnetic fields present at the ocean’s surface
generated by solar-wind-induced electric currents in the
ionosphere.

The two elemental sources of electromagnetic fields
are the electric and magnetic point dipoles. An electric
dipole source p is created by an electric current I flow-
ing in a conductor over a linear distance l (p D Il/, and
has units of A m. Amagnetic dipolem is produced if the
current flows around a closed circular path that encloses
an area a (m D Ia/, and has units of Am2. If the obser-
vation point is at a distance that is large compared to the
source’s dimensions, then it can be represented math-
ematically as an infinitesimally small or point dipole.
With sources present, the time-harmonic vector wave
equations, (8.27) and (8.28), are now inhomogeneous.

Although it is possible to solve for the electric and
magnetic fields directly from the inhomogeneous vector
wave equations, it is generally mathematically advanta-
geous to replace them with equivalent representations
in terms of the magnetic vector potential A and electric
vector potential F. The solutions to the inhomogeneous
vector wave equations in terms of vector potentials are
derived in [8.3], and can be written as

E D �i!AC 1


�
r.r �A/� 1

"
r �F ; (8.92)

H D �i!FC 1


�
r.r �F/C 1



r �A ; (8.93)

where

A D 


4�

•
V

Ji
e�	R

R
dv 0 ; (8.94)

F D "

4�

•
V

Mi
e�	R

R
dv 0 ; (8.95)

R D
q
.x� x0

/2 C .y� y0

/2 C .z� z0

/2 ; (8.96)

and the elements of the impressed electric Ji and mag-
netic Mi current densities are located at .x

0

; y
0

; z0/ with
the observation point at .x; y; z/. The integration is taken
over the entire volume of the source.

Equations (8.92)–(8.96) are sufficient to compute
the electric and magnetic fields from dipole sources.
Consider first an electric point dipole of strength p lo-
cated at the origin of the coordinate system shown in
Fig. 8.8, and aligned along the z-axis. The impressed
source’s electric current density for this dipole can be
represented mathematically as

Ji D Oazp•.x0/•.y0/•.z0/ ; (8.97)

where the • used here represents the Dirac delta func-
tion. Placing (8.97) into (8.94) yields the magnetic
vector potential

Az D 
pe�	 r

4�r
; (8.98)
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Fig. 8.8 Coordinate system for a dipole in an unbounded
ocean
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where r is the radial distance from the origin as shown
in Fig. 8.8. Converting (8.98) to spherical coordinates
and placing it into (8.92) and (8.93), the electric and
magnetic fields of a point electric dipole in an un-
bounded ocean are written as

Er D p cos �

2��r3
.1C �r/e�	 r ; (8.99)

E™ D p sin �

4��r3
.1C �rC � 2r2/e�	 r ; (8.100)

H® D p sin �

4�r2
.1C �r/e�	 r : (8.101)

If the point dipole was located at coordinates .x0; y0; z0/
instead of the origin, then r becomes

p
.x� x0/2 C .y� y0/2 C .z� z0/2 :

The derivation of a magnetic point dipole follows
that shown above for the electric. In this case, the mag-
netic point dipole has a source strength m that is also
located at the origin, and is aligned along the z-axis.
A dipole of this type could be produced by an elec-
tric current flowing in the ' direction of the coordinate
system in Fig. 8.8. This is mathematically equivalent
to a virtual magnetic current source aligned along the
z-axis. Therefore, the equivalent impressed magnetic
current density for this dipole can be written as

Mi D Oazm•.x0/•.y0/•.z0/ : (8.102)

Using (8.102) in (8.95) yields the electric vector poten-
tial

Fz D "me�	 r

4�r
: (8.103)

Converting (8.103) to spherical coordinates and placing
it into (8.92) and (8.93), the electric and magnetic fields
of a point magnetic dipole in an unbounded ocean can
be written as

Hr D m cos �

2�r3
.1C �r/e�	 r ; (8.104)

H™ D m sin �

4�r3
.1C �rC �2r2/e�	 r ; (8.105)

E® D �i!
m sin �

4�r2
.1C �r/e�	 r : (8.106)

It should be noted that the electromagnetic fields for
both the electric and magnetic dipole sources are cir-
cularly symmetric and are not a function of the '
coordinate.

