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4. Mechanics of Ocean Waves

James M. Kaihatu, Palaniswamy Ananthakrishnan

This chapter reviews mechanics of water waves and
wave–body interactions pertaining to ocean and
coastal engineering based on linear and weakly
nonlinear wave theories. Numerical methods
based on Green’s theorem and mixed Eulerian–
Lagrangian formulation for fully nonlinear wave
and wave–body interaction problems are also
discussed. The discussion also covers methods to
determine the wave forces on fixed and floating
structures, including the viscous drag force.
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4.1 Ocean Surface Waves

The interface between the atmosphere and water, when
disturbed, results in the generation of surface waves.
In an open domain, the disturbance has to continue
for the waves to persist as the propagating waves ra-
diate energy. There is a limit to the energy contained
by waves; once exceeded, wave breaking occurs, at
which point energy is dissipated by turbulence during
the breaking process. The limit depends on parameters
such as wave height to wave length (or steepness) and
wave height to water depth ratios. Wave instabilities or
damping are also governed by air flow and separation,
surface tension and surfactant effects, and instability of

the free surface boundary layers. The physics of wa-
ter waves is unique in many respects compared to other
wave motions in fluids because of the dispersive nature
of the water waves. Water wave problems are among
the earliest topics attempted in applied mathematics,
as illustrated, for example, by the classical Cauchy–
Poisson problem on transient waves, tackled as early as
in 1815 [4.1] and Michell’s theory of ship wave resis-
tance developed in 1898 [4.2, 3]. A historical account
of the development of classical water wave theory is
given in [4.1]. Today, from an engineering viewpoint,
understanding the properties of waves and wave–body
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interactions is essential for efficient design and perfor-
mance prediction of surface ships, offshore platforms,
coastal structures, beach erosion mitigation measures,
and beach fill configurations.

This chapter of the Handbook deals with the me-
chanics of surface waves, in particular:

1. Kinematic properties of surface waves
2. Weakly nonlinear deep water waves
3. Transformation of waves as they approach land

from the deep ocean
4. Shallow water waves
5. Evolution of deep and shallow water waves
6. Breaking waves

7. Nearshore long wave generation, and
8. Wave forces on floating and fixed ocean structure.

Linear, weakly nonlinear, and fully nonlinear the-
ories, and results on above topics are reviewed. The
formulation of nonlinear wave theories in deep and
shallow water are outlined, including the spectral evo-
lution of these waves. Methods to solve wave–body
interaction problems and to determine wave forces are
discussed. The subject is presented in a manner so that
it can serve as a reference for practicing engineers and
researchers in ocean engineering. In each section of the
chapter, an overview of the mathematical theory and
formulations is given along with references for details.

4.2 Wave Theories

With exact equations governing water waves, wave
transformations and wave–body interactions being non-
linear and involving arbitrary boundaries which make
analysis difficult, numerous approximate theories have
been developed over the years. These include lin-
ear Airy wave theory, Stokes weakly nonlinear the-
ory, Boussinesq weakly nonlinear long wave theory
and Korteweg–de Vries (KdV) theory for shallow
water waves. Recent developments include compu-
tational methods to solve the fully nonlinear wave
problem with the notable one by Longuet-Higgins and
Cokelet based on mixed Eulerian–Lagrangian formula-
tion [4.4].

Table 4.1 Key wave and flow variables

A wave amplitude
Cg wave group speed
Cp wave phase speed
g acceleration of gravity
h water depth
H wave height
k wave number
L wave length
p pressure field
s surface tension
t time variable
T wave period
u velocity field
.x; y; z/ Inertial earth-fixed coordinates against g with z D 0

on the calm surface
� specific weight of water
� wave elevation
� velocity potential
� water density
! wave radian frequency
˝ vorticity

The above theories are based on the potential flow
formulation, which assumes water to be inviscid and
flow irrotational. The wave boundary conditions are,
however, still nonlinear; they may be linearized for the
case of small amplitude waves as in Airy’s water wave
theory. Despite the idealization and assumptions in-
volved, linear theory captures many properties of wave
phenomena and measures wave effects quite reasonably
in most cases. Of course, for practical engineering ap-
plications, knowledge of large amplitude waves, includ-
ing transformation over rapidly changing bathymetry, is
essential; here linear theory has limited application and
one has to consider weakly and fully nonlinear wave
models. This chapter reviews these theories and the cor-
responding wave properties.

4.2.1 Potential Flow Formulation

We begin with a brief overview of the mathematical
formulation of the water wave problem. The notations
used in this chapter for key wave and flow variables are
shown in Table 4.1. Additional notations used locally in
the text are explained in the context.

A typical wave–body interaction and wave transfor-
mation problem encountered in ocean engineering and
considered in this chapter is illustrated in Fig. 4.1. The
body SB may either be stationary or moving with ve-
locity U (translation) and ˝ (rotational), resulting in
a normal velocity Vn D U � OnC˝ � .r� On/ with r denot-
ing the position vector from the axis of rotation.

Neglecting effect of viscosity and consequently as-
suming the flow to be irrotational (i. e., ! � .r � u D
0)), one can define the flow in terms of velocity poten-
tial so that

u D r� : (4.1)
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Fig. 4.1 Illustration of wave–body
interaction and wave transformation
over changing bathymetry

For incompressible fluid, per equation of continuity,

r � u D 0 ; (4.2)

which in terms of � is the Laplace equation

r2� D 0 : (4.3)

With u D r� in the Euler equation motion and through
spatial integration one obtains the following Euler’s in-
tegral for the pressure

p D ��gz� �@�
@t

� �

2
jr�j2; (4.4)

with the first term on the right-hand side representing
the static pressure and the last two terms denoting the
dynamic pressure.

The bottom and body boundary conditions are the
no-flux conditions given by

@�

@n
D 0; on the bottomB ; (4.5)

and

@�

@n
D Vn; on the body surface SB : (4.6)

On the free surface, we have the following two
conditions, one based on the kinematics of free sur-
face motion and the other on the continuity of pressure
across the free surface

@�

@t
C @�

@x

@�

@x
C @�

@y

@�

@y
D @�

@z
on z D � ; (4.7)

@�

@t
C 1

2
jr�j2 C g�D 0; on z D � : (4.8)

The former is called the free surface kinematic condi-
tion and the latter the free surface dynamic condition.
Both are specified on z D �, which in itself is also an un-
known and to be solved as a part of the problem. These
conditions make the problem nonlinear and, therefore,
difficult to solve.

For small amplitude waves (i. e., one in which the
wave amplitude is much smaller than the wave length),
the free surface boundary conditions can be linearized
as

@�

@t
C @�

@z
on z D 0 ; (4.9)

@�

@t
C g�D 0 on z D 0 : (4.10)

Eliminating � from the above two conditions, one ob-
tains the following linearized combined free surface
condition

@2�

@t2
C g

@�

@z
D 0 on z D 0 : (4.11)

In the case of spatially periodic waves with
wave length L in, say, x direction, �.x; y; z; t/D
�.x˙ nL; y; z; t/ and �.x; y; t/D �.x˙ nL; y; t/ and
for time harmonic case with period T , �.x; y; z; t/D
�.x; y; z; t˙ nT/ and �.x; y; t/D �.x; y; t˙ nT/ where
n denotes positive integer. The wave length L and
wave period T are related by the dispersion relation as
discussed later in the chapter.
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4.3 Properties of Small Amplitude Gravity Waves

In the absence of a body in the fluid, a periodic two-
dimensional (long crested) progressive small amplitude
(linear) wave solution to the linearized problem (as for-
mulated above) can be written as

� D H

2

g

!

cosh k.zC h/

cosh kh
sin .kx�!t/ ;

�D H

2
cos .kx�!t/ ; (4.12)

where k � 2�=L denotes the wave number, H the wave
height (which the vertical distance between the crest
and trough), and h the mean water depth (taken here to
be constant). In the case of a deep water wave, i. e., in
the limit kh ! 1 with z 2 Œ0;�h� the above solution
becomes

� D H

2

g

!
ekz sin .kx�!t/ ;

�D H

2
cos .kx�!t/ : (4.13)

For the above velocity potential, the velocity field (u D
r�) is given by

u D H

2
gk!

cosh k.zC h/

cosh kh
cos .kx�!t/ ;

v D 0 ;

w D H

2
gk!

sinh k.zC h/

cosh kh
sin .kx�!t/ :

From above expressions one finds that the horizontal
velocity field is in phase with the wave elevation. Its
slip on the bottom is to be interpreted as the velocity at
the outer edge of a bottom boundary layer. Using the
Euler integral one can obtain the following expression
for the pressure

p D ��gzC �g
H

2

cosh k.zC h/

cosh kh
cos .kx�!t/

D ��gzC �g�
cosh k.zC h/

cosh kh
:

In the case of shallow water waves – i. e., for kh ! 0
with z 2 Œ0;�h� (or approximately, kh 	 �=10) –, the
expression for pressure reduces to

p D ��g.z� �/:
The above expression looks very similar to the familiar
hydrostatic pressure equation for homogeneous water.
The static pressure corresponds to the depth measured
from the calm surface while total pressure to the depth
measured from the actual free surface with the differ-
ence contributes to the dynamic pressure.