The equations for the electromagnetic fields of elec-
tric and magnetic point dipoles in an unbounded ocean
reduce to the standard static magnetic and electric ex-
pressions by setting the frequency in (8.99) to (8.101)

and (8.104) to (8.106) to zero. Carrying this out gives
the electric and magnetic fields of a static electric dipole
in an unbounded ocean as

Er D p cos �

2��r3
; (8.107)

E™ D p sin �

4��r3
; (8.108)

H® D p sin �

4�r2
; (8.109)

and for the static magnetic dipole (8.104) to (8.106) re-
duce to

Hr D m cos �

2�r3
; (8.110)

H™ D m sin �

4�r3
; (8.111)

E® D 0 : (8.112)

It should be noted that all electric and magnetic field
components for static dipoles fall off in the radial direc-
tion as r�3 except for the ' component of the magnetic
field of the static electric dipole, which fall off as r�2,
and the ' component of the electric field of the static
magnetic dipole, which is zero.

Except for the zero E® component of the static
magnetic dipole, the static and time-harmonic dipole
equations differ by a factor of either .1C �r/e�”r or
.1C �rC �2r2/e�”r. The magnitude of these two mul-
tiplication factors are plotted in Fig. 8.9 as a function
of the radial distance in skin depths. This data shows
the range over which the electric and magnetic field
equations for static sources can be used to estimate
the time-harmonic fields. Depending on accuracy re-
quirements, the static equations could be used out to
distances approaching a skin depth. It is interesting that
j.1C �rC �2r2/e�”rj is 1 at a distance equal to a half-

0 0.1 1

|(1 + γr)e–γr|

|(1 + γr + γ2r2)e–γr|

λ/2

10
Radial distance (skin depths)

Ratio of time-harmonic to static dipole fields
10

1

0.1

Fig. 8.9 Correction factors to convert electric and mag-
netic fields computed for static dipoles to those of time-
harmonic sources
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wavelength, as indicated in Fig. 8.9. The region in close
vicinity to a time-harmonic dipole for which the static
equations are sufficiently accurate is sometimes called
the quasi-DC (direct current) range.

The equations for electric and magnetic dipoles in
an unbounded ocean are sufficient if the range between
the source and observation point is small in compari-

son to their distances from the sea surface or seafloor.
If this is not the case, then reflections from one or both
of the interfaces must be accounted for in the magnetic
and electric field formulations. Since the dipole sources
are close to an interface, simple plane wave reflection
coefficients cannot be used. A more complete and, un-
fortunately, more complex treatment are required.

8.7 Magnetic and Electric Dipoles in a Bounded Ocean

In this section, magnetic and electric dipoles submerged
in a bounded ocean will be considered. What is meant
by a bounded ocean is that the separation between
the source and observation point are comparable to
their distance from either the sea surface or bottom.
The change in conductivity between the seawater and
air or the seafloor produces an interface that modifies
the spreading and propagation of fields generated by
submerged magnetic and electric sources. The effects
of the interfaces are accounted for in the descriptive
equations by satisfying the boundary conditions along
them. Therefore, mathematical solutions to the inho-
mogeneous wave equations must be in a form that will
easily accommodate solving for the boundary condi-
tions when a source is near an interface.

Because of their close proximity to one of the
ocean’s interface, the solution to the problem of a sub-
merged magnetic or electric dipole will also depend
on their orientation with respect to the sea surface or
seafloor. As a result, there are four types of dipoles
that must be addressed separately when computing
their electric and magnetic fields in a bounded ocean.
They are; the vertical electric dipole (VED), vertical
magnetic dipole (VMD), horizontal magnetic dipole
(HMD), and the horizontal electric dipole (HED). The
equations for the in-water fields from a subsurface
time-harmonic VED in a deep ocean (only the surface
interface) will be derived to demonstrate the analysis
method. References will then be cited where solutions
to the other source types can be found.