4.3.1 Linear Dispersion Relation

As per the linear solution obtained above, the wave
number k � 2�=L and wave frequency ! � 2�=T are
related by the dispersion relation

!2 D gk tanh kh ; (4.14)

which approximates to

!2 D gk; for kh 
 � ; (4.15)

and to

!2 D gk2h; for kh 	 �=10 : (4.16)

The dispersion relation thus provides a basis for defin-
ing deep water, shallow water, and intermediate waves.
Waves satisfying kh 
 � , which is the same as h 
 L=2,
are referred to as deep water (or short) waves; that satis-
fying kh 	 �=10, which is same as L 
 20h, are referred
to as shallow water (or long) waves and that in between
(i. e., �=10< kh< �) as the intermediate waves.

4.3.2 Phase Speed

The phase speed (also known as the wave speed or wave
celerity) for linear waves becomes

Cp � L

T
D !

k
D
r

g

k
tanh kh ; (4.17)

which reduces to

Cp D
r

g

k
tanh kh; for �=10< kh< �

(intermediate waves)

D
r

g

k
; for kh 
 �

(deep water or short waves)

Dp
gh; for kh 	 �=10

(shallow water or long waves) : (4.18)

As can be observed in the above expressions, longer
deep water waves travel faster. In the case of shallow
water waves the wave speed depends only on the local
depth; the phase speed decreases with decreasing depth.

4.3.3 Group Speed

Often it is the group speed that govern many important
wave properties, including the speed of energy propa-
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gation, among others. The group speed is defined as

Cg � d!

dk
; (4.19)

which in view of the dispersion relation for linear grav-
ity waves become

Cg D !

2k

�
1C 2kh

sinh 2kh

�
; for �=10< kh < �

D !

2k
D Cp

2
D 1

2

r
g

k
; for kh 
 �

(deep water waves)

D !

k
D Cp Dp

gh; for kh 	 �=10

(shallow water waves) :

(4.20)

So, for linear gravity waves, except in the limit of shal-
low water (long) waves, the group speed is different
from the phase speed, and this fact has a bearing on
some unique properties of shallow water waves to be
discussed in later sections.

4.3.4 Amplitude Modulation
of Water Waves

Awave consisting of two periodic progressive waves of
equal amplitude and nearly equal wave number, and be-
cause of the continuous dispersion relation nearly equal
frequency, will undergo an amplitude modulation with
the modulation itself propagating as a wave but at the
group speed rather than the phase speed. In other words,

�D �1 C �2

D H

2
cos .k1x�!1t/C H

2
cos .k2x�!2t/ ;

where k1 D kC •k

2
; k2 D k� •k

2
;

D H cos .•k x� •! t/ cos .kx�!t/;
!1 D !C •!

2
; !2 D !� •!

2
;

D A cos .kx�!t/;
where the amplitude A � H cos .•k x� •! t/ :

(4.21)

The amplitude envelope propagates at speed •!=•k and
in the limit of •!, •k ! 0, at the group speed Cg! To
an observer moving in the direction of wave propaga-
tion, the amplitude will appear stationary (constant);
however, the observer will not be in phase with the
wave, unless if it is a shallow water wave in which case

Cg D Cp. Thus we observe that in the case of amplitude-
modulated waves, the wave amplitude is conserved at
the group speed.

4.3.5 Average Wave Energy Density

Through straightforward integration and averaging over
a wave period, it can be shown that the average wave
potential energy in a water column of unit cross area is
given by

PE D 1

16
�gH2 :

The word density in the present context corresponds
to the unit area of the cross-section of the water col-
umn. Similarly, using the expressions for velocity and
the definition of kinetic energy one can show that the
average wave kinetic energy density is given by

KE D 1

16
�gH2 ;

and, therefore, the average wave mechanical energy
density

NE � PE CKE D 1

8
�gH2 :

To particularly note in the above expression is the fact
that the wave energy is proportional to the square of the
wave height.

4.3.6 Propagation of Wave Energy

Using the work-energy theorem, it can be shown that
the average amount of energy propagating across a sur-
face of unit crest length is given by

NF D NECg ;

meaning that the wave energy propagates at the group
speed! For example, in the case of a wave front advanc-
ing in deep water the waves will appear to disappear at
the wave front because Cp D 2Cg; in other words, prop-
agation of energy cannot keep up with phase to sustain
the wave. The above expression is quite useful to es-
timate the power required to generate waves and the
wave resistance of vehicles moving over a free surface
and wave energy conversion. In the case of confluence
or divergence of waves, as due to bottom bathymetry or
power take off, one has to multiply the above expression
by the respective crest widths. The reader may refer to
the topic of the antenna effect in the chapter on wave
energy conversion of this Handbook for more on this
aspect.
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4.3.7 Water Particle Trajectory

For a propagating wave with velocity known (from
above) one can determine the trajectory of water par-
ticles through time integration. For small amplitude
waves, the trajectory is elliptical and closed

.X �Xo/
2

A2
C .Z �Zo/2

B2
D 1 ;

where .Xo; Zo/ denote the coordinates of the center of
the ellipse, A the major semi-axis

A � H

2

gk

!2

cosh k.Zo C h/

cosh kh
;

and B the minor semi-axis

B � H

2

gk

!2

sinh k.Zo C h/

cosh kh
:

As to be expected, near the bottom the particle will os-
cillate back and forth parallel to the bottom. In the case
of deep water waves (kh ! 1, or for practical calcula-
tions kh 
 �), above expressions for semi-axes reduce
to

A D B D H

2

gk

!2
ekZo D H

2
ekZo :

In other words, the trajectory is a circle for small ampli-
tude deep water waves. As the particle paths are closed,
the average mass transport is zero. However, in the case
of finite amplitude waves, this is not the case. In the
case of finite amplitudewaves, the trajectory is not quite
closed, meaning that a particle will not return to the
original position after one wave period but to a point
slightly ahead of the original point. This is referred to
as the Stokes drift. More on finite amplitude wave prop-
erties are given in later sections of this chapter.

4.3.8 Spatio-Temporal Evolution of Waves

Consider the generation of waves by (for example)
a mudslide into water or by a seismic activity and the re-
sulting waves propagating over water of varying depth.
Here both wave numbers and frequency will vary with
space and time. Let the direction of the wave propa-
gation be along the x direction. Here the wave number
and frequency may vary both in x and in time. In other
words, the phase function will be

� D .k.x; t/x�!.x; t/t/ :
With the so-called slowly varying wave assumption, the
wave number and wave frequency can be written as

k � @�

@x
I ! � �@�

@t
:

Cross-differentiating the above expressions we obtain

@k

@t
C @!

@x
D @2‚

@x@t
� @2‚

@t@x
D 0 : (4.22)

In the special case of the steady-state limit, i. e.,
k D k.x/ and ! D !.x/, from above we find ! to be
constant. Thus, in the case of steady-state evolution
of waves, the wave number (hence wave length) may
change spatially in x, but the frequency will be the same
everywhere.

The above equation for k and ! can be re-written as

@k

@t
CCg

@k

@x
D 0; whereCg D Group Speed D d!

dk
:

(4.23)

The above equation is called the wave number conser-
vation equation; its solution implies that k will appear
constant to an observer moving at the group speed. One
could draw several other important conclusions using
this equation. For example, assume waves are propa-
gating in deep water (i. e., so that kh 
 �). At a fixed
field point away from the wave source, as per the wave
number conservation equation, the wave frequency and
wave number will increase with respect to time, mean-
ing that as time progresses shorter and shorter waves
will reach the field point. To deduce this fact from the
wave number conservation equation, consider the time
that will be taken by a wave of wave number k gener-
ated at the source to reach the field point

t D d

Cg
! Cg D d

t
;

where d denotes the distance between the source and the
field point. Since Cg D 0:5 g=! for deep water gravity
waves, the above becomes

1

2

g

!
D d

t
! ! D 1

2

gt

d
:

In other words, the frequency of waves reaching the
field point increases as the time increases. With !2 D
gk for deep water waves, the above equation can be
written as

k D 1

4

gt2

d2
;

meaning that the number of waves reaching the field
point will also increase with time.
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4.3.9 Shoaling and Refraction of Waves

One can generalize the derivations and findings of the
previous section to allowing the waves to propagate
along any arbitrary direction. In the case of slowly vary-
ing, small amplitude steady-state waves approaching an
ideal coast (straight and long shore line with all bottom
bathymetry contours parallel to the shore line) the di-
rection of wave propagation is governed by Snell’s law

sin �

Cp
D constant ; (4.24)

where � denotes the local angle of wave incidence mea-
sured from the shore normal, with � D 0 corresponding
to crests parallel to the shore and � D 90ı to crests
normal to the shore. The change of direction of wave
propagation is called wave refraction. As one may recall
from classical physics, the path of waves as predicted
by the above Snell’s law corresponds to the shortest
time of travel between two points in a variable velocity
field. If the velocity is constant, then � will also be con-
stant, meaning that the path of wave propagation will be
a straight line.

As the waves approach the shore with depth h ! 0,
Cp ! p

gh ! 0, then � should also ! 0 for the ratio
sin�
Cp

to remain constant; in other words, the wave rays
will be normal to the shoreline irrespective of the angle
of incidence of the wave while offshore.

Note that in the case of slowly varying steady-state
waves, the wave frequency will remain constant and the
wave number evolve satisfying the dispersion relation

gk tanh kh D constant :

Assuming no wave breaking (which would enhance
dissipation through turbulence) and with conservation
of mechanical energy, one can show that in the case of
a slowly varying, steady-state, nonbreaking wave ap-
proaching an ideal shore, the wave height will vary,
satisfying

H
p
cos �

p
Cg D constant ! H D constantp

Cg cos �
:

(4.25)

4.3.10 Closing Remarks to the Section

The linear (Airy) wave theory enables us to understand
the basic and unique properties of surface waves. There
are several books that deal with the linear theory of wa-
ter waves, which the reader may refer to for details.
These include [4.5–9]. The linear potential flow theory
will hold good only for small amplitude waves. For fi-
nite and large amplitude waves, one has to use weakly
and fully nonlinear wave theories, as reviewed in the
following sections.

4.4 Weakly Nonlinear Deep Water Wave Theories

While linear theory has proved to be quite useful, it
is often insufficient to investigate many of the de-
tails of wave propagation. Bulk properties of waves
(some measure of wave height) are generally well pre-
dicted by linear theory in many instances. However,
the small amplitude assumption inherent in linear wave
theory is often invalidated (when waves approach their
breaking condition), so nonlinear wave theory becomes
essential.

The nonlinearity in water wave theory arises from
the treatment of the surface boundary conditions. The
kinematic and dynamic free surface boundary condi-
tions are both nonlinear (they involve the products of
the dependent variables � and �) and apply at a sur-
face whose position is unknown a priori, as mentioned
above. To move beyond simple linearization of the
free surface condition (which involves neglecting the
nonlinear terms and applying the boundary conditions
on the surface z D 0), successive approximations to
the nonlinear boundary conditions are required. This

requires the establishment of physical scales, which be-
come the basis of these approximations.

We first discuss deep water nonlinear wave theory,
or Stokes wave theory (Stokes [4.10]). In deep water,
the relative depth kh (where k is the wave number and h
the water depth) is large. This can be used to adjust the
velocity potential toward its deep water asymptote

� D H

2

g

!

cosh k.zC h/

cosh kh
sin.kx�!t/� gH

2!
�O.1/ ;

(4.26)

which reflects the observation that the hyperbolic cosine
term approaches 1 as kh becomes large. The particle
velocities u and w similarly become

u D @�

@x
D gkH

2!

cosh k.zC h/

cosh kh
cos.kx�!t/

� gka

!
�O.1/D g�

!
�O.1/ ;

(4.27)
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w D @�

@z
D gkH

2!

sinh k.zC h/

cosh kh
sin.kx�!t/

� gka

!
�O.1/D g�

!
�O.1/ ;

(4.28)

where � D ka and where the amplitude a D H=2. It is
evident that both u and w are of the same scale of vari-
ation, and as such there is no separation between the
horizontal and vertical length scales. This allows both
the horizontal and vertical scales to be the same. The
time variable is scaled using the deep water approxi-
mation to the linear dispersion relation. These scales
are then applied to the water wave boundary value
problem. While the governing equation and bottom
boundary conditions remain unchanged, the free sur-
face boundary conditions are transformed to reflect this
new scaling. The dynamic free surface boundary condi-
tion is now

g�C @�

@t
C �

2

"�
@�

@x

�2

C
�
@�

@z

�2
#

D 0 on z D �� ;

(4.29)

and the kinematic free surface boundary condition is

@�

@t
� @�

@z
C �

@�

@x

@�

@x
D 0 on z D �� ; (4.30)

(It is noted that these boundary conditions are expressed
in dimensional form, with the small parameter � modi-
fying the free surface elevation variable �). We further
use Taylor series expansion about z D 0, which gener-
ates additional powers of �. The dynamic free surface
boundary condition would then become

g�C @�

@t
C �

2

"�
@�

@x

�2

C
�
@�

@z

�2
#

C ��
@

@z

(
g�C @�

@t
C �

2

"�
@�

@x

�2

C
�
@�

@z

�2
#)

C : : : on z D 0 ;

(4.31)

and the kinematic free surface boundary condition

@�

@t
� @�

@z
C �

@�

@x

@�

@x

C ��
@

@z

�
@�

@t
� @�

@z
C �

@�

@x

@�

@x

�
C : : : on z D 0 :

(4.32)

Finally the dependent variables � and � are ex-
panded in a power series in terms of the parameter �

� D
1X
nD1

�n�1�n D �1 C ��2 C : : : ; (4.33)

�D
1X
nD1

�n�1�n D �1 C ��2 C : : : ; (4.34)

and substituted into the boundary value problem. The
problem can then be separated into orders and solved
sequentially. The order of the theory is denoted by the
parameter �; second-order Stokes theory retains terms
up to O.�/, third-order Stokes theory up to O.�2/, etc.
The solutions at each higher order are dependent on
lower-order solutions.

4.4.1 Properties of Weakly Nonlinear
Deep Water Waves

The solution for � at second order in � can be found to
be

� D KxC gH

2!

cosh k.hC z/

cosh kh
sin.kx�!t/

C 3!H2

32 sinh4 kh
cosh 2k.hC z/ sin 2.kx�!t/ ;

(4.35)

where Kx D U is a mean current that accounts for any
nonperiodic components of the solution (this is quanti-
fied below), and

�D H

2
cos.kx�!t/

C kH2 cosh kh.2 cosh2 khC 1/

16 sinh3 kh
cos 2.kx�!t/

� kH2

8 sinh 2kh
:

(4.36)

It can be seen that the free surface elevation is com-
prised of a fundamental (or first harmonic) oscillating
at a frequency !, a second harmonic component oscil-
lating at a frequency 2!, and a mean set down. The two
oscillating components are in phase at the crests and
180ı out of phase at the troughs; this has the effect of
sharpening the crests and flattening the troughs of the
combined Stokes wave. The mean set down arises due
to the choice of the Bernoulli constant to equal zero,
and in this instance is relevant to the case of waves
propagating up a slope in an otherwise infinite ocean.
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Fig. 4.2 Free surface of a second-order Stokes wave with
T D 10 s, along with the two component waves

However, for situations in which the motion is restricted
to a finite domain (e.g., standing waves in a basin) the
mean sea surface is necessarily zero, which would lead
to a nonzero Bernoulli constant. Figure 4.2 shows the
individual components and the total free surface profile
for a second-order Stokes wave.

The particle velocities under a second-order Stokes
wave can be derived from the velocity potential

u D @�

@x
D K C gHk

2!

cosh k.hC z/

cosh kh
cos.kx�!t/

C 3!H2k

16 sinh4 kh
cosh 2k.hC z/ cos 2.kx�!t/ ;

(4.37)

w D @�

@z
D gHk

2!

sinh k.hC z/

sinh kh
sin.kx�!t/

C 3!H2k

16 sinh4 kh
sinh 2k.hC z/ sin 2.kx�!t/ :

(4.38)

The dispersion relation remains that of linear theory; the
effects of nonlinearity on the wavelength appear at third
order. Integrating the horizontal velocity u over depth
and averaging over a wave period will allow an evalua-
tion of the net mass flux (or Stokes drift). The value of
the constant K is dictated by whether zero mass flux is
indicative of the scenario at hand. For a large domain,
the constant K D 0 and the mass flux is the value of the
Stokes drift, while in confined situations the mass flux
is necessarily zero and the mass flux would be carried
by K. This also has implications for the definition of the
phase speed C:

� The phase speed C can be defined as the speed of
the wave relative to a stationary water column. In
this case, K D 0, there is no net motion below the

trough, and the phase speed

C D
r

g

k
tanh kh :

The Stokes drift defines the net mass flux in the di-
rection of wave propagation.� The phase speed C can alternatively be defined as
the speed of the wave relative to a stationary ob-
server seeing waves with no mass flux. The phase
speed would then be reduced by an amount propor-
tional to the Stokes drift.

The pressure in the water column can be derived
from the Bernoulli equation, and is

p D ��gzC �gH

2

cosh k.hC z/

cosh kh
cos.kx�!t/

� �gkH2

16 sinh kh cosh kh
cosh 2k.hC z/

C
�

3�gkH2

16 cosh kh sinh3 kh
cosh 2k.hC z/

� �ghH2

16 sinh kh cosh kh

�
cos 2.kx�!t/ :

(4.39)

It is evident that the pressure contains a term that does
not oscillate and another that is constant with depth.
Evaluation of the pressure at the bottom (z D �h) re-
veals a term that reduces the static pressure due to the
mean set down.

The basis of Stokes wave theory is that each har-
monic of the fundamental frequency represents an ad-
ditional order in the theory, and as such each harmonic
amplitude becomes correspondingly smaller. It is dif-
ficult to establish a shallow water limit on the validity
of Stokes theory based on the mathematical develop-
ment, though a limit can be established on physical
grounds. For example, one criterion could be that the
second-order amplitude remain sufficiently small so
that a bump does not appear in the trough of the wave;
this implies that

kh >

r
3a

h
; (4.40)

for a bump to not appear in the trough.