The geometry for a submerged vertical dipole and
observation point is drawn in Fig. 8.10. As before, the
air is nonconducting with free-space permittivity and
permeability, while the ocean has its standard intrin-
sic parameters. The dipole is located on the z-axis at
a depth h, with the observation point also located in
the seawater at .�; '; z/. Although this problem can be
solved in rectangular coordinates, cylindrical coordi-
nates are employed due to the electromagnetic fields’
circular symmetry about the source.

A slightly different form of the vector potential is
typically used when solving the problem of dipoles in

a layered medium. The alternate form is called theHertz
vector potential. For a VED, the electric Hertz vector
potential, denoted by˘ , has only a z component and is
given by

˘z D p

4�.� C i!�/

e�”r

r
; (8.113)

where

r D
p
�2 C .z� h/2 :

The general relationships between the magnetic vec-
tor potential, the electric Hertz vector potential, and the
electric and magnetic fields are

A D 
.� C i!�/˘ ; (8.114)

E D ��2˘ C r.r �˘ / ; (8.115)

H D �.� C i!�/r �˘ : (8.116)

Placing (8.113) in (8.115) and (8.116), and reducing
them in cylindrical coordinates, gives

E¡ D @2˘z

@�@z
; (8.117)

Ez D ��2˘z C @2˘z

@z2
; (8.118)
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Fig. 8.10 Coordinate system for a submerged vertical
dipole and submerged observation point in an electrically
deep ocean
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H' D �.� C i!�/
@˘z

@�
; (8.119)

and all other electric and magnetic field components are
zero. Equations (8.113) through (8.119) apply to both
the seawater and air using the appropriate constitutive
parameters for each media.

The Hertz electric vector must be put in a form suit-
able for matching the boundary conditions at the surface
interface. Using the identity

e�”r

4�r
D 1

4�

1Z
0




u
e�ujzjJ0.
�/d
 ; (8.120)

where J0 is the Bessel function of order 0, and

u D .
2 C �2/
1
2 ; (8.121)

the electric Hertz vector for a VED located at a depth h
on the z-axis, (8.113), can be written as

˘ .w/
z D p

4�.� C i!"w/

1Z
0




uw
e�uwjz�hjJ0.
�/d
 ;

(8.122)

and the subscript and superscript, w , indicates that the
constitutive parameters for seawater are to be applied.
The integral representation in (8.122) can be replaced
with

1Z
0




uw
e�uw.z�h/J0.
�/d
 when .z� h/ 
 0 ;

(8.123)
1Z
0




uw
euw.z�h/J0.
�/d
 when .z� h/ 	 0 :

(8.124)

Equations (8.120) and (8.122) are called Hankel trans-
forms or Sommerfield integrals.

Equation (8.122) must be modified to account for
reflections from the surface interface, and an additional
equation is needed to describe the transmitted fields in
the air. The system of Hertz equations sufficient to solve
for the electromagnetic fields in both the air ˘ .a/

z and
seawater ˘ .w/

z layers are

˘ .a/
z D Pw

1Z
0

f1.
/e
u0zJ0.
�/d
 for z 	 0 ;

(8.125)

˘ .w/
z D Pw

1Z
0




uw
e�uwjz�hjJ0.
�/d


CPw

1Z
0

f2.
/e
�uwzJ0.
�/d
 for z 
 0 ;

(8.126)

where

Pw D p

4��
; (8.127)

uw D .
2 C �2/
1
2 ; (8.128)

u0 D .
2 C �2
0 /

1
2 ; (8.129)

and �2
0 D �!2
0"0, while �2 D i!
0� . The terms f1

and f2 are determined by the boundary conditions at the
ocean surface.