4.4.2 Evolution of Weakly Nonlinear Deep
Water Waves

Weakly nonlinear, deep water waves do not generally
travel as permanent form waves, but evolve as a result
of interactions with other waves of different frequen-
cies and directions. These interactions can consist of
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so-called bound waves (forced waves that do not satisfy
the linear dispersion relation and, thus, can grow only
a limited amount) and resonant waves (forced waves
that do satisfy the linear dispersion relation and are thus
able to grow without bound as the forcing is secular).

The expansion of the surface boundary conditions in
powers of � leads to products of unknowns that increase
as the order of the expansion increases. Thus, given

�� ei ; e�i ; (4.41)

(where  D k � x�!t), higher-order terms lead to

�2 � e2i ; 1; e�2i ; (4.42)

�3 � e3i ; ei ; e�i ; e�3i ; (4.43)

and so on, until the desired truncation. Terms that
result from this operation will remain bound to the
primary harmonic and not experience unbounded
growth. However, the �2 will also generate terms pro-
portional to ei and e�i , and �3 will generate terms
proportional to e2i , 1, and e�2i , or (in both cases)
terms proportional to the next lower-order solution.
Solution of the resulting boundary value problem will
generate terms that will grow linearly in either space or
time without bounds (secular behavior). To ameliorate
this, the method of multiple scales is often used to
treat these problems. The application of this method
allows the potentially secular behavior to be split into
motions with different degrees of variation. In many
cases, the fast degree of variation is associated with
the waveform itself (the periodic motion) and the slow
degree of variation with another property of the wave
(for example, the amplitude of the wave form), which
can then be linked to variations in some external field
(e.g., the bathymetry).

The formalism in the previous section is most rele-
vant to the case where a single wave component gives
rise to harmonics, all of which can evolve during propa-
gation to comprise a changing wave form. A coordinate
system moving with the group velocity of the wave is
defined; the resulting coordinates are defined as 	 (time
coordinate defining the slow temporal variation) and �
(space coordinate defining the slow spatial variation).
Carrying this analysis to third order will lead to the cu-
bic nonlinear Schrödinger equations [4.11]

� i
@A

@	
� 1

2

@2!

@k2
@2A

@�2
CˇjAj2AC �A D 0 ; (4.44)

where

ˇ D !k2

2
DC g2k2

2!.C2
g � gh/

�
1C kCg

2! cosh2 kh

�2

;

(4.45)

and

� D kS.	/

�
1C kCg

2! cosh2 kh

�
; (4.46)

where S.	/ is an integration constant, and

D D cosh 4khC 8� 2tanh2kh

8 sinh4 kh
: (4.47)

However, in most cases in the ocean, a description of
wave propagation via the harmonics of a single wave
is inapplicable, and we must turn toward a description
comprised of a summation of waves of different fre-
quencies and directions with random phases

� D
1X
nD1

� i

2
Bn

cosh kn.hC z/

cosh knh
ei.kn�x�!ntC�n/Cc:c: ;

(4.48)

where Bn is the (complex) amplitude of the n-th com-
ponent of � and �n is a random phase associated with
this component. The corresponding expressions for the
free surface elevation is

�D
1X
nD1

An

2
ei.kn�x�!ntC�n/C c:c: ; (4.49)

where c:c: refers to complex conjugate.
Substituting these expressions into the second-order

boundary value problem will lead to expressions for the
second-order contributions to the random sea, as shown
by Sharma and Dean [4.12]

� D
1X
nD1

� ig

2!n
An

cosh kn.hC z/

cosh knh
ei.kn�x�!ntC�n/

C
1X
iD1

1X
jD1

� ig2AiAjD
C

ij

8!i!j.!i C!j/

jki C kjj.hC z/

cosh jki Ckjjh
� ei. iC j/

C
1X
iD1

1X
jD1

� ig2AiAjD�

ij

8!i!j.!i �!j/
jki � kjj.hC z/

cosh jki �kjjh
� ei. i� j/C c:c: ;

(4.50)

where i and j are two arbitrary frequency components
in the spectrum. The coefficients DC

ij and D�

ij are

DC

ij D�
.
p
RiC

p
Rj/
�p

Rj.k2i �R2
i /C

p
Ri.k2j �R2

j /
�

C2.
p
Ri C

p
Rj/2.ki � kj �RiRj/



.
p
Ri C

p
Rj/2 � kC

ij tanhk
C

ij h
;

(4.51)
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�
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.
p
Ri �

p
Rj/2 � k�

ij tanhk
�

ij h
;

(4.52)

where

k˙

ij D jki ˙kjj (4.53)

Rn D !2
n

g
: (4.54)

The associated expression for the free surface elevation
is

�D
1X
nD1

An

2
ei.kn�x�!ntC�n/

C
1X
iD1

1X
jD1

1

8
AiAj

"
DC

ij � ki �kj CRiRjp
RiRj

CRi CRj

#

� ei. iC j/

C
1X
iD1

1X
jD1

1

8
AiAj

"
D�

ij � ki �kj �RiRjp
RiRj

CRi CRj

#

� ei. i� j/ :

(4.55)

The terms iC j and i� j denote the sum and differ-
ence interactions, respectively. Of particular importance
is the difference interaction i� j, a much longer wave
than those wave components responsible for its gener-
ation and which is considered to have a role in harbor
oscillation and seiching.

The waves generated by this second-order mecha-
nism, as mentioned above, will not grow without limit,
as they do not satisfy the linear dispersion relation and,
thus, are not free waves. Resonant interactions, which
generate waves that do satisfy the linear dispersion re-
lation, are a particular subset of interactions. It can be
shown [4.13] that no resonant interactions appear at sec-
ond order (save for one trivial set), and one must go
to third order to determine these interactions. The ap-
plication of multiple scale techniques to address these
resonances was first performed by Benney [4.14], and
the resulting evolution equations are quite complicated;
however, the resonance conditions can be written gener-
ically as follows

 l C m � p D  n ; (4.56)

where l, m, and p are indices that represent wave
components which interact with  n. These quartet in-
teraction terms have been approximated for wind wave
generation models [4.15] and are a primary engine
for energy transfer within the spectrum in wind wave
generation.

4.5 Shallow Water Wave Theories

In contrast to deep water, there is a distinct difference
in the scale of variability between horizontal and verti-
cal motions in shallow water (small kh). The horizontal
motions are scaled similarly to deep water, but the ver-
tical motions for small kh are

w D @�

@z
D gkH

2!

sinh k.zC h/

cosh kh
sin.kx�!t/

� gHk2.zC h/

!
�O.1/ ; (4.57)

since sinh k.zC h/� k.zC h/ for small kh. Using the
shallow water asymptote of the linear dispersion rela-
tion and rearranging the shallow water asymptote of the
vertical velocity w

w � gHk2.zC h/

!
D gak2h

!

�
1C z

h

	

D a

h

!

k
kh
�
1C z

h

	
D ı


�!
k

	�
1C z

h

	
: (4.58)

As is the case with � in deep water, two small parame-
ters (ı D a=h and 
D kh) are evident and are used for

scaling. However, in this case, the vertical motions are
much smaller than the horizontal motions. The shal-
low water asymptote of the linear dispersion relation,
in addition to the scale difference between horizontal
and vertical motions, is now applied to the boundary
value problem. Unlike the deep water case, the govern-
ing equation here is altered

@2�

@z2
C
2 @

2�

@x2
D 0 � h 	 z 	 � ; (4.59)

and the disparity between horizontal and vertical mo-
tions is clear. The bottom boundary condition remains
unchanged. The dynamic free surface boundary condi-
tion becomes


2

�
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�
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@�
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�
@�
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�2
!

D 0

on z D � ;

(4.60)
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and the kinematic free surface boundary condition be-
comes


2

�
@�

@t
C ı

@�

@x

@�

@x

�
D @�

@z
on z D � : (4.61)

Rather than using Taylor series about z D 0 to address
the unknown position of the free surface (as was done
for Stokes theory), a power series for the depth depen-
dence is used. This takes advantage of the fact that
vertical variation of dynamical variables is weak in
shallow water

�.x; z; t/D
1X
nD0

� z
h

C 1
	n

�n.x; t/ : (4.62)

This expression for the velocity potential � can fur-
ther be altered to satisfy the governing equation and the
bottom boundary condition. The power series can then
be expressed in terms of �0, the velocity potential at
z D �h

� D �0 � 
2

2

� z
h

C 1
	2 @2�0

@x2

C 
4

24

� z
h

C 1
	4 @4�0

@x4
CO.
6/ : (4.63)

This is then substituted into the kinematic and dynamic
free surface boundary conditions and then integrated
over depth. The result is a set of mass and momentum
conservation equations, which are expressed in terms
of powers of 
 and ı, consistent with a weakly disper-
sive, weakly nonlinear assumption. Retaining terms up
to O.ı; 
2/ leads to the Boussinesq equations [4.16]

@�

@t
C @

@x
.ŒhC �� u/D 0 (4.64)

@u

@t
C u

@u

@x
C g

@�

@x
� h2

3

@3u

@2x@t
D 0 ; (4.65)

where u is a depth-averaged velocity.