The boundary conditions require that the tangential
components of the electric and magnetic fields must be
continuous across the sea surface. For this problem, E¡

(8.117) and H® (8.119) are the components tangential
to the interface. The continuation of these tangential
field components can be expressed in terms of their
electric Hertz vectors as

@˘ .a/
z

@z
D @˘ .w/

z

@z
�2
0˘

.a/
z D �2

w˘
.w/
z

3
75 at z D 0 : (8.130)

Applying these boundary conditions results in a system
of equations for f1 and f2 given by

u0
uw

f1 C f2 D 


uw
e�uwh ; (8.131)

�2
0

�2
w
f1 � f2 D 


uw
e�uwh : (8.132)

Solving for f1 and f2 produces

f1.
/ D
2�
uw
e�uwh

u0
uw

C 	2
0

	2
w

; (8.133)

f2.
/ D 


uw
e�uwh

0
@�

2u0
uw

u0
uw

C 	2
0

	2
w

1
A : (8.134)

Since �2
0 � �2

w for all frequencies up through the ELF
band, �0 can be set to zero in (8.125), (8.133), and
(8.134). Under these conditions, f1 and f2 reduce to

f1.
/ D 2e�uwh ; (8.135)

f2.
/ D � 


uw
e�uwh : (8.136)
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This no-propagation approximation for air is some-
times called the quasi-static condition, and should
not be confused with the quasi-DC case discussed
previously.

With the solutions to f1 and f2 in hand, (8.125) and
(8.126) can be placed in (8.120) through (8.122) to
compute the electric and magnetic fields above and be-
low the sea surface. For some special cases, the field
equations can be solved in the analytical form; but in
general, the Sommerfield integrals must be evaluated
numerically. Unfortunately, the integrands are oscilla-
tory and slowly damped, increasing the difficulty in
their numerical integration. Special techniques have
been developed to efficiently evaluate Sommerfield-
type integrals, most of which have been reviewed
in [8.4].

Derivation of the more complicated equations for
a VED in a shallow ocean, which includes the interface
at the seafloor, follows the same procedure as shown
above for the deep water analysis. In the shallow water
case, a third Hertz vector is needed to describe prop-
agation within the sea bottom, and another term must
be included in (8.126) to account for reflections off the
seafloor. Satisfying the boundary conditions at both the
seafloor and sea surface produce four equations with
four unknowns, this time f1 through f4. The Sommerfeld
integral formulations for a VED in a three layer media
can be found in [8.5], and applied to the shallow-ocean
problem using the appropriate constitutive parameters.

The complementarity problem of a VMD in a deep
or shallow ocean is solved in an analogous manner us-
ing a magnetic Hertz vector in place of the electric
vector. The in-air fields from a time-harmonic VMD
submerged in shallowwater have been reported in [8.6],
while the in-water fields from an airborne VMD are
found in [8.7]. Because of the presence of the ocean
surface and/or bottom interface, the field solutions for
an HED require both horizontal and vertical electric
Hertz vectors to satisfy the boundary conditions [8.8].
Although this complicates the algebra by doubling
the number of boundary equations and unknowns, the
Sommerfeld formulation for the in-water electric and
magnetic fields from a submerged HED in shallow wa-
ter have been derived, with the solution given in [8.9].
Similarly, computing the fields for an HMD in the ocean
requires both the horizontal and vertical magnetic Hertz
vectors. The equations for the in-air electric and mag-
netic fields from submerged VED, HED, and HMD
sources have been complied in [8.10], while the in-
water fields from these three sources located above the
ocean are summarized in [8.11]. The referenced shal-
low water equations can be reduced to the deep-ocean
case by setting the bottom conductivity equal to that of
the water.

Although the electromagnetic fields from dipole
sources submerged in a deep ocean have been formu-
lated in the generalized form of Sommerfeld integrals,
it is very convenient to have algebraic equations read-
ily accessible for obtaining quick estimates; even if
they are only valid for special cases. The algebraic in-
water and in-air electric and magnetic field equations
for VED, HED, VMD, and HMD sources submerged
in a deep ocean will be presented in tabular form for
a few special cases. These tabularized equations have
been found to be useful as a fast and easy reference.

The coordinate system and geometry for the tab-
ulated equations are again shown in Fig. 8.10. All
sources will be located at a depth h, with the VED and
VMD aligned in the positive z direction, while the HED
and HMD are oriented along the positive x-axis. The
planner sea surface interface is at z D 0. The magnetic
and electric dipole source strengths will be designated
as m and p, respectively.

The magnetic and electric fields for static magnetic
and electric dipoles in an unbounded ocean were given
previously in spherical coordinates. At times, it is more
convenient to apply the formulas in the Cartesian sys-
tem. For easy reference, the Cartesian field equations
for a static VMD and HMD source in an unbounded
ocean (no sea surface) are listed in Table 8.1. Although
static magnetic sources produce no electric fields, static
VED and HED dipoles create both magnetic and elec-
tric fields as given in Table 8.2 for an unbounded
ocean.

If the sea surface interface is now reintroduced at
z D 0 (Fig. 8.10), the magnetic field equations for the
static VMD and HMD sources in Table 8.1 remain
unchanged. These equations are valid whether the ob-
servation point is in water, air, or sea bottom. The
reason is that all three media are nonmagnetic with
a permeability equal to that of free-space.

The jump in conductivity at the ocean’s surface
does, however, affect both the electric and magnetic
fields from submerged electric dipoles. Because the air
is nonconducting, the electric current in the conducting
seawater will stay confined within it and will not flow
across the surface interface. The sea surface is equiv-
alent to an ideal reflector of static electric current. In
addition, the discontinuity in the electric current across
the surface interface produces additional components of
magnetic fields.

Mathematically, the effects of the sea surface on
the in-water static electric fields is equivalent to plac-
ing images of the VED and HED directly above the
water at a distance equal to the depth of the sources.
The electric fields produced by these images are listed
in Table 8.3 [8.12]. To get the total in-water static
electric fields for the deep ocean case, the VED and
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Table 8.1 Static VMD and HMD sources located at (0, 0, h) in an unbounded ocean

Ex Ey Ez Hx Hy Hz

VMD 0 0 0
3mzx.z� h/

4�r5
3mzy.z� h/

4�r5
mz.2.z� h/2 � x2 � y2/

4�r5

HMD 0 0 0
mx.2x2 � y2 � .z� h/2/

4�r5
3mxxy

4�r5
3mxx.z� h/

4�r5

where r D p
x2 C y2 C .z� h/2

Table 8.2 Static VED and HED sources located at (0, 0, h) in an unbounded ocean

Ex Ey Ez Hx Hy Hz

VED
3pzx.z� h/

4��r5
3pzy.z� h/

4��r5
pz.2.z� h/2 � x2 � y2/

4��r5
�pzy

4�r3
pzx

4�r3
0

HED
px.2x2 � y2 � .z� h/2/

4��r5
3pxxy

4��r5
3pxx.z� h/

4��r5
0

�px.z� h/

4�r3
pxy

4�r3

where r D p
x2 C y2 C .z� h/2 and � is the seawater conductivity

Table 8.3 In-water electric fields produced by the above-water images of submerged static VED and HED sources
(after [8.12])

Ex Ey Ez

VED
�3pzx.zC h/

4��r5i

�3pzy.zC h/

4��r5i

�pz.2.zC h/2 � x2 � y2/

4��r5i

HED
px.2x2 � y2 � .zC h/2/

4��r5i

3pxxy

4��r5i

3pxx.zC h/

4��r5i

where ri D p
x2 C y2 C .zC h/2 and � is the seawater conductivity

Table 8.4 In-water magnetic fields produced by the above-water images of submerged static VED and HED sources
(after [8.12])

Hx Hy Hz

VED
pzy

4�r3i

�pzx

4�r3i
0

HED
�pxxy

4��4

"
2� .zC h/.2.zC h/2 C 3�2/

r3i

#
px
4�

(
x2

�4

"
2� .zC h/.2.zC h/2 C 3�2/

r3i

#
� 1

r2i C .zC h/ri

)
0

where ri D p
x2 C y2 C .zC h/2 and � D p

x2 C y2

Table 8.5 In-air electric fields from static VED and HED sources submerged at a depth h in a deep ocean (after [8.12])

Ex Ey Ez

VED
3pzx.z� h/

2��r5
3pzy.z� h/

2��r5
pz.2.z� h/2 � x2 � y2/

2��r5

HED
px.2x2 � y2 � .z� h/2/

2��r5
3pxxy

2��r5
3pxx.z� h/

2��r5

where r D p
x2 C y2 C .z� h/2 and � is the seawater conductivity. Note: A negative value for z is used for in-air computations