4.5.1 Properties of Weakly Nonlinear
Shallow Water Waves

The Boussinesq equations can be modeled numerically
for general wave propagation conditions. However, they
can be further transformed into a single wave equation
for �. This equation is known as the Korteweg–deVries
(KdV) equation

@�

@t
C c

@�

@x
C 3c

2h
�
@�

@x
C ch2

6

@3�

@x3
D 0 ; (4.66)

where c D p
gh. Due to an ambiguity in the derivation

of the KdV equation, there are actually eight formally
identical forms, but the form above is generally the ver-
sion used.

The KdV equation is, in fact, exactly integrable.
Two general analytic solution forms are possible with
the KdV equation, each representing a wave of perma-
nent form. The first is known as a solitary wave and is
a wave consisting of an isolated hump of water with no
trough. This wave is often used as a proxy for a tsunami
propagating away from its origin. The free surface of
a solitary wave is

�.x; t/D �maxsech
2

"p
3

2

��max

h3

	1=2
.x� ct� x0/

#
;

(4.67)

where �max is the (specified) maximum free surface ele-
vation and x0 is the location of �max. One property of the
solitary wave is that the wave form becomes narrower
and more peaked as �max increases. The phase speed c
of the solitary wave is

c Dp
gh
�
1C �max

h

	
: (4.68)

Figure 4.3 shows the free surface profile of a solitary
wave for different values of �max. The second form is
a periodic wave known as a cnoidalwave, so named due
to its dependence on the Jacobian cn function. Some
of the calculable properties of cnoidal waves are listed
below

c2 D gh

�
1C H

h

�
�1C 2

m
� 3E.m/

mK.m/

��
; (4.69)
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Fig. 4.3 Free surface profiles of a solitary wave with dif-
ferent values of �max
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Fig. 4.4 Free surface profile of a cnoidal wave for two dif-
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(4.71)

�D �2 CHcn2
�
2K.m/


.x� ct/

�
; (4.72)

In these equations, K.m/ and E.m/ are the complete
elliptic integrals of the first and second kind, respec-
tively; m is a parameter,  is the wave length, T is
the wave period, and �2 is the distance from the wave
trough to the bottom at z D �h. The parameter m can be
related to wave characteristics and determines the shape
of the cnoidal wave; m D 0 recovers a sinusoidal wave,
while m D 1 leads to a solitary wave. Wiegel [4.17]
developed a straightforward procedure for calculating
cnoidal wave profiles based on specified wave char-
acteristics. Figure 4.4 shows cnoidal wave profiles for
a wave with t D 10 s for two different values of the
Ursell number Ur D ı=
2.

4.5.2 Evolution of Weakly Nonlinear
Shallow Water Waves

In the context of irregular waves, this description of
nearshore wave evolution can be described in terms of
wave–wave interaction, a mechanism whereby waves
of different frequencies in the spectrum can trade en-
ergy to alter the shape of the spectrum. This was
mentioned earlier as a means by which wind sea trans-
forms to long-period swell in the deep ocean. In the

nearshore, the net effect of wave–wave interaction is
to transfer energy from low frequencies to high ones;
this accounts for changes in the spectral shape as waves
evolve over sloping bathymetry; this was first described
in detail by Freilich and Guza [4.18].

As with deep water waves, wave–wave interaction
in shallow water is controlled by resonance between
components of the wave spectrum. Unlike deep water,
shallow water nonlinearity is dictated by near-resonant
interaction among triads of waves. Given any arbitrary
triad of wave components in a spectrum, the interaction
triad is defined as

f3 Df2 C f1 ; (4.73)

k3 Dk2 C k1 CO.ı/ ; (4.74)

where ı is a (small) parameter that describes the detun-
ing away from perfect resonance. At the shallow water
limit (kh ! 0) the parameter ı ! 0, but even with finite
ı significant energy transfer can take place. While the
quartet interactions drive nonlinear energy transfer that
occurs over spatial scales on the order of tens of kilo-
meters, triad interactions force energy exchange, which
can occur over tens of meters, drastically changing the
shape and characteristics of the waves. These nonlin-
ear interactions have been embedded into wave shoaling
models, starting with Freilich and Guza [4.18], who
derived a nonlinear shoaling model from the Korteweg–
deVries equation, resulting in
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#
; (4.75)

where An is the complex amplitude of the n-th Fourier
component

�.x; y; t/D
NX

nD1

An

2
ei
R
kndx�!nt C c:c: ; (4.76)

and

nk D n!p
gh
: (4.77)

One limitation of this shoaling equation is the
weakly dispersive assumption, which can be problem-
atic for high frequency waves even in shallow water.
This has been addressed via finite depth wave the-
ory [4.19–22], among others.
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4.6 Transformation of Waves Approaching Land

As waves approach the shoreline they undergo sig-
nificant transformation in response to the arbitrarily
varying bathymetry. Refraction and shoaling (as dis-
cussed above) will occur, but cannot be described by the
Snell’s law formulation. In addition, wave diffraction
(the flow of energy along a wave crest due to high lo-
cal gradients of wave height, and most often associated
with waves encountering breakwaters) is also possible
over bathymetric shoals.

The mild slope equation, developed by Berk-
hoff [4.23], has been used to simulate wave propagation
over arbitrarily varying bathymetry

r � 
CCgr�
�C k2CCg� D 0 ; (4.78)

where r refers to differential operations in the horizon-
tal (x; y) directions. It can be shown that the equation
reduces to the Helmholtz equation for a flat bottom,
and that it can also be transformed into a set of cou-
pled equations for wave refraction by neglecting cur-
vature terms. The equation is elliptic, which requires
prespecification of the boundaries in advance. This is
straightforward for enclosed harbors but challenging for
open coasts, in which the location of wave breaking is
unknown in advance. This has been addressed in the
model’s elliptic form [4.24]. However, the model has
been transformed into a parabolic form [4.25], which
affords a more straightforward numerical solution.
Kirby [4.26] outlines several limitations of the parabolic
form and offers some measures for ameliorating these
limitations. The mild slope equation has been aug-
mented with nonlinear interaction terms [4.20, 22, 27].

In the nearshore area, wave breaking is primarily
controlled by the proximity of the bottom. The wave
transformation process will force the wave to reach
a limiting wave height, beyond which it cannot sustain
its form. At this point the wave breaks. The breaking
process and resultant generation of white water in the
nearshore (the surf zone) is a major engine of nearshore
processes (current generation, rip currents, infragravity
waves, sediment transport, etc.)

The location of the initial breaking (or incipient
breaking) of the wave demarcates the outer edge of the
surf zone. It is important to identify conditions leading
to incipient breaking for several reasons. For example,
it is important in numerical modeling of wave propaga-
tion in the nearshore, since the wave breaking and dis-
sipation terms are only activated within the surf zones,
so it is essential to know when they need to be active.

One of the first incipient breaking criteria was de-
veloped by McCowan [4.28], who adapted the deep
water solution of Stokes [4.10] to shallow water. Both
studies assumed that a wave broke when the particle

acceleration at the crest exceeds gravitational acceler-
ation g, and showed that this condition resulted in an
included crest angle of 120o. McCowan [4.28], how-
ever, also showed that, at this breaking condition

Hb

hb
D 0:78 ; (4.79)

or that the wave height reaches approximately 80% of
the water depth at breaking. This criterion was devel-
oped using the properties of a solitary wave over a flat
bottom, which would not generally fit the model of
oscillatory motions in the surf zone. In an alternative
treatment, Miche [4.29] developed a breaking criterion
connected with wave steepness�

Hb

Lb

�
D 1

7
tanh khb : (4.80)

Note that this criterion approaches the maximum steep-
ness criterion of Stokes [4.10] in deep water (large kh)
andHb=hb D 0:9 in shallowwater. Amore complete de-
velopment of the breaking criterion was developed by
Weggel [4.30], who examined results from a number of
laboratory experiments and determined that the bottom
slope played an important role in the initiation of break-
ing. The resulting criterion is

Hb

hb
D b.m/� a.m/

Hb

gT2
; (4.81)

where

a.m/D 43:8 .1� e�19m/ ; (4.82)

b.m/D 1:56

.1C e�19:5m/
: (4.83)

This criterion reduces to (4.79) when the slope m D 0.
Equation (4.81) is implicit for the breaking wave height
Hb, so iteration is required.

Once the wave has broken, a description of the de-
cay of the wave energy in the surf zone is needed. In this
section, we discuss wave height decay mechanisms for
both monochromatic and random waves. In general, the
assumption of a spilling breaker is used; random wave
formulations are typically determined by marrying this
assumption to a probability distribution of some kind.

The equivalence between the energy decay in
a spilling breaking wave and that of a hydraulic jump
has been well established [4.31]. Horikawa and Kuo
[4.32] conducted laboratory tests on breaking waves
and determined the existence of a stable energy flux,
which defines a state at which waves no longer break.
This concept was further developed into a general de-
scription of wave evolution in the surf zone [4.33], with
the hypothesis that the change in energy flux in the surf
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zone would follow

@ECg

@x
D �K

h

�
ECg �ECgs

�
; (4.84)

where K is a dimensionless decay coefficient, h is the
still water depth, ECg is the energy flux and the sub-
script s refers to the stable energy flux sought by the
wave. Using shallow water wave theory and assuming
that the stable wave height Hstable is a linear function of
the water depth

Hstable D � h ; (4.85)

where � is a dimensionless coefficient, (4.84) can be
transformed,

@
�
H2

p
h
�

@x
D �K

h

h
H2

p
h�� 2h5=2

i
: (4.86)

Dally et al. [4.33] determined that K D 0:15 and � D
0:4 for minimum error to the data of Horikawa and
Kuo [4.32]. Dally et al. [4.33] went on to develop an-
alytical solutions for various bathymetric profiles, but
(4.86) was the primary result.

Breaking of irregular waves in the surf zone re-
quires a different approach than that for monochromatic
waves, accommodating the random nature of waves by
marrying the physics of wave breaking with probability
theory. Early work by Battjes [4.34] and Goda [4.35]
addressed the irregular nature of waves but did not al-
low for their evolution in the surf zone, constraining
the statistical wave height measure to be some ratio be-
tween the wave height and the water depth.

Battjes and Janssen [4.36] developed a random
wave breaking model based on energy flux conserva-
tion principles

@ECg

@x
D �D ; (4.87)

where the overbar refers to averaged quantities and D
is a dissipation rate. Battjes and Janssen [4.36] devel-
oped this dissipation rate from that of a dissipating bore,
and introduced random wave heights by using the as-
sumption that the heights of unbroken nearshore waves
follow a Rayleigh distribution [4.37] for a range of
heights that vary between zero and the maximum re-
alizable wave height Hmax at a particular water depth.
The resulting dissipation rate D is

D D ˛

4
Qbf�gH2

max; (4.88)

where Hmax is the maximumwave height, Qb is the per-
centage of breaking waves in a population of waves, f is
an average frequency, and the coefficient ˛ is of order 1.

The maximumwave height is based on theMiche [4.29]
criterion for maximum wave height, with some modifi-
cation for the random nature of waves. This was then
combined with the Rayleigh distribution for nearshore
wave heights and further manipulated to lead to an ex-
pression for the fraction of breaking or broken wavesQb

1�Qb

lnQb
D �

�
Hrms

Hmax

�2

; (4.89)

which is transcendental in Qb. The model thus uses
the offshore estimate of Hrms (from a measurement or
a model) to calculate Hmax, then Qb from (4.89), and
finally D from (4.88). With this estimate of the dissipa-
tion rate, (4.87) is then used to calculate the energy (and
Hrms) at the new position.

Thornton and Guza [4.38] commented that the for-
mulation of Battjes and Janssen [4.36] was, in effect,
the implementation of a sharp cutoff value of the prob-
ability distribution of wave heights at Hmax. They argue
that waves in a group can momentarily exceed Hmax,
so a more gradual cutoff of the probability distribu-
tion near the maximum wave height is required. They
then developed two weightings for this region of the
probability distribution, either of which would allow
wave heights above the theoretical maximum to occur.
Using the same dissipative bore paradigm as Battjes
and Janssen [4.36] but with different parameters, us-
ing the weightings, and integrating over the Rayleigh
probability distribution, they determined two different
dissipation rates for random waves. The first,

D D 3
p
�

16
�g

B3f

�4h5
H7

rms; (4.90)

was less accurate when compared to data but leads to
an analytical solution, while the second,

D D 3
p
�

16
�gB3f

H5
rms

�2h3

2
66641� 1�

1C
�
Hrms
	h

	2�5=2

3
7775 ;

(4.91)

compared relatively well to data. The parameter B is
nominally defined as the proportion of the front face of
a breaking wave covered in foam, while � is the ratio of
the wave height to water depth in the surf zone; both are
generally calibrated to data. Thornton and Guza [4.38]
have shown that � D 0:42 and 1:3 	 B 	 1:7 work well
for field data.

Both mechanisms have been used as a basis for the
incorporation of random wave breaking into nonlinear
phase-resolvingmodels [4.20, 39]. The model ofBattjes
and Janssen [4.36] has been further extended for steep
slopes [4.40], following work by Baldock et al. [4.41].
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There is ample evidence for the existence of very
long period of motion in the nearshore. These motions
are generally thought to be largely the result of time
variation of wave heights and breaking locations [4.42],
though contributions from nonlinear wave–wave inter-
actions [4.43] (see also Bowen and Guza [4.44]) may
also be responsible. These long waves (often termed in-
fragravity waves) have periods on the order of minutes
and play a significant role in the evolution of the beach
face.

The basic equations governing these long wave mo-
tions can be derived from the uniform depth equations
of motion; the details can be found in [4.45]. The result
can be expressed as an inhomogeneous wave equation

@2�

@t2
� @

@x

�
ghO

@�

@x

�
� @

@y

�
ghO

@�

@y

�
D F ; (4.92)

where hO is a representative water depth and � is a mean
(wave-averaged) free surface elevation. The term F rep-
resents forcing of the long wave motion.

In many cases [4.46], the long wave motion in
the nearshore results from the transformation of long
wave energy from offshore; the long wave propagates
as a free wave. In this case, F D 0 in (4.92). The result-
ing motion in the nearshore is called an edge wave. The
mean free surface elevation is assumed to have a long-
shore periodicity

�D A.x/ei.kyy˙!t/ ; (4.93)

where ky D k sin � , or the longshore component of the
wave number; the wave approach direction � is as-
sumed to be from shore normal. Substituting (4.93) into
(4.92), and further assuming a plane beach, leads to
a solution for A.x/ [4.47]

A.x/D ane
�kyxLn.2kyx/ ; (4.94)

where the subscript n denotes a mode of the solution
(matching the number of zero crossings of the cross-
shore structure of the edge wave) with amplitude an.
The cross-shore structure is given by Ln.2kyx/, which
is the Laguerre polynomial of order n. The associated
dispersion relation for this motion is

!2 D gky sin Œ.2nC 1/ˇ� ; (4.95)

where ˇ is the angle of the beach from horizontal.
Since there is no dissipation, the edge wave will fully
reflect from the shoreline. For n D 0, all edge waves
will propagate in the longshore direction, with crests
perpendicular to the shoreline. For n > 0, however, the
edge wave is affected by refraction; the wave reflects
seaward from the shoreline, refracts to the point where
the crests are perpendicular to the shoreline, then con-
tinues refracting back toward the shoreline. Such an

edge wave is said to be trapped. On the other hand,
a long wave which is not refracted back toward shore
is said to be leaky. The phenomenon of surf beat [4.48,
49] is considered a leaky mode.

The discussion of edge waves in the previous sec-
tion is useful as an introduction to nearshore long
waves. However, because the motion is free, these long
wave frequencies must be present at reasonable energy
levels in the incident wave spectrum. The more signifi-
cant source of long wave energy in the nearshore and
surf zones comes from forced motion [4.46]. In this
case, the forcing term F in (4.92) would be nonzero.
If we dictate that the forcing is (as for nearshore
circulation) dependent on the gradients of radiation
stress [4.50], then the term F becomes

F D 1

�

@2Sxx
@x2

; (4.96)

where the analysis is limited to processes in the cross-
shore direction only (longshore derivatives are zero in
(4.92)). In a wave group, the changes in radiation stress
are assumed to be due to the spatial variations of the
wave heights within the group. Using this assumption
and limiting the domain to a constant water depth hO
gives the following solution for the mean sea surface

�D � Sxx.x; t/

�.ghO � cg/
; (4.97)

where it can be seen that the mean sea surface is in anti-
phase with the gradient of radiation stress. Besides the
limitation to constant depth, this solution is problematic
in that � becomes quite large as the group velocity of the
short waves in the group begins to approach the shallow
water asymptote.

Later approaches sought to remedy these issues
and move the area of interest closer to the surf zone.
Symonds et al. [4.42] represented the wave group as
a prescribed wave height variation about a mean ampli-
tude and propagating over a sloping bottom, then used
a constant breaking height-to-depth ratio breaking in-
dex inside the surf zone. The varying wave height led to
a moving breakpoint, which served as a varying bound-
ary condition for the generation of the long wave. The
assumption of a constant breaking index was used to
constrain the wave height in the surf zone, but destroyed
any remaining group structure therein, which was later
shown to be at least partially incorrect [4.51]. Foda and
Mei [4.52] and Schäffer and Svendsen [4.53] perused
an alternative formulation, in which the breakpoint was
fixed but allowed for the group structure to remain in
the surf zone.

The growth of the infragravity waves after this
initial generation must now be considered. Elgar
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et al. [4.54] showed that the infragravity wave energy
tends to be a function of h1:1, an almost linear de-
pendence. However, coupling (4.97) with Green’s Law
shoaling yielded a growth rate closer to h�5. The dis-
crepancy is due to how the wave environment in the
surf zone is treated. Van Dongeren and Svendsen [4.55],
using a quasi-3-D (three-dimensional) nearshore circu-
lation model, showed that the growth rate of infragrav-
ity waves can be dictated by manipulating the phase
difference between the bound wave (locked with the
wave group) and a free wave in the surf zone. Later,
Janssen et al. [4.56] developed an analytical solution
for the phase shift, leading to growth rates more con-
sistent with measurements [4.57].