HED equations in Table 8.3 must be added to their
corresponding components from Table 8.2. Like-
wise, the magnetic field formulations produced by the

jump in the surface current density has been com-
puted in [8.12], and are listed in Table 8.4. Adding the
equations in Table 8.4 to their corresponding magnetic
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Table 8.6 In-air magnetic fields from static VED and HED sources submerged at a depth h in a deep ocean (after [8.12])

Hx Hy Hz

VED 0 0 0

HED
�pzxy

4��4

�
2� .h� z/.2.h� z/2 C 3�2/

r3

� �pz
4�

�
.z� h/

r3
C x2

�4

�
2� .h� z/.2.h� z/2 C 3�2/

r3

�
� 1

r2 C .h� z/r



pxy

4�r3

where r D p
x2 C y2 C .z� h/2 Note: A negative value for z is used for in-air computations

Table 8.7 Electric field subsurface-to-subsurface propagation formulas for the quasi-static range, when j�0�j � 1 �
j��j and � � h and z

Ex Ey Ez

VED � pzx

2���3
�2
0

�
e�”.zCh/ pzy

2���3
�2
0

�
e�”.zCh/ pz

2���3
�2
0

�2
e�”.zCh/

VMD
3mzy

2���5
e�”.zCh/ � 3mzx

2���5
e�”.zCh/ 0

HED
px

2���5
.x2 � 2y2/e�”.zCh/ 3pxxy

2���5
e�”.zCh/ pxx

2���3
�2
0

�2
e�”.zCh/

HMD � 3mxxy�

2���5
e�”.zCh/ � mx�

2���5
.y2 � 2x2/e�”.zCh/ mxy�2

0

2���3
e�”.zCh/

where � D p
x2 C y2 and � is the seawater conductivity

Table 8.8 Magnetic field subsurface-to-subsurface propagation formulas for the quasi-static range, when j�0�j � 1 �
j��j and � � h and z

Hx Hy Hz

VED � pzy

2��3
�2
0

�2
e�”.zCh/ � pzx

2��3
�2
0

�2
e�”.zCh/ 0

VMD � 3mzx

2���5
e�”.zCh/ � 3mzy

2���5
e�”.zCh/ � 9mz

2��2�5
e�”.zCh/

HED
3pxxy

2���5
e�”.zCh/ � px

2���5
.x2 � 2y2/e�”.zCh/ 3pxy

2��2�5
e�”.zCh/

HMD � mx

2��5
.y2 � 2x2/e�”.zCh/ 3mxxy

2��5
e�”.zCh/ 3mxx

2���5
e�”.zCh/

where � D p
x2 C y2 and � is the seawater conductivity.

components in Table 8.2 yields the total in-water mag-
netic field for VED and HED sources submerged in
a deep ocean.

For completeness, the equations for the total in-air
electric fields from static VED and HED sources sub-
merged in a deep ocean are listed in Table 8.5. The total
in-air magnetic fields for the same case are found in Ta-
ble 8.6. Tables 8.5 and 8.6 are the total in-air equations
and are not added to any others. It should be noted that
a negative value for z is to be used when computing the
fields above the ocean surface. The deep ocean equa-
tions in Tables 8.3–8.6 were reduced from those found
in [8.12] for a shallow sea.

The equations in Tables 8.1 through 8.6 apply for
the special case where the sources are static or quasi-

DC. They are valid for frequencies that correspond to
seawater skin-depths that are large compared to the dis-
tance between the source and observation point, and
their depths below the surface. At the other extreme,
analytic equations have been formulated for the spe-
cial case where the separation between the source and
observation point is much greater than a seawater skin-
depth and their depths. These equations were derived
by taking the asymptotic limits for the Sommerfeld
formulations.

The condition that the submerged source is many
seawater skin-depths from the in-water observation
point is equivalent to 1 � j��j. In addition, if � � h
and z and the quasi-static range applies, j�0�j � 1,
the subsurface-to-subsurface electric field equations in
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Table 8.7 can be used for the four dipole types. The
corresponding subsurface-to-subsurface magnetic field
equations are listed in Table 8.8. These Cartesian for-
mulations are re-arrangements of the cylindrical forms
found in Table 3–16 of [8.13].