Oltman-Shay et al. [4.58], examining wave-like
structures in nearshore current data taken at Duck, NC
(USA), found that these structures did not correspond
to any known wave theory. Bowen and Holman [4.59]
applied stability theory to the equations governing
nearshore circulation (with several simplifying assump-

tions) and determined that the most unstable modes had
frequencies that were in the range of those observed
in [4.58]. These instabilities were termed shear waves
since they seemed to be caused by the shear instabilities
of the longshore current. These motions only appeared
when the longshore current was present and sufficiently
energetic. The speed of these waves was independent of
their frequency (a nondispersive phenomenon) and their
signature in frequency longshore wave number space is
both distinct and distinctly different from gravity wave
phenomena.

Since the original papers there have been numerous
studies on these shear waves. Reniers et al. [4.60] recre-
ated these waves in the laboratory. Analytical means of
studying the growth of these phenomenawere advanced
by Dodd and Falques [4.61], Shrira et al. [4.62], and
Feddersen [4.63], among others. Additionally, the mod-
eling of shear waves became a motivating factor for
the development and application of numerical models
of nearshore circulation ( [4.64, 65], among others).

4.7 Computational Method for Fully Nonlinear Waves

With the development of powerful computers, numer-
ical methods have been developed to tackle nonlinear
wave problems and problems involving arbitrary body
boundaries. Boundary integral methods are found to
be more efficient for solving wave problems formu-
lated using the potential flow theory, in particular to
handle steep and overturning waves and complex body
boundary shapes. For linear problems, boundary inte-
gral methods based on the free surface Green’s function
have been developed for analysis in both the frequency
and time domains. Frequency domain analysis using
a simple Rankine source has also been used to studying
linear wave–body interaction problems in the frequency
domain. An excellent review on numerical methods for
free surface flows is given in [4.66].

Longuet-Higgins and Cokelet [4.4] developed
a boundary integral method to solve the fully nonlin-
ear inviscid wave motion problem. The method involves
solution of Green’s theorem, which is based on the
Eulerian description of flow and the nonlinear free
surface boundary conditions in the Lagrangian form;
the method is, therefore, considered to be based on
the mixed Eulerian–Lagrangian (MEL) formulation. To
illustrate the method, let us consider a wave–body in-
teraction problem such as that depicted in Fig. 4.1. Let
the lateral extent of the domain be truncated by an open
boundary ˙ . Let us say that the flow has been started
from rest with the initial condition being � D 0 and
�D 0 at time t D 0. Since ˙ is not a physical bound-
ary, it has to be modeled so that waves incident on it

may pass through without any reflection. There are sev-
eral ways to achieve that approximately, as through use
of nonlinear wave equations, free surface damping etc.
Here let us consider a simple model by which it is as-
sumed that � D 0 on ˙ during the duration of flow
simulation; in other words, simulation will be carried
out only until the radiating waves reach the vicinity of
the open boundary˙ .

Per Green’s theorem,

2��.P/C
Z
@


�
@

@n

1

rPQ
d@��

Z
@


1

rPQ

@�

@n
d@�D 0 ;

(4.98)

where @˝ is the union of all boundaries; i. e., @˝ D BC
SB CF C˙ . Here Green’s function 1=rPQ corresponds
to the potential at P due to the point source at Q. On
B and SB the normal velocity @�=@n is known based
on the no-flux condition, while � is not known. On the
open boundary, � is known, here set to be zero, while
@�=@n is not known. On the free surface, one can time
integrate the fully nonlinear free surface conditions at
each time step to determine the free surface deformation
and the velocity potential on the free surface; in other
words, time integrate the dynamic condition

D�

Dt
D 1

2
jr�j2 � gY ;

to advance � from discrete time n to nC 1 and time
integrate the free surface (material surface) kinematic
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condition

DX
Dt

D r� ;

to advance position of free surface nodes X D .X; Y;Z/
from discrete time n to nC 1. Algorithms such as
the fourth-order Runge–Kutta and Adams–Bashforth
schemes [4.67, 68] may be used for the time integration.
Thus, knowing � on the free surface, one may rewrite
the above Green’s theorem with known terms on the
right-hand side and unknown terms on the left-hand side
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d@˝ : (4.99)

The above integral equation is discretized and the
resulting algebraic (matrix) equation solved either di-
rectly or iteratively for � on solid boundaries B and SB,
and for @�=@n on the free surface F and open bound-
ary˙ . Upon determining� on the body, one can use the
Euler integral (unsteady Bernoulli’s equation) to deter-
mine pressure and through integration of pressure the
hydrodynamic force on the body. The solution is thus
advanced in time.

The mixed Eulerian–Lagrangian formulation has
become a standard approach for solving fully nonlin-
ear inviscid wave and wave–body interaction problems
and it has been adopted in field discretization methods
such as the finite difference method. Works on nonlin-
ear wave and wave–body interaction problems based on
the MEL formulation include those by Vinje and Bre-
vig [4.69], Grosenbaugh and Yeung [4.67], Dommer-
muth et al. [4.68], Saout and Ananthakrishnan [4.70],
Ananthakrishnan [4.71] and Xue et al. [4.72].

4.8 Wave Forces on Fixed and Floating Structures

In this section, the methods to determine the wave
exciting force (which consists of incident and body-
diffracted wave forces) on a body, and in the case
of a freely floating body the additional wave radia-
tion force due to the body motion generated waves are
presented. Both theoretical and numerical methods to
determine the wave forces will be discussed. We shall
take the mean forward of the bodies to be zero here.
One can find the nonzero forward speed cases in the
literature on ship hydrodynamics and naval architec-
ture. Empirical and exact methods to determine the
viscous drag force is also discussed. Particular empha-
sis is given to parameters that govern ratios of various
wave component and viscous drag forces.

4.8.1 Incident Wave Force:
Froude–Krylov Force

Let us consider a body (submerged or floating) in a wave
field as illustrated in Fig. 4.1. Let the incident wave be
of small amplitude and be propagating in the positive x
direction with elevation and potential given by

�i D Hi

2
cos .kx�!t/ ;

�i D Hi

2

cosh k.zC h/

cosh kh
sin .kx�!t/ ;

where the superscript i denotes incident wave. Using the
Euler integral, one can find the dynamic pressure of the

incident wave as

pi D ��@�
i

@t
D �g

Hi

2

cosh k.zC h/

cosh kh
cos .kx�!t/ :

By integrating the incident wave pressure about the
body surface (mean surface if the body is undergoing
oscillation) one can determine the incident wave force,
which is also known as the Froude–Krylov force, Fi

Fi D
Z
So

pidSo

D
Z
So

�g
Hi

2

cosh k.zC h/

cosh kh
On cos .kx�!t/ dSo ;

where So denotes the body surface and On the unit normal
vector into the body. Using the Gauss theorem one may
write the above as a volume integral

Fi D
Z
So

pi OndSo D �
Z

8o

rpid8o ;

where 8o denotes the volume occupied by the body. In
the component form, the incident wave forces are then

Fi
x D �gk

Hi

2

1

cosh kh

�
Z

8o

cosh k.zC h/ sin .kx�!t/d8o ;
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and

Fi
z D ��gkH

i

2

1

cosh kh

�
Z

8o

sinh k.zC h/ cos .kx�!t/d8o :

If the body is really small, or more precisely spans small
distances along x and z compared to the incident wave
length, then the above integral may be further approxi-
mated by replacing x and z in the integrals by the x and
z coordinates of the centroid. The Froude–Krylov force
will then simply be

Fi
x D �gk

Hi

2

cosh k.NzC h/

cosh kh
sin .kNx�!t/ 8o ;

and

Fi
z D ��gkH

i

2

sinh k.NzC h/

cosh kh
cos .kNx�!t/ 8o ;

where .Nx; Nz/ denote the coordinates of the centroid of
the body (submerged part of the body if the body were
floating). It is thus a straightforward calculation to de-
termine the small amplitude incident wave force, in
particular if the body size is small compared to the in-
cident wave length.

From the above integrals, one can also estimate
the order of magnitude of the incident wave force. For
a near surface body, the incident wave force is of the
order of magnitude

jFij � Fi D O.�g8ok
Hi

2
/D�O.k

Hi

2
/ ;

where� denotes the weight (displacement) of the body.
Note that kHi=2 denotes the slope of the incident

wave. In other words, the Froude–Krylov force of the
order of body weight times the wave slope.