The propagation path described by the formulations
in Tables 8.7 and 8.8 is quite unique. Since 1 � j��j,
the fields that travel directly from the source to the
observation point or reflected off the sea-surface are
significantly attenuated. Instead, the dominated propa-
gation path is vertical to the surface, along the water–air
interface, and then directly down to the observation

point. The fields are attenuated in this up-over-and-
down path only over the vertical distances between the
source and surface, and from the surface to the observa-
tion point.

There are many other special cases in which an-
alytic propagation equations can be used instead of
numerically evaluating the Sommerfeld formulations.
Many of the asymptotic conditions has been tabulated
in [8.13]. In addition, the region between the quasi-DC
and asymptotic conditions have been subdivided into
ranges for which analytic formulations are been pro-
duced using modified image theory [8.14].

8.8 Electromagnetic Propagation in the Ocean at Optical Wavelengths

The electromagnetic constitutive parameters of sea-
water are not constant at microwave frequencies and
higher. Indeed, if the nominal seawater ELF consti-
tutive parameters are used to determine the electro-
magnetic attenuation at an optical frequency of visible
blue–green light (6�1014 Hz), a value of 731 dB=m
is computed. And yet, experimental measurements of
blue–green light attenuation in clear seawater shows
only 0:15 dB=m [8.15]. Obviously, the interaction of
electromagnetic waves with the ocean at optical wave-
lengths is quite different than at low frequencies.

Although the physics of light transmission through
seawater is quite involved, the discussion here will be
at the engineering level, and confined to the apparent
optical properties (AOP) of the ocean. The AOP for
seawater is applicable to many problems in ocean engi-
neering and, with the appropriate equipment, they can
be measured in situ. Here, the in air optical wavelengths
of interest cover the visible range from about 400 nm for
violet colors to 700 nm for red.

The primary electromagnetic parameter of inter-
est at optical wavelengths is the specular irradiance.
The specular irradiance, designated by the term E�0,
is the band-limited power per unit area, with units of
Wm�2 nm�1. This is a measure of the scalar power
density of an electromagnetic wave. The scalar power
density or specular irradiance is proportional to the
square of the electric or magnetic field presented in the
previous sections of this chapter.

An important ocean engineering AOP is the attenu-
ation coefficient for the specular irradiance as the light
propagates through the sea. The equation describing the
attenuation of optical irradiance from point r1 to r is
given by

E�0.r/ D E�0.r1/e
�K�.r�r1/ ; (8.137)

where K� is the diffuse attenuation coefficient, which
is a function of wavelength. Equation (8.137) is similar

to that of a plane wave given in Sect. 8.3, and in fact,
does not account for any spatial spreading of the light
energy. The major difference is that (8.134) describes
the attenuation of power instead of field amplitude, and
the attenuation coefficient K� is quite different from the
ELF values given previously for the field attenuation
constant ˛.

The optical diffuse attenuation coefficient is a func-
tion of wavelength, and is comprised of two major
components that contribute to its overall value: absorp-
tion and scattering. Although there is absorption of light
due to the intrinsic or inherent properties of clear sea-
water, other optical absorptionmechanisms found in the
ocean include organic materials such as chlorophylls
in phytoplankton and dissolved organic compounds
called yellow substance or Gelbstoffe. In addition, the
small wavelength of visible light will cause it to scat-
ter off organic and inorganic particulates suspended in
the water, adding to its attenuation. As would be ex-
pected, the optical attenuation coefficient varies with

200 300 400 500 600 700 800

Diffuse attenuation (m–1)

Wavelength λ (nm)

10

1

0.1

0.01

Fig. 8.11 Diffuse attenuation coefficient for clear seawater (af-
ter [8.16])
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Fig. 8.12 The global distri-
bution of Jerlov water types
(after [8.1])

depth and between different regions of the world’s
oceans.

Laboratory measurements of the attenuation, ab-
sorption, and scattering coefficients of pure or clear sea-
water have been reviewed and tabulated [8.16]. The dif-
fuse attenuation coefficients in pure seawater are plotted
in Fig. 8.11, and includes water absorption and a small
amount of scattering from sea salts. The estimated accu-
racy of this data is reported to be within C25 and �5%
for wavelengths between 300 and 480 nm, and 10 and
5% from 480 to 800 nm. Below 300 nm the data is con-
sidered to be no better than an educated estimate [8.16].
The region of minimum attenuation between 400 and
500 nm is called the blue–green window, and has been
the subject of many investigations to engineer underwa-
ter communication and detection systems [8.15, 18].

The seminal work of Jerlov produced a classifica-
tion method for characterizing the optical properties of
the world’s oceans. Based on the measured irradiance

Clear seawater
Water typ I
Water typ IA
Water typ IB
Water typ II
Water typ III
Water typ 1

200 300 400 500 600 700 800

Downward diffuse attenuation coefficient (m–1)

Wavelength λ (nm)

10

1

0.1

0.01

Fig. 8.13 Diffuse attenuation coefficient for Jerlov water types (af-
ter [8.17])

transmissivity in the upper 10m of the water, the oceans
are categorized as Type I to III, with a subsequent sub-
division of Type I into IA and IB. Coastal waters are
divided into types ranging from 1 to 9. These water clar-
ity classifications account not only for the absorption
and scattering of pure seawater, but also included the
effects of the suspended organic and inorganic particles
as described above. A map of the global distribution of
Jerlov water types is shown in Fig. 8.12 [8.1, p. 584].

The downward looking diffuse attenuation coeffi-
cients for some of the Jerlov water types have been
measured and tabulated [8.17]. The attenuation coeffi-
cients for ocean water Types I though III and coastal
Type 1 are plotted in Fig. 8.13. As expected, the attenua-
tion coefficient increases as water clarity decrease, with
the minimum in the optical window moving toward
longer wavelengths. The higher attenuation of light in
natural seawaters, especially for coastal regions, limits
the useful ranges of communication and detection sys-
tems that are based on blue–green lasers.

Although the dielectric constant of seawater is ap-
proximately 80 up through the ELF band, its value at
an optical wavelength of 700 nm is only 1:79 at 20 ıC,
and increases to only 1:83 for 400nm at 4 ıC at the
other extreme [8.1, pp. 532–539]. A nominal value of
1:8 gives a propagation constant of ˇ � 1:4�107 rad=m
at 450 nm (20 ıC), while the equivalent field attenua-
tion constant for pure seawater is estimated from K�

to be ˛ � 0:008Np=m at this wavelength. Therefore,
seawater can be considered a dielectric at optical wave-
lengths, with an average index of refraction of n � 4=3
(n D p

"w/. The index of refraction is the ratio of the
speed of light in air, 3�108 m=s, to that in seawater,
2:24�108 m=s.

Since seawater can be treated as a dielectric at opti-
cal wavelengths, the expressions for the field reflection
and transmission coefficients given previously for fresh
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water can also be used for the ocean. The only differ-
ence is that they must be squared before applying them
to irradiance, which is power. The power reflection co-
efficients for perpendicular R? and parallel polarization
R

k
can be obtained from (8.59) and (8.71), giving

R? D � 2
?

D tan2.�i � �t/

tan2.�i C �t/
; (8.138)

R
k

D � 2
k

D sin2.�i � �t/

sin2.�i C �t/
; (8.139)

and

�r D �i ; (8.140a)

sin �i D n sin �t : (8.140b)

where all terms have been defined previously. The
Brewster angle can be computed directly from
tan �B D n. These equations are valid for a smooth sur-
face. A discussion of optical scattering from a rough
ocean surface produced by wind waves can be found
in [8.1, p. 528].

The maximum refraction angle of light into the
ocean is limited. If the incidence angle of light entering
the flat surface of the sea approaches the grazing angle
(�i D 90ı), then from (8.140b) the transmission angle
of the refracted light is computed to be approximately
48:6ı. This means that all images from the entire hemi-
sphere above water is funneled into an upward looking
cone whose sides are 48:6ı from the vertical. Any im-
age that is seen at an angle greater than this could only
be coming from a submerged object.
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