4.8.2 Morison Force on a Stationary Body

The incident wave force given by the Froude–Krylov
force does not account for the viscous drag force, which
could be significant even if the body size is small
compared to the incident wave length. Computing the
viscous drag force exactly would require solving the
incompressible Navier–Stokes equation with free sur-
face conditions, which is a formidable task. Morison
et al. [4.73] proposed an empirical method to deter-
mine the wave force on a body including the drag force.
Decomposing the hydrodynamic force into inertia and
drag components, which is exact for force on a sub-
merged body without a free surface, Morison proposed
to determine the wave force as

F D Finertia CFdrag :

In terms of inertia and drag coefficients,

F D CI�Pu8 CCd
�

2
ujujAp ;

where F denotes the x component of the force, u the x
component of fluid velocity, Pu the x component of fluid
acceleration, 8 the displaced volume of the body, and
Ap the projected area of the body normal to the x-axis.
The inertia and drag coefficients Ci and Cd are em-
pirically obtained; scaled with respect to volume and
projected area, they are both O.1/. The above is re-
ferred to as the Morison equation for the wave force on
a body [4.8]. In the Morison equation method the fluid
velocity and acceleration are determined using wave
theories. As per linear Airy wave theory, as seen in
an earlier section, the amplitudes of u and Nu are given
by

juj D Hi

2

gk

!

cosh k.zC h

cosh kh
;

j Puj D Hi

2
gk

cosh k.zC h

cosh kh
:

The above Morison equation method thus provides
a practical method to determine the viscous incident
wave force on a body. The decomposition also allows
one to determine the relative significance of the inertia
and drag components of the incident wave force. For
a body in a wave under wave influence (i. e., kz � 0)

Drag

Inertia
D Cd�ujujAp=2

CI�Pu8
D O

�
Hi2g2k2D2

!2HigkD3

�

(here D denotes body length)
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�
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1

tanh kh

�

(using the dispersion relation) :

From the above, it is clear that the drag force is more
significant for a large wave height to body length ra-
tio and/or in shallow water (i. e., small kh) [4.8]. Using
wave kinematics, one can easily establish that in the
case of deep water waves, the above ratio is related
to the Keulegan–Carpenter number KC of oscillating
flows [4.74]

KC � UT
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From the above discussion, the following points are
worth recapitulating:

� The ratio of drag force to inertia force depends on
(i) the wave height to body diameter ratio and (ii)
wave length to water depth ratio.� In the case of small wave height to body diame-
ter ratio Hi=D in deep water waves (i. e., tanh kh
= 1), the Morison force will be equal to the Froude–
Krylov force for appropriate value of Ci.� When using the Morison equation method for wave
force on a moving body, the velocity and accelera-
tions are taken to be relative to the body motion.

If the body dimension is large compared to wave
height and not small compared to the incident wave
length, then the drag force will not be important, but the
Morison equation cannot be used to determine the iner-
tial force because the scattering (diffraction) of waves
by the body will become significant. One can use the
potential flow theory to solve the diffraction problem
(as done in [4.75] for a vertical cylinder) and also de-
termine the wave diffraction force. The wave exciting
force will then be the sum of the Froude–Krylov and the
diffraction wave forces. The diffraction wave problem
pertaining to linear wave–body interaction is discussed
in the next section.

4.8.3 Wave Diffraction over a Body

Let the body shown in Fig. 4.1 be stationary. The mere
presence of the body will cause the incident waves
to scatter. For small amplitude waves, governed by
linearized free surface conditions, one may solve the
diffraction problem separately and determine the total
potential as

� D �i C�d ;

where the superscripts i and d denote incidence and
diffraction, respectively. The solution of the incident
wave potential is simply that of a free periodic wave as
presented in Sect. 3.2. The diffraction potential is gov-
erned by the following set of equations

r2�d D 0 ;
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@2�d

@t2
C g

@�d

@z
D 0; on the mean free surface z D 0 :

Moreover, in the far field, the diffraction potential must
satisfy the Sommerfeld radiation condition [4.9]

p
R

 
�i!�d CC

@�d

@R

!
D 0; asR ! 1 ;

where R Dp
x2 C y2, which denotes the radial distance

from the body and C the wave phase speed. The above
diffraction problem was solved by McCamy and Fuchs
for the case of a vertical circular cylinder [4.75]. The x
component wave exciting force with diffraction is given
by

Fx D �gH
2 D

2 tanh.kh/

k2R2H.2/
0

1 .kR/
;

where H.2/1 denotes the Hankel function of the second
kind and order 1 and R = D=2 the radius of the cylinder.

In the case of small H=D and not so small L=D, as
in the case of waves incident on a supertanker or a large
gravity platform, the diffraction force will be more sig-
nificant than the drag force. On the other hand, drag
force will be the predominant part of the wave exciting
force for a mooring cable (small diameter) in a similar
sea.

4.8.4 Wave Radiation Force
on an Oscillating Body

In the case of a compliant or freely floating body, the
body will undergo oscillatory motion when subject to
the wave exciting force. The force due to waves caused
by body motion is referred to as the wave radiation
force [4.9]. Now let the body considered in Fig. 4.1 un-
dergo rigid body motion such that the normal velocity
of the body may be written as

Vn D U � OnC .˝ � r/ � On
D U � OnC˝ � .r� On/

D
iD6X
iD1

Uini ;

where On denotes the unit normal vector on the body
surface and r the position vector from the axis of ro-
tation through the center of gravity. Moreover, Ui D
U1;U2;U3; ˝1;˝2;˝3 and ni D n1; n2; n3; .r� On/1; .r�
On/2; .r� On/3 for i D 1; 2; 3; 4; 5; 6, respectively, corre-
sponding to the sixth degree of freedom rigid body
motion. For the linear small amplitude body and wave
motion problem, the radiation wave potential can be de-
composed as per Kirchoff modal decomposition [4.9]

http://dx.doi.org/10.1007/978-3-319-16649-0_3
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and written as

˚ r D
jD6X
jD1

Aj�
r
j e

�i!t ;

where ˚ r denotes the total wave radiation potential and
�r
i the i-th mode of radiation potential per unit ampli-

tude of body motion. The equations governing the unit
radiation potentials are given by [4.9]

r2�r
j D 0 ;
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D 0; ;

on the mean free surface z D 0 :

At infinity, the radiation potential must satisfy the Som-
merfeld radiation condition
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�i!�r

j CC
@�r

j

@R

�
D 0; as R ! 1 ;

where R Dp
x2 D y2, which denotes the radial distance

from the body and C the phase speed of the radiating
waves (which, for example, for the deep water wave
case is g=!). Upon solving the above radiation prob-
lem, for example by using the simple source distribution
method originated by Yeung [4.66], one can determine
the complex hydrodynamic coefficient

fij D �

Z
SBo

�r
injdSBo ;

which can be decomposed into components that are
proportional to body acceleration (known as the added

mass force) and to velocity (known as the wave damp-
ing force)

fij D �!2
ij � i!ij ;

where 
ij denotes the added mass force coefficient
and ij the wave damping force coefficient, both for
force/moment along direction i for the j-th mode of
motion. Using Green’s identity one can establish that
the coefficients are symmetric: fij D fji. For bodies with
symmetry one can show that wave damping and wave
excitation forces can be related using the Haskind rela-
tion [4.9]. The linear wave–body interaction theory is
thus quite useful from a practical viewpoint to deter-
mine the wave forces. The theory is also rich in classical
mathematics. Thus both theoreticians and practical en-
gineers are attracted to the subject. The reader may
refer to classical texts such as those by Wehausen
and Laitone [4.7], Newman [4.9], and Mei [4.76] for
detailed accounts of formulation and analysis of wave–
body interactions.

In the case of a linear wave body interaction prob-
lem involving freely floating bodies, one then has to
solve rigid body dynamics problem to determine the
body response to wave forces consisting of incident,
diffraction, and radiation wave force. In the case of the
fully nonlinear wave–body interaction problem, both
the hydrodynamic and body dynamic problems have to
solved simultaneously, as each affect the other through
the boundary conditions of hydrodynamic problems and
through hydrodynamic force and moment of the body
dynamics problem. The hydrodynamic problem may be
solved using the mixed Eulerian–Lagrangian method
of Longuet-Higgins and Cokelet [4.4] discussed ear-
lier. Between the linear and fully nonlinear wave–body
interaction theories, there are also weakly nonlinear
theories developed for wave forces, as for example
in [4.77], which are not discussed here. As the fully
nonlinear wave theories are computationally intensive,
linear and weakly nonlinear theories remain useful for
engineering solutions to problems involving wave and
body motions.

4.9 Concluding Remarks

The fundamentals of the mechanics of ocean wave the-
ory and wave–body interactions were presented in this
chapter. It began with an overview of linear wave the-
ory, including the assumptions and limitations inherent
in its use. Weakly nonlinear deep and shallow wa-
ter wave theories were then outlined, including both
permanent form waves (classical Stokes and cnoidal

wave theories), followed by a discussion of wave spec-
tral evolution and nonlinear wave–wave interactions.
The transformation of waves over arbitrarily varying
bathymetry was then detailed, touching on the mild
slope equation for water wave propagation, nearshore
wave breaking, infragravity waves, and waves caused
by instabilities of nearshore circulation. Computational
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methods for calculating fully nonlinear waves and the
resultant forces on bodies were discussed. The interac-
tion of waves with a submerged or floating body was
also considered, including discussions of the Froude–
Krylov force of the incident wave and the Morison

equation method for determining the inertia and drag-
components of the wave exciting force.

Related topics such as wind wave generation, sea
spectra, and wave energy conversion are discussed in
other chapters of the Handbook.
